]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSSimuParam.h
New constructor needed by the ITS-upgrade simulation code (F. Prino)
[u/mrichter/AliRoot.git] / ITS / AliITSSimuParam.h
CommitLineData
cd2a0045 1#ifndef ALIITSSIMUPARAM_H
2#define ALIITSSIMUPARAM_H
3/* Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
2ae37d58 6/* $Id$ */
cd2a0045 7
8///////////////////////////////////////////////////////////////////
9// //
10// Class to store the parameters used in the simulation of //
11// SPD, SDD and SSD detectors //
12// Origin: F.Prino, Torino, prino@to.infn.it //
13// //
14///////////////////////////////////////////////////////////////////
2ae37d58 15#include <TRandom.h>
cd2a0045 16#include<TObject.h>
17#include <TString.h>
18#include <TArrayF.h>
19
20class AliITSSimuParam : public TObject {
21
22 public:
23 AliITSSimuParam();
24 AliITSSimuParam(const AliITSSimuParam& simpar);
25 // assignment operator
26 AliITSSimuParam& operator=(const AliITSSimuParam& source);
27 ~AliITSSimuParam();
28
29
30 void SetGeVToCharge(Double_t gc=3.6e-9){fGeVcharge = gc;}
31 Double_t GetGeVToCharge() const {return fGeVcharge;}
32 Double_t GeVToCharge(Double_t gev) const {return gev/fGeVcharge;}
33
34 void SetDistanceOverVoltage(Double_t d,Double_t v){fDOverV = d/v;}
35 void SetDistanceOverVoltage(Double_t dv=0.000375){fDOverV = dv;}
36 Double_t GetDistanceOverVoltage() const {return fDOverV;}
37
38
39
2ae37d58 40 void SetSPDBiasVoltageAll(Double_t bias=18.182) {for(Int_t i=0;i<240;i++) fSPDBiasVoltage[i]=bias;}
41 void SetSPDBiasVoltage(Int_t mod, Double_t bias=18.182) {if(mod<0 || mod>239) return; fSPDBiasVoltage[mod]=bias;}
42 Double_t GetSPDBiasVoltage(Int_t mod=0) const {if(mod<0 || mod>239) return 0; return fSPDBiasVoltage[mod];}
43
44 void SetSPDThresholdsAll(Double_t thresh, Double_t sigma)
45 {for(Int_t i=0;i<240;i++) {fSPDThresh[i]=thresh; fSPDSigma[i]=sigma;}}
46 void SetSPDThresholds(Int_t mod,Double_t thresh, Double_t sigma)
47 {if(mod<0 || mod>239) return; fSPDThresh[mod]=thresh; fSPDSigma[mod]=sigma; }
48 void SPDThresholds(const Int_t mod, Double_t& thresh, Double_t& sigma) const;
49 void SetSPDNoiseAll(Double_t noise, Double_t baseline)
50 {for(Int_t i=0;i<240;i++) {fSPDNoise[i]=noise; fSPDBaseline[i]=baseline;}}
51 void SetSPDNoise(Int_t mod,Double_t noise, Double_t baseline)
52 {if(mod<0 || mod>239) return; fSPDNoise[mod]=noise; fSPDBaseline[mod]=baseline; }
53 void SPDNoise(const Int_t mod,Double_t &noise, Double_t &baseline) const;
54 // Applies a random noise and addes the baseline
55 Double_t ApplySPDBaselineAndNoise(Int_t mod=0) const
56 {if (mod<0 || mod>239) mod=0; return fSPDBaseline[mod]+fSPDNoise[mod]*gRandom->Gaus();}
cd2a0045 57
cd2a0045 58
59 void SetSPDCouplingOption(const char *opt) {fSPDCouplOpt=opt;}
60 void GetSPDCouplingOption(char *opt) const {strcpy(opt,fSPDCouplOpt.Data());}
61
62 void SetSPDCouplingParam(Double_t col, Double_t row)
63 {fSPDCouplCol = col; fSPDCouplRow = row;}
64 void GetSPDCouplingParam(Double_t &col, Double_t &row) const
65 {col = fSPDCouplCol; row = fSPDCouplRow;}
66
67 void SetSPDSigmaDiffusionAsymmetry(Double_t ecc) {fSPDEccDiff=ecc;}
