eb35e591 |
1 | /************************************************************************** |
2 | * Copyright(c) 2006-2008, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
16 | //----------------------------------------------------------------- |
17 | // AliITSVertexer3DTapan class |
18 | // This is a class for the 3d vertex finding |
19 | // Origin: Tapan Nayak, VECC-CERN, Tapan.Nayak@cern.ch |
20 | //----------------------------------------------------------------- |
21 | |
22 | #include <TH1.h> |
23 | #include <TTree.h> |
24 | #include <TClonesArray.h> |
25 | |
26 | #include <AliITSVertexer3DTapan.h> |
27 | #include <AliITSRecPoint.h> |
37add1d1 |
28 | #include <AliITSgeomTGeo.h> |
eb35e591 |
29 | #include <AliESDVertex.h> |
30 | |
31 | ClassImp(AliITSVertexer3DTapan) |
32 | |
308c2f7c |
33 | void AliITSVertexer3DTapan::LoadClusters(TTree *cTree) { |
eb35e591 |
34 | //-------------------------------------------------------------------- |
35 | //This function loads the SPD clusters |
36 | //-------------------------------------------------------------------- |
37 | TClonesArray dummy("AliITSRecPoint",10000), *clusters=&dummy; |
38 | TBranch *branch=cTree->GetBranch("ITSRecPoints"); |
39 | branch->SetAddress(&clusters); |
40 | |
41 | Int_t nentr=cTree->GetEntries(),nc1=0,nc2=0; |
42 | for (Int_t i=0; i<nentr; i++) { |
43 | if (!cTree->GetEvent(i)) continue; |
44 | // |
45 | // Below: |
46 | // "alpha" is the angle from the global X-axis to the |
47 | // local GEANT X'-axis ( rot[0]=cos(alpha) and rot[1]=sin(alpha) ) |
48 | // "phi" is the angle from the global X-axis to the |
49 | // local cluster X"-axis |
50 | // |
51 | |
37add1d1 |
52 | Int_t lay,lad,det; AliITSgeomTGeo::GetModuleId(i,lay,lad,det); |
eb35e591 |
53 | |
54 | if (lay>2) break; //load the SPD clusters only |
55 | |
eb35e591 |
56 | Int_t ncl=clusters->GetEntriesFast(); |
225cff59 |
57 | Float_t hPhi=0.; |
eb35e591 |
58 | while (ncl--) { |
59 | AliITSRecPoint *c=(AliITSRecPoint*)clusters->UncheckedAt(ncl); |
60 | Float_t pos[3]; |
61 | c->GetGlobalXYZ(pos); |
62 | if (lay==1) { |
63 | /* fX1[nc1]= r*cp - c->GetY()*sp; |
64 | fY1[nc1]= r*sp + c->GetY()*cp; |
65 | fZ1[nc1]= c->GetZ(); */ |
66 | fX1[nc1] = pos[0]; fY1[nc1] = pos[1]; fZ1[nc1] = pos[2]; |
67 | CalculatePhi(fX1[nc1], fY1[nc1], hPhi); |
68 | fPhi1[nc1]= hPhi; |
69 | nc1++; |
70 | } else { |
71 | /* fX2[nc2]= r*cp - c->GetY()*sp; |
72 | fY2[nc2]= r*sp + c->GetY()*cp; |
73 | fZ2[nc2]= c->GetZ(); */ |
74 | fX2[nc2] = pos[0]; fY2[nc2] = pos[1]; fZ2[nc2] = pos[2]; |
