Print removed
[u/mrichter/AliRoot.git] / ITS / AliITSgeom.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
88cb7938 16/* $Id$ */
4c039060 17
58005f18 18///////////////////////////////////////////////////////////////////////
593e9459 19// ITS geometry manipulation routines. //
58005f18 20// Created April 15 1999. //
21// version: 0.0.0 //
22// By: Bjorn S. Nilsen //
23// version: 0.0.1 //
24// Updated May 27 1999. //
593e9459 25// Added Cylindrical random and global based changes. //
58005f18 26// Added function PrintComparison. //
27///////////////////////////////////////////////////////////////////////
593e9459 28
29
30////////////////////////////////////////////////////////////////////////
593e9459 31// The local coordinate system by, default, is show in the following
32// figures. Also shown are the ladder numbering scheme.
33//Begin_Html
34/*
269f57ed 35<img src="picts/ITS/AliITSgeomMatrix_L1.gif">
36</pre>
37<br clear=left>
38<font size=+2 color=blue>
39<p>This shows the relative geometry differences between the ALICE Global
40coordinate system and the local detector coordinate system.
41</font>
42<pre>
43
44<pre>
593e9459 45<img src="picts/ITS/its1+2_convention_front_5.gif">
46</pre>
47<br clear=left>
48<font size=+2 color=blue>
49<p>This shows the front view of the SPDs and the orientation of the local
50pixel coordinate system. Note that the inner pixel layer has its y coordinate
51in the opposite direction from all of the other layers.
52</font>
53<pre>
54
55<pre>
56<img src="picts/ITS/its3+4_convention_front_5.gif">
57</pre>
58<br clear=left>
59<font size=+2 color=blue>
60<p>This shows the front view of the SDDs and the orientation of the local
61pixel coordinate system.
62</font>
63<pre>
64
65<pre>
66<img src="picts/ITS/its5+6_convention_front_5.gif">
67</pre>
68<br clear=left>
69<font size=+2 color=blue>
70<p>This shows the front view of the SSDs and the orientation of the local
71pixel coordinate system.
72</font>
73<pre>
74*/
75//End_Html
269f57ed 76//
593e9459 77////////////////////////////////////////////////////////////////////////
78
79////////////////////////////////////////////////////////////////////////
80//
81// version: 0
82// Written by Bjorn S. Nilsen
83//
84// Data Members:
85//
86// Int_t fNlayers
87// The number of ITS layers for this geometry. By default this
88// is 6, but can be modified by the creator function if there are
89// more layers defined.
90//
91// Int_t *fNlad
92// A pointer to an array fNlayers long containing the number of
93// ladders for each layer. This array is typically created and filled
94// by the AliITSgeom creator function.
95//
96// Int_t *fNdet
97// A pointer to an array fNlayers long containing the number of
98// active detector volumes for each ladder. This array is typically
99// created and filled by the AliITSgeom creator function.
100//
269f57ed 101// AliITSgeomMatrix *fGm
102// A pointer to an array of AliITSgeomMatrix classes. One element
103// per module (detector) in the ITS. AliITSgeomMatrix basicly contains
104// all of the necessary information about the detector and it's coordinate
105// transformations.
593e9459 106//
107// TObjArray *fShape
108// A pointer to an array of TObjects containing the detailed shape
109// information for each type of detector used in the ITS. For example
110// I have created AliITSgeomSPD, AliITSgeomSDD, and AliITSgeomSSD as
111// example structures, derived from TObjects, to hold the detector
112// information. I would recommend that one element in each of these
113// structures, that which describes the shape of the active volume,
114// be one of the ROOT classes derived from TShape. In this way it would
115// be easy to have the display program display the correct active
116// ITS volumes. See the example classes AliITSgeomSPD, AliITSgeomSDD,
117// and AliITSgeomSSD for a more detailed example.
593e9459 118////////////////////////////////////////////////////////////////////////
4ae5bbc4 119#include <Riostream.h>
3f38f7af 120//#include <stdlib.h>
121//#include <stdio.h>
122//#include <string.h>
123//#include <ctype.h>
8253cd9a 124
125#include <TSystem.h>
269f57ed 126#include <TRandom.h>
e8189707 127
58005f18 128#include "AliITSgeom.h"
269f57ed 129#include "AliITSgeomSPD.h"
130#include "AliITSgeomSDD.h"
131#include "AliITSgeomSSD.h"
58005f18 132
133ClassImp(AliITSgeom)
134
85f1e34a 135//______________________________________________________________________
58005f18 136AliITSgeom::AliITSgeom(){
85f1e34a 137 // The default constructor for the AliITSgeom class. It, by default,
138 // sets fNlayers to zero and zeros all pointers.
139 // Do not allocate anything zero everything.
140
8253cd9a 141 fTrans = 0; // standard GEANT global/local coordinate system.
142 fNlayers = 0;
143 fNlad = 0;
144 fNdet = 0;
145 fGm = 0;
146 fShape = 0;
147 strcpy(fVersion,"test");
148 return;
149}
85f1e34a 150//______________________________________________________________________
8253cd9a 151AliITSgeom::AliITSgeom(Int_t itype,Int_t nlayers,Int_t *nlads,Int_t *ndets,
152 Int_t mods){
85f1e34a 153 // A simple constructor to set basic geometry class variables
154 // Inputs:
155 // Int_t itype the type of transformation kept.
156 // bit 0 => Standard GEANT
157 // bit 1 => ITS tracking
158 // bit 2 => A change in the coordinate system has been made.
159 // others are still to be defined as needed.
160 // Int_t nlayers The number of ITS layers also set the size of the arrays
161 // Int_t *nlads an array of the number of ladders for each layer. This
162 // array must be nlayers long.
163 // Int_t *ndets an array of the number of detectors per ladder for each
164 // layer. This array must be nlayers long.
165 // Int_t mods The number of modules. Typicaly the sum of all the
166 // detectors on every layer and ladder.
167 // Outputs:
168 // none
8253cd9a 169 Int_t i;
170
171 fTrans = itype;
172 fNlayers = nlayers;
173 fNlad = new Int_t[nlayers];
174 fNdet = new Int_t[nlayers];
175 for(i=0;i<nlayers;i++){fNlad[i] = nlads[i];fNdet[i] = ndets[i];}
176 fNmodules = mods;
177 fGm = new TObjArray(mods,0);
5c9c741e 178 fShape = new TObjArray(5); // default value
179 for(i=0;i<5;i++) fShape->AddAt(0,i);
8253cd9a 180 strcpy(fVersion,"test");
181 return;
58005f18 182}
8253cd9a 183//______________________________________________________________________
184void AliITSgeom::CreatMatrix(Int_t mod,Int_t lay,Int_t lad,Int_t det,
85f1e34a 185 AliITSDetector idet,const Double_t tran[3],
186 const Double_t rot[10]){
187 // Given the translation vector tran[3] and the rotation matrix rot[1],
188 // this function creates and adds to the TObject Array fGm the
189 // AliITSgeomMatrix object.
