Simple example macro to make some analyzis for the ESD tracks - see comments (Not...
[u/mrichter/AliRoot.git] / ITS / AliITSgeom.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
88cb7938 16/* $Id$ */
4c039060 17
58005f18 18///////////////////////////////////////////////////////////////////////
593e9459 19// ITS geometry manipulation routines. //
58005f18 20// Created April 15 1999. //
21// version: 0.0.0 //
22// By: Bjorn S. Nilsen //
23// version: 0.0.1 //
24// Updated May 27 1999. //
593e9459 25// Added Cylindrical random and global based changes. //
58005f18 26// Added function PrintComparison. //
27///////////////////////////////////////////////////////////////////////
593e9459 28
29
30////////////////////////////////////////////////////////////////////////
593e9459 31// The local coordinate system by, default, is show in the following
32// figures. Also shown are the ladder numbering scheme.
33//Begin_Html
34/*
269f57ed 35<img src="picts/ITS/AliITSgeomMatrix_L1.gif">
36</pre>
37<br clear=left>
38<font size=+2 color=blue>
39<p>This shows the relative geometry differences between the ALICE Global
40coordinate system and the local detector coordinate system.
41</font>
42<pre>
43
44<pre>
593e9459 45<img src="picts/ITS/its1+2_convention_front_5.gif">
46</pre>
47<br clear=left>
48<font size=+2 color=blue>
49<p>This shows the front view of the SPDs and the orientation of the local
50pixel coordinate system. Note that the inner pixel layer has its y coordinate
51in the opposite direction from all of the other layers.
52</font>
53<pre>
54
55<pre>
56<img src="picts/ITS/its3+4_convention_front_5.gif">
57</pre>
58<br clear=left>
59<font size=+2 color=blue>
60<p>This shows the front view of the SDDs and the orientation of the local
61pixel coordinate system.
62</font>
63<pre>
64
65<pre>
66<img src="picts/ITS/its5+6_convention_front_5.gif">
67</pre>
68<br clear=left>
69<font size=+2 color=blue>
70<p>This shows the front view of the SSDs and the orientation of the local
71pixel coordinate system.
72</font>
73<pre>
74*/
75//End_Html
269f57ed 76//
593e9459 77////////////////////////////////////////////////////////////////////////
78
79////////////////////////////////////////////////////////////////////////
80//
81// version: 0
82// Written by Bjorn S. Nilsen
83//
84// Data Members:
85//
86// Int_t fNlayers
87// The number of ITS layers for this geometry. By default this
88// is 6, but can be modified by the creator function if there are
89// more layers defined.
90//
91// Int_t *fNlad
92// A pointer to an array fNlayers long containing the number of
93// ladders for each layer. This array is typically created and filled
94// by the AliITSgeom creator function.
95//
96// Int_t *fNdet
97// A pointer to an array fNlayers long containing the number of
98// active detector volumes for each ladder. This array is typically
99// created and filled by the AliITSgeom creator function.
100//
269f57ed 101// AliITSgeomMatrix *fGm
102// A pointer to an array of AliITSgeomMatrix classes. One element
103// per module (detector) in the ITS. AliITSgeomMatrix basicly contains
104// all of the necessary information about the detector and it's coordinate
105// transformations.
593e9459 106//
107// TObjArray *fShape
108// A pointer to an array of TObjects containing the detailed shape
109// information for each type of detector used in the ITS. For example
110// I have created AliITSgeomSPD, AliITSgeomSDD, and AliITSgeomSSD as
111// example structures, derived from TObjects, to hold the detector
112// information. I would recommend that one element in each of these
113// structures, that which describes the shape of the active volume,
114// be one of the ROOT classes derived from TShape. In this way it would
115// be easy to have the display program display the correct active
116// ITS volumes. See the example classes AliITSgeomSPD, AliITSgeomSDD,
117// and AliITSgeomSSD for a more detailed example.
593e9459 118////////////////////////////////////////////////////////////////////////
4ae5bbc4 119#include <Riostream.h>
8253cd9a 120
269f57ed 121#include <TRandom.h>
f77f13c8 122#include <TSystem.h>
e8189707 123
58005f18 124#include "AliITSgeom.h"
269f57ed 125#include "AliITSgeomSDD.h"
f77f13c8 126#include "AliITSgeomSPD.h"
269f57ed 127#include "AliITSgeomSSD.h"
f77f13c8 128#include "AliLog.h"
58005f18 129
130ClassImp(AliITSgeom)
131
85f1e34a 132//______________________________________________________________________
58005f18 133AliITSgeom::AliITSgeom(){
85f1e34a 134 // The default constructor for the AliITSgeom class. It, by default,
135 // sets fNlayers to zero and zeros all pointers.
136 // Do not allocate anything zero everything.
137
8253cd9a 138 fTrans = 0; // standard GEANT global/local coordinate system.
139 fNlayers = 0;
140 fNlad = 0;
141 fNdet = 0;
142 fGm = 0;
143 fShape = 0;
144 strcpy(fVersion,"test");
145 return;
146}
85f1e34a 147//______________________________________________________________________
8253cd9a 148AliITSgeom::AliITSgeom(Int_t itype,Int_t nlayers,Int_t *nlads,Int_t *ndets,
149 Int_t mods){
85f1e34a 150 // A simple constructor to set basic geometry class variables
151 // Inputs:
152 // Int_t itype the type of transformation kept.
153 // bit 0 => Standard GEANT
154 // bit 1 => ITS tracking
155 // bit 2 => A change in the coordinate system has been made.
156 // others are still to be defined as needed.
157 // Int_t nlayers The number of ITS layers also set the size of the arrays
158 // Int_t *nlads an array of the number of ladders for each layer. This
159 // array must be nlayers long.
160 // Int_t *ndets an array of the number of detectors per ladder for each
161 // layer. This array must be nlayers long.
162 // Int_t mods The number of modules. Typicaly the sum of all the
163 // detectors on every layer and ladder.
164 // Outputs:
165 // none
8253cd9a 166 Int_t i;
167
168 fTrans = itype;
169 fNlayers = nlayers;
170 fNlad = new Int_t[nlayers];
171 fNdet = new Int_t[nlayers];
172 for(i=0;i<nlayers;i++){fNlad[i] = nlads[i];fNdet[i] = ndets[i];}
173 fNmodules = mods;
174 fGm = new TObjArray(mods,0);
5c9c741e 175 fShape = new TObjArray(5); // default value
176 for(i=0;i<5;i++) fShape->AddAt(0,i);
8253cd9a 177 strcpy(fVersion,"test");
178 return;
58005f18 179}
8253cd9a 180//______________________________________________________________________
181void AliITSgeom::CreatMatrix(Int_t mod,Int_t lay,Int_t lad,Int_t det,
85f1e34a 182 AliITSDetector idet,const Double_t tran[3],
183 const Double_t rot[10]){
184 // Given the translation vector tran[3] and the rotation matrix rot[1],
185 // this function creates and adds to the TObject Array fGm the
186 // AliITSgeomMatrix object.
187 // Inputs are:
188 // Int_t mod The module number. The location in TObjArray
189 // Int_t lay The layer where this module is
190 // Int_t lad On which ladder this module is
191 // Int_t det Which detector on this ladder this module is
192 // AliITSDetector idet The type of detector see AliITSgeom.h
193 // Double_t tran[3] The translation vector
194 // Double_t rot[10] The rotation matrix.
