Changes to reduce noise in SDD reconstruction of cosmic ray data.
[u/mrichter/AliRoot.git] / ITS / AliITSRecoParam.h
CommitLineData
44347160 1#ifndef ALIITSRECOPARAM_H
2#define ALIITSRECOPARAM_H
572f41f9 3/* Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
44347160 4 * See cxx source for full Copyright notice */
5
572f41f9 6/* $Id$ */
7
44347160 8///////////////////////////////////////////////////////////////////////////////
9// //
10// Class with ITS reconstruction parameters //
11// Origin: andrea.dainese@lnl.infn.it //
12// //
13///////////////////////////////////////////////////////////////////////////////
14
15
6518a6c5 16#include "AliDetectorRecoParam.h"
e50912db 17#include "AliITSgeomTGeo.h"
44347160 18
6518a6c5 19class AliITSRecoParam : public AliDetectorRecoParam
44347160 20{
21 public:
22 AliITSRecoParam();
23 virtual ~AliITSRecoParam();
24
25 static AliITSRecoParam *GetLowFluxParam();// make reco parameters for low flux env.
26 static AliITSRecoParam *GetHighFluxParam();// make reco parameters for high flux env.
27 static AliITSRecoParam *GetCosmicTestParam();// special setting for cosmic
4a66240a 28 static AliITSRecoParam *GetPlaneEffParam(Int_t i);// special setting for Plane Efficiency studies
44347160 29
e50912db 30 static Int_t GetLayersNotToSkip(Int_t i) { return fgkLayersNotToSkip[i]; }
31 static Int_t GetLastLayerToTrackTo() { return fgkLastLayerToTrackTo; }
32 static Int_t GetMaxClusterPerLayer() { return fgkMaxClusterPerLayer; }
33 static Int_t GetMaxClusterPerLayer5() { return fgkMaxClusterPerLayer5; }
34 static Int_t GetMaxClusterPerLayer10() { return fgkMaxClusterPerLayer10; }
35 static Int_t GetMaxClusterPerLayer20() { return fgkMaxClusterPerLayer20; }
36 static Int_t GetMaxDetectorPerLayer() { return fgkMaxDetectorPerLayer; }
37 static Double_t Getriw() { return fgkriw; }
38 static Double_t Getdiw() { return fgkdiw; }
39 static Double_t GetX0iw() { return fgkX0iw; }
40 static Double_t Getrcd() { return fgkrcd; }
41 static Double_t Getdcd() { return fgkdcd; }
42 static Double_t GetX0cd() { return fgkX0cd; }
43 static Double_t Getyr() { return fgkyr; }
44 static Double_t Getdr() { return fgkdr; }
45 static Double_t Getzm() { return fgkzm; }
46 static Double_t Getdm() { return fgkdm; }
47 static Double_t Getrs() { return fgkrs; }
48 static Double_t Getds() { return fgkds; }
49 static Double_t GetrInsideITSscreen() { return fgkrInsideITSscreen; }
50 static Double_t GetrInsideSPD1() { return fgkrInsideSPD1; }
51 static Double_t GetrPipe() { return fgkrPipe; }
52 static Double_t GetrInsidePipe() { return fgkrInsidePipe; }
53 static Double_t GetrOutsidePipe() { return fgkrOutsidePipe; }
54 static Double_t GetdPipe() { return fgkdPipe; }
55 static Double_t GetrInsideShield(Int_t i) { return fgkrInsideShield[i]; }
56 static Double_t GetrOutsideShield(Int_t i) { return fgkrOutsideShield[i]; }
57 static Double_t Getdshield(Int_t i) { return fgkdshield[i]; }
58 static Double_t GetX0shield(Int_t i) { return fgkX0shield[i]; }
59 static Double_t GetX0Air() { return fgkX0Air; }
60 static Double_t GetX0Be() { return fgkX0Be; }
61 static Double_t GetBoundaryWidth() { return fgkBoundaryWidth; }
62 static Double_t GetDeltaXNeighbDets() { return fgkDeltaXNeighbDets; }
63 static Double_t GetSPDdetzlength() { return fgkSPDdetzlength; }
64 static Double_t GetSPDdetxlength() { return fgkSPDdetxlength; }
65
ed446fa3 66 void PrintParameters() const;
67
f9119eb9 68 void SetTracker(Int_t tracker=0) { fTracker=tracker; }
9f9cae94 69 void SetTrackerDefault() { SetTracker(0); } // = MI and SA