190 // Inputs are:
191 // Int_t mod The module number. The location in TObjArray
192 // Int_t lay The layer where this module is
193 // Int_t lad On which ladder this module is
194 // Int_t det Which detector on this ladder this module is
195 // AliITSDetector idet The type of detector see AliITSgeom.h
196 // Double_t tran[3] The translation vector
197 // Double_t rot[10] The rotation matrix.
198 // Outputs are:
199 // none
200 // The rot[10] matrix is set up like:
201 /* / rot[0] rot[1] rot[2] \
202 // | rot[3] rot[4] rot[5] |
203 // \ rot[6] rot[7] rot[8] / if(rot[9]!=0) then the Identity matrix
204 // is used regardless of the values in rot[0]-rot[8].
205 */
8253cd9a 206 Int_t id[3];
207 Double_t r[3][3] = {{1.0,0.0,0.0},{0.0,1.0,0.0},{0.0,0.0,1.0}};
58005f18 208
8253cd9a 209 if(fGm->At(mod)!=0) delete fGm->At(mod);
210 id[0] = lay; id[1] = lad; id[2] = det;
211 if(rot[9]!=0.0) { // null rotation
212 r[0][0] = rot[0]; r[0][1] = rot[1]; r[0][2] = rot[2];
213 r[1][0] = rot[3]; r[1][1] = rot[4]; r[1][2] = rot[5];
214 r[2][0] = rot[6]; r[2][1] = rot[7]; r[2][2] = rot[8];
215 } // end if
216 fGm->AddAt(new AliITSgeomMatrix(idet,id,r,tran),mod);
217}
85f1e34a 218//______________________________________________________________________
58005f18 219AliITSgeom::~AliITSgeom(){
85f1e34a 220 // The destructor for the AliITSgeom class. If the arrays fNlad,
221 // fNdet, or fGm have had memory allocated to them, there pointer values
222 // are non zero, then this memory space is freed and they are set
223 // to zero. In addition, fNlayers is set to zero. The destruction of
224 // TObjArray fShape is, by default, handled by the TObjArray destructor.
225
085bb6ed 226 if(fGm!=0){
36583d28 227 //for(Int_t i=0;i<fNlayers;i++) delete fGm->At(i);
228 fGm->Delete();
8253cd9a 229 delete fGm;
085bb6ed 230 } // end if fGm!=0
58005f18 231 if(fNlad!=0) delete[] fNlad;
232 if(fNdet!=0) delete[] fNdet;
233 fNlayers = 0;
234 fNlad = 0;
235 fNdet = 0;
269f57ed 236 fGm = 0;
58005f18 237 return;
238}
269f57ed 239//______________________________________________________________________
240void AliITSgeom::ReadNewFile(const char *filename){
85f1e34a 241 // It is generaly preferred to define the geometry in AliITSgeom
242 // directly from the GEANT geometry, see AliITSvPPRasymm.cxx for
243 // and example. Under some circumstances this may not be possible.
244 // This function will read in a formatted file for all of the
245 // information needed to define the geometry in AliITSgeom.
246 // Unlike the older file format, this file may contain comments
247 // and the order of the data does not need to be completely
248 // respected. A file can be created using the function WriteNewFile
249 // defined below.
250 // Inputs are:
251 // const char *filename The file name of the file to be read in.
252 // Outputs are:
253 // none
8253cd9a 254 Int_t ncmd=9;
5c9c741e 255 const char *cmda[]={"Version" ,"fTrans" ,"fNmodules",
256 "fNlayers" ,"fNladers","fNdetectors",
257 "fNDetectorTypes","fShape" ,"Matrix"};
8253cd9a 258 Int_t i,j,lNdetTypes,ldet;
259 char cmd[20],c;
164da35c 260 AliITSgeomSPD *spd=0;
261 AliITSgeomSDD *sdd=0;
262 AliITSgeomSSD *ssd=0;
263 AliITSgeomMatrix *m=0;
264 ifstream *fp=0;
265 char *filtmp=0;
8253cd9a 266
267 filtmp = gSystem->ExpandPathName(filename);
5c9c741e 268 cout << "AliITSgeom, Reading New .det file " << filtmp << endl;
8253cd9a 269 fp = new ifstream(filtmp,ios::in); // open file to write
270 while(fp->get(c)!=NULL){ // for ever loop
271 if(c==' ') continue; // remove blanks
272 if(c=='\n') continue;
273 if(c=='#' || c=='!'){for(;fp->get(c)!=NULL,c!='\n';); continue;}
274 if(c=='/'){
275 fp->get(c);{
276 if(c=='/'){for(;fp->get(c)!=NULL,c!='\n';);continue;}
277 if(c=='*'){
278 NotYet:
279 for(;fp->get(c)!=NULL,c!='*';);
280 fp->get(c);{
281 if(c=='/') continue;
282 goto NotYet;
283 } //
284 } // end if c=='*'
285 } // end if second /
286 } // end if first /
5c9c741e 287 fp->putback(c);
8253cd9a 288 *fp >> cmd;
289 for(i=0;i<ncmd;i++) if(strcmp(cmd,cmda[i])==0) break;
290 switch (i){
291 case 0: // Version
292 *fp >> fVersion;
293 break;
294 case 1: // fTrans
295 *fp >> fTrans;
296 break;
297 case 2: // fNModules
298 *fp >> fNmodules;
299 if(fGm!=0){
300 for(j=0;j<fGm->GetEntriesFast();j++) delete fGm->At(j);
301 delete fGm;
302 } // end if
303 fGm = new TObjArray(fNmodules,0);
304 break;
305 case 3: // fNlayers
306 *fp >> fNlayers;
307 if(fNlad!=0) delete fNlad;
308 if(fNdet!=0) delete fNdet;
309 fNlad = new Int_t[fNlayers];
310 fNdet = new Int_t[fNlayers];
311 break;
312 case 4: // fNladers
313 for(j=0;j<fNlayers;j++) *fp >> fNlad[j];
314 break;
315 case 5: // fNdetectors
316 for(j=0;j<fNlayers;j++) *fp >> fNdet[j];
317 break;
318 case 6: // fNDetectorTypes
319 *fp >> lNdetTypes;
320 if(fShape!=0){
321 for(j=0;j<fShape->GetEntriesFast();j++) delete fShape->At(j);
322 delete fShape;
323 } // end if
324 fShape = new TObjArray(lNdetTypes,0);
325 break;
326 case 7: // fShape
327 *fp >> ldet;
5c9c741e 328 if(fShape==0) fShape = new TObjArray(5,0);
8253cd9a 329 switch (ldet){
330 case kSPD :
164da35c 331 spd = new AliITSgeomSPD();
8253cd9a 332 *fp >> *spd;
164da35c 333 ReSetShape(ldet,spd);
8253cd9a 334 spd = 0;
335 break;
164da35c 336 case kSDD : case kSDDp:
337 sdd = new AliITSgeomSDD();
8253cd9a 338 *fp >> *sdd;
164da35c 339 ReSetShape(ldet,sdd);
8253cd9a 340 sdd = 0;
341 break;
342 case kSSD : case kSSDp :
164da35c 343 ssd = new AliITSgeomSSD();
8253cd9a 344 *fp >> *ssd;
164da35c 345 ReSetShape(ldet,ssd);
8253cd9a 346 ssd = 0;
347 break;
348 default:
331329a2 349 Error("ReadNewFile","Unknown fShape type number=%d c=%c",ldet,c);
8253cd9a 350 for(;fp->get(c)==NULL,c!='\n';); // skip to end of line.
