- fixing warnings/coverity
[u/mrichter/AliRoot.git] / ITS / AliITSRecoParam.h
CommitLineData
44347160 1#ifndef ALIITSRECOPARAM_H
2#define ALIITSRECOPARAM_H
572f41f9 3/* Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
44347160 4 * See cxx source for full Copyright notice */
5
572f41f9 6/* $Id$ */
7
44347160 8///////////////////////////////////////////////////////////////////////////////
9// //
10// Class with ITS reconstruction parameters //
11// Origin: andrea.dainese@lnl.infn.it //
12// //
13///////////////////////////////////////////////////////////////////////////////
14
15
6518a6c5 16#include "AliDetectorRecoParam.h"
e50912db 17#include "AliITSgeomTGeo.h"
767aaecb 18#include "AliESDV0Params.h"
44347160 19
6518a6c5 20class AliITSRecoParam : public AliDetectorRecoParam
44347160 21{
22 public:
23 AliITSRecoParam();
24 virtual ~AliITSRecoParam();
25
26 static AliITSRecoParam *GetLowFluxParam();// make reco parameters for low flux env.
27 static AliITSRecoParam *GetHighFluxParam();// make reco parameters for high flux env.
28 static AliITSRecoParam *GetCosmicTestParam();// special setting for cosmic
4a66240a 29 static AliITSRecoParam *GetPlaneEffParam(Int_t i);// special setting for Plane Efficiency studies
44347160 30
e50912db 31 static Int_t GetLayersNotToSkip(Int_t i) { return fgkLayersNotToSkip[i]; }
32 static Int_t GetLastLayerToTrackTo() { return fgkLastLayerToTrackTo; }
33 static Int_t GetMaxClusterPerLayer() { return fgkMaxClusterPerLayer; }
34 static Int_t GetMaxClusterPerLayer5() { return fgkMaxClusterPerLayer5; }
35 static Int_t GetMaxClusterPerLayer10() { return fgkMaxClusterPerLayer10; }
36 static Int_t GetMaxClusterPerLayer20() { return fgkMaxClusterPerLayer20; }
37 static Int_t GetMaxDetectorPerLayer() { return fgkMaxDetectorPerLayer; }
38 static Double_t Getriw() { return fgkriw; }
39 static Double_t Getdiw() { return fgkdiw; }
40 static Double_t GetX0iw() { return fgkX0iw; }
41 static Double_t Getrcd() { return fgkrcd; }
42 static Double_t Getdcd() { return fgkdcd; }
43 static Double_t GetX0cd() { return fgkX0cd; }
44 static Double_t Getyr() { return fgkyr; }
45 static Double_t Getdr() { return fgkdr; }
46 static Double_t Getzm() { return fgkzm; }
47 static Double_t Getdm() { return fgkdm; }
48 static Double_t Getrs() { return fgkrs; }
49 static Double_t Getds() { return fgkds; }
50 static Double_t GetrInsideITSscreen() { return fgkrInsideITSscreen; }
51 static Double_t GetrInsideSPD1() { return fgkrInsideSPD1; }
52 static Double_t GetrPipe() { return fgkrPipe; }
53 static Double_t GetrInsidePipe() { return fgkrInsidePipe; }
54 static Double_t GetrOutsidePipe() { return fgkrOutsidePipe; }
55 static Double_t GetdPipe() { return fgkdPipe; }
56 static Double_t GetrInsideShield(Int_t i) { return fgkrInsideShield[i]; }
57 static Double_t GetrOutsideShield(Int_t i) { return fgkrOutsideShield[i]; }
58 static Double_t Getdshield(Int_t i) { return fgkdshield[i]; }
59 static Double_t GetX0shield(Int_t i) { return fgkX0shield[i]; }
60 static Double_t GetX0Air() { return fgkX0Air; }
61 static Double_t GetX0Be() { return fgkX0Be; }
62 static Double_t GetBoundaryWidth() { return fgkBoundaryWidth; }
63 static Double_t GetDeltaXNeighbDets() { return fgkDeltaXNeighbDets; }
64 static Double_t GetSPDdetzlength() { return fgkSPDdetzlength; }
65 static Double_t GetSPDdetxlength() { return fgkSPDdetxlength; }
66
ed446fa3 67 void PrintParameters() const;
68
f9119eb9 69 void SetTracker(Int_t tracker=0) { fTracker=tracker; }
9f9cae94 70 void SetTrackerDefault() { SetTracker(0); } // = MI and SA
876026b6 71 void SetTrackerMI() { SetTracker(1); }
72 void SetTrackerV2() { SetTracker(2); }
f9119eb9 73 Int_t GetTracker() const { return fTracker; }
9f9cae94 74 void SetTrackerSAOnly(Bool_t flag=kTRUE) { fITSonly=flag; }
75 Bool_t GetTrackerSAOnly() const { return fITSonly; }
f9119eb9 76 void SetVertexer(Int_t vertexer=0) { fVertexer=vertexer; }
876026b6 77 void SetVertexer3D() { SetVertexer(0); }
78 void SetVertexerZ() { SetVertexer(1); }
79 void SetVertexerCosmics() { SetVertexer(2); }
80 void SetVertexerIons() { SetVertexer(3); }
9364069b 81 void SetVertexerSmearMC(Float_t smearx=0.005, Float_t smeary=0.005, Float_t smearz=0.01) {
82 fVertexerFastSmearX=smearx; fVertexerFastSmearY=smeary; fVertexerFastSmearZ=smearz; SetVertexer(4);
83 }
c8735dd3 84 void SetVertexerFixedOnTDI() {SetVertexer(5);} // for injection tests
85 void SetVertexerFixedOnTED() {SetVertexer(6);} // for injection tests
f9119eb9 86 Int_t GetVertexer() const { return fVertexer; }
9364069b 87 Float_t GetVertexerFastSmearX() const {return fVertexerFastSmearX;}
88 Float_t GetVertexerFastSmearY() const {return fVertexerFastSmearY;}
89 Float_t GetVertexerFastSmearZ() const {return fVertexerFastSmearZ;}
90
876026b6 91 void SetClusterFinder(Int_t cf=0) { fClusterFinder=cf; }
92 void SetClusterFinderV2() { SetClusterFinder(0); }
93 void SetClusterFinderOrig() { SetClusterFinder(1); }
94 Int_t GetClusterFinder() const { return fClusterFinder; }
95 void SetPID(Int_t pid=0) {fPID=pid;}
96 void SetDefaultPID() {SetPID(0);}
97 void SetLandauFitPID() {SetPID(1);}
98 Int_t GetPID() const {return fPID;}
f9119eb9 99
67f622fd 100 void SetVertexer3DFiducialRegions(Float_t dzwid=40.0, Float_t drwid=2.5, Float_t dznar=0.5, Float_t drnar=0.5){
7203e11a 101 SetVertexer3DWideFiducialRegion(dzwid,drwid);
102 SetVertexer3DNarrowFiducialRegion(dznar,drnar);
103 }
20c00606 104 void SetVertexer3DWideFiducialRegion(Float_t dz=40.0, Float_t dr=2.5){
7203e11a 105 fVtxr3DZCutWide=dz; fVtxr3DRCutWide=dr;
106 }
107 void SetVertexer3DNarrowFiducialRegion(Float_t dz=0.5, Float_t dr=0.5){
108 fVtxr3DZCutNarrow=dz; fVtxr3DRCutNarrow=dr;
109 }
20c00606 110 void SetVertexer3DDeltaPhiCuts(Float_t dphiloose=0.5, Float_t dphitight=0.025){
7203e11a 111 fVtxr3DPhiCutLoose=dphiloose;
112 fVtxr3DPhiCutTight=dphitight;
113 }
114 void SetVertexer3DDCACut(Float_t dca=0.1){
115 fVtxr3DDCACut=dca;
116 }
117 void SetVertexer3DDefaults(){
118 SetVertexer3DFiducialRegions();
119 SetVertexer3DDeltaPhiCuts();
120 SetVertexer3DDCACut();
121 }
