Minors
[u/mrichter/AliRoot.git] / ITS / AliITSgeom.h
CommitLineData
b79e4bc3 1#ifndef ALIITSGEOM_H
2#define ALIITSGEOM_H
3da30618 3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
7
58005f18 8/////////////////////////////////////////////////////////////////////////
9// ITS geometry manipulation routines.
10// Created April 15 1999.
11// version: 0.0.0
12// By: Bjorn S. Nilsen
13//
14// A package of geometry routines to do transformations between
15// local, detector active area, and ALICE global coordinate system in such
16// a way as to allow for detector alignment studies and the like. All of
17// the information needed to do the coordinate transformation are kept in
18// a specialized structure for ease of implementation.
19/////////////////////////////////////////////////////////////////////////
4ae5bbc4 20#include <Riostream.h>
85f1e34a 21#include <TObject.h>
e8189707 22#include <TObjArray.h>
23#include <TVector.h>
023ae34b 24#include <TString.h>
25#include <TArrayI.h>
3010c308 26#include <TMath.h>
27
e8189707 28
269f57ed 29#include "AliITSgeomMatrix.h"
58005f18 30
22e9f252 31typedef enum {kND=-1,kSPD=0, kSDD=1, kSSD=2, kSSDp=3,kSDDp=4} AliITSDetector;
58005f18 32
33//_______________________________________________________________________
34
35class AliITSgeom : public TObject {
b79e4bc3 36
58005f18 37 public:
269f57ed 38 AliITSgeom(); // Default constructor
39 AliITSgeom(const char *filename); // Constructor
023ae34b 40 AliITSgeom(Int_t itype,Int_t nlayers,const Int_t *nlads,const Int_t *ndets,
41 Int_t nmods); // Constructor
e56160b8 42 AliITSgeom(const AliITSgeom &source); // Copy constructor
43 AliITSgeom& operator=(const AliITSgeom &source);// = operator
3f38f7af 44 virtual ~AliITSgeom(); // Default destructor
023ae34b 45 // Zero and reinitilizes this class.
46 void Init(Int_t itype,Int_t nlayers,const Int_t *nlads,
47 const Int_t *ndets,Int_t mods);
85f1e34a 48 // this function allocates a AliITSgeomMatrix for a particular module.
023ae34b 49 void CreateMatrix(Int_t mod,Int_t lay,Int_t lad,Int_t det,
50 AliITSDetector idet,const Double_t tran[3],
51 const Double_t rot[10]);
8253cd9a 52 void ReadNewFile(const char *filename); // Constructor for new format.
5cf690c1 53 void WriteNewFile(const char *filename)const; // Output for new format.
023ae34b 54 // Getters
269f57ed 55 Int_t GetTransformationType() const {return fTrans;}
023ae34b 56 //
85f1e34a 57 // returns kTRUE if the transformation defined by this class is
58 // for Global GEANT coordinate system to the local GEANT coordinate system
8253cd9a 59 // of the detector. These are the transformation used by GEANT.
269f57ed 60 Bool_t IsGeantToGeant() const {return (fTrans == 0);}
85f1e34a 61 // returns kTRUE if the transformation defined by this class is
62 // for Global GEANT coordinate system to the local "Tracking" coordinate
8253cd9a 63 // system of the detector. These are the transformation used by the
64 // Tracking code.
269f57ed 65 Bool_t IsGeantToTracking() const {return ((fTrans&&0xfffe)!= 0);}
85f1e34a 66 // returns kTRUE if the transformation defined by this class is
67 // for Global GEANT coordinate system to the local GEANT coordinate system
68 // of the detector but may have been displaced by some typically small
69 // amount. These are modified transformation similar to that used by GEANT.
269f57ed 70 Bool_t IsGeantToDisplaced() const {return ((fTrans&&0xfffd)!= 0);}
8253cd9a 71 // returns kTRUE if the shape defined by ishape has been defined in this
72 // set of transformations. Typical values of ishape are kSPD, kSDD, kSSD,
023ae34b 73 // kSSD2.
85f1e34a 74 Bool_t IsShapeDefined(Int_t ishape)const {
023ae34b 75 return ((fShape.At(ishape))!=0);}
76 //
8253cd9a 77 // This function returns a pointer to the particular AliITSgeomMatrix
78 // class for a specific module index.
