]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSMultReconstructor.h
Using send pressure sensor by default
[u/mrichter/AliRoot.git] / ITS / AliITSMultReconstructor.h
CommitLineData
ac903f1b 1#ifndef ALIITSMULTRECONSTRUCTOR_H
2#define ALIITSMULTRECONSTRUCTOR_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
fa9ed8e9 6//_________________________________________________________________________
ac903f1b 7//
fa9ed8e9 8// Implementation of the ITS-SPD trackleter class
ac903f1b 9//
fa9ed8e9 10// It retrieves clusters in the pixels (theta and phi) and finds tracklets.
11// These can be used to extract charged particle multiplicity from the ITS.
ac903f1b 12//
fa9ed8e9 13// A tracklet consists of two ITS clusters, one in the first pixel layer and
14// one in the second. The clusters are associated if the differences in
15// Phi (azimuth) and Theta (polar angle) are within fiducial windows.
16// In case of multiple candidates the candidate with minimum
17// distance is selected.
18//_________________________________________________________________________
1f9831ab 19#include "AliTrackleter.h"
f9f90134 20#include "AliITSsegmentationSPD.h"
21#include "TMath.h"
ac903f1b 22
1f9831ab 23class TBits;
ac903f1b 24class TTree;
25class TH1F;
3ef75756 26class TH2F;
1f9831ab 27class AliITSDetTypeRec;
ac903f1b 28class AliITSgeom;
1f9831ab 29class AliESDEvent;
30class AliESDtrack;
31class AliVertex;
6de485aa 32class AliESDVertex;
1f9831ab 33class AliMultiplicity;
f9f90134 34class AliRefArray;
ac903f1b 35
1f9831ab 36class AliITSMultReconstructor : public AliTrackleter
ac903f1b 37{
38public:
1f9831ab 39 //
40 enum {kClTh,kClPh,kClZ,kClMC0,kClMC1,kClMC2,kClNPar};
41 enum {kTrTheta,kTrPhi,kTrDPhi,kTrDTheta,kTrLab1,kTrLab2,kClID1,kClID2,kTrNPar};
d7c5c1e4 42 enum {kSCTh,kSCPh,kSCLab,kSCID,kSCNPar};
1f9831ab 43 enum {kITSTPC,kITSSAP,kITSTPCBit=BIT(kITSTPC),kITSSAPBit=BIT(kITSSAP)}; // RS
ac903f1b 44 AliITSMultReconstructor();
ddced3c8 45 virtual ~AliITSMultReconstructor();
ac903f1b 46
1f9831ab 47 void Reconstruct(AliESDEvent* esd, TTree* treeRP);
f9f90134 48 void Reconstruct(TTree* tree, Float_t* vtx, Float_t* vtxRes=0); // old reconstructor invocation
49 void ReconstructMix(TTree* clusterTree, TTree* clusterTreeMix, Float_t* vtx, Float_t* vtrRes=0);
1f9831ab 50 void FindTracklets(const Float_t* vtx);
9b373e9a 51 void LoadClusterFiredChips(TTree* tree);
7b116aa1 52 void FlagClustersInOverlapRegions(Int_t ic1,Int_t ic2);
34581d1e 53 void FlagTrackClusters(Int_t id);
6de485aa 54 void FlagIfSecondary(AliESDtrack* track, const AliVertex* vtx);
55 void FlagV0s(const AliESDVertex *vtx);
1f9831ab 56 void ProcessESDTracks();
6de485aa 57 Bool_t CanBeElectron(const AliESDtrack* trc) const;
1f9831ab 58
f9f90134 59 virtual void CreateMultiplicityObject();
1f9831ab 60 //
7b116aa1 61 // Following members are set via AliITSRecoParam
f9f90134 62 void SetPhiWindow(Float_t w=0.08) {fDPhiWindow=w; fDPhiWindow2 = w*w;}
63 void SetThetaWindow(Float_t w=0.025) {fDThetaWindow=w; fDThetaWindow2=w*w;}
fa9ed8e9 64 void SetPhiShift(Float_t w=0.0045) {fPhiShift=w;}
