]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSgeom.h
New access to conditions database
[u/mrichter/AliRoot.git] / ITS / AliITSgeom.h
CommitLineData
b79e4bc3 1#ifndef ALIITSGEOM_H
2#define ALIITSGEOM_H
3da30618 3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
7
58005f18 8/////////////////////////////////////////////////////////////////////////
9// ITS geometry manipulation routines.
10// Created April 15 1999.
11// version: 0.0.0
12// By: Bjorn S. Nilsen
13//
14// A package of geometry routines to do transformations between
15// local, detector active area, and ALICE global coordinate system in such
16// a way as to allow for detector alignment studies and the like. All of
17// the information needed to do the coordinate transformation are kept in
18// a specialized structure for ease of implementation.
19/////////////////////////////////////////////////////////////////////////
4ae5bbc4 20#include <Riostream.h>
85f1e34a 21#include <TObject.h>
e8189707 22#include <TObjArray.h>
23#include <TVector.h>
24
269f57ed 25#include "AliITSgeomMatrix.h"
58005f18 26
aacedc3e 27typedef enum {kND=-1,kSPD=0, kSDD=1, kSSD=2, kSSDp=3,kSDDp=4} AliITSDetector;
58005f18 28
29//_______________________________________________________________________
30
31class AliITSgeom : public TObject {
b79e4bc3 32
58005f18 33 public:
269f57ed 34 AliITSgeom(); // Default constructor
35 AliITSgeom(const char *filename); // Constructor
8253cd9a 36 AliITSgeom(Int_t itype,Int_t nlayers,Int_t *nlads,Int_t *ndets,
37 Int_t nmods); // Constructor
7f6ab649 38 AliITSgeom(const AliITSgeom &source); // Copy constructor
39 AliITSgeom& operator=(const AliITSgeom &source);// = operator
3f38f7af 40 virtual ~AliITSgeom(); // Default destructor
85f1e34a 41 // this function allocates a AliITSgeomMatrix for a particular module.
8253cd9a 42 void CreatMatrix(Int_t mod,Int_t lay,Int_t lad,Int_t det,
85f1e34a 43 AliITSDetector idet,const Double_t tran[3],
44 const Double_t rot[10]);
8253cd9a 45 void ReadNewFile(const char *filename); // Constructor for new format.
46 void WriteNewFile(const char *filename); // Output for new format.
269f57ed 47// Getters
48 Int_t GetTransformationType() const {return fTrans;}
49//
85f1e34a 50 // returns kTRUE if the transformation defined by this class is
51 // for Global GEANT coordinate system to the local GEANT coordinate system
8253cd9a 52 // of the detector. These are the transformation used by GEANT.
269f57ed 53 Bool_t IsGeantToGeant() const {return (fTrans == 0);}
85f1e34a 54 // returns kTRUE if the transformation defined by this class is
55 // for Global GEANT coordinate system to the local "Tracking" coordinate
8253cd9a 56 // system of the detector. These are the transformation used by the
57 // Tracking code.
269f57ed 58 Bool_t IsGeantToTracking() const {return ((fTrans&&0xfffe)!= 0);}
85f1e34a 59 // returns kTRUE if the transformation defined by this class is
60 // for Global GEANT coordinate system to the local GEANT coordinate system
61 // of the detector but may have been displaced by some typically small
62 // amount. These are modified transformation similar to that used by GEANT.
269f57ed 63 Bool_t IsGeantToDisplaced() const {return ((fTrans&&0xfffd)!= 0);}
8253cd9a 64 // returns kTRUE if the shape defined by ishape has been defined in this
65 // set of transformations. Typical values of ishape are kSPD, kSDD, kSSD,
66 // SSD2.
85f1e34a 67 Bool_t IsShapeDefined(Int_t ishape)const {
5c9c741e 68 if(fShape!=0){return ((fShape->At(ishape))!=0);}else return kFALSE;}
269f57ed 69//
8253cd9a 70 // This function returns a pointer to the particular AliITSgeomMatrix
71 // class for a specific module index.
72 AliITSgeomMatrix *GetGeomMatrix(Int_t index){
73 return (AliITSgeomMatrix*)(fGm->At(index));}
269f57ed 74 // This function returns the number of detectors/ladder for a give
75 // layer. In particular it returns fNdet[layer-1].
c183cf7d 76 Int_t GetNdetectors(Int_t lay) const {return fNdet[lay-1];}
269f57ed 77 // This function returns the number of ladders for a give layer. In
78 // particular it returns fNlad[layer-1].
7f6ab649 79 Int_t GetNladders(Int_t lay) const {return fNlad[lay-1];};
269f57ed 80 // This function returns the number of layers defined in the ITS
81 // geometry. In particular it returns fNlayers.
82 Int_t GetNlayers() const {return fNlayers;}
85f1e34a 83 Int_t GetModuleIndex(Int_t lay,Int_t lad,Int_t det);
269f57ed 84 // This function returns the module index number given the layer,
85 // ladder and detector numbers put into the array id[3].
86 Int_t GetModuleIndex(const Int_t *id){
87 return GetModuleIndex(id[0],id[1],id[2]);}
85f1e34a 88 void GetModuleId(Int_t index,Int_t &lay,Int_t &lad,Int_t &det);
cd71de57 89 // Returns the detector type
90 Int_t GetModuleType(Int_t index){
91 return GetGeomMatrix(index)->GetDetectorIndex();}
3f38f7af 92 // Returns the detector type as a string
d3d4a92f 93 const char * GetModuleTypeName(Int_t index){switch(GetModuleType(index)) {
3f38f7af 94 case kSPD: return "kSPD";case kSDD: return "kSDD";case kSSD: return "kSSD";
95 case kSSDp: return"kSSDp";case kSDDp: return "kSDDp"; default: return "";}}
269f57ed 96//
85f1e34a 97 Int_t GetStartDet(Int_t dtype );
98 Int_t GetLastDet(Int_t dtype);
269f57ed 99 // Returns the starting module index number for SPD detector,
100 // assuming the modules are placed in the "standard" cylindrical
101 // ITS structure.