9ce18bbb 122 void SetSPDVertexerPileupAlgoOff(){fVtxr3DPileupAlgo=3;}
8b78365f 123 void SetSPDVertexerPileupAlgoZ(){fVtxr3DPileupAlgo=0;}
124 void SetSPDVertexerPileupAlgo3DTwoSteps(){fVtxr3DPileupAlgo=1;}
125 void SetSPDVertexerPileupAlgo3DOneShot(){fVtxr3DPileupAlgo=2;}
a4354152 126 //
127 Bool_t GetSelectBestMIP03() const {return fSelectBestMIP03;}
128 Bool_t GetFlagFakes() const {return fFlagFakes;}
129 Bool_t GetUseImproveKalman() const {return fUseImproveKalman;}
130 void SetSelectBestMIP03(Bool_t v=kTRUE) {fSelectBestMIP03 = v;}
131 void SetFlagFakes(Bool_t v=kTRUE) {fFlagFakes = v;}
132 void SetUseImproveKalman(Bool_t v=kTRUE) {fUseImproveKalman = v;}
133 //
7203e11a 134 Float_t GetVertexer3DWideFiducialRegionZ() const {return fVtxr3DZCutWide;}
135 Float_t GetVertexer3DWideFiducialRegionR() const {return fVtxr3DRCutWide;}
136 Float_t GetVertexer3DNarrowFiducialRegionZ() const {return fVtxr3DZCutNarrow;}
137 Float_t GetVertexer3DNarrowFiducialRegionR() const {return fVtxr3DRCutNarrow;}
138 Float_t GetVertexer3DLooseDeltaPhiCut() const {return fVtxr3DPhiCutLoose;}
139 Float_t GetVertexer3DTightDeltaPhiCut() const {return fVtxr3DPhiCutTight;}
140 Float_t GetVertexer3DDCACut() const {return fVtxr3DDCACut;}
8b78365f 141 Int_t GetSPDVertexerPileupAlgo() const {return fVtxr3DPileupAlgo;}
7203e11a 142
44347160 143 Double_t GetSigmaY2(Int_t i) const { return fSigmaY2[i]; }
144 Double_t GetSigmaZ2(Int_t i) const { return fSigmaZ2[i]; }
145
146 Double_t GetMaxSnp() const { return fMaxSnp; }
147
148 Double_t GetNSigmaYLayerForRoadY() const { return fNSigmaYLayerForRoadY; }
149 Double_t GetNSigmaRoadY() const { return fNSigmaRoadY; }
150 Double_t GetNSigmaZLayerForRoadZ() const { return fNSigmaZLayerForRoadZ; }
151 Double_t GetNSigmaRoadZ() const { return fNSigmaRoadZ; }
152 Double_t GetNSigma2RoadYC() const { return fNSigma2RoadYC; }
153 Double_t GetNSigma2RoadZC() const { return fNSigma2RoadZC; }
154 Double_t GetNSigma2RoadYNonC() const { return fNSigma2RoadYNonC; }
155 Double_t GetNSigma2RoadZNonC() const { return fNSigma2RoadZNonC; }
1c97ce2f 156 Double_t GetRoadMisal() const { return fRoadMisal; }
157 void SetRoadMisal(Double_t road=0) { fRoadMisal=road; }
44347160 158
159 Double_t GetChi2PerCluster() const { return fChi2PerCluster; }
160 Double_t GetMaxChi2PerCluster(Int_t i) const { return fMaxChi2PerCluster[i]; }
161 Double_t GetMaxNormChi2NonC(Int_t i) const { return fMaxNormChi2NonC[i]; }
162 Double_t GetMaxNormChi2C(Int_t i) const { return fMaxNormChi2C[i]; }
afd25725 163 Double_t GetMaxNormChi2NonCForHypothesis() const { return fMaxNormChi2NonCForHypothesis; }
44347160 164 Double_t GetMaxChi2() const { return fMaxChi2; }
165 Double_t GetMaxChi2s(Int_t i) const { return fMaxChi2s[i]; }
166 Double_t GetMaxChi2sR(Int_t i) const { return fMaxChi2sR[i]; }
167 Double_t GetMaxChi2In() const { return fMaxChi2In; }
44347160 168 Double_t GetMaxRoad() const { return fMaxRoad; }
afd25725 169 Double_t GetMaxNormChi2ForGolden(Int_t i) const { return 3.+0.5*i; }
44347160 170
794d9013 171 void SetSearchForExtraClusters(Bool_t opt=kTRUE){ fSearchForExtras=opt; }
172 Double_t GetSearchForExtraClusters() const { return fSearchForExtras; }
173
44347160 174 Double_t GetXVdef() const { return fXV; }
175 Double_t GetYVdef() const { return fYV; }
176 Double_t GetZVdef() const { return fZV; }
177 Double_t GetSigmaXVdef() const { return fSigmaXV; }
178 Double_t GetSigmaYVdef() const { return fSigmaYV; }
179 Double_t GetSigmaZVdef() const { return fSigmaZV; }
afd25725 180
181 Double_t GetVertexCut() const { return fVertexCut; }
182 Double_t GetMaxDZforPrimTrk() const { return fMaxDZforPrimTrk; }
183 Double_t GetMaxDZToUseConstraint() const { return fMaxDZToUseConstraint; }
184 Double_t GetMaxDforV0dghtrForProlongation() const { return fMaxDforV0dghtrForProlongation; }
185 Double_t GetMaxDForProlongation() const { return fMaxDForProlongation; }
186 Double_t GetMaxDZForProlongation() const { return fMaxDZForProlongation; }
187 Double_t GetMinPtForProlongation() const { return fMinPtForProlongation; }
188
189 void SetAddVirtualClustersInDeadZone(Bool_t add=kTRUE) { fAddVirtualClustersInDeadZone=add; return; }
190 Bool_t GetAddVirtualClustersInDeadZone() const { return fAddVirtualClustersInDeadZone; }
191 Double_t GetZWindowDeadZone() const { return fZWindowDeadZone; }
192 Double_t GetSigmaXDeadZoneHit2() const { return fSigmaXDeadZoneHit2; }
193 Double_t GetSigmaZDeadZoneHit2() const { return fSigmaZDeadZoneHit2; }
194 Double_t GetXPassDeadZoneHits() const { return fXPassDeadZoneHits; }
195
87b4605f 196 Bool_t GetSkipSubdetsNotInTriggerCluster() const { return fSkipSubdetsNotInTriggerCluster; }
197 void SetSkipSubdetsNotInTriggerCluster(Bool_t flag=kTRUE) { fSkipSubdetsNotInTriggerCluster=flag; }
afd25725 198
e50912db 199 void SetUseTGeoInTracker(Int_t use=1) { fUseTGeoInTracker=use; return; }
200 Int_t GetUseTGeoInTracker() const { return fUseTGeoInTracker; }
9be1d1c7 201 void SetStepSizeTGeo(Double_t size=0.1) { fStepSizeTGeo=size; return; }
202 Double_t GetStepSizeTGeo() const { return fStepSizeTGeo; }
44347160 203
afd25725 204 void SetAllowSharedClusters(Bool_t allow=kTRUE) { fAllowSharedClusters=allow; return; }
205 Bool_t GetAllowSharedClusters() const { return fAllowSharedClusters; }
206
e50912db 207 void SetClusterErrorsParam(Int_t param=1) { fClusterErrorsParam=param; return; }
208 Int_t GetClusterErrorsParam() const { return fClusterErrorsParam; }
f9119eb9 209 void SetClusterMisalErrorY(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorY[0]=e0; fClusterMisalErrorY[1]=e1; fClusterMisalErrorY[2]=e2; fClusterMisalErrorY[3]=e3; fClusterMisalErrorY[4]=e4; fClusterMisalErrorY[5]=e5; return; }
210 void SetClusterMisalErrorZ(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorZ[0]=e0; fClusterMisalErrorZ[1]=e1; fClusterMisalErrorZ[2]=e2; fClusterMisalErrorZ[3]=e3; fClusterMisalErrorZ[4]=e4; fClusterMisalErrorZ[5]=e5; return; }
211 void SetClusterMisalError(Float_t err=0.) { SetClusterMisalErrorY(err,err,err,err,err,err); SetClusterMisalErrorZ(err,err,err,err,err,err); }
