]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSClusterFinderSDD.cxx
Changes to obey the coding conventions
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
d86f531c 15/*
16 $Id$
17 $Log$
ecee53fc 18 Revision 1.33 2003/07/21 14:20:51 masera
19 Fix to track labes in SDD Rec-points
20
d86f531c 21 Revision 1.31.2.1 2003/07/16 13:18:04 masera
22 Proper fix to track labels associated to SDD rec-points
507cf1a7 23
d86f531c 24 Revision 1.31 2003/05/19 14:44:41 masera
25 Fix to track labels associated to SDD rec-points
bf3f2830 26
d86f531c 27 Revision 1.30 2003/03/03 16:34:35 masera
28 Corrections to comply with coding conventions
29
30 Revision 1.29 2002/10/25 18:54:22 barbera
31 Various improvements and updates from B.S.Nilsen and T. Virgili
32
33 Revision 1.28 2002/10/22 14:45:29 alibrary
34 Introducing Riostream.h
35
36 Revision 1.27 2002/10/14 14:57:00 hristov
37 Merging the VirtualMC branch to the main development branch (HEAD)
38
39 Revision 1.23.4.2 2002/10/14 13:14:07 hristov
40 Updating VirtualMC to v3-09-02
41
42 Revision 1.26 2002/09/09 17:23:28 nilsen
43 Minor changes in support of changes to AliITSdigitS?D class'.
44
45 Revision 1.25 2002/05/10 22:29:40 nilsen
46 Change my Massimo Masera in the default constructor to bring things into
47 compliance.
48
49 Revision 1.24 2002/04/24 22:02:31 nilsen
50 New SDigits and Digits routines, and related changes, (including new
51 noise values).
52
53 */
bf3f2830 54//
55// Cluster finder
56// for Silicon
57// Drift Detector
58//
4ae5bbc4 59#include <Riostream.h>
bf3f2830 60
a1f090e0 61#include <TMath.h>
62#include <math.h>
b0f5e3fc 63
64#include "AliITSClusterFinderSDD.h"
e8189707 65#include "AliITSMapA1.h"
66#include "AliITS.h"
78a228db 67#include "AliITSdigit.h"
68#include "AliITSRawCluster.h"
69#include "AliITSRecPoint.h"
70#include "AliITSsegmentation.h"
5dd4cc39 71#include "AliITSresponseSDD.h"
b0f5e3fc 72#include "AliRun.h"
73
b0f5e3fc 74ClassImp(AliITSClusterFinderSDD)
75
42da2935 76//______________________________________________________________________
77AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
50d05d7b 78 AliITSresponse *response,
79 TClonesArray *digits,
80 TClonesArray *recp){
42da2935 81 // standard constructor
78a228db 82
b48af428 83 fSegmentation = seg;
84 fResponse = response;
85 fDigits = digits;
86 fClusters = recp;
87 fNclusters = fClusters->GetEntriesFast();
b0f5e3fc 88 SetCutAmplitude();
89 SetDAnode();
90 SetDTime();
355ccb70 91 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
92 // SetMinPeak();
78a228db 93 SetMinNCells();
94 SetMaxNCells();
95 SetTimeCorr();
a1f090e0 96 SetMinCharge();
b48af428 97 fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
b0f5e3fc 98}
42da2935 99//______________________________________________________________________
100AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
101 // default constructor
b0f5e3fc 102
b48af428 103 fSegmentation = 0;
104 fResponse = 0;
105 fDigits = 0;
106 fClusters = 0;
107 fNclusters = 0;
108 fMap = 0;
109 fCutAmplitude = 0;
355ccb70 110 fDAnode = 0;
111 fDTime = 0;
112 fMinPeak = 0;
113 fMinNCells = 0;
114 fMaxNCells = 0;
115 fTimeCorr = 0;
116 fMinCharge = 0;
117 /*
b0f5e3fc 118 SetDAnode();
119 SetDTime();
48058160 120 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
78a228db 121 SetMinNCells();
122 SetMaxNCells();
123 SetTimeCorr();
a1f090e0 124 SetMinCharge();
355ccb70 125 */
b0f5e3fc 126}
42da2935 127//____________________________________________________________________________
128AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
e8189707 129 // destructor
130
131 if(fMap) delete fMap;
e8189707 132}
42da2935 133//______________________________________________________________________
134void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
135 // set the signal threshold for cluster finder
bf3f2830 136 Float_t baseline,noise,noiseAfterEl;
42da2935 137
138 fResponse->GetNoiseParam(noise,baseline);
bf3f2830 139 noiseAfterEl = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
140 fCutAmplitude = (Int_t)((baseline + nsigma*noiseAfterEl));
5dd4cc39 141}
42da2935 142//______________________________________________________________________
143void AliITSClusterFinderSDD::Find1DClusters(){
144 // find 1D clusters
b48af428 145 static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
a1f090e0 146
42da2935 147 // retrieve the parameters
b48af428 148 Int_t fNofMaps = fSegmentation->Npz();
42da2935 149 Int_t fMaxNofSamples = fSegmentation->Npx();
b48af428 150 Int_t fNofAnodes = fNofMaps/2;
151 Int_t dummy = 0;
152 Float_t fTimeStep = fSegmentation->Dpx(dummy);
153 Float_t fSddLength = fSegmentation->Dx();
154 Float_t fDriftSpeed = fResponse->DriftSpeed();
155 Float_t anodePitch = fSegmentation->Dpz(dummy);
42da2935 156
157 // map the signal
50d05d7b 158 fMap->ClearMap();
42da2935 159 fMap->SetThreshold(fCutAmplitude);
160 fMap->FillMap();
a1f090e0 161
42da2935 162 Float_t noise;
163 Float_t baseline;
164 fResponse->GetNoiseParam(noise,baseline);
a1f090e0 165
42da2935 166 Int_t nofFoundClusters = 0;
167 Int_t i;
168 Float_t **dfadc = new Float_t*[fNofAnodes];
169 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
b48af428 170 Float_t fadc = 0.;
42da2935 171 Float_t fadc1 = 0.;
172 Float_t fadc2 = 0.;
173 Int_t j,k,idx,l,m;
174 for(j=0;j<2;j++) {
50d05d7b 175 for(k=0;k<fNofAnodes;k++) {
176 idx = j*fNofAnodes+k;