75 | CalculatePhi(fX2[nc2], fY2[nc2], hPhi); |
76 | fPhi2[nc2]= hPhi; |
77 | nc2++; |
78 | } |
79 | } |
80 | } |
81 | ficlu1 = nc1; ficlu2 = nc2; |
82 | AliInfo(Form("Number of clusters: %d (first layer) and %d (second layer)",ficlu1,ficlu2)); |
eb35e591 |
83 | } |
84 | |
308c2f7c |
85 | AliESDVertex *AliITSVertexer3DTapan::FindVertexForCurrentEvent(TTree *cTree) { |
eb35e591 |
86 | // |
87 | // This function reconstructs .... |
88 | // |
89 | // |
308c2f7c |
90 | LoadClusters(cTree); |
eb35e591 |
91 | |
225cff59 |
92 | Double_t pos[3], postemp[3]; |
93 | Double_t sigpos[3]={0.,0.,0.}; |
eb35e591 |
94 | Int_t ncontr, ncontrtemp; |
95 | Float_t cuts[3]; |
96 | Int_t vtxstatus=0; |
97 | |
98 | //.... |
99 | pos[0] = 0.; pos[1] = 0.; pos[2] = 0.; |
100 | cuts[0]=1.; cuts[1]=1.; cuts[2]=20.; |
101 | CalculateVertex3d1(pos, cuts, ncontr); |
102 | if(ncontr==0) { |
103 | pos[0] = 9999.; pos[1] = 9999.; pos[2] = 9999.; |
104 | vtxstatus = -1; |
105 | } |
106 | AliInfo(Form("1st step: %d %f %f %f st=%d",ncontr,pos[0],pos[1],pos[2],vtxstatus)); |
107 | |
108 | if(vtxstatus == 0) { |
109 | ncontrtemp = ncontr; postemp[0] = pos[0]; postemp[1] = pos[1]; postemp[2] = pos[2]; |
110 | cuts[0]=0.3; cuts[1]=0.3; cuts[2]=1.; |
111 | CalculateVertex3d1(pos, cuts, ncontr); |
112 | if(ncontr==0) { |
113 | ncontr = ncontrtemp; pos[0] = postemp[0]; pos[1] = postemp[1]; pos[2] = postemp[2]; |
114 | vtxstatus = 2; |
115 | } |
116 | AliInfo(Form("2nd step: %d %f %f %f st=%d",ncontr,pos[0],pos[1],pos[2],vtxstatus)); |
117 | } |
118 | |
119 | if(vtxstatus == 0) { |
120 | ncontrtemp = ncontr; postemp[0] = pos[0]; postemp[1] = pos[1]; postemp[2] = pos[2]; |
121 | cuts[0]=0.25; cuts[1]=0.25; cuts[2]=1.0; |
122 | CalculateVertex3d2(pos, cuts, ncontr, sigpos); |
123 | if(ncontr==0) { |
124 | ncontr = ncontrtemp; pos[0] = postemp[0]; pos[1] = postemp[1]; pos[2] = postemp[2]; |
125 | vtxstatus = 3; |
126 | } |
127 | AliInfo(Form("3rd step: %d %f %f %f st=%d",ncontr,pos[0],pos[1],pos[2],vtxstatus)); |
128 | } |
129 | |
130 | if(vtxstatus == 0) { |
131 | ncontrtemp = ncontr; postemp[0] = pos[0]; postemp[1] = pos[1]; postemp[2] = pos[2]; |
132 | cuts[0]=0.1; cuts[1]=0.1; cuts[2]=0.2; |
133 | CalculateVertex3d2(pos, cuts, ncontr, sigpos); |
134 | if(ncontr==0) { |
135 | ncontr = ncontrtemp; pos[0] = postemp[0]; pos[1] = postemp[1]; pos[2] = postemp[2]; |
136 | vtxstatus = 4; |
137 | } |
138 | AliInfo(Form("4th step: %d %f %f %f st=%d",ncontr,pos[0],pos[1],pos[2],vtxstatus)); |
139 | } |
140 | AliInfo(Form("Final step: %d %f %f %f st=%d",ncontr,pos[0],pos[1],pos[2],vtxstatus)); |
