]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSgeom.h
changed error evaluation (better pulls at high multiplicity)
[u/mrichter/AliRoot.git] / ITS / AliITSgeom.h
CommitLineData
b79e4bc3 1#ifndef ALIITSGEOM_H
2#define ALIITSGEOM_H
3da30618 3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
7
58005f18 8/////////////////////////////////////////////////////////////////////////
9// ITS geometry manipulation routines.
10// Created April 15 1999.
11// version: 0.0.0
12// By: Bjorn S. Nilsen
13//
14// A package of geometry routines to do transformations between
15// local, detector active area, and ALICE global coordinate system in such
16// a way as to allow for detector alignment studies and the like. All of
17// the information needed to do the coordinate transformation are kept in
18// a specialized structure for ease of implementation.
19/////////////////////////////////////////////////////////////////////////
4ae5bbc4 20#include <Riostream.h>
85f1e34a 21#include <TObject.h>
e8189707 22#include <TObjArray.h>
23#include <TVector.h>
24
269f57ed 25#include "AliITSgeomMatrix.h"
58005f18 26
aacedc3e 27typedef enum {kND=-1,kSPD=0, kSDD=1, kSSD=2, kSSDp=3,kSDDp=4} AliITSDetector;
58005f18 28
29//_______________________________________________________________________
30
31class AliITSgeom : public TObject {
b79e4bc3 32
58005f18 33 public:
269f57ed 34 AliITSgeom(); // Default constructor
35 AliITSgeom(const char *filename); // Constructor
8253cd9a 36 AliITSgeom(Int_t itype,Int_t nlayers,Int_t *nlads,Int_t *ndets,
37 Int_t nmods); // Constructor
7f6ab649 38 AliITSgeom(const AliITSgeom &source); // Copy constructor
39 AliITSgeom& operator=(const AliITSgeom &source);// = operator
3f38f7af 40 virtual ~AliITSgeom(); // Default destructor
85f1e34a 41 // this function allocates a AliITSgeomMatrix for a particular module.
8253cd9a 42 void CreatMatrix(Int_t mod,Int_t lay,Int_t lad,Int_t det,
85f1e34a 43 AliITSDetector idet,const Double_t tran[3],
44 const Double_t rot[10]);
8253cd9a 45 void ReadNewFile(const char *filename); // Constructor for new format.
46 void WriteNewFile(const char *filename); // Output for new format.
269f57ed 47// Getters
48 Int_t GetTransformationType() const {return fTrans;}
49//
85f1e34a 50 // returns kTRUE if the transformation defined by this class is
51 // for Global GEANT coordinate system to the local GEANT coordinate system
8253cd9a 52 // of the detector. These are the transformation used by GEANT.
269f57ed 53 Bool_t IsGeantToGeant() const {return (fTrans == 0);}
85f1e34a 54 // returns kTRUE if the transformation defined by this class is
55 // for Global GEANT coordinate system to the local "Tracking" coordinate
8253cd9a 56 // system of the detector. These are the transformation used by the
57 // Tracking code.
269f57ed 58 Bool_t IsGeantToTracking() const {return ((fTrans&&0xfffe)!= 0);}
85f1e34a 59 // returns kTRUE if the transformation defined by this class is
60 // for Global GEANT coordinate system to the local GEANT coordinate system
61 // of the detector but may have been displaced by some typically small
62 // amount. These are modified transformation similar to that used by GEANT.
269f57ed 63 Bool_t IsGeantToDisplaced() const {return ((fTrans&&0xfffd)!= 0);}
8253cd9a 64 // returns kTRUE if the shape defined by ishape has been defined in this
65 // set of transformations. Typical values of ishape are kSPD, kSDD, kSSD,
66 // SSD2.
85f1e34a 67 Bool_t IsShapeDefined(Int_t ishape)const {
5c9c741e 68 if(fShape!=0){return ((fShape->At(ishape))!=0);}else return kFALSE;}
269f57ed 69//
8253cd9a 70 // This function returns a pointer to the particular AliITSgeomMatrix
71 // class for a specific module index.
72 AliITSgeomMatrix *GetGeomMatrix(Int_t index){
73 return (AliITSgeomMatrix*)(fGm->At(index));}
269f57ed 74 // This function returns the number of detectors/ladder for a give
75 // layer. In particular it returns fNdet[layer-1].
c183cf7d 76 Int_t GetNdetectors(Int_t lay) const {return fNdet[lay-1];}
269f57ed 77 // This function returns the number of ladders for a give layer. In
78 // particular it returns fNlad[layer-1].
7f6ab649 79 Int_t GetNladders(Int_t lay) const {return fNlad[lay-1];};
269f57ed 80 // This function returns the number of layers defined in the ITS
81 // geometry. In particular it returns fNlayers.
82 Int_t GetNlayers() const {return fNlayers;}
85f1e34a 83 Int_t GetModuleIndex(Int_t lay,Int_t lad,Int_t det);
269f57ed 84 // This function returns the module index number given the layer,
85 // ladder and detector numbers put into the array id[3].
86 Int_t GetModuleIndex(const Int_t *id){
87 return GetModuleIndex(id[0],id[1],id[2]);}
85f1e34a 88 void GetModuleId(Int_t index,Int_t &lay,Int_t &lad,Int_t &det);
cd71de57 89 // Returns the detector type
90 Int_t GetModuleType(Int_t index){
91 return GetGeomMatrix(index)->GetDetectorIndex();}
3f38f7af 92 // Returns the detector type as a string
d3d4a92f 93 const char * GetModuleTypeName(Int_t index){switch(GetModuleType(index)) {
3f38f7af 94 case kSPD: return "kSPD";case kSDD: return "kSDD";case kSSD: return "kSSD";
95 case kSSDp: return"kSSDp";case kSDDp: return "kSDDp"; default: return "";}}
269f57ed 96//
85f1e34a 97 Int_t GetStartDet(Int_t dtype );
98 Int_t GetLastDet(Int_t dtype);
269f57ed 99 // Returns the starting module index number for SPD detector,
100 // assuming the modules are placed in the "standard" cylindrical
101 // ITS structure.
