macro to make the basic calibration trend graphs
[u/mrichter/AliRoot.git] / ITS / AliITSTrackleterSPDEff.h
CommitLineData
275a301c 1#ifndef ALIITSTRACKLETERSPDEFF_H
2#define ALIITSTRACKLETERSPDEFF_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
7
8//____________________________________________________________________
9//
10// AliITSTrackleterSPDEff - find SPD chips efficiencies by using tracklets.
11//
58e8dc31 12// This class was originally derived from AliITSMultReconstructor (see
13// it for more details). Later on, the inheritance was changed to AliTracker
14// It is the class for the Trackleter used to estimate
275a301c 15// SPD plane efficiency.
16// The trackleter prediction is built using the vertex and 1 cluster.
17
18//
19//
20// Author : Giuseppe Eugenio Bruno, based on the skeleton of Reconstruct method provided by Tiziano Virgili
21// email: giuseppe.bruno@ba.infn.it
22//
23//____________________________________________________________________
24
84161aec 25class AliStack;
58e8dc31 26class TTree;
27class TH1F;
28class TH2F;
29#include "AliTracker.h"
275a301c 30#include "AliITSPlaneEffSPD.h"
58e8dc31 31#include "AliPlaneEff.h"
275a301c 32
58e8dc31 33class AliITSTrackleterSPDEff : public AliTracker
275a301c 34{
35public:
36 AliITSTrackleterSPDEff();
37 virtual ~AliITSTrackleterSPDEff();
0ea92079 38 Int_t Clusters2Tracks(AliESDEvent *esd);
58e8dc31 39 Int_t PostProcess(AliESDEvent *);
40
41 virtual Int_t PropagateBack(AliESDEvent*) {return 0;}
42 virtual Int_t RefitInward(AliESDEvent*) {return 0;}
43 Int_t LoadClusters(TTree* cl) {LoadClusterArrays(cl); return 0;} // see implementation in AliITSMultReconstructor
44 virtual void UnloadClusters() {return;}
45 virtual AliCluster *GetCluster(Int_t) const {return NULL;}
46
84161aec 47 // Main method to perform the trackleter and the SPD efficiency evaluation
03ee9629 48 void Reconstruct(AliStack* pStack=0x0, TTree* tRef=0x0, Bool_t lbkg=kFALSE);
275a301c 49
0fce916f 50 void SetReflectClusterAroundZAxisForLayer(Int_t ilayer,Bool_t b=kTRUE){ // method to study residual background:
03ee9629 51 if(b) {AliInfo(Form("All clusters on layer %d will be rotated by 180 deg around z",ilayer));
52 SetLightBkgStudyInParallel(kFALSE);}
0fce916f 53 if(ilayer==0) fReflectClusterAroundZAxisForLayer0=b; // a rotation by 180degree around the Z axis
54 else if(ilayer==1) fReflectClusterAroundZAxisForLayer1=b; // (x->-x; y->-y) to all RecPoints on a
55 else AliInfo("Nothing done: input argument (ilayer) either 0 or 1"); // given layer is applied. In such a way
56 } // you remove all the true tracklets.
03ee9629 57 void SetLightBkgStudyInParallel(Bool_t b = kTRUE); // if you set this on, then the estimation of the
58 // SPD efficiency is done as usual for data, but in
59 // parallel a light (i.e. without control histograms, etc.)
60 // evaluation of combinatorial background is performed
61 // with the usual ReflectClusterAroundZAxisForLayer method.
62 Bool_t GetLightBkgStudyInParallel() const {return fLightBkgStudyInParallel;}
58e8dc31 63 void SetOnlyOneTrackletPerC2(Bool_t b = kTRUE) {fOnlyOneTrackletPerC2 = b;}
7284b2b2 64 void SetPhiWindowL2(Float_t w=0.08) {fPhiWindowL2=w;}
65 void SetZetaWindowL2(Float_t w=1.) {fZetaWindowL2=w;}
58e8dc31 66
84161aec 67 void SetPhiWindowL1(Float_t w=0.08) {fPhiWindowL1=w;} // method to set the cuts in the interpolation
68 void SetZetaWindowL1(Float_t w=1.) {fZetaWindowL1=w;} // phase; use method of the base class for extrap.