68 void GetSPDSigmaDiffusionAsymmetry(Double_t &ecc) const {ecc=fSPDEccDiff;}
69
ad7f2bfa 70
71 void SetSPDAddNoisyFlag(Bool_t value) {fSPDAddNoisyFlag = value;}
72 Bool_t GetSPDAddNoisyFlag() {return fSPDAddNoisyFlag;}
73 void SetSPDRemoveDeadFlag(Bool_t value) {fSPDRemoveDeadFlag = value;}
74 Bool_t GetSPDRemoveDeadFlag() {return fSPDRemoveDeadFlag;}
75
cd2a0045 76 void SetSDDElectronics(Int_t p1=1) {fSDDElectronics=p1; }
77 Int_t GetSDDElectronics() const {return fSDDElectronics;}
78
79 void SetSDDDiffCoeff(Float_t p1, Float_t p2) {
80 fSDDDiffCoeff=p1; fSDDDiffCoeff1=p2;}
81 void GetSDDDiffCoeff(Float_t &diff,Float_t &diff1) const {
82 diff=fSDDDiffCoeff; diff1=fSDDDiffCoeff1;}
83
84 void SetSDDJitterError(Float_t jitter) {fSDDJitterError=jitter;}
85 Float_t GetSDDJitterError() const {return fSDDJitterError;}
86
87 void SetSDDDynamicRange(Double_t p1) {fSDDDynamicRange = p1;}
88 Float_t GetSDDDynamicRange() const {return fSDDDynamicRange;}
89
90 void SetSDDMaxAdc(Double_t p1) {fSDDMaxAdc=p1;}
91 Float_t GetSDDMaxAdc() const {return fSDDMaxAdc;}
92
93 void SetSDDChargeLoss(Double_t p1) {fSDDChargeLoss=p1;}
94 Float_t GetSDDChargeLoss() const {return fSDDChargeLoss;}
95
417ff3f4 96 void SetSDDTrigDelay(Double_t p1) {fSDDTrigDelay=p1;}
97 Float_t GetSDDTrigDelay() const {return fSDDTrigDelay;}
98
d9ed1779 99 void SetSDDRawDataFormatCarlos() {fSDDRawFormat=7;}
100 void SetSDDRawDataFormatFixLen8bitEncoded() {fSDDRawFormat=0;}
101 Char_t GetSDDRawDataFormat() const {return fSDDRawFormat;}
8be4e1b1 102 Int_t GetSSDZSThreshold() const { // ZS threshold
103 return fSSDZSThreshold; }
104 virtual void SetSSDZSThreshold(Int_t zsth) { fSSDZSThreshold = zsth; }
105
cd2a0045 106 void SetSSDCouplings(Double_t pr, Double_t pl, Double_t nr, Double_t nl) {
107 fSSDCouplingPR=pr; fSSDCouplingPL=pl; fSSDCouplingNR=nr; fSSDCouplingNL=nl; }
108 Double_t GetSSDCouplingPR() const {return fSSDCouplingPR;}
109 Double_t GetSSDCouplingPL() const {return fSSDCouplingPL;}
110 Double_t GetSSDCouplingNR() const {return fSSDCouplingNR;}
111 Double_t GetSSDCouplingNL() const {return fSSDCouplingNL;}
112
113 void SetNSigmaIntegration(Double_t p1) {fNsigmas=p1;}
114 Float_t GetNSigmaIntegration() const {return fNsigmas;}
115 void SetNLookUp(Int_t p1);
116 Int_t GetGausNLookUp() const {return fNcomps;}
117 Float_t GetGausLookUp(Int_t i) {
118 if (!fGaus) SetNLookUp(fgkNcompsDefault);
119 if(i<0 || i>=fNcomps) return 0.;return fGaus->At(i);
120 }
121
2ae37d58 122 // Set the impurity concentrations in [#/cm^3]
123 void SetImpurity(Double_t n=0.0){fN = n;}
124 // Returns the impurity consentration in [#/cm^3]
125 Double_t Impurity() const {return fN;}
126
127 // Electron mobility in Si. [cm^2/(Volt Sec)]. T in degree K, N in #/cm^3
128 Double_t MobilityElectronSiEmp() const ;
129 // Hole mobility in Si. [cm^2/(Volt Sec)] T in degree K, N in #/cm^3
130 Double_t MobilityHoleSiEmp() const ;
131 // Einstein relation for Diffusion Coefficient of Electrons. [cm^2/sec]
132 // T in degree K, N in #/cm^3
133 Double_t DiffusionCoefficientElectron() const ;
134 // Einstein relation for Diffusion Coefficient of Holes. [cm^2/sec]
