]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSTrackleterSPDEff.h
Added check for wrong records in the config file (R. Shaoyan)
[u/mrichter/AliRoot.git] / ITS / AliITSTrackleterSPDEff.h
CommitLineData
275a301c 1#ifndef ALIITSTRACKLETERSPDEFF_H
2#define ALIITSTRACKLETERSPDEFF_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
7
8//____________________________________________________________________
9//
10// AliITSTrackleterSPDEff - find SPD chips efficiencies by using tracklets.
11//
58e8dc31 12// This class was originally derived from AliITSMultReconstructor (see
13// it for more details). Later on, the inheritance was changed to AliTracker
14// It is the class for the Trackleter used to estimate
275a301c 15// SPD plane efficiency.
16// The trackleter prediction is built using the vertex and 1 cluster.
17
18//
19//
20// Author : Giuseppe Eugenio Bruno, based on the skeleton of Reconstruct method provided by Tiziano Virgili
21// email: giuseppe.bruno@ba.infn.it
22//
23//____________________________________________________________________
24
84161aec 25class AliStack;
58e8dc31 26class TTree;
27class TH1F;
28class TH2F;
29#include "AliTracker.h"
275a301c 30#include "AliITSPlaneEffSPD.h"
58e8dc31 31#include "AliPlaneEff.h"
275a301c 32
58e8dc31 33class AliITSTrackleterSPDEff : public AliTracker
275a301c 34{
35public:
36 AliITSTrackleterSPDEff();
37 virtual ~AliITSTrackleterSPDEff();
58e8dc31 38 Int_t Clusters2Tracks(AliESDEvent *);
39 Int_t PostProcess(AliESDEvent *);
40
41 virtual Int_t PropagateBack(AliESDEvent*) {return 0;}
42 virtual Int_t RefitInward(AliESDEvent*) {return 0;}
43 Int_t LoadClusters(TTree* cl) {LoadClusterArrays(cl); return 0;} // see implementation in AliITSMultReconstructor
44 virtual void UnloadClusters() {return;}
45 virtual AliCluster *GetCluster(Int_t) const {return NULL;}
46
84161aec 47 // Main method to perform the trackleter and the SPD efficiency evaluation
58e8dc31 48 void Reconstruct(AliStack* pStack=0x0, TTree* tRef=0x0);
275a301c 49
0fce916f 50 void SetReflectClusterAroundZAxisForLayer(Int_t ilayer,Bool_t b=kTRUE){ // method to study residual background:
51 if(b) AliInfo(Form("All clusters on layer %d will be rotated by 180 deg around z",ilayer));
52 if(ilayer==0) fReflectClusterAroundZAxisForLayer0=b; // a rotation by 180degree around the Z axis
53 else if(ilayer==1) fReflectClusterAroundZAxisForLayer1=b; // (x->-x; y->-y) to all RecPoints on a
54 else AliInfo("Nothing done: input argument (ilayer) either 0 or 1"); // given layer is applied. In such a way
55 } // you remove all the true tracklets.
56
58e8dc31 57 void SetOnlyOneTrackletPerC2(Bool_t b = kTRUE) {fOnlyOneTrackletPerC2 = b;}
58 void SetPhiWindow(Float_t w=0.08) {fPhiWindow=w;}
59 void SetZetaWindow(Float_t w=1.) {fZetaWindow=w;}
60
84161aec 61 void SetPhiWindowL1(Float_t w=0.08) {fPhiWindowL1=w;} // method to set the cuts in the interpolation
62 void SetZetaWindowL1(Float_t w=1.) {fZetaWindowL1=w;} // phase; use method of the base class for extrap.