195 // Outputs are:
196 // none
197 // The rot[10] matrix is set up like:
198 /* / rot[0] rot[1] rot[2] \
199 // | rot[3] rot[4] rot[5] |
200 // \ rot[6] rot[7] rot[8] / if(rot[9]!=0) then the Identity matrix
201 // is used regardless of the values in rot[0]-rot[8].
202 */
8253cd9a 203 Int_t id[3];
204 Double_t r[3][3] = {{1.0,0.0,0.0},{0.0,1.0,0.0},{0.0,0.0,1.0}};
58005f18 205
8253cd9a 206 if(fGm->At(mod)!=0) delete fGm->At(mod);
207 id[0] = lay; id[1] = lad; id[2] = det;
208 if(rot[9]!=0.0) { // null rotation
209 r[0][0] = rot[0]; r[0][1] = rot[1]; r[0][2] = rot[2];
210 r[1][0] = rot[3]; r[1][1] = rot[4]; r[1][2] = rot[5];
211 r[2][0] = rot[6]; r[2][1] = rot[7]; r[2][2] = rot[8];
212 } // end if
213 fGm->AddAt(new AliITSgeomMatrix(idet,id,r,tran),mod);
214}
85f1e34a 215//______________________________________________________________________
58005f18 216AliITSgeom::~AliITSgeom(){
85f1e34a 217 // The destructor for the AliITSgeom class. If the arrays fNlad,
218 // fNdet, or fGm have had memory allocated to them, there pointer values
219 // are non zero, then this memory space is freed and they are set
220 // to zero. In addition, fNlayers is set to zero. The destruction of
221 // TObjArray fShape is, by default, handled by the TObjArray destructor.
222
085bb6ed 223 if(fGm!=0){
36583d28 224 //for(Int_t i=0;i<fNlayers;i++) delete fGm->At(i);
225 fGm->Delete();
8253cd9a 226 delete fGm;
085bb6ed 227 } // end if fGm!=0
58005f18 228 if(fNlad!=0) delete[] fNlad;
229 if(fNdet!=0) delete[] fNdet;
230 fNlayers = 0;
231 fNlad = 0;
232 fNdet = 0;
269f57ed 233 fGm = 0;
58005f18 234 return;
235}
269f57ed 236//______________________________________________________________________
237void AliITSgeom::ReadNewFile(const char *filename){
85f1e34a 238 // It is generaly preferred to define the geometry in AliITSgeom
239 // directly from the GEANT geometry, see AliITSvPPRasymm.cxx for
240 // and example. Under some circumstances this may not be possible.
241 // This function will read in a formatted file for all of the
242 // information needed to define the geometry in AliITSgeom.
243 // Unlike the older file format, this file may contain comments
244 // and the order of the data does not need to be completely
245 // respected. A file can be created using the function WriteNewFile
246 // defined below.
247 // Inputs are:
248 // const char *filename The file name of the file to be read in.
249 // Outputs are:
250 // none
8253cd9a 251 Int_t ncmd=9;
5c9c741e 252 const char *cmda[]={"Version" ,"fTrans" ,"fNmodules",
253 "fNlayers" ,"fNladers","fNdetectors",
254 "fNDetectorTypes","fShape" ,"Matrix"};
8253cd9a 255 Int_t i,j,lNdetTypes,ldet;
256 char cmd[20],c;
164da35c 257 AliITSgeomSPD *spd=0;
258 AliITSgeomSDD *sdd=0;
259 AliITSgeomSSD *ssd=0;
260 AliITSgeomMatrix *m=0;
261 ifstream *fp=0;
262 char *filtmp=0;
8253cd9a 263
264 filtmp = gSystem->ExpandPathName(filename);
f77f13c8 265 AliInfo(Form("Reading New .det file %s",filtmp));
8253cd9a 266 fp = new ifstream(filtmp,ios::in); // open file to write
267 while(fp->get(c)!=NULL){ // for ever loop
268 if(c==' ') continue; // remove blanks
269 if(c=='\n') continue;
f77f13c8 270 if(c=='#' || c=='!') {while(fp->get(c)) if(c=='\n') break; continue;}
8253cd9a 271 if(c=='/'){
272 fp->get(c);{
f77f13c8 273 if(c=='/') {while(fp->get(c)) if(c=='\n') break; continue;}
8253cd9a 274 if(c=='*'){
275 NotYet:
f77f13c8 276 while(fp->get(c)) if(c=='*') break;
8253cd9a 277 fp->get(c);{
278 if(c=='/') continue;
279 goto NotYet;
280 } //
281 } // end if c=='*'
282 } // end if second /
283 } // end if first /
5c9c741e 284 fp->putback(c);
8253cd9a 285 *fp >> cmd;
286 for(i=0;i<ncmd;i++) if(strcmp(cmd,cmda[i])==0) break;
287 switch (i){
288 case 0: // Version
289 *fp >> fVersion;
290 break;
291 case 1: // fTrans
292 *fp >> fTrans;
293 break;
294 case 2: // fNModules
295 *fp >> fNmodules;
296 if(fGm!=0){
297 for(j=0;j<fGm->GetEntriesFast();j++) delete fGm->At(j);
298 delete fGm;
299 } // end if
300 fGm = new TObjArray(fNmodules,0);
301 break;
302 case 3: // fNlayers
303 *fp >> fNlayers;
304 if(fNlad!=0) delete fNlad;
305 if(fNdet!=0) delete fNdet;
306 fNlad = new Int_t[fNlayers];
307 fNdet = new Int_t[fNlayers];
308 break;
309 case 4: // fNladers
310 for(j=0;j<fNlayers;j++) *fp >> fNlad[j];
311 break;
312 case 5: // fNdetectors
313 for(j=0;j<fNlayers;j++) *fp >> fNdet[j];
314 break;
315 case 6: // fNDetectorTypes
316 *fp >> lNdetTypes;
317 if(fShape!=0){
318 for(j=0;j<fShape->GetEntriesFast();j++) delete fShape->At(j);
319 delete fShape;
320 } // end if
321 fShape = new TObjArray(lNdetTypes,0);
322 break;
323 case 7: // fShape
324 *fp >> ldet;
5c9c741e 325 if(fShape==0) fShape = new TObjArray(5,0);
8253cd9a 326 switch (ldet){
327 case kSPD :
164da35c 328 spd = new AliITSgeomSPD();
8253cd9a 329 *fp >> *spd;
164da35c 330 ReSetShape(ldet,spd);
8253cd9a 331 spd = 0;
332 break;
164da35c 333 case kSDD : case kSDDp:
334 sdd = new AliITSgeomSDD();
8253cd9a 335 *fp >> *sdd;
164da35c 336 ReSetShape(ldet,sdd);
8253cd9a 337 sdd = 0;
338 break;
339 case kSSD : case kSSDp :
164da35c 340 ssd = new AliITSgeomSSD();
8253cd9a 341 *fp >> *ssd;
164da35c 342 ReSetShape(ldet,ssd);
8253cd9a 343 ssd = 0;
344 break;
345 default:
f77f13c8 346 AliError(Form("Unknown fShape type number=%d c=%c",ldet,c));
347 while(fp->get(c)) if(c=='\n') break; // skip to end of line.