876026b6 70 void SetTrackerMI() { SetTracker(1); }
71 void SetTrackerV2() { SetTracker(2); }
f9119eb9 72 Int_t GetTracker() const { return fTracker; }
9f9cae94 73 void SetTrackerSAOnly(Bool_t flag=kTRUE) { fITSonly=flag; }
74 Bool_t GetTrackerSAOnly() const { return fITSonly; }
f9119eb9 75 void SetVertexer(Int_t vertexer=0) { fVertexer=vertexer; }
876026b6 76 void SetVertexer3D() { SetVertexer(0); }
77 void SetVertexerZ() { SetVertexer(1); }
78 void SetVertexerCosmics() { SetVertexer(2); }
79 void SetVertexerIons() { SetVertexer(3); }
80 void SetVertexerSmearMC() { SetVertexer(4); }
c8735dd3 81 void SetVertexerFixedOnTDI() {SetVertexer(5);} // for injection tests
82 void SetVertexerFixedOnTED() {SetVertexer(6);} // for injection tests
f9119eb9 83 Int_t GetVertexer() const { return fVertexer; }
876026b6 84 void SetClusterFinder(Int_t cf=0) { fClusterFinder=cf; }
85 void SetClusterFinderV2() { SetClusterFinder(0); }
86 void SetClusterFinderOrig() { SetClusterFinder(1); }
87 Int_t GetClusterFinder() const { return fClusterFinder; }
88 void SetPID(Int_t pid=0) {fPID=pid;}
89 void SetDefaultPID() {SetPID(0);}
90 void SetLandauFitPID() {SetPID(1);}
91 Int_t GetPID() const {return fPID;}
f9119eb9 92
d8ba9ddf 93 void SetVertexer3DFiducialRegions(Float_t dzwid=20.0, Float_t drwid=2.5, Float_t dznar=0.5, Float_t drnar=0.5){
7203e11a 94 SetVertexer3DWideFiducialRegion(dzwid,drwid);
95 SetVertexer3DNarrowFiducialRegion(dznar,drnar);
96 }
d8ba9ddf 97 void SetVertexer3DWideFiducialRegion(Float_t dz=20.0, Float_t dr=2.5){
7203e11a 98 fVtxr3DZCutWide=dz; fVtxr3DRCutWide=dr;
99 }
100 void SetVertexer3DNarrowFiducialRegion(Float_t dz=0.5, Float_t dr=0.5){
101 fVtxr3DZCutNarrow=dz; fVtxr3DRCutNarrow=dr;
102 }
103 void SetVertexer3DDeltaPhiCuts(Float_t dphiloose=0.5, Float_t dphitight=0.01){
104 fVtxr3DPhiCutLoose=dphiloose;
105 fVtxr3DPhiCutTight=dphitight;
106 }
107 void SetVertexer3DDCACut(Float_t dca=0.1){
108 fVtxr3DDCACut=dca;
109 }
110 void SetVertexer3DDefaults(){
111 SetVertexer3DFiducialRegions();
112 SetVertexer3DDeltaPhiCuts();
113 SetVertexer3DDCACut();
114 }
115
116 Float_t GetVertexer3DWideFiducialRegionZ() const {return fVtxr3DZCutWide;}
117 Float_t GetVertexer3DWideFiducialRegionR() const {return fVtxr3DRCutWide;}
118 Float_t GetVertexer3DNarrowFiducialRegionZ() const {return fVtxr3DZCutNarrow;}
119 Float_t GetVertexer3DNarrowFiducialRegionR() const {return fVtxr3DRCutNarrow;}
120 Float_t GetVertexer3DLooseDeltaPhiCut() const {return fVtxr3DPhiCutLoose;}
121 Float_t GetVertexer3DTightDeltaPhiCut() const {return fVtxr3DPhiCutTight;}
122 Float_t GetVertexer3DDCACut() const {return fVtxr3DDCACut;}
123
124
44347160 125 Double_t GetSigmaY2(Int_t i) const { return fSigmaY2[i]; }
126 Double_t GetSigmaZ2(Int_t i) const { return fSigmaZ2[i]; }
127
128 Double_t GetMaxSnp() const { return fMaxSnp; }
129
130 Double_t GetNSigmaYLayerForRoadY() const { return fNSigmaYLayerForRoadY; }
131 Double_t GetNSigmaRoadY() const { return fNSigmaRoadY; }
132 Double_t GetNSigmaZLayerForRoadZ() const { return fNSigmaZLayerForRoadZ; }
133 Double_t GetNSigmaRoadZ() const { return fNSigmaRoadZ; }
134 Double_t GetNSigma2RoadYC() const { return fNSigma2RoadYC; }
135 Double_t GetNSigma2RoadZC() const { return fNSigma2RoadZC; }
136 Double_t GetNSigma2RoadYNonC() const { return fNSigma2RoadYNonC; }
137 Double_t GetNSigma2RoadZNonC() const { return fNSigma2RoadZNonC; }
1c97ce2f 138 Double_t GetRoadMisal() const { return fRoadMisal; }
139 void SetRoadMisal(Double_t road=0) { fRoadMisal=road; }
44347160 140
141 Double_t GetChi2PerCluster() const { return fChi2PerCluster; }