69 void SetOnlyOneTrackletPerC1(Bool_t b = kTRUE) {fOnlyOneTrackletPerC1 = b;} // as in the base class but
0ea92079 70 void SetMinContVtx(Int_t min=3) {fMinContVtx=min;} // set minimum n. of contributors to vertex
58e8dc31 71
72 Int_t GetNClustersLayer1() const {return fNClustersLay1;}
73 Int_t GetNClustersLayer2() const {return fNClustersLay2;}
74 Int_t GetNTracklets() const {return fNTracklets;}
75
76 Float_t* GetClusterLayer1(Int_t n) {return fClustersLay1[n];}
77 Float_t* GetClusterLayer2(Int_t n) {return fClustersLay2[n];}
78 Float_t* GetTracklet(Int_t n) {return fTracklets[n];}
84161aec 79 // for the inner layer
a3b31967 80 void SetUpdateOncePerEventPlaneEff(Bool_t b = kTRUE) {fUpdateOncePerEventPlaneEff = b;}
275a301c 81
58e8dc31 82 AliITSPlaneEffSPD* GetPlaneEffSPD() const {return fPlaneEffSPD;} // return a pointer to the AliITSPlaneEffSPD
83 AliPlaneEff *GetPlaneEff() {return (AliPlaneEff*)fPlaneEffSPD;} // return the pointer to AliPlaneEff
275a301c 84
c6a05d92 85 void SetMC(Bool_t mc=kTRUE) {fMC=mc; fMC? InitPredictionMC() : DeletePredictionMC(); return;} // switch on access to MC true
84161aec 86 Bool_t GetMC() const {return fMC;} // check the access to MC true
87 // Only for MC: use only "primary" particles (according to PrimaryTrackChecker) for the tracklet prediction
88 void SetUseOnlyPrimaryForPred(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlyPrimaryForPred = flag; }
89 // Only for MC: use only "secondary" particles (according to PrimaryTrackChecker) for the tracklet prediction
275a301c 90 void SetUseOnlySecondaryForPred(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlySecondaryForPred = flag;}
84161aec 91 // Only for MC: associate a cluster to the tracklet prediction if from the same particle
275a301c 92 void SetUseOnlySameParticle(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlySameParticle = flag;}
84161aec 93 // Only for MC: associate a cluster to the tracklet prediction if from different particles
275a301c 94 void SetUseOnlyDifferentParticle(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlyDifferentParticle = flag;}
84161aec 95 // Only for MC: re-define "primary" a particle if it is also "stable" (according to definition in method DecayingTrackChecker)
275a301c 96 void SetUseOnlyStableParticle(Bool_t flag=kTRUE) {CallWarningMC(); fUseOnlyStableParticle = flag;}
84161aec 97 // only for MC: Getters relative to the above setters
275a301c 98 Bool_t GetUseOnlyPrimaryForPred() const {CallWarningMC(); return fUseOnlyPrimaryForPred; }
99 Bool_t GetUseOnlySecondaryForPred() const {CallWarningMC(); return fUseOnlySecondaryForPred;}
100 Bool_t GetUseOnlySameParticle() const {CallWarningMC(); return fUseOnlySameParticle;}