102 Int_t GetStartSPD() {return GetModuleIndex(1,1,1);}
103 // Returns the ending module index number for SPD detector,
104 // assuming the modules are placed in the "standard" cylindrical
105 // ITS structure.
106 Int_t GetLastSPD() {return GetModuleIndex(2,fNlad[1],fNdet[1]);}
107 // Returns the starting module index number for SDD detector,
108 // assuming the modules are placed in the "standard" cylindrical
109 // ITS structure.
110 Int_t GetStartSDD() {return GetModuleIndex(3,1,1);}
111 // Returns the ending module index number for SDD detector,
112 // assuming the modules are placed in the "standard" cylindrical
113 // ITS structure.
114 Int_t GetLastSDD() {return GetModuleIndex(4,fNlad[3],fNdet[3]);}
115 // Returns the starting module index number for SSD detector,
116 // assuming the modules are placed in the "standard" cylindrical
117 // ITS structure.
118 Int_t GetStartSSD() {return GetModuleIndex(5,1,1);}
119 // Returns the ending module index number for SSD detector,
120 // assuming the modules are placed in the "standard" cylindrical
121 // ITS structure.
122 Int_t GetLastSSD() {return GetModuleIndex(6,fNlad[5],fNdet[5]);}
123 // Returns the last module index number.
85f1e34a 124 Int_t GetIndexMax() const {return fNmodules;}
269f57ed 125//
126 // This function returns the rotation angles for a give module
127 // in the Double point array ang[3]. The angles are in radians
85f1e34a 128 void GetAngles(Int_t index,Double_t *ang) {
8253cd9a 129 GetGeomMatrix(index)->GetAngles(ang);}
269f57ed 130 // This function returns the rotation angles for a give module
131 // in the three floating point variables provided. rx = frx,
132 // fy = fry, rz = frz. The angles are in radians
85f1e34a 133 void GetAngles(Int_t index,Float_t &rx,Float_t &ry,Float_t &rz) {
269f57ed 134 Double_t a[3];GetAngles(index,a);
135 rx = a[0];ry = a[1];rz = a[2];}
136 // This function returns the rotation angles for a give detector on
137 // a give ladder in a give layer in the three floating point variables
138 // provided. rx = frx, fy = fry, rz = frz. The angles are in radians
85f1e34a 139 void GetAngles(Int_t lay,Int_t lad,Int_t det,
269f57ed 140 Float_t &rx,Float_t &ry,Float_t &rz) {
141 GetAngles(GetModuleIndex(lay,lad,det),rx,ry,rz);}
142//
143 // This function returns the 6 GEANT rotation angles for a give
144 // module in the double point array ang[3]. The angles are in degrees
85f1e34a 145 void GetGeantAngles(Int_t index,Double_t *ang){
8253cd9a 146 GetGeomMatrix(index)->SixAnglesFromMatrix(ang);}
269f57ed 147//
148 // This function returns the Cartesian translation for a give
149 // module in the Double array t[3]. The units are
150 // those of the Monte Carlo, generally cm.
85f1e34a 151 void GetTrans(Int_t index,Double_t *t) {
8253cd9a 152 GetGeomMatrix(index)->GetTranslation(t);}
269f57ed 153 // This function returns the Cartesian translation for a give
154 // module index in the three floating point variables provided.
155 // x = fx0, y = fy0, z = fz0. The units are those of the Mont
156 // Carlo, generally cm.
85f1e34a 157 void GetTrans(Int_t index,Float_t &x,Float_t &y,Float_t &z) {
269f57ed 158 Double_t t[3];GetTrans(index,t);
159 x = t[0];y = t[1];z = t[2];}
160 // This function returns the Cartesian translation for a give
161 // detector on a give ladder in a give layer in the three floating
162 // point variables provided. x = fx0, y = fy0, z = fz0. The units are
163 // those of the Monte Carlo, generally cm.
85f1e34a 164 void GetTrans(Int_t lay,Int_t lad,Int_t det,
269f57ed 165 Float_t &x,Float_t &y,Float_t &z) {
166 GetTrans(GetModuleIndex(lay,lad,det),x,y,z);}
d8cc8493 167//
168 // This function returns the Cartesian translation for a give
169 // module in the Double array t[3]. The units are
170 // those of the Monte Carlo, generally cm.
85f1e34a 171 void GetTransCyln(Int_t index,Double_t *t) {
d8cc8493 172 GetGeomMatrix(index)->GetTranslationCylinderical(t);}
173 // This function returns the Cartesian translation for a give
174 // module index in the three floating point variables provided.
175 // x = fx0, y = fy0, z = fz0. The units are those of the Mont
176 // Carlo, generally cm.
85f1e34a 177 void GetTransCyln(Int_t index,Float_t &x,Float_t &y,Float_t &z) {
d8cc8493 178 Double_t t[3];GetTransCyln(index,t);
179 x = t[0];y = t[1];z = t[2];}
180 // This function returns the Cartesian translation for a give
181 // detector on a give ladder in a give layer in the three floating
182 // point variables provided. x = fx0, y = fy0, z = fz0. The units are
183 // those of the Monte Carlo, generally cm.
85f1e34a 184 void GetTransCyln(Int_t lay,Int_t lad,Int_t det,
d8cc8493 185 Float_t &x,Float_t &y,Float_t &z) {
186 GetTransCyln(GetModuleIndex(lay,lad,det),x,y,z);}
269f57ed 187//
188 // This function returns the Cartesian translation [cm] and the
189 // 6 GEANT rotation angles [degrees]for a given layer ladder and
190 // detector number, in the TVector x (at least 9 elements large).
c183cf7d 191 // This function is required to be inlined for speed.