7b116aa1 65 void SetRemoveClustersFromOverlaps(Bool_t b = kFALSE) {fRemoveClustersFromOverlaps = b;}
66 void SetPhiOverlapCut(Float_t w=0.005) {fPhiOverlapCut=w;}
67 void SetZetaOverlapCut(Float_t w=0.05) {fZetaOverlapCut=w;}
7c6da836 68 void SetPhiRotationAngle(Float_t w=0.0) {fPhiRotationAngle=w;}
7b116aa1 69
f9f90134 70 Int_t GetNClustersLayer1() const {return fNClustersLay[0];}
71 Int_t GetNClustersLayer2() const {return fNClustersLay[1];}
72 Int_t GetNClustersLayer(Int_t i) const {return fNClustersLay[i];}
ac903f1b 73 Int_t GetNTracklets() const {return fNTracklets;}
968e8539 74 Int_t GetNSingleClusters() const {return fNSingleCluster;}
9b373e9a 75 Short_t GetNFiredChips(Int_t layer) const {return fNFiredChips[layer];}
ac903f1b 76
f9f90134 77 Float_t* GetClusterLayer1(Int_t n) {return &fClustersLay[0][n*kClNPar];}
78 Float_t* GetClusterLayer2(Int_t n) {return &fClustersLay[1][n*kClNPar];}
79 Float_t* GetClusterOfLayer(Int_t lr,Int_t n) {return &fClustersLay[lr][n*kClNPar];}
80
ac903f1b 81 Float_t* GetTracklet(Int_t n) {return fTracklets[n];}
968e8539 82 Float_t* GetCluster(Int_t n) {return fSClusters[n];}
ac903f1b 83
f9f90134 84 void SetScaleDThetaBySin2T(Bool_t v=kTRUE) {fScaleDTBySin2T = v;}
85 Bool_t GetScaleDThetaBySin2T() const {return fScaleDTBySin2T;}
86 //
87 void SetNStdDev(Float_t f=1.) {fNStdDev = f<0.01 ? 0.01 : f; fNStdDevSq=TMath::Sqrt(fNStdDev);}
88 Float_t GetNStdDev() const {return fNStdDev;}
89 //
ac903f1b 90 void SetHistOn(Bool_t b=kFALSE) {fHistOn=b;}
91 void SaveHists();
3ef75756 92
1f9831ab 93 AliITSDetTypeRec *GetDetTypeRec() const {return fDetTypeRec;}
94 void SetDetTypeRec(AliITSDetTypeRec *ptr){fDetTypeRec = ptr;}
6de485aa 95 //
96 void SetCutPxDrSPDin(Float_t v=0.1) { fCutPxDrSPDin = v;}
97 void SetCutPxDrSPDout(Float_t v=0.15) { fCutPxDrSPDout = v;}
98 void SetCutPxDz(Float_t v=0.2) { fCutPxDz = v;}
99 void SetCutDCArz(Float_t v=0.5) { fCutDCArz = v;}
100 void SetCutMinElectronProbTPC(Float_t v=0.5) { fCutMinElectronProbTPC = v;}
101 void SetCutMinElectronProbESD(Float_t v=0.1) { fCutMinElectronProbESD = v;}
102 void SetCutMinP(Float_t v=0.05) { fCutMinP = v;}
103 void SetCutMinRGamma(Float_t v=2.) { fCutMinRGamma = v;}
104 void SetCutMinRK0(Float_t v=1.) { fCutMinRK0 = v;}
105 void SetCutMinPointAngle(Float_t v=0.98) { fCutMinPointAngle = v;}
106 void SetCutMaxDCADauther(Float_t v=0.5) { fCutMaxDCADauther = v;}
107 void SetCutMassGamma(Float_t v=0.03) { fCutMassGamma = v;}
108 void SetCutMassGammaNSigma(Float_t v=5.) { fCutMassGammaNSigma = v;}
109 void SetCutMassK0(Float_t v=0.03) { fCutMassK0 = v;}
110 void SetCutMassK0NSigma(Float_t v=5.) { fCutMassK0NSigma = v;}
111 void SetCutChi2cGamma(Float_t v=2.) { fCutChi2cGamma = v;}
112 void SetCutChi2cK0(Float_t v=2.) { fCutChi2cK0 = v;}
113 void SetCutGammaSFromDecay(Float_t v=-10.) { fCutGammaSFromDecay = v;}
114 void SetCutK0SFromDecay(Float_t v=-10.) { fCutK0SFromDecay = v;}
115 void SetCutMaxDCA(Float_t v=1.) { fCutMaxDCA = v;}
116 //
117 Float_t GetCutPxDrSPDin() const {return fCutPxDrSPDin;}
118 Float_t GetCutPxDrSPDout() const {return fCutPxDrSPDout;}