4fd4a5d7 212 void SetClusterMisalErrorYBOn(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorYBOn[0]=e0; fClusterMisalErrorYBOn[1]=e1; fClusterMisalErrorYBOn[2]=e2; fClusterMisalErrorYBOn[3]=e3; fClusterMisalErrorYBOn[4]=e4; fClusterMisalErrorYBOn[5]=e5; return; }
213 void SetClusterMisalErrorZBOn(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorZBOn[0]=e0; fClusterMisalErrorZBOn[1]=e1; fClusterMisalErrorZBOn[2]=e2; fClusterMisalErrorZBOn[3]=e3; fClusterMisalErrorZBOn[4]=e4; fClusterMisalErrorZBOn[5]=e5; return; }
214 void SetClusterMisalErrorBOn(Float_t err=0.) { SetClusterMisalErrorYBOn(err,err,err,err,err,err); SetClusterMisalErrorZBOn(err,err,err,err,err,err); }
215 Float_t GetClusterMisalErrorY(Int_t i,Double_t b=0.) const { return (TMath::Abs(b)<0.0001 ? fClusterMisalErrorY[i] : fClusterMisalErrorYBOn[i]); }
216 Float_t GetClusterMisalErrorZ(Int_t i,Double_t b=0.) const { return (TMath::Abs(b)<0.0001 ? fClusterMisalErrorZ[i] : fClusterMisalErrorZBOn[i]); }
401eff16 217
e50912db 218 void SetUseAmplitudeInfo(Bool_t use=kTRUE) { for(Int_t i=0;i<AliITSgeomTGeo::kNLayers;i++) fUseAmplitudeInfo[i]=use; return; }
572f41f9 219 void SetUseAmplitudeInfo(Int_t ilay,Bool_t use) { fUseAmplitudeInfo[ilay]=use; return; }
220 Bool_t GetUseAmplitudeInfo(Int_t ilay) const { return fUseAmplitudeInfo[ilay]; }
0ed58a47 221// Option for Plane Efficiency evaluation
222 void SetComputePlaneEff(Bool_t eff=kTRUE, Bool_t his=kTRUE)
5fbd4fd6 223 { fComputePlaneEff=eff; fHistoPlaneEff=his; return; }
4a66240a 224 Bool_t GetComputePlaneEff() const { return fComputePlaneEff; }
5fbd4fd6 225 Bool_t GetHistoPlaneEff() const { return fHistoPlaneEff; }
58e8dc31 226 void SetUseTrackletsPlaneEff(Bool_t use=kTRUE) {fUseTrackletsPlaneEff=use; return;}
227 Bool_t GetUseTrackletsPlaneEff() const {return fUseTrackletsPlaneEff;}
228 void SetOptTrackletsPlaneEff(Bool_t mc=kFALSE,Bool_t bkg=kFALSE)
229 {fMCTrackletsPlaneEff=mc;fBkgTrackletsPlaneEff=bkg; return;}
230 Bool_t GetMCTrackletsPlaneEff() const {return fMCTrackletsPlaneEff;}
231 Bool_t GetBkgTrackletsPlaneEff() const {return fBkgTrackletsPlaneEff;}
232 void SetTrackleterPhiWindowL1(Float_t w=0.10) {fTrackleterPhiWindowL1=w; return;}
233 Float_t GetTrackleterPhiWindowL1() const {return fTrackleterPhiWindowL1;}
7284b2b2 234 void SetTrackleterPhiWindowL2(Float_t w=0.07) {fTrackleterPhiWindowL2=w; return;}
235 Float_t GetTrackleterPhiWindowL2() const {return fTrackleterPhiWindowL2;}
58e8dc31 236 void SetTrackleterZetaWindowL1(Float_t w=0.6) {fTrackleterZetaWindowL1=w; return;}
237 Float_t GetTrackleterZetaWindowL1() const {return fTrackleterZetaWindowL1;}
7284b2b2 238 void SetTrackleterZetaWindowL2(Float_t w=0.40) {fTrackleterZetaWindowL2=w; return;}
239 Float_t GetTrackleterZetaWindowL2() const {return fTrackleterZetaWindowL2;}
58e8dc31 240 void SetUpdateOncePerEventPlaneEff(Bool_t use=kTRUE) {fUpdateOncePerEventPlaneEff=use; return;}
241 Bool_t GetUpdateOncePerEventPlaneEff() const {return fUpdateOncePerEventPlaneEff;}
242 void SetMinContVtxPlaneEff(Int_t n=3) {fMinContVtxPlaneEff=n; return;}
243 Int_t GetMinContVtxPlaneEff() const {return fMinContVtxPlaneEff;}
1a64bda6 244 void SetIPlanePlaneEff(Int_t i=0) {if(i<-1 || i>=AliITSgeomTGeo::kNLayers) return; fIPlanePlaneEff=i; }
0ed58a47 245 Int_t GetIPlanePlaneEff() const {return fIPlanePlaneEff;}
275a301c 246 void SetReadPlaneEffFrom0CDB(Bool_t read=kTRUE) { fReadPlaneEffFromOCDB=read; }
247 Bool_t GetReadPlaneEffFromOCDB() const { return fReadPlaneEffFromOCDB; }
0ed58a47 248 void SetMinPtPlaneEff(Bool_t ptmin=0.) { fMinPtPlaneEff=ptmin; }
249 Double_t GetMinPtPlaneEff() const { return fMinPtPlaneEff; }
250 void SetMaxMissingClustersPlaneEff(Int_t max=0) { fMaxMissingClustersPlaneEff=max;}
251 Int_t GetMaxMissingClustersPlaneEff() const {return fMaxMissingClustersPlaneEff;}
061c42a0 252 void SetMaxMissingClustersOutPlaneEff(Int_t max=0) { fMaxMissingClustersOutPlaneEff=max;}
253 Int_t GetMaxMissingClustersOutPlaneEff() const {return fMaxMissingClustersOutPlaneEff;}
0ed58a47 254 void SetRequireClusterInOuterLayerPlaneEff(Bool_t out=kTRUE) { fRequireClusterInOuterLayerPlaneEff=out;}
255 Bool_t GetRequireClusterInOuterLayerPlaneEff() const {return fRequireClusterInOuterLayerPlaneEff;}
256 void SetRequireClusterInInnerLayerPlaneEff(Bool_t in=kTRUE) { fRequireClusterInInnerLayerPlaneEff=in;}
257 Bool_t GetRequireClusterInInnerLayerPlaneEff() const {return fRequireClusterInInnerLayerPlaneEff;}
258 void SetOnlyConstraintPlaneEff(Bool_t con=kFALSE) { fOnlyConstraintPlaneEff=con; }
259 Bool_t GetOnlyConstraintPlaneEff() const { return fOnlyConstraintPlaneEff; }
061c42a0 260 void SetNSigXFromBoundaryPlaneEff(Double_t nsigx=1.) {fNSigXFromBoundaryPlaneEff=nsigx;}
261 Double_t GetNSigXFromBoundaryPlaneEff() const {return fNSigXFromBoundaryPlaneEff;}
262 void SetNSigZFromBoundaryPlaneEff(Double_t nsigz=1.) {fNSigZFromBoundaryPlaneEff=nsigz;}
263 Double_t GetNSigZFromBoundaryPlaneEff() const {return fNSigZFromBoundaryPlaneEff;}
ae00569a 264 //
333d86cb 265 void SetImproveWithVertex(Bool_t impr=kFALSE) { fImproveWithVertex=impr; return; }
266 Bool_t GetImproveWithVertex() const { return fImproveWithVertex; }
2755f080 267 void SetExtendedEtaAcceptance(Bool_t ext=kTRUE) { fExtendedEtaAcceptance=ext; return; }
268 Bool_t GetExtendedEtaAcceptance() const { return fExtendedEtaAcceptance; }
ae00569a 269 void SetAllowProlongationWithEmptyRoad(Bool_t allow=kTRUE) { fAllowProlongationWithEmptyRoad=allow; return; }
270 Bool_t GetAllowProlongationWithEmptyRoad() const { return fAllowProlongationWithEmptyRoad; }
271
23197852 272 void SetUseBadZonesFromOCDB(Bool_t use=kTRUE) { fUseBadZonesFromOCDB=use; return; }
273 Bool_t GetUseBadZonesFromOCDB() const { return fUseBadZonesFromOCDB; }
274
275 void SetUseSingleBadChannelsFromOCDB(Bool_t use=kTRUE) { fUseSingleBadChannelsFromOCDB=use; return; }
276 Bool_t GetUseSingleBadChannelsFromOCDB() const { return fUseSingleBadChannelsFromOCDB; }
277
278 void SetMinFractionOfBadInRoad(Float_t frac=0) { fMinFractionOfBadInRoad=frac; return; }
279 Float_t GetMinFractionOfBadInRoad() const { return fMinFractionOfBadInRoad; }