192 void GetCenterThetaPhi(Int_t lay,Int_t lad,Int_t det,TVector &x){
193 Double_t t[3],a[6];Int_t i=GetModuleIndex(lay,lad,det);GetTrans(i,t);
194 GetGeantAngles(i,a);x(0)=t[0];x(1)=t[1];x(2)=t[2];x(3)=a[0];x(4)=a[1];
195 x(5)=a[2];x(6)=a[3];x(7)=a[4];x(8)=a[5];}
269f57ed 196//
197 // This function returns the rotation matrix in Double
198 // precision for a given module.
85f1e34a 199 void GetRotMatrix(Int_t index,Double_t mat[3][3]){
8253cd9a 200 GetGeomMatrix(index)->GetMatrix(mat);}
269f57ed 201 // This function returns the rotation matrix in a Double
202 // precision pointer for a given module. mat[i][j] => mat[3*i+j].
85f1e34a 203 void GetRotMatrix(Int_t index,Double_t *mat){
269f57ed 204 Double_t rot[3][3];GetRotMatrix(index,rot);
205 for(Int_t i=0;i<3;i++)for(Int_t j=0;j<3;j++) mat[3*i+j] = rot[i][j];}
206 // This function returns the rotation matrix in a floating
207 // precision pointer for a given layer ladder and detector module.
208 // mat[i][j] => mat[3*i+j].
85f1e34a 209 void GetRotMatrix(Int_t lay,Int_t lad,Int_t det,
269f57ed 210 Float_t *mat){GetRotMatrix(GetModuleIndex(lay,lad,det),mat);}
211 // This function returns the rotation matrix in a Double
212 // precision pointer for a given layer ladder and detector module.
213 // mat[i][j] => mat[3*i+j].
85f1e34a 214 void GetRotMatrix(Int_t lay,Int_t lad,Int_t det,
269f57ed 215 Double_t *mat){GetRotMatrix(GetModuleIndex(lay,lad,det),mat);}
216 // This function returns the rotation matrix in a floating
217 // precision pointer for a given module. mat[i][j] => mat[3*i+j].
85f1e34a 218 void GetRotMatrix(Int_t index,Float_t *mat){
8253cd9a 219 Double_t rot[3][3];
220 GetGeomMatrix(index)->GetMatrix(rot);
269f57ed 221 for(Int_t i=0;i<3;i++)for(Int_t j=0;j<3;j++) mat[3*i+j] = rot[i][j];}
fd9cde50 222 // This function sets the rotation matrix in a Double
223 // precision pointer for a given module. mat[i][j] => mat[3*i+j].
224 void SetRotMatrix(Int_t index,Double_t *mat){Double_t rot[3][3];
225 for(Int_t i=0;i<3;i++)for(Int_t j=0;j<3;j++) rot[i][j]=mat[3*i+j];
226 GetGeomMatrix(index)->SetMatrix(rot);}
227
269f57ed 228//
8253cd9a 229 // Will define fShape if it isn't already defined.
85f1e34a 230 void DefineShapes(Int_t size=4)
8253cd9a 231 {if(fShape==0) fShape = new TObjArray(size);else fShape->Expand(size);}
85f1e34a 232 // this function returns a pointer to the class describing a particular
233 // detector type based on AliITSDetector value. This will return a pointer
8253cd9a 234 // to one of the classes AliITSgeomSPD, AliITSgeomSDD, or AliITSgeomSSD,
235 // for example.
6ba216a4 236 virtual TObject *GetShape(AliITSDetector idet)
8253cd9a 237 {return fShape->At((Int_t)idet);};
269f57ed 238 // This function returns a pointer to the class describing the
239 // detector for a particular module index. This will return a pointer
240 // to one of the classes AliITSgeomSPD, AliITSgeomSDD, or AliITSgeomSSD,
241 // for example.
85f1e34a 242 virtual TObject *GetShape(Int_t index){
8253cd9a 243 return fShape->At(GetGeomMatrix(index)->
244 GetDetectorIndex());}
269f57ed 245 // This function returns a pointer to the class describing the
246 // detector for a particular layer ladder and detector numbers. This
247 // will return a pointer to one of the classes AliITSgeomSPD,
248 // AliITSgeomSDD, or AliITSgeomSSD, for example.
85f1e34a 249 virtual TObject *GetShape(Int_t lay,Int_t lad,Int_t det)
269f57ed 250 {return GetShape(GetModuleIndex(lay,lad,det));}
269f57ed 251//
252// Setters
253 // Sets the rotation angles and matrix for a give module index
254 // via the double precision array a[3] [radians].
85f1e34a 255 void SetByAngles(Int_t index,const Double_t a[]){
8253cd9a 256 GetGeomMatrix(index)->SetAngles(a);}
269f57ed 257 // Sets the rotation angles and matrix for a give module index
258 // via the 3 floating precision variables rx, ry, and rz [radians].
85f1e34a 259 void SetByAngles(Int_t index,
6ba216a4 260 Float_t rx, Float_t ry, Float_t rz) {
269f57ed 261 Double_t a[3];a[0] = rx;a[1] = ry;a[2] = rz;
8253cd9a 262 GetGeomMatrix(index)->SetAngles(a);}
269f57ed 263 // Sets the rotation angles and matrix for a give layer, ladder,
264 // and detector numbers via the 3 floating precision variables rx,
265 // ry, and rz [radians].
85f1e34a 266 void SetByAngles(Int_t lay,Int_t lad,Int_t det,
6ba216a4 267 Float_t rx, Float_t ry, Float_t rz) {
269f57ed 268 SetByAngles(GetModuleIndex(lay,lad,det),rx,ry,rz);}
269//
270 // Sets the rotation angles and matrix for a give module index
271 // via the Double precision array a[6] [degree]. The angles are those
272 // defined by GEANT 3.12.