102 Int_t GetStartSPD() {return GetModuleIndex(1,1,1);}
103 // Returns the ending module index number for SPD detector,
104 // assuming the modules are placed in the "standard" cylindrical
105 // ITS structure.
106 Int_t GetLastSPD() {return GetModuleIndex(2,fNlad[1],fNdet[1]);}
107 // Returns the starting module index number for SDD detector,
108 // assuming the modules are placed in the "standard" cylindrical
109 // ITS structure.
110 Int_t GetStartSDD() {return GetModuleIndex(3,1,1);}
111 // Returns the ending module index number for SDD detector,
112 // assuming the modules are placed in the "standard" cylindrical
113 // ITS structure.
114 Int_t GetLastSDD() {return GetModuleIndex(4,fNlad[3],fNdet[3]);}
115 // Returns the starting module index number for SSD detector,
116 // assuming the modules are placed in the "standard" cylindrical
117 // ITS structure.
118 Int_t GetStartSSD() {return GetModuleIndex(5,1,1);}
119 // Returns the ending module index number for SSD detector,
120 // assuming the modules are placed in the "standard" cylindrical
121 // ITS structure.
122 Int_t GetLastSSD() {return GetModuleIndex(6,fNlad[5],fNdet[5]);}
123 // Returns the last module index number.
85f1e34a 124 Int_t GetIndexMax() const {return fNmodules;}
269f57ed 125//
126 // This function returns the rotation angles for a give module
127 // in the Double point array ang[3]. The angles are in radians
85f1e34a 128 void GetAngles(Int_t index,Double_t *ang) {
8253cd9a 129 GetGeomMatrix(index)->GetAngles(ang);}
269f57ed 130 // This function returns the rotation angles for a give module
131 // in the three floating point variables provided. rx = frx,
132 // fy = fry, rz = frz. The angles are in radians
85f1e34a 133 void GetAngles(Int_t index,Float_t &rx,Float_t &ry,Float_t &rz) {
269f57ed 134 Double_t a[3];GetAngles(index,a);
135 rx = a[0];ry = a[1];rz = a[2];}
136 // This function returns the rotation angles for a give detector on
137 // a give ladder in a give layer in the three floating point variables
138 // provided. rx = frx, fy = fry, rz = frz. The angles are in radians
85f1e34a 139 void GetAngles(Int_t lay,Int_t lad,Int_t det,
269f57ed 140 Float_t &rx,Float_t &ry,Float_t &rz) {
141 GetAngles(GetModuleIndex(lay,lad,det),rx,ry,rz);}
142//
143 // This function returns the 6 GEANT rotation angles for a give
144 // module in the double point array ang[3]. The angles are in degrees
85f1e34a 145 void GetGeantAngles(Int_t index,Double_t *ang){
8253cd9a 146 GetGeomMatrix(index)->SixAnglesFromMatrix(ang);}
269f57ed 147//
148 // This function returns the Cartesian translation for a give
149 // module in the Double array t[3]. The units are
150 // those of the Monte Carlo, generally cm.
85f1e34a 151 void GetTrans(Int_t index,Double_t *t) {
8253cd9a 152 GetGeomMatrix(index)->GetTranslation(t);}
269f57ed 153 // This function returns the Cartesian translation for a give
154 // module index in the three floating point variables provided.
155 // x = fx0, y = fy0, z = fz0. The units are those of the Mont
156 // Carlo, generally cm.
85f1e34a 157 void GetTrans(Int_t index,Float_t &x,Float_t &y,Float_t &z) {
269f57ed 158 Double_t t[3];GetTrans(index,t);
159 x = t[0];y = t[1];z = t[2];}
160 // This function returns the Cartesian translation for a give
161 // detector on a give ladder in a give layer in the three floating
162 // point variables provided. x = fx0, y = fy0, z = fz0. The units are
163 // those of the Monte Carlo, generally cm.
85f1e34a 164 void GetTrans(Int_t lay,Int_t lad,Int_t det,
269f57ed 165 Float_t &x,Float_t &y,Float_t &z) {
166 GetTrans(GetModuleIndex(lay,lad,det),x,y,z);}
d8cc8493 167//
168 // This function returns the Cartesian translation for a give
169 // module in the Double array t[3]. The units are
170 // those of the Monte Carlo, generally cm.
85f1e34a 171 void GetTransCyln(Int_t index,Double_t *t) {
d8cc8493 172 GetGeomMatrix(index)->GetTranslationCylinderical(t);}
173 // This function returns the Cartesian translation for a give
174 // module index in the three floating point variables provided.
175 // x = fx0, y = fy0, z = fz0. The units are those of the Mont
176 // Carlo, generally cm.
85f1e34a 177 void GetTransCyln(Int_t index,Float_t &x,Float_t &y,Float_t &z) {
d8cc8493 178 Double_t t[3];GetTransCyln(index,t);
179 x = t[0];y = t[1];z = t[2];}
180 // This function returns the Cartesian translation for a give
181 // detector on a give ladder in a give layer in the three floating
182 // point variables provided. x = fx0, y = fy0, z = fz0. The units are
183 // those of the Monte Carlo, generally cm.
85f1e34a 184 void GetTransCyln(Int_t lay,Int_t lad,Int_t det,
d8cc8493 185 Float_t &x,Float_t &y,Float_t &z) {
186 GetTransCyln(GetModuleIndex(lay,lad,det),x,y,z);}
269f57ed 187//
188 // This function returns the Cartesian translation [cm] and the
189 // 6 GEANT rotation angles [degrees]for a given layer ladder and
190 // detector number, in the TVector x (at least 9 elements large).
c183cf7d 191 // This function is required to be inlined for speed.