142 Double_t GetMaxChi2PerCluster(Int_t i) const { return fMaxChi2PerCluster[i]; }
143 Double_t GetMaxNormChi2NonC(Int_t i) const { return fMaxNormChi2NonC[i]; }
144 Double_t GetMaxNormChi2C(Int_t i) const { return fMaxNormChi2C[i]; }
afd25725 145 Double_t GetMaxNormChi2NonCForHypothesis() const { return fMaxNormChi2NonCForHypothesis; }
44347160 146 Double_t GetMaxChi2() const { return fMaxChi2; }
147 Double_t GetMaxChi2s(Int_t i) const { return fMaxChi2s[i]; }
148 Double_t GetMaxChi2sR(Int_t i) const { return fMaxChi2sR[i]; }
149 Double_t GetMaxChi2In() const { return fMaxChi2In; }
44347160 150 Double_t GetMaxRoad() const { return fMaxRoad; }
afd25725 151 Double_t GetMaxNormChi2ForGolden(Int_t i) const { return 3.+0.5*i; }
44347160 152
153 Double_t GetXVdef() const { return fXV; }
154 Double_t GetYVdef() const { return fYV; }
155 Double_t GetZVdef() const { return fZV; }
156 Double_t GetSigmaXVdef() const { return fSigmaXV; }
157 Double_t GetSigmaYVdef() const { return fSigmaYV; }
158 Double_t GetSigmaZVdef() const { return fSigmaZV; }
afd25725 159
160 Double_t GetVertexCut() const { return fVertexCut; }
161 Double_t GetMaxDZforPrimTrk() const { return fMaxDZforPrimTrk; }
162 Double_t GetMaxDZToUseConstraint() const { return fMaxDZToUseConstraint; }
163 Double_t GetMaxDforV0dghtrForProlongation() const { return fMaxDforV0dghtrForProlongation; }
164 Double_t GetMaxDForProlongation() const { return fMaxDForProlongation; }
165 Double_t GetMaxDZForProlongation() const { return fMaxDZForProlongation; }
166 Double_t GetMinPtForProlongation() const { return fMinPtForProlongation; }
167
168 void SetAddVirtualClustersInDeadZone(Bool_t add=kTRUE) { fAddVirtualClustersInDeadZone=add; return; }
169 Bool_t GetAddVirtualClustersInDeadZone() const { return fAddVirtualClustersInDeadZone; }
170 Double_t GetZWindowDeadZone() const { return fZWindowDeadZone; }
171 Double_t GetSigmaXDeadZoneHit2() const { return fSigmaXDeadZoneHit2; }
172 Double_t GetSigmaZDeadZoneHit2() const { return fSigmaZDeadZoneHit2; }
173 Double_t GetXPassDeadZoneHits() const { return fXPassDeadZoneHits; }
174
175
176
e50912db 177 void SetUseTGeoInTracker(Int_t use=1) { fUseTGeoInTracker=use; return; }
178 Int_t GetUseTGeoInTracker() const { return fUseTGeoInTracker; }
9be1d1c7 179 void SetStepSizeTGeo(Double_t size=0.1) { fStepSizeTGeo=size; return; }
180 Double_t GetStepSizeTGeo() const { return fStepSizeTGeo; }
44347160 181
afd25725 182 void SetAllowSharedClusters(Bool_t allow=kTRUE) { fAllowSharedClusters=allow; return; }
183 Bool_t GetAllowSharedClusters() const { return fAllowSharedClusters; }
184
e50912db 185 void SetClusterErrorsParam(Int_t param=1) { fClusterErrorsParam=param; return; }
186 Int_t GetClusterErrorsParam() const { return fClusterErrorsParam; }
f9119eb9 187 void SetClusterMisalErrorY(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorY[0]=e0; fClusterMisalErrorY[1]=e1; fClusterMisalErrorY[2]=e2; fClusterMisalErrorY[3]=e3; fClusterMisalErrorY[4]=e4; fClusterMisalErrorY[5]=e5; return; }
188 void SetClusterMisalErrorZ(Float_t e0,Float_t e1,Float_t e2,Float_t e3,Float_t e4,Float_t e5) { fClusterMisalErrorZ[0]=e0; fClusterMisalErrorZ[1]=e1; fClusterMisalErrorZ[2]=e2; fClusterMisalErrorZ[3]=e3; fClusterMisalErrorZ[4]=e4; fClusterMisalErrorZ[5]=e5; return; }
189 void SetClusterMisalError(Float_t err=0.) { SetClusterMisalErrorY(err,err,err,err,err,err); SetClusterMisalErrorZ(err,err,err,err,err,err); }
190 Float_t GetClusterMisalErrorY(Int_t i) const { return fClusterMisalErrorY[i]; }
191 Float_t GetClusterMisalErrorZ(Int_t i) const { return fClusterMisalErrorZ[i]; }