351 break;
352 } // end switch
353 break;
354 case 8: // Matrix
355 *fp >> ldet;
356 if(fGm==0) fGm = new TObjArray(2270,0);
357 if(fGm->At(ldet)!=0) delete (fGm->At(ldet));
358 fGm->AddAt((TObject*)new AliITSgeomMatrix(),ldet);
359 m = (AliITSgeomMatrix*) fGm->At(ldet);
360 *fp >> *m;
361 m = 0;
362 break;
363 default:
331329a2 364 Error("ReadNewFile","Data line i=%d c=%c",i,c);
8253cd9a 365 for(;fp->get(c)==NULL,c!='\n';); // skip this line
366 break;
367 } // end switch i
368 } // end while
369 delete fp;
370
371 return;
372}
373//______________________________________________________________________
374void AliITSgeom::WriteNewFile(const char *filename){
85f1e34a 375 // Writes AliITSgeom, AliITSgeomMatrix, and the defined AliITSgeomS*D
376 // classes to a file in a format that is more readable and commendable.
377 // Inputs are:
378 // const char *filename The file name of the file to be write to.
379 // Outputs are:
380 // none
8253cd9a 381 ofstream *fp;
382 Int_t i;
383 char *filtmp;
384
385 filtmp = gSystem->ExpandPathName(filename);
5c9c741e 386 cout << "AliITSgeom, Writing New .det file " << filtmp << endl;
8253cd9a 387 fp = new ofstream(filtmp,ios::out); // open file to write
388 *fp << "//Comment lines begin with two //, one #, or one !" << endl;
389 *fp << "#Blank lines are skipped including /* and */ sections." << endl;
390 *fp << "!and, in principle the order of the lines is not important" <<endl;
391 *fp << "/* In AliITSgeom.h are defined an enumerated type called" << endl;
392 *fp << " AliITSDetectors These are kSPD=" << (Int_t) kSPD ;
393 *fp << ", kSDD=" << (Int_t) kSDD << ", kSSD=" << (Int_t) kSSD;
5c9c741e 394 *fp << ", kSSDp=" << (Int_t) kSSDp << ", and kSDDp=" << (Int_t) kSDDp;
395 *fp << "*/" << endl;
85f1e34a 396 *fp << "Version " << fVersion << endl;//This should be consistent with the
8253cd9a 397 // geometry version.
398 *fp << "fTrans " << fTrans << endl;
399 *fp << "fNmodules " << fNmodules << endl;
400 *fp << "fNlayers " << fNlayers << endl;
401 *fp << "fNladers ";
402 for(i=0;i<fNlayers;i++) *fp << fNlad[i] << " ";
403 *fp << endl;
404 *fp << "fNdetectors ";
405 for(i=0;i<fNlayers;i++) *fp << fNdet[i] << " ";
406 *fp << endl;
407 *fp << "fNDetectorTypes " << fShape->GetEntriesFast() << endl;
408 for(i=0;i<fShape->GetEntriesFast();i++){
409 if(!IsShapeDefined(i)) continue; // only print out used shapes.
410 switch (i){
411 case kSPD :
412 *fp << "fShape " << (Int_t) kSPD << " ";
413 *fp << *((AliITSgeomSPD*)(fShape->At(i)));
414 break;
415 case kSDD :
416 *fp << "fShape " << (Int_t) kSDD << " ";
417 *fp << *((AliITSgeomSDD*)(fShape->At(i)));
418 break;
419 case kSSD : case kSSDp :
420 *fp << "fShape " << i << " ";
421 *fp << *((AliITSgeomSSD*)(fShape->At(i)));
422 break;
423 default:
424 Error("AliITSgeom::WriteNewFile","Unknown Shape value");
425 } // end switch (i)
426 } // end for i
427 for(i=0;i<fNmodules;i++){
428 *fp << "Matrix " << i << " ";
429 *fp << *GetGeomMatrix(i);
430 } // end for i
431 *fp << "//End of File" << endl;;
432
433 delete fp;
269f57ed 434 return;
435}
85f1e34a 436//______________________________________________________________________
58005f18 437AliITSgeom::AliITSgeom(const char *filename){
85f1e34a 438 // The constructor for the AliITSgeom class. All of the data to fill
439 // this structure is read in from the file given my the input filename.
440 // Inputs are:
441 // const char *filename The file name of the file to be read in.
442 // Outputs are:
443 // none
444 FILE *pf=0;
445 Int_t i,lm=0,id[3];
446 Int_t l,a,d;
447 Float_t x,y,z,o,p,q,r,s,t;
448 Double_t rot6[6],tran[3];
449 char buf[200],*buff=0; // input character buffer;
450 char *filtmp;
58005f18 451
85f1e34a 452 filtmp = gSystem->ExpandPathName(filename);
453 cout << "AliITSgeom reading old .det file " << filtmp << endl;
454 fShape = 0;
455 strcpy(fVersion,"DefauleV5");
456 pf = fopen(filtmp,"r");
457
458 fNlayers = 6; // set default number of ladders
459 TryAgain:
460 fNlad = new Int_t[fNlayers];
461 fNdet = new Int_t[fNlayers];
462 fNmodules = 0;
463 // find the number of ladders and detectors in this geometry.
464 for(i=0;i<fNlayers;i++){fNlad[i]=fNdet[i]=0;} // zero out arrays
465 while(fgets(buf,200,pf)!=NULL){ // for ever loop
466 for(i=0;i<200;i++)if(buf[i]!=' '){ // remove blank spaces.
467 buff = &(buf[i]);
468 break;
469 } // end for i
470 // remove blank lines and comments.
471 if(buff[0]=='\n'||buff[0]=='#'||buff[0]=='!'||
472 (buff[0]=='/'&&buff[1]=='/')) continue;
473 if(isalpha(buff[0])) { // must be the new file formated file.
269f57ed 474 fclose(pf);
475 delete[] fNlad;delete[] fNdet;
476 ReadNewFile(filename);
477 return;
85f1e34a 478 } // end if isalpha(buff[0])
479 sscanf(buff,"%d %d %d %f %f %f %f %f %f %f %f %f",
480 &l,&a,&d,&x,&y,&z,&o,&p,&q,&r,&s,&t);
481 if(l>lm) lm = l;
482 if(l<1 || l>fNlayers) {
483 printf("error in file %s layer=%d min. is 1 max is %d\n",
484 filename,l,fNlayers);
485 continue;
486 }// end if l
487 fNmodules++;
488 if(l<=fNlayers&&fNlad[l-1]<a) fNlad[l-1] = a;
489 if(l<=fNlayers&&fNdet[l-1]<d) fNdet[l-1] = d;
490 } // end while ever loop
491 if(lm>fNlayers){
269f57ed 492 delete[] fNlad;
493 delete[] fNdet;
494 fNlayers = lm;
495 goto TryAgain;
85f1e34a 496 } // end if lm>fNlayers
497 // counted the number of ladders and detectors now allocate space.