119 Float_t GetCutPxDz() const {return fCutPxDz;}
120 Float_t GetCutDCArz() const {return fCutDCArz;}
121 Float_t GetCutMinElectronProbTPC() const {return fCutMinElectronProbTPC;}
122 Float_t GetCutMinElectronProbESD() const {return fCutMinElectronProbESD;}
123 Float_t GetCutMinP() const {return fCutMinP;}
124 Float_t GetCutMinRGamma() const {return fCutMinRGamma;}
125 Float_t GetCutMinRK0() const {return fCutMinRK0;}
126 Float_t GetCutMinPointAngle() const {return fCutMinPointAngle;}
127 Float_t GetCutMaxDCADauther() const {return fCutMaxDCADauther;}
128 Float_t GetCutMassGamma() const {return fCutMassGamma;}
129 Float_t GetCutMassGammaNSigma() const {return fCutMassGammaNSigma;}
130 Float_t GetCutMassK0() const {return fCutMassK0;}
131 Float_t GetCutMassK0NSigma() const {return fCutMassK0NSigma;}
132 Float_t GetCutChi2cGamma() const {return fCutChi2cGamma;}
133 Float_t GetCutChi2cK0() const {return fCutChi2cK0;}
134 Float_t GetCutGammaSFromDecay() const {return fCutGammaSFromDecay;}
135 Float_t GetCutK0SFromDecay() const {return fCutK0SFromDecay;}
136 Float_t GetCutMaxDCA() const {return fCutMaxDCA;}
137 //
f9f90134 138 void InitAux();
139 void ClusterPos2Angles(const Float_t *vtx);
140 void ClusterPos2Angles(Float_t *clPar, const Float_t *vtx);
141 Int_t AssociateClusterOfL1(Int_t iC1);
142 Int_t StoreTrackletForL2Cluster(Int_t iC2);
143 void StoreL1Singles();
144 TClonesArray* GetClustersOfLayer(Int_t il) const {return fClArr[il];}
145 void LoadClusters() {LoadClusterArrays(fTreeRP);}
146 void SetTreeRP(TTree* rp) {fTreeRP = rp;}
147 void SetTreeRPMix(TTree* rp=0) {fTreeRPMix = rp;}
148 Bool_t AreClustersLoaded() const {return fClustersLoaded;}
149 Bool_t GetCreateClustersCopy() const {return fCreateClustersCopy;}
150 Bool_t IsRecoDone() const {return fRecoDone;}
151 void SetCreateClustersCopy(Bool_t v=kTRUE) {fCreateClustersCopy=v;}
152 //
153 Float_t* GetClustersArray(Int_t lr) const {return (Float_t*) (lr==0) ? fClustersLay[0]:fClustersLay[1];}
154 Int_t* GetPartnersOfL2() const {return (Int_t*)fPartners;}
155 Float_t* GetMinDistsOfL2() const {return (Float_t*)fMinDists;}
156 Double_t GetDPhiShift() const {return fDPhiShift;}
157 Double_t GetDPhiWindow2() const {return fDPhiWindow2;}
158 Double_t GetDThetaWindow2() const {return fDThetaWindow2;}
159 Double_t CalcDist(Double_t dphi, Double_t dtheta, Double_t theta) const;
160 //
161 protected:
162 void SetClustersLoaded(Bool_t v=kTRUE) {fClustersLoaded = v;}
3ef75756 163 AliITSMultReconstructor(const AliITSMultReconstructor& mr);
7537d03c 164 AliITSMultReconstructor& operator=(const AliITSMultReconstructor& mr);
f9f90134 165 void CalcThetaPhi(float dx,float dy,float dz,float &theta,float &phi) const;
1f9831ab 166 AliITSDetTypeRec* fDetTypeRec; //! pointer to DetTypeRec
167 AliESDEvent* fESDEvent; //! pointer to ESD event
168 TTree* fTreeRP; //! ITS recpoints
f9f90134 169 TTree* fTreeRPMix; //! ITS recpoints for mixing
170 AliRefArray* fUsedClusLay[2][2]; //! RS: clusters usage in ESD tracks
171 //
172 Float_t* fClustersLay[2]; //! clusters in the SPD layers of ITS