101 Bool_t GetUseOnlyDifferentParticle() const {CallWarningMC(); return fUseOnlyDifferentParticle;}
102 Bool_t GetUseOnlyStableParticle() const {CallWarningMC(); return fUseOnlyStableParticle;}
84161aec 103 // Getters for the data members related to MC true statisitcs (see below)
275a301c 104 Int_t GetPredictionPrimary(const UInt_t key) const;
105 Int_t GetPredictionSecondary(const UInt_t key) const;
106 Int_t GetClusterPrimary(const UInt_t key) const;
107 Int_t GetClusterSecondary(const UInt_t key) const;
a3b31967 108 Int_t GetSuccessPP(const UInt_t key) const;
109 Int_t GetSuccessTT(const UInt_t key) const;
110 Int_t GetSuccessS(const UInt_t key) const;
111 Int_t GetSuccessP(const UInt_t key) const;
112 Int_t GetFailureS(const UInt_t key) const;
113 Int_t GetFailureP(const UInt_t key) const;
114 Int_t GetRecons(const UInt_t key) const;
115 Int_t GetNonRecons(const UInt_t key) const;
275a301c 116 Int_t GetPredictionPrimary(const UInt_t mod, const UInt_t chip) const
117 {return GetPredictionPrimary(fPlaneEffSPD->GetKey(mod,chip));};
118 Int_t GetPredictionSecondary(const UInt_t mod, const UInt_t chip) const
119 {return GetPredictionSecondary(fPlaneEffSPD->GetKey(mod,chip));};
120 Int_t GetClusterPrimary(const UInt_t mod, const UInt_t chip) const
121 {return GetClusterPrimary(fPlaneEffSPD->GetKey(mod,chip));};
122 Int_t GetClusterSecondary(const UInt_t mod, const UInt_t chip) const
123 {return GetClusterSecondary(fPlaneEffSPD->GetKey(mod,chip));};
a3b31967 124 Int_t GetSuccessPP(const UInt_t mod, const UInt_t chip) const
125 {return GetSuccessPP(fPlaneEffSPD->GetKey(mod,chip));};
126 Int_t GetSuccessTT(const UInt_t mod, const UInt_t chip) const
127 {return GetSuccessTT(fPlaneEffSPD->GetKey(mod,chip));};
128 Int_t GetSuccessS(const UInt_t mod, const UInt_t chip) const
129 {return GetSuccessS(fPlaneEffSPD->GetKey(mod,chip));};
130 Int_t GetSuccessP(const UInt_t mod, const UInt_t chip) const
131 {return GetSuccessP(fPlaneEffSPD->GetKey(mod,chip));};
132 Int_t GetFailureS(const UInt_t mod, const UInt_t chip) const
133 {return GetFailureS(fPlaneEffSPD->GetKey(mod,chip));};
134 Int_t GetFailureP(const UInt_t mod, const UInt_t chip) const
135 {return GetFailureP(fPlaneEffSPD->GetKey(mod,chip));};
136 Int_t GetRecons(const UInt_t mod, const UInt_t chip) const
137 {return GetRecons(fPlaneEffSPD->GetKey(mod,chip));};
138 Int_t GetNonRecons(const UInt_t mod, const UInt_t chip) const
139 {return GetNonRecons(fPlaneEffSPD->GetKey(mod,chip));};
c6a05d92 140 // methods to write/reas cuts and MC statistics into/from file
141 // if filename contains ".root", then data are stored into histograms (->root file).