63 void SetOnlyOneTrackletPerC1(Bool_t b = kTRUE) {fOnlyOneTrackletPerC1 = b;} // as in the base class but
58e8dc31 64
65 Int_t GetNClustersLayer1() const {return fNClustersLay1;}
66 Int_t GetNClustersLayer2() const {return fNClustersLay2;}
67 Int_t GetNTracklets() const {return fNTracklets;}
68
69 Float_t* GetClusterLayer1(Int_t n) {return fClustersLay1[n];}
70 Float_t* GetClusterLayer2(Int_t n) {return fClustersLay2[n];}
71 Float_t* GetTracklet(Int_t n) {return fTracklets[n];}
84161aec 72 // for the inner layer
a3b31967 73 void SetUpdateOncePerEventPlaneEff(Bool_t b = kTRUE) {fUpdateOncePerEventPlaneEff = b;}
275a301c 74
58e8dc31 75 AliITSPlaneEffSPD* GetPlaneEffSPD() const {return fPlaneEffSPD;} // return a pointer to the AliITSPlaneEffSPD
76 AliPlaneEff *GetPlaneEff() {return (AliPlaneEff*)fPlaneEffSPD;} // return the pointer to AliPlaneEff
275a301c 77
c6a05d92 78 void SetMC(Bool_t mc=kTRUE) {fMC=mc; fMC? InitPredictionMC() : DeletePredictionMC(); return;} // switch on access to MC true
84161aec 79 Bool_t GetMC() const {return fMC;} // check the access to MC true
80 // Only for MC: use only "primary" particles (according to PrimaryTrackChecker) for the tracklet prediction
81 void SetUseOnlyPrimaryForPred(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlyPrimaryForPred = flag; }
82 // Only for MC: use only "secondary" particles (according to PrimaryTrackChecker) for the tracklet prediction
275a301c 83 void SetUseOnlySecondaryForPred(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlySecondaryForPred = flag;}
84161aec 84 // Only for MC: associate a cluster to the tracklet prediction if from the same particle
275a301c 85 void SetUseOnlySameParticle(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlySameParticle = flag;}
84161aec 86 // Only for MC: associate a cluster to the tracklet prediction if from different particles
275a301c 87 void SetUseOnlyDifferentParticle(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlyDifferentParticle = flag;}
84161aec 88 // Only for MC: re-define "primary" a particle if it is also "stable" (according to definition in method DecayingTrackChecker)
275a301c 89 void SetUseOnlyStableParticle(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlyStableParticle = flag;}
84161aec 90 // only for MC: Getters relative to the above setters
275a301c 91 Bool_t GetUseOnlyPrimaryForPred() const {CallWarningMC(); return fUseOnlyPrimaryForPred; }
92 Bool_t GetUseOnlySecondaryForPred() const {CallWarningMC(); return fUseOnlySecondaryForPred;}
93 Bool_t GetUseOnlySameParticle() const {CallWarningMC(); return fUseOnlySameParticle;}
94 Bool_t GetUseOnlyDifferentParticle() const {CallWarningMC(); return fUseOnlyDifferentParticle;}
95 Bool_t GetUseOnlyStableParticle() const {CallWarningMC(); return fUseOnlyStableParticle;}
84161aec 96 // Getters for the data members related to MC true statisitcs (see below)
275a301c 97 Int_t GetPredictionPrimary(const UInt_t key) const;
98 Int_t GetPredictionSecondary(const UInt_t key) const;
99 Int_t GetClusterPrimary(const UInt_t key) const;
100 Int_t GetClusterSecondary(const UInt_t key) const;
a3b31967 101 Int_t GetSuccessPP(const UInt_t key) const;
102 Int_t GetSuccessTT(const UInt_t key) const;
103 Int_t GetSuccessS(const UInt_t key) const;
104 Int_t GetSuccessP(const UInt_t key) const;
105 Int_t GetFailureS(const UInt_t key) const;
106 Int_t GetFailureP(const UInt_t key) const;
107 Int_t GetRecons(const UInt_t key) const;
108 Int_t GetNonRecons(const UInt_t key) const;
275a301c 109 Int_t GetPredictionPrimary(const UInt_t mod, const UInt_t chip) const
110 {return GetPredictionPrimary(fPlaneEffSPD->GetKey(mod,chip));};
111 Int_t GetPredictionSecondary(const UInt_t mod, const UInt_t chip) const
112 {return GetPredictionSecondary(fPlaneEffSPD->GetKey(mod,chip));};