177 // signal (fadc) & derivative (dfadc)
178 dfadc[k][255]=0.;
179 for(l=0; l<fMaxNofSamples; l++) {
180 fadc2=(Float_t)fMap->GetSignal(idx,l);
181 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
182 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
183 } // samples
184 } // anodes
42da2935 185
50d05d7b 186 for(k=0;k<fNofAnodes;k++) {
187 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
188 idx = j*fNofAnodes+k;
189 Int_t imax = 0;
190 Int_t imaxd = 0;
191 Int_t it = 0;
192 while(it <= fMaxNofSamples-3) {
193 imax = it;
194 imaxd = it;
195 // maximum of signal
196 Float_t fadcmax = 0.;
197 Float_t dfadcmax = 0.;
198 Int_t lthrmina = 1;
199 Int_t lthrmint = 3;
200 Int_t lthra = 1;
201 Int_t lthrt = 0;
202 for(m=0;m<20;m++) {
203 Int_t id = it+m;
204 if(id>=fMaxNofSamples) break;
205 fadc=(float)fMap->GetSignal(idx,id);
206 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
207 if(fadc > (float)fCutAmplitude) {
208 lthrt++;
209 } // end if
210 if(dfadc[k][id] > dfadcmax) {
211 dfadcmax = dfadc[k][id];
212 imaxd = id;
213 } // end if
214 } // end for m
215 it = imaxd;
216 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
217 // cluster charge
218 Int_t tstart = it-2;
219 if(tstart < 0) tstart = 0;
220 Bool_t ilcl = 0;
221 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
222 if(ilcl) {
223 nofFoundClusters++;
224 Int_t tstop = tstart;
225 Float_t dfadcmin = 10000.;
226 Int_t ij;
227 for(ij=0; ij<20; ij++) {
228 if(tstart+ij > 255) { tstop = 255; break; }
229 fadc=(float)fMap->GetSignal(idx,tstart+ij);
230 if((dfadc[k][tstart+ij] < dfadcmin) &&
231 (fadc > fCutAmplitude)) {
232 tstop = tstart+ij+5;
233 if(tstop > 255) tstop = 255;
234 dfadcmin = dfadc[k][it+ij];
235 } // end if
236 } // end for ij
42da2935 237
50d05d7b 238 Float_t clusterCharge = 0.;
239 Float_t clusterAnode = k+0.5;
240 Float_t clusterTime = 0.;
241 Int_t clusterMult = 0;
242 Float_t clusterPeakAmplitude = 0.;
243 Int_t its,peakpos = -1;
244 Float_t n, baseline;
245 fResponse->GetNoiseParam(n,baseline);
246 for(its=tstart; its<=tstop; its++) {
247 fadc=(float)fMap->GetSignal(idx,its);
248 if(fadc>baseline) fadc -= baseline;
249 else fadc = 0.;
250 clusterCharge += fadc;
251 // as a matter of fact we should take the peak
252 // pos before FFT
253 // to get the list of tracks !!!
254 if(fadc > clusterPeakAmplitude) {
255 clusterPeakAmplitude = fadc;
256 //peakpos=fMap->GetHitIndex(idx,its);
257 Int_t shift = (int)(fTimeCorr/fTimeStep);
258 if(its>shift && its<(fMaxNofSamples-shift))
259 peakpos = fMap->GetHitIndex(idx,its+shift);
260 else peakpos = fMap->GetHitIndex(idx,its);
261 if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
262 } // end if
263 clusterTime += fadc*its;
264 if(fadc > 0) clusterMult++;
265 if(its == tstop) {
266 clusterTime /= (clusterCharge/fTimeStep); // ns
267 if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
268 //ns
269 } // end if
270 } // end for its
42da2935 271
50d05d7b 272 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
273 anodePitch;
274 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
275 clusterDriftPath = fSddLength-clusterDriftPath;
276 if(clusterCharge <= 0.) break;
277 AliITSRawClusterSDD clust(j+1,//i
278 clusterAnode,clusterTime,//ff
279 clusterCharge, //f
280 clusterPeakAmplitude, //f
281 peakpos, //i
282 0.,0.,clusterDriftPath,//fff
283 clusteranodePath, //f
284 clusterMult, //i
285 0,0,0,0,0,0,0);//7*i
286 iTS->AddCluster(1,&clust);
287 it = tstop;
288 } // ilcl
289 it++;
290 } // while (samples)
291 } // anodes
42da2935 292 } // detectors (2)
42da2935 293
294 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
295 delete [] dfadc;
a1f090e0 296
42da2935 297 return;
a1f090e0 298}
50d05d7b 299
300
301
42da2935 302//______________________________________________________________________
303void AliITSClusterFinderSDD::Find1DClustersE(){
24a1c341 304 // find 1D clusters
42da2935 305 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
306 // retrieve the parameters
307 Int_t fNofMaps = fSegmentation->Npz();
308 Int_t fMaxNofSamples = fSegmentation->Npx();
309 Int_t fNofAnodes = fNofMaps/2;
310 Int_t dummy=0;
311 Float_t fTimeStep = fSegmentation->Dpx( dummy );
312 Float_t fSddLength = fSegmentation->Dx();
313 Float_t fDriftSpeed = fResponse->DriftSpeed();
314 Float_t anodePitch = fSegmentation->Dpz( dummy );
315 Float_t n, baseline;
316 fResponse->GetNoiseParam( n, baseline );
317 // map the signal
50d05d7b 318 fMap->ClearMap();
42da2935 319 fMap->SetThreshold( fCutAmplitude );
320 fMap->FillMap();
50d05d7b 321
42da2935 322 Int_t nClu = 0;
50d05d7b 323 // cout << "Search cluster... "<< endl;
42da2935 324 for( Int_t j=0; j<2; j++ ){
50d05d7b 325 for( Int_t k=0; k<fNofAnodes; k++ ){
326 Int_t idx = j*fNofAnodes+k;
327 Bool_t on = kFALSE;
328 Int_t start = 0;
329 Int_t nTsteps = 0;
330 Float_t fmax = 0.;
331 Int_t lmax = 0;
332 Float_t charge = 0.;
333 Float_t time = 0.;
334 Float_t anode = k+0.5;
335 Int_t peakpos = -1;
336 for( Int_t l=0; l<fMaxNofSamples; l++ ){
337 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
338 if( fadc > 0.0 ){
339 if( on == kFALSE && l<fMaxNofSamples-4){
340 // star RawCluster (reset var.)
341 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
342 if( fadc1 < fadc ) continue;
343 start = l;
344 fmax = 0.;
345 lmax = 0;
346 time = 0.;
347 charge = 0.;
348 on = kTRUE;
349 nTsteps = 0;
350 } // end if on...