141 | |
225cff59 |
142 | Double_t covma[6]={0.,0.,0.,0.,0.,0.}; |
143 | covma[0]=sigpos[0]; |
144 | covma[2]=sigpos[1]; |
145 | covma[5]=sigpos[2]; |
146 | return new AliESDVertex(pos,covma,(Double_t)vtxstatus,ncontr,"AliITSVertexer3DTapan"); |
308c2f7c |
147 | |
eb35e591 |
148 | } |
149 | |
150 | |
151 | void AliITSVertexer3DTapan::CalculateVertex3d1(Double_t pos[3], Float_t cuts[3], Int_t &ncontr) { |
152 | // |
153 | // This function reconstructs first two steps of vertex |
154 | // |
155 | |
156 | Double_t p1[4], p2[4], p3[4], p4[4]; |
157 | Double_t pa[3], pb[3]; |
158 | Double_t hphi1, hphi2, hphi3, hphi4; |
159 | |
160 | ncontr = 0; |
161 | Float_t phicut = 1.0; |
162 | Double_t distance; Float_t distancecut = 1.0; |
163 | Int_t ibin=20; Float_t ilow=-1.; Float_t ihigh=1.; |
164 | Int_t ibinz=400; Float_t ilowz=-20.; Float_t ihighz=20.; |
165 | |
166 | TH1F *hx = new TH1F("hx","", ibin, ilow, ihigh); |
167 | TH1F *hy = new TH1F("hy","", ibin, ilow, ihigh); |
168 | TH1F *hz = new TH1F("hz","", ibinz,ilowz,ihighz); |
169 | |
170 | for (Int_t ip1=0; ip1<ficlu1; ip1++) { |
171 | // Two points on layer1: p1 and p3 |
172 | p1[0] = fX1[ip1]; p1[1] = fY1[ip1]; p1[2] = fZ1[ip1]; |
173 | p3[0] = fX1[ip1+1]; p3[1] = fY1[ip1+1]; p3[2] = fZ1[ip1+1]; |
174 | hphi1 = fPhi1[ip1]; hphi3 = fPhi1[ip1+1]; |
175 | |
176 | for (Int_t ip2=0; ip2<ficlu2; ip2++) { |
177 | // Two points on layer 2: p2 and p4 |
178 | p2[0] = fX2[ip2]; p2[1] = fY2[ip2]; p2[2] = fZ2[ip2]; |
179 | p4[0] = fX2[ip2+1]; p4[1] = fY2[ip2+1]; p4[2] = fZ2[ip2+1]; |
180 | hphi2 = fPhi2[ip2]; hphi4 = fPhi2[ip2+1]; |
181 | |
182 | // First line is formed by p1-p2 and second line by p3-p4 |
183 | // We find two points on each line which form the closest distance of the two lines |
184 | // pa[0],pa[1],pa[2]: points on line 1 and pb[0],pb[1],pb[2]: points on line 2 |
185 | // Next: Consider x, y and z to be less than cuts[0], cuts[1] and cuts[2], respectively |
186 | |
187 | if(TMath::Abs(hphi1-hphi2)<phicut && TMath::Abs(hphi3-hphi4)<phicut){ |
188 | CalculateLine(p1, p2, p3, p4, pa, pb); |
189 | |
190 | if (pa[0]>pos[0]-cuts[0] && pa[0]<pos[0]+cuts[0] && pa[1]>pos[1]-cuts[1] && pa[1]<pos[1]+cuts[1] && pa[2]>pos[2]-cuts[2] && pa[2]<pos[2]+cuts[2]){ |
191 | distance = (TMath::Sqrt(pow((pa[0]-pb[0]),2) + pow((pa[1]-pb[1]),2) + pow((pa[2]-pb[2]),2))); |
192 | if(distance<distancecut){ |
193 | hx->Fill(pa[0]); hy->Fill(pa[1]); hz->Fill(pa[2]); |
194 | hx->Fill(pb[0]); hy->Fill(pb[1]); hz->Fill(pb[2]); |
195 | ncontr++; |
196 | } |