192 void GetCenterThetaPhi(Int_t lay,Int_t lad,Int_t det,TVector &x){
193 Double_t t[3],a[6];Int_t i=GetModuleIndex(lay,lad,det);GetTrans(i,t);
194 GetGeantAngles(i,a);x(0)=t[0];x(1)=t[1];x(2)=t[2];x(3)=a[0];x(4)=a[1];
195 x(5)=a[2];x(6)=a[3];x(7)=a[4];x(8)=a[5];}
269f57ed 196//
197 // This function returns the rotation matrix in Double
198 // precision for a given module.
85f1e34a 199 void GetRotMatrix(Int_t index,Double_t mat[3][3]){
8253cd9a 200 GetGeomMatrix(index)->GetMatrix(mat);}
269f57ed 201 // This function returns the rotation matrix in a Double
202 // precision pointer for a given module. mat[i][j] => mat[3*i+j].
85f1e34a 203 void GetRotMatrix(Int_t index,Double_t *mat){
269f57ed 204 Double_t rot[3][3];GetRotMatrix(index,rot);
205 for(Int_t i=0;i<3;i++)for(Int_t j=0;j<3;j++) mat[3*i+j] = rot[i][j];}
206 // This function returns the rotation matrix in a floating
207 // precision pointer for a given layer ladder and detector module.
208 // mat[i][j] => mat[3*i+j].
85f1e34a 209 void GetRotMatrix(Int_t lay,Int_t lad,Int_t det,
269f57ed 210 Float_t *mat){GetRotMatrix(GetModuleIndex(lay,lad,det),mat);}
211 // This function returns the rotation matrix in a Double
212 // precision pointer for a given layer ladder and detector module.
213 // mat[i][j] => mat[3*i+j].
85f1e34a 214 void GetRotMatrix(Int_t lay,Int_t lad,Int_t det,
269f57ed 215 Double_t *mat){GetRotMatrix(GetModuleIndex(lay,lad,det),mat);}
216 // This function returns the rotation matrix in a floating
217 // precision pointer for a given module. mat[i][j] => mat[3*i+j].
85f1e34a 218 void GetRotMatrix(Int_t index,Float_t *mat){
8253cd9a 219 Double_t rot[3][3];
220 GetGeomMatrix(index)->GetMatrix(rot);
269f57ed 221 for(Int_t i=0;i<3;i++)for(Int_t j=0;j<3;j++) mat[3*i+j] = rot[i][j];}
222//
8253cd9a 223 // Will define fShape if it isn't already defined.
85f1e34a 224 void DefineShapes(Int_t size=4)
8253cd9a 225 {if(fShape==0) fShape = new TObjArray(size);else fShape->Expand(size);}
85f1e34a 226 // this function returns a pointer to the class describing a particular
227 // detector type based on AliITSDetector value. This will return a pointer
8253cd9a 228 // to one of the classes AliITSgeomSPD, AliITSgeomSDD, or AliITSgeomSSD,
229 // for example.
6ba216a4 230 virtual TObject *GetShape(AliITSDetector idet)
8253cd9a 231 {return fShape->At((Int_t)idet);};
269f57ed 232 // This function returns a pointer to the class describing the
233 // detector for a particular module index. This will return a pointer
234 // to one of the classes AliITSgeomSPD, AliITSgeomSDD, or AliITSgeomSSD,
235 // for example.
85f1e34a 236 virtual TObject *GetShape(Int_t index){
8253cd9a 237 return fShape->At(GetGeomMatrix(index)->
238 GetDetectorIndex());}
269f57ed 239 // This function returns a pointer to the class describing the
240 // detector for a particular layer ladder and detector numbers. This
241 // will return a pointer to one of the classes AliITSgeomSPD,
242 // AliITSgeomSDD, or AliITSgeomSSD, for example.
85f1e34a 243 virtual TObject *GetShape(Int_t lay,Int_t lad,Int_t det)
269f57ed 244 {return GetShape(GetModuleIndex(lay,lad,det));}
269f57ed 245//
246// Setters
247 // Sets the rotation angles and matrix for a give module index
248 // via the double precision array a[3] [radians].
85f1e34a 249 void SetByAngles(Int_t index,const Double_t a[]){
8253cd9a 250 GetGeomMatrix(index)->SetAngles(a);}
269f57ed 251 // Sets the rotation angles and matrix for a give module index
252 // via the 3 floating precision variables rx, ry, and rz [radians].
85f1e34a 253 void SetByAngles(Int_t index,
6ba216a4 254 Float_t rx, Float_t ry, Float_t rz) {
269f57ed 255 Double_t a[3];a[0] = rx;a[1] = ry;a[2] = rz;
8253cd9a 256 GetGeomMatrix(index)->SetAngles(a);}
269f57ed 257 // Sets the rotation angles and matrix for a give layer, ladder,
258 // and detector numbers via the 3 floating precision variables rx,
259 // ry, and rz [radians].
85f1e34a 260 void SetByAngles(Int_t lay,Int_t lad,Int_t det,
6ba216a4 261 Float_t rx, Float_t ry, Float_t rz) {
269f57ed 262 SetByAngles(GetModuleIndex(lay,lad,det),rx,ry,rz);}
263//
264 // Sets the rotation angles and matrix for a give module index
265 // via the Double precision array a[6] [degree]. The angles are those
266 // defined by GEANT 3.12.