498 fGm = new TObjArray(fNmodules,0);
58005f18 499
85f1e34a 500 // Set up Shapes for a default configuration of 6 layers.
501 fTrans = 0; // standard GEANT global/local coordinate system.
502 // prepare to read in transforms
503 lm = 0; // reuse lm as counter of modules.
504 rewind(pf); // start over reading file
505 while(fgets(buf,200,pf)!=NULL){ // for ever loop
506 for(i=0;i<200;i++)if(buf[i]!=' '){ // remove blank spaces.
507 buff = &(buf[i]);
508 break;
509 } // end for i
510 // remove blank lines and comments.
511 if(buff[0]=='\n'||buff[0]=='#'||buff[0]=='!'||
512 (buff[0]=='/'&&buff[1]=='/')) continue;
513 x = y = z = o = p = q = r = s = t = 0.0;
514 sscanf(buff,"%d %d %d %f %f %f %f %f %f %f %f %f",
515 &l,&a,&d,&x,&y,&z,&o,&p,&q,&r,&s,&t);
516 if(l<1 || l>fNlayers) {
517 printf("error in file %s layer=%d min. is 1 max is %d/n",
518 filename,l,fNlayers);
519 continue;
520 }// end if l
521 id[0] = l;id[1] = a;id[2] = d;
522 tran[0] = tran[1] = tran[2] = 0.0;
523 tran[0] = (Double_t)x;tran[1] = (Double_t)y;tran[2] = (Double_t)z;
524 rot6[0] = rot6[1] = rot6[2] = rot6[3] = rot6[4] = rot6[5] =0.0;
525 rot6[0] = (Double_t)o;rot6[1] = (Double_t)p;rot6[2] = (Double_t)q;
526 rot6[3] = (Double_t)r;rot6[4] = (Double_t)s;rot6[5] = (Double_t)t;
527 switch (l){
528 case 1: case 2: // layer 1 or2 SPD
529 fGm->AddAt(new AliITSgeomMatrix(rot6,kSPD,id,tran),lm++);
530 break;
531 case 3: case 4: // layer 3 or 4 SDD
532 fGm->AddAt(new AliITSgeomMatrix(rot6,kSDD,id,tran),lm++);
533 break;
534 case 5: case 6: // layer 5 or 6 SSD
535 fGm->AddAt(new AliITSgeomMatrix(rot6,kSSD,id,tran),lm++);
536 break;
537 } // end switch
538 } // end while ever loop
539 fclose(pf);
58005f18 540}
85f1e34a 541//______________________________________________________________________
7f6ab649 542AliITSgeom::AliITSgeom(const AliITSgeom &source) : TObject(source){
85f1e34a 543 // The copy constructor for the AliITSgeom class. It calls the
544 // = operator function. See the = operator function for more details.
545 // Inputs are:
546 // AliITSgeom &source The AliITSgeom class with which to make this
547 // a copy of.
548 // Outputs are:
549 // none.
593e9459 550
551 *this = source; // Just use the = operator for now.
593e9459 552 return;
58005f18 553}
85f1e34a 554//______________________________________________________________________
7f6ab649 555AliITSgeom& AliITSgeom::operator=(const AliITSgeom &source){
85f1e34a 556 // The = operator function for the AliITSgeom class. It makes an
557 // independent copy of the class in such a way that any changes made
558 // to the copied class will not affect the source class in any way.
559 // This is required for many ITS alignment studies where the copied
560 // class is then modified by introducing some misalignment.
561 // Inputs are:
562 // AliITSgeom &source The AliITSgeom class with which to make this
563 // a copy of.
564 // Outputs are:
565 // return *this The a new copy of source.
269f57ed 566 Int_t i;
58005f18 567
85f1e34a 568 if(this == &source) return *this; // don't assign to ones self.
58005f18 569
570 // if there is an old structure allocated delete it first.
269f57ed 571 if(this->fGm != 0){
8253cd9a 572 for(i=0;i<this->fNmodules;i++) delete this->fGm->At(i);
269f57ed 573 delete this->fGm;
085bb6ed 574 } // end if fGm != 0
575 if(fNlad != 0) delete[] fNlad;
576 if(fNdet != 0) delete[] fNdet;
577
269f57ed 578 this->fTrans = source.fTrans;
579 this->fNmodules = source.fNmodules;
580 this->fNlayers = source.fNlayers;
581 this->fNlad = new Int_t[fNlayers];
582 for(i=0;i<this->fNlayers;i++) this->fNlad[i] = source.fNlad[i];
583 this->fNdet = new Int_t[fNlayers];
584 for(i=0;i<this->fNlayers;i++) this->fNdet[i] = source.fNdet[i];
585 this->fShape = new TObjArray(*(source.fShape));//This does not make a proper copy.
8253cd9a 586 this->fGm = new TObjArray(this->fNmodules,0);
269f57ed 587 for(i=0;i<this->fNmodules;i++){
8253cd9a 588 this->fGm->AddAt(new AliITSgeomMatrix(*(
589 (AliITSgeomMatrix*)(source.fGm->At(i)))),i);
085bb6ed 590 } // end for i
85f1e34a 591 return *this;
592}
593//______________________________________________________________________
594Int_t AliITSgeom::GetModuleIndex(Int_t lay,Int_t lad,Int_t det){
595 // This routine computes the module index number from the layer,
596 // ladder, and detector numbers. The number of ladders and detectors
597 // per layer is determined when this geometry package is constructed,
598 // see AliITSgeom(const char *filename) for specifics.
599 // Inputs are:
600 // Int_t lay The layer number. Starting from 1.
601 // Int_t lad The ladder number. Starting from 1.
602 // Int_t det The detector number. Starting from 1.
603 // Outputs are:
604 // return the module index number, starting from zero.
269f57ed 605 Int_t i,j,k,id[3];
58005f18 606
607 i = fNdet[lay-1] * (lad-1) + det - 1;
608 j = 0;
609 for(k=0;k<lay-1;k++) j += fNdet[k]*fNlad[k];
269f57ed 610 i = i+j;
8253cd9a 611 GetGeomMatrix(i)->GetIndex(id);
269f57ed 612 if(id[0]==lay&&id[1]==lad&&id[2]==det) return i;
613 // Array of modules fGm is not in expected order. Search for this index
614 for(i=0;i<fNmodules;i++){
8253cd9a 615 GetGeomMatrix(i)->GetIndex(id);
269f57ed 616 if(id[0]==lay&&id[1]==lad&&id[2]==det) return i;
617 } // end for i
618 // This layer ladder and detector combination does not exist return -1.