401eff16 192
e50912db 193 void SetUseAmplitudeInfo(Bool_t use=kTRUE) { for(Int_t i=0;i<AliITSgeomTGeo::kNLayers;i++) fUseAmplitudeInfo[i]=use; return; }
572f41f9 194 void SetUseAmplitudeInfo(Int_t ilay,Bool_t use) { fUseAmplitudeInfo[ilay]=use; return; }
195 Bool_t GetUseAmplitudeInfo(Int_t ilay) const { return fUseAmplitudeInfo[ilay]; }
0ed58a47 196// Option for Plane Efficiency evaluation
197 void SetComputePlaneEff(Bool_t eff=kTRUE, Bool_t his=kTRUE)
5fbd4fd6 198 { fComputePlaneEff=eff; fHistoPlaneEff=his; return; }
4a66240a 199 Bool_t GetComputePlaneEff() const { return fComputePlaneEff; }
5fbd4fd6 200 Bool_t GetHistoPlaneEff() const { return fHistoPlaneEff; }
0ed58a47 201 void SetIPlanePlaneEff(Int_t i=0) {if(i<0 || i>=AliITSgeomTGeo::kNLayers) return; fIPlanePlaneEff=i; }
202 Int_t GetIPlanePlaneEff() const {return fIPlanePlaneEff;}
275a301c 203 void SetReadPlaneEffFrom0CDB(Bool_t read=kTRUE) { fReadPlaneEffFromOCDB=read; }
204 Bool_t GetReadPlaneEffFromOCDB() const { return fReadPlaneEffFromOCDB; }
0ed58a47 205 void SetMinPtPlaneEff(Bool_t ptmin=0.) { fMinPtPlaneEff=ptmin; }
206 Double_t GetMinPtPlaneEff() const { return fMinPtPlaneEff; }
207 void SetMaxMissingClustersPlaneEff(Int_t max=0) { fMaxMissingClustersPlaneEff=max;}
208 Int_t GetMaxMissingClustersPlaneEff() const {return fMaxMissingClustersPlaneEff;}
209 void SetRequireClusterInOuterLayerPlaneEff(Bool_t out=kTRUE) { fRequireClusterInOuterLayerPlaneEff=out;}
210 Bool_t GetRequireClusterInOuterLayerPlaneEff() const {return fRequireClusterInOuterLayerPlaneEff;}
211 void SetRequireClusterInInnerLayerPlaneEff(Bool_t in=kTRUE) { fRequireClusterInInnerLayerPlaneEff=in;}
212 Bool_t GetRequireClusterInInnerLayerPlaneEff() const {return fRequireClusterInInnerLayerPlaneEff;}
213 void SetOnlyConstraintPlaneEff(Bool_t con=kFALSE) { fOnlyConstraintPlaneEff=con; }
214 Bool_t GetOnlyConstraintPlaneEff() const { return fOnlyConstraintPlaneEff; }
ae00569a 215 //
2755f080 216 void SetExtendedEtaAcceptance(Bool_t ext=kTRUE) { fExtendedEtaAcceptance=ext; return; }
217 Bool_t GetExtendedEtaAcceptance() const { return fExtendedEtaAcceptance; }
ae00569a 218 void SetAllowProlongationWithEmptyRoad(Bool_t allow=kTRUE) { fAllowProlongationWithEmptyRoad=allow; return; }
219 Bool_t GetAllowProlongationWithEmptyRoad() const { return fAllowProlongationWithEmptyRoad; }
220
23197852 221 void SetUseBadZonesFromOCDB(Bool_t use=kTRUE) { fUseBadZonesFromOCDB=use; return; }
222 Bool_t GetUseBadZonesFromOCDB() const { return fUseBadZonesFromOCDB; }
223
224 void SetUseSingleBadChannelsFromOCDB(Bool_t use=kTRUE) { fUseSingleBadChannelsFromOCDB=use; return; }
225 Bool_t GetUseSingleBadChannelsFromOCDB() const { return fUseSingleBadChannelsFromOCDB; }
226
227 void SetMinFractionOfBadInRoad(Float_t frac=0) { fMinFractionOfBadInRoad=frac; return; }
228 Float_t GetMinFractionOfBadInRoad() const { return fMinFractionOfBadInRoad; }
572f41f9 229
9f9cae94 230 void SetOuterStartLayerSA(Int_t lay) { fOuterStartLayerSA=lay; return; }
231 Int_t GetOuterStartLayerSA() const { return fOuterStartLayerSA; }
2755f080 232 void SetFactorSAWindowSizes(Double_t fact=1.) { fFactorSAWindowSizes=fact; return; }
233 Double_t GetFactorSAWindowSizes() const { return fFactorSAWindowSizes; }
572f41f9 234
c7d6d7b7 235 void SetNLoopsSA(Int_t nl=10) {fNLoopsSA=nl;}
236 Int_t GetNLoopsSA() const { return fNLoopsSA;}
237 void SetPhiLimitsSA(Double_t phimin,Double_t phimax){
238 fMinPhiSA=phimin; fMaxPhiSA=phimax;
239 }
240 Double_t GetMinPhiSA() const {return fMinPhiSA;}