351 nTsteps++ ;
352 if( fadc > baseline ) fadc -= baseline;
353 else fadc=0.;
354 charge += fadc;
355 time += fadc*l;
356 if( fadc > fmax ){
357 fmax = fadc;
358 lmax = l;
359 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
360 if( l > shift && l < (fMaxNofSamples-shift) )
361 peakpos = fMap->GetHitIndex( idx, l+shift );
362 else
363 peakpos = fMap->GetHitIndex( idx, l );
364 if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
365 } // end if fadc
366 }else{ // end fadc>0
367 if( on == kTRUE ){
368 if( nTsteps > 2 ){
369 // min # of timesteps for a RawCluster
370 // Found a RawCluster...
371 Int_t stop = l-1;
372 time /= (charge/fTimeStep); // ns
373 // time = lmax*fTimeStep; // ns
374 if( time > fTimeCorr ) time -= fTimeCorr; // ns
375 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
376 Float_t driftPath = time*fDriftSpeed;
377 driftPath = fSddLength-driftPath;
378 AliITSRawClusterSDD clust(j+1,anode,time,charge,
379 fmax, peakpos,0.,0.,
380 driftPath,anodePath,
381 nTsteps,start,stop,
382 start, stop, 1, k, k );
383 iTS->AddCluster( 1, &clust );
384 // clust.PrintInfo();
385 nClu++;
386 } // end if nTsteps
387 on = kFALSE;
388 } // end if on==kTRUE
389 } // end if fadc>0
390 } // samples
391 } // anodes
42da2935 392 } // wings
50d05d7b 393 // cout << "# Rawclusters " << nClu << endl;
42da2935 394 return;
a1f090e0 395}
42da2935 396//_______________________________________________________________________
397Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
50d05d7b 398 Int_t *peakX, Int_t *peakZ,
399 Float_t *peakAmp, Float_t minpeak ){
42da2935 400 // search peaks on a 2D cluster
401 Int_t npeak = 0; // # peaks
56fff130 402 Int_t i,j;
42da2935 403 // search peaks
404 for( Int_t z=1; z<zdim-1; z++ ){
48058160 405 for( Int_t x=1; x<xdim-2; x++ ){
50d05d7b 406 Float_t sxz = spect[x*zdim+z];
407 Float_t sxz1 = spect[(x+1)*zdim+z];
408 Float_t sxz2 = spect[(x-1)*zdim+z];
409 // search a local max. in s[x,z]
410 if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
411 if( sxz >= spect[(x+1)*zdim+z ] && sxz >= spect[(x-1)*zdim+z ] &&
412 sxz >= spect[x*zdim +z+1] && sxz >= spect[x*zdim +z-1] &&
413 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
414 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
415 // peak found
416 peakX[npeak] = x;
417 peakZ[npeak] = z;
418 peakAmp[npeak] = sxz;
419 npeak++;
420 } // end if ....
421 } // end for x
42da2935 422 } // end for z
423 // search groups of peaks with same amplitude.
424 Int_t *flag = new Int_t[npeak];
425 for( i=0; i<npeak; i++ ) flag[i] = 0;
426 for( i=0; i<npeak; i++ ){
50d05d7b 427 for( j=0; j<npeak; j++ ){
428 if( i==j) continue;
429 if( flag[j] > 0 ) continue;
430 if( peakAmp[i] == peakAmp[j] &&
431 TMath::Abs(peakX[i]-peakX[j])<=1 &&
432 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
433 if( flag[i] == 0) flag[i] = i+1;
434 flag[j] = flag[i];
435 } // end if ...
436 } // end for j
42da2935 437 } // end for i
50d05d7b 438 // make average of peak groups
42da2935 439 for( i=0; i<npeak; i++ ){
50d05d7b 440 Int_t nFlag = 1;
441 if( flag[i] <= 0 ) continue;
442 for( j=0; j<npeak; j++ ){
443 if( i==j ) continue;
444 if( flag[j] != flag[i] ) continue;
445 peakX[i] += peakX[j];
446 peakZ[i] += peakZ[j];
447 nFlag++;
448 npeak--;
449 for( Int_t k=j; k<npeak; k++ ){
450 peakX[k] = peakX[k+1];
451 peakZ[k] = peakZ[k+1];
452 peakAmp[k] = peakAmp[k+1];
453 flag[k] = flag[k+1];
454 } // end for k
455 j--;
456 } // end for j
457 if( nFlag > 1 ){
458 peakX[i] /= nFlag;
459 peakZ[i] /= nFlag;
460 } // end fi nFlag
42da2935 461 } // end for i
462 delete [] flag;
463 return( npeak );
a1f090e0 464}
42da2935 465//______________________________________________________________________
466void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
50d05d7b 467 Float_t *spe, Float_t *integral){
24a1c341 468 // function used to fit the clusters
50d05d7b 469 // par -> parameters..
24a1c341 470 // par[0] number of peaks.
471 // for each peak i=1, ..., par[0]
50d05d7b 472 // par[i] = Ampl.
473 // par[i+1] = xpos
474 // par[i+2] = zpos
475 // par[i+3] = tau
476 // par[i+4] = sigma.