8253cd9a 348 break;
349 } // end switch
350 break;
351 case 8: // Matrix
352 *fp >> ldet;
353 if(fGm==0) fGm = new TObjArray(2270,0);
354 if(fGm->At(ldet)!=0) delete (fGm->At(ldet));
355 fGm->AddAt((TObject*)new AliITSgeomMatrix(),ldet);
356 m = (AliITSgeomMatrix*) fGm->At(ldet);
357 *fp >> *m;
358 m = 0;
359 break;
360 default:
f77f13c8 361 AliError(Form("ReadNewFile","Data line i=%d c=%c",i,c));
362 while(fp->get(c)) if(c=='\n') break; // skip this line
8253cd9a 363 break;
364 } // end switch i
365 } // end while
366 delete fp;
367
368 return;
369}
370//______________________________________________________________________
371void AliITSgeom::WriteNewFile(const char *filename){
85f1e34a 372 // Writes AliITSgeom, AliITSgeomMatrix, and the defined AliITSgeomS*D
373 // classes to a file in a format that is more readable and commendable.
374 // Inputs are:
375 // const char *filename The file name of the file to be write to.
376 // Outputs are:
377 // none
8253cd9a 378 ofstream *fp;
379 Int_t i;
380 char *filtmp;
381
382 filtmp = gSystem->ExpandPathName(filename);
5c9c741e 383 cout << "AliITSgeom, Writing New .det file " << filtmp << endl;
8253cd9a 384 fp = new ofstream(filtmp,ios::out); // open file to write
385 *fp << "//Comment lines begin with two //, one #, or one !" << endl;
386 *fp << "#Blank lines are skipped including /* and */ sections." << endl;
387 *fp << "!and, in principle the order of the lines is not important" <<endl;
388 *fp << "/* In AliITSgeom.h are defined an enumerated type called" << endl;
389 *fp << " AliITSDetectors These are kSPD=" << (Int_t) kSPD ;
390 *fp << ", kSDD=" << (Int_t) kSDD << ", kSSD=" << (Int_t) kSSD;
5c9c741e 391 *fp << ", kSSDp=" << (Int_t) kSSDp << ", and kSDDp=" << (Int_t) kSDDp;
392 *fp << "*/" << endl;
85f1e34a 393 *fp << "Version " << fVersion << endl;//This should be consistent with the
8253cd9a 394 // geometry version.
395 *fp << "fTrans " << fTrans << endl;
396 *fp << "fNmodules " << fNmodules << endl;
397 *fp << "fNlayers " << fNlayers << endl;
398 *fp << "fNladers ";
399 for(i=0;i<fNlayers;i++) *fp << fNlad[i] << " ";
400 *fp << endl;
401 *fp << "fNdetectors ";
402 for(i=0;i<fNlayers;i++) *fp << fNdet[i] << " ";
403 *fp << endl;
404 *fp << "fNDetectorTypes " << fShape->GetEntriesFast() << endl;
405 for(i=0;i<fShape->GetEntriesFast();i++){
406 if(!IsShapeDefined(i)) continue; // only print out used shapes.
407 switch (i){
408 case kSPD :
409 *fp << "fShape " << (Int_t) kSPD << " ";
410 *fp << *((AliITSgeomSPD*)(fShape->At(i)));
411 break;
412 case kSDD :
413 *fp << "fShape " << (Int_t) kSDD << " ";
414 *fp << *((AliITSgeomSDD*)(fShape->At(i)));
415 break;
416 case kSSD : case kSSDp :
417 *fp << "fShape " << i << " ";
418 *fp << *((AliITSgeomSSD*)(fShape->At(i)));
419 break;
420 default:
421 Error("AliITSgeom::WriteNewFile","Unknown Shape value");
422 } // end switch (i)
423 } // end for i
424 for(i=0;i<fNmodules;i++){
425 *fp << "Matrix " << i << " ";
426 *fp << *GetGeomMatrix(i);
427 } // end for i
428 *fp << "//End of File" << endl;;
429
430 delete fp;
269f57ed 431 return;
432}
85f1e34a 433//______________________________________________________________________
58005f18 434AliITSgeom::AliITSgeom(const char *filename){
85f1e34a 435 // The constructor for the AliITSgeom class. All of the data to fill
436 // this structure is read in from the file given my the input filename.
437 // Inputs are:
438 // const char *filename The file name of the file to be read in.
439 // Outputs are:
440 // none
441 FILE *pf=0;
442 Int_t i,lm=0,id[3];
443 Int_t l,a,d;
444 Float_t x,y,z,o,p,q,r,s,t;
445 Double_t rot6[6],tran[3];
446 char buf[200],*buff=0; // input character buffer;
447 char *filtmp;
58005f18 448
85f1e34a 449 filtmp = gSystem->ExpandPathName(filename);
450 cout << "AliITSgeom reading old .det file " << filtmp << endl;
451 fShape = 0;
452 strcpy(fVersion,"DefauleV5");
453 pf = fopen(filtmp,"r");
454
455 fNlayers = 6; // set default number of ladders
456 TryAgain:
457 fNlad = new Int_t[fNlayers];
458 fNdet = new Int_t[fNlayers];
459 fNmodules = 0;
460 // find the number of ladders and detectors in this geometry.
461 for(i=0;i<fNlayers;i++){fNlad[i]=fNdet[i]=0;} // zero out arrays
462 while(fgets(buf,200,pf)!=NULL){ // for ever loop
463 for(i=0;i<200;i++)if(buf[i]!=' '){ // remove blank spaces.
464 buff = &(buf[i]);
465 break;
466 } // end for i
467 // remove blank lines and comments.
468 if(buff[0]=='\n'||buff[0]=='#'||buff[0]=='!'||
469 (buff[0]=='/'&&buff[1]=='/')) continue;
470 if(isalpha(buff[0])) { // must be the new file formated file.
269f57ed 471 fclose(pf);
472 delete[] fNlad;delete[] fNdet;
473 ReadNewFile(filename);
474 return;
85f1e34a 475 } // end if isalpha(buff[0])
476 sscanf(buff,"%d %d %d %f %f %f %f %f %f %f %f %f",
477 &l,&a,&d,&x,&y,&z,&o,&p,&q,&r,&s,&t);
478 if(l>lm) lm = l;
479 if(l<1 || l>fNlayers) {
480 printf("error in file %s layer=%d min. is 1 max is %d\n",
481 filename,l,fNlayers);
482 continue;
483 }// end if l
484 fNmodules++;
485 if(l<=fNlayers&&fNlad[l-1]<a) fNlad[l-1] = a;
486 if(l<=fNlayers&&fNdet[l-1]<d) fNdet[l-1] = d;
487 } // end while ever loop
488 if(lm>fNlayers){
269f57ed 489 delete[] fNlad;
490 delete[] fNdet;
491 fNlayers = lm;
492 goto TryAgain;
85f1e34a 493 } // end if lm>fNlayers
494 // counted the number of ladders and detectors now allocate space.