572f41f9 280
12b1afb7 281 void SetOutwardFindingSA() {fInwardFlagSA=kFALSE;}
282 void SetInwardFindingSA() {fInwardFlagSA=kTRUE;}
283 Bool_t GetInwardFindingSA() const {return fInwardFlagSA;}
9f9cae94 284 void SetOuterStartLayerSA(Int_t lay) { fOuterStartLayerSA=lay; return; }
285 Int_t GetOuterStartLayerSA() const { return fOuterStartLayerSA; }
12b1afb7 286 void SetInnerStartLayerSA(Int_t lay) { fInnerStartLayerSA=lay; return; }
287 Int_t GetInnerStartLayerSA() const { return fInnerStartLayerSA; }
288 void SetMinNPointsSA(Int_t np) { fMinNPointsSA=np; return; }
289 Int_t GetMinNPointsSA() const { return fMinNPointsSA;}
2755f080 290 void SetFactorSAWindowSizes(Double_t fact=1.) { fFactorSAWindowSizes=fact; return; }
291 Double_t GetFactorSAWindowSizes() const { return fFactorSAWindowSizes; }
572f41f9 292
c7d6d7b7 293 void SetNLoopsSA(Int_t nl=10) {fNLoopsSA=nl;}
294 Int_t GetNLoopsSA() const { return fNLoopsSA;}
295 void SetPhiLimitsSA(Double_t phimin,Double_t phimax){
296 fMinPhiSA=phimin; fMaxPhiSA=phimax;
297 }
298 Double_t GetMinPhiSA() const {return fMinPhiSA;}
299 Double_t GetMaxPhiSA() const {return fMaxPhiSA;}
300 void SetLambdaLimitsSA(Double_t lambmin,Double_t lambmax){
301 fMinLambdaSA=lambmin; fMaxLambdaSA=lambmax;
302 }
303 Double_t GetMinLambdaSA() const {return fMinLambdaSA;}
304 Double_t GetMaxLambdaSA() const {return fMaxLambdaSA;}
3733ccd2 305
306 void SetSAMinClusterCharge(Float_t minq=0.) {fMinClusterChargeSA=minq;}
307 Float_t GetSAMinClusterCharge() const {return fMinClusterChargeSA;}
c7d6d7b7 308
5a03f353 309 void SetSAOnePointTracks() { fSAOnePointTracks=kTRUE; return; }
310 Bool_t GetSAOnePointTracks() const { return fSAOnePointTracks; }
311
3bfb5cac 312 void SetSAUseAllClusters(Bool_t opt=kTRUE) { fSAUseAllClusters=opt; return; }
5a03f353 313 Bool_t GetSAUseAllClusters() const { return fSAUseAllClusters; }
314
8227519f 315 void SetMaxSPDcontrForSAToUseAllClusters(Int_t contr=50) { fMaxSPDcontrForSAToUseAllClusters=contr; return; }
316 Int_t GetMaxSPDcontrForSAToUseAllClusters() const { return fMaxSPDcontrForSAToUseAllClusters; }
317
afd25725 318 void SetFindV0s(Bool_t find=kTRUE) { fFindV0s=find; return; }
319 Bool_t GetFindV0s() const { return fFindV0s; }
320
b0160ebc 321 void SetStoreLikeSignV0s(Bool_t like=kFALSE) { fStoreLikeSignV0s=like; return; }
322 Bool_t GetStoreLikeSignV0s() const { return fStoreLikeSignV0s; }
323
2755f080 324 void SetLayersParameters();
325
326 void SetLayerToSkip(Int_t i) { fLayersToSkip[i]=1; return; }
327 Int_t GetLayersToSkip(Int_t i) const { return fLayersToSkip[i]; }
e340bb86 328
6518a6c5 329 void SetUseUnfoldingInClusterFinderSPD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSPD=use; return; }
330 Bool_t GetUseUnfoldingInClusterFinderSPD() const { return fUseUnfoldingInClusterFinderSPD; }
331 void SetUseUnfoldingInClusterFinderSDD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSDD=use; return; }
332 Bool_t GetUseUnfoldingInClusterFinderSDD() const { return fUseUnfoldingInClusterFinderSDD; }
333 void SetUseUnfoldingInClusterFinderSSD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSSD=use; return; }
334 Bool_t GetUseUnfoldingInClusterFinderSSD() const { return fUseUnfoldingInClusterFinderSSD; }
335
7101948c 336 void SetUseBadChannelsInClusterFinderSSD(Bool_t use=kFALSE) { fUseBadChannelsInClusterFinderSSD=use; return; }
337 Bool_t GetUseBadChannelsInClusterFinderSSD() const { return fUseBadChannelsInClusterFinderSSD; }
338
ba0a07bf 339 void SetUseSDDCorrectionMaps(Bool_t use=kTRUE) {fUseSDDCorrectionMaps=use;}
340 Bool_t GetUseSDDCorrectionMaps() const {return fUseSDDCorrectionMaps;}
b779c7dc 341 void SetUseSDDClusterSizeSelection(Bool_t use=kTRUE) {fUseSDDClusterSizeSelection=use;}
342 Bool_t GetUseSDDClusterSizeSelection() const {return fUseSDDClusterSizeSelection;}
343 void SetMinClusterChargeSDD(Float_t qcut=0.){fMinClusterChargeSDD=qcut;}
344 Float_t GetMinClusterChargeSDD() const {return fMinClusterChargeSDD;}
345
a86176e3 346 void SetUseChargeMatchingInClusterFinderSSD(Bool_t use=kTRUE) { fUseChargeMatchingInClusterFinderSSD=use; return; }
347 Bool_t GetUseChargeMatchingInClusterFinderSSD() const { return fUseChargeMatchingInClusterFinderSSD; }
348
42ed6062 349 void SetUseCosmicRunShiftsSSD(Bool_t use=kFALSE) { fUseCosmicRunShiftsSSD=use; return; }
350 Bool_t GetUseCosmicRunShiftsSSD() const { return fUseCosmicRunShiftsSSD; }
351
7b116aa1 352 // SPD Tracklets (D. Elia)
7b116aa1 353 void SetTrackleterPhiWindow(Float_t w=0.08) {fTrackleterPhiWindow=w;}
7284b2b2 354 void SetTrackleterThetaWindow(Float_t w=0.025) {fTrackleterThetaWindow=w;}
fa9ed8e9 355 void SetTrackleterPhiShift(Float_t w=0.0045) {fTrackleterPhiShift=w;}
7b116aa1 356 Float_t GetTrackleterPhiWindow() const {return fTrackleterPhiWindow;}
7284b2b2 357 Float_t GetTrackleterThetaWindow() const {return fTrackleterThetaWindow;}
fa9ed8e9 358 Float_t GetTrackleterPhiShift() const {return fTrackleterPhiShift;}
7b116aa1 359 void SetTrackleterRemoveClustersFromOverlaps(Bool_t use=kTRUE) { fTrackleterRemoveClustersFromOverlaps=use; return; }
360 Bool_t GetTrackleterRemoveClustersFromOverlaps() const { return fTrackleterRemoveClustersFromOverlaps; }
361 void SetTrackleterPhiOverlapCut(Float_t w=0.005) {fTrackleterPhiOverlapCut=w;}
362 void SetTrackleterZetaOverlapCut(Float_t w=0.05) {fTrackleterZetaOverlapCut=w;}
363 Float_t GetTrackleterPhiOverlapCut() const {return fTrackleterPhiOverlapCut;}
364 Float_t GetTrackleterZetaOverlapCut() const {return fTrackleterZetaOverlapCut;}
7c6da836 365 void SetTrackleterPhiRotationAngle(Float_t w=0.0) {fTrackleterPhiRotationAngle=w;}
366 Float_t GetTrackleterPhiRotationAngle() const {return fTrackleterPhiRotationAngle;}
f9f90134 367 //
368 void SetTrackleterNStdDevCut(Float_t f=1.) {fTrackleterNStdDev = f<0.01 ? 0.01 : f;}
369 Float_t GetTrackleterNStdDevCut() const {return fTrackleterNStdDev;}
370 void SetTrackleterScaleDThetaBySin2T(Bool_t v=kFALSE) {fScaleDTBySin2T = v;}
371 Bool_t GetTrackleterScaleDThetaBySin2T() const {return fScaleDTBySin2T;}
44347160 372 //