619 return -1;
58005f18 620}
269f57ed 621//______________________________________________________________________
85f1e34a 622void AliITSgeom::GetModuleId(Int_t index,Int_t &lay,Int_t &lad,Int_t &det){
623 // This routine computes the layer, ladder and detector number
624 // given the module index number. The number of ladders and detectors
625 // per layer is determined when this geometry package is constructed,
626 // see AliITSgeom(const char *filename) for specifics.
627 // Inputs are:
628 // Int_t index The module index number, starting from zero.
629 // Outputs are:
630 // Int_t lay The layer number. Starting from 1.
631 // Int_t lad The ladder number. Starting from 1.
632 // Int_t det The detector number. Starting from 1.
269f57ed 633 Int_t id[3];
88cb7938 634 AliITSgeomMatrix *g = GetGeomMatrix(index);
635 if (g == 0x0)
636 {
637 Error("GetModuleId","Can not get GeoMatrix for index = %d",index);
638 lay = -1; lad = -1; det = -1;
639 }
640 else
641 {
642 g->GetIndex(id);
643 lay = id[0]; lad = id[1]; det = id[2];
644 }
269f57ed 645 return;
646
647 // The old way kept for posterity.
648/*
649 Int_t i,j,k;
58005f18 650 j = 0;
651 for(k=0;k<fNlayers;k++){
652 j += fNdet[k]*fNlad[k];
aa6248e2 653 if(j>index)break;
58005f18 654 } // end for k
655 lay = k+1;
656 i = index -j + fNdet[k]*fNlad[k];
657 j = 0;
658 for(k=0;k<fNlad[lay-1];k++){
aa6248e2 659 j += fNdet[lay-1];
660 if(j>i)break;
58005f18 661 } // end for k
662 lad = k+1;
663 det = 1+i-fNdet[lay-1]*k;
664 return;
269f57ed 665*/
58005f18 666}
85f1e34a 667//______________________________________________________________________
668Int_t AliITSgeom::GetStartDet(Int_t dtype){
669 // returns the starting module index value for a give type of detector id.
670 // This assumes that the detector types are different on different layers
671 // and that they are not mixed up.
672 // Inputs are:
673 // Int_t dtype A detector type number. 0 for SPD, 1 for SDD, and 2 for SSD.
674 // outputs:
675 // return the module index for the first occurance of that detector type.
676
677 switch(dtype){
678 case 0:
679 return GetModuleIndex(1,1,1);
680 break;
681 case 1:
682 return GetModuleIndex(3,1,1);
683 break;
684 case 2:
685 return GetModuleIndex(5,1,1);
686 break;
687 default:
688 Warning("GetStartDet","undefined detector type %d",dtype);
689 return 0;
690 } // end switch
691
692 Warning("GetStartDet","undefined detector type %d",dtype);
693 return 0;
085bb6ed 694}
85f1e34a 695//______________________________________________________________________
696Int_t AliITSgeom::GetLastDet(Int_t dtype){
697 // returns the last module index value for a give type of detector id.
698 // This assumes that the detector types are different on different layers
699 // and that they are not mixed up.
700 // Inputs are:
701 // Int_t dtype A detector type number. 0 for SPD, 1 for SDD, and 2 for SSD.
702 // outputs are:
703 // return the module index for the last occurance of that detector type.
704
705 switch(dtype){
706 case 0:
707 return GetLastSPD();
708 break;
709 case 1:
710 return GetLastSDD();
711 break;
712 case 2:
713 return GetLastSSD();
714 break;
715 default:
716 Warning("GetLastDet","undefined detector type %d",dtype);
717 return 0;
718 } // end switch
719
720 Warning("GetLastDet","undefined detector type %d",dtype);
721 return 0;
085bb6ed 722}
85f1e34a 723//______________________________________________________________________
593e9459 724void AliITSgeom::PrintComparison(FILE *fp,AliITSgeom *other){
85f1e34a 725 // This function was primarily created for diagnostic reasons. It
726 // print to a file pointed to by the file pointer fp the difference
727 // between two AliITSgeom classes. The format of the file is basicly,
728 // define d? to be the difference between the same element of the two
729 // classes. For example dfrx = this->GetGeomMatrix(i)->frx
730 // - other->GetGeomMatrix(i)->frx.
731 // if(at least one of dfx0, dfy0, dfz0,dfrx,dfry,dfrz are non zero) then
732 // print layer ladder detector dfx0 dfy0 dfz0 dfrx dfry dfrz
733 // if(at least one of the 9 elements of dfr[] are non zero) then print
734 // layer ladder detector dfr[0] dfr[1] dfr[2]
735 // dfr[3] dfr[4] dfr[5]
736 // dfr[6] dfr[7] dfr[8]
737 // Only non zero values are printed to save space. The differences are
738 // typical written to a file because there are usually a lot of numbers
739 // printed out and it is usually easier to read them in some nice editor
740 // rather than zooming quickly past you on a screen. fprintf is used to
741 // do the printing. The fShapeIndex difference is not printed at this time.
742 // Inputs are:
743 // FILE *fp A file pointer to an opened file for writing in which
744 // the results of the comparison will be written.
745 // AliITSgeom *other The other AliITSgeom class to which this one is
746 // being compared.
747 // outputs are:
748 // none
749 Int_t i,j,idt[3],ido[3];
750 Double_t tt[3],to[3]; // translation
751 Double_t rt[3],ro[3]; // phi in radians
752 Double_t mt[3][3],mo[3][3]; // matrixes
753 AliITSgeomMatrix *gt,*go;
754 Bool_t t;
755
756 for(i=0;i<this->fNmodules;i++){
757 gt = this->GetGeomMatrix(i);
758 go = other->GetGeomMatrix(i);
759 gt->GetIndex(idt);
760 go->GetIndex(ido);
761 t = kFALSE;
762 for(i=0;i<3;i++) t = t&&idt[i]!=ido[i];
763 if(t) fprintf(fp,"%4.4d %1.1d %2.2d %2.2d %1.1d %2.2d %2.2d\n",i,
764 idt[0],idt[1],idt[2],ido[0],ido[1],ido[2]);
765 gt->GetTranslation(tt);
766 go->GetTranslation(to);
767 gt->GetAngles(rt);
768 go->GetAngles(ro);
769 t = kFALSE;
770 for(i=0;i<3;i++) t = t&&tt[i]!=to[i];
771 if(t) fprintf(fp,"%1.1d %2.2d %2.2d dTrans=%f %f %f drot=%f %f %f\n",
772 idt[0],idt[1],idt[2],
773 tt[0]-to[0],tt[1]-to[1],tt[2]-to[2],
774 rt[0]-ro[0],rt[1]-ro[1],rt[2]-ro[2]);
775 t = kFALSE;
776 gt->GetMatrix(mt);
777 go->GetMatrix(mo);
778 for(i=0;i<3;i++)for(j=0;j<3;j++) t = mt[i][j] != mo[i][j];
779 if(t){
780 fprintf(fp,"%1.1d %2.2d %2.2d dfr= %e %e %e\n",
781 idt[0],idt[1],idt[2],
782 mt[0][0]-mo[0][0],mt[0][1]-mo[0][1],mt[0][2]-mo[0][2]);
783 fprintf(fp," dfr= %e %e %e\n",
784 mt[1][0]-mo[1][0],mt[1][1]-mo[1][1],mt[1][2]-mo[1][2]);
785 fprintf(fp," dfr= %e %e %e\n",
786 mt[2][0]-mo[2][0],mt[2][1]-mo[2][1],mt[2][2]-mo[2][2]);
787 } // end if t
788 } // end for i
789 return;
593e9459 790}
85f1e34a 791//______________________________________________________________________
792void AliITSgeom::PrintData(FILE *fp,Int_t lay,Int_t lad,Int_t det){
793 // This function prints out the coordinate transformations for
794 // the particular detector defined by layer, ladder, and detector
795 // to the file pointed to by the File pointer fp. fprintf statements
796 // are used to print out the numbers. The format is
797 // layer ladder detector Trans= fx0 fy0 fz0 rot= frx fry frz
798 // Shape=fShapeIndex
799 // dfr= fr[0] fr[1] fr[2]
800 // dfr= fr[3] fr[4] fr[5]
801 // dfr= fr[6] fr[7] fr[8]
802 // By indicating which detector, some control over the information
803 // is given to the user. The output it written to the file pointed
804 // to by the file pointer fp. This can be set to stdout if you want.