495 fGm = new TObjArray(fNmodules,0);
58005f18 496
85f1e34a 497 // Set up Shapes for a default configuration of 6 layers.
498 fTrans = 0; // standard GEANT global/local coordinate system.
499 // prepare to read in transforms
500 lm = 0; // reuse lm as counter of modules.
501 rewind(pf); // start over reading file
502 while(fgets(buf,200,pf)!=NULL){ // for ever loop
503 for(i=0;i<200;i++)if(buf[i]!=' '){ // remove blank spaces.
504 buff = &(buf[i]);
505 break;
506 } // end for i
507 // remove blank lines and comments.
508 if(buff[0]=='\n'||buff[0]=='#'||buff[0]=='!'||
509 (buff[0]=='/'&&buff[1]=='/')) continue;
510 x = y = z = o = p = q = r = s = t = 0.0;
511 sscanf(buff,"%d %d %d %f %f %f %f %f %f %f %f %f",
512 &l,&a,&d,&x,&y,&z,&o,&p,&q,&r,&s,&t);
513 if(l<1 || l>fNlayers) {
514 printf("error in file %s layer=%d min. is 1 max is %d/n",
515 filename,l,fNlayers);
516 continue;
517 }// end if l
518 id[0] = l;id[1] = a;id[2] = d;
519 tran[0] = tran[1] = tran[2] = 0.0;
520 tran[0] = (Double_t)x;tran[1] = (Double_t)y;tran[2] = (Double_t)z;
521 rot6[0] = rot6[1] = rot6[2] = rot6[3] = rot6[4] = rot6[5] =0.0;
522 rot6[0] = (Double_t)o;rot6[1] = (Double_t)p;rot6[2] = (Double_t)q;
523 rot6[3] = (Double_t)r;rot6[4] = (Double_t)s;rot6[5] = (Double_t)t;
524 switch (l){
525 case 1: case 2: // layer 1 or2 SPD
526 fGm->AddAt(new AliITSgeomMatrix(rot6,kSPD,id,tran),lm++);
527 break;
528 case 3: case 4: // layer 3 or 4 SDD
529 fGm->AddAt(new AliITSgeomMatrix(rot6,kSDD,id,tran),lm++);
530 break;
531 case 5: case 6: // layer 5 or 6 SSD
532 fGm->AddAt(new AliITSgeomMatrix(rot6,kSSD,id,tran),lm++);
533 break;
534 } // end switch
535 } // end while ever loop
536 fclose(pf);
58005f18 537}
85f1e34a 538//______________________________________________________________________
7f6ab649 539AliITSgeom::AliITSgeom(const AliITSgeom &source) : TObject(source){
85f1e34a 540 // The copy constructor for the AliITSgeom class. It calls the
541 // = operator function. See the = operator function for more details.
542 // Inputs are:
543 // AliITSgeom &source The AliITSgeom class with which to make this
544 // a copy of.
545 // Outputs are:
546 // none.
593e9459 547
548 *this = source; // Just use the = operator for now.
593e9459 549 return;
58005f18 550}
85f1e34a 551//______________________________________________________________________
7f6ab649 552AliITSgeom& AliITSgeom::operator=(const AliITSgeom &source){
85f1e34a 553 // The = operator function for the AliITSgeom class. It makes an
554 // independent copy of the class in such a way that any changes made
555 // to the copied class will not affect the source class in any way.
556 // This is required for many ITS alignment studies where the copied
557 // class is then modified by introducing some misalignment.
558 // Inputs are:
559 // AliITSgeom &source The AliITSgeom class with which to make this
560 // a copy of.
561 // Outputs are:
562 // return *this The a new copy of source.
269f57ed 563 Int_t i;
58005f18 564
85f1e34a 565 if(this == &source) return *this; // don't assign to ones self.
58005f18 566
567 // if there is an old structure allocated delete it first.
269f57ed 568 if(this->fGm != 0){
8253cd9a 569 for(i=0;i<this->fNmodules;i++) delete this->fGm->At(i);
269f57ed 570 delete this->fGm;
085bb6ed 571 } // end if fGm != 0
572 if(fNlad != 0) delete[] fNlad;
573 if(fNdet != 0) delete[] fNdet;
574
269f57ed 575 this->fTrans = source.fTrans;
576 this->fNmodules = source.fNmodules;
577 this->fNlayers = source.fNlayers;
578 this->fNlad = new Int_t[fNlayers];
579 for(i=0;i<this->fNlayers;i++) this->fNlad[i] = source.fNlad[i];
580 this->fNdet = new Int_t[fNlayers];
581 for(i=0;i<this->fNlayers;i++) this->fNdet[i] = source.fNdet[i];
582 this->fShape = new TObjArray(*(source.fShape));//This does not make a proper copy.
8253cd9a 583 this->fGm = new TObjArray(this->fNmodules,0);
269f57ed 584 for(i=0;i<this->fNmodules;i++){
8253cd9a 585 this->fGm->AddAt(new AliITSgeomMatrix(*(
586 (AliITSgeomMatrix*)(source.fGm->At(i)))),i);
085bb6ed 587 } // end for i
85f1e34a 588 return *this;
589}
590//______________________________________________________________________
591Int_t AliITSgeom::GetModuleIndex(Int_t lay,Int_t lad,Int_t det){
592 // This routine computes the module index number from the layer,
593 // ladder, and detector numbers. The number of ladders and detectors
594 // per layer is determined when this geometry package is constructed,
595 // see AliITSgeom(const char *filename) for specifics.
596 // Inputs are:
597 // Int_t lay The layer number. Starting from 1.
598 // Int_t lad The ladder number. Starting from 1.
599 // Int_t det The detector number. Starting from 1.
600 // Outputs are:
601 // return the module index number, starting from zero.
269f57ed 602 Int_t i,j,k,id[3];
58005f18 603
604 i = fNdet[lay-1] * (lad-1) + det - 1;
605 j = 0;
606 for(k=0;k<lay-1;k++) j += fNdet[k]*fNlad[k];
269f57ed 607 i = i+j;
7e932df0 608 if(i>=fNmodules) return -1;
8253cd9a 609 GetGeomMatrix(i)->GetIndex(id);
269f57ed 610 if(id[0]==lay&&id[1]==lad&&id[2]==det) return i;
611 // Array of modules fGm is not in expected order. Search for this index
612 for(i=0;i<fNmodules;i++){
8253cd9a 613 GetGeomMatrix(i)->GetIndex(id);
269f57ed 614 if(id[0]==lay&&id[1]==lad&&id[2]==det) return i;
615 } // end for i
616 // This layer ladder and detector combination does not exist return -1.
617 return -1;
58005f18 618}
269f57ed 619//______________________________________________________________________
85f1e34a 620void AliITSgeom::GetModuleId(Int_t index,Int_t &lay,Int_t &lad,Int_t &det){
621 // This routine computes the layer, ladder and detector number
622 // given the module index number. The number of ladders and detectors
623 // per layer is determined when this geometry package is constructed,
624 // see AliITSgeom(const char *filename) for specifics.
625 // Inputs are:
626 // Int_t index The module index number, starting from zero.
627 // Outputs are:
628 // Int_t lay The layer number. Starting from 1.
629 // Int_t lad The ladder number. Starting from 1.
630 // Int_t det The detector number. Starting from 1.
