0795afa3 |
1 | \newpage |
2 | \section{Input\label{INPUT}} |
3 | |
4 | \subsection{Input Format} |
5 | |
6 | ISAJET is controlled by commands read from the specified input |
7 | file by subroutine READIN. (In the interactive version, this file is |
8 | first created by subroutine DIALOG.) Syntax errors will generate a |
9 | message and stop execution. Based on these commands, subroutine LOGIC |
10 | will setup limits for all variables and check for inconsistencies. |
11 | Several runs with different parameters can be combined into one job. |
12 | The required input format is: |
13 | \begin{verbatim} |
14 | Title |
15 | Ecm,Nevent,Nprint,Njump/ |
16 | Reaction |
17 | (Optional parameters) |
18 | END |
19 | (Optional additional runs) |
20 | STOP |
21 | \end{verbatim} |
22 | with all lines starting in column 1 and typed in {\it upper} case. These |
23 | lines are explained below. |
24 | |
25 | Title line: Up to 80 characters long. If the first four letters |
26 | are STOP, control is returned to main program. If the first four letters |
27 | are SAME, the parameters from previous run are used excepting those |
28 | which are explicitly changed. |
29 | |
30 | Ecm line: This line must always be given even if the title is |
31 | SAME. It must give the center of mass energy (Ecm) and the number of |
32 | events (Nevent) to be generated. One may also specify the number of |
33 | events to be printed (Nprint) and the increment (Njump) for printing. |
34 | The first event is always printed if Nprint $>$ 0. For example: |
35 | \begin{verbatim} |
36 | 800.,1000,10,100/ |
37 | \end{verbatim} |
38 | generates 1000 events at $E_{\rm cm} = 800\,\GeV$ and prints 10 |
39 | events. The events printed are: 1,100,200,\dots. Note that an event |
40 | typically takes several pages of output. This line is read with a list |
41 | directed format (READ*). |
42 | |
43 | After Nprint events have been printed, a single line containing the |
44 | run number, the event number, and the random number seed is printed |
45 | every Njump events (if Njump is nonzero). This seed can be used to start |
46 | a new job with the given event if in the new run NSIGMA is set equal to |
47 | zero: |
48 | \begin{verbatim} |
49 | SEED |
50 | value/ |
51 | NSIGMA |
52 | 0/ |
53 | \end{verbatim} |
54 | In general the same events will only be generated on the same type of |
55 | computer. |
56 | |
57 | Reaction line: This line must be given unless title is SAME, when |
58 | it must be omitted. It selects the type of events to be generated. The |
59 | present version can generate TWOJET, E+E-, DRELLYAN, MINBIAS, WPAIR, |
60 | SUPERSYM, HIGGS, PHOTON, TCOLOR, or WHIGGS events. This line is read |
61 | with an A8 format. |
62 | |
63 | \subsection{Optional Parameters} |
64 | |
65 | Each optional parameter requires two lines. |
66 | The first line is a keyword specifying the parameter and the second |
67 | line gives the values for the parameter. The parameters can be given in |
68 | any order. Numerical values are read with a list directed format |
69 | (READ*), jet and particle types are read with a character format and |
70 | must be enclosed in quotes, and logical flags with an L1 format. All |
71 | momenta are in GeV and all angles are in radians. |
72 | |
73 | The parameters can be classified in several groups: |
74 | \begin{center} |
75 | \begin{tabular}{lllll} |
76 | \hline\hline |
77 | Jet Limits: & W/H Limits: & Decays: & Constants: & Other: \\ |
78 | \hline |
79 | JETTYPE1 & HTYPE & FORCE & AMSB & BEAMS \\ |
80 | JETTYPE2 & PHIW & FORCE1 & CUTJET & EPOL \\ |
81 | JETTYPE3 & QMH & NODECAY & CUTOFF & EEBEAM \\ |
82 | MIJLIM & QMW & NOETA & EXTRAD & EEBREM \\ |
83 | MTOT & QTW & NOEVOLVE & FRAGMENT & NPOMERON \\ |
84 | P & THW & NOFRGMNT & GAUGINO & NSIGMA \\ |
85 | PHI & WTYPE & NOGRAV & GMSB & NTRIES \\ |
86 | PT & XW & NOPI0 & GMSB2 & PDFLIB \\ |
87 | TH & YW & & HMASS & SEED \\ |
88 | X & & & HMASSES & STRUC \\ |
89 | Y & & & LAMBDA & WFUDGE \\ |
90 | WMODE1 & & & MGVTNO & WMMODE \\ |
91 | WMODE2 & & & MSSMA & WPMODE \\ |
92 | & & & MSSMB & Z0MODE \\ |
93 | & & & MSSMC & \\ |
94 | & & & MSSMD & \\ |
95 | & & & MSSME & \\ |
96 | & & & NUSUG1 & \\ |
97 | & & & NUSUG2 & \\ |
98 | & & & NUSUG3 & \\ |
99 | & & & NUSUG4 & \\ |
100 | & & & NUSUG5 & \\ |
101 | & & & SIGQT & \\ |