24a1c341 477 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
478 const Int_t knParam = 5;
479 Int_t npeak = (Int_t)par[0];
42da2935 480
24a1c341 481 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
42da2935 482
24a1c341 483 Int_t k = 1;
42da2935 484 for( Int_t i=0; i<npeak; i++ ){
24a1c341 485 if( integral != 0 ) integral[i] = 0.;
486 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
bf3f2830 487 Float_t t2 = par[k+3]; // PASCAL
488 if( electronics == 2 ) { t2 *= t2; t2 *= 2; } // OLA
42da2935 489 for( Int_t z=0; z<zdim; z++ ){
490 for( Int_t x=0; x<xdim; x++ ){
24a1c341 491 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
492 Float_t x2 = 0.;
493 Float_t signal = 0.;
42da2935 494 if( electronics == 1 ){ // PASCAL
bf3f2830 495 x2 = (x-par[k+1]+t2)/t2;
42da2935 496 signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
497 // signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
498 }else if( electronics == 2 ) { // OLA
bf3f2830 499 x2 = (x-par[k+1])*(x-par[k+1])/t2;
50d05d7b 500 signal = par[k] * exp( -x2 - z2 );
501 } else {
bf3f2830 502 Warning("PeakFunc","Wrong SDD Electronics = %d",electronics);
50d05d7b 503 // exit( 1 );
504 } // end if electronicx
24a1c341 505 spe[x*zdim+z] += signal;
506 if( integral != 0 ) integral[i] += signal;
42da2935 507 } // end for x
508 } // end for z
24a1c341 509 k += knParam;
42da2935 510 } // end for i
24a1c341 511 return;
a1f090e0 512}
42da2935 513//__________________________________________________________________________
514Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
bf3f2830 515 Float_t *speFit ) const{
42da2935 516 // EVALUATES UNNORMALIZED CHI-SQUARED
517 Float_t chi2 = 0.;
518 for( Int_t z=0; z<zdim; z++ ){
50d05d7b 519 for( Int_t x=1; x<xdim-1; x++ ){
520 Int_t index = x*zdim+z;
521 Float_t tmp = spe[index] - speFit[index];
522 chi2 += tmp*tmp;
523 } // end for x
42da2935 524 } // end for z
525 return( chi2 );
a1f090e0 526}
42da2935 527//_______________________________________________________________________
528void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
50d05d7b 529 Float_t *prm0,Float_t *steprm,
530 Float_t *chisqr,Float_t *spe,
531 Float_t *speFit ){
42da2935 532 //
533 Int_t k, nnn, mmm, i;
534 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
535 const Int_t knParam = 5;
536 Int_t npeak = (Int_t)param[0];
537 for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
538 for( k=1; k<(npeak*knParam+1); k++ ){
50d05d7b 539 p1 = param[k];
540 delta = steprm[k];
541 d1 = delta;
542 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
543 if( fabs( p1 ) > 1.0E-6 )
544 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
545 else delta = (Float_t)1.0E-4;
546 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
547 PeakFunc( xdim, zdim, param, speFit );
548 chisq1 = ChiSqr( xdim, zdim, spe, speFit );
549 p2 = p1+delta;
550 param[k] = p2;
551 PeakFunc( xdim, zdim, param, speFit );
552 chisq2 = ChiSqr( xdim, zdim, spe, speFit );
553 if( chisq1 < chisq2 ){
554 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
555 delta = -delta;
556 t = p1;
557 p1 = p2;
558 p2 = t;
559 t = chisq1;
560 chisq1 = chisq2;
561 chisq2 = t;
562 } // end if
563 i = 1; nnn = 0;
564 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
565 nnn++;
566 p3 = p2 + delta;
567 mmm = nnn - (nnn/5)*5; // multiplo de 5
568 if( mmm == 0 ){
569 d1 = delta;
570 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
571 delta *= 5;
572 } // end if
573 param[k] = p3;
574 // Constrain paramiters
575 Int_t kpos = (k-1) % knParam;
576 switch( kpos ){
577 case 0 :
578 if( param[k] <= 20 ) param[k] = fMinPeak;
579 break;
580 case 1 :
581 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
582 break;
583 case 2 :
584 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
585 break;
586 case 3 :
587 if( param[k] < .5 ) param[k] = .5;
588 break;
589 case 4 :
590 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
591 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
592 break;
593 }; // end switch
594 PeakFunc( xdim, zdim, param, speFit );
595 chisq3 = ChiSqr( xdim, zdim, spe, speFit );
596 if( chisq3 < chisq2 && nnn < 50 ){
597 p1 = p2;
598 p2 = p3;
599 chisq1 = chisq2;
600 chisq2 = chisq3;
601 }else i=0;
602 } while( i );
603 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
604 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
605 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
606 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
607 else p0 = 10000;
608 //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
609 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
610 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
611 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
612 //if( fabs( p2-p0 ) > dp ) p0 = p2;
613 param[k] = p0;
614 // Constrain paramiters
615 Int_t kpos = (k-1) % knParam;
616 switch( kpos ){
617 case 0 :
618 if( param[k] <= 20 ) param[k] = fMinPeak;
619 break;
620 case 1 :
621 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
622 break;
623 case 2 :
624 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
625 break;
626 case 3 :
627 if( param[k] < .5 ) param[k] = .5;
628 break;
629 case 4 :
630 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
631 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
632 break;
633 }; // end switch
634 PeakFunc( xdim, zdim, param, speFit );
635 chisqt = ChiSqr( xdim, zdim, spe, speFit );
636 // DO NOT ALLOW ERRONEOUS INTERPOLATION
637 if( chisqt <= *chisqr ) *chisqr = chisqt;
638 else param[k] = prm0[k];
639 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
640 steprm[k] = (param[k]-prm0[k])/5;
641 if( steprm[k] >= d1 ) steprm[k] = d1/5;
42da2935 642 } // end for k
643 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
644 PeakFunc( xdim, zdim, param, speFit );
645 *chisqr = ChiSqr( xdim, zdim, spe, speFit );
646 return;
a1f090e0 647}
42da2935 648//_________________________________________________________________________
649Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim,
50d05d7b 650 Float_t *param, Float_t *spe,
651 Int_t *niter, Float_t *chir ){
42da2935 652 // fit method from Comput. Phys. Commun 46(1987) 149
50d05d7b 653 const Float_t kchilmt = 0.01; // relative accuracy
654 const Int_t knel = 3; // for parabolic minimization
655 const Int_t knstop = 50; // Max. iteration number
42da2935 656 const Int_t knParam = 5;
657 Int_t npeak = (Int_t)param[0];