269f57ed 631 Int_t id[3];
88cb7938 632 AliITSgeomMatrix *g = GetGeomMatrix(index);
633 if (g == 0x0)
634 {
635 Error("GetModuleId","Can not get GeoMatrix for index = %d",index);
636 lay = -1; lad = -1; det = -1;
637 }
638 else
639 {
640 g->GetIndex(id);
641 lay = id[0]; lad = id[1]; det = id[2];
642 }
269f57ed 643 return;
644
645 // The old way kept for posterity.
646/*
647 Int_t i,j,k;
58005f18 648 j = 0;
649 for(k=0;k<fNlayers;k++){
650 j += fNdet[k]*fNlad[k];
aa6248e2 651 if(j>index)break;
58005f18 652 } // end for k
653 lay = k+1;
654 i = index -j + fNdet[k]*fNlad[k];
655 j = 0;
656 for(k=0;k<fNlad[lay-1];k++){
aa6248e2 657 j += fNdet[lay-1];
658 if(j>i)break;
58005f18 659 } // end for k
660 lad = k+1;
661 det = 1+i-fNdet[lay-1]*k;
662 return;
269f57ed 663*/
58005f18 664}
85f1e34a 665//______________________________________________________________________
666Int_t AliITSgeom::GetStartDet(Int_t dtype){
667 // returns the starting module index value for a give type of detector id.
668 // This assumes that the detector types are different on different layers
669 // and that they are not mixed up.
670 // Inputs are:
671 // Int_t dtype A detector type number. 0 for SPD, 1 for SDD, and 2 for SSD.
672 // outputs:
673 // return the module index for the first occurance of that detector type.
674
675 switch(dtype){
676 case 0:
677 return GetModuleIndex(1,1,1);
678 break;
679 case 1:
680 return GetModuleIndex(3,1,1);
681 break;
682 case 2:
683 return GetModuleIndex(5,1,1);
684 break;
685 default:
686 Warning("GetStartDet","undefined detector type %d",dtype);
687 return 0;
688 } // end switch
689
690 Warning("GetStartDet","undefined detector type %d",dtype);
691 return 0;
085bb6ed 692}
85f1e34a 693//______________________________________________________________________
694Int_t AliITSgeom::GetLastDet(Int_t dtype){
695 // returns the last module index value for a give type of detector id.
696 // This assumes that the detector types are different on different layers
697 // and that they are not mixed up.
698 // Inputs are:
699 // Int_t dtype A detector type number. 0 for SPD, 1 for SDD, and 2 for SSD.
700 // outputs are:
701 // return the module index for the last occurance of that detector type.
702
703 switch(dtype){
704 case 0:
705 return GetLastSPD();
706 break;
707 case 1:
708 return GetLastSDD();
709 break;
710 case 2:
711 return GetLastSSD();
712 break;
713 default:
714 Warning("GetLastDet","undefined detector type %d",dtype);
715 return 0;
716 } // end switch
717
718 Warning("GetLastDet","undefined detector type %d",dtype);
719 return 0;
085bb6ed 720}
85f1e34a 721//______________________________________________________________________
593e9459 722void AliITSgeom::PrintComparison(FILE *fp,AliITSgeom *other){
85f1e34a 723 // This function was primarily created for diagnostic reasons. It
724 // print to a file pointed to by the file pointer fp the difference
725 // between two AliITSgeom classes. The format of the file is basicly,
726 // define d? to be the difference between the same element of the two
727 // classes. For example dfrx = this->GetGeomMatrix(i)->frx
728 // - other->GetGeomMatrix(i)->frx.
729 // if(at least one of dfx0, dfy0, dfz0,dfrx,dfry,dfrz are non zero) then
730 // print layer ladder detector dfx0 dfy0 dfz0 dfrx dfry dfrz
731 // if(at least one of the 9 elements of dfr[] are non zero) then print
732 // layer ladder detector dfr[0] dfr[1] dfr[2]
733 // dfr[3] dfr[4] dfr[5]
734 // dfr[6] dfr[7] dfr[8]
735 // Only non zero values are printed to save space. The differences are
736 // typical written to a file because there are usually a lot of numbers
737 // printed out and it is usually easier to read them in some nice editor
738 // rather than zooming quickly past you on a screen. fprintf is used to
739 // do the printing. The fShapeIndex difference is not printed at this time.
740 // Inputs are:
741 // FILE *fp A file pointer to an opened file for writing in which
742 // the results of the comparison will be written.
743 // AliITSgeom *other The other AliITSgeom class to which this one is
744 // being compared.
745 // outputs are:
746 // none
747 Int_t i,j,idt[3],ido[3];
748 Double_t tt[3],to[3]; // translation
749 Double_t rt[3],ro[3]; // phi in radians
750 Double_t mt[3][3],mo[3][3]; // matrixes
751 AliITSgeomMatrix *gt,*go;
752 Bool_t t;
753
754 for(i=0;i<this->fNmodules;i++){
755 gt = this->GetGeomMatrix(i);
756 go = other->GetGeomMatrix(i);
757 gt->GetIndex(idt);
758 go->GetIndex(ido);
759 t = kFALSE;
760 for(i=0;i<3;i++) t = t&&idt[i]!=ido[i];
761 if(t) fprintf(fp,"%4.4d %1.1d %2.2d %2.2d %1.1d %2.2d %2.2d\n",i,
762 idt[0],idt[1],idt[2],ido[0],ido[1],ido[2]);
763 gt->GetTranslation(tt);
764 go->GetTranslation(to);
765 gt->GetAngles(rt);
766 go->GetAngles(ro);
767 t = kFALSE;
768 for(i=0;i<3;i++) t = t&&tt[i]!=to[i];
769 if(t) fprintf(fp,"%1.1d %2.2d %2.2d dTrans=%f %f %f drot=%f %f %f\n",
770 idt[0],idt[1],idt[2],
771 tt[0]-to[0],tt[1]-to[1],tt[2]-to[2],
772 rt[0]-ro[0],rt[1]-ro[1],rt[2]-ro[2]);
773 t = kFALSE;
774 gt->GetMatrix(mt);
775 go->GetMatrix(mo);
776 for(i=0;i<3;i++)for(j=0;j<3;j++) t = mt[i][j] != mo[i][j];
777 if(t){
778 fprintf(fp,"%1.1d %2.2d %2.2d dfr= %e %e %e\n",
779 idt[0],idt[1],idt[2],
780 mt[0][0]-mo[0][0],mt[0][1]-mo[0][1],mt[0][2]-mo[0][2]);
781 fprintf(fp," dfr= %e %e %e\n",
782 mt[1][0]-mo[1][0],mt[1][1]-mo[1][1],mt[1][2]-mo[1][2]);
783 fprintf(fp," dfr= %e %e %e\n",
784 mt[2][0]-mo[2][0],mt[2][1]-mo[2][1],mt[2][2]-mo[2][2]);
785 } // end if t
786 } // end for i
787 return;
593e9459 788}
85f1e34a 789//______________________________________________________________________
790void AliITSgeom::PrintData(FILE *fp,Int_t lay,Int_t lad,Int_t det){
791 // This function prints out the coordinate transformations for
792 // the particular detector defined by layer, ladder, and detector
793 // to the file pointed to by the File pointer fp. fprintf statements
794 // are used to print out the numbers. The format is
795 // layer ladder detector Trans= fx0 fy0 fz0 rot= frx fry frz
796 // Shape=fShapeIndex
797 // dfr= fr[0] fr[1] fr[2]
798 // dfr= fr[3] fr[4] fr[5]
799 // dfr= fr[6] fr[7] fr[8]
800 // By indicating which detector, some control over the information
801 // is given to the user. The output it written to the file pointed
802 // to by the file pointer fp. This can be set to stdout if you want.