17d531c2 142 void SavePredictionMC(TString filename="TrackletsMCpred.root") const;
143 void ReadPredictionMC(TString filename="TrackletsMCpred.root");
275a301c 144 // Print some class info in ascii form to stream (cut values and MC statistics)
145 virtual void PrintAscii(ostream *os)const;
146 // Read some class info in ascii form from stream (cut values and MC statistics)
147 virtual void ReadAscii(istream *is);
148 Bool_t GetHistOn() const {return fHistOn;}; // return status of histograms
84161aec 149 // write histograms into a root file on disk
275a301c 150 Bool_t WriteHistosToFile(TString filename="TrackleterSPDHistos.root",Option_t* option = "RECREATE");
84161aec 151 // switch on/off the extra histograms
58e8dc31 152 void SetHistOn(Bool_t his=kTRUE) {fHistOn=his;
275a301c 153 if(GetHistOn()) {DeleteHistos(); BookHistos();} else DeleteHistos(); return;}
154
155protected:
84161aec 156 AliITSTrackleterSPDEff(const AliITSTrackleterSPDEff& mr); // protected method: no copy allowed from outside
275a301c 157 AliITSTrackleterSPDEff& operator=(const AliITSTrackleterSPDEff& mr);
58e8dc31 158//
159//// From AliITSMultReconstructor
160//
17d531c2 161 Float_t** fClustersLay1; //! clusters in the 1st layer of ITS
162 Float_t** fClustersLay2; //! clusters in the 2nd layer of ITS
58e8dc31 163
17d531c2 164 Float_t** fTracklets; //! tracklets
165 Bool_t* fAssociationFlag; //! flag for the associations
275a301c 166
58e8dc31 167 Int_t fNClustersLay1; // Number of clusters (Layer1)
168 Int_t fNClustersLay2; // Number of clusters (Layer2)
169 Int_t fNTracklets; // Number of tracklets
170
171 // Following members are set via AliITSRecoParam
172 Bool_t fOnlyOneTrackletPerC2; // Allow only one tracklet per cluster in the outer layer
7284b2b2 173 Float_t fPhiWindowL2; // Search window in phi
174 Float_t fZetaWindowL2; // Search window in eta
58e8dc31 175 Float_t fPhiOverlapCut; // Fiducial window in phi for overlap cut
176 Float_t fZetaOverlapCut; // Fiducial window in eta for overlap cut
177
178 Bool_t fHistOn; // Option to define and fill the histograms
179
17d531c2 180 TH1F* fhClustersDPhiAcc; //! Phi2 - Phi1 for tracklets
181 TH1F* fhClustersDThetaAcc; //! Theta2 - Theta1 for tracklets
182 TH1F* fhClustersDZetaAcc; //! z2 - z1projected for tracklets
183 TH1F* fhClustersDPhiAll; //! Phi2 - Phi1 all the combinations
184 TH1F* fhClustersDThetaAll; //! Theta2 - Theta1 all the combinations
185 TH1F* fhClustersDZetaAll; //! z2 - z1projected all the combinations
58e8dc31 186
17d531c2 187 TH2F* fhDPhiVsDThetaAll; //! 2D plot for all the combinations
188 TH2F* fhDPhiVsDThetaAcc; //! same plot for tracklets
189 TH2F* fhDPhiVsDZetaAll; //! 2d plot for all the combination
190 TH2F* fhDPhiVsDZetaAcc; //! same plot for tracklets
58e8dc31 191
17d531c2 192 TH1F* fhetaTracklets; //! Pseudorapidity distr. for tracklets
193 TH1F* fhphiTracklets; //! Azimuthal (Phi) distr. for tracklets
194 TH1F* fhetaClustersLay1; //! Pseudorapidity distr. for Clusters L. 1
195 TH1F* fhphiClustersLay1; //! Azimuthal (Phi) distr. for Clusters L. 1
58e8dc31 196//
197//
17d531c2 198 Bool_t* fAssociationFlag1; //! flag for the associations (Layer 1)
199 UInt_t* fChipPredOnLay2; //! prediction for the chip traversed by the tracklet
200 // based on vtx and ClusterLay1 (to be used in extrapolation)
201 UInt_t* fChipPredOnLay1; //! prediction for the chip traversed by the tracklet
275a301c 202 // based on vtx and ClusterLay2 (to be used in interpolation)
203 Int_t fNTracklets1; // Number of tracklets layer 1
a3b31967 204 // possible cuts :
275a301c 205 Float_t fPhiWindowL1; // Search window in phi (Layer 1)
206 Float_t fZetaWindowL1; // SEarch window in zeta (Layer 1)
207 Bool_t fOnlyOneTrackletPerC1; // only one tracklet per cluster in L. 1
a3b31967 208 Bool_t fUpdateOncePerEventPlaneEff; // If this is kTRUE, then you can update the chip efficiency only once
0ea92079 209 Int_t fMinContVtx; // minimum number of contributors (tracklets) to the vertex for the event to be used
a3b31967 210 // per event in that chip. This to avoid double counting from the
211 // same tracklets which has two rec-points on one layer.
