misalignemt of geometry read from CDB (G. Bruno)
[u/mrichter/AliRoot.git] / ITS / AliITSSimuParam.h
CommitLineData
cd2a0045 1#ifndef ALIITSSIMUPARAM_H
2#define ALIITSSIMUPARAM_H
3/* Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
2ae37d58 6/* $Id$ */
cd2a0045 7
8///////////////////////////////////////////////////////////////////
9// //
10// Class to store the parameters used in the simulation of //
11// SPD, SDD and SSD detectors //
12// Origin: F.Prino, Torino, prino@to.infn.it //
13// //
14///////////////////////////////////////////////////////////////////
2ae37d58 15#include <TRandom.h>
cd2a0045 16#include<TObject.h>
17#include <TString.h>
18#include <TArrayF.h>
19
20class AliITSSimuParam : public TObject {
21
22 public:
23 AliITSSimuParam();
24 AliITSSimuParam(const AliITSSimuParam& simpar);
25 // assignment operator
26 AliITSSimuParam& operator=(const AliITSSimuParam& source);
27 ~AliITSSimuParam();
28
29
30 void SetGeVToCharge(Double_t gc=3.6e-9){fGeVcharge = gc;}
31 Double_t GetGeVToCharge() const {return fGeVcharge;}
32 Double_t GeVToCharge(Double_t gev) const {return gev/fGeVcharge;}
33
34 void SetDistanceOverVoltage(Double_t d,Double_t v){fDOverV = d/v;}
35 void SetDistanceOverVoltage(Double_t dv=0.000375){fDOverV = dv;}
36 Double_t GetDistanceOverVoltage() const {return fDOverV;}
37
38
39
2ae37d58 40 void SetSPDBiasVoltageAll(Double_t bias=18.182) {for(Int_t i=0;i<240;i++) fSPDBiasVoltage[i]=bias;}
41 void SetSPDBiasVoltage(Int_t mod, Double_t bias=18.182) {if(mod<0 || mod>239) return; fSPDBiasVoltage[mod]=bias;}
42 Double_t GetSPDBiasVoltage(Int_t mod=0) const {if(mod<0 || mod>239) return 0; return fSPDBiasVoltage[mod];}
43
44 void SetSPDThresholdsAll(Double_t thresh, Double_t sigma)
45 {for(Int_t i=0;i<240;i++) {fSPDThresh[i]=thresh; fSPDSigma[i]=sigma;}}
46 void SetSPDThresholds(Int_t mod,Double_t thresh, Double_t sigma)
47 {if(mod<0 || mod>239) return; fSPDThresh[mod]=thresh; fSPDSigma[mod]=sigma; }
48 void SPDThresholds(const Int_t mod, Double_t& thresh, Double_t& sigma) const;
49 void SetSPDNoiseAll(Double_t noise, Double_t baseline)
50 {for(Int_t i=0;i<240;i++) {fSPDNoise[i]=noise; fSPDBaseline[i]=baseline;}}
51 void SetSPDNoise(Int_t mod,Double_t noise, Double_t baseline)
52 {if(mod<0 || mod>239) return; fSPDNoise[mod]=noise; fSPDBaseline[mod]=baseline; }
53 void SPDNoise(const Int_t mod,Double_t &noise, Double_t &baseline) const;
54 // Applies a random noise and addes the baseline
55 Double_t ApplySPDBaselineAndNoise(Int_t mod=0) const
56 {if (mod<0 || mod>239) mod=0; return fSPDBaseline[mod]+fSPDNoise[mod]*gRandom->Gaus();}
cd2a0045 57
cd2a0045 58
59 void SetSPDCouplingOption(const char *opt) {fSPDCouplOpt=opt;}
60 void GetSPDCouplingOption(char *opt) const {strcpy(opt,fSPDCouplOpt.Data());}
61
62 void SetSPDCouplingParam(Double_t col, Double_t row)
63 {fSPDCouplCol = col; fSPDCouplRow = row;}
64 void GetSPDCouplingParam(Double_t &col, Double_t &row) const
65 {col = fSPDCouplCol; row = fSPDCouplRow;}
66
67 void SetSPDSigmaDiffusionAsymmetry(Double_t ecc) {fSPDEccDiff=ecc;}
68 void GetSPDSigmaDiffusionAsymmetry(Double_t &ecc) const {ecc=fSPDEccDiff;}
69
70 void SetSDDElectronics(Int_t p1=1) {fSDDElectronics=p1; }
71 Int_t GetSDDElectronics() const {return fSDDElectronics;}
72
73 void SetSDDDiffCoeff(Float_t p1, Float_t p2) {
74 fSDDDiffCoeff=p1; fSDDDiffCoeff1=p2;}
75 void GetSDDDiffCoeff(Float_t &diff,Float_t &diff1) const {
76 diff=fSDDDiffCoeff; diff1=fSDDDiffCoeff1;}
77