135 // T in [degree K], N in [#/cm^3]
136 Double_t DiffusionCoefficientHole() const ;
137 // Electron <speed> under an applied electric field E=Volts/cm. [cm/sec]
138 // d distance-thickness in [cm], v in [volts], T in [degree K],
139 // N in [#/cm^3]
140 Double_t SpeedElectron() const ;
141 // Holes <speed> under an applied electric field E=Volts/cm. [cm/sec]
142 // d distance-thickness in [cm], v in [volts], T in [degree K],
143 // N in [#/cm^3]
144 Double_t SpeedHole() const ;
145 // Returns the Gaussian sigma == <x^2+z^2> [cm^2] due to the defusion of
146 // electrons or holes through a distance l [cm] caused by an applied
147 // voltage v [volt] through a distance d [cm] in any material at a
148 // temperature T [degree K].
149 Double_t SigmaDiffusion3D(Double_t l) const;
150 // Returns the Gaussian sigma == <x^2 +y^2+z^2> [cm^2] due to the
151 // defusion of electrons or holes through a distance l [cm] caused by an
152 // applied voltage v [volt] through a distance d [cm] in any material at a
153 // temperature T [degree K].
154 Double_t SigmaDiffusion2D(Double_t l) const;
155 // Returns the Gaussian sigma == <x^2+z^2> [cm^2] due to the defusion of
156 // electrons or holes through a distance l [cm] caused by an applied
157 // voltage v [volt] through a distance d [cm] in any material at a
158 // temperature T [degree K].
159 Double_t SigmaDiffusion1D(Double_t l) const;
160 // Computes the Lorentz angle for Electron and Hole, under the Magnetic field bz (in kGauss)
161 Double_t LorentzAngleElectron(Double_t bz) const;
162 Double_t LorentzAngleHole(Double_t bz) const;
163 // Compute the thickness of the depleted region in a Si detector, version A
164 Double_t DepletedRegionThicknessA(Double_t dopCons,
165 Double_t voltage,
166 Double_t elecCharge,
167 Double_t voltBuiltIn=0.5)const;
168 // Compute the thickness of the depleted region in a Si detector, version B
169 Double_t DepletedRegionThicknessB(Double_t resist,Double_t voltage,
170 Double_t mobility,
171 Double_t voltBuiltIn=0.5,
172 Double_t dielConst=1.E-12)const;
173 // Computes the temperature dependance of the reverse bias current
174 Double_t ReverseBiasCurrent(Double_t temp,Double_t revBiasCurT1,
175 Double_t tempT1,Double_t energy=1.2)const;
176
177
cd2a0045 178 void PrintParameters() const;
179
180 protected:
181
182 static const Float_t fgkSPDBiasVoltageDefault;//default for fSPDBiasVoltage
183 static const Double_t fgkSPDThreshDefault; //default for fThresh
184 static const Double_t fgkSPDSigmaDefault; //default for fSigma
185 static const TString fgkSPDCouplingOptDefault; // type of pixel Coupling (old or new)
186 static const Double_t fgkSPDCouplColDefault; //default for fSPDCouplCol
187 static const Double_t fgkSPDCouplRowDefault; //default for fSPDCouplRow
188 static const Float_t fgkSPDEccDiffDefault;//default for fSPDEccDiff
189 static const Float_t fgkSDDDiffCoeffDefault; // default for fSDDDiffCoeff
190 static const Float_t fgkSDDDiffCoeff1Default; // default for fSDDDiffCoeff1
191 static const Float_t fgkSDDJitterErrorDefault; // default for fSDDJitterError