173 Int_t* fDetectorIndexClustersLay[2]; //! module index for clusters in ITS layers
174 Bool_t* fOverlapFlagClustersLay[2]; //! flag for clusters in the overlap regions in ITS layers
ac903f1b 175
f9f90134 176 Float_t** fTracklets; //! tracklets
177 Float_t** fSClusters; //! single clusters (unassociated)
ac903f1b 178
f9f90134 179 Int_t fNClustersLay[2]; // Number of clusters on each layer
9b373e9a 180 Int_t fNTracklets; // Number of tracklets
181 Int_t fNSingleCluster; // Number of unassociated clusters
182 Short_t fNFiredChips[2]; // Number of fired chips in the two SPD layers
6de485aa 183 //
7b116aa1 184 // Following members are set via AliITSRecoParam
6de485aa 185 //
f9f90134 186 Float_t fDPhiWindow; // Search window in phi
187 Float_t fDThetaWindow; // Search window in theta
fa9ed8e9 188 Float_t fPhiShift; // Phi shift reference value (at 0.5 T)
7b116aa1 189 Bool_t fRemoveClustersFromOverlaps; // Option to skip clusters in the overlaps
190 Float_t fPhiOverlapCut; // Fiducial window in phi for overlap cut
191 Float_t fZetaOverlapCut; // Fiducial window in eta for overlap cut
7c6da836 192 Float_t fPhiRotationAngle; // Angle to rotate the inner layer cluster for combinatorial reco only
f9f90134 193 //
194 Bool_t fScaleDTBySin2T; // use in distance definition
195 Float_t fNStdDev; // number of standard deviations to keep
196 Float_t fNStdDevSq; // sqrt of number of standard deviations to keep
197 //
6de485aa 198 // cuts for secondaries identification
199 Float_t fCutPxDrSPDin; // max P*DR for primaries involving at least 1 SPD
200 Float_t fCutPxDrSPDout; // max P*DR for primaries not involving any SPD
201 Float_t fCutPxDz; // max P*DZ for primaries
202 Float_t fCutDCArz; // max DR or DZ for primares
203 //
204 // cuts for flagging tracks in V0s
205 Float_t fCutMinElectronProbTPC; // min probability for e+/e- PID involving TPC
206 Float_t fCutMinElectronProbESD; // min probability for e+/e- PID not involving TPC
207 //
208 Float_t fCutMinP; // min P of V0
209 Float_t fCutMinRGamma; // min transv. distance from ESDVertex to V0 for gammas
210 Float_t fCutMinRK0; // min transv. distance from ESDVertex to V0 for K0s
211 Float_t fCutMinPointAngle; // min pointing angle cosine
212 Float_t fCutMaxDCADauther; // max DCA of daughters at V0
213 Float_t fCutMassGamma; // max gamma mass
214 Float_t fCutMassGammaNSigma; // max standard deviations from 0 for gamma
215 Float_t fCutMassK0; // max K0 mass difference from PGD value
216 Float_t fCutMassK0NSigma; // max standard deviations for K0 mass from PDG value
217 Float_t fCutChi2cGamma; // max constrained chi2 cut for gammas
218 Float_t fCutChi2cK0; // max constrained chi2 cut for K0s
219 Float_t fCutGammaSFromDecay; // min path*P for gammas
220 Float_t fCutK0SFromDecay; // min path*P for K0s
221 Float_t fCutMaxDCA; // max DCA for V0 at ESD vertex
222
9b373e9a 223 Bool_t fHistOn; // Option to define and fill the histograms
ddced3c8 224
9b373e9a 225 TH1F* fhClustersDPhiAcc; // Phi2 - Phi1 for tracklets
226 TH1F* fhClustersDThetaAcc; // Theta2 - Theta1 for tracklets