805 // Inputs are:
806 // FILE *fp A file pointer to an opened file for writing in which
807 // the results of the comparison will be written.
808 // Int_t lay The layer number. Starting from 1.
809 // Int_t lad The ladder number. Starting from 1.
810 // Int_t det The detector number. Starting from 1.
811 // outputs are:
812 // none
813 AliITSgeomMatrix *gt;
814 Double_t t[3],r[3],m[3][3];
815
816 gt = this->GetGeomMatrix(GetModuleIndex(lay,lad,det));
817 gt->GetTranslation(t);
818 gt->GetAngles(r);
819 fprintf(fp,"%1.1d %2.2d %2.2d Trans=%f %f %f rot=%f %f %f Shape=%d\n",
820 lay,lad,det,t[0],t[1],t[2],r[0],r[1],r[2],
821 gt->GetDetectorIndex());
822 gt->GetMatrix(m);
823 fprintf(fp," dfr= %e %e %e\n",m[0][0],m[0][1],m[0][2]);
824 fprintf(fp," dfr= %e %e %e\n",m[1][0],m[1][1],m[1][2]);
825 fprintf(fp," dfr= %e %e %e\n",m[2][0],m[2][1],m[2][2]);
826 return;
593e9459 827}
85f1e34a 828//______________________________________________________________________
829ofstream & AliITSgeom::PrintGeom(ofstream &rb){
830 // Stream out an object of class AliITSgeom to standard output.
831 // Intputs are:
832 // ofstream &rb The output streaming buffer.
833 // Outputs are:
834 // ofstream &rb The output streaming buffer.
269f57ed 835 Int_t i;
593e9459 836
85f1e34a 837 rb.setf(ios::scientific);
838 rb << fTrans << " ";
839 rb << fNmodules << " ";
840 rb << fNlayers << " ";
841 for(i=0;i<fNlayers;i++) rb << fNlad[i] << " ";
842 for(i=0;i<fNlayers;i++) rb << fNdet[i] << "\n";
269f57ed 843 for(i=0;i<fNmodules;i++) {
85f1e34a 844 rb <<setprecision(16) << *(GetGeomMatrix(i)) << "\n";
269f57ed 845 } // end for i
164da35c 846 rb << fShape->GetEntries()<<endl;
847 for(i=0;i<fShape->GetEntries();i++) if(fShape->At(i)!=0) switch (i){
848 case kSPD:
849 rb << kSPD <<","<< (AliITSgeomSPD*)(fShape->At(kSPD));
850 break;
851 case kSDD:
852 rb << kSDD <<","<< (AliITSgeomSDD*)(fShape->At(kSDD));
853 break;
854 case kSSD:
855 rb << kSSD <<","<< (AliITSgeomSSD*)(fShape->At(kSSD));
856 break;
857 case kSSDp:
858 rb << kSSDp <<","<< (AliITSgeomSSD*)(fShape->At(kSSDp));
859 break;
860 case kSDDp:
861 rb << kSDDp <<","<< (AliITSgeomSDD*)(fShape->At(kSDDp));
862 break;
863 } // end for i / switch
85f1e34a 864 return rb;
593e9459 865}
85f1e34a 866//______________________________________________________________________
867ifstream & AliITSgeom::ReadGeom(ifstream &rb){
868 // Stream in an object of class AliITSgeom from standard input.
869 // Intputs are:
870 // ifstream &rb The input streaming buffer.
871 // Outputs are:
872 // ifstream &rb The input streaming buffer.
164da35c 873 Int_t i,j;
269f57ed 874
85f1e34a 875 fNlad = new Int_t[fNlayers];
876 fNdet = new Int_t[fNlayers];
877 if(fGm!=0){
878 for(i=0;i<fNmodules;i++) delete GetGeomMatrix(i);
879 delete fGm;
880 } // end if fGm!=0
881
882 rb >> fTrans >> fNmodules >> fNlayers;
883 fNlad = new Int_t[fNlayers];
884 fNdet = new Int_t[fNlayers];
885 for(i=0;i<fNlayers;i++) rb >> fNlad[i];
886 for(i=0;i<fNlayers;i++) rb >> fNdet[i];
887 fGm = new TObjArray(fNmodules,0);
888 for(i=0;i<fNmodules;i++){
889 fGm->AddAt(new AliITSgeomMatrix,i);
890 rb >> *(GetGeomMatrix(i));
891 } // end for i
164da35c 892 rb >> i;
893 fShape = new TObjArray(i);
894 for(i=0;i<fShape->GetEntries();i++) {
895 rb >> j;
896 switch (j){
897 case kSPD:{
898 AliITSgeomSPD *s = new AliITSgeomSPD();
899 rb >> *s;
900 fShape->AddAt(s,kSPD);}
901 break;
902 case kSDD:{
903 AliITSgeomSDD *s = new AliITSgeomSDD();
904 rb >> *s;
905 fShape->AddAt(s,kSDD);}
906 break;
907 case kSSD:{
908 AliITSgeomSSD *s = new AliITSgeomSSD();
909 rb >> *s;
910 fShape->AddAt(s,kSSD);}
911 break;
912 case kSSDp:{
913 AliITSgeomSSD *s = new AliITSgeomSSD();
914 rb >> *s;
915 fShape->AddAt(s,kSSDp);}
916 break;
917 case kSDDp:{
918 AliITSgeomSDD *s = new AliITSgeomSDD();
919 rb >> *s;
920 fShape->AddAt(s,kSDDp);}
921 break;
922 } // end switch
923 } // end for i
85f1e34a 924 return rb;
593e9459 925}
593e9459 926//______________________________________________________________________
269f57ed 927// The following routines modify the transformation of "this"
928// geometry transformations in a number of different ways.