ad7f2bfa 373 void SetSPDRemoveNoisyFlag(Bool_t value) {fSPDRemoveNoisyFlag = value;}
f27a7e81 374 Bool_t GetSPDRemoveNoisyFlag() const {return fSPDRemoveNoisyFlag;}
ad7f2bfa 375 void SetSPDRemoveDeadFlag(Bool_t value) {fSPDRemoveDeadFlag = value;}
f27a7e81 376 Bool_t GetSPDRemoveDeadFlag() const {return fSPDRemoveDeadFlag;}
ad7f2bfa 377
f27a7e81 378 //
379 void SetAlignFilterCosmics(Bool_t b=kTRUE) {fAlignFilterCosmics=b;}
380 void SetAlignFilterCosmicMergeTracks(Bool_t b=kTRUE) {fAlignFilterCosmicMergeTracks=b;}
381 void SetAlignFilterMinITSPoints(Int_t n=4) {fAlignFilterMinITSPoints=n;}
382 void SetAlignFilterMinITSPointsMerged(Int_t n=4) {fAlignFilterMinITSPointsMerged=n;}
383 void SetAlignFilterOnlyITSSATracks(Bool_t b=kTRUE) {fAlignFilterOnlyITSSATracks=b;}
384 void SetAlignFilterOnlyITSTPCTracks(Bool_t b=kFALSE) {fAlignFilterOnlyITSTPCTracks=b;}
385 void SetAlignFilterUseLayer(Int_t ilay,Bool_t use) {fAlignFilterUseLayer[ilay]=use;}
386 void SetAlignFilterSkipExtra(Bool_t b=kFALSE) {fAlignFilterSkipExtra=b;}
387 void SetAlignFilterMaxMatchingAngle(Float_t max=0.085/*5deg*/) {fAlignFilterMaxMatchingAngle=max;}
388 void SetAlignFilterMinAngleWrtModulePlanes(Float_t min=0.52/*30deg*/) {fAlignFilterMinAngleWrtModulePlanes=min;}
389 void SetAlignFilterMinPt(Float_t min=0.) {fAlignFilterMinPt=min;}
390 void SetAlignFilterMaxPt(Float_t max=1.e10) {fAlignFilterMaxPt=max;}
391 void SetAlignFilterFillQANtuples(Bool_t b=kTRUE) {fAlignFilterFillQANtuples=b;}
392 Bool_t GetAlignFilterCosmics() const {return fAlignFilterCosmics;}
393 Bool_t GetAlignFilterCosmicMergeTracks() const {return fAlignFilterCosmicMergeTracks;}
394 Int_t GetAlignFilterMinITSPoints() const {return fAlignFilterMinITSPoints;}
395 Int_t GetAlignFilterMinITSPointsMerged() const {return fAlignFilterMinITSPointsMerged;}
396 Bool_t GetAlignFilterOnlyITSSATracks() const {return fAlignFilterOnlyITSSATracks;}
397 Bool_t GetAlignFilterOnlyITSTPCTracks() const {return fAlignFilterOnlyITSTPCTracks;}
398 Bool_t GetAlignFilterUseLayer(Int_t i) const {return fAlignFilterUseLayer[i];}
399 Bool_t GetAlignFilterSkipExtra() const {return fAlignFilterSkipExtra;}
400 Float_t GetAlignFilterMaxMatchingAngle() const {return fAlignFilterMaxMatchingAngle;}
401 Float_t GetAlignFilterMinAngleWrtModulePlanes() const {return fAlignFilterMinAngleWrtModulePlanes;}
402 Float_t GetAlignFilterMinPt() const {return fAlignFilterMinPt;}
403 Float_t GetAlignFilterMaxPt() const {return fAlignFilterMaxPt;}
404 Bool_t GetAlignFilterFillQANtuples() const {return fAlignFilterFillQANtuples;}
405
6de485aa 406 // Multiplicity Reconstructor
407 Float_t GetMultCutPxDrSPDin() const {return fMultCutPxDrSPDin;}
408 Float_t GetMultCutPxDrSPDout() const {return fMultCutPxDrSPDout;}
409 Float_t GetMultCutPxDz() const {return fMultCutPxDz;}
410 Float_t GetMultCutDCArz() const {return fMultCutDCArz;}
411 Float_t GetMultCutMinElectronProbTPC() const {return fMultCutMinElectronProbTPC;}
412 Float_t GetMultCutMinElectronProbESD() const {return fMultCutMinElectronProbESD;}
413 Float_t GetMultCutMinP() const {return fMultCutMinP;}
414 Float_t GetMultCutMinRGamma() const {return fMultCutMinRGamma;}
415 Float_t GetMultCutMinRK0() const {return fMultCutMinRK0;}
416 Float_t GetMultCutMinPointAngle() const {return fMultCutMinPointAngle;}
417 Float_t GetMultCutMaxDCADauther() const {return fMultCutMaxDCADauther;}
418 Float_t GetMultCutMassGamma() const {return fMultCutMassGamma;}
419 Float_t GetMultCutMassGammaNSigma() const {return fMultCutMassGammaNSigma;}
420 Float_t GetMultCutMassK0() const {return fMultCutMassK0;}
421 Float_t GetMultCutMassK0NSigma() const {return fMultCutMassK0NSigma;}
422 Float_t GetMultCutChi2cGamma() const {return fMultCutChi2cGamma;}
423 Float_t GetMultCutChi2cK0() const {return fMultCutChi2cK0;}
424 Float_t GetMultCutGammaSFromDecay() const {return fMultCutGammaSFromDecay;}
425 Float_t GetMultCutK0SFromDecay() const {return fMultCutK0SFromDecay;}
426 Float_t GetMultCutMaxDCA() const {return fMultCutMaxDCA;}
427 //
428 void SetMultCutPxDrSPDin(Float_t v=0.1) { fMultCutPxDrSPDin = v;}
429 void SetMultCutPxDrSPDout(Float_t v=0.15) { fMultCutPxDrSPDout = v;}
430 void SetMultCutPxDz(Float_t v=0.2) { fMultCutPxDz = v;}
431 void SetMultCutDCArz(Float_t v=0.5) { fMultCutDCArz = v;}
432 void SetMultCutMinElectronProbTPC(Float_t v=0.5) { fMultCutMinElectronProbTPC = v;}
433 void SetMultCutMinElectronProbESD(Float_t v=0.1) { fMultCutMinElectronProbESD = v;}
434 void SetMultCutMinP(Float_t v=0.05) { fMultCutMinP = v;}
435 void SetMultCutMinRGamma(Float_t v=2.) { fMultCutMinRGamma = v;}
436 void SetMultCutMinRK0(Float_t v=1.) { fMultCutMinRK0 = v;}
437 void SetMultCutMinPointAngle(Float_t v=0.98) { fMultCutMinPointAngle = v;}
438 void SetMultCutMaxDCADauther(Float_t v=0.5) { fMultCutMaxDCADauther = v;}
439 void SetMultCutMassGamma(Float_t v=0.03) { fMultCutMassGamma = v;}
440 void SetMultCutMassGammaNSigma(Float_t v=5.) { fMultCutMassGammaNSigma = v;}
441 void SetMultCutMassK0(Float_t v=0.03) { fMultCutMassK0 = v;}
442 void SetMultCutMassK0NSigma(Float_t v=5.) { fMultCutMassK0NSigma = v;}
443 void SetMultCutChi2cGamma(Float_t v=2.) { fMultCutChi2cGamma = v;}
444 void SetMultCutChi2cK0(Float_t v=2.) { fMultCutChi2cK0 = v;}
445 void SetMultCutGammaSFromDecay(Float_t v=-10.) { fMultCutGammaSFromDecay = v;}
446 void SetMultCutK0SFromDecay(Float_t v=-10.) { fMultCutK0SFromDecay = v;}
447 void SetMultCutMaxDCA(Float_t v=1.) { fMultCutMaxDCA = v;}
448 //
767aaecb 449 AliESDV0Params *GetESDV0Params() const {return fESDV0Params;}
6de485aa 450 //
58b891db 451 // Lorentz angle
452 Bool_t GetCorrectLorentzAngleSPD() const {return fCorrectLorentzAngleSPD;}
66b89079 453 Float_t GetTanLorentzAngleHolesSPD() const {return fTanLorentzAngleHolesSPD;}
58b891db 454 Bool_t GetCorrectLorentzAngleSSD() const {return fCorrectLorentzAngleSSD;}
66b89079 455 Float_t GetTanLorentzAngleHolesSSD() const {return fTanLorentzAngleHolesSSD;}
456 Float_t GetTanLorentzAngleElectronsSSD() const {return fTanLorentzAngleElectronsSSD;}
58b891db 457
458 void SetCorrectLorentzAngleSPD(Bool_t flag) {fCorrectLorentzAngleSPD=flag;}