241 Double_t GetMaxPhiSA() const {return fMaxPhiSA;}
242 void SetLambdaLimitsSA(Double_t lambmin,Double_t lambmax){
243 fMinLambdaSA=lambmin; fMaxLambdaSA=lambmax;
244 }
245 Double_t GetMinLambdaSA() const {return fMinLambdaSA;}
246 Double_t GetMaxLambdaSA() const {return fMaxLambdaSA;}
3733ccd2 247
248 void SetSAMinClusterCharge(Float_t minq=0.) {fMinClusterChargeSA=minq;}
249 Float_t GetSAMinClusterCharge() const {return fMinClusterChargeSA;}
c7d6d7b7 250
5a03f353 251 void SetSAOnePointTracks() { fSAOnePointTracks=kTRUE; return; }
252 Bool_t GetSAOnePointTracks() const { return fSAOnePointTracks; }
253
254 void SetSAUseAllClusters() { fSAUseAllClusters=kTRUE; return; }
255 Bool_t GetSAUseAllClusters() const { return fSAUseAllClusters; }
256
afd25725 257 void SetFindV0s(Bool_t find=kTRUE) { fFindV0s=find; return; }
258 Bool_t GetFindV0s() const { return fFindV0s; }
259
2755f080 260 void SetLayersParameters();
261
262 void SetLayerToSkip(Int_t i) { fLayersToSkip[i]=1; return; }
263 Int_t GetLayersToSkip(Int_t i) const { return fLayersToSkip[i]; }
e340bb86 264
6518a6c5 265 void SetUseUnfoldingInClusterFinderSPD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSPD=use; return; }
266 Bool_t GetUseUnfoldingInClusterFinderSPD() const { return fUseUnfoldingInClusterFinderSPD; }
267 void SetUseUnfoldingInClusterFinderSDD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSDD=use; return; }
268 Bool_t GetUseUnfoldingInClusterFinderSDD() const { return fUseUnfoldingInClusterFinderSDD; }
269 void SetUseUnfoldingInClusterFinderSSD(Bool_t use=kTRUE) { fUseUnfoldingInClusterFinderSSD=use; return; }
270 Bool_t GetUseUnfoldingInClusterFinderSSD() const { return fUseUnfoldingInClusterFinderSSD; }
271
b779c7dc 272 void SetUseSDDClusterSizeSelection(Bool_t use=kTRUE) {fUseSDDClusterSizeSelection=use;}
273 Bool_t GetUseSDDClusterSizeSelection() const {return fUseSDDClusterSizeSelection;}
274 void SetMinClusterChargeSDD(Float_t qcut=0.){fMinClusterChargeSDD=qcut;}
275 Float_t GetMinClusterChargeSDD() const {return fMinClusterChargeSDD;}
276
a86176e3 277 void SetUseChargeMatchingInClusterFinderSSD(Bool_t use=kTRUE) { fUseChargeMatchingInClusterFinderSSD=use; return; }
278 Bool_t GetUseChargeMatchingInClusterFinderSSD() const { return fUseChargeMatchingInClusterFinderSSD; }
279
42ed6062 280 void SetUseCosmicRunShiftsSSD(Bool_t use=kFALSE) { fUseCosmicRunShiftsSSD=use; return; }
281 Bool_t GetUseCosmicRunShiftsSSD() const { return fUseCosmicRunShiftsSSD; }
282
7b116aa1 283 // SPD Tracklets (D. Elia)
284 void SetTrackleterOnlyOneTrackletPerC2(Bool_t use= kTRUE) {fTrackleterOnlyOneTrackletPerC2=use; return; }
285 Bool_t GetTrackleterOnlyOneTrackletPerC2() const { return fTrackleterOnlyOneTrackletPerC2; }
286 void SetTrackleterPhiWindow(Float_t w=0.08) {fTrackleterPhiWindow=w;}
287 void SetTrackleterZetaWindow(Float_t w=1.) {fTrackleterZetaWindow=w;}
288 Float_t GetTrackleterPhiWindow() const {return fTrackleterPhiWindow;}
289 Float_t GetTrackleterZetaWindow() const {return fTrackleterZetaWindow;}
290 void SetTrackleterRemoveClustersFromOverlaps(Bool_t use=kTRUE) { fTrackleterRemoveClustersFromOverlaps=use; return; }
291 Bool_t GetTrackleterRemoveClustersFromOverlaps() const { return fTrackleterRemoveClustersFromOverlaps; }
292 void SetTrackleterPhiOverlapCut(Float_t w=0.005) {fTrackleterPhiOverlapCut=w;}
293 void SetTrackleterZetaOverlapCut(Float_t w=0.05) {fTrackleterZetaOverlapCut=w;}
294 Float_t GetTrackleterPhiOverlapCut() const {return fTrackleterPhiOverlapCut;}
295 Float_t GetTrackleterZetaOverlapCut() const {return fTrackleterZetaOverlapCut;}