658 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
659 if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
660 Float_t degFree = (xdim*zdim - npeak*knParam)-1;
661 Int_t n, k, iterNum = 0;
662 Float_t *prm0 = new Float_t[npeak*knParam+1];
663 Float_t *step = new Float_t[npeak*knParam+1];
664 Float_t *schi = new Float_t[npeak*knParam+1];
665 Float_t *sprm[3];
666 sprm[0] = new Float_t[npeak*knParam+1];
667 sprm[1] = new Float_t[npeak*knParam+1];
668 sprm[2] = new Float_t[npeak*knParam+1];
669 Float_t chi0, chi1, reldif, a, b, prmin, dp;
670 Float_t *speFit = new Float_t[ xdim*zdim ];
671 PeakFunc( xdim, zdim, param, speFit );
672 chi0 = ChiSqr( xdim, zdim, spe, speFit );
673 chi1 = chi0;
674 for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
50d05d7b 675 for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
676 step[k] = param[k] / 20.0 ;
677 step[k+1] = param[k+1] / 50.0;
678 step[k+2] = param[k+2] / 50.0;
679 step[k+3] = param[k+3] / 20.0;
680 step[k+4] = param[k+4] / 20.0;
681 } // end for k
42da2935 682 Int_t out = 0;
683 do{
50d05d7b 684 iterNum++;
685 chi0 = chi1;
686 Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
687 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
688 // EXIT conditions
689 if( reldif < (float) kchilmt ){
690 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
691 *niter = iterNum;
692 out = 0;
693 break;
694 } // end if
695 if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
696 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
697 *niter = iterNum;
698 out = 0;
699 break;
700 } // end if
701 if( iterNum > 5*knstop ){
702 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
703 *niter = iterNum;
704 out = 1;
705 break;
706 } // end if
707 if( iterNum <= knel ) continue;
708 n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
709 if( n > 3 || n == 0 ) continue;
710 schi[n-1] = chi1;
711 for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
712 if( n != 3 ) continue;
713 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
714 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
715 for( k=1; k<(npeak*knParam+1); k++ ){
716 Float_t tmp0 = sprm[0][k];
717 Float_t tmp1 = sprm[1][k];
718 Float_t tmp2 = sprm[2][k];
719 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
720 a += (schi[2]*(tmp0-tmp1));
721 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
722 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
723 (tmp0*tmp0-tmp1*tmp1)));
724 if ((double)a < 1.0E-6) prmin = 0;
725 else prmin = (float) (0.5*b/a);
726 dp = 5*(tmp2-tmp0);
727 if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
728 param[k] = prmin;
729 step[k] = dp/10; // OPTIMIZE SEARCH STEP
730 } // end for k
42da2935 731 } while( kTRUE );
732 delete [] prm0;
733 delete [] step;
734 delete [] schi;
735 delete [] sprm[0];
736 delete [] sprm[1];
737 delete [] sprm[2];
738 delete [] speFit;
739 return( out );
a1f090e0 740}
50d05d7b 741
42da2935 742//______________________________________________________________________
743void AliITSClusterFinderSDD::ResolveClustersE(){
744 // The function to resolve clusters if the clusters overlapping exists
24a1c341 745 Int_t i;
42da2935 746 static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
747 // get number of clusters for this module
748 Int_t nofClusters = fClusters->GetEntriesFast();
749 nofClusters -= fNclusters;
750 Int_t fNofMaps = fSegmentation->Npz();
751 Int_t fNofAnodes = fNofMaps/2;
d86f531c 752// Int_t fMaxNofSamples = fSegmentation->Npx();
42da2935 753 Int_t dummy=0;
754 Double_t fTimeStep = fSegmentation->Dpx( dummy );
755 Double_t fSddLength = fSegmentation->Dx();
756 Double_t fDriftSpeed = fResponse->DriftSpeed();
757 Double_t anodePitch = fSegmentation->Dpz( dummy );
758 Float_t n, baseline;
759 fResponse->GetNoiseParam( n, baseline );
760 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
50d05d7b 761
42da2935 762 for( Int_t j=0; j<nofClusters; j++ ){
50d05d7b 763 // get cluster information
764 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
765 Int_t astart = clusterJ->Astart();
766 Int_t astop = clusterJ->Astop();
767 Int_t tstart = clusterJ->Tstartf();
768 Int_t tstop = clusterJ->Tstopf();
769 Int_t wing = (Int_t)clusterJ->W();
770 if( wing == 2 ){
771 astart += fNofAnodes;
772 astop += fNofAnodes;
773 } // end if
774 Int_t xdim = tstop-tstart+3;
775 Int_t zdim = astop-astart+3;
d86f531c 776 if( xdim > 50 || zdim > 30 ) {
777 Warning("ResolveClustersE","xdim: %d , zdim: %d ",xdim,zdim);
778 continue;
779 }
50d05d7b 780 Float_t *sp = new Float_t[ xdim*zdim+1 ];
781 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
782
783 // make a local map from cluster region
784 for( Int_t ianode=astart; ianode<=astop; ianode++ ){
785 for( Int_t itime=tstart; itime<=tstop; itime++ ){
786 Float_t fadc = fMap->GetSignal( ianode, itime );
787 if( fadc > baseline ) fadc -= (Double_t)baseline;
788 else fadc = 0.;
789 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
790 sp[index] = fadc;
791 } // time loop
792 } // anode loop
793
794 // search peaks on cluster
795 const Int_t kNp = 150;
796 Int_t peakX1[kNp];
797 Int_t peakZ1[kNp];
798 Float_t peakAmp1[kNp];
799 Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
800
801 // if multiple peaks, split cluster
802 if( npeak >= 1 )
803 {
804 // cout << "npeak " << npeak << endl;
805 // clusterJ->PrintInfo();
806 Float_t *par = new Float_t[npeak*5+1];
807 par[0] = (Float_t)npeak;
48058160 808 // Initial parameters in cell dimentions
50d05d7b 809 Int_t k1 = 1;
810 for( i=0; i<npeak; i++ ){
811 par[k1] = peakAmp1[i];
812 par[k1+1] = peakX1[i]; // local time pos. [timebin]
813 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
814 if( electronics == 1 )
815 par[k1+3] = 2.; // PASCAL
816 else if( electronics == 2 )
817 par[k1+3] = 0.7; // tau [timebin] OLA
818 par[k1+4] = .4; // sigma [anodepich]
819 k1+=5;
820 } // end for i
821 Int_t niter;
822 Float_t chir;
823 NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
824 Float_t peakX[kNp];
825 Float_t peakZ[kNp];
826 Float_t sigma[kNp];
827 Float_t tau[kNp];
828 Float_t peakAmp[kNp];
829 Float_t integral[kNp];
830 //get integrals => charge for each peak
831 PeakFunc( xdim, zdim, par, sp, integral );
832 k1 = 1;
833 for( i=0; i<npeak; i++ ){
834 peakAmp[i] = par[k1];
d86f531c 835 peakX[i] = par[k1+1];
836 peakZ[i] = par[k1+2];
837 tau[i] = par[k1+3];
838 sigma[i] = par[k1+4];
50d05d7b 839 k1+=5;
840 } // end for i
841 // calculate parameter for new clusters