17d531c2 212 Bool_t* fChipUpdatedInEvent; //! boolean (chip by chip) to flag which chip has been updated its efficiency
a3b31967 213 // in that event
17d531c2 214 AliITSPlaneEffSPD* fPlaneEffSPD; //! pointer to SPD plane efficiency class
03ee9629 215 AliITSPlaneEffSPD* fPlaneEffBkg; //! pointer to SPD plane efficiency class for background evaluation
0fce916f 216 Bool_t fReflectClusterAroundZAxisForLayer0; // if kTRUE, then a 180degree rotation around Z is applied to all
217 Bool_t fReflectClusterAroundZAxisForLayer1; // clusters on that layer (x->-x; y->-y)
03ee9629 218 Bool_t fLightBkgStudyInParallel; // if this is kTRUE, the basic and correct evaluation of background is performed
219 // in paralell to standard SPD efficiency evaluation
275a301c 220 Bool_t fMC; // Boolean to access Kinematics (only for MC events )
221 Bool_t fUseOnlyPrimaryForPred; // Only for MC: if this is true, build tracklet prediction using only primary particles
222 Bool_t fUseOnlySecondaryForPred; // Only for MC: if this is true build tracklet prediction using only secondary particles
223 Bool_t fUseOnlySameParticle; // Only for MC: if this is true, assign a success only if clusters from same particles
224 // (i.e. PP or SS) otherwise ignore the combination
225 Bool_t fUseOnlyDifferentParticle; // Only for MC: if this is true, assign a success only if clusters from different particles
226 // (i.e. PP' or PS or SS') otherwise ignore the combination
227 Bool_t fUseOnlyStableParticle; // Only for MC: if this is kTRUE then method PrimaryTrackChecker return kTRUE only
228 // for particles decaying (eventually) after pixel layers
17d531c2 229 Int_t *fPredictionPrimary; //! those for correction of bias from secondaries
230 Int_t *fPredictionSecondary; //! chip_by_chip: number of Prediction built with primaries/secondaries
231 Int_t *fClusterPrimary; //! number of clusters on a given chip fired by (at least) a primary
232 Int_t *fClusterSecondary; //! number of clusters on a given chip fired by (only) secondaries
233 Int_t *fSuccessPP; //! number of successes by using the same primary track (vs. chip of the success)
234 Int_t *fSuccessTT; //! number of successes by using the same track (either a primary or a secondary) (vs. chip of the success)
235 Int_t *fSuccessS; //! number of successes by using a secondary for the prediction (vs. chip of the success)
236 Int_t *fSuccessP; //! number of successes by using a primary for the prediction (vs. chip of the success)
237 Int_t *fFailureS; //! number of failures by using a secondary for the prediction (vs. chip of the failure)
238 Int_t *fFailureP; //! number of failures by using a primary for the prediction (vs. chip of the failure)
239 Int_t *fRecons; //! number of particle which can be reconstructed (only for MC from TrackRef)
240 Int_t *fNonRecons; //! unmber of particle which cannot be reconstructed (only for MC from TrackRef)
275a301c 241 // extra histograms with respect to the base class AliITSMultReconstructor
17d531c2 242 TH1F* fhClustersDPhiInterpAcc; //! Phi2 - Phi1 for tracklets (interpolation phase)
243 TH1F* fhClustersDThetaInterpAcc; //! Theta2 - Theta1 for tracklets (interpolation phase)
244 TH1F* fhClustersDZetaInterpAcc; //! z2 - z1projected for tracklets (interpolation phase)
245 TH1F* fhClustersDPhiInterpAll; //! Phi2 - Phi1 all the combinations (interpolation phase)
246 TH1F* fhClustersDThetaInterpAll; //! Theta2 - Theta1 all the combinations (interpolation phase)