66b89079 459 void SetTanLorentzAngleHolesSPD(Float_t la) {fTanLorentzAngleHolesSPD=la;}
58b891db 460 void SetCorrectLorentzAngleSSD(Bool_t flag) {fCorrectLorentzAngleSSD=flag;}
66b89079 461 void SetTanLorentzAngleHolesSSD(Float_t la) {fTanLorentzAngleHolesSSD=la;}
462 void SetTanLorentzAngleElectronsSSD(Float_t la) {fTanLorentzAngleElectronsSSD=la;}
58b891db 463
464 //
e50912db 465 enum {fgkMaxClusterPerLayer=70000}; //7000*10; // max clusters per layer
466 enum {fgkMaxClusterPerLayer5=28000};//7000*10*2/5; // max clusters per layer
467 enum {fgkMaxClusterPerLayer10=14000};//7000*10*2/10; // max clusters per layer
468 enum {fgkMaxClusterPerLayer20=7000};//7000*10*2/20; // max clusters per layer
469
44347160 470 protected:
471 //
e50912db 472 static const Int_t fgkLayersNotToSkip[AliITSgeomTGeo::kNLayers]; // array with layers not to skip
473 static const Int_t fgkLastLayerToTrackTo; // innermost layer
474 static const Int_t fgkMaxDetectorPerLayer; // max clusters per layer
475 static const Double_t fgkriw; // TPC inner wall radius
476 static const Double_t fgkdiw; // TPC inner wall x/X0
477 static const Double_t fgkX0iw; // TPC inner wall X0
478 static const Double_t fgkrcd; // TPC central drum radius
479 static const Double_t fgkdcd; // TPC central drum x/X0
480 static const Double_t fgkX0cd; // TPC central drum X0
481 static const Double_t fgkyr; // TPC rods y (tracking c.s.)
482 static const Double_t fgkdr; // TPC rods x/X0
483 static const Double_t fgkzm; // TPC membrane z
484 static const Double_t fgkdm; // TPC membrane x/X0
485 static const Double_t fgkrs; // ITS screen radius
486 static const Double_t fgkds; // ITS screed x/X0
487 static const Double_t fgkrInsideITSscreen; // inside ITS screen radius
488 static const Double_t fgkrInsideSPD1; // inside SPD1 radius
489 static const Double_t fgkrPipe; // pipe radius
490 static const Double_t fgkrInsidePipe; // inside pipe radius
491 static const Double_t fgkrOutsidePipe; // outside pipe radius
492 static const Double_t fgkdPipe; // pipe x/X0
493 static const Double_t fgkrInsideShield[2]; // inside SPD (0) SDD (1) shield radius
494 static const Double_t fgkrOutsideShield[2]; // outside SPD (0) SDD (1) shield radius
495 static const Double_t fgkdshield[2]; // SPD (0) SDD (1) shield x/X0
496 static const Double_t fgkX0shield[2]; // SPD (0) SDD (1) shield X0
497 static const Double_t fgkX0Air; // air X0
498 static const Double_t fgkX0Be; // Berillium X0
499 static const Double_t fgkBoundaryWidth; // to define track at detector boundary
500 static const Double_t fgkDeltaXNeighbDets; // max difference in radius between neighbouring detectors
501 static const Double_t fgkSPDdetzlength; // SPD ladder length in z
502 static const Double_t fgkSPDdetxlength; // SPD ladder length in x
503
f9119eb9 504
505 Int_t fTracker; // ITS tracker to be used (see AliITSReconstructor)
506 Bool_t fITSonly; // tracking only in ITS (no TPC)
507 Int_t fVertexer; // ITS vertexer to be used (see AliITSReconstructor)
876026b6 508 Int_t fClusterFinder; // ITS cf to be used (see AliITSReconstructor)
509 Int_t fPID; // ITS PID method to be used (see AliITSReconstructor)
f9119eb9 510
7203e11a 511
8b78365f 512 // SPD 3D Vertexer configuration
7203e11a 513 Float_t fVtxr3DZCutWide; // Z extension of the wide fiducial region for vertexer 3D
514 Float_t fVtxr3DRCutWide; // R extension of the wide fiducial region for vertexer 3D
515 Float_t fVtxr3DZCutNarrow; // Z extension of the narrow fiducial region for vertexer 3D
516 Float_t fVtxr3DRCutNarrow; // R extension of the narrow fiducial region for vertexer 3D
517 Float_t fVtxr3DPhiCutLoose; // loose deltaPhi cut to define tracklets in vertexer 3D
518 Float_t fVtxr3DPhiCutTight; // tight deltaPhi cut to define tracklets in vertexer 3D
519 Float_t fVtxr3DDCACut; // cut on tracklet-to-tracklet DCA in vertexer3D
8b78365f 520 Int_t fVtxr3DPileupAlgo; // pileup algorithm (0 = VtxZ, 1 = 3D - 2 step, 2 = 3D all in once)
7203e11a 521
2755f080 522 Int_t fLayersToSkip[AliITSgeomTGeo::kNLayers]; // array with layers to skip (MI,SA)
523
44347160 524 // spatial resolutions of the detectors
e50912db 525 Double_t fSigmaY2[AliITSgeomTGeo::kNLayers]; // y
526 Double_t fSigmaZ2[AliITSgeomTGeo::kNLayers]; // z
44347160 527 //
528 Double_t fMaxSnp; // maximum of sin(phi) (MI)
529 //
530 // search road (MI)
36e140f1 531 Double_t fNSigmaYLayerForRoadY; // y
532 Double_t fNSigmaRoadY; // y
533 Double_t fNSigmaZLayerForRoadZ; // z
534 Double_t fNSigmaRoadZ; // z
535 Double_t fNSigma2RoadZC; // z
536 Double_t fNSigma2RoadYC; // y
537 Double_t fNSigma2RoadZNonC; // z
538 Double_t fNSigma2RoadYNonC; // y
1c97ce2f 539
540 Double_t fRoadMisal; // [cm] increase of road for misalignment (MI)
44347160 541 //
542 // chi2 cuts
e50912db 543 Double_t fMaxChi2PerCluster[AliITSgeomTGeo::kNLayers-1]; // max chi2 for MIP (MI)
544 Double_t fMaxNormChi2NonC[AliITSgeomTGeo::kNLayers]; //max norm chi2 for non constrained tracks (MI)
545 Double_t fMaxNormChi2C[AliITSgeomTGeo::kNLayers]; //max norm chi2 for constrained tracks (MI)
afd25725 546 Double_t fMaxNormChi2NonCForHypothesis; //max norm chi2 (on layers 0,1,2) for hypotheis to be kept (MI)
44347160 547 Double_t fMaxChi2; // used to initialize variables needed to find minimum chi2 (MI,V2)
e50912db 548 Double_t fMaxChi2s[AliITSgeomTGeo::kNLayers]; // max predicted chi2 (cluster & track prol.) (MI)
44347160 549 //
550 Double_t fMaxRoad; // (V2)
551 //
552 Double_t fMaxChi2In; // (NOT USED)
e50912db 553 Double_t fMaxChi2sR[AliITSgeomTGeo::kNLayers]; // (NOT USED)
44347160 554 Double_t fChi2PerCluster; // (NOT USED)
794d9013 555 // search for extra clusters
556 Bool_t fSearchForExtras; // swicth yes/no for the search of extra-clusters in RefitInward step
44347160 557 //
558 // default primary vertex (MI,V2)
36e140f1 559 Double_t fXV; // x
560 Double_t fYV; // y
561 Double_t fZV; // z
562 Double_t fSigmaXV; // x
563 Double_t fSigmaYV; // y
564 Double_t fSigmaZV; // z
44347160 565 Double_t fVertexCut; // (V2)
afd25725 566 Double_t fMaxDZforPrimTrk; // maximum (imp. par.)/(1+layer) to define