102 | & & & SIN2W & \\ |
103 | & & & SLEPTON & \\ |
104 | & & & SQUARK & \\ |
105 | & & & SSBCSC & \\ |
106 | & & & SUGRA & \\ |
107 | & & & SUGRHN & \\ |
108 | & & & TCMASS & \\ |
109 | & & & TMASS & \\ |
110 | & & & WMASS & \\ |
111 | \hline\hline |
112 | \end{tabular} |
113 | \end{center} |
114 | |
115 | It may be helpful to know that the TWOJET, WPAIR, PHOTON, |
116 | SUPERSYM, and WHIGGS processes use the same controlling routines and |
117 | so share many of the same variables. In particular, PT limits should |
118 | normally be set for these processes, and JETTYPE1 and JETTYPE2 are |
119 | used to select the reactions. Similarly, the DRELLYAN, HIGGS, and |
120 | TCOLOR processes use the same controlling routines since they all |
121 | generate s-channel resonances. The mass limits for these processes are |
122 | set by QMW. Normally the QMW limits will surround the $W^\pm$, $Z^0$, |
123 | or Higgs mass, but this is not required. (QMH acts like QMW for the |
124 | Higgs process.) For historical reasons, JETTYPE1 and JETTYPE2 are used |
125 | to select the W decay modes in DRELLYAN, while WMODE1 and WMODE2 select |
126 | the W decay modes for WPAIR, HIGGS, and WHIGGS. Also, QTW can be used |
127 | to generate DRELLYAN events with non-zero transverse momentum, whereas |
128 | HIGGS automatically fixes QTW to be zero. (Of course, non-zero |
129 | transverse momentum will be generated by gluon radiation.) |
130 | |
131 | For example the lines |
132 | \begin{verbatim} |
133 | P |
134 | 40.,50.,10.,100./ |
135 | \end{verbatim} |
136 | would set limits for the momentum of jet 1 between 40 and 50 GeV, and |
137 | for jet 2 between 10 and 100 GeV. As another example the lines |
138 | \begin{verbatim} |
139 | WTYPE |
140 | 'W+'/ |
141 | \end{verbatim} |
142 | would specify that for DRELLYAN events only W+ events will be generated. |
143 | If for a kinematic variable only the lower limit is specified then that |
144 | parameter is fixed to the given value. Thus the lines |
145 | \begin{verbatim} |
146 | P |
147 | 40.,,10./ |
148 | \end{verbatim} |
149 | will fix the momentum for jet 1 to be 40 GeV and for jet 2 to be 10 |
150 | GeV. If only the upper limit is specified then the default value is used |
151 | for the lower limit. Jet 1 or jet 2 parameters for DRELLYAN events refer |
152 | to the W decay products and cannot be fixed. If QTW is fixed to 0, then |
153 | standard Drell-Yan events are generated. |
154 | |
155 | A complete list of keywords and their default values follows. |
156 | |
157 | \newpage |
158 | \begin{center} |
159 | \begin{tabular}{lll} |
160 | \hline\hline |
161 | Keyword & & Explanation \\ |
162 | Values & Default values & \\ |
163 | \hline |
164 | AMSB & & Anomaly-mediated SUSY breaking \\ |
165 | $m_0$,$m_{3/2}$,$\tan\beta$,$\sgn\mu$ & none & scalar mass, gravitino mass, \\ |
166 | & & VEV ratio, sign \\ |
167 | & & \\ |
168 | BEAMS & & Initial beams. Allowed are \\ |
169 | type$_1$,type$_2$ & 'P','P' & 'P','AP','N','AN'. \\ |
170 | & & \\ |
171 | CUTJET & & Cutoff mass for QCD jet \\ |
172 | $\mu_c$ & 6. & evolution. \\ |
173 | & & \\ |
174 | CUTOFF & & Cutoff $qt^2=\mu^2Q^\nu$ for \\ |
175 | $\mu^2$, $\nu$ & .200,1.0 & DRELLYAN events. \\ |
176 | & & \\ |
177 | EEBEAM & & impose brem/beamstrahlung \\ |
178 | $\sqrt{\hat{s}}_{min}$, $\sqrt{\hat{s}}_{max}$, $\Upsilon$, $\sigma_z$ & |
179 | none & min and max subprocess energy, \\ |
180 | & & beamstrahlung parameter $\Upsilon$ \\ |
181 | & & longitudinal beam size $\sigma_z$ in mm \\ |
182 | & & \\ |
183 | EEBREM & & impose bremsstrahlung for $e^+e^-$ \\ |
184 | $\sqrt{\hat{s}}_{min}$, $\sqrt{\hat{s}}_{max}$ & none & min and max subprocess |
185 | energy \\ |
186 | & & \\ |
187 | EPOL & & Polarization of $e^-$ ($e^+$) beam, \\ |
188 | $P_L(e^-),P_L(e^+)$ & 0,0 & $P_L(e)=(n_L-n_R)/(n_L-n_R)$, \\ |
189 | & & so that $-1 \le P_L \le 1$ \\ |
190 | & & \\ |
191 | EXTRAD & & Parameters for EXTRADIM process\\ |
192 | $\delta$,$M_D$,UVCUT & None & UVCUT is logical flag \\ |
193 | & & \\ |
194 | FORCE & & Force decay of particles, \\ |
195 | $i,i_1,...,i_5$/ & None & $\pm i \to \pm(i1+...+i5)$. \\ |
196 | & & Can call 20 times. \\ |
197 | & & See note for $i$ = quark. \\ |
198 | & & \\ |
199 | FORCE1 & & Force decay $i \to i1+...+i5$. \\ |
200 | $i,i_1,...,i_5$/ & None & Can call 40 times. \\ |