85f1e34a 273 void SetByGeantAngles(Int_t index,const Double_t *ang){
8253cd9a 274 GetGeomMatrix(index)->MatrixFromSixAngles(ang);}
269f57ed 275 // Sets the rotation angles and matrix for a give layer, ladder
276 // and detector, in the array id[3] via the Double precision array
277 // a[6] [degree]. The angles are those defined by GEANT 3.12.
278 void SetByGeantAngles(const Int_t *id,const Double_t *ang){
279 SetByGeantAngles(GetModuleIndex(id),ang);}
280 // Sets the rotation angles and matrix for a give layer, ladder
281 // and detector, via the Double precision array a[6] [degree]. The
282 // angles are those defined by GEANT 3.12.
85f1e34a 283 void SetByGeantAngles(Int_t lay,Int_t lad,Int_t det,
269f57ed 284 const Double_t *ang){
285 SetByGeantAngles(GetModuleIndex(lay,lad,det),ang);}
286//
287 // This function sets a new translation vector, given by the
288 // array x[3], for the Cartesian coordinate transformation
289 // for a give module index.
85f1e34a 290 void SetTrans(Int_t index,Double_t x[]){
8253cd9a 291 GetGeomMatrix(index)->SetTranslation(x);}
269f57ed 292 // This function sets a new translation vector, given by the three
293 // variables x, y, and z, for the Cartesian coordinate transformation
294 // for the detector defined by layer, ladder and detector.
85f1e34a 295 void SetTrans(Int_t lay,Int_t lad,Int_t det,
269f57ed 296 Float_t x,Float_t y,Float_t z){Double_t t[3];
297 t[0] = x;t[1] = y;t[2] = z;
298 SetTrans(GetModuleIndex(lay,lad,det),t);}
299//
300 // This function adds one more shape element to the TObjArray
301 // fShape. It is primarily used in the constructor functions of the
302 // AliITSgeom class. The pointer *shape can be the pointer to any
303 // class that is derived from TObject (this is true for nearly every
304 // ROOT class). This does not appear to be working properly at this time.
305 void AddShape(TObject *shp){fShape->AddLast(shp);}
306 // This function deletes an existing shape element, of type TObject,
307 // and replaces it with the one specified. This is primarily used to
308 // changes the parameters to the segmentation class for a particular
309 // type of detector.
85f1e34a 310 void ReSetShape(Int_t dtype,TObject *shp){
269f57ed 311 fShape->RemoveAt(dtype);fShape->AddAt(shp,dtype);}
312//
313// transformations
314 // Transforms from the ALICE Global coordinate system
315 // to the detector local coordinate system for the detector
316 // defined by the layer, ladder, and detector numbers. The
317 // global and local coordinate are given in two floating point
318 // arrays g[3], and l[3].
85f1e34a 319 void GtoL(Int_t lay,Int_t lad,Int_t det,
269f57ed 320 const Float_t *g,Float_t *l){
321 GtoL(GetModuleIndex(lay,lad,det),g,l);}
322 // Transforms from the ALICE Global coordinate system
323 // to the detector local coordinate system for the detector
324 // defined by the id[0], id[1], and id[2] numbers. The
325 // global and local coordinate are given in two floating point
326 // arrays g[3], and l[3].
327 void GtoL(const Int_t *id,const Float_t *g,Float_t *l){
328 GtoL(GetModuleIndex(id),g,l);}
329 // Transforms from the ALICE Global coordinate system
330 // to the detector local coordinate system for the detector
331 // module index number. The global and local coordinate are
332 // given in two floating point arrays g[3], and l[3].
85f1e34a 333 void GtoL(Int_t index,const Float_t *g,Float_t *l){
d962cab4 334 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
8253cd9a 335 GetGeomMatrix(index)->GtoLPosition(dg,dl);
d962cab4 336 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 337 // Transforms from the ALICE Global coordinate system
338 // to the detector local coordinate system for the detector
339 // defined by the layer, ladder, and detector numbers. The
340 // global and local coordinate are given in two Double point
341 // arrays g[3], and l[3].
85f1e34a 342 void GtoL(Int_t lay,Int_t lad,Int_t det,
269f57ed 343 const Double_t *g,Double_t *l){
344 GtoL(GetModuleIndex(lay,lad,det),g,l);}
345 // Transforms from the ALICE Global coordinate system
346 // to the detector local coordinate system for the detector
347 // defined by the id[0], id[1], and id[2] numbers. The
348 // global and local coordinate are given in two Double point
349 // arrays g[3], and l[3].
350 void GtoL(const Int_t *id,const Double_t *g,Double_t *l){
351 GtoL(GetModuleIndex(id),g,l);}
352 // Transforms from the ALICE Global coordinate system
353 // to the detector local coordinate system for the detector
354 // module index number. The global and local coordinate are
355 // given in two Double point arrays g[3], and l[3].
85f1e34a 356 void GtoL(Int_t index,const Double_t *g,Double_t *l){
d962cab4 357 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
8253cd9a 358 GetGeomMatrix(index)->GtoLPosition(dg,dl);
d962cab4 359 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 360//
361 // Transforms from the ALICE Global coordinate system
362 // to the detector local coordinate system (used for ITS tracking)
363 // for the detector module index number. The global and local
364 // coordinate are given in two Double point arrays g[3], and l[3].
85f1e34a 365 void GtoLtracking(Int_t index,const Double_t *g,Double_t *l){
269f57ed 366 if(IsGeantToTracking()) GtoL(index,g,l);
8253cd9a 367 else GetGeomMatrix(index)->GtoLPositionTracking(g,l);}
269f57ed 368 // Transforms from the ALICE Global coordinate system
369 // to the detector local coordinate system (used for ITS tracking)
370 // for the detector id[3]. The global and local
371 // coordinate are given in two Double point arrays g[3], and l[3].