197 | } |
198 | } |
199 | |
200 | // Third line is formed by p1-p4 and fourth line by p3-p2 |
201 | // We find two points on each line which form the closest distance of the two lines |
202 | // pa[0],pa[1],pa[2]: points on line 3 and pb[0],pb[1],pb[2]: points on line 4 |
203 | // Next: Consider x, y and z to be less than cuts[0], cuts[1] and cuts[2], respectively |
204 | if(TMath::Abs(hphi1-hphi4)<phicut && TMath::Abs(hphi3-hphi2)<phicut) { |
205 | CalculateLine(p1, p4, p3, p2, pa, pb); |
206 | if (pa[0]>pos[0]-cuts[0] && pa[0]<pos[0]+cuts[0] && pa[1]>pos[1]-cuts[1] && pa[1]<pos[1]+cuts[1]){ |
207 | distance = (TMath::Sqrt(pow((pa[0]-pb[0]),2) + pow((pa[1]-pb[1]),2) + pow((pa[2]-pb[2]),2))); |
208 | if(distance<distancecut){ |
209 | hx->Fill(pa[0]); hy->Fill(pa[1]); hz->Fill(pa[2]); |
210 | hx->Fill(pb[0]); hy->Fill(pb[1]); hz->Fill(pb[2]); |
211 | ncontr++; |
212 | } |
213 | } |
214 | } |
215 | } |
216 | } |
217 | |
218 | Int_t maxbinx = hx->GetMaximumBin(); |
219 | Int_t maxbiny = hy->GetMaximumBin(); |
220 | Int_t maxbinz = hz->GetMaximumBin(); |
221 | pos[0] = ilow + ((ihigh-ilow)/ibin)*maxbinx; |
222 | pos[1] = ilow + ((ihigh-ilow)/ibin)*maxbiny; |
223 | pos[2] = ilowz + ((ihighz-ilowz)/ibinz)*maxbinz; |
224 | hx->Delete(); |
225 | hy->Delete(); |
226 | hz->Delete(); |
227 | } |
228 | |
229 | void AliITSVertexer3DTapan::CalculateVertex3d2(Double_t pos[3], Float_t cuts[3], Int_t &ncontr, Double_t sigpos[3]) { |
230 | // |
231 | // This function reconstructs second two steps of vertex |
232 | // |
233 | |
234 | Double_t p1[4], p2[4], p3[4], p4[4]; |
235 | Double_t pa[3], pb[3]; |
236 | Double_t hphi1, hphi2, hphi3, hphi4; |
237 | |
238 | ncontr = 0; |
239 | Float_t phicut = 0.3; |
240 | Double_t distance; Float_t distancecut = 1.0; |
241 | |
242 | Double_t vertx =0.; Double_t verty =0.; Double_t vertz =0.; |
243 | Double_t vertx2 =0.; Double_t verty2 =0.; Double_t vertz2 =0.; |
244 | |
245 | for (Int_t ip1=0; ip1<ficlu1; ip1++) { |
246 | // Two points on layer1: p1 and p3 |
247 | p1[0] = fX1[ip1]; p1[1] = fY1[ip1]; p1[2] = fZ1[ip1]; |
248 | p3[0] = fX1[ip1+1]; p3[1] = fY1[ip1+1]; p3[2] = fZ1[ip1+1]; |
249 | hphi1 = fPhi1[ip1]; hphi3 = fPhi1[ip1+1]; |
250 | |
251 | for (Int_t ip2=0; ip2<ficlu2; ip2++) { |
252 | // Two points on layer 2: p2 and p4 |
253 | p2[0] = fX2[ip2]; p2[1] = fY2[ip2]; p2[2] = fZ2[ip2]; |
254 | p4[0] = fX2[ip2+1]; p4[1] = fY2[ip2+1]; p4[2] = fZ2[ip2+1]; |
255 | hphi2 = fPhi2[ip2]; hphi4 = fPhi2[ip2+1]; |
256 | |
257 | // First line is formed by p1-p2 and second line by p3-p4 |