201 | & & See note for $i$ = quark. \\ |
202 | & & \\ |
203 | FRAGMENT & & Fragmentation parameters. \\ |
204 | $P_{ud}$,\dots & .4,\dots & See also SIGQT, etc. \\ |
205 | & & \\ |
206 | GAUGINO & & Masses for $\tilde g$, |
207 | $\tilde\gamma$, \\ |
208 | $m_1$,$m_2$,$m_3,m_4$ & 50,0,100,100 & $\tilde W^+$, and $\tilde Z^0$ \\ |
209 | \hline\hline |
210 | \end{tabular} |
211 | \end{center} |
212 | |
213 | \newpage |
214 | \begin{center} |
215 | \begin{tabular}{lll} |
216 | \hline\hline |
217 | GMSB & & GMSB messenger SUSY breaking, \\ |
218 | $\Lambda_m$,$M_m$,$N_5$ & none & mass, number of $5+\bar5$, VEV \\ |
219 | $\tan\beta$,$\sgn\mu$,$C_{\rm gr}$ & & ratio, sign, gravitino scale \\ |
220 | & & \\ |
221 | GMSB2 & & non-minimal GMSB parameters \\ |
222 | $\slashchar{R}$,$\delta M_{H_d}^2$,$\delta M_{H_u}^2$,$D_Y(M)$ & 1,0,0,0 & |
223 | gaugino mass multiplier \\ |
224 | $N_{5_1}$,$N_{5_2}$,$N_{5_3}$ & $N_5$ & Higgs mass shifts, D-term mass$^2$\\ |
225 | & & indep. gauge group messengers \\ |
226 | & & \\ |
227 | HMASS & 0 & Mass for standard Higgs. \\ |
228 | $m$ & & \\ |
229 | & & \\ |
230 | HMASSES & & Higgs meson masses for \\ |
231 | $m_1$,\dots,$m_9$ & 0,...,0 & charges 0,0,0,0,0,1,1,2,2. \\ |
232 | HTYPE & & One MSSM Higgs type ('HL0', \\ |
233 | 'HL0'/ or... & none & 'HH0', or 'HA0') \\ |
234 | & & \\ |
235 | JETTYPE1 & & )Select types for jets: \\ |
236 | 'GL','UP',... & 'ALL' & )'ALL'; 'GL'; 'QUARKS'='UP', \\ |
237 | & & )'UB','DN','DB','ST','SB', \\ |
238 | JETTYPE2 & & )'CH','CB','BT','BB','TP', \\ |
239 | 'GL','UP',... & 'ALL' & )'TB','X','XB','Y','YB'; \\ |
240 | & & )'LEPTONS'='E-','E+','MU-', \\ |
241 | JETTYPE3 & & )'MU+','TAU-','TAU+'; 'NUS'; \\ |
242 | 'GL','UP',... & 'ALL' & )'GM','W+','W-','Z0' \\ |
243 | & & ) See note for SUSY types. \\ |
244 | & & \\ |
245 | LAMBDA & & QCD scale \\ |
246 | $\Lambda$ & .2 & \\ |
247 | & & \\ |
248 | MGVTNO & & Gravitino mass -- ignored for \\ |
249 | $M_{\rm gravitino}$ & $10^{20}$~GeV & GMSB model \\ |
250 | & & \\ |
251 | MIJLIM & & Multimet mass limits \\ |
252 | $i$,$j$,$M_{\rm min}$,$M_{\rm max}$ & 0,0,$1\,\GeV$,$1\,\GeV$ & \\ |
253 | & & \\ |
254 | MSSMA & & MSSM parameters -- \\ |
255 | $m(\tilde g)$,$\mu$, & Required & Gluino mass, $\mu$, $A$ mass, \\ |
256 | $m(A)$,$\tan\beta$ & & $\tan\beta$ \\ |
257 | & & \\ |
258 | MSSMB & & MSSM 1st generation -- \\ |
259 | $m(q_1)$,$m(d_r)$,$m(u_r)$, & Required & Left and right soft squark and \\ |
260 | $m(l_1)$,$m(e_r)$ & & slepton masses \\ |
261 | \hline\hline |
262 | \end{tabular} |
263 | \end{center} |
264 | |
265 | \newpage |
266 | \begin{center} |
267 | \begin{tabular}{lll} |
268 | \hline\hline |
269 | MSSMC & & MSSM 3rd generation -- \\ |
270 | $m(q_3)$,$m(b_r)$,$m(t_r)$, & Required & Soft squark masses, slepton \\ |
271 | $m(l_3)$,$m(\tau_r)$, & & masses, and squark and slepton \\ |
272 | $A_t$,$A_b$,$A_\tau$ & & mixings \\ |
273 | & & \\ |
274 | MSSMD & & MSSM 2nd generation -- \\ |
275 | $m(q_2)$,$m(s_r)$,$m(c_r)$, & from MSSMB & Left and right soft squark and \\ |
276 | $m(l_2)$,$m(mu_r)$ & & slepton masses \\ |
277 | & & \\ |
278 | MSSME & & MSSM gaugino masses -- \\ |
279 | $M_1$,$M_2$ & MSSMA + GUT & Default is to scale from gluino\\ |
280 | & & \\ |
281 | MTOT & & Mass range for multiparton \\ |
282 | $M_{\rm min}$,$M_{\rm max}$ & None & processes \\ |
283 | & & \\ |
284 | NODECAY & & Suppress all decays. \\ |
285 | TRUE or FALSE & FALSE & \\ |
286 | & & \\ |
287 | NOETA & & Suppress eta decays. \\ |
288 | TRUE or FALSE & FALSE & \\ |
289 | |
290 | NOEVOLVE & & Suppress QCD evolution and \\ |
291 | TRUE or FALSE & FALSE & hadronization. \\ |
292 | & & \\ |
293 | NOGRAV & & Suppress gravitino decays in \\ |
294 | TRUE or FALSE & FALSE & GMSB model \\ |
295 | & & \\ |
296 | NOHADRON & & Suppress hadronization of \\ |
297 | TRUE or FALSE & FALSE & jets and beam jets. \\ |
298 | & & \\ |
299 | NONUNU & & Suppress $Z^0$ neutrino decays.\\ |
300 | TRUE or FALSE & FALSE & \\ |
301 | & & \\ |
302 | NOPI0 & &Suppress $\pi^0$ decays. \\ |
303 | TRUE or FALSE & FALSE & \\ |
304 | & & \\ |
305 | NPOMERON & & Allow $n_1<n<n_2$ cut pomerons.\\ |
306 | $n_1$,$n_2$ & 1,20 & Controls beam jet mult. \\ |
307 | & & \\ |
308 | NSIGMA & & Generate n unevolved events \\ |
309 | $n$ & 20 & for SIGF calculation. \\ |
310 | & & \\ |