85f1e34a 267 void SetByGeantAngles(Int_t index,const Double_t *ang){
8253cd9a 268 GetGeomMatrix(index)->MatrixFromSixAngles(ang);}
269f57ed 269 // Sets the rotation angles and matrix for a give layer, ladder
270 // and detector, in the array id[3] via the Double precision array
271 // a[6] [degree]. The angles are those defined by GEANT 3.12.
272 void SetByGeantAngles(const Int_t *id,const Double_t *ang){
273 SetByGeantAngles(GetModuleIndex(id),ang);}
274 // Sets the rotation angles and matrix for a give layer, ladder
275 // and detector, via the Double precision array a[6] [degree]. The
276 // angles are those defined by GEANT 3.12.
85f1e34a 277 void SetByGeantAngles(Int_t lay,Int_t lad,Int_t det,
269f57ed 278 const Double_t *ang){
279 SetByGeantAngles(GetModuleIndex(lay,lad,det),ang);}
280//
281 // This function sets a new translation vector, given by the
282 // array x[3], for the Cartesian coordinate transformation
283 // for a give module index.
85f1e34a 284 void SetTrans(Int_t index,Double_t x[]){
8253cd9a 285 GetGeomMatrix(index)->SetTranslation(x);}
269f57ed 286 // This function sets a new translation vector, given by the three
287 // variables x, y, and z, for the Cartesian coordinate transformation
288 // for the detector defined by layer, ladder and detector.
85f1e34a 289 void SetTrans(Int_t lay,Int_t lad,Int_t det,
269f57ed 290 Float_t x,Float_t y,Float_t z){Double_t t[3];
291 t[0] = x;t[1] = y;t[2] = z;
292 SetTrans(GetModuleIndex(lay,lad,det),t);}
293//
294 // This function adds one more shape element to the TObjArray
295 // fShape. It is primarily used in the constructor functions of the
296 // AliITSgeom class. The pointer *shape can be the pointer to any
297 // class that is derived from TObject (this is true for nearly every
298 // ROOT class). This does not appear to be working properly at this time.
299 void AddShape(TObject *shp){fShape->AddLast(shp);}
300 // This function deletes an existing shape element, of type TObject,
301 // and replaces it with the one specified. This is primarily used to
302 // changes the parameters to the segmentation class for a particular
303 // type of detector.
85f1e34a 304 void ReSetShape(Int_t dtype,TObject *shp){
269f57ed 305 fShape->RemoveAt(dtype);fShape->AddAt(shp,dtype);}
306//
307// transformations
308 // Transforms from the ALICE Global coordinate system
309 // to the detector local coordinate system for the detector
310 // defined by the layer, ladder, and detector numbers. The
311 // global and local coordinate are given in two floating point
312 // arrays g[3], and l[3].
85f1e34a 313 void GtoL(Int_t lay,Int_t lad,Int_t det,
269f57ed 314 const Float_t *g,Float_t *l){
315 GtoL(GetModuleIndex(lay,lad,det),g,l);}
316 // Transforms from the ALICE Global coordinate system
317 // to the detector local coordinate system for the detector
318 // defined by the id[0], id[1], and id[2] numbers. The
319 // global and local coordinate are given in two floating point
320 // arrays g[3], and l[3].
321 void GtoL(const Int_t *id,const Float_t *g,Float_t *l){
322 GtoL(GetModuleIndex(id),g,l);}
323 // Transforms from the ALICE Global coordinate system
324 // to the detector local coordinate system for the detector
325 // module index number. The global and local coordinate are
326 // given in two floating point arrays g[3], and l[3].
85f1e34a 327 void GtoL(Int_t index,const Float_t *g,Float_t *l){
d962cab4 328 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
8253cd9a 329 GetGeomMatrix(index)->GtoLPosition(dg,dl);
d962cab4 330 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 331 // Transforms from the ALICE Global coordinate system
332 // to the detector local coordinate system for the detector
333 // defined by the layer, ladder, and detector numbers. The
334 // global and local coordinate are given in two Double point
335 // arrays g[3], and l[3].
85f1e34a 336 void GtoL(Int_t lay,Int_t lad,Int_t det,
269f57ed 337 const Double_t *g,Double_t *l){
338 GtoL(GetModuleIndex(lay,lad,det),g,l);}
339 // Transforms from the ALICE Global coordinate system
340 // to the detector local coordinate system for the detector
341 // defined by the id[0], id[1], and id[2] numbers. The
342 // global and local coordinate are given in two Double point
343 // arrays g[3], and l[3].
344 void GtoL(const Int_t *id,const Double_t *g,Double_t *l){
345 GtoL(GetModuleIndex(id),g,l);}
346 // Transforms from the ALICE Global coordinate system
347 // to the detector local coordinate system for the detector
348 // module index number. The global and local coordinate are
349 // given in two Double point arrays g[3], and l[3].
85f1e34a 350 void GtoL(Int_t index,const Double_t *g,Double_t *l){
d962cab4 351 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
8253cd9a 352 GetGeomMatrix(index)->GtoLPosition(dg,dl);
d962cab4 353 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 354//
355 // Transforms from the ALICE Global coordinate system
356 // to the detector local coordinate system (used for ITS tracking)
357 // for the detector module index number. The global and local
358 // coordinate are given in two Double point arrays g[3], and l[3].
85f1e34a 359 void GtoLtracking(Int_t index,const Double_t *g,Double_t *l){
269f57ed 360 if(IsGeantToTracking()) GtoL(index,g,l);
8253cd9a 361 else GetGeomMatrix(index)->GtoLPositionTracking(g,l);}
269f57ed 362 // Transforms from the ALICE Global coordinate system
363 // to the detector local coordinate system (used for ITS tracking)
364 // for the detector id[3]. The global and local
365 // coordinate are given in two Double point arrays g[3], and l[3].