842 for( i=0; i<npeak; i++ ){
843 AliITSRawClusterSDD clusterI( *clusterJ );
d86f531c 844
50d05d7b 845 Int_t newAnode = peakZ1[i]-1 + astart;
d86f531c 846
847 // Int_t newiTime = peakX1[i]-1 + tstart;
848 // Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
849 // if( newiTime > shift && newiTime < (fMaxNofSamples-shift) )
850 // shift = 0;
851 // Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
852 // clusterI.SetPeakPos( peakpos );
853
50d05d7b 854 clusterI.SetPeakAmpl( peakAmp1[i] );
855 Float_t newAnodef = peakZ[i] - 0.5 + astart;
856 Float_t newiTimef = peakX[i] - 1 + tstart;
857 if( wing == 2 ) newAnodef -= fNofAnodes;
858 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
859 newiTimef *= fTimeStep;
860 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
861 if( electronics == 1 ){
48058160 862 // newiTimef *= 0.999438; // PASCAL
863 // newiTimef += (6./fDriftSpeed - newiTimef/3000.);
50d05d7b 864 }else if( electronics == 2 )
865 newiTimef *= 0.99714; // OLA
d86f531c 866
867 Int_t timeBin = (Int_t)(newiTimef/fTimeStep+0.5);
868 Int_t peakpos = fMap->GetHitIndex( newAnode, timeBin );
869 if( peakpos < 0 ) {
870 for( Int_t ii=0; ii<3; ii++ ) {
871 peakpos = fMap->GetHitIndex( newAnode, timeBin+ii );
872 if( peakpos > 0 ) break;
873 peakpos = fMap->GetHitIndex( newAnode, timeBin-ii );
874 if( peakpos > 0 ) break;
875 }
876 }
877
878 if( peakpos < 0 ) {
879 // Warning( "ResolveClustersE", "Digit not found for cluster:\n" );
880 // clusterI.PrintInfo();
881 continue;
882 }
883 clusterI.SetPeakPos( peakpos );
50d05d7b 884 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
885 Float_t sign = ( wing == 1 ) ? -1. : 1.;
886 clusterI.SetX( driftPath*sign * 0.0001 );
887 clusterI.SetZ( anodePath * 0.0001 );
888 clusterI.SetAnode( newAnodef );
889 clusterI.SetTime( newiTimef );
890 clusterI.SetAsigma( sigma[i]*anodePitch );
891 clusterI.SetTsigma( tau[i]*fTimeStep );
892 clusterI.SetQ( integral[i] );
d86f531c 893
50d05d7b 894 iTS->AddCluster( 1, &clusterI );
895 } // end for i
896 fClusters->RemoveAt( j );
897 delete [] par;
48058160 898 } else { // something odd
d86f531c 899 Warning( "ResolveClustersE","--- Peak not found!!!! minpeak=%d ,cluster peak= %f , module= %d",
900 fMinPeak, clusterJ->PeakAmpl(), fModule );
901 clusterJ->PrintInfo();
902 Warning( "ResolveClustersE"," xdim= %d zdim= %d", xdim-2, zdim-2 );
50d05d7b 903 }
904 delete [] sp;
42da2935 905 } // cluster loop
906 fClusters->Compress();
50d05d7b 907// fMap->ClearMap();
a1f090e0 908}
50d05d7b 909
910
42da2935 911//________________________________________________________________________
912void AliITSClusterFinderSDD::GroupClusters(){
913 // group clusters
914 Int_t dummy=0;
915 Float_t fTimeStep = fSegmentation->Dpx(dummy);
916 // get number of clusters for this module
917 Int_t nofClusters = fClusters->GetEntriesFast();
918 nofClusters -= fNclusters;
919 AliITSRawClusterSDD *clusterI;
920 AliITSRawClusterSDD *clusterJ;
921 Int_t *label = new Int_t [nofClusters];
922 Int_t i,j;
923 for(i=0; i<nofClusters; i++) label[i] = 0;
924 for(i=0; i<nofClusters; i++) {
50d05d7b 925 if(label[i] != 0) continue;
926 for(j=i+1; j<nofClusters; j++) {
927 if(label[j] != 0) continue;
928 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
929 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
930 // 1.3 good
931 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
932 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
933 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
934 if(!pair) continue;
935 // clusterI->PrintInfo();
936 // clusterJ->PrintInfo();
937 clusterI->Add(clusterJ);
938 label[j] = 1;
939 fClusters->RemoveAt(j);
940 j=i; // <- Ernesto
941 } // J clusters
942 label[i] = 1;
42da2935 943 } // I clusters
944 fClusters->Compress();
945
946 delete [] label;
947 return;
b0f5e3fc 948}
42da2935 949//________________________________________________________________________
950void AliITSClusterFinderSDD::SelectClusters(){
951 // get number of clusters for this module
952 Int_t nofClusters = fClusters->GetEntriesFast();
b0f5e3fc 953
42da2935 954 nofClusters -= fNclusters;
955 Int_t i;
956 for(i=0; i<nofClusters; i++) {
50d05d7b 957 AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
958 Int_t rmflg = 0;
959 Float_t wy = 0.;
960 if(clusterI->Anodes() != 0.) {
961 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
962 } // end if
963 Int_t amp = (Int_t) clusterI->PeakAmpl();
964 Int_t cha = (Int_t) clusterI->Q();
965 if(amp < fMinPeak) rmflg = 1;
966 if(cha < fMinCharge) rmflg = 1;
967 if(wy < fMinNCells) rmflg = 1;
968 //if(wy > fMaxNCells) rmflg = 1;
969 if(rmflg) fClusters->RemoveAt(i);
42da2935 970 } // I clusters
971 fClusters->Compress();
972 return;
b0f5e3fc 973}
42da2935 974//__________________________________________________________________________
975void AliITSClusterFinderSDD::ResolveClusters(){
976 // The function to resolve clusters if the clusters overlapping exists
977/* AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
978 // get number of clusters for this module
979 Int_t nofClusters = fClusters->GetEntriesFast();
980 nofClusters -= fNclusters;
981 //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
982 // <<fNclusters<<endl;
983 Int_t fNofMaps = fSegmentation->Npz();
984 Int_t fNofAnodes = fNofMaps/2;
985 Int_t dummy=0;
986 Double_t fTimeStep = fSegmentation->Dpx(dummy);
987 Double_t fSddLength = fSegmentation->Dx();
988 Double_t fDriftSpeed = fResponse->DriftSpeed();
989 Double_t anodePitch = fSegmentation->Dpz(dummy);
990 Float_t n, baseline;
991 fResponse->GetNoiseParam(n,baseline);
992 Float_t dzz_1A = anodePitch * anodePitch / 12;
993 // fill Map of signals
a1f090e0 994 fMap->FillMap();
42da2935 995 Int_t j,i,ii,ianode,anode,itime;
996 Int_t wing,astart,astop,tstart,tstop,nanode;
997 Double_t fadc,ClusterTime;
998 Double_t q[400],x[400],z[400]; // digit charges and coordinates
999 for(j=0; j<nofClusters; j++) {
50d05d7b 1000 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
1001 Int_t ndigits = 0;
1002 astart=clusterJ->Astart();
1003 astop=clusterJ->Astop();
1004 tstart=clusterJ->Tstartf();
1005 tstop=clusterJ->Tstopf();
1006 nanode=clusterJ->Anodes(); // <- Ernesto
1007 wing=(Int_t)clusterJ->W();
1008 if(wing == 2) {
1009 astart += fNofAnodes;
1010 astop += fNofAnodes;
1011 } // end if
1012 // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
1013 // <<tstart<<","<<tstop<<endl;
1014 // clear the digit arrays
1015 for(ii=0; ii<400; ii++) {