311 | NTRIES & & Stop if after n tries \\ |
312 | $n$ & 1000 & cannot find a good event. \\ |
313 | \hline\hline |
314 | \end{tabular} |
315 | \end{center} |
316 | |
317 | \newpage |
318 | \begin{center} |
319 | \begin{tabular}{lll} |
320 | \hline\hline |
321 | NUSUG1 & & Optional non-universal SUGRA \\ |
322 | $M_1$,$M_2$,$M_3$ & none & gaugino masses \\ |
323 | & & \\ |
324 | NUSUG2 & & Optional non-universal SUGRA \\ |
325 | $A_t$,$A_b$,$A_\tau$ & none & $A$ terms \\ |
326 | & & \\ |
327 | NUSUG3 & & Optional non-universal SUGRA \\ |
328 | $M_{H_d}$,$M_{H_u}$ & none & Higgs masses \\ |
329 | & & \\ |
330 | NUSUG4 & & Optional non-universal SUGRA \\ |
331 | $M_{u_L}$,$M_{d_R}$,$M_{u_R}$, & none & 1st/2nd generation masses \\ |
332 | $M_{e_L}$,$M_{e_R}$ & & \\ |
333 | & & \\ |
334 | NUSUG5 & & Optional non-universal SUGRA \\ |
335 | $M_{t_L}$,$M_{b_R}$,$M_{t_R}$, & none & 3rd generation masses \\ |
336 | $M_{\tau_L}$,$M_{\tau_R}$ & & \\ |
337 | & & \\ |
338 | P & & Momentum limits for jets. \\ |
339 | $p_{\rm min}(1)$,\dots,$p_{\rm max}(3)$ & |
340 | 1.,$0.5E_{\rm cm}$ & \\ |
341 | & & \\ |
342 | PDFLIB & & CERN PDFLIB parton distribution\\ |
343 | 'name$_1$',val$_1$,\dots & None & parameters. See PDFLIB manual. \\ |
344 | & & \\ |
345 | PHI & & Phi limits for jets. \\ |
346 | $\phi_{\rm min}(1)$,\dots,$\phi_{\rm max}(3)$ & 0,$2\pi$ & \\ |
347 | & & \\ |
348 | PHIW & & Phi limits for W. \\ |
349 | $\phi_{\rm min}$,$\phi_{\rm max}$ & |
350 | 0,$2\pi$ & \\ |
351 | & & \\ |
352 | PT or PPERP & & $p_t$ limits for jets. \\ |
353 | $p_{t,{\rm min}}(1)$,\dots,$p_{t,{\rm max}}(3)$ & |
354 | $.05E_{\rm cm}$,$.2E_{\rm cm}$ & Default for TWOJET only. \\ |
355 | & & \\ |
356 | QMH & & Mass limits for Higgs. \\ |
357 | $q_{\rm min}$,$q_{\rm max}$ & |
358 | $.05E_{\rm cm}$,$.2E_{\rm cm}$ & Equivalent to QMW. \\ |
359 | & & \\ |
360 | QMW & & Mass limits for $W$. \\ |
361 | $q_{\rm min}$,$q_{\rm max}$ & |
362 | $.05E_{\rm cm}$,$.2E_{\rm cm}$ & \\ |
363 | & & \\ |
364 | QTW & & $q_t$ limits for $W$. Fix |
365 | $q_t=0$ \\ |
366 | $q_{t,{\rm min}}$,$q_{t,{\rm max}}$ & |
367 | .1,$.025E_{\rm cm}$ & for standard Drell-Yan. \\ |
368 | & & \\ |
369 | SEED & & Random number seed (double \\ |
370 | real & 0 & precision if 32 bit). \\ |
371 | \hline\hline |
372 | \end{tabular} |
373 | \end{center} |
374 | |
375 | \newpage |
376 | \begin{center} |
377 | \begin{tabular}{lll} |
378 | \hline\hline |
379 | SIGQT & & Internal $k_t$ parameter for \\ |
380 | $\sigma$ & .35 & jet fragmentation. \\ |
381 | & & \\ |
382 | SIN2W & & Weinberg angle. See WMASS. \\ |
383 | $\sin^2(\theta_W)$ & .232 & \\ |
384 | & & \\ |
385 | SLEPTON & & Masses for $\tilde \nu_e$, |
386 | $\tilde e$, $\tilde\nu_\mu$, $\tilde\mu$, $\tilde\nu_\tau$, $\tilde\tau$ \\ |
387 | $m_1$,\dots,$m_6$ & 100,\dots,101.8 & \\ |
388 | & & \\ |
389 | SQUARK & & Masses for $\tilde u$, |
390 | $\tilde d$, $\tilde s$, $\tilde c$, $\tilde b$, $\tilde t$ \\ |
391 | $m_1$,\dots,$m_6$ & 100.3,...,240. & \\ |
392 | & & \\ |
393 | SSBCSC & & Alternate mass scale for RGE \\ |
394 | $M$ & $M_{GUT}$ & boundary conditions. \\ |
395 | & & \\ |
396 | STRUC & & Structure functions. CTEQ3L, \\ |
397 | name & 'CTEQ3L' & CTEQ2L, EHLQ, OR DO \\ |
398 | & & \\ |
399 | SUGRA & & Minimal supergravity parameters\\ |
400 | $m_0$,$m_{1/2}$,$A_0$, & none & scalar M, gaugino M, trilinear \\ |
401 | $\tan\beta$,$\sgn\mu$ & & breaking term, vev ratio, +-1 \\ |
402 | TH or THETA & & Theta limits for jets. Do not \\ |
403 | $\theta_{\rm min}(1)$,\dots,$\theta_{\rm max}(3)$ & 0,$\pi$ & also set Y. \\ |
404 | & & \\ |
405 | SUGRHN & & SUGRA see-saw $\nu$-effect \\ |
406 | $m_{\nu_\tau}$,$M_N$,$A_n$,$m_{\tilde\nu_R}$ & $0,1E20,0,0$ & nu-mass, |
407 | int. scale, \\ |
408 | & & GUT scale nu SSB terms \\ |
409 | & & \\ |
410 | THW & & Theta limits for W. Do not \\ |
411 | $\theta_{\rm min}$,$\theta_{\rm max}$ & 0,$\pi$ & also set YW. \\ |
412 | & & \\ |
413 | TCMASS & & Technicolor mass and width. \\ |
414 | $m$,$\Gamma$ & 1000,100 & \\ |
415 | & & \\ |
416 | TMASS & & t, y, and x quark masses. \\ |
417 | $m_t$,$m_y$,$m_x$ & 180.,-1.,-1. & \\ |
418 | & & \\ |
419 | WFUDGE & & Fudge factor for DRELLYAN \\ |
420 | factor & 1.85 & evolution scale. \\ |
421 | & & \\ |
422 | WMASS & & W and Z masses. See SIN2W. \\ |
423 | $M_W$,$M_Z$ & 80.2, 91.19 & \\ |