372 void GtoLtracking(const Int_t *id,const Double_t *g,Double_t *l){
373 GtoLtracking(GetModuleIndex(id),g,l);}
374 // Transforms from the ALICE Global coordinate system
375 // to the detector local coordinate system (used for ITS tracking)
376 // for the detector layer ladder and detector numbers. The global
377 // and local coordinate are given in two Double point arrays g[3],
378 // and l[3].
85f1e34a 379 void GtoLtracking(Int_t lay,Int_t lad,Int_t det,
269f57ed 380 const Double_t *g,Double_t *l){
381 GtoLtracking(GetModuleIndex(lay,lad,det),g,l);}
382//
383 // Transforms of momentum types of quantities from the ALICE
384 // Global coordinate system to the detector local coordinate system
385 // for the detector layer ladder and detector numbers. The global
386 // and local coordinate are given in two float point arrays g[3],
387 // and l[3].
85f1e34a 388 void GtoLMomentum(Int_t lay,Int_t lad,Int_t det,
269f57ed 389 const Float_t *g,Float_t *l){
390 GtoLMomentum(GetModuleIndex(lay,lad,det),g,l);}
391 // Transforms of momentum types of quantities from the ALICE
392 // Global coordinate system to the detector local coordinate system
393 // for the detector module index number. The global and local
394 // coordinate are given in two float point arrays g[3], and l[3].
85f1e34a 395 void GtoLMomentum(Int_t index,const Float_t *g,Float_t *l){
d962cab4 396 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
8253cd9a 397 GetGeomMatrix(index)->GtoLMomentum(dg,dl);
d962cab4 398 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 399 // Transforms of momentum types of quantities from the ALICE
400 // Global coordinate system to the detector local coordinate system
401 // for the detector layer ladder and detector numbers. The global
402 // and local coordinate are given in two Double point arrays g[3],
403 // and l[3].
85f1e34a 404 void GtoLMomentum(Int_t lay,Int_t lad,Int_t det,
269f57ed 405 const Double_t *g,Double_t *l){
406 GtoLMomentum(GetModuleIndex(lay,lad,det),g,l);}
407 // Transforms of momentum types of quantities from the ALICE
408 // Global coordinate system to the detector local coordinate system
409 // for the detector module index number. The global and local
410 // coordinate are given in two Double point arrays g[3], and l[3].
85f1e34a 411 void GtoLMomentum(Int_t index,const Double_t *g,Double_t *l){
d962cab4 412 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
8253cd9a 413 GetGeomMatrix(index)->GtoLMomentum(dg,dl);
d962cab4 414 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 415//
416 // Transforms of momentum types of quantities from the ALICE
417 // Global coordinate system to the detector local coordinate system
418 // (used for ITS tracking) for the detector module index number.
419 // The global and local coordinate are given in two Double point
420 // arrays g[3], and l[3].
85f1e34a 421 void GtoLMomentumTracking(Int_t index,const Double_t *g,Double_t *l){
269f57ed 422 if(IsGeantToTracking()) GtoLMomentum(index,g,l);
8253cd9a 423 else GetGeomMatrix(index)->GtoLMomentumTracking(g,l);}
269f57ed 424 // Transforms of momentum types of quantities from the ALICE
425 // Global coordinate system to the detector local coordinate system
426 // (used for ITS tracking) for the detector id[3].
427 // The global and local coordinate are given in two Double point
428 // arrays g[3], and l[3].
429 void GtoLMomentumTracking(const Int_t *id,const Double_t *g,Double_t *l){
430 GtoLMomentumTracking(GetModuleIndex(id),g,l);}
431 // Transforms of momentum types of quantities from the ALICE
432 // Global coordinate system to the detector local coordinate system
433 // (used for ITS tracking) for the detector layer ladder and detector
434 // numbers. The global and local coordinate are given in two Double point
435 // arrays g[3], and l[3].
85f1e34a 436 void GtoLMomentumTracking(Int_t lay,Int_t lad,Int_t det,
269f57ed 437 const Double_t *g,Double_t *l){
438 GtoLMomentumTracking(GetModuleIndex(lay,lad,det),g,l);}
439//
440 // Transforms from the detector local coordinate system
441 // to the ALICE Global coordinate system for the detector
442 // defined by the layer, ladder, and detector numbers. The
443 // global and local coordinate are given in two floating point
444 // arrays g[3], and l[3].
85f1e34a 445 void LtoG(Int_t lay,Int_t lad,Int_t det,
269f57ed 446 const Float_t *l,Float_t *g){
447 LtoG(GetModuleIndex(lay,lad,det),l,g);}
448 // Transforms from the detector local coordinate system
449 // to the ALICE Global coordinate system for the detector
450 // defined by the id[0], id[1], and id[2] numbers. The
451 // global and local coordinate are given in two floating point
452 // arrays g[3], and l[3].
453 void LtoG(const Int_t *id,const Float_t *l,Float_t *g){
454 LtoG(GetModuleIndex(id),l,g);}
455 // Transforms from the detector local coordinate system
456 // to the ALICE Global coordinate system for the detector
457 // module index number. The global and local coordinate are
458 // given in two floating point arrays g[3], and l[3].
85f1e34a 459 void LtoG(Int_t index,const Float_t *l,Float_t *g){
d962cab4 460 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dl[i] = l[i];
8253cd9a 461 GetGeomMatrix(index)->LtoGPosition(dl,dg);
d962cab4 462 for(i=0;i<3;i++) g[i] =dg[i];}
269f57ed 463 // Transforms from the detector local coordinate system
464 // to the ALICE Global coordinate system for the detector
465 // defined by the layer, ladder, and detector numbers. The
466 // global and local coordinate are given in two Double point
467 // arrays g[3], and l[3].