78 void SetSDDJitterError(Float_t jitter) {fSDDJitterError=jitter;}
79 Float_t GetSDDJitterError() const {return fSDDJitterError;}
80
81 void SetSDDDynamicRange(Double_t p1) {fSDDDynamicRange = p1;}
82 Float_t GetSDDDynamicRange() const {return fSDDDynamicRange;}
83
84 void SetSDDMaxAdc(Double_t p1) {fSDDMaxAdc=p1;}
85 Float_t GetSDDMaxAdc() const {return fSDDMaxAdc;}
86
87 void SetSDDChargeLoss(Double_t p1) {fSDDChargeLoss=p1;}
88 Float_t GetSDDChargeLoss() const {return fSDDChargeLoss;}
89
90
91 void SetSSDADCpereV(Double_t a=120./24888.9){fSSDADCpereV = a;}
92 Double_t GetSSDDEvToADC(Double_t eV) const {return eV*fSSDADCpereV;}
93 Int_t GetSSDIEvToADC(Double_t eV) const {
94 return ((Int_t) GetSSDDEvToADC(eV)); }
95
96 void SetSSDCouplings(Double_t pr, Double_t pl, Double_t nr, Double_t nl) {
97 fSSDCouplingPR=pr; fSSDCouplingPL=pl; fSSDCouplingNR=nr; fSSDCouplingNL=nl; }
98 Double_t GetSSDCouplingPR() const {return fSSDCouplingPR;}
99 Double_t GetSSDCouplingPL() const {return fSSDCouplingPL;}
100 Double_t GetSSDCouplingNR() const {return fSSDCouplingNR;}
101 Double_t GetSSDCouplingNL() const {return fSSDCouplingNL;}
102
103 void SetNSigmaIntegration(Double_t p1) {fNsigmas=p1;}
104 Float_t GetNSigmaIntegration() const {return fNsigmas;}
105 void SetNLookUp(Int_t p1);
106 Int_t GetGausNLookUp() const {return fNcomps;}
107 Float_t GetGausLookUp(Int_t i) {
108 if (!fGaus) SetNLookUp(fgkNcompsDefault);
109 if(i<0 || i>=fNcomps) return 0.;return fGaus->At(i);
110 }
111
2ae37d58 112 // Set the impurity concentrations in [#/cm^3]
113 void SetImpurity(Double_t n=0.0){fN = n;}
114 // Returns the impurity consentration in [#/cm^3]
115 Double_t Impurity() const {return fN;}
116
117 // Electron mobility in Si. [cm^2/(Volt Sec)]. T in degree K, N in #/cm^3
118 Double_t MobilityElectronSiEmp() const ;
119 // Hole mobility in Si. [cm^2/(Volt Sec)] T in degree K, N in #/cm^3
120 Double_t MobilityHoleSiEmp() const ;
121 // Einstein relation for Diffusion Coefficient of Electrons. [cm^2/sec]
122 // T in degree K, N in #/cm^3
123 Double_t DiffusionCoefficientElectron() const ;
124 // Einstein relation for Diffusion Coefficient of Holes. [cm^2/sec]
125 // T in [degree K], N in [#/cm^3]
126 Double_t DiffusionCoefficientHole() const ;
127 // Electron <speed> under an applied electric field E=Volts/cm. [cm/sec]
128 // d distance-thickness in [cm], v in [volts], T in [degree K],
129 // N in [#/cm^3]
130 Double_t SpeedElectron() const ;
131 // Holes <speed> under an applied electric field E=Volts/cm. [cm/sec]
132 // d distance-thickness in [cm], v in [volts], T in [degree K],
133 // N in [#/cm^3]
134 Double_t SpeedHole() const ;
135 // Returns the Gaussian sigma == <x^2+z^2> [cm^2] due to the defusion of
136 // electrons or holes through a distance l [cm] caused by an applied
137 // voltage v [volt] through a distance d [cm] in any material at a
138 // temperature T [degree K].
139 Double_t SigmaDiffusion3D(Double_t l) const;
140 // Returns the Gaussian sigma == <x^2 +y^2+z^2> [cm^2] due to the
141 // defusion of electrons or holes through a distance l [cm] caused by an
142 // applied voltage v [volt] through a distance d [cm] in any material at a
143 // temperature T [degree K].
144 Double_t SigmaDiffusion2D(Double_t l) const;
145 // Returns the Gaussian sigma == <x^2+z^2> [cm^2] due to the defusion of
146 // electrons or holes through a distance l [cm] caused by an applied
147 // voltage v [volt] through a distance d [cm] in any material at a
148 // temperature T [degree K].