424 | \hline\hline |
425 | \end{tabular} |
426 | \end{center} |
427 | |
428 | \newpage |
429 | \begin{center} |
430 | \begin{tabular}{lll} |
431 | \hline\hline |
432 | WMMODE & & Decay modes for $W^-$ in parton\\ |
433 | 'UP',\dots,'TAU+' & 'ALL' & cascade. See JETTYPE. \\ |
434 | & & \\ |
435 | WMODE1 & & ) \\ |
436 | 'UP','UB',\dots & 'ALL' & )Decay modes for WPAIR. \\ |
437 | & & )Same code for quarks and \\ |
438 | WMODE2 & & )leptons as JETTYPE. \\ |
439 | 'UP','UB',\dots & 'ALL' & ) \\ |
440 | & & \\ |
441 | WPMODE & & Decay modes for $W^+$ in parton\\ |
442 | 'UP',\dots,'TAU+' & 'ALL' & cascade. See JETTYPE. \\ |
443 | & & \\ |
444 | WTYPE & & Select W type: W+,W-,GM,Z0. \\ |
445 | type$_1$,type$_2$ & 'GM','Z0' & Do not mix W+,W- and GM,Z0. \\ |
446 | & & \\ |
447 | X & & Feynman x limits for jets. \\ |
448 | $x_{\rm min}(1)$,\dots,$x_{\rm max}(3)$ & |
449 | $-1$,1 & \\ |
450 | & & \\ |
451 | XGEN & & Jet fragmentation, Peterson \\ |
452 | a(1),\dots,a(8) & .96,3,0,.8,.5,... & with $\epsilon=a(n)/m^2$, |
453 | $n=4$-8. \\ |
454 | & & \\ |
455 | XGENSS & & Fragmentation of GLSS, UPSS, \\ |
456 | a(1),\dots,a(7) & .5,.5,... & etc. with $\epsilon=a(n)/m**2$ \\ |
457 | & & \\ |
458 | XW & & Feynman x limits for W. \\ |
459 | $x_{\rm min}$,$x_{\rm max}$ & |
460 | $-1$,1 & \\ |
461 | & & \\ |
462 | Y & & Y limits for each jet. \\ |
463 | $y_{\rm min}(1)$,\dots,$y_{\rm max}(3)$ & from PT & Do not also set TH. \\ |
464 | & & \\ |
465 | YW & & Y limits for W. \\ |
466 | $y_{\rm min}$,$y_{\rm max}$ & from QTW,QMW & Do not set both YW and THW. \\ |
467 | & & \\ |
468 | Z0MODE & & Decay modes for $Z^0$ in parton\\ |
469 | 'UP',\dots,'TAU+' & 'ALL' & cascade. See JETTYPE. \\ |
470 | \hline\hline |
471 | \end{tabular} |
472 | \end{center} |
473 | |
474 | \newpage |
475 | \subsection{Kinematic and Parton-type Parameters} |
476 | |
477 | While the TWOJET PT limits and the DRELLYAN QMW limits are |
478 | formally optional parameters, they are set by default to be fractions of |
479 | $\sqrt{s}$. Thus, for example, the parameter file |
480 | \begin{verbatim} |
481 | DEFAULT TWOJET JOB |
482 | 14000,100,1,100/ |
483 | TWOJET |
484 | END |
485 | STOP |
486 | \end{verbatim} |
487 | will execute, but it will generate jets between 5\% and 20\% of |
488 | $\sqrt{s}$, which is probably not what is wanted. Similarly, the |
489 | parameter file |
490 | \begin{verbatim} |
491 | DEFAULT DRELLYAN JOB |
492 | 14000,100,1,100/ |
493 | DRELLYAN |
494 | END |
495 | STOP |
496 | \end{verbatim} |
497 | will generate $\gamma + Z$ events with masses between 5\% and 20\% of |
498 | $\sqrt{s}$, not masses around the $Z$ mass, and transverse momenta |
499 | between $1\,{\rm GeV}$ and 2.5\% of $\sqrt{s}$. |
500 | |
501 | Normally the user should set PT limits for TWOJET, PHOTON, WPAIR, |
502 | SUPERSYM, and WHIGGS events and QMW and QTW limits for DRELLYAN, |
503 | HIGGS, and TCOLOR events. If these limits are not set, they will be |
504 | selected as fractions of $E_{\rm cm}$. This can give nonsense. For |
505 | TWOJET the $p_t$ range should usually be less than about a factor of |
506 | two except for $b$ and $t$ jets at low $p_t$ to produce uniform |
507 | statistics. For $W^+$, $W^-$, or $Z^0$ events or for Higgs events the |
508 | QMW (QMH) range should usually include the mass. But one can select |
509 | different limits to study, e.g., virtual $W$ production or the effect |
510 | of a lighter or heavier Higgs on WW scattering. If only $t$ decays are |
511 | selected, then the lower QMW limit must be above the $t$ threshold. |
512 | For standard Drell-Yan events QTW should be fixed to zero, |
513 | \begin{verbatim} |
514 | QTW |
515 | 0/ |
516 | \end{verbatim} |
517 | Transverse momenta will then be generated by initial state gluon |
518 | radiation. A range of QTW can also be given. For SUPERSYM either the |
519 | masses and decay modes should be specified, or the MSSM, SUGRA, GMSB, or |
520 | AMSB parameters should be given. For fourth generation quarks it is |
521 | necessary to specify the quark masses. |
522 | |
523 | Note that if the limits given cover too large a kinematic range, |
524 | the program can become very inefficient, since it makes a fit to the |
525 | cross section over the specified range. NTRIES has to be increased if |