803 // Inputs are:
804 // FILE *fp A file pointer to an opened file for writing in which
805 // the results of the comparison will be written.
806 // Int_t lay The layer number. Starting from 1.
807 // Int_t lad The ladder number. Starting from 1.
808 // Int_t det The detector number. Starting from 1.
809 // outputs are:
810 // none
811 AliITSgeomMatrix *gt;
812 Double_t t[3],r[3],m[3][3];
813
814 gt = this->GetGeomMatrix(GetModuleIndex(lay,lad,det));
815 gt->GetTranslation(t);
816 gt->GetAngles(r);
817 fprintf(fp,"%1.1d %2.2d %2.2d Trans=%f %f %f rot=%f %f %f Shape=%d\n",
818 lay,lad,det,t[0],t[1],t[2],r[0],r[1],r[2],
819 gt->GetDetectorIndex());
820 gt->GetMatrix(m);
821 fprintf(fp," dfr= %e %e %e\n",m[0][0],m[0][1],m[0][2]);
822 fprintf(fp," dfr= %e %e %e\n",m[1][0],m[1][1],m[1][2]);
823 fprintf(fp," dfr= %e %e %e\n",m[2][0],m[2][1],m[2][2]);
824 return;
593e9459 825}
85f1e34a 826//______________________________________________________________________
827ofstream & AliITSgeom::PrintGeom(ofstream &rb){
828 // Stream out an object of class AliITSgeom to standard output.
829 // Intputs are:
830 // ofstream &rb The output streaming buffer.
831 // Outputs are:
832 // ofstream &rb The output streaming buffer.
269f57ed 833 Int_t i;
593e9459 834
85f1e34a 835 rb.setf(ios::scientific);
836 rb << fTrans << " ";
837 rb << fNmodules << " ";
838 rb << fNlayers << " ";
839 for(i=0;i<fNlayers;i++) rb << fNlad[i] << " ";
840 for(i=0;i<fNlayers;i++) rb << fNdet[i] << "\n";
269f57ed 841 for(i=0;i<fNmodules;i++) {
85f1e34a 842 rb <<setprecision(16) << *(GetGeomMatrix(i)) << "\n";
269f57ed 843 } // end for i
164da35c 844 rb << fShape->GetEntries()<<endl;
845 for(i=0;i<fShape->GetEntries();i++) if(fShape->At(i)!=0) switch (i){
846 case kSPD:
847 rb << kSPD <<","<< (AliITSgeomSPD*)(fShape->At(kSPD));
848 break;
849 case kSDD:
850 rb << kSDD <<","<< (AliITSgeomSDD*)(fShape->At(kSDD));
851 break;
852 case kSSD:
853 rb << kSSD <<","<< (AliITSgeomSSD*)(fShape->At(kSSD));
854 break;
855 case kSSDp:
856 rb << kSSDp <<","<< (AliITSgeomSSD*)(fShape->At(kSSDp));
857 break;
858 case kSDDp:
859 rb << kSDDp <<","<< (AliITSgeomSDD*)(fShape->At(kSDDp));
860 break;
861 } // end for i / switch
85f1e34a 862 return rb;
593e9459 863}
85f1e34a 864//______________________________________________________________________
865ifstream & AliITSgeom::ReadGeom(ifstream &rb){
866 // Stream in an object of class AliITSgeom from standard input.
867 // Intputs are:
868 // ifstream &rb The input streaming buffer.
869 // Outputs are:
870 // ifstream &rb The input streaming buffer.
164da35c 871 Int_t i,j;
269f57ed 872
85f1e34a 873 fNlad = new Int_t[fNlayers];
874 fNdet = new Int_t[fNlayers];
875 if(fGm!=0){
876 for(i=0;i<fNmodules;i++) delete GetGeomMatrix(i);
877 delete fGm;
878 } // end if fGm!=0
879
880 rb >> fTrans >> fNmodules >> fNlayers;
881 fNlad = new Int_t[fNlayers];
882 fNdet = new Int_t[fNlayers];
883 for(i=0;i<fNlayers;i++) rb >> fNlad[i];
884 for(i=0;i<fNlayers;i++) rb >> fNdet[i];
885 fGm = new TObjArray(fNmodules,0);
886 for(i=0;i<fNmodules;i++){
887 fGm->AddAt(new AliITSgeomMatrix,i);
888 rb >> *(GetGeomMatrix(i));
889 } // end for i
164da35c 890 rb >> i;
891 fShape = new TObjArray(i);
892 for(i=0;i<fShape->GetEntries();i++) {
893 rb >> j;
894 switch (j){
895 case kSPD:{
896 AliITSgeomSPD *s = new AliITSgeomSPD();
897 rb >> *s;
898 fShape->AddAt(s,kSPD);}
899 break;
900 case kSDD:{
901 AliITSgeomSDD *s = new AliITSgeomSDD();
902 rb >> *s;
903 fShape->AddAt(s,kSDD);}
904 break;
905 case kSSD:{
906 AliITSgeomSSD *s = new AliITSgeomSSD();
907 rb >> *s;
908 fShape->AddAt(s,kSSD);}
909 break;
910 case kSSDp:{
911 AliITSgeomSSD *s = new AliITSgeomSSD();
912 rb >> *s;
913 fShape->AddAt(s,kSSDp);}
914 break;
915 case kSDDp:{
916 AliITSgeomSDD *s = new AliITSgeomSDD();
917 rb >> *s;
918 fShape->AddAt(s,kSDDp);}
919 break;
920 } // end switch
921 } // end for i
85f1e34a 922 return rb;
593e9459 923}
593e9459 924//______________________________________________________________________
269f57ed 925// The following routines modify the transformation of "this"
926// geometry transformations in a number of different ways.
593e9459 927//______________________________________________________________________
269f57ed 928void AliITSgeom::GlobalChange(const Float_t *tran,const Float_t *rot){
85f1e34a 929 // This function performs a Cartesian translation and rotation of
930 // the full ITS from its default position by an amount determined by
931 // the three element arrays tran and rot. If every element
932 // of tran and rot are zero then there is no change made
933 // the geometry. The change is global in that the exact same translation
934 // and rotation is done to every detector element in the exact same way.
935 // The units of the translation are those of the Monte Carlo, usually cm,
936 // and those of the rotation are in radians. The elements of tran
937 // are tran[0] = x, tran[1] = y, and tran[2] = z.
938 // The elements of rot are rot[0] = rx, rot[1] = ry, and
939 // rot[2] = rz. A change in x will move the hole ITS in the ALICE
940 // global x direction, the same for a change in y. A change in z will
941 // result in a translation of the ITS as a hole up or down the beam line.