023ae34b 79 AliITSgeomMatrix *GetGeomMatrix(Int_t index){if(index<fGm.GetSize()&&index>=0)
80 return (AliITSgeomMatrix*)(fGm.At(index));else Error("GetGeomMatrix","index=%d<0||>=GetSize()=%d",index,fGm.GetSize());return 0;}
5cf690c1 81 AliITSgeomMatrix *GetGeomMatrix(Int_t index)const{if(index<fGm.GetSize()&&index>=0)
82 return (AliITSgeomMatrix*)(fGm.At(index));else Error("GetGeomMatrix","index=%d<0||>=GetSize()=%d",index,fGm.GetSize());return 0;}
023ae34b 83 // This function find and return the number of detector types only.
5cf690c1 84 Int_t GetNDetTypes()const{Int_t max;return GetNDetTypes(max);};
023ae34b 85 // This function find and return the number of detector types and the
86 // maximum det type value.
5cf690c1 87 Int_t GetNDetTypes(Int_t &max)const;
023ae34b 88 // This function finds and return the number of detector types and the
89 // and the number of each type in the TArrayI and their types.
5cf690c1 90 Int_t GetNDetTypes(TArrayI &maxs,AliITSDetector *types)const;
269f57ed 91 // This function returns the number of detectors/ladder for a give
92 // layer. In particular it returns fNdet[layer-1].
c183cf7d 93 Int_t GetNdetectors(Int_t lay) const {return fNdet[lay-1];}
269f57ed 94 // This function returns the number of ladders for a give layer. In
95 // particular it returns fNlad[layer-1].
7f6ab649 96 Int_t GetNladders(Int_t lay) const {return fNlad[lay-1];};
269f57ed 97 // This function returns the number of layers defined in the ITS
98 // geometry. In particular it returns fNlayers.
99 Int_t GetNlayers() const {return fNlayers;}
5cf690c1 100 Int_t GetModuleIndex(Int_t lay,Int_t lad,Int_t det)const;
269f57ed 101 // This function returns the module index number given the layer,
102 // ladder and detector numbers put into the array id[3].
5cf690c1 103 Int_t GetModuleIndex(const Int_t *id)const{
023ae34b 104 return GetModuleIndex(id[0],id[1],id[2]);}
5cf690c1 105 void GetModuleId(Int_t index,Int_t &lay,Int_t &lad,Int_t &det)const;
cd71de57 106 // Returns the detector type
5cf690c1 107 //Int_t GetModuleType(Int_t index)const{
108 // return GetGeomMatrix(index)->GetDetectorIndex();}
109 AliITSDetector GetModuleType(Int_t index)const{
110 return (AliITSDetector)(GetGeomMatrix(index)->GetDetectorIndex());}
3f38f7af 111 // Returns the detector type as a string
5cf690c1 112 const char * GetModuleTypeName(Int_t index)const{
023ae34b 113 return GetDetectorTypeName(GetModuleType(index));}
114 // Returns the detector type as a string
5cf690c1 115 const char * GetDetectorTypeName(Int_t index)const{switch(index) {
023ae34b 116 case kSPD : return "kSPD" ; case kSDD : return "kSDD" ;
117 case kSSD : return "kSSD" ; case kSSDp: return "kSSDp";
118 case kSDDp: return "kSDDp"; default : return "Undefined";};}
119 //
5cf690c1 120 Int_t GetStartDet(Int_t dtype )const;
121 Int_t GetLastDet(Int_t dtype)const;
269f57ed 122 // Returns the starting module index number for SPD detector,
123 // assuming the modules are placed in the "standard" cylindrical
124 // ITS structure.
5cf690c1 125 Int_t GetStartSPD()const{return GetStartDet(kSPD);}
269f57ed 126 // Returns the ending module index number for SPD detector,
127 // assuming the modules are placed in the "standard" cylindrical
128 // ITS structure.
5cf690c1 129 Int_t GetLastSPD()const{return GetLastDet(kSPD);}
269f57ed 130 // Returns the starting module index number for SDD detector,
131 // assuming the modules are placed in the "standard" cylindrical
132 // ITS structure.