113 Int_t GetClusterPrimary(const UInt_t mod, const UInt_t chip) const
114 {return GetClusterPrimary(fPlaneEffSPD->GetKey(mod,chip));};
115 Int_t GetClusterSecondary(const UInt_t mod, const UInt_t chip) const
116 {return GetClusterSecondary(fPlaneEffSPD->GetKey(mod,chip));};
a3b31967 117 Int_t GetSuccessPP(const UInt_t mod, const UInt_t chip) const
118 {return GetSuccessPP(fPlaneEffSPD->GetKey(mod,chip));};
119 Int_t GetSuccessTT(const UInt_t mod, const UInt_t chip) const
120 {return GetSuccessTT(fPlaneEffSPD->GetKey(mod,chip));};
121 Int_t GetSuccessS(const UInt_t mod, const UInt_t chip) const
122 {return GetSuccessS(fPlaneEffSPD->GetKey(mod,chip));};
123 Int_t GetSuccessP(const UInt_t mod, const UInt_t chip) const
124 {return GetSuccessP(fPlaneEffSPD->GetKey(mod,chip));};
125 Int_t GetFailureS(const UInt_t mod, const UInt_t chip) const
126 {return GetFailureS(fPlaneEffSPD->GetKey(mod,chip));};
127 Int_t GetFailureP(const UInt_t mod, const UInt_t chip) const
128 {return GetFailureP(fPlaneEffSPD->GetKey(mod,chip));};
129 Int_t GetRecons(const UInt_t mod, const UInt_t chip) const
130 {return GetRecons(fPlaneEffSPD->GetKey(mod,chip));};
131 Int_t GetNonRecons(const UInt_t mod, const UInt_t chip) const
132 {return GetNonRecons(fPlaneEffSPD->GetKey(mod,chip));};
c6a05d92 133 // methods to write/reas cuts and MC statistics into/from file
134 // if filename contains ".root", then data are stored into histograms (->root file).
275a301c 135 void SavePredictionMC(TString filename="TrackletsMCpred.txt") const;
136 void ReadPredictionMC(TString filename="TrackletsMCpred.txt");
137 // Print some class info in ascii form to stream (cut values and MC statistics)
138 virtual void PrintAscii(ostream *os)const;
139 // Read some class info in ascii form from stream (cut values and MC statistics)
140 virtual void ReadAscii(istream *is);
141 Bool_t GetHistOn() const {return fHistOn;}; // return status of histograms
84161aec 142 // write histograms into a root file on disk
275a301c 143 Bool_t WriteHistosToFile(TString filename="TrackleterSPDHistos.root",Option_t* option = "RECREATE");
84161aec 144 // switch on/off the extra histograms
58e8dc31 145 void SetHistOn(Bool_t his=kTRUE) {fHistOn=his;
275a301c 146 if(GetHistOn()) {DeleteHistos(); BookHistos();} else DeleteHistos(); return;}
147
148protected:
84161aec 149 AliITSTrackleterSPDEff(const AliITSTrackleterSPDEff& mr); // protected method: no copy allowed from outside
275a301c 150 AliITSTrackleterSPDEff& operator=(const AliITSTrackleterSPDEff& mr);
58e8dc31 151//
152//// From AliITSMultReconstructor
153//
154 Float_t** fClustersLay1; // clusters in the 1st layer of ITS
155 Float_t** fClustersLay2; // clusters in the 2nd layer of ITS
156
157 Float_t** fTracklets; // tracklets
158 Bool_t* fAssociationFlag; // flag for the associations
275a301c 159
58e8dc31 160 Int_t fNClustersLay1; // Number of clusters (Layer1)
161 Int_t fNClustersLay2; // Number of clusters (Layer2)
162 Int_t fNTracklets; // Number of tracklets
163
164 // Following members are set via AliITSRecoParam
165 Bool_t fOnlyOneTrackletPerC2; // Allow only one tracklet per cluster in the outer layer
166 Float_t fPhiWindow; // Search window in phi
167 Float_t fZetaWindow; // Search window in eta
168 Float_t fPhiOverlapCut; // Fiducial window in phi for overlap cut
169 Float_t fZetaOverlapCut; // Fiducial window in eta for overlap cut
170
171 Bool_t fHistOn; // Option to define and fill the histograms
172
173 TH1F* fhClustersDPhiAcc; // Phi2 - Phi1 for tracklets
174 TH1F* fhClustersDThetaAcc; // Theta2 - Theta1 for tracklets
175 TH1F* fhClustersDZetaAcc; // z2 - z1projected for tracklets
176 TH1F* fhClustersDPhiAll; // Phi2 - Phi1 all the combinations
177 TH1F* fhClustersDThetaAll; // Theta2 - Theta1 all the combinations
178 TH1F* fhClustersDZetaAll; // z2 - z1projected all the combinations