593e9459 929//______________________________________________________________________
269f57ed 930void AliITSgeom::GlobalChange(const Float_t *tran,const Float_t *rot){
85f1e34a 931 // This function performs a Cartesian translation and rotation of
932 // the full ITS from its default position by an amount determined by
933 // the three element arrays tran and rot. If every element
934 // of tran and rot are zero then there is no change made
935 // the geometry. The change is global in that the exact same translation
936 // and rotation is done to every detector element in the exact same way.
937 // The units of the translation are those of the Monte Carlo, usually cm,
938 // and those of the rotation are in radians. The elements of tran
939 // are tran[0] = x, tran[1] = y, and tran[2] = z.
940 // The elements of rot are rot[0] = rx, rot[1] = ry, and
941 // rot[2] = rz. A change in x will move the hole ITS in the ALICE
942 // global x direction, the same for a change in y. A change in z will
943 // result in a translation of the ITS as a hole up or down the beam line.
944 // A change in the angles will result in the inclination of the ITS with
945 // respect to the beam line, except for an effective rotation about the
946 // beam axis which will just rotate the ITS as a hole about the beam axis.
947 // Intputs are:
948 // Float_t *tran A 3 element array representing the global translations.
949 // the elements are x,y,z in cm.
950 // Float_t *rot A 3 element array representing the global rotation
951 // angles about the three axis x,y,z in radians
952 // Outputs are:
953 // none.
954 Int_t i,j;
955 Double_t t[3],r[3];
956 AliITSgeomMatrix *g;
957
958 fTrans = (fTrans && 0xfffd) + 2; // set bit 1 true.
959 for(i=0;i<fNmodules;i++){
960 g = this->GetGeomMatrix(i);
961 g->GetTranslation(t);
962 g->GetAngles(r);
963 for(j=0;j<3;j++){
964 t[j] += tran[j];
965 r[j] += rot[j];
966 } // end for j
967 g->SetTranslation(t);
968 g->SetAngles(r);
969 } // end for i
970 return;
58005f18 971}
85f1e34a 972//______________________________________________________________________
973void AliITSgeom::GlobalCylindericalChange(const Float_t *tran,
974 const Float_t *rot){
975 // This function performs a cylindrical translation and rotation of
976 // each ITS element by a fixed about in radius, rphi, and z from its
977 // default position by an amount determined by the three element arrays
978 // tran and rot. If every element of tran and
979 // rot are zero then there is no change made the geometry. The
980 // change is global in that the exact same distance change in translation
981 // and rotation is done to every detector element in the exact same way.
982 // The units of the translation are those of the Monte Carlo, usually cm,
983 // and those of the rotation are in radians. The elements of tran
984 // are tran[0] = r, tran[1] = rphi, and tran[2] = z.
985 // The elements of rot are rot[0] = rx, rot[1] = ry, and
986 // rot[2] = rz. A change in r will results in the increase of the
987 // radius of each layer by the same about. A change in rphi will results in
988 // the rotation of each layer by a different angle but by the same
989 // circumferential distance. A change in z will result in a translation
990 // of the ITS as a hole up or down the beam line. A change in the angles
991 // will result in the inclination of the ITS with respect to the beam
992 // line, except for an effective rotation about the beam axis which will
993 // just rotate the ITS as a hole about the beam axis.
994 // Intputs are:
995 // Float_t *tran A 3 element array representing the global translations.
996 // the elements are r,theta,z in cm/radians.
997 // Float_t *rot A 3 element array representing the global rotation
998 // angles about the three axis x,y,z in radians
999 // Outputs are:
1000 // none.
1001 Int_t i,j;
1002 Double_t t[3],ro[3],r,r0,phi,rphi;
1003 AliITSgeomMatrix *g;
1004
1005 fTrans = (fTrans && 0xfffd) + 2; // set bit 1 true.
1006 for(i=0;i<fNmodules;i++){
1007 g = this->GetGeomMatrix(i);
1008 g->GetTranslation(t);
1009 g->GetAngles(ro);
1010 r = r0= TMath::Hypot(t[1],t[0]);
1011 phi = TMath::ATan2(t[1],t[0]);
1012 rphi = r0*phi;
1013 r += tran[0];
1014 rphi += tran[1];
1015 phi = rphi/r0;
1016 t[0] = r*TMath::Cos(phi);
1017 t[1] = r*TMath::Sin(phi);
1018 t[2] += tran[2];
1019 for(j=0;j<3;j++){
1020 ro[j] += rot[j];
1021 } // end for j
1022 g->SetTranslation(t);
1023 g->SetAngles(ro);
1024 } // end for i
1025 return;
58005f18 1026}
85f1e34a 1027//______________________________________________________________________
269f57ed 1028void AliITSgeom::RandomChange(const Float_t *stran,const Float_t *srot){
85f1e34a 1029 // This function performs a Gaussian random displacement and/or
1030 // rotation about the present global position of each active
1031 // volume/detector of the ITS. The sigma of the random displacement
1032 // is determined by the three element array stran, for the
1033 // x y and z translations, and the three element array srot,
1034 // for the three rotation about the axis x y and z.
1035 // Intputs are:
1036 // Float_t *stran A 3 element array representing the global translations
1037 // variances. The elements are x,y,z in cm.
1038 // Float_t *srot A 3 element array representing the global rotation
1039 // angles variances about the three axis x,y,z in radians.
1040 // Outputs are:
1041 // none.
1042 Int_t i,j;
1043 Double_t t[3],r[3];
1044 AliITSgeomMatrix *g;
1045
1046 fTrans = (fTrans && 0xfffd) + 2; // set bit 1 true.
1047 for(i=0;i<fNmodules;i++){
1048 g = this->GetGeomMatrix(i);
1049 g->GetTranslation(t);
1050 g->GetAngles(r);
1051 for(j=0;j<3;j++){
1052 t[j] += gRandom->Gaus(0.0,stran[j]);
1053 r[j] += gRandom->Gaus(0.0, srot[j]);
1054 } // end for j
1055 g->SetTranslation(t);
1056 g->SetAngles(r);
1057 } // end for i
1058 return;
58005f18 1059}
85f1e34a 1060//______________________________________________________________________
269f57ed 1061void AliITSgeom::RandomCylindericalChange(const Float_t *stran,
1062 const Float_t *srot){
85f1e34a 1063 // This function performs a Gaussian random displacement and/or
1064 // rotation about the present global position of each active
1065 // volume/detector of the ITS. The sigma of the random displacement
1066 // is determined by the three element array stran, for the
1067 // r rphi and z translations, and the three element array srot,
1068 // for the three rotation about the axis x y and z. This random change
1069 // in detector position allow for the simulation of a random uncertainty
1070 // in the detector positions of the ITS.
1071 // Intputs are:
1072 // Float_t *stran A 3 element array representing the global translations
1073 // variances. The elements are r,theta,z in cm/readians.