366 void GtoLtracking(const Int_t *id,const Double_t *g,Double_t *l){
367 GtoLtracking(GetModuleIndex(id),g,l);}
368 // Transforms from the ALICE Global coordinate system
369 // to the detector local coordinate system (used for ITS tracking)
370 // for the detector layer ladder and detector numbers. The global
371 // and local coordinate are given in two Double point arrays g[3],
372 // and l[3].
85f1e34a 373 void GtoLtracking(Int_t lay,Int_t lad,Int_t det,
269f57ed 374 const Double_t *g,Double_t *l){
375 GtoLtracking(GetModuleIndex(lay,lad,det),g,l);}
376//
377 // Transforms of momentum types of quantities from the ALICE
378 // Global coordinate system to the detector local coordinate system
379 // for the detector layer ladder and detector numbers. The global
380 // and local coordinate are given in two float point arrays g[3],
381 // and l[3].
85f1e34a 382 void GtoLMomentum(Int_t lay,Int_t lad,Int_t det,
269f57ed 383 const Float_t *g,Float_t *l){
384 GtoLMomentum(GetModuleIndex(lay,lad,det),g,l);}
385 // Transforms of momentum types of quantities from the ALICE
386 // Global coordinate system to the detector local coordinate system
387 // for the detector module index number. The global and local
388 // coordinate are given in two float point arrays g[3], and l[3].
85f1e34a 389 void GtoLMomentum(Int_t index,const Float_t *g,Float_t *l){
d962cab4 390 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
8253cd9a 391 GetGeomMatrix(index)->GtoLMomentum(dg,dl);
d962cab4 392 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 393 // Transforms of momentum types of quantities from the ALICE
394 // Global coordinate system to the detector local coordinate system
395 // for the detector layer ladder and detector numbers. The global
396 // and local coordinate are given in two Double point arrays g[3],
397 // and l[3].
85f1e34a 398 void GtoLMomentum(Int_t lay,Int_t lad,Int_t det,
269f57ed 399 const Double_t *g,Double_t *l){
400 GtoLMomentum(GetModuleIndex(lay,lad,det),g,l);}
401 // Transforms of momentum types of quantities from the ALICE
402 // Global coordinate system to the detector local coordinate system
403 // for the detector module index number. The global and local
404 // coordinate are given in two Double point arrays g[3], and l[3].
85f1e34a 405 void GtoLMomentum(Int_t index,const Double_t *g,Double_t *l){
d962cab4 406 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
8253cd9a 407 GetGeomMatrix(index)->GtoLMomentum(dg,dl);
d962cab4 408 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 409//
410 // Transforms of momentum types of quantities from the ALICE
411 // Global coordinate system to the detector local coordinate system
412 // (used for ITS tracking) for the detector module index number.
413 // The global and local coordinate are given in two Double point
414 // arrays g[3], and l[3].
85f1e34a 415 void GtoLMomentumTracking(Int_t index,const Double_t *g,Double_t *l){
269f57ed 416 if(IsGeantToTracking()) GtoLMomentum(index,g,l);
8253cd9a 417 else GetGeomMatrix(index)->GtoLMomentumTracking(g,l);}
269f57ed 418 // Transforms of momentum types of quantities from the ALICE
419 // Global coordinate system to the detector local coordinate system
420 // (used for ITS tracking) for the detector id[3].
421 // The global and local coordinate are given in two Double point
422 // arrays g[3], and l[3].
423 void GtoLMomentumTracking(const Int_t *id,const Double_t *g,Double_t *l){
424 GtoLMomentumTracking(GetModuleIndex(id),g,l);}
425 // Transforms of momentum types of quantities from the ALICE
426 // Global coordinate system to the detector local coordinate system
427 // (used for ITS tracking) for the detector layer ladder and detector
428 // numbers. The global and local coordinate are given in two Double point
429 // arrays g[3], and l[3].
85f1e34a 430 void GtoLMomentumTracking(Int_t lay,Int_t lad,Int_t det,
269f57ed 431 const Double_t *g,Double_t *l){
432 GtoLMomentumTracking(GetModuleIndex(lay,lad,det),g,l);}
433//
434 // Transforms from the detector local coordinate system
435 // to the ALICE Global coordinate system for the detector
436 // defined by the layer, ladder, and detector numbers. The
437 // global and local coordinate are given in two floating point
438 // arrays g[3], and l[3].
85f1e34a 439 void LtoG(Int_t lay,Int_t lad,Int_t det,
269f57ed 440 const Float_t *l,Float_t *g){
441 LtoG(GetModuleIndex(lay,lad,det),l,g);}
442 // Transforms from the detector local coordinate system
443 // to the ALICE Global coordinate system for the detector
444 // defined by the id[0], id[1], and id[2] numbers. The
445 // global and local coordinate are given in two floating point
446 // arrays g[3], and l[3].
447 void LtoG(const Int_t *id,const Float_t *l,Float_t *g){
448 LtoG(GetModuleIndex(id),l,g);}
449 // Transforms from the detector local coordinate system
450 // to the ALICE Global coordinate system for the detector
451 // module index number. The global and local coordinate are
452 // given in two floating point arrays g[3], and l[3].
85f1e34a 453 void LtoG(Int_t index,const Float_t *l,Float_t *g){
d962cab4 454 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dl[i] = l[i];
8253cd9a 455 GetGeomMatrix(index)->LtoGPosition(dl,dg);
d962cab4 456 for(i=0;i<3;i++) g[i] =dg[i];}
269f57ed 457 // Transforms from the detector local coordinate system
458 // to the ALICE Global coordinate system for the detector
459 // defined by the layer, ladder, and detector numbers. The
460 // global and local coordinate are given in two Double point
461 // arrays g[3], and l[3].