5cf690c1 133 Int_t GetStartSDD()const{return GetStartDet(kSDD);}
269f57ed 134 // Returns the ending module index number for SDD detector,
135 // assuming the modules are placed in the "standard" cylindrical
136 // ITS structure.
5cf690c1 137 Int_t GetLastSDD()const{return GetLastDet(kSDD);}
269f57ed 138 // Returns the starting module index number for SSD detector,
139 // assuming the modules are placed in the "standard" cylindrical
140 // ITS structure.
5cf690c1 141 Int_t GetStartSSD()const{return GetStartDet(kSSD);}
269f57ed 142 // Returns the ending module index number for SSD detector,
143 // assuming the modules are placed in the "standard" cylindrical
144 // ITS structure.
5cf690c1 145 Int_t GetLastSSD()const{return GetLastDet(kSSD);}
269f57ed 146 // Returns the last module index number.
85f1e34a 147 Int_t GetIndexMax() const {return fNmodules;}
023ae34b 148 //
269f57ed 149 // This function returns the rotation angles for a give module
150 // in the Double point array ang[3]. The angles are in radians
5cf690c1 151 void GetAngles(Int_t index,Double_t *ang)const{
023ae34b 152 GetGeomMatrix(index)->GetAngles(ang);}
269f57ed 153 // This function returns the rotation angles for a give module
154 // in the three floating point variables provided. rx = frx,
155 // fy = fry, rz = frz. The angles are in radians
5cf690c1 156 void GetAngles(Int_t index,Float_t &rx,Float_t &ry,Float_t &rz)const{
023ae34b 157 Double_t a[3];GetAngles(index,a);rx = a[0];ry = a[1];rz = a[2];}
269f57ed 158 // This function returns the rotation angles for a give detector on
159 // a give ladder in a give layer in the three floating point variables
160 // provided. rx = frx, fy = fry, rz = frz. The angles are in radians
85f1e34a 161 void GetAngles(Int_t lay,Int_t lad,Int_t det,
5cf690c1 162 Float_t &rx,Float_t &ry,Float_t &rz)const{
023ae34b 163 GetAngles(GetModuleIndex(lay,lad,det),rx,ry,rz);}
164 //
269f57ed 165 // This function returns the 6 GEANT rotation angles for a give
166 // module in the double point array ang[3]. The angles are in degrees
5cf690c1 167 void GetGeantAngles(Int_t index,Double_t *ang)const{
8253cd9a 168 GetGeomMatrix(index)->SixAnglesFromMatrix(ang);}
023ae34b 169 //
269f57ed 170 // This function returns the Cartesian translation for a give
171 // module in the Double array t[3]. The units are
172 // those of the Monte Carlo, generally cm.
5cf690c1 173 void GetTrans(Int_t index,Double_t *t)const{
023ae34b 174 GetGeomMatrix(index)->GetTranslation(t);}
269f57ed 175 // This function returns the Cartesian translation for a give
176 // module index in the three floating point variables provided.
177 // x = fx0, y = fy0, z = fz0. The units are those of the Mont
178 // Carlo, generally cm.
5cf690c1 179 void GetTrans(Int_t index,Float_t &x,Float_t &y,Float_t &z)const{
023ae34b 180 Double_t t[3];GetTrans(index,t);x = t[0];y = t[1];z = t[2];}
269f57ed 181 // This function returns the Cartesian translation for a give
182 // detector on a give ladder in a give layer in the three floating
183 // point variables provided. x = fx0, y = fy0, z = fz0. The units are
184 // those of the Monte Carlo, generally cm.
85f1e34a 185 void GetTrans(Int_t lay,Int_t lad,Int_t det,
5cf690c1 186 Float_t &x,Float_t &y,Float_t &z)const{
023ae34b 187 GetTrans(GetModuleIndex(lay,lad,det),x,y,z);}
188 //
d8cc8493 189 // This function returns the Cartesian translation for a give
190 // module in the Double array t[3]. The units are
191 // those of the Monte Carlo, generally cm.
5cf690c1 192 void GetTransCyln(Int_t index,Double_t *t)const{
023ae34b 193 GetGeomMatrix(index)->GetTranslationCylinderical(t);}
d8cc8493 194 // This function returns the Cartesian translation for a give
195 // module index in the three floating point variables provided.