192 static const Float_t fgkSDDDynamicRangeDefault; // default for fSDDDynamicRange
193 static const Int_t fgkSDDMaxAdcDefault; // default for fSDDMaxAdc
194 static const Float_t fgkSDDChargeLossDefault; // default for fSDDChargeLoss
417ff3f4 195 static const Float_t fgkSDDTrigDelayDefault; // default for fSDDTrigDelay
cd2a0045 196
197 static const Double_t fgkSSDCouplingPRDefault; // default values
198 static const Double_t fgkSSDCouplingPLDefault; // for the
199 static const Double_t fgkSSDCouplingNRDefault; // various SSD
200 static const Double_t fgkSSDCouplingNLDefault; // couplings
201 static const Int_t fgkSSDZSThresholdDefault; // default for fSSDZSThreshold
202
203 static const Float_t fgkNsigmasDefault; //default for fNsigmas
204 static const Int_t fgkNcompsDefault; //default for fNcomps
205
206 private:
207 Double_t fGeVcharge; // Energy to ionize (free an electron) in GeV
208 Double_t fDOverV; // The parameter d/v where d is the disance over which the
2ae37d58 209 // the potential v is applied d/v [cm/volts]
cd2a0045 210
211
2ae37d58 212 Double_t fSPDBiasVoltage[240]; // Bias Voltage for the SPD
213 Double_t fSPDThresh[240]; // SPD Threshold value
214 Double_t fSPDSigma[240]; // SPD threshold fluctuations spread
215 Double_t fSPDNoise[240]; // SPD electronic noise: sigma
216 Double_t fSPDBaseline[240]; // SPD electronic noise: baseline
cd2a0045 217 TString fSPDCouplOpt; // SPD Coupling Option
218 Double_t fSPDCouplCol; // SPD Coupling parameter along the cols
219 Double_t fSPDCouplRow; // SPD Coupling parameter along the rows
220 Float_t fSPDEccDiff; // Eccentricity (i.e. asymmetry parameter) in the
ad7f2bfa 221 // Gaussian diffusion for SPD
222 Bool_t fSPDAddNoisyFlag; // Flag saying whether noisy pixels should be added to digits
223 Bool_t fSPDRemoveDeadFlag; // Flag saying whether dead pixels should be removed from digits
cd2a0045 224
225 Int_t fSDDElectronics; // SDD Electronics Pascal (1) or OLA (2)
226 Float_t fSDDDiffCoeff; // SDD Diffusion Coefficient (scaling the time)
227 Float_t fSDDDiffCoeff1; // SDD Diffusion Coefficient (constant term)
228 Float_t fSDDJitterError; // SDD jitter error
229 Float_t fSDDDynamicRange; // SDD Dynamic Range
230 Float_t fSDDMaxAdc; // SDD ADC saturation value
231 Float_t fSDDChargeLoss; // Set Linear Coefficient for Charge Loss
417ff3f4 232 Float_t fSDDTrigDelay; // SDD time-zero
d9ed1779 233 Char_t fSDDRawFormat; // Index for SDD RawFormat
cd2a0045 234
cd2a0045 235 Double_t fSSDCouplingPR; // SSD couplings
236 Double_t fSSDCouplingPL; // SSD couplings
237 Double_t fSSDCouplingNR; // SSD couplings
238 Double_t fSSDCouplingNL; // SSD couplings
239 Int_t fSSDZSThreshold; // SSD threshold for the zero suppresion
240
241 Float_t fNsigmas; // Number of sigmas over which charge disintegration
242 // is performed
243 Int_t fNcomps; // Number of samplings along the gaussian
244 TArrayF *fGaus; // Gaussian lookup table for signal generation
245
2ae37d58 246 Double_t fN; // the impurity concentration of the material in #/cm^3 (NOT USED!)
247 Float_t fT; // The temperature of the Si in Degree K.
248
417ff3f4 249 ClassDef(AliITSSimuParam,5);
cd2a0045 250};
251#endif