567 // a primary and apply vertex constraint (MI)
568 Double_t fMaxDZToUseConstraint; // maximum (imp. par.) for tracks to be
569 // prolonged with constraint
570 // cuts to decide if trying to prolong a TPC track (MI)
571 Double_t fMaxDforV0dghtrForProlongation; // max. rphi imp. par. cut for V0 daughter
44347160 572 //
afd25725 573 Double_t fMaxDForProlongation; // max. rphi imp. par. cut
574 Double_t fMaxDZForProlongation; // max. 3D imp. par. cut
575 Double_t fMinPtForProlongation; // min. pt cut
576
577 // parameters to create "virtual" clusters in SPD dead zone (MI)
36e140f1 578 Bool_t fAddVirtualClustersInDeadZone; // add if kTRUE
579 Double_t fZWindowDeadZone; // window size
580 Double_t fSigmaXDeadZoneHit2; // x error virtual cls
581 Double_t fSigmaZDeadZoneHit2; // z error virtual cls
582 Double_t fXPassDeadZoneHits; // x distance between clusters
afd25725 583
87b4605f 584 Bool_t fSkipSubdetsNotInTriggerCluster; // skip the subdetectors that are not in the trigger cluster
afd25725 585
e50912db 586 Int_t fUseTGeoInTracker; // use TGeo to get material budget in tracker MI
9be1d1c7 587 Double_t fStepSizeTGeo; // step size (cm)
588 // in AliITStrackerMI::CorrectFor*Material methods
afd25725 589 Bool_t fAllowSharedClusters; // if kFALSE don't set to kITSin tracks with shared clusters (MI)
e50912db 590 Int_t fClusterErrorsParam; // parametrization for cluster errors (MI), see AliITSRecoParam::GetError()
f9119eb9 591 Float_t fClusterMisalErrorY[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Y pos. due to misalignment (MI,SA)
592 Float_t fClusterMisalErrorZ[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Z pos. due to misalignment (MI,SA)
4fd4a5d7 593 Float_t fClusterMisalErrorYBOn[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Y pos. due to misalignment (MI,SA)
594 Float_t fClusterMisalErrorZBOn[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Z pos. due to misalignment (MI,SA)
401eff16 595
e50912db 596 Bool_t fUseAmplitudeInfo[AliITSgeomTGeo::kNLayers]; // use cluster charge in cluster-track matching (SDD,SSD) (MI)
f9119eb9 597
0ed58a47 598 // Plane Efficiency evaluation
ae00569a 599 Bool_t fComputePlaneEff; // flag to enable computation of PlaneEfficiency
5fbd4fd6 600 Bool_t fHistoPlaneEff; // flag to enable auxiliary PlaneEff histograms (e.g. residual distributions)
58e8dc31 601 Bool_t fUseTrackletsPlaneEff; // flag to enable estimate of SPD PlaneEfficiency using tracklets
602 Bool_t fMCTrackletsPlaneEff; // flag to enable the use of MC info for corrections (SPD PlaneEff using tracklets)
603 Bool_t fBkgTrackletsPlaneEff; // flag to evaluate background instead of normal use (SPD PlaneEff using tracklets)
604 Float_t fTrackleterPhiWindowL1; // Search window in phi for inner layer (1) (SPD PlaneEff using tracklets)
7284b2b2 605 Float_t fTrackleterPhiWindowL2; // Search window in phi for outer layer (2) (SPD PlaneEff using tracklets)
58e8dc31 606 Float_t fTrackleterZetaWindowL1; // Search window in zeta for inner layer (1) (SPD PlaneEff using tracklets)
7284b2b2 607 Float_t fTrackleterZetaWindowL2; // Search window in zeta for outer layer (2) (SPD PlaneEff using tracklets)
58e8dc31 608 Bool_t fUpdateOncePerEventPlaneEff; // option to update chip efficiency once/event (to avoid doubles)
609 Int_t fMinContVtxPlaneEff; // min number of contributors to ESD vtx for SPD PlaneEff using tracklets
1a64bda6 610 Int_t fIPlanePlaneEff; // index of the plane (in the range [-1,5]) to study the efficiency (-1 ->Tracklets)
275a301c 611 Bool_t fReadPlaneEffFromOCDB; // enable initial reading of Plane Eff statistics from OCDB
612 // The analized events would be used to increase the statistics
0ed58a47 613 Double_t fMinPtPlaneEff; // minimum p_t of the track to be used for Plane Efficiency evaluation
614 Int_t fMaxMissingClustersPlaneEff; // max n. of (other) layers without a cluster associated to the track
061c42a0 615 Int_t fMaxMissingClustersOutPlaneEff; // max n. of outermost layers without a cluster associated to the track
0ed58a47 616 Bool_t fRequireClusterInOuterLayerPlaneEff; // if kTRUE, then only tracks with an associated cluster on the closest
617 Bool_t fRequireClusterInInnerLayerPlaneEff; // outer/inner layer are used. It has no effect for outermost/innermost layer
618 Bool_t fOnlyConstraintPlaneEff; // if kTRUE, use only constrained tracks at primary vertex for Plane Eff.
061c42a0 619 Double_t fNSigXFromBoundaryPlaneEff; // accept one track for PlaneEff if distance from border (in loc x or z)
620 Double_t fNSigZFromBoundaryPlaneEff; // is greater than fNSigXFromBoundaryPlaneEff * Track_precision
0ed58a47 621
333d86cb 622 Bool_t fImproveWithVertex; // use the method AliITStrackV2::Improve() to point to the vertex during prolongation
2755f080 623 Bool_t fExtendedEtaAcceptance; // enable jumping from TPC to SPD at large eta (MI)
23197852 624 Bool_t fUseBadZonesFromOCDB; // enable using OCDB info on dead modules and chips (MI)
625 Bool_t fUseSingleBadChannelsFromOCDB; // enable using OCDB info on bad single SPD pixels and SDD anodes (MI)
626 Float_t fMinFractionOfBadInRoad; // to decide whether to skip the layer (MI)
ae00569a 627 Bool_t fAllowProlongationWithEmptyRoad; // allow to prolong even if road is empty (MI)
12b1afb7 628 Int_t fInwardFlagSA; // flag for inward track finding in SA
629 Int_t fOuterStartLayerSA; // outer ITS layer to start track in SA outward
630 Int_t fInnerStartLayerSA; // inner ITS layer to start track in SA inward
631 Int_t fMinNPointsSA; // min. number of ITS clusters for a SA track
2755f080 632 Double_t fFactorSAWindowSizes; // larger window sizes in SA
c7d6d7b7 633 Int_t fNLoopsSA; // number of loops in tracker SA
634 Double_t fMinPhiSA; // minimum phi value for SA windows
635 Double_t fMaxPhiSA; // maximum phi value for SA windows
636 Double_t fMinLambdaSA; // minimum lambda value for SA windows
637 Double_t fMaxLambdaSA; // maximum lambda value for SA windows
3733ccd2 638 Float_t fMinClusterChargeSA; // minimum SDD,SSD cluster charge for SA tarcker
5a03f353 639 Bool_t fSAOnePointTracks; // one-cluster tracks in SA (only for cosmics!)