179
180 TH2F* fhDPhiVsDThetaAll; // 2D plot for all the combinations
181 TH2F* fhDPhiVsDThetaAcc; // same plot for tracklets
182 TH2F* fhDPhiVsDZetaAll; // 2d plot for all the combination
183 TH2F* fhDPhiVsDZetaAcc; // same plot for tracklets
184
185 TH1F* fhetaTracklets; // Pseudorapidity distr. for tracklets
186 TH1F* fhphiTracklets; // Azimuthal (Phi) distr. for tracklets
187 TH1F* fhetaClustersLay1; // Pseudorapidity distr. for Clusters L. 1
188 TH1F* fhphiClustersLay1; // Azimuthal (Phi) distr. for Clusters L. 1
189//
190//
275a301c 191 Bool_t* fAssociationFlag1; // flag for the associations (Layer 1)
192 UInt_t* fChipPredOnLay2; // prediction for the chip traversed by the tracklet
193 // based on vtx and ClusterLay1 (to be used in extrapolation)
194 UInt_t* fChipPredOnLay1; // prediction for the chip traversed by the tracklet
195 // based on vtx and ClusterLay2 (to be used in interpolation)
196 Int_t fNTracklets1; // Number of tracklets layer 1
a3b31967 197 // possible cuts :
275a301c 198 Float_t fPhiWindowL1; // Search window in phi (Layer 1)
199 Float_t fZetaWindowL1; // SEarch window in zeta (Layer 1)
200 Bool_t fOnlyOneTrackletPerC1; // only one tracklet per cluster in L. 1
a3b31967 201 Bool_t fUpdateOncePerEventPlaneEff; // If this is kTRUE, then you can update the chip efficiency only once
202 // per event in that chip. This to avoid double counting from the
203 // same tracklets which has two rec-points on one layer.
204 Bool_t* fChipUpdatedInEvent; // boolean (chip by chip) to flag which chip has been updated its efficiency
205 // in that event
275a301c 206 AliITSPlaneEffSPD* fPlaneEffSPD; // pointer to SPD plane efficiency class
0fce916f 207 Bool_t fReflectClusterAroundZAxisForLayer0; // if kTRUE, then a 180degree rotation around Z is applied to all
208 Bool_t fReflectClusterAroundZAxisForLayer1; // clusters on that layer (x->-x; y->-y)
275a301c 209 Bool_t fMC; // Boolean to access Kinematics (only for MC events )
210 Bool_t fUseOnlyPrimaryForPred; // Only for MC: if this is true, build tracklet prediction using only primary particles
211 Bool_t fUseOnlySecondaryForPred; // Only for MC: if this is true build tracklet prediction using only secondary particles
212 Bool_t fUseOnlySameParticle; // Only for MC: if this is true, assign a success only if clusters from same particles
213 // (i.e. PP or SS) otherwise ignore the combination
214 Bool_t fUseOnlyDifferentParticle; // Only for MC: if this is true, assign a success only if clusters from different particles
215 // (i.e. PP' or PS or SS') otherwise ignore the combination
216 Bool_t fUseOnlyStableParticle; // Only for MC: if this is kTRUE then method PrimaryTrackChecker return kTRUE only
217 // for particles decaying (eventually) after pixel layers
218 Int_t *fPredictionPrimary; // those for correction of bias from secondaries
219 Int_t *fPredictionSecondary; // chip_by_chip: number of Prediction built with primaries/secondaries
220 Int_t *fClusterPrimary; // number of clusters on a given chip fired by (at least) a primary
221 Int_t *fClusterSecondary; // number of clusters on a given chip fired by (only) secondaries
a3b31967 222 Int_t *fSuccessPP; // number of successes by using the same primary track (vs. chip of the success)
223 Int_t *fSuccessTT; // number of successes by using the same track (either a primary or a secondary) (vs. chip of the success)
224 Int_t *fSuccessS; // number of successes by using a secondary for the prediction (vs. chip of the success)
225 Int_t *fSuccessP; // number of successes by using a primary for the prediction (vs. chip of the success)
226 Int_t *fFailureS; // number of failures by using a secondary for the prediction (vs. chip of the failure)
227 Int_t *fFailureP; // number of failures by using a primary for the prediction (vs. chip of the failure)