85f1e34a 462 void LtoG(Int_t lay,Int_t lad,Int_t det,
269f57ed 463 const Double_t *l,Double_t *g){
464 LtoG(GetModuleIndex(lay,lad,det),l,g);}
465 // Transforms from the detector local coordinate system
466 // to the ALICE Global coordinate system for the detector
467 // defined by the id[0], id[1], and id[2] numbers. The
468 // global and local coordinate are given in two Double point
469 // arrays g[3], and l[3].
470 void LtoG(const Int_t *id,const Double_t *l,Double_t *g){
471 LtoG(GetModuleIndex(id),l,g);}
472 // Transforms from the detector local coordinate system
473 // to the ALICE Global coordinate system for the detector
474 // module index number. The global and local coordinate are
475 // given in two Double point arrays g[3], and l[3].
85f1e34a 476 void LtoG(Int_t index,const Double_t *l,Double_t *g){
d962cab4 477 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dl[i] = l[i];
8253cd9a 478 GetGeomMatrix(index)->LtoGPosition(dl,dg);
d962cab4 479 for(i=0;i<3;i++) g[i] =dg[i];}
269f57ed 480//
481 // Transforms from the detector local coordinate system (used
482 // for ITS tracking) to the ALICE Global coordinate system
483 // for the detector module index number. The global and local
484 // coordinate are given in two Double point arrays g[3], and l[3].
85f1e34a 485 void LtoGtracking(Int_t index,const Double_t *l,Double_t *g){
269f57ed 486 if(IsGeantToTracking()) LtoG(index,l,g);
8253cd9a 487 else GetGeomMatrix(index)->LtoGPositionTracking(l,g);}
269f57ed 488 // Transforms from the detector local coordinate system (used
489 // for ITS tracking) to the ALICE Global coordinate system
490 // for the detector id[3]. The global and local
491 // coordinate are given in two Double point arrays g[3], and l[3].
492 void LtoGtracking(const Int_t *id,const Double_t *l,Double_t *g){
493 LtoGtracking(GetModuleIndex(id),l,g);}
494 // Transforms from the detector local coordinate system (used
495 // for ITS tracking) to the detector local coordinate system
496 // for the detector layer ladder and detector numbers. The global
497 // and local coordinate are given in two Double point arrays g[3],
498 // and l[3].
85f1e34a 499 void LtoGtracking(Int_t lay,Int_t lad,Int_t det,
269f57ed 500 const Double_t *l,Double_t *g){
501 LtoGtracking(GetModuleIndex(lay,lad,det),l,g);}
502//
503 // Transforms of momentum types of quantities from the detector
504 // local coordinate system to the ALICE Global coordinate system
505 // for the detector layer ladder and detector numbers. The global
506 // and local coordinate are given in two float point arrays g[3],
507 // and l[3].
85f1e34a 508 void LtoGMomentum(Int_t lay,Int_t lad,Int_t det,
269f57ed 509 const Float_t *l,Float_t *g){
510 LtoGMomentum(GetModuleIndex(lay,lad,det),l,g);}
511 // Transforms of momentum types of quantities from the detector
512 // local coordinate system to the ALICE Global coordinate system
513 // for the detector module index number. The global and local
514 // coordinate are given in two float point arrays g[3], and l[3].
85f1e34a 515 void LtoGMomentum(Int_t index,const Float_t *l,Float_t *g){
d962cab4 516 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dl[i] = l[i];
8253cd9a 517 GetGeomMatrix(index)->LtoGMomentum(dl,dg);
d962cab4 518 for(i=0;i<3;i++) g[i] =dg[i];}
269f57ed 519 // Transforms of momentum types of quantities from the detector
520 // local coordinate system to the ALICE Global coordinate system
521 // for the detector layer ladder and detector numbers. The global
522 // and local coordinate are given in two Double point arrays g[3],
523 // and l[3].
85f1e34a 524 void LtoGMomentum(Int_t lay,Int_t lad,Int_t det,
269f57ed 525 const Double_t *l,Double_t *g){
526 LtoGMomentum(GetModuleIndex(lay,lad,det),l,g);}
527 // Transforms of momentum types of quantities from the detector
528 // local coordinate system to the ALICE Global coordinate system
529 // for the detector module index number. The global and local
530 // coordinate are given in two Double point arrays g[3], and l[3].
85f1e34a 531 void LtoGMomentum(Int_t index,const Double_t *l,Double_t *g){
8253cd9a 532 GetGeomMatrix(index)->LtoGMomentum(l,g);}
269f57ed 533//
534 // Transforms of momentum types of quantities from the detector
535 // local coordinate system (used for ITS tracking) to the detector
536 // system ALICE Global for the detector module index number.
537 // The global and local coordinate are given in two Double point
538 // arrays g[3], and l[3].
85f1e34a 539 void LtoGMomentumTracking(Int_t index,const Double_t *l,Double_t *g){
269f57ed 540 if(IsGeantToTracking()) LtoGMomentum(index,l,g);
8253cd9a 541 else GetGeomMatrix(index)->LtoGMomentumTracking(l,g);}
269f57ed 542 // Transforms of momentum types of quantities from the detector
543 // local coordinate system (used for ITS tracking) to the ALICE
544 // Global coordinate system for the detector id[3].
545 // The global and local coordinate are given in two Double point
546 // arrays g[3], and l[3].
547 void LtoGMomentumTracking(const Int_t *id,const Double_t *l,Double_t *g){
548 LtoGMomentumTracking(GetModuleIndex(id),l,g);}
549 // Transforms of momentum types of quantities from the detector
550 // local coordinate system (used for ITS tracking) to the ALICE
551 // Global coordinate system for the detector layer ladder and detector
552 // numbers. The global and local coordinate are given in two Double point
553 // arrays g[3], and l[3].