296
44347160 297 //
e50912db 298
299 enum {fgkMaxClusterPerLayer=70000}; //7000*10; // max clusters per layer
300 enum {fgkMaxClusterPerLayer5=28000};//7000*10*2/5; // max clusters per layer
301 enum {fgkMaxClusterPerLayer10=14000};//7000*10*2/10; // max clusters per layer
302 enum {fgkMaxClusterPerLayer20=7000};//7000*10*2/20; // max clusters per layer
303
44347160 304 protected:
305 //
e50912db 306 static const Int_t fgkLayersNotToSkip[AliITSgeomTGeo::kNLayers]; // array with layers not to skip
307 static const Int_t fgkLastLayerToTrackTo; // innermost layer
308 static const Int_t fgkMaxDetectorPerLayer; // max clusters per layer
309 static const Double_t fgkriw; // TPC inner wall radius
310 static const Double_t fgkdiw; // TPC inner wall x/X0
311 static const Double_t fgkX0iw; // TPC inner wall X0
312 static const Double_t fgkrcd; // TPC central drum radius
313 static const Double_t fgkdcd; // TPC central drum x/X0
314 static const Double_t fgkX0cd; // TPC central drum X0
315 static const Double_t fgkyr; // TPC rods y (tracking c.s.)
316 static const Double_t fgkdr; // TPC rods x/X0
317 static const Double_t fgkzm; // TPC membrane z
318 static const Double_t fgkdm; // TPC membrane x/X0
319 static const Double_t fgkrs; // ITS screen radius
320 static const Double_t fgkds; // ITS screed x/X0
321 static const Double_t fgkrInsideITSscreen; // inside ITS screen radius
322 static const Double_t fgkrInsideSPD1; // inside SPD1 radius
323 static const Double_t fgkrPipe; // pipe radius
324 static const Double_t fgkrInsidePipe; // inside pipe radius
325 static const Double_t fgkrOutsidePipe; // outside pipe radius
326 static const Double_t fgkdPipe; // pipe x/X0
327 static const Double_t fgkrInsideShield[2]; // inside SPD (0) SDD (1) shield radius
328 static const Double_t fgkrOutsideShield[2]; // outside SPD (0) SDD (1) shield radius
329 static const Double_t fgkdshield[2]; // SPD (0) SDD (1) shield x/X0
330 static const Double_t fgkX0shield[2]; // SPD (0) SDD (1) shield X0
331 static const Double_t fgkX0Air; // air X0
332 static const Double_t fgkX0Be; // Berillium X0
333 static const Double_t fgkBoundaryWidth; // to define track at detector boundary
334 static const Double_t fgkDeltaXNeighbDets; // max difference in radius between neighbouring detectors
335 static const Double_t fgkSPDdetzlength; // SPD ladder length in z
336 static const Double_t fgkSPDdetxlength; // SPD ladder length in x
337
f9119eb9 338
339 Int_t fTracker; // ITS tracker to be used (see AliITSReconstructor)
340 Bool_t fITSonly; // tracking only in ITS (no TPC)
341 Int_t fVertexer; // ITS vertexer to be used (see AliITSReconstructor)
876026b6 342 Int_t fClusterFinder; // ITS cf to be used (see AliITSReconstructor)
343 Int_t fPID; // ITS PID method to be used (see AliITSReconstructor)
f9119eb9 344
7203e11a 345
346 Float_t fVtxr3DZCutWide; // Z extension of the wide fiducial region for vertexer 3D
347 Float_t fVtxr3DRCutWide; // R extension of the wide fiducial region for vertexer 3D
348 Float_t fVtxr3DZCutNarrow; // Z extension of the narrow fiducial region for vertexer 3D
349 Float_t fVtxr3DRCutNarrow; // R extension of the narrow fiducial region for vertexer 3D
350 Float_t fVtxr3DPhiCutLoose; // loose deltaPhi cut to define tracklets in vertexer 3D
351 Float_t fVtxr3DPhiCutTight; // tight deltaPhi cut to define tracklets in vertexer 3D
352 Float_t fVtxr3DDCACut; // cut on tracklet-to-tracklet DCA in vertexer3D
353
2755f080 354 Int_t fLayersToSkip[AliITSgeomTGeo::kNLayers]; // array with layers to skip (MI,SA)
355