228 Int_t *fRecons; // number of particle which can be reconstructed (only for MC from TrackRef)
229 Int_t *fNonRecons; // unmber of particle which cannot be reconstructed (only for MC from TrackRef)
275a301c 230 // extra histograms with respect to the base class AliITSMultReconstructor
231 TH1F* fhClustersDPhiInterpAcc; // Phi2 - Phi1 for tracklets (interpolation phase)
232 TH1F* fhClustersDThetaInterpAcc; // Theta2 - Theta1 for tracklets (interpolation phase)
233 TH1F* fhClustersDZetaInterpAcc; // z2 - z1projected for tracklets (interpolation phase)
234 TH1F* fhClustersDPhiInterpAll; // Phi2 - Phi1 all the combinations (interpolation phase)
235 TH1F* fhClustersDThetaInterpAll; // Theta2 - Theta1 all the combinations (interpolation phase)
236 TH1F* fhClustersDZetaInterpAll; // z2 - z1projected all the combinations (interpolation phase)
237 TH2F* fhDPhiVsDThetaInterpAll; // 2D plot for all the combinations
238 TH2F* fhDPhiVsDThetaInterpAcc; // same plot for tracklets
239 TH2F* fhDPhiVsDZetaInterpAll; // 2d plot for all the combination
240 TH2F* fhDPhiVsDZetaInterpAcc; // same plot for tracklets
241 TH1F* fhetaClustersLay2; // Pseudorapidity distr. for Clusters L. 2
242 TH1F* fhphiClustersLay2; // Azimuthal (Phi) distr. for Clusters L. 2
243//
244 Double_t GetRLayer(Int_t layer); // return average radius of layer (0,1) from Geometry
245 Bool_t PrimaryTrackChecker(Int_t ipart,AliStack* stack=0x0); // check if a MC particle is primary (need AliStack)
246 Int_t DecayingTrackChecker(Int_t ipart,AliStack* stack=0x0); // For a primary particle, check if it is stable (see cxx)
a3b31967 247// check if a MC particle is reconstructable
248 Bool_t IsReconstructableAt(Int_t layer,Int_t iC,Int_t ipart,Float_t* vtx,AliStack* stack=0x0,TTree* ref=0x0);
c6a05d92 249 void InitPredictionMC(); // allocate memory for cuts and MC data memebers
250 void DeletePredictionMC(); // deallocate memory
275a301c 251 // method to locate a chip using current vtx and polar coordinate od tracklet w.r.t. to vtx (zVtx may not be given)
252 Bool_t FindChip(UInt_t &key, Int_t layer, Float_t* vtx, Float_t thetaVtx, Float_t phiVtx, Float_t zVtx=999.);
253 // method to transform from Global Cilindrical coordinate to local (module) Cartesian coordinate
254 Bool_t FromGloCilToLocCart(Int_t ilayer,Int_t idet, Double_t r, Double_t phi, Double_t z,
255 Float_t &xloc, Float_t &zloc);
256 // method to obtain the module (detector) index using global coordinates
257 Int_t FindDetectorIndex(Int_t layer, Double_t phi, Double_t z);
258 // this method gives you the intersections between a line and a circle (centred in the origin)
259 // using polar coordinates
260 Bool_t FindIntersectionPolar(Double_t vtx[2],Double_t phiVtx, Double_t R,Double_t &phi);
261 Bool_t SetAngleRange02Pi(Double_t &angle); // set the range of angle in [0,2pi[
262 Bool_t SetAngleRange02Pi(Float_t &angle)
263 {Double_t tmp=(Double_t)angle; Bool_t ret=SetAngleRange02Pi(tmp);angle=(Float_t)tmp;return ret;};
264 void CallWarningMC() const {if(!fMC) AliWarning("You can use this method only for MC! Call SetMC() first");}
265 Bool_t SaveHists();
266 void BookHistos(); // booking of extra histograms w.r.t. base class
267 void DeleteHistos(); //delete histos from memory
0fce916f 268 // Method to apply a rotation by 180degree to all RecPoints (x->-x; y->-y) on a given layer
269 void ReflectClusterAroundZAxisForLayer(Int_t ilayer); // to be used for backgnd estimation on real data
275a301c 270
58e8dc31 271 void LoadClusterArrays(TTree* tree);
272
0fce916f 273 ClassDef(AliITSTrackleterSPDEff,3)
275a301c 274};
275// Input and output function for standard C++ input/output (for the cut values and MC statistics).
276ostream &operator<<(ostream &os,const AliITSTrackleterSPDEff &s);
277istream &operator>>(istream &is, AliITSTrackleterSPDEff &s);
278#endif