85f1e34a 468 void LtoG(Int_t lay,Int_t lad,Int_t det,
269f57ed 469 const Double_t *l,Double_t *g){
470 LtoG(GetModuleIndex(lay,lad,det),l,g);}
471 // Transforms from the detector local coordinate system
472 // to the ALICE Global coordinate system for the detector
473 // defined by the id[0], id[1], and id[2] numbers. The
474 // global and local coordinate are given in two Double point
475 // arrays g[3], and l[3].
476 void LtoG(const Int_t *id,const Double_t *l,Double_t *g){
477 LtoG(GetModuleIndex(id),l,g);}
478 // Transforms from the detector local coordinate system
479 // to the ALICE Global coordinate system for the detector
480 // module index number. The global and local coordinate are
481 // given in two Double point arrays g[3], and l[3].
85f1e34a 482 void LtoG(Int_t index,const Double_t *l,Double_t *g){
d962cab4 483 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dl[i] = l[i];
8253cd9a 484 GetGeomMatrix(index)->LtoGPosition(dl,dg);
d962cab4 485 for(i=0;i<3;i++) g[i] =dg[i];}
269f57ed 486//
487 // Transforms from the detector local coordinate system (used
488 // for ITS tracking) to the ALICE Global coordinate system
489 // for the detector module index number. The global and local
490 // coordinate are given in two Double point arrays g[3], and l[3].
85f1e34a 491 void LtoGtracking(Int_t index,const Double_t *l,Double_t *g){
269f57ed 492 if(IsGeantToTracking()) LtoG(index,l,g);
8253cd9a 493 else GetGeomMatrix(index)->LtoGPositionTracking(l,g);}
269f57ed 494 // Transforms from the detector local coordinate system (used
495 // for ITS tracking) to the ALICE Global coordinate system
496 // for the detector id[3]. The global and local
497 // coordinate are given in two Double point arrays g[3], and l[3].
498 void LtoGtracking(const Int_t *id,const Double_t *l,Double_t *g){
499 LtoGtracking(GetModuleIndex(id),l,g);}
500 // Transforms from the detector local coordinate system (used
501 // for ITS tracking) to the detector local coordinate system
502 // for the detector layer ladder and detector numbers. The global
503 // and local coordinate are given in two Double point arrays g[3],
504 // and l[3].
85f1e34a 505 void LtoGtracking(Int_t lay,Int_t lad,Int_t det,
269f57ed 506 const Double_t *l,Double_t *g){
507 LtoGtracking(GetModuleIndex(lay,lad,det),l,g);}
508//
509 // Transforms of momentum types of quantities from the detector
510 // local coordinate system to the ALICE Global coordinate system
511 // for the detector layer ladder and detector numbers. The global
512 // and local coordinate are given in two float point arrays g[3],
513 // and l[3].
85f1e34a 514 void LtoGMomentum(Int_t lay,Int_t lad,Int_t det,
269f57ed 515 const Float_t *l,Float_t *g){
516 LtoGMomentum(GetModuleIndex(lay,lad,det),l,g);}
517 // Transforms of momentum types of quantities from the detector
518 // local coordinate system to the ALICE Global coordinate system
519 // for the detector module index number. The global and local
520 // coordinate are given in two float point arrays g[3], and l[3].
85f1e34a 521 void LtoGMomentum(Int_t index,const Float_t *l,Float_t *g){
d962cab4 522 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dl[i] = l[i];
8253cd9a 523 GetGeomMatrix(index)->LtoGMomentum(dl,dg);
d962cab4 524 for(i=0;i<3;i++) g[i] =dg[i];}
269f57ed 525 // Transforms of momentum types of quantities from the detector
526 // local coordinate system to the ALICE Global coordinate system
527 // for the detector layer ladder and detector numbers. The global
528 // and local coordinate are given in two Double point arrays g[3],
529 // and l[3].
85f1e34a 530 void LtoGMomentum(Int_t lay,Int_t lad,Int_t det,
269f57ed 531 const Double_t *l,Double_t *g){
532 LtoGMomentum(GetModuleIndex(lay,lad,det),l,g);}
533 // Transforms of momentum types of quantities from the detector
534 // local coordinate system to the ALICE Global coordinate system
535 // for the detector module index number. The global and local
536 // coordinate are given in two Double point arrays g[3], and l[3].
85f1e34a 537 void LtoGMomentum(Int_t index,const Double_t *l,Double_t *g){
8253cd9a 538 GetGeomMatrix(index)->LtoGMomentum(l,g);}
269f57ed 539//
540 // Transforms of momentum types of quantities from the detector
541 // local coordinate system (used for ITS tracking) to the detector
542 // system ALICE Global for the detector module index number.
543 // The global and local coordinate are given in two Double point
544 // arrays g[3], and l[3].
85f1e34a 545 void LtoGMomentumTracking(Int_t index,const Double_t *l,Double_t *g){
269f57ed 546 if(IsGeantToTracking()) LtoGMomentum(index,l,g);
8253cd9a 547 else GetGeomMatrix(index)->LtoGMomentumTracking(l,g);}
269f57ed 548 // Transforms of momentum types of quantities from the detector
549 // local coordinate system (used for ITS tracking) to the ALICE
550 // Global coordinate system for the detector id[3].
551 // The global and local coordinate are given in two Double point
552 // arrays g[3], and l[3].
553 void LtoGMomentumTracking(const Int_t *id,const Double_t *l,Double_t *g){
554 LtoGMomentumTracking(GetModuleIndex(id),l,g);}
555 // Transforms of momentum types of quantities from the detector
556 // local coordinate system (used for ITS tracking) to the ALICE
557 // Global coordinate system for the detector layer ladder and detector
558 // numbers. The global and local coordinate are given in two Double point
559 // arrays g[3], and l[3].
85f1e34a 560 void LtoGMomentumTracking(Int_t lay,Int_t lad,Int_t det,
269f57ed 561 const Double_t *l,Double_t *g){
562 LtoGMomentumTracking(GetModuleIndex(lay,lad,det),l,g);}
563//
564 // Transforms from one detector local coordinate system
565 // to another detector local coordinate system for the detector
566 // module index1 number to the detector module index2 number. The
567 // local coordinates are given in two Double point arrays l1[3],
568 // and l2[3].