44347160 356 // spatial resolutions of the detectors
e50912db 357 Double_t fSigmaY2[AliITSgeomTGeo::kNLayers]; // y
358 Double_t fSigmaZ2[AliITSgeomTGeo::kNLayers]; // z
44347160 359 //
360 Double_t fMaxSnp; // maximum of sin(phi) (MI)
361 //
362 // search road (MI)
36e140f1 363 Double_t fNSigmaYLayerForRoadY; // y
364 Double_t fNSigmaRoadY; // y
365 Double_t fNSigmaZLayerForRoadZ; // z
366 Double_t fNSigmaRoadZ; // z
367 Double_t fNSigma2RoadZC; // z
368 Double_t fNSigma2RoadYC; // y
369 Double_t fNSigma2RoadZNonC; // z
370 Double_t fNSigma2RoadYNonC; // y
1c97ce2f 371
372 Double_t fRoadMisal; // [cm] increase of road for misalignment (MI)
44347160 373 //
374 // chi2 cuts
e50912db 375 Double_t fMaxChi2PerCluster[AliITSgeomTGeo::kNLayers-1]; // max chi2 for MIP (MI)
376 Double_t fMaxNormChi2NonC[AliITSgeomTGeo::kNLayers]; //max norm chi2 for non constrained tracks (MI)
377 Double_t fMaxNormChi2C[AliITSgeomTGeo::kNLayers]; //max norm chi2 for constrained tracks (MI)
afd25725 378 Double_t fMaxNormChi2NonCForHypothesis; //max norm chi2 (on layers 0,1,2) for hypotheis to be kept (MI)
44347160 379 Double_t fMaxChi2; // used to initialize variables needed to find minimum chi2 (MI,V2)
e50912db 380 Double_t fMaxChi2s[AliITSgeomTGeo::kNLayers]; // max predicted chi2 (cluster & track prol.) (MI)
44347160 381 //
382 Double_t fMaxRoad; // (V2)
383 //
384 Double_t fMaxChi2In; // (NOT USED)
e50912db 385 Double_t fMaxChi2sR[AliITSgeomTGeo::kNLayers]; // (NOT USED)
44347160 386 Double_t fChi2PerCluster; // (NOT USED)
387 //
388 // default primary vertex (MI,V2)
36e140f1 389 Double_t fXV; // x
390 Double_t fYV; // y
391 Double_t fZV; // z
392 Double_t fSigmaXV; // x
393 Double_t fSigmaYV; // y
394 Double_t fSigmaZV; // z
44347160 395 Double_t fVertexCut; // (V2)
afd25725 396 Double_t fMaxDZforPrimTrk; // maximum (imp. par.)/(1+layer) to define
397 // a primary and apply vertex constraint (MI)
398 Double_t fMaxDZToUseConstraint; // maximum (imp. par.) for tracks to be
399 // prolonged with constraint
400 // cuts to decide if trying to prolong a TPC track (MI)
401 Double_t fMaxDforV0dghtrForProlongation; // max. rphi imp. par. cut for V0 daughter
44347160 402 //
afd25725 403 Double_t fMaxDForProlongation; // max. rphi imp. par. cut
404 Double_t fMaxDZForProlongation; // max. 3D imp. par. cut
405 Double_t fMinPtForProlongation; // min. pt cut
406
407 // parameters to create "virtual" clusters in SPD dead zone (MI)
36e140f1 408 Bool_t fAddVirtualClustersInDeadZone; // add if kTRUE
409 Double_t fZWindowDeadZone; // window size
410 Double_t fSigmaXDeadZoneHit2; // x error virtual cls
411 Double_t fSigmaZDeadZoneHit2; // z error virtual cls
412 Double_t fXPassDeadZoneHits; // x distance between clusters
afd25725 413
414
e50912db 415 Int_t fUseTGeoInTracker; // use TGeo to get material budget in tracker MI
9be1d1c7 416 Double_t fStepSizeTGeo; // step size (cm)
417 // in AliITStrackerMI::CorrectFor*Material methods
afd25725 418 Bool_t fAllowSharedClusters; // if kFALSE don't set to kITSin tracks with shared clusters (MI)
e50912db 419 Int_t fClusterErrorsParam; // parametrization for cluster errors (MI), see AliITSRecoParam::GetError()
f9119eb9 420 Float_t fClusterMisalErrorY[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Y pos. due to misalignment (MI,SA)
421 Float_t fClusterMisalErrorZ[AliITSgeomTGeo::kNLayers]; // [cm] additional error on cluster Z pos. due to misalignment (MI,SA)
401eff16 422
e50912db 423 Bool_t fUseAmplitudeInfo[AliITSgeomTGeo::kNLayers]; // use cluster charge in cluster-track matching (SDD,SSD) (MI)
f9119eb9 424