942 // A change in the angles will result in the inclination of the ITS with
943 // respect to the beam line, except for an effective rotation about the
944 // beam axis which will just rotate the ITS as a hole about the beam axis.
945 // Intputs are:
946 // Float_t *tran A 3 element array representing the global translations.
947 // the elements are x,y,z in cm.
948 // Float_t *rot A 3 element array representing the global rotation
949 // angles about the three axis x,y,z in radians
950 // Outputs are:
951 // none.
952 Int_t i,j;
953 Double_t t[3],r[3];
954 AliITSgeomMatrix *g;
955
956 fTrans = (fTrans && 0xfffd) + 2; // set bit 1 true.
957 for(i=0;i<fNmodules;i++){
958 g = this->GetGeomMatrix(i);
959 g->GetTranslation(t);
960 g->GetAngles(r);
961 for(j=0;j<3;j++){
962 t[j] += tran[j];
963 r[j] += rot[j];
964 } // end for j
965 g->SetTranslation(t);
966 g->SetAngles(r);
967 } // end for i
968 return;
58005f18 969}
85f1e34a 970//______________________________________________________________________
971void AliITSgeom::GlobalCylindericalChange(const Float_t *tran,
972 const Float_t *rot){
973 // This function performs a cylindrical translation and rotation of
974 // each ITS element by a fixed about in radius, rphi, and z from its
975 // default position by an amount determined by the three element arrays
976 // tran and rot. If every element of tran and
977 // rot are zero then there is no change made the geometry. The
978 // change is global in that the exact same distance change in translation
979 // and rotation is done to every detector element in the exact same way.
980 // The units of the translation are those of the Monte Carlo, usually cm,
981 // and those of the rotation are in radians. The elements of tran
982 // are tran[0] = r, tran[1] = rphi, and tran[2] = z.
983 // The elements of rot are rot[0] = rx, rot[1] = ry, and
984 // rot[2] = rz. A change in r will results in the increase of the
985 // radius of each layer by the same about. A change in rphi will results in
986 // the rotation of each layer by a different angle but by the same
987 // circumferential distance. A change in z will result in a translation
988 // of the ITS as a hole up or down the beam line. A change in the angles
989 // will result in the inclination of the ITS with respect to the beam
990 // line, except for an effective rotation about the beam axis which will
991 // just rotate the ITS as a hole about the beam axis.
992 // Intputs are:
993 // Float_t *tran A 3 element array representing the global translations.
994 // the elements are r,theta,z in cm/radians.
995 // Float_t *rot A 3 element array representing the global rotation
996 // angles about the three axis x,y,z in radians
997 // Outputs are:
998 // none.
999 Int_t i,j;
1000 Double_t t[3],ro[3],r,r0,phi,rphi;
1001 AliITSgeomMatrix *g;
1002
1003 fTrans = (fTrans && 0xfffd) + 2; // set bit 1 true.
1004 for(i=0;i<fNmodules;i++){
1005 g = this->GetGeomMatrix(i);
1006 g->GetTranslation(t);
1007 g->GetAngles(ro);
1008 r = r0= TMath::Hypot(t[1],t[0]);
1009 phi = TMath::ATan2(t[1],t[0]);
1010 rphi = r0*phi;
1011 r += tran[0];
1012 rphi += tran[1];
1013 phi = rphi/r0;
1014 t[0] = r*TMath::Cos(phi);
1015 t[1] = r*TMath::Sin(phi);
1016 t[2] += tran[2];
1017 for(j=0;j<3;j++){
1018 ro[j] += rot[j];
1019 } // end for j
1020 g->SetTranslation(t);
1021 g->SetAngles(ro);
1022 } // end for i
1023 return;
58005f18 1024}
85f1e34a 1025//______________________________________________________________________
269f57ed 1026void AliITSgeom::RandomChange(const Float_t *stran,const Float_t *srot){
85f1e34a 1027 // This function performs a Gaussian random displacement and/or
1028 // rotation about the present global position of each active
1029 // volume/detector of the ITS. The sigma of the random displacement
1030 // is determined by the three element array stran, for the
1031 // x y and z translations, and the three element array srot,
1032 // for the three rotation about the axis x y and z.
1033 // Intputs are:
1034 // Float_t *stran A 3 element array representing the global translations
1035 // variances. The elements are x,y,z in cm.
1036 // Float_t *srot A 3 element array representing the global rotation
1037 // angles variances about the three axis x,y,z in radians.
1038 // Outputs are:
1039 // none.
1040 Int_t i,j;
1041 Double_t t[3],r[3];
1042 AliITSgeomMatrix *g;
1043
1044 fTrans = (fTrans && 0xfffd) + 2; // set bit 1 true.
1045 for(i=0;i<fNmodules;i++){
1046 g = this->GetGeomMatrix(i);
1047 g->GetTranslation(t);
1048 g->GetAngles(r);
1049 for(j=0;j<3;j++){
1050 t[j] += gRandom->Gaus(0.0,stran[j]);
1051 r[j] += gRandom->Gaus(0.0, srot[j]);
1052 } // end for j
1053 g->SetTranslation(t);
1054 g->SetAngles(r);
1055 } // end for i
1056 return;
58005f18 1057}
85f1e34a 1058//______________________________________________________________________
269f57ed 1059void AliITSgeom::RandomCylindericalChange(const Float_t *stran,
1060 const Float_t *srot){
85f1e34a 1061 // This function performs a Gaussian random displacement and/or
1062 // rotation about the present global position of each active
1063 // volume/detector of the ITS. The sigma of the random displacement
1064 // is determined by the three element array stran, for the
1065 // r rphi and z translations, and the three element array srot,
1066 // for the three rotation about the axis x y and z. This random change
1067 // in detector position allow for the simulation of a random uncertainty
1068 // in the detector positions of the ITS.
1069 // Intputs are:
1070 // Float_t *stran A 3 element array representing the global translations
1071 // variances. The elements are r,theta,z in cm/readians.
1072 // Float_t *srot A 3 element array representing the global rotation
1073 // angles variances about the three axis x,y,z in radians.
1074 // Outputs are:
1075 // none.
1076 Int_t i,j;
1077 Double_t t[3],ro[3],r,r0,phi,rphi;
1078 TRandom ran;
1079 AliITSgeomMatrix *g;
1080
1081 fTrans = (fTrans && 0xfffd) + 2; // set bit 1 true.
1082 for(i=0;i<fNmodules;i++){
1083 g = this->GetGeomMatrix(i);
1084 g->GetTranslation(t);
1085 g->GetAngles(ro);
1086 r = r0= TMath::Hypot(t[1],t[0]);
1087 phi = TMath::ATan2(t[1],t[0]);
1088 rphi = r0*phi;
1089 r += ran.Gaus(0.0,stran[0]);
1090 rphi += ran.Gaus(0.0,stran[1]);
1091 phi = rphi/r0;
1092 t[0] = r*TMath::Cos(phi);
1093 t[1] = r*TMath::Sin(phi);
1094 t[2] += ran.Gaus(0.0,stran[2]);
1095 for(j=0;j<3;j++){
1096 ro[j] += ran.Gaus(0.0, srot[j]);
1097 } // end for j
1098 g->SetTranslation(t);
1099 g->SetAngles(ro);
1100 } // end for i
1101 return;
58005f18 1102}
593e9459 1103//______________________________________________________________________
1104void AliITSgeom::GeantToTracking(AliITSgeom &source){
85f1e34a 1105 // Copy the geometry data but change it to go between the ALICE
1106 // Global coordinate system to that used by the ITS tracking. A slightly
1107 // different coordinate system is used when tracking. This coordinate
1108 // system is only relevant when the geometry represents the cylindrical
1109 // ALICE ITS geometry. For tracking the Z axis is left alone but X-> -Y
1110 // and Y-> X such that X always points out of the ITS cylinder for every
1111 // layer including layer 1 (where the detectors are mounted upside down).