85f1e34a 569 void LtoL(Int_t index1,Int_t index2,Double_t *l1,Double_t *l2){
269f57ed 570 Double_t g[3]; LtoG(index1,l1,g);GtoL(index2,g,l2);}
571 // Transforms from one detector local coordinate system
572 // to another detector local coordinate system for the detector
573 // id1[3] to the detector id2[3]. The local coordinates are given
574 // in two Double point arrays l1[3], and l2[3].
575 void LtoL(const Int_t *id1,const Int_t *id2,Double_t *l1,Double_t *l2){
576 LtoL(GetModuleIndex(id1[0],id1[1],id1[2]),
577 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
578//
579 // Transforms from one detector local coordinate system (used for
580 // ITS tracking) to another detector local coordinate system (used
581 // for ITS tracking) for the detector module index1 number to the
582 // detector module index2 number. The local coordinates are given
583 // in two Double point arrays l1[3], and l2[3].
85f1e34a 584 void LtoLtracking(Int_t index1,Int_t index2,
269f57ed 585 Double_t *l1,Double_t *l2){
586 Double_t g[3]; LtoGtracking(index1,l1,g);GtoLtracking(index2,g,l2);}
587 // Transforms from one detector local coordinate system (used for
588 // ITS tracking) to another detector local coordinate system (used
589 // for ITS tracking) for the detector id1[3] to the detector id2[3].
590 // The local coordinates are given in two Double point arrays l1[3],
591 // and l2[3].
592 void LtoLtracking(const Int_t *id1,const Int_t *id2,
593 Double_t *l1,Double_t *l2){
594 LtoLtracking(GetModuleIndex(id1[0],id1[1],id1[2]),
595 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
596//
597 // Transforms of momentum types of quantities from one detector
598 // local coordinate system to another detector local coordinate
599 // system for the detector module index1 number to the detector
600 // module index2 number. The local coordinates are given in two
601 // Double point arrays l1[3], and l2[3].
85f1e34a 602 void LtoLMomentum(Int_t index1,Int_t index2,
269f57ed 603 const Double_t *l1,Double_t *l2){
604 Double_t g[3]; LtoGMomentum(index1,l1,g);GtoLMomentum(index2,g,l2);}
605 // Transforms of momentum types of quantities from one detector
606 // local coordinate system to another detector local coordinate
607 // system for the detector id1[3] to the detector id2[3]. The local
608 // coordinates are given in two Double point arrays l1[3], and l2[3].
b79e4bc3 609 void LtoLMomentum(const Int_t *id1,const Int_t *id2,
269f57ed 610 const Double_t *l1,Double_t *l2){
611 LtoLMomentum(GetModuleIndex(id1[0],id1[1],id1[2]),
612 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
613//
614 // Transforms of momentum types of quantities from one detector
615 // local coordinate system (used by ITS tracking) to another detector
616 // local coordinate system (used by ITS tracking) for the detector
617 // module index1 number to the detector module index2 number. The
618 // local coordinates are given in two Double point arrays l1[3],
619 // and l2[3].
85f1e34a 620 void LtoLMomentumTracking(Int_t index1,Int_t index2,
269f57ed 621 Double_t *l1,Double_t *l2){
622 Double_t g[3]; LtoGMomentumTracking(index1,l1,g);
623 GtoLMomentumTracking(index2,g,l2);}
624 // Transforms of momentum types of quantities from one detector
625 // local coordinate system (used by ITS tracking) to another detector
626 // local coordinate system (used by ITS tracking) for the detector
627 // id1[3] to the detector id2[3]. The local coordinates are given in
628 // two Double point arrays l1[3], and l2[3].
629 void LtoLMomentumTracking(const Int_t *id1,const Int_t *id2,
630 Double_t *l1,Double_t *l2){
631 LtoLMomentumTracking(GetModuleIndex(id1[0],id1[1],id1[2]),
632 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
633//
634 // Transforms a matrix, like an Uncertainty or Error matrix from
635 // the ALICE Global coordinate system to a detector local coordinate
636 // system. The specific detector is determined by the module index
637 // number.
85f1e34a 638 void GtoLErrorMatrix(Int_t index,const Double_t **g,Double_t **l){
8253cd9a 639 GetGeomMatrix(index)->GtoLPositionError((Double_t (*)[3])g,(Double_t (*)[3])l);}
269f57ed 640//
641 // Transforms a matrix, like an Uncertainty or Error matrix from
642 // the ALICE Global coordinate system to a detector local coordinate
643 // system (used by ITS tracking). The specific detector is determined
644 // by the module index number.
85f1e34a 645 void GtoLErrorMatrixTracking(Int_t index,const Double_t **g,
269f57ed 646 Double_t **l){
8253cd9a 647 if(IsGeantToTracking()) GetGeomMatrix(index)->GtoLPositionError((
d962cab4 648 Double_t (*)[3])g,(Double_t (*)[3])l);
8253cd9a 649 else GetGeomMatrix(index)->GtoLPositionErrorTracking(
d962cab4 650 (Double_t (*)[3])g,(Double_t (*)[3])l);}
269f57ed 651//
652 // Transforms a matrix, like an Uncertainty or Error matrix from
653 // the detector local coordinate system to a ALICE Global coordinate
654 // system. The specific detector is determined by the module index
655 // number.
85f1e34a 656 void LtoGErrorMatrix(Int_t index,const Double_t **l,Double_t **g){
8253cd9a 657 GetGeomMatrix(index)->LtoGPositionError((Double_t (*)[3])l,(Double_t (*)[3])g);}
269f57ed 658//
659 // Transforms a matrix, like an Uncertainty or Error matrix from
660 // the detector local coordinate system (used by ITS tracking) to a
661 // ALICE Global coordinate system. The specific detector is determined
662 // by the module index number.