196 // x = fx0, y = fy0, z = fz0. The units are those of the Mont
197 // Carlo, generally cm.
5cf690c1 198 void GetTransCyln(Int_t index,Float_t &x,Float_t &y,Float_t &z)const{
023ae34b 199 Double_t t[3];GetTransCyln(index,t);x = t[0];y = t[1];z = t[2];}
d8cc8493 200 // This function returns the Cartesian translation for a give
201 // detector on a give ladder in a give layer in the three floating
202 // point variables provided. x = fx0, y = fy0, z = fz0. The units are
203 // those of the Monte Carlo, generally cm.
85f1e34a 204 void GetTransCyln(Int_t lay,Int_t lad,Int_t det,
5cf690c1 205 Float_t &x,Float_t &y,Float_t &z)const{
023ae34b 206 GetTransCyln(GetModuleIndex(lay,lad,det),x,y,z);}
207 //
269f57ed 208 // This function returns the Cartesian translation [cm] and the
209 // 6 GEANT rotation angles [degrees]for a given layer ladder and
210 // detector number, in the TVector x (at least 9 elements large).
023ae34b 211 // This function is required to be in-lined for speed.
5cf690c1 212 void GetCenterThetaPhi(Int_t lay,Int_t lad,Int_t det,TVector &x)const{
023ae34b 213 Double_t t[3],a[6];Int_t i=GetModuleIndex(lay,lad,det);GetTrans(i,t);
214 GetGeantAngles(i,a);x(0)=t[0];x(1)=t[1];x(2)=t[2];x(3)=a[0];x(4)=a[1];
215 x(5)=a[2];x(6)=a[3];x(7)=a[4];x(8)=a[5];}
216 //
269f57ed 217 // This function returns the rotation matrix in Double
218 // precision for a given module.
5cf690c1 219 void GetRotMatrix(Int_t index,Double_t mat[3][3])const{
023ae34b 220 GetGeomMatrix(index)->GetMatrix(mat);}
269f57ed 221 // This function returns the rotation matrix in a Double
222 // precision pointer for a given module. mat[i][j] => mat[3*i+j].
5cf690c1 223 void GetRotMatrix(Int_t index,Double_t *mat)const{
023ae34b 224 Double_t rot[3][3];GetRotMatrix(index,rot);
225 for(Int_t i=0;i<3;i++)for(Int_t j=0;j<3;j++) mat[3*i+j] = rot[i][j];}
269f57ed 226 // This function returns the rotation matrix in a floating
227 // precision pointer for a given layer ladder and detector module.
228 // mat[i][j] => mat[3*i+j].
5cf690c1 229 void GetRotMatrix(Int_t lay,Int_t lad,Int_t det,Float_t *mat)const{
023ae34b 230 GetRotMatrix(GetModuleIndex(lay,lad,det),mat);}
269f57ed 231 // This function returns the rotation matrix in a Double
232 // precision pointer for a given layer ladder and detector module.
233 // mat[i][j] => mat[3*i+j].
5cf690c1 234 void GetRotMatrix(Int_t lay,Int_t lad,Int_t det,Double_t *mat)const{
023ae34b 235 GetRotMatrix(GetModuleIndex(lay,lad,det),mat);}
269f57ed 236 // This function returns the rotation matrix in a floating
237 // precision pointer for a given module. mat[i][j] => mat[3*i+j].
5cf690c1 238 void GetRotMatrix(Int_t index,Float_t *mat)const{
8253cd9a 239 Double_t rot[3][3];
023ae34b 240 GetGeomMatrix(index)->GetMatrix(rot);
269f57ed 241 for(Int_t i=0;i<3;i++)for(Int_t j=0;j<3;j++) mat[3*i+j] = rot[i][j];}
fd9cde50 242 // This function sets the rotation matrix in a Double
243 // precision pointer for a given module. mat[i][j] => mat[3*i+j].
244 void SetRotMatrix(Int_t index,Double_t *mat){Double_t rot[3][3];
245 for(Int_t i=0;i<3;i++)for(Int_t j=0;j<3;j++) rot[i][j]=mat[3*i+j];
246 GetGeomMatrix(index)->SetMatrix(rot);}
023ae34b 247 //
8253cd9a 248 // Will define fShape if it isn't already defined.