258 | // We find two points on each line which form the closest distance of the two lines |
259 | // pa[0],pa[1],pa[2] are the points on line 1 and pb[0],pb[1],pb[2] are the points on line 2 |
260 | // Next: Consider x, y and z to be less than cuts[0], cuts[1] and cuts[2], respectively |
261 | |
262 | if(TMath::Abs(hphi1-hphi2)<phicut && TMath::Abs(hphi3-hphi4)<phicut){ |
263 | CalculateLine(p1, p2, p3, p4, pa, pb); |
264 | |
265 | // We consider the points where x, y and z points are less than xcut, ycut and zcut, respectively |
266 | if (pa[0]>pos[0]-cuts[0] && pa[0]<pos[0]+cuts[0] && pa[1]>pos[1]-cuts[1] && pa[1]<pos[1]+cuts[1] && pa[2]>pos[2]-cuts[2] && pa[2]<pos[2]+cuts[2]){ |
267 | distance = (TMath::Sqrt(pow((pa[0]-pb[0]),2) + pow((pa[1]-pb[1]),2) + pow((pa[2]-pb[2]),2))); |
268 | if(distance<distancecut){ |
269 | ncontr++; |
270 | vertx = vertx + pa[0]; verty = verty + pa[1]; vertz = vertz + pa[2]; |
271 | vertx2 = vertx2 + pa[0]*pa[0]; verty2 = verty2 + pa[1]*pa[1]; vertz2 = vertz2 + pa[2]*pa[2]; |
272 | ncontr++; |
273 | vertx = vertx + pb[0]; verty = verty + pb[1]; vertz = vertz + pb[2]; |
274 | vertx2 = vertx2 + pb[0]*pb[0]; verty2 = verty2 + pb[1]*pb[1]; vertz2 = vertz2 + pb[2]*pb[2]; |
275 | } |
276 | } |
277 | } |
278 | |
279 | // Third line is formed by p1-p4 and fourth line by p3-p2 |
280 | // We find two points on each line which form the closest distance of the two lines |
281 | // pa[0],pa[1],pa[2] are the points on line 3 and pb[0],pb[1],pb[2] are the points on line 4 |
282 | // Next: Consider x, y and z to be less than cuts[0], cuts[1] and cuts[2], respectively |
283 | if(TMath::Abs(hphi1-hphi4)<phicut && TMath::Abs(hphi3-hphi2)<phicut) { |
284 | |
285 | CalculateLine(p1, p4, p3, p2, pa, pb); |
286 | if (pa[0]>pos[0]-cuts[0] && pa[0]<pos[0]+cuts[0] && pa[1]>pos[1]-cuts[1] && pa[1]<pos[1]+cuts[1] && pa[2]>pos[2]-cuts[2] && pa[2]<pos[2]+cuts[2]){ |
287 | distance = (TMath::Sqrt(pow((pa[0]-pb[0]),2) + pow((pa[1]-pb[1]),2) + pow((pa[2]-pb[2]),2))); |
288 | if(distance<distancecut){ |
289 | ncontr++; |
290 | vertx = vertx + pa[0]; verty = verty + pa[1]; vertz = vertz + pa[2]; |
291 | vertx2 = vertx2 + pa[0]*pa[0]; verty2 = verty2 + pa[1]*pa[1]; vertz2 = vertz2 + pa[2]*pa[2]; |
292 | ncontr++; |
293 | vertx = vertx + pb[0]; verty = verty + pb[1]; vertz = vertz + pb[2]; |
294 | vertx2 = vertx2 + pb[0]*pb[0]; verty2 = verty2 + pb[1]*pb[1]; vertz2 = vertz2 + pb[2]*pb[2]; |
295 | } |
296 | } |
297 | } |
298 | } |
299 | } |
300 | |
301 | if(ncontr>0){ |
302 | pos[0] = vertx/ncontr; pos[1] = verty/ncontr; pos[2] = vertz/ncontr; |