1074 // Float_t *srot A 3 element array representing the global rotation
1075 // angles variances about the three axis x,y,z in radians.
1076 // Outputs are:
1077 // none.
1078 Int_t i,j;
1079 Double_t t[3],ro[3],r,r0,phi,rphi;
1080 TRandom ran;
1081 AliITSgeomMatrix *g;
1082
1083 fTrans = (fTrans && 0xfffd) + 2; // set bit 1 true.
1084 for(i=0;i<fNmodules;i++){
1085 g = this->GetGeomMatrix(i);
1086 g->GetTranslation(t);
1087 g->GetAngles(ro);
1088 r = r0= TMath::Hypot(t[1],t[0]);
1089 phi = TMath::ATan2(t[1],t[0]);
1090 rphi = r0*phi;
1091 r += ran.Gaus(0.0,stran[0]);
1092 rphi += ran.Gaus(0.0,stran[1]);
1093 phi = rphi/r0;
1094 t[0] = r*TMath::Cos(phi);
1095 t[1] = r*TMath::Sin(phi);
1096 t[2] += ran.Gaus(0.0,stran[2]);
1097 for(j=0;j<3;j++){
1098 ro[j] += ran.Gaus(0.0, srot[j]);
1099 } // end for j
1100 g->SetTranslation(t);
1101 g->SetAngles(ro);
1102 } // end for i
1103 return;
58005f18 1104}
593e9459 1105//______________________________________________________________________
1106void AliITSgeom::GeantToTracking(AliITSgeom &source){
85f1e34a 1107 // Copy the geometry data but change it to go between the ALICE
1108 // Global coordinate system to that used by the ITS tracking. A slightly
1109 // different coordinate system is used when tracking. This coordinate
1110 // system is only relevant when the geometry represents the cylindrical
1111 // ALICE ITS geometry. For tracking the Z axis is left alone but X-> -Y
1112 // and Y-> X such that X always points out of the ITS cylinder for every
1113 // layer including layer 1 (where the detectors are mounted upside down).
1114 // Inputs are:
1115 // AliITSgeom &source The AliITSgeom class with which to make this
1116 // a copy of.
1117 // Outputs are:
1118 // return *this The a new copy of source.
1119 //Begin_Html
1120 /*
1121 <img src="picts/ITS/AliITSgeomMatrix_T1.gif">
1122 */
1123 //End_Html
1124 Int_t i,j,k,l,id[3];
1125 Double_t r0[3][3],r1[3][3];
1126 Double_t a0[3][3] = {{0.,+1.,0.},{-1.,0.,0.},{0.,0.,+1.}};
1127 Double_t a1[3][3] = {{0.,-1.,0.},{+1.,0.,0.},{0.,0.,+1.}};
1128
1129 *this = source; // copy everything
1130 for(i=0;i<GetIndexMax();i++){
1131 GetGeomMatrix(i)->GetIndex(id);
1132 GetGeomMatrix(i)->GetMatrix(r0);
1133 if(id[0]==1){ // Layer 1 is treated different from the others.
1134 for(j=0;j<3;j++) for(k=0;k<3;k++){
1135 r1[j][k] = 0.;
1136 for(l=0;l<3;l++) r1[j][k] += a0[j][l]*r0[l][k];
1137 } // end for j,k
1138 }else{
1139 for(j=0;j<3;j++) for(k=0;k<3;k++){
1140 r1[j][k] = 0.;
1141 for(l=0;l<3;l++) r1[j][k] += a1[j][l]*r0[l][k];
1142 } // end for j,k
1143 } // end if
1144 GetGeomMatrix(i)->SetMatrix(r1);
1145 } // end for i
1146 this->fTrans = (this->fTrans && 0xfffe) + 1; // set bit 0 true.
1147 return;
58005f18 1148}
269f57ed 1149//______________________________________________________________________
85f1e34a 1150Int_t AliITSgeom::GetNearest(const Double_t g[3],Int_t lay){
1151 // Finds the Detector (Module) that is nearest the point g [cm] in
1152 // ALICE Global coordinates. If layer !=0 then the search is restricted
1153 // to Detectors (Modules) in that particular layer.
1154 // Inputs are:
1155 // Double_t g[3] The ALICE Cartesean global coordinate from which the
1156 // distance is to be calculated with.
1157 // Int_t lay The layer to restrict the search to. If layer=0 then
1158 // all layers are searched. Default is lay=0.
1159 // Outputs are:
1160 // return The module number representing the nearest module.
1161 Int_t i,l,a,e,in=0;
1162 Double_t d,dn=1.0e10;
1163 Bool_t t=lay!=0; // skip if lay = 0 default value check all layers.
085bb6ed 1164
85f1e34a 1165 for(i=0;i<fNmodules;i++){
1166 if(t){GetModuleId(i,l,a,e);if(l!=lay) continue;}
1167 if((d=GetGeomMatrix(i)->Distance2(g))<dn){
1168 dn = d;
1169 in = i;
1170 } // end if
1171 } // end for i
1172 return in;
085bb6ed 1173}
269f57ed 1174//______________________________________________________________________
85f1e34a 1175void AliITSgeom::GetNearest27(const Double_t g[3],Int_t n[27],Int_t lay){
1176 // Finds 27 Detectors (Modules) that are nearest the point g [cm] in
1177 // ALICE Global coordinates. If layer !=0 then the search is restricted
1178 // to Detectors (Modules) in that particular layer. The number 27 comes
1179 // from including the nearest detector and all those around it (up, down,
1180 // left, right, forwards, backwards, and the corners).
1181 // Inputs are:
1182 // Double_t g[3] The ALICE Cartesean global coordinate from which the
1183 // distance is to be calculated with.
1184 // Int_t lay The layer to restrict the search to. If layer=0 then
1185 // all layers are searched. Default is lay=0.
1186 // Outputs are:
1187 // Int_t n[27] The module number representing the nearest 27 modules
1188 // in order.
1189 Int_t i,l,a,e,in[27]={0,0,0,0,0,0,0,0,0,
1190 0,0,0,0,0,0,0,0,0,
1191 0,0,0,0,0,0,0,0,0,};
1192 Double_t d,dn[27]={1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,
1193 1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,
1194 1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,
1195 1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,
1196 1.0e10,1.0e10,1.0e10};
1197 Bool_t t=(lay!=0); // skip if lay = 0 default value check all layers.
269f57ed 1198
85f1e34a 1199 for(i=0;i<fNmodules;i++){
1200 if(t){GetModuleId(i,l,a,e);if(l!=lay) continue;}
1201 for(a=0;a<27;a++){
1202 d = GetGeomMatrix(i)->Distance2(g);
1203 if(d<dn[a]){
1204 for(e=26;e>a;e--){dn[e] = dn[e-1];in[e] = in[e-1];}
1205 dn[a] = d; in[a] = i;
1206 } // end if d<dn[i]
1207 } // end for a
1208 } // end for i
1209 for(i=0;i<27;i++) n[i] = in[i];
269f57ed 1210}
1211//----------------------------------------------------------------------