85f1e34a 554 void LtoGMomentumTracking(Int_t lay,Int_t lad,Int_t det,
269f57ed 555 const Double_t *l,Double_t *g){
556 LtoGMomentumTracking(GetModuleIndex(lay,lad,det),l,g);}
557//
558 // Transforms from one detector local coordinate system
559 // to another detector local coordinate system for the detector
560 // module index1 number to the detector module index2 number. The
561 // local coordinates are given in two Double point arrays l1[3],
562 // and l2[3].
85f1e34a 563 void LtoL(Int_t index1,Int_t index2,Double_t *l1,Double_t *l2){
269f57ed 564 Double_t g[3]; LtoG(index1,l1,g);GtoL(index2,g,l2);}
565 // Transforms from one detector local coordinate system
566 // to another detector local coordinate system for the detector
567 // id1[3] to the detector id2[3]. The local coordinates are given
568 // in two Double point arrays l1[3], and l2[3].
569 void LtoL(const Int_t *id1,const Int_t *id2,Double_t *l1,Double_t *l2){
570 LtoL(GetModuleIndex(id1[0],id1[1],id1[2]),
571 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
572//
573 // Transforms from one detector local coordinate system (used for
574 // ITS tracking) to another detector local coordinate system (used
575 // for ITS tracking) for the detector module index1 number to the
576 // detector module index2 number. The local coordinates are given
577 // in two Double point arrays l1[3], and l2[3].
85f1e34a 578 void LtoLtracking(Int_t index1,Int_t index2,
269f57ed 579 Double_t *l1,Double_t *l2){
580 Double_t g[3]; LtoGtracking(index1,l1,g);GtoLtracking(index2,g,l2);}
581 // Transforms from one detector local coordinate system (used for
582 // ITS tracking) to another detector local coordinate system (used
583 // for ITS tracking) for the detector id1[3] to the detector id2[3].
584 // The local coordinates are given in two Double point arrays l1[3],
585 // and l2[3].
586 void LtoLtracking(const Int_t *id1,const Int_t *id2,
587 Double_t *l1,Double_t *l2){
588 LtoLtracking(GetModuleIndex(id1[0],id1[1],id1[2]),
589 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
590//
591 // Transforms of momentum types of quantities from one detector
592 // local coordinate system to another detector local coordinate
593 // system for the detector module index1 number to the detector
594 // module index2 number. The local coordinates are given in two
595 // Double point arrays l1[3], and l2[3].
85f1e34a 596 void LtoLMomentum(Int_t index1,Int_t index2,
269f57ed 597 const Double_t *l1,Double_t *l2){
598 Double_t g[3]; LtoGMomentum(index1,l1,g);GtoLMomentum(index2,g,l2);}
599 // Transforms of momentum types of quantities from one detector
600 // local coordinate system to another detector local coordinate
601 // system for the detector id1[3] to the detector id2[3]. The local
602 // coordinates are given in two Double point arrays l1[3], and l2[3].
b79e4bc3 603 void LtoLMomentum(const Int_t *id1,const Int_t *id2,
269f57ed 604 const Double_t *l1,Double_t *l2){
605 LtoLMomentum(GetModuleIndex(id1[0],id1[1],id1[2]),
606 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
607//
608 // Transforms of momentum types of quantities from one detector
609 // local coordinate system (used by ITS tracking) to another detector
610 // local coordinate system (used by ITS tracking) for the detector
611 // module index1 number to the detector module index2 number. The
612 // local coordinates are given in two Double point arrays l1[3],
613 // and l2[3].
85f1e34a 614 void LtoLMomentumTracking(Int_t index1,Int_t index2,
269f57ed 615 Double_t *l1,Double_t *l2){
616 Double_t g[3]; LtoGMomentumTracking(index1,l1,g);
617 GtoLMomentumTracking(index2,g,l2);}
618 // Transforms of momentum types of quantities from one detector
619 // local coordinate system (used by ITS tracking) to another detector
620 // local coordinate system (used by ITS tracking) for the detector
621 // id1[3] to the detector id2[3]. The local coordinates are given in
622 // two Double point arrays l1[3], and l2[3].
623 void LtoLMomentumTracking(const Int_t *id1,const Int_t *id2,
624 Double_t *l1,Double_t *l2){
625 LtoLMomentumTracking(GetModuleIndex(id1[0],id1[1],id1[2]),
626 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
627//
628 // Transforms a matrix, like an Uncertainty or Error matrix from
629 // the ALICE Global coordinate system to a detector local coordinate
630 // system. The specific detector is determined by the module index
631 // number.
85f1e34a 632 void GtoLErrorMatrix(Int_t index,const Double_t **g,Double_t **l){
8253cd9a 633 GetGeomMatrix(index)->GtoLPositionError((Double_t (*)[3])g,(Double_t (*)[3])l);}
269f57ed 634//
635 // Transforms a matrix, like an Uncertainty or Error matrix from
636 // the ALICE Global coordinate system to a detector local coordinate
637 // system (used by ITS tracking). The specific detector is determined
638 // by the module index number.
85f1e34a 639 void GtoLErrorMatrixTracking(Int_t index,const Double_t **g,
269f57ed 640 Double_t **l){
8253cd9a 641 if(IsGeantToTracking()) GetGeomMatrix(index)->GtoLPositionError((
d962cab4 642 Double_t (*)[3])g,(Double_t (*)[3])l);
8253cd9a 643 else GetGeomMatrix(index)->GtoLPositionErrorTracking(
d962cab4 644 (Double_t (*)[3])g,(Double_t (*)[3])l);}
269f57ed 645//
646 // Transforms a matrix, like an Uncertainty or Error matrix from
647 // the detector local coordinate system to a ALICE Global coordinate
648 // system. The specific detector is determined by the module index
649 // number.