526 | narrow limits are set for X, XW or for jet 1 and jet 2 parameters in |
527 | DRELLYAN events. For larger ranges several runs can be combined together |
528 | using the integrated cross section per event SIGF/NEVENT as the weight. |
529 | This cross section is calculated for each run by Monte Carlo integration |
530 | over the specified kinematic limits and is printed at the end of the |
531 | run. It is corrected for JETTYPEi, WTYPE, and WMODEi selections; it |
532 | cannot be corrected for branching ratios of forced decays or for WPMODE, |
533 | WMMODE, or Z0MODE selections, since these can affect an arbitrary number |
534 | of particles. |
535 | |
536 | To generate events over a large range, it is much more efficient |
537 | to combine several runs. This is facilitated by using the special job |
538 | title SAME as described above. Note that SAME cannot be used to combine |
539 | standard DRELLYAN events (QTW fixed equal to 0) and DRELLYAN events with |
540 | nonzero QTW. |
541 | |
542 | The cross sections for multiparton final states in general have |
543 | infrared and collinear singularities. To obtain sensible results, it |
544 | is in general essential to set limits both on the $p_T$ of each final |
545 | parton using PT and on the mass of each pair of partons using MIJLIM. |
546 | The default lower limits are all $1\,{\rm GeV}$. Using these default |
547 | limits without thought will likely give absurd results. |
548 | |
549 | For TWOJET, DRELLYAN, and most other processes, the JETTYPEi and |
550 | WTYPEi keywords should be used to select the subprocesses to be |
551 | included. For $e^+ e^- \to W^+ W^-$, $Z^0 Z^0$, use FORCE and FORCE1 |
552 | instead of WMODEi to select the $W$ decay modes. Note that these {\it |
553 | do not} change the calculated cross section. (In the E+E- process, the |
554 | $W$ and $Z$ decays are currently treated as particle decays, whereas in |
555 | the WPAIR and HIGGS processes they are treated as $2 \to 4$ parton |
556 | processes.) |
557 | |
558 | For HIGGS with $W^+W^-$ or $Z^0Z^0$ decays allowed it is |
559 | generally necessary to set PT limits for the W's, e.g. |
560 | \begin{verbatim} |
561 | PT |
562 | 50,20000,50,20000/ |
563 | \end{verbatim} |
564 | If this is not done, then the default lower limit of 1 GeV is used, |
565 | and the $t$-channel exchanges will dominate, as they should in the |
566 | effective $W$ approximation. Depending on the other parameters, the |
567 | program may fail to generate an event in NTRIES tries. |
568 | |
569 | \subsection{SUSY Parameters} |
570 | |
571 | SUPERSYM (SUSY) by default generates just gluinos and squarks in |
572 | pairs. There are no default masses or decay modes. Masses can be set |
573 | using GAUGINO, SQUARK, SLEPTON, and HMASSES. Decay modes can be |
574 | specified with FORCE or by modifying the decay table. Left and right |
575 | squarks are distinguished but assumed to be degenerate, except for |
576 | stops. Since version 7.11, types must be selected with JETTYPEi using |
577 | the supersymmetric names, e.g. |
578 | \begin{verbatim} |
579 | JETTYPE1 |
580 | 'GLSS','UPSSL','UPSSR'/ |
581 | \end{verbatim} |
582 | Use of the corresponding standard model names, e.g. |
583 | \begin{verbatim} |
584 | JETTYPE1 |
585 | 'GL','UP'/ |
586 | \end{verbatim} |
587 | and generation of pure photinos, winos, and zinos are no longer |
588 | supported. |
589 | |
590 | If MSSMA, MSSMB and MSSMC are given, then the specified parameters |
591 | are used to calculate all the masses and decay modes with the ISASUSY |
592 | package assuming the minimal supersymmetric extension of the standard |
593 | model (MSSM). There are no default values, so you must specify values |
594 | for each MSSMi, i=A-C. MSSMD can optionally be used to set the second |
595 | generation squark and slepton parameters; if it is omitted, then the |
596 | first generation ones are used. MSSME can optionally be used to set the |
597 | U(1) and SU(2) gaugino masses; if it is omitted, then the grand |
598 | unification values are used. The parameters and the use of the MSSM is |
599 | preserved if the title is SAME. FORCE can be used to override the |
600 | calculated branching ratios. |
601 | |
602 | The MSSM option also generates charginos and neutralinos with |
603 | cross sections based on the MSSM mixing angles in addition to squarks |