149 Double_t SigmaDiffusion1D(Double_t l) const;
150 // Computes the Lorentz angle for Electron and Hole, under the Magnetic field bz (in kGauss)
151 Double_t LorentzAngleElectron(Double_t bz) const;
152 Double_t LorentzAngleHole(Double_t bz) const;
153 // Compute the thickness of the depleted region in a Si detector, version A
154 Double_t DepletedRegionThicknessA(Double_t dopCons,
155 Double_t voltage,
156 Double_t elecCharge,
157 Double_t voltBuiltIn=0.5)const;
158 // Compute the thickness of the depleted region in a Si detector, version B
159 Double_t DepletedRegionThicknessB(Double_t resist,Double_t voltage,
160 Double_t mobility,
161 Double_t voltBuiltIn=0.5,
162 Double_t dielConst=1.E-12)const;
163 // Computes the temperature dependance of the reverse bias current
164 Double_t ReverseBiasCurrent(Double_t temp,Double_t revBiasCurT1,
165 Double_t tempT1,Double_t energy=1.2)const;
166
167
cd2a0045 168 void PrintParameters() const;
169
170 protected:
171
172 static const Float_t fgkSPDBiasVoltageDefault;//default for fSPDBiasVoltage
173 static const Double_t fgkSPDThreshDefault; //default for fThresh
174 static const Double_t fgkSPDSigmaDefault; //default for fSigma
175 static const TString fgkSPDCouplingOptDefault; // type of pixel Coupling (old or new)
176 static const Double_t fgkSPDCouplColDefault; //default for fSPDCouplCol
177 static const Double_t fgkSPDCouplRowDefault; //default for fSPDCouplRow
178 static const Float_t fgkSPDEccDiffDefault;//default for fSPDEccDiff
179 static const Float_t fgkSDDDiffCoeffDefault; // default for fSDDDiffCoeff
180 static const Float_t fgkSDDDiffCoeff1Default; // default for fSDDDiffCoeff1
181 static const Float_t fgkSDDJitterErrorDefault; // default for fSDDJitterError
182 static const Float_t fgkSDDDynamicRangeDefault; // default for fSDDDynamicRange
183 static const Int_t fgkSDDMaxAdcDefault; // default for fSDDMaxAdc
184 static const Float_t fgkSDDChargeLossDefault; // default for fSDDChargeLoss
185
186 static const Double_t fgkSSDCouplingPRDefault; // default values
187 static const Double_t fgkSSDCouplingPLDefault; // for the
188 static const Double_t fgkSSDCouplingNRDefault; // various SSD
189 static const Double_t fgkSSDCouplingNLDefault; // couplings
190 static const Int_t fgkSSDZSThresholdDefault; // default for fSSDZSThreshold
191
192 static const Float_t fgkNsigmasDefault; //default for fNsigmas
193 static const Int_t fgkNcompsDefault; //default for fNcomps
194
195 private:
196 Double_t fGeVcharge; // Energy to ionize (free an electron) in GeV
197 Double_t fDOverV; // The parameter d/v where d is the disance over which the
2ae37d58 198 // the potential v is applied d/v [cm/volts]
cd2a0045 199
200
2ae37d58 201 Double_t fSPDBiasVoltage[240]; // Bias Voltage for the SPD
202 Double_t fSPDThresh[240]; // SPD Threshold value
203 Double_t fSPDSigma[240]; // SPD threshold fluctuations spread
204 Double_t fSPDNoise[240]; // SPD electronic noise: sigma
205 Double_t fSPDBaseline[240]; // SPD electronic noise: baseline
cd2a0045 206 TString fSPDCouplOpt; // SPD Coupling Option
207 Double_t fSPDCouplCol; // SPD Coupling parameter along the cols
208 Double_t fSPDCouplRow; // SPD Coupling parameter along the rows
209 Float_t fSPDEccDiff; // Eccentricity (i.e. asymmetry parameter) in the
210 // Gaussian diffusion for SPD
211
212 Int_t fSDDElectronics; // SDD Electronics Pascal (1) or OLA (2)
213 Float_t fSDDDiffCoeff; // SDD Diffusion Coefficient (scaling the time)
214 Float_t fSDDDiffCoeff1; // SDD Diffusion Coefficient (constant term)
215 Float_t fSDDJitterError; // SDD jitter error
216 Float_t fSDDDynamicRange; // SDD Dynamic Range
217 Float_t fSDDMaxAdc; // SDD ADC saturation value
218 Float_t fSDDChargeLoss; // Set Linear Coefficient for Charge Loss
219
220 Double_t fSSDADCpereV; // Constant to convert eV to ADC for SSD.
221 Double_t fSSDCouplingPR; // SSD couplings
222 Double_t fSSDCouplingPL; // SSD couplings
223 Double_t fSSDCouplingNR; // SSD couplings
224 Double_t fSSDCouplingNL; // SSD couplings
225 Int_t fSSDZSThreshold; // SSD threshold for the zero suppresion
226
227 Float_t fNsigmas; // Number of sigmas over which charge disintegration
228 // is performed
229 Int_t fNcomps; // Number of samplings along the gaussian
230 TArrayF *fGaus; // Gaussian lookup table for signal generation
231
2ae37d58 232 Double_t fN; // the impurity concentration of the material in #/cm^3 (NOT USED!)
233 Float_t fT; // The temperature of the Si in Degree K.
234
235 ClassDef(AliITSSimuParam,2);
cd2a0045 236};
237#endif