85f1e34a 663 void LtoGErrorMatrixTracking(Int_t index,const Double_t **l,
269f57ed 664 Double_t **g){
8253cd9a 665 if(IsGeantToTracking()) GetGeomMatrix(index)->LtoGPositionError((
d962cab4 666 Double_t (*)[3])g,(Double_t (*)[3])l);
8253cd9a 667 else GetGeomMatrix(index)->LtoGPositionErrorTracking((Double_t (*)[3])l,
d962cab4 668 (Double_t (*)[3])g);}
269f57ed 669//
670 // Transforms a matrix, like an Uncertainty or Error matrix from
671 // one detector local coordinate system to another detector local
672 // coordinate system. The specific detector is determined by the
673 // two module index number index1 and index2.
85f1e34a 674 void LtoLErrorMatrix(Int_t index1,Int_t index2,
269f57ed 675 const Double_t **l1,Double_t **l2){
676 Double_t g[3][3];
677 LtoGErrorMatrix(index1,l1,(Double_t **)g);
678 GtoLErrorMatrix(index2,(const Double_t **)g,l2);}
679//
680 // Transforms a matrix, like an Uncertainty or Error matrix from
681 // one detector local coordinate system (used by ITS tracking) to
682 // another detector local coordinate system (used by ITS tracking).
683 // The specific detector is determined by the two module index number
684 // index1 and index2.
85f1e34a 685 void LtoLErrorMatrixTraking(Int_t index1,Int_t index2,
269f57ed 686 const Double_t **l1,Double_t **l2){Double_t g[3][3];
687 LtoGErrorMatrixTracking(index1,l1,(Double_t **)g);
688 GtoLErrorMatrixTracking(index2,(const Double_t **)g,l2);}
689// Find Specific Modules
85f1e34a 690 // Locate the nearest module to the point g, in ALICE global Cartesian
691 // coordinates [cm] in a give layer. If layer = 0 then it search in
692 // all layers.
693 Int_t GetNearest(const Double_t g[3],Int_t lay=0);
694 // Locates the nearest 27 modules, in nearest order, to the point g, in
695 // ALICE global Cartesian coordinates [cm] in a give layer. If layer = 0
696 // then it searches in all layers. (there are 27 elements in a 3x3x3
697 // cube.
698 void GetNearest27(const Double_t g[3],Int_t n[27],Int_t lay=0);
269f57ed 699 // Returns the distance [cm] between the point g[3] and the center of
700 // the detector/module specified by the the module index number.
85f1e34a 701 Double_t Distance(Int_t index,const Double_t g[3]){
8253cd9a 702 return TMath::Sqrt(GetGeomMatrix(index)->Distance2(g));}
269f57ed 703// Geometry manipulation
85f1e34a 704 // This function performs a Cartesian translation and rotation of
705 // the full ITS from its default position by an amount determined by
706 // the three element arrays tran and rot.
269f57ed 707 void GlobalChange(const Float_t *tran,const Float_t *rot);
85f1e34a 708 // This function performs a Cylindrical translation and rotation of
709 // the full ITS from its default position by an amount determined by
710 // the three element arrays tran and rot.
269f57ed 711 void GlobalCylindericalChange(const Float_t *tran,const Float_t *rot);
85f1e34a 712 // This function performs a Gaussian random displacement and/or
713 // rotation about the present global position of each active
714 // volume/detector of the ITS with variances given by stran and srot.
269f57ed 715 void RandomChange(const Float_t *stran,const Float_t *srot);
85f1e34a 716 // This function performs a Gaussian random displacement and/or
717 // rotation about the present global position of each active
718 // volume/detector of the ITS with variances given by stran and srot.
719 // But in Cylindrical coordinates.
269f57ed 720 void RandomCylindericalChange(const Float_t *stran,const Float_t *srot);
85f1e34a 721 // This function converts these transformations from Alice global and
722 // local to Tracking global and local.
269f57ed 723 void GeantToTracking(AliITSgeom &source); // This converts the geometry
724// Other routines.
85f1e34a 725 // This routine prints, to a file, the difference between this class
726 // and "other".
58005f18 727 void PrintComparison(FILE *fp,AliITSgeom *other);
85f1e34a 728 // This routine prints, to a file, the contents of this class.
729 void PrintData(FILE *fp,Int_t lay,Int_t lad,Int_t det);
730 // This function prints out this class in a single stream. This steam
731 // can be read by ReadGeom.
58005f18 732 ofstream &PrintGeom(ofstream &out);
85f1e34a 733 // This function reads in that single steam printed out by PrintGeom.
58005f18 734 ifstream &ReadGeom(ifstream &in);
e8189707 735
00a7cc50 736 //Conversion from det. local coordinates to local ("V2") coordinates
737 //used for tracking
738
739 void DetLToTrackingV2(Int_t md, Float_t xin, Float_t zin, Float_t &yout, Float_t &zout);
740
741 void TrackingV2ToDetL(Int_t md,Float_t yin,Float_t zin,Float_t &xout,Float_t &zout);
742
085bb6ed 743 private:
8253cd9a 744 char fVersion[20];// Transformation version.
745 Int_t fTrans; // Flag to keep track of which transformation
746 Int_t fNmodules;// The total number of modules
747 Int_t fNlayers; // The number of layers.
85f1e34a 748 Int_t *fNlad; //[fNlayers] Array of the number of ladders/layer(layer)
749 Int_t *fNdet;//[fNlayers] Array of the number of detector/ladder(layer)
750 TObjArray *fGm; // Structure of translation. and rotation.
8253cd9a 751 TObjArray *fShape; // Array of shapes and detector information.
752
269f57ed 753 ClassDef(AliITSgeom,2) // ITS geometry class
58005f18 754};
755
756#endif