303 | vertx2 = vertx2/ncontr; verty2 = verty2/ncontr; vertz2 = vertz2/ncontr; |
304 | sigpos[0] = TMath::Sqrt(vertx2 - pos[0]*pos[0]); |
305 | sigpos[1] = TMath::Sqrt(verty2 - pos[1]*pos[1]); |
306 | sigpos[2] = TMath::Sqrt(vertz2 - pos[2]*pos[2]); |
307 | } |
308 | ncontr = ncontr/2; |
309 | } |
310 | |
311 | void AliITSVertexer3DTapan::CalculatePhi(Float_t fx, Float_t fy, Float_t & phi) |
312 | { |
313 | //calculates phi |
314 | Float_t ybyx, phi1; |
315 | const Float_t kradian = 180./3.141592654; |
316 | |
317 | if(fx==0.) |
318 | { |
319 | if(fy>0.) phi = 90.; |
320 | if(fy<0.) phi = 270.; |
321 | } |
322 | if(fx != 0.) |
323 | { |
324 | ybyx = fy/fx; |
325 | if(ybyx < 0) ybyx = - ybyx; |
326 | phi1 = TMath::ATan(ybyx)*kradian; |
327 | if(fx > 0 && fy > 0) phi = phi1; // 1st Quadrant |
328 | if(fx < 0 && fy > 0) phi = 180 - phi1; // 2nd Quadrant |
329 | if(fx < 0 && fy < 0) phi = 180 + phi1; // 3rd Quadrant |
330 | if(fx > 0 && fy < 0) phi = 360 - phi1; // 4th Quadrant |
331 | |
332 | } |
333 | phi = phi/kradian; |
334 | } |
335 | |
336 | void AliITSVertexer3DTapan::CalculateLine(Double_t p1[4], Double_t p2[4], Double_t p3[4], Double_t p4[4], Double_t pa[3], Double_t pb[3]) const{ |
337 | //calculates line |
338 | Double_t p13x, p13y, p13z; |
339 | Double_t p21x, p21y, p21z; |
340 | Double_t p43x, p43y, p43z; |
341 | Double_t d1343, d4321, d1321, d4343, d2121; |
342 | Double_t numer, denom; |
343 | Double_t mua, mub; |
344 | mua = 0.; mub = 0.; |
345 | |
346 | p13x = p1[0] - p3[0]; |
347 | p13y = p1[1] - p3[1]; |
348 | p13z = p1[2] - p3[2]; |
349 | |
350 | p21x = p2[0] - p1[0]; |
351 | p21y = p2[1] - p1[1]; |
352 | p21z = p2[2] - p1[2]; |
353 | |
354 | p43x = p4[0] - p3[0]; |
355 | p43y = p4[1] - p3[1]; |
356 | p43z = p4[2] - p3[2]; |
357 | |
358 | d1343 = p13x * p43x + p13y * p43y + p13z * p43z; |
359 | d4321 = p43x * p21x + p43y * p21y + p43z * p21z; |
360 | d1321 = p13x * p21x + p13y * p21y + p13z * p21z; |
361 | d4343 = p43x * p43x + p43y * p43y + p43z * p43z; |
362 | d2121 = p21x * p21x + p21y * p21y + p21z * p21z; |
363 | |
364 | denom = d2121 * d4343 - d4321 * d4321; |
365 | numer = d1343 * d4321 - d1321 * d4343; |
366 | |
367 | if(denom>0) mua = numer / denom; |
368 | if(d4343>0) mub = (d1343 + d4321 * (mua)) / d4343; |
369 | |
370 | pa[0] = p1[0] + mua * p21x; |
371 | pa[1] = p1[1] + mua * p21y; |
372 | pa[2] = p1[2] + mua * p21z; |
373 | |
374 | pb[0] = p3[0] + mub * p43x; |
375 | pb[1] = p3[1] + mub * p43y; |
376 | pb[2] = p3[2] + mub * p43z; |
377 | } |
378 | |