9b373e9a 227 TH1F* fhClustersDPhiAll; // Phi2 - Phi1 all the combinations
228 TH1F* fhClustersDThetaAll; // Theta2 - Theta1 all the combinations
3ef75756 229
9b373e9a 230 TH2F* fhDPhiVsDThetaAll; // 2D plot for all the combinations
231 TH2F* fhDPhiVsDThetaAcc; // same plot for tracklets
9b373e9a 232
233 TH1F* fhetaTracklets; // Pseudorapidity distr. for tracklets
234 TH1F* fhphiTracklets; // Azimuthal (Phi) distr. for tracklets
235 TH1F* fhetaClustersLay1; // Pseudorapidity distr. for Clusters L. 1
236 TH1F* fhphiClustersLay1; // Azimuthal (Phi) distr. for Clusters L. 1
237
f9f90134 238 // temporary stuff for single event trackleting
239 Double_t fDPhiShift; // shift in dphi due to the curvature
240 Double_t fDPhiWindow2; // phi window^2
241 Double_t fDThetaWindow2; // theta window^2
242 Int_t* fPartners; //! L2 partners of L1
243 Int_t* fAssociatedLay1; //! association flag
244 Float_t* fMinDists; //! smallest distances for L2->L1
245 AliRefArray* fBlackList; //! blacklisted cluster references
246 Bool_t fStoreRefs[2][2]; //! which cluster to track refs to store
247 //
248 // this is for the analysis mode only
249 TClonesArray *fClArr[2]; //! original clusters
250 Bool_t fCreateClustersCopy; // read and clone clusters directly from the tree
251 Bool_t fClustersLoaded; // flag of clusters loaded
252 Bool_t fRecoDone; // flag that reconstruction is done
253 //
254 AliITSsegmentationSPD fSPDSeg; // SPD segmentation model
255 //
256 void LoadClusterArrays(TTree* tree, TTree* treeMix=0);
257 void LoadClusterArrays(TTree* tree,int il);
ac903f1b 258
f9f90134 259 ClassDef(AliITSMultReconstructor,10)
ac903f1b 260};
261
f9f90134 262//____________________________________________________________________
263inline void AliITSMultReconstructor::ClusterPos2Angles(Float_t *clPar, const Float_t *vtx)
264{
265 // convert cluster coordinates to angles wrt vertex
266 Float_t x = clPar[kClTh] - vtx[0];
267 Float_t y = clPar[kClPh] - vtx[1];
268 Float_t z = clPar[kClZ] - vtx[2];
269 Float_t r = TMath::Sqrt(x*x + y*y + z*z);
270 clPar[kClTh] = TMath::ACos(z/r); // Store Theta
271 clPar[kClPh] = TMath::Pi() + TMath::ATan2(-y,-x); // Store Phi
272 //
273}
274
275//____________________________________________________________________
276inline Double_t AliITSMultReconstructor::CalcDist(Double_t dphi, Double_t dtheta, Double_t theta) const
277{
278 // calculate eliptical distance. theta is the angle of cl1, dtheta = tht(cl1)-tht(cl2)
279 dphi = TMath::Abs(dphi) - fDPhiShift;
280 if (fScaleDTBySin2T) {
281 double sinTI = TMath::Sin(theta-dtheta/2);
282 sinTI *= sinTI;
283 dtheta /= sinTI>1.e-6 ? sinTI : 1.e-6;
284 }
285 return dphi*dphi/fDPhiWindow2 + dtheta*dtheta/fDThetaWindow2;
286}
287
288//____________________________________________________________________
289inline void AliITSMultReconstructor::CalcThetaPhi(float x, float y,float z,float &theta,float &phi) const
290{
291 // get theta and phi in tracklet convention
292 theta = TMath::ACos(z/TMath::Sqrt(x*x + y*y + z*z));
293 phi = TMath::Pi() + TMath::ATan2(-y,-x);
294}
295
296
ac903f1b 297#endif