1016 q[ii] = 0.;
1017 x[ii] = 0.;
1018 z[ii] = 0.;
1019 } // end for ii
42da2935 1020
50d05d7b 1021 for(ianode=astart; ianode<=astop; ianode++) {
1022 for(itime=tstart; itime<=tstop; itime++) {
1023 fadc=fMap->GetSignal(ianode,itime);
1024 if(fadc>baseline) {
1025 fadc-=(Double_t)baseline;
1026 q[ndigits] = fadc*(fTimeStep/160); // KeV
1027 anode = ianode;
1028 if(wing == 2) anode -= fNofAnodes;
1029 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
1030 ClusterTime = itime*fTimeStep;
1031 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
1032 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
1033 if(wing == 1) x[ndigits] *= (-1);
1034 // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
1035 // <<fadc<<endl;
1036 // cout<<"wing,anode,ndigits,charge ="<<wing<<","
1037 // <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
1038 ndigits++;
1039 continue;
1040 } // end if
1041 fadc=0;
1042 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
1043 } // time loop
1044 } // anode loop
1045 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
1046 // Fit cluster to resolve for two separate ones --------------------
1047 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1048 Double_t dxx=0., dzz=0., dxz=0.;
1049 Double_t scl = 0., tmp, tga, elps = -1.;
1050 Double_t xfit[2], zfit[2], qfit[2];
1051 Double_t pitchz = anodePitch*1.e-4; // cm
1052 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
1053 Double_t sigma2;
1054 Int_t nfhits;
1055 Int_t nbins = ndigits;
1056 Int_t separate = 0;
1057 // now, all lengths are in microns
1058 for (ii=0; ii<nbins; ii++) {
1059 qq += q[ii];
1060 xm += x[ii]*q[ii];
1061 zm += z[ii]*q[ii];
1062 xx += x[ii]*x[ii]*q[ii];
1063 zz += z[ii]*z[ii]*q[ii];
1064 xz += x[ii]*z[ii]*q[ii];
1065 } // end for ii
1066 xm /= qq;
1067 zm /= qq;
1068 xx /= qq;
1069 zz /= qq;
1070 xz /= qq;
1071 dxx = xx - xm*xm;
1072 dzz = zz - zm*zm;
1073 dxz = xz - xm*zm;
42da2935 1074
50d05d7b 1075 // shrink the cluster in the time direction proportionaly to the
1076 // dxx/dzz, which lineary depends from the drift path
1077 // new Ernesto........
1078 if( nanode == 1 ){
1079 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1080 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1081 } // end if
1082 if( nanode == 2 ){
1083 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1084 } // end if
1085 if( nanode == 3 ){
1086 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1087 } // end if
1088 if( nanode > 3 ){
1089 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1090 } // end if
1091 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1092 // <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1093 // old Boris.........
1094 // tmp=29730. - 585.*fabs(xm/1000.);
1095 // scl=TMath::Sqrt(tmp/130000.);
a1f090e0 1096
50d05d7b 1097 xm *= scl;
1098 xx *= scl*scl;
1099 xz *= scl;
42da2935 1100
50d05d7b 1101 dxx = xx - xm*xm;
1102 // dzz = zz - zm*zm;
1103 dxz = xz - xm*zm;
1104 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1105 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1106 // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
a1f090e0 1107
50d05d7b 1108 if (dxx < 0.) dxx=0.;
1109 // the data if no cluster overlapping (the coordunates are in cm)
1110 nfhits = 1;
1111 xfit[0] = xm*1.e-4;
1112 zfit[0] = zm*1.e-4;
1113 qfit[0] = qq;
1114 // if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
a1f090e0 1115
50d05d7b 1116 if (nbins >= 7) {
1117 if (dxz==0.) tga=0.;
1118 else {
1119 tmp=0.5*(dzz-dxx)/dxz;
1120 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) :
1121 tmp+TMath::Sqrt(tmp*tmp+1);
1122 } // end if dxz
1123 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1124 // change from microns to cm
1125 xm *= 1.e-4;
1126 zm *= 1.e-4;
1127 zz *= 1.e-8;
1128 xx *= 1.e-8;
1129 xz *= 1.e-8;
1130 dxz *= 1.e-8;
1131 dxx *= 1.e-8;
1132 dzz *= 1.e-8;
1133 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1134 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1135 for (i=0; i<nbins; i++) {
1136 x[i] = x[i] *= scl;
1137 x[i] = x[i] *= 1.e-4;
1138 z[i] = z[i] *= 1.e-4;
1139 } // end for i
1140 // cout<<"!!! elps ="<<elps<<endl;
1141 if (elps < 0.3) { // try to separate hits
1142 separate = 1;
1143 tmp=atan(tga);
1144 Double_t cosa=cos(tmp),sina=sin(tmp);
1145 Double_t a1=0., x1=0., xxx=0.;
1146 for (i=0; i<nbins; i++) {
1147 tmp=x[i]*cosa + z[i]*sina;
1148 if (q[i] > a1) {
1149 a1=q[i];
1150 x1=tmp;
1151 } // end if
1152 xxx += tmp*tmp*tmp*q[i];
1153 } // end for i
1154 xxx /= qq;
1155 Double_t z12=-sina*xm + cosa*zm;
1156 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1157 xm=cosa*xm + sina*zm;
1158 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1159 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1160 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1161 for (i=0; i<33; i++) { // solve a system of equations
1162 Double_t x1_old=x1, x2_old=x2, r_old=r;
1163 Double_t c11=x1-x2;
1164 Double_t c12=r;
1165 Double_t c13=1-r;
1166 Double_t c21=x1*x1 - x2*x2;
1167 Double_t c22=2*r*x1;
1168 Double_t c23=2*(1-r)*x2;
1169 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1170 Double_t c32=3*r*(sigma2 + x1*x1);
1171 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1172 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1173 Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1174 Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1175 (3*sigma2+x2*x2)-xxx);
1176 Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1177 c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1178 if (d==0.) {
1179 cout<<"*********** d=0 ***********\n";
1180 break;
1181 } // end if
1182 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1183 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1184 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1185 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1186 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1187 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1188 r += dr/d;
1189 x1 += d1/d;
1190 x2 += d2/d;
1191 if (fabs(x1-x1_old) > 0.0001) continue;
1192 if (fabs(x2-x2_old) > 0.0001) continue;
1193 if (fabs(r-r_old)/5 > 0.001) continue;
1194 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1195 Double_t a2=a1*(1-r)/r;
1196 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina +
1197 z12*cosa;
1198 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina +
1199 z12*cosa;
1200 nfhits=2;
1201 break; // Ok !