604 | and sleptons. These can be selected with JETTYPEi; the complete list of |
605 | supersymmetric options is: |
606 | \begin{verbatim} |
607 | 'GLSS', |
608 | 'UPSSL','UBSSL','DNSSL','DBSSL','STSSL','SBSSL','CHSSL','CBSSL', |
609 | 'BTSS1','BBSS1','TPSS1','TBSS1', |
610 | 'UPSSR','UBSSR','DNSSR','DBSSR','STSSR','SBSSR','CHSSR','CBSSR', |
611 | 'BTSS2','BBSS2','TPSS2','TBSS2', |
612 | 'W1SS+','W1SS-','W2SS+','W2SS-','Z1SS','Z2SS','Z3SS','Z4SS', |
613 | 'NUEL','ANUEL','EL-','EL+','NUML','ANUML',MUL-','MUL+','NUTL', |
614 | 'ANUTL','TAU1-','TAU1+','ER-','ER+','MUR-','MUR+','TAU2-','TAU2+', |
615 | 'Z0','HL0','HH0','HA0','H+','H-', |
616 | 'SQUARKS','GAUGINOS','SLEPTONS','ALL'. |
617 | \end{verbatim} |
618 | Note that mixing between $L$ and $R$ stop states results in 1 (light) |
619 | and 2 (heavy) stop, sbottom and stau eigenstates, which depend on the |
620 | input parameters of left- and right- scalar masses, plus $A$ terms, |
621 | $\mu$ and $\tan\beta$. The last four JETTYPE's generate respectively |
622 | all allowed combinations of squarks and antisquarks, all combinations |
623 | of charginos and neutralinos, all combinations of sleptons and |
624 | sneutrinos, and all SUSY particles. |
625 | |
626 | For SUSY Higgs pair production or associated production in E+E-, |
627 | select the appropriate JETTYPE's, e.g. |
628 | \begin{verbatim} |
629 | JETTYPE1 |
630 | 'Z0'/ |
631 | JETTYPE2 |
632 | 'HL0'/ |
633 | \end{verbatim} |
634 | |
635 | As usual, this gives only half the cross section. For single production |
636 | of neutral SUSY Higgs in $pp$ and $\bar pp$ reactions, use the HIGGS |
637 | process together with the MSSMi, SUGRA, GMSB, or AMSB keywords. You must |
638 | specify one and only one Higgs type using |
639 | \begin{verbatim} |
640 | HTYPE |
641 | 'HL0' or 'HH0' or 'HA0'/ <<<<< One only! |
642 | \end{verbatim} |
643 | If no QMH range is given, one is calculated using $M \pm 5 \Gamma$ for |
644 | the selected Higgs. Decays into quarks, leptons, gauge bosons, lighter |
645 | Higgs bosons, and SUSY particles are generated using the on-shell |
646 | branching ratios from ISASUSY. You can use JETTYPEi to select the |
647 | allowed Higgs modes and WMODEi to select the allowed decays of W and Z |
648 | bosons. Since heavy SUSY Higgs bosons couple weakly to W pairs, WW |
649 | fusion and WW scattering are not included. |
650 | |
651 | SUGRA can be used instead of MSSMi to generate MSSM decays with |
652 | parameters determined from $m_0$, $m_{1/2}$, $A_0$, $\tan\beta$, and |
653 | $\sgn\mu=\pm1$ in the minimal supergravity framework. The NUSUGi |
654 | keywords can optionally be used to specify additional parameters for |
655 | non-universal SUGRA models, while SUGRHN is used to specify the |
656 | parameterf of an optional right-handed neutrino. Similarly, the GMSB |
657 | keyword is used to specify the $\Lambda$, $M_m$, $N_5$, $\tan\beta$, |
658 | $\sgn\mu=\pm1$, and $C_{\rm grav}$ parameters of the minimal Gauge |
659 | Mediated SUSY Breaking model. GMSB2 can optionally be used to specify |
660 | additional parameters of non-minimal GMSB models. The AMSB keyword is |
661 | used to specify $m_0$, $m_{3/2}$, $\tan\beta$, and $\sgn\mu$ for the |
662 | minimal Anomaly Mediated SUSY Breaking model. Note that $m_{3/2}$ is |
663 | much larger than the weak scale, typically 50~TeV. |
664 | |
665 | WHIGGS is used to generate $W$ plus neutral Higgs events. For the |
666 | Standard Model the JETTYPE is \verb|HIGGS|. If any of the SUSY models |
667 | is specified, then the appropriate SUSY Higgs type should be used, |
668 | most likely \verb|HL0|. In either case WMODEi is used to specify the |
669 | $W$ decay modes. The Higgs is treated as a particle; its decay modes |
670 | can be set using FORCE. |
671 | |
672 | \subsection{Forced Decay Modes} |
673 | |
674 | The FORCE keyword requires special care. Its list must contain the |
675 | numerical particle IDENT codes, e.g. |
676 | \begin{verbatim} |
677 | FORCE |
678 | 140,130,-120/ |
679 | \end{verbatim} |
680 | The charge-conjugate mode is also forced for its antiparticle. Thus the |
681 | above example forces both $\bar D^0 \to K^+ \pi^-$ and $D^0 \to K^- |
682 | \pi^+$. If only a specific decay is wanted one should use the FORCE1 |
683 | command; e.g. |
684 | \begin{verbatim} |