640 Bool_t fSAUseAllClusters; // do not skip clusters used by MI (same track twice in AliESDEvent!)
8227519f 641 Int_t fMaxSPDcontrForSAToUseAllClusters; // maximum nContr of SPD vertex for which trackerSA will reuse all ITS clusters
afd25725 642
a4354152 643 Bool_t fSelectBestMIP03; // (MI) Multiply norm chi2 by interpolated one in hypthesis analysis
644 Bool_t fFlagFakes; // (MI) preform shared cluster analysis and flag candidates for fakes
645 Bool_t fUseImproveKalman; // (MI) Use ImproveKalman version of AliITSTrackV2 instead of Improve
646
afd25725 647 Bool_t fFindV0s; // flag to enable V0 finder (MI)
b0160ebc 648 Bool_t fStoreLikeSignV0s; // flag to store like-sign V0s (MI)
afd25725 649
6518a6c5 650 // cluster unfolding in ITS cluster finders
651 Bool_t fUseUnfoldingInClusterFinderSPD; // SPD
652 Bool_t fUseUnfoldingInClusterFinderSDD; // SDD
653 Bool_t fUseUnfoldingInClusterFinderSSD; // SSD
654
7101948c 655 Bool_t fUseBadChannelsInClusterFinderSSD; // flag to switch on bad channels in CF SSD
656
ba0a07bf 657 Bool_t fUseSDDCorrectionMaps; // flag for use of SDD maps in C.F.
b779c7dc 658 Bool_t fUseSDDClusterSizeSelection; // cut on SDD cluster size
659 Float_t fMinClusterChargeSDD; // cut on SDD cluster charge
660
a86176e3 661 Bool_t fUseChargeMatchingInClusterFinderSSD; // SSD
662
7b116aa1 663 // SPD Tracklets (D. Elia)
7b116aa1 664 Float_t fTrackleterPhiWindow; // Search window in phi
fa9ed8e9 665 Float_t fTrackleterThetaWindow; // Search window in theta
666 Float_t fTrackleterPhiShift; // Phi shift reference value (at 0.5 T)
7b116aa1 667 Bool_t fTrackleterRemoveClustersFromOverlaps; // Option to skip clusters in the overlaps
668 Float_t fTrackleterPhiOverlapCut; // Fiducial window in phi for overlap cut
669 Float_t fTrackleterZetaOverlapCut; // Fiducial window in eta for overlap cut
7c6da836 670 Float_t fTrackleterPhiRotationAngle; // Angle to rotate cluster in the SPD inner layer for combinatorial reco only
f9f90134 671 Float_t fTrackleterNStdDev; // cut on the number of standard deviations
672 Bool_t fScaleDTBySin2T; // scale Dtheta by 1/sin^2(theta)
673
42ed6062 674 Bool_t fUseCosmicRunShiftsSSD; // SSD time shifts for cosmic run 2007/2008 (use for data taken up to 18 sept 2008)
7b116aa1 675
b779c7dc 676
ad7f2bfa 677 // SPD flags to specify whether noisy and dead pixels
678 // should be removed at the local reconstruction step (default and safe way is true for both)
679 Bool_t fSPDRemoveNoisyFlag; // Flag saying whether noisy pixels should be removed
680 Bool_t fSPDRemoveDeadFlag; // Flag saying whether dead pixels should be removed
9364069b 681
682 // VertexerFast configuration
683 Float_t fVertexerFastSmearX; // gaussian sigma for x MC vertex smearing
684 Float_t fVertexerFastSmearY; // gaussian sigma for y MC vertex smearing
685 Float_t fVertexerFastSmearZ; // gaussian sigma for z MC vertex smearing
ad7f2bfa 686
f27a7e81 687 // PWG1/AliAlignmentDataFilterITS configuration
688 Bool_t fAlignFilterCosmics; // flag for cosmics case
689 Bool_t fAlignFilterCosmicMergeTracks; // merge cosmic tracks
690 Int_t fAlignFilterMinITSPoints; // min points per track
691 Int_t fAlignFilterMinITSPointsMerged; // min points for merged tracks
692 Bool_t fAlignFilterOnlyITSSATracks; // only ITS SA tracks
693 Bool_t fAlignFilterOnlyITSTPCTracks; // only ITS+TPC tracks
694 Bool_t fAlignFilterUseLayer[AliITSgeomTGeo::kNLayers]; // layers to use
695 Bool_t fAlignFilterSkipExtra; // no extra cls in array
696 Float_t fAlignFilterMaxMatchingAngle; // matching for cosmics
697 Float_t fAlignFilterMinAngleWrtModulePlanes; // min angle track-to-sensor
698 Float_t fAlignFilterMinPt; // min pt
699 Float_t fAlignFilterMaxPt; // max pt
700 Bool_t fAlignFilterFillQANtuples; // fill QA ntuples
701
6de485aa 702 // Multiplicity reconstructor settings
703 // cuts for flagging secondaries
704 Float_t fMultCutPxDrSPDin; // max P*DR for primaries involving at least 1 SPD
705 Float_t fMultCutPxDrSPDout; // max P*DR for primaries not involving any SPD
706 Float_t fMultCutPxDz; // max P*DZ for primaries
707 Float_t fMultCutDCArz; // max DR or DZ for primares
708 //
709 // cuts for flagging tracks in V0s
710 Float_t fMultCutMinElectronProbTPC; // min probability for e+/e- PID involving TPC
711 Float_t fMultCutMinElectronProbESD; // min probability for e+/e- PID not involving TPC
712 //
713 Float_t fMultCutMinP; // min P of V0
714 Float_t fMultCutMinRGamma; // min transv. distance from ESDVertex to V0 for gammas
715 Float_t fMultCutMinRK0; // min transv. distance from ESDVertex to V0 for K0s
716 Float_t fMultCutMinPointAngle; // min pointing angle cosine
717 Float_t fMultCutMaxDCADauther; // max DCA of daughters at V0
718 Float_t fMultCutMassGamma; // max gamma mass
719 Float_t fMultCutMassGammaNSigma; // max standard deviations from 0 for gamma
720 Float_t fMultCutMassK0; // max K0 mass difference from PGD value
721 Float_t fMultCutMassK0NSigma; // max standard deviations for K0 mass from PDG value
722 Float_t fMultCutChi2cGamma; // max constrained chi2 cut for gammas
723 Float_t fMultCutChi2cK0; // max constrained chi2 cut for K0s
724 Float_t fMultCutGammaSFromDecay; // min path*P for gammas
725 Float_t fMultCutK0SFromDecay; // min path*P for K0s
726 Float_t fMultCutMaxDCA; // max DCA for V0 at ESD vertex
727 //
58b891db 728 // Lorentz angle
729 Bool_t fCorrectLorentzAngleSPD; // flag to enable correction
66b89079 730 Float_t fTanLorentzAngleHolesSPD; // angle for holes in SPD
58b891db 731 Bool_t fCorrectLorentzAngleSSD; // flag to enable correction
66b89079 732 Float_t fTanLorentzAngleHolesSSD; // tan(angle) for holes in SSD @ B = 0.5 T
733 Float_t fTanLorentzAngleElectronsSSD; // tan(angle) for electrons in SSD @ B = 0.5 T
58b891db 734
767aaecb 735 private:
736 AliESDV0Params * fESDV0Params; // declare the AliESDV0Params to be able to used in AliITSV0Finder
737
738 AliITSRecoParam(const AliITSRecoParam & param);
739 AliITSRecoParam & operator=(const AliITSRecoParam &param);
f27a7e81 740
a4354152 741 ClassDef(AliITSRecoParam,37) // ITS reco parameters
44347160 742};
743
744#endif