85f1e34a 650 void LtoGErrorMatrix(Int_t index,const Double_t **l,Double_t **g){
8253cd9a 651 GetGeomMatrix(index)->LtoGPositionError((Double_t (*)[3])l,(Double_t (*)[3])g);}
269f57ed 652//
653 // Transforms a matrix, like an Uncertainty or Error matrix from
654 // the detector local coordinate system (used by ITS tracking) to a
655 // ALICE Global coordinate system. The specific detector is determined
656 // by the module index number.
85f1e34a 657 void LtoGErrorMatrixTracking(Int_t index,const Double_t **l,
269f57ed 658 Double_t **g){
8253cd9a 659 if(IsGeantToTracking()) GetGeomMatrix(index)->LtoGPositionError((
d962cab4 660 Double_t (*)[3])g,(Double_t (*)[3])l);
8253cd9a 661 else GetGeomMatrix(index)->LtoGPositionErrorTracking((Double_t (*)[3])l,
d962cab4 662 (Double_t (*)[3])g);}
269f57ed 663//
664 // Transforms a matrix, like an Uncertainty or Error matrix from
665 // one detector local coordinate system to another detector local
666 // coordinate system. The specific detector is determined by the
667 // two module index number index1 and index2.
85f1e34a 668 void LtoLErrorMatrix(Int_t index1,Int_t index2,
269f57ed 669 const Double_t **l1,Double_t **l2){
670 Double_t g[3][3];
671 LtoGErrorMatrix(index1,l1,(Double_t **)g);
672 GtoLErrorMatrix(index2,(const Double_t **)g,l2);}
673//
674 // Transforms a matrix, like an Uncertainty or Error matrix from
675 // one detector local coordinate system (used by ITS tracking) to
676 // another detector local coordinate system (used by ITS tracking).
677 // The specific detector is determined by the two module index number
678 // index1 and index2.
85f1e34a 679 void LtoLErrorMatrixTraking(Int_t index1,Int_t index2,
269f57ed 680 const Double_t **l1,Double_t **l2){Double_t g[3][3];
681 LtoGErrorMatrixTracking(index1,l1,(Double_t **)g);
682 GtoLErrorMatrixTracking(index2,(const Double_t **)g,l2);}
683// Find Specific Modules
85f1e34a 684 // Locate the nearest module to the point g, in ALICE global Cartesian
685 // coordinates [cm] in a give layer. If layer = 0 then it search in
686 // all layers.
687 Int_t GetNearest(const Double_t g[3],Int_t lay=0);
688 // Locates the nearest 27 modules, in nearest order, to the point g, in
689 // ALICE global Cartesian coordinates [cm] in a give layer. If layer = 0
690 // then it searches in all layers. (there are 27 elements in a 3x3x3
691 // cube.
692 void GetNearest27(const Double_t g[3],Int_t n[27],Int_t lay=0);
269f57ed 693 // Returns the distance [cm] between the point g[3] and the center of
694 // the detector/module specified by the the module index number.
85f1e34a 695 Double_t Distance(Int_t index,const Double_t g[3]){
8253cd9a 696 return TMath::Sqrt(GetGeomMatrix(index)->Distance2(g));}
269f57ed 697// Geometry manipulation
85f1e34a 698 // This function performs a Cartesian translation and rotation of
699 // the full ITS from its default position by an amount determined by
700 // the three element arrays tran and rot.
269f57ed 701 void GlobalChange(const Float_t *tran,const Float_t *rot);
85f1e34a 702 // This function performs a Cylindrical translation and rotation of
703 // the full ITS from its default position by an amount determined by
704 // the three element arrays tran and rot.
269f57ed 705 void GlobalCylindericalChange(const Float_t *tran,const Float_t *rot);
85f1e34a 706 // This function performs a Gaussian random displacement and/or
707 // rotation about the present global position of each active
708 // volume/detector of the ITS with variances given by stran and srot.
269f57ed 709 void RandomChange(const Float_t *stran,const Float_t *srot);
85f1e34a 710 // This function performs a Gaussian random displacement and/or
711 // rotation about the present global position of each active
712 // volume/detector of the ITS with variances given by stran and srot.
713 // But in Cylindrical coordinates.
269f57ed 714 void RandomCylindericalChange(const Float_t *stran,const Float_t *srot);
85f1e34a 715 // This function converts these transformations from Alice global and
716 // local to Tracking global and local.
269f57ed 717 void GeantToTracking(AliITSgeom &source); // This converts the geometry
718// Other routines.
85f1e34a 719 // This routine prints, to a file, the difference between this class
720 // and "other".
58005f18 721 void PrintComparison(FILE *fp,AliITSgeom *other);
85f1e34a 722 // This routine prints, to a file, the contents of this class.
723 void PrintData(FILE *fp,Int_t lay,Int_t lad,Int_t det);
724 // This function prints out this class in a single stream. This steam
725 // can be read by ReadGeom.
58005f18 726 ofstream &PrintGeom(ofstream &out);
85f1e34a 727 // This function reads in that single steam printed out by PrintGeom.
58005f18 728 ifstream &ReadGeom(ifstream &in);
e8189707 729
085bb6ed 730 private:
8253cd9a 731 char fVersion[20];// Transformation version.
732 Int_t fTrans; // Flag to keep track of which transformation
733 Int_t fNmodules;// The total number of modules
734 Int_t fNlayers; // The number of layers.
85f1e34a 735 Int_t *fNlad; //[fNlayers] Array of the number of ladders/layer(layer)
736 Int_t *fNdet;//[fNlayers] Array of the number of detector/ladder(layer)
737 TObjArray *fGm; // Structure of translation. and rotation.
8253cd9a 738 TObjArray *fShape; // Array of shapes and detector information.
739
269f57ed 740 ClassDef(AliITSgeom,2) // ITS geometry class
58005f18 741};
742
743#endif