247 TH1F* fhClustersDZetaInterpAll; //! z2 - z1projected all the combinations (interpolation phase)
248 TH2F* fhDPhiVsDThetaInterpAll; //! 2D plot for all the combinations
249 TH2F* fhDPhiVsDThetaInterpAcc; //! same plot for tracklets
250 TH2F* fhDPhiVsDZetaInterpAll; //! 2d plot for all the combination
251 TH2F* fhDPhiVsDZetaInterpAcc; //! same plot for tracklets
252 TH1F* fhetaClustersLay2; //! Pseudorapidity distr. for Clusters L. 2
253 TH1F* fhphiClustersLay2; //! Azimuthal (Phi) distr. for Clusters L. 2
254 TH1F* fhClustersInChip; //! number of fired clusters versus chip number [0,1199]
255 TH2F** fhClustersInModuleLay1; //! distribution of cluster in the module Lay 1 (sub-chip scale)
256 TH2F** fhClustersInModuleLay2; //! distribution of cluster in the module Lay 2 (sub-chip scale)
275a301c 257//
258 Double_t GetRLayer(Int_t layer); // return average radius of layer (0,1) from Geometry
259 Bool_t PrimaryTrackChecker(Int_t ipart,AliStack* stack=0x0); // check if a MC particle is primary (need AliStack)
260 Int_t DecayingTrackChecker(Int_t ipart,AliStack* stack=0x0); // For a primary particle, check if it is stable (see cxx)
a3b31967 261// check if a MC particle is reconstructable
262 Bool_t IsReconstructableAt(Int_t layer,Int_t iC,Int_t ipart,Float_t* vtx,AliStack* stack=0x0,TTree* ref=0x0);
c6a05d92 263 void InitPredictionMC(); // allocate memory for cuts and MC data memebers
264 void DeletePredictionMC(); // deallocate memory
275a301c 265 // method to locate a chip using current vtx and polar coordinate od tracklet w.r.t. to vtx (zVtx may not be given)
266 Bool_t FindChip(UInt_t &key, Int_t layer, Float_t* vtx, Float_t thetaVtx, Float_t phiVtx, Float_t zVtx=999.);
267 // method to transform from Global Cilindrical coordinate to local (module) Cartesian coordinate
268 Bool_t FromGloCilToLocCart(Int_t ilayer,Int_t idet, Double_t r, Double_t phi, Double_t z,
269 Float_t &xloc, Float_t &zloc);
270 // method to obtain the module (detector) index using global coordinates
271 Int_t FindDetectorIndex(Int_t layer, Double_t phi, Double_t z);
272 // this method gives you the intersections between a line and a circle (centred in the origin)
273 // using polar coordinates
274 Bool_t FindIntersectionPolar(Double_t vtx[2],Double_t phiVtx, Double_t R,Double_t &phi);
275 Bool_t SetAngleRange02Pi(Double_t &angle); // set the range of angle in [0,2pi[
276 Bool_t SetAngleRange02Pi(Float_t &angle)
277 {Double_t tmp=(Double_t)angle; Bool_t ret=SetAngleRange02Pi(tmp);angle=(Float_t)tmp;return ret;};
278 void CallWarningMC() const {if(!fMC) AliWarning("You can use this method only for MC! Call SetMC() first");}
279 Bool_t SaveHists();
280 void BookHistos(); // booking of extra histograms w.r.t. base class
281 void DeleteHistos(); //delete histos from memory
0fce916f 282 // Method to apply a rotation by 180degree to all RecPoints (x->-x; y->-y) on a given layer
283 void ReflectClusterAroundZAxisForLayer(Int_t ilayer); // to be used for backgnd estimation on real data
275a301c 284
58e8dc31 285 void LoadClusterArrays(TTree* tree);
286
03ee9629 287 ClassDef(AliITSTrackleterSPDEff,6)
275a301c 288};
289// Input and output function for standard C++ input/output (for the cut values and MC statistics).
290ostream &operator<<(ostream &os,const AliITSTrackleterSPDEff &s);
291istream &operator>>(istream &is, AliITSTrackleterSPDEff &s);
292#endif
0ea92079 293