1202 } // end for i
1203 if (i==33) cerr<<"No more iterations ! "<<endl;
1204 } // end of attempt to separate overlapped clusters
1205 } // end of nbins cut
1206 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1207 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1208 <<elps<<","<<nfhits<<endl;
1209 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1210 for (i=0; i<nfhits; i++) {
1211 xfit[i] *= (1.e+4/scl);
1212 if(wing == 1) xfit[i] *= (-1);
1213 zfit[i] *= 1.e+4;
1214 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","
1215 // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1216 } // end for i
1217 Int_t ncl = nfhits;
1218 if(nfhits == 1 && separate == 1) {
1219 cout<<"!!!!! no separate"<<endl;
1220 ncl = -2;
1221 } // end if
1222 if(nfhits == 2) {
1223 cout << "Split cluster: " << endl;
1224 clusterJ->PrintInfo();
1225 cout << " in: " << endl;
1226 for (i=0; i<nfhits; i++) {
1227 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
42da2935 1228 -1,-1,(Float_t)qfit[i],ncl,0,0,
1229 (Float_t)xfit[i],
1230 (Float_t)zfit[i],0,0,0,0,
1231 tstart,tstop,astart,astop);
50d05d7b 1232 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1233 // -1,(Float_t)qfit[i],0,0,0,
1234 // (Float_t)xfit[i],
1235 // (Float_t)zfit[i],0,0,0,0,
1236 // tstart,tstop,astart,astop,ncl);
1237 // ???????????
1238 // if(wing == 1) xfit[i] *= (-1);
1239 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1240 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1241 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1242 Float_t peakpos = clusterJ->PeakPos();
1243 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1244 Float_t clusterDriftPath = Time*fDriftSpeed;
1245 clusterDriftPath = fSddLength-clusterDriftPath;
1246 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1247 Time,qfit[i],
42da2935 1248 clusterPeakAmplitude,peakpos,
1249 0.,0.,clusterDriftPath,
1250 clusteranodePath,clusterJ->Samples()/2
50d05d7b 1251 ,tstart,tstop,0,0,0,astart,astop);
1252 clust->PrintInfo();
1253 iTS->AddCluster(1,clust);
1254 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1255 // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1256 // <<","<<ncl<<endl;
1257 delete clust;
1258 }// nfhits loop
1259 fClusters->RemoveAt(j);
42da2935 1260 } // if nfhits = 2
1261} // cluster loop
1262fClusters->Compress();
1263fMap->ClearMap();
1264*/
1265 return;
a1f090e0 1266}
42da2935 1267//______________________________________________________________________
1268void AliITSClusterFinderSDD::GetRecPoints(){
1269 // get rec points
1270 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1271 // get number of clusters for this module
1272 Int_t nofClusters = fClusters->GetEntriesFast();
1273 nofClusters -= fNclusters;
1274 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1275 const Float_t kconv = 1.0e-4;
1276 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1277 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
d86f531c 1278 Int_t i;
42da2935 1279 Int_t ix, iz, idx=-1;
1280 AliITSdigitSDD *dig=0;
1281 Int_t ndigits=fDigits->GetEntriesFast();
1282 for(i=0; i<nofClusters; i++) {
50d05d7b 1283 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1284 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1285 if(clusterI) idx=clusterI->PeakPos();
1286 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1287 // try peak neighbours - to be done
1288 if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
d86f531c 1289 if(!dig) {
50d05d7b 1290 // try cog
1291 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1292 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1293 // if null try neighbours
1294 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1295 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1296 if (!dig) printf("SDD: cannot assign the track number!\n");
1297 } // end if !dig
1298 AliITSRecPoint rnew;
1299 rnew.SetX(clusterI->X());
1300 rnew.SetZ(clusterI->Z());
1301 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
1302 rnew.SetdEdX(kconvGeV*clusterI->Q());
1303 rnew.SetSigmaX2(kRMSx*kRMSx);
1304 rnew.SetSigmaZ2(kRMSz*kRMSz);
d86f531c 1305
ecee53fc 1306 if(dig) rnew.fTracks[0]=dig->GetTrack(0);
1307 if(dig) rnew.fTracks[1]=dig->GetTrack(1);
1308 if(dig) rnew.fTracks[2]=dig->GetTrack(2);
507cf1a7 1309
50d05d7b 1310 iTS->AddRecPoint(rnew);
42da2935 1311 } // I clusters
50d05d7b 1312// fMap->ClearMap();
b0f5e3fc 1313}
42da2935 1314//______________________________________________________________________
1315void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1316 // find raw clusters
50d05d7b 1317
1318 fModule = mod;
1319
a1f090e0 1320 Find1DClustersE();
b0f5e3fc 1321 GroupClusters();
1322 SelectClusters();
a1f090e0 1323 ResolveClustersE();
b0f5e3fc 1324 GetRecPoints();
1325}
42da2935 1326//_______________________________________________________________________
bf3f2830 1327void AliITSClusterFinderSDD::Print() const{
42da2935 1328 // Print SDD cluster finder Parameters
1329
1330 cout << "**************************************************" << endl;
1331 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1332 cout << "**************************************************" << endl;
1333 cout << "Number of Clusters: " << fNclusters << endl;
1334 cout << "Anode Tolerance: " << fDAnode << endl;
1335 cout << "Time Tolerance: " << fDTime << endl;
1336 cout << "Time correction (electronics): " << fTimeCorr << endl;
1337 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1338 cout << "Minimum Amplitude: " << fMinPeak << endl;
1339 cout << "Minimum Charge: " << fMinCharge << endl;
1340 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1341 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1342 cout << "**************************************************" << endl;
a1f090e0 1343}