1112 // Inputs are:
1113 // AliITSgeom &source The AliITSgeom class with which to make this
1114 // a copy of.
1115 // Outputs are:
1116 // return *this The a new copy of source.
1117 //Begin_Html
1118 /*
1119 <img src="picts/ITS/AliITSgeomMatrix_T1.gif">
1120 */
1121 //End_Html
1122 Int_t i,j,k,l,id[3];
1123 Double_t r0[3][3],r1[3][3];
1124 Double_t a0[3][3] = {{0.,+1.,0.},{-1.,0.,0.},{0.,0.,+1.}};
1125 Double_t a1[3][3] = {{0.,-1.,0.},{+1.,0.,0.},{0.,0.,+1.}};
1126
1127 *this = source; // copy everything
1128 for(i=0;i<GetIndexMax();i++){
1129 GetGeomMatrix(i)->GetIndex(id);
1130 GetGeomMatrix(i)->GetMatrix(r0);
1131 if(id[0]==1){ // Layer 1 is treated different from the others.
1132 for(j=0;j<3;j++) for(k=0;k<3;k++){
1133 r1[j][k] = 0.;
1134 for(l=0;l<3;l++) r1[j][k] += a0[j][l]*r0[l][k];
1135 } // end for j,k
1136 }else{
1137 for(j=0;j<3;j++) for(k=0;k<3;k++){
1138 r1[j][k] = 0.;
1139 for(l=0;l<3;l++) r1[j][k] += a1[j][l]*r0[l][k];
1140 } // end for j,k
1141 } // end if
1142 GetGeomMatrix(i)->SetMatrix(r1);
1143 } // end for i
1144 this->fTrans = (this->fTrans && 0xfffe) + 1; // set bit 0 true.
1145 return;
58005f18 1146}
269f57ed 1147//______________________________________________________________________
85f1e34a 1148Int_t AliITSgeom::GetNearest(const Double_t g[3],Int_t lay){
1149 // Finds the Detector (Module) that is nearest the point g [cm] in
1150 // ALICE Global coordinates. If layer !=0 then the search is restricted
1151 // to Detectors (Modules) in that particular layer.
1152 // Inputs are:
1153 // Double_t g[3] The ALICE Cartesean global coordinate from which the
1154 // distance is to be calculated with.
1155 // Int_t lay The layer to restrict the search to. If layer=0 then
1156 // all layers are searched. Default is lay=0.
1157 // Outputs are:
1158 // return The module number representing the nearest module.
1159 Int_t i,l,a,e,in=0;
1160 Double_t d,dn=1.0e10;
1161 Bool_t t=lay!=0; // skip if lay = 0 default value check all layers.
085bb6ed 1162
85f1e34a 1163 for(i=0;i<fNmodules;i++){
1164 if(t){GetModuleId(i,l,a,e);if(l!=lay) continue;}
1165 if((d=GetGeomMatrix(i)->Distance2(g))<dn){
1166 dn = d;
1167 in = i;
1168 } // end if
1169 } // end for i
1170 return in;
085bb6ed 1171}
269f57ed 1172//______________________________________________________________________
85f1e34a 1173void AliITSgeom::GetNearest27(const Double_t g[3],Int_t n[27],Int_t lay){
1174 // Finds 27 Detectors (Modules) that are nearest the point g [cm] in
1175 // ALICE Global coordinates. If layer !=0 then the search is restricted
1176 // to Detectors (Modules) in that particular layer. The number 27 comes
1177 // from including the nearest detector and all those around it (up, down,
1178 // left, right, forwards, backwards, and the corners).
1179 // Inputs are:
1180 // Double_t g[3] The ALICE Cartesean global coordinate from which the
1181 // distance is to be calculated with.
1182 // Int_t lay The layer to restrict the search to. If layer=0 then
1183 // all layers are searched. Default is lay=0.
1184 // Outputs are:
1185 // Int_t n[27] The module number representing the nearest 27 modules
1186 // in order.
1187 Int_t i,l,a,e,in[27]={0,0,0,0,0,0,0,0,0,
1188 0,0,0,0,0,0,0,0,0,
1189 0,0,0,0,0,0,0,0,0,};
1190 Double_t d,dn[27]={1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,
1191 1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,
1192 1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,
1193 1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,1.0e10,
1194 1.0e10,1.0e10,1.0e10};
1195 Bool_t t=(lay!=0); // skip if lay = 0 default value check all layers.
269f57ed 1196
85f1e34a 1197 for(i=0;i<fNmodules;i++){
1198 if(t){GetModuleId(i,l,a,e);if(l!=lay) continue;}
1199 for(a=0;a<27;a++){
1200 d = GetGeomMatrix(i)->Distance2(g);
1201 if(d<dn[a]){
1202 for(e=26;e>a;e--){dn[e] = dn[e-1];in[e] = in[e-1];}
1203 dn[a] = d; in[a] = i;
1204 } // end if d<dn[i]
1205 } // end for a
1206 } // end for i
1207 for(i=0;i<27;i++) n[i] = in[i];
269f57ed 1208}
00a7cc50 1209//_______________________________________________________________________
1210void AliITSgeom::DetLToTrackingV2(Int_t md, Float_t xin, Float_t zin, Float_t &yout, Float_t &zout) {
1211
1212 //Conversion from local coordinates on detectors to local
1213 //coordinates used for tracking ("v2")
1214 Float_t x,y,z; Double_t rt[9];GetTrans(md,x,y,z);GetRotMatrix(md,rt);
1215 Double_t al=TMath::ATan2(rt[1],rt[0])+TMath::Pi();
1216 yout=-(-xin+(x*TMath::Cos(al)+y*TMath::Sin(al)));
1217 if(md<(GetModuleIndex(2,1,1)-1))yout*=-1; zout=-zin+(Double_t)z;
1218}
1219
1220//_______________________________________________________________________
1221void AliITSgeom::TrackingV2ToDetL(Int_t md,Float_t yin,Float_t zin,Float_t &xout,Float_t &zout) {
1222 //Conversion from local coordinates used for tracking ("v2") to
1223 //local detector coordinates
1224
1225 Float_t x,y,z; Double_t rt[9];GetTrans(md,x,y,z);GetRotMatrix(md,rt);
1226 Double_t al=TMath::ATan2(rt[1],rt[0])+TMath::Pi();
1227 xout=yin;if(md<(GetModuleIndex(2,1,1)-1))xout=-xout;
1228 xout+=(x*TMath::Cos(al)+y*TMath::Sin(al));
1229 zout=-zin+(Double_t)z;
1230}