685 | FORCE1 |
686 | 140,130,-120/ |
687 | \end{verbatim} |
688 | only forces $\bar D^0 \to K^+ \pi^-$. |
689 | |
690 | To force a heavy quark decay one must generally separately force |
691 | each hadron containing it. If the decay is into three leptons or quarks, |
692 | then the real or virtual W propagator is inserted automatically. Since |
693 | Version 7.30, top and fourth generation quarks are treated as |
694 | particles and decayed directly rather than first being made into |
695 | hadrons. Thus for example |
696 | \begin{verbatim} |
697 | FORCE1 |
698 | 6,-12,11,5/ |
699 | \end{verbatim} |
700 | forces all top quarks to decay into an positron, neutrino and a |
701 | b-quark (which will be hadronized). For the physical top mass, the |
702 | positron and neutrino will come from a real W. Note that forcing $t |
703 | \to W^+ b$ and $W^+ \to e^+ \nu_e$ does {\it not} give the same |
704 | result; the first uses the correct $V-A$ matrix element, while the |
705 | second decays the $W$ according to phase space. |
706 | |
707 | Forced modes included in the decay table or generated by ISASUSY |
708 | will automatically be put into the correct order and will use the |
709 | correct matrix element. Modes not listed in the decay table are |
710 | allowed, but caution is advised because a wrong decay mode can cause |
711 | an infinite loop or other unexpected effects. |
712 | |
713 | FORCE (FORCE1) can be called at most 20 (40) times in any run plus |
714 | all subsequent 'SAME' runs. If it is called more than once for a given |
715 | parent, all calls are listed, and the last call is used. Note that FORCE |
716 | applies to particles only, but that for gamma, W+, W-, Z0 and |
717 | supersymmetric particles the same IDENT codes are used both as jet types |
718 | and as particles. |
719 | |
720 | \subsection{Parton Distributions} |
721 | |
722 | The default parton distributions are fit CTEQ3L from the CTEQ |
723 | Collaboration using lowest order QCD. The CTEQ and the older EHLQ and |
724 | Duke-Owens distributions can be selected using the STRUC keyword. |
725 | |
726 | If PDFLIB support is enabled (see Section 4), then any of the |
727 | distributions in the PDFLIB compilation by H. Plothow-Besch can be |
728 | selected using the PDFLIB keyword and giving the proper parameters, |
729 | which are identical to those described in the PDFLIB manual and are |
730 | simply passed to the routine PDFSET. For example, to select fit 29 |
731 | (CTEQ3L) by the CTEQ group, leaving all other parameters with their |
732 | default values, use |
733 | \begin{verbatim} |
734 | PDFLIB |
735 | 'CTEQ',29D0/ |
736 | \end{verbatim} |
737 | Note that the fit-number and the other parameters are of type DOUBLE |
738 | PRECISION (REAL on 64-bit machines). There is no internal passing of |
739 | parameters except for those which control the printing of messages. |
740 | |
741 | \subsection{Multiparton Processes} |
742 | |
743 | For multiparton final states one should in general set limits |
744 | on the total mass \verb|MTOT| of the final state, on the minimum |
745 | \verb|PT| of each light parton, and on the minimum mass \verb|MIMLIM| |
746 | of each pair of light partons. Limits for \verb|PT| are set in the |
747 | ususal way. Limits for the mass $M_{ij}$ of partons $i,j$ are set using |
748 | \begin{verbatim} |
749 | MIJLIM |
750 | i,j,Mmin,Mmax |
751 | \end{verbatim} |
752 | If $i=j=0$, the limit is applied to all jet pairs. For example the |
753 | following parameter file generates \verb|ZJJ| events at the LHC with a |
754 | mimimum $p_T$ of $20\,\GeV$ and a minimum mass of $20\,\GeV$ for all |
755 | jet pairs: |
756 | \begin{verbatim} |
757 | GENERATE ZJJ with PTMIN = 20 GEV AND MMIN = 20 GEV |
758 | 14000,100,1,100/ |
759 | ZJJ |
760 | PT |
761 | 20,7000,20,7000,20,7000/ |
762 | MIJLIM |
763 | 0,0,20,7000/ |
764 | MTOT |
765 | 100,500/ |
766 | NSIGMA |
767 | 200/ |
768 | NTRIES |
769 | 10000/ |
770 | END |
771 | STOP |
772 | \end{verbatim} |
773 | The default lower limits for \verb|PT| and \verb|MIJLIM| are |
774 | $1\,\GeV$. While these limits are sufficient to make the cross |
775 | sections finite, they will in general not give physically sensible |
776 | results. Thus, {\it the user must think carefully about what limits |
777 | should be set.} |