0ed58a47 425 // Plane Efficiency evaluation
ae00569a 426 Bool_t fComputePlaneEff; // flag to enable computation of PlaneEfficiency
5fbd4fd6 427 Bool_t fHistoPlaneEff; // flag to enable auxiliary PlaneEff histograms (e.g. residual distributions)
0ed58a47 428 Int_t fIPlanePlaneEff; // index of the plane (in the range [0,5]) to study the efficiency
275a301c 429 Bool_t fReadPlaneEffFromOCDB; // enable initial reading of Plane Eff statistics from OCDB
430 // The analized events would be used to increase the statistics
0ed58a47 431 Double_t fMinPtPlaneEff; // minimum p_t of the track to be used for Plane Efficiency evaluation
432 Int_t fMaxMissingClustersPlaneEff; // max n. of (other) layers without a cluster associated to the track
433 Bool_t fRequireClusterInOuterLayerPlaneEff; // if kTRUE, then only tracks with an associated cluster on the closest
434 Bool_t fRequireClusterInInnerLayerPlaneEff; // outer/inner layer are used. It has no effect for outermost/innermost layer
435 Bool_t fOnlyConstraintPlaneEff; // if kTRUE, use only constrained tracks at primary vertex for Plane Eff.
436
2755f080 437 Bool_t fExtendedEtaAcceptance; // enable jumping from TPC to SPD at large eta (MI)
23197852 438 Bool_t fUseBadZonesFromOCDB; // enable using OCDB info on dead modules and chips (MI)
439 Bool_t fUseSingleBadChannelsFromOCDB; // enable using OCDB info on bad single SPD pixels and SDD anodes (MI)
440 Float_t fMinFractionOfBadInRoad; // to decide whether to skip the layer (MI)
ae00569a 441 Bool_t fAllowProlongationWithEmptyRoad; // allow to prolong even if road is empty (MI)
9f9cae94 442 Int_t fOuterStartLayerSA; // outer ITS layer to start track in SA
2755f080 443 Double_t fFactorSAWindowSizes; // larger window sizes in SA
c7d6d7b7 444 Int_t fNLoopsSA; // number of loops in tracker SA
445 Double_t fMinPhiSA; // minimum phi value for SA windows
446 Double_t fMaxPhiSA; // maximum phi value for SA windows
447 Double_t fMinLambdaSA; // minimum lambda value for SA windows
448 Double_t fMaxLambdaSA; // maximum lambda value for SA windows
3733ccd2 449 Float_t fMinClusterChargeSA; // minimum SDD,SSD cluster charge for SA tarcker
5a03f353 450 Bool_t fSAOnePointTracks; // one-cluster tracks in SA (only for cosmics!)
451 Bool_t fSAUseAllClusters; // do not skip clusters used by MI (same track twice in AliESDEvent!)
afd25725 452
453 Bool_t fFindV0s; // flag to enable V0 finder (MI)
454
6518a6c5 455 // cluster unfolding in ITS cluster finders
456 Bool_t fUseUnfoldingInClusterFinderSPD; // SPD
457 Bool_t fUseUnfoldingInClusterFinderSDD; // SDD
458 Bool_t fUseUnfoldingInClusterFinderSSD; // SSD
459
b779c7dc 460 Bool_t fUseSDDClusterSizeSelection; // cut on SDD cluster size
461 Float_t fMinClusterChargeSDD; // cut on SDD cluster charge
462
a86176e3 463 Bool_t fUseChargeMatchingInClusterFinderSSD; // SSD
464
7b116aa1 465 // SPD Tracklets (D. Elia)
466 Bool_t fTrackleterOnlyOneTrackletPerC2; // Allow only one tracklet per cluster in the outer layer
467 Float_t fTrackleterPhiWindow; // Search window in phi
468 Float_t fTrackleterZetaWindow; // Search window in eta
469 Bool_t fTrackleterRemoveClustersFromOverlaps; // Option to skip clusters in the overlaps
470 Float_t fTrackleterPhiOverlapCut; // Fiducial window in phi for overlap cut
471 Float_t fTrackleterZetaOverlapCut; // Fiducial window in eta for overlap cut
42ed6062 472 Bool_t fUseCosmicRunShiftsSSD; // SSD time shifts for cosmic run 2007/2008 (use for data taken up to 18 sept 2008)
7b116aa1 473
b779c7dc 474
475 ClassDef(AliITSRecoParam,15) // ITS reco parameters
44347160 476};
477
478#endif