023ae34b 249 void DefineShapes(Int_t size=5){fShape.Expand(size);}
250 // this function returns a pointer to the array of detector
251 // descriptions, Segmentation.
252 virtual TObjArray *GetShapeArray(){return &fShape;};
85f1e34a 253 // this function returns a pointer to the class describing a particular
254 // detector type based on AliITSDetector value. This will return a pointer
023ae34b 255 // to one of the classes AliITSgeomSPD, AliITSgeomSDD, or
256 // AliITSgeomSSD, for example.
257 virtual TObject *GetShape(AliITSDetector idet){
258 return fShape.At((Int_t)idet);};
5cf690c1 259 virtual TObject *GetShape(AliITSDetector idet)const{
260 return fShape.At((Int_t)idet);};
269f57ed 261 // This function returns a pointer to the class describing the
262 // detector for a particular module index. This will return a pointer
023ae34b 263 // to one of the classes AliITSgeomSPD, AliITSgeomSDD,
264 // or AliITSgeomSSD, for example.
85f1e34a 265 virtual TObject *GetShape(Int_t index){
023ae34b 266 return fShape.At(GetGeomMatrix(index)->GetDetectorIndex());}
5cf690c1 267 virtual TObject *GetShape(Int_t index)const{
268 return fShape.At(GetGeomMatrix(index)->GetDetectorIndex());}
269f57ed 269 // This function returns a pointer to the class describing the
270 // detector for a particular layer ladder and detector numbers. This
271 // will return a pointer to one of the classes AliITSgeomSPD,
272 // AliITSgeomSDD, or AliITSgeomSSD, for example.
85f1e34a 273 virtual TObject *GetShape(Int_t lay,Int_t lad,Int_t det)
023ae34b 274 {return GetShape(GetModuleIndex(lay,lad,det));}
275 //
276 // Setters
269f57ed 277 // Sets the rotation angles and matrix for a give module index
278 // via the double precision array a[3] [radians].
85f1e34a 279 void SetByAngles(Int_t index,const Double_t a[]){
023ae34b 280 GetGeomMatrix(index)->SetAngles(a);}
269f57ed 281 // Sets the rotation angles and matrix for a give module index
282 // via the 3 floating precision variables rx, ry, and rz [radians].
023ae34b 283 void SetByAngles(Int_t index,Float_t rx, Float_t ry, Float_t rz) {
284 Double_t a[3];a[0] = rx;a[1] = ry;a[2] = rz;
285 GetGeomMatrix(index)->SetAngles(a);}
269f57ed 286 // Sets the rotation angles and matrix for a give layer, ladder,
287 // and detector numbers via the 3 floating precision variables rx,
288 // ry, and rz [radians].
85f1e34a 289 void SetByAngles(Int_t lay,Int_t lad,Int_t det,
6ba216a4 290 Float_t rx, Float_t ry, Float_t rz) {
023ae34b 291 SetByAngles(GetModuleIndex(lay,lad,det),rx,ry,rz);}
292 //
269f57ed 293 // Sets the rotation angles and matrix for a give module index
294 // via the Double precision array a[6] [degree]. The angles are those
295 // defined by GEANT 3.12.
85f1e34a 296 void SetByGeantAngles(Int_t index,const Double_t *ang){
023ae34b 297 GetGeomMatrix(index)->MatrixFromSixAngles(ang);}
269f57ed 298 // Sets the rotation angles and matrix for a give layer, ladder
299 // and detector, in the array id[3] via the Double precision array
300 // a[6] [degree]. The angles are those defined by GEANT 3.12.
301 void SetByGeantAngles(const Int_t *id,const Double_t *ang){
023ae34b 302 SetByGeantAngles(GetModuleIndex(id),ang);}
269f57ed 303 // Sets the rotation angles and matrix for a give layer, ladder
304 // and detector, via the Double precision array a[6] [degree]. The
305 // angles are those defined by GEANT 3.12.
85f1e34a 306 void SetByGeantAngles(Int_t lay,Int_t lad,Int_t det,
023ae34b 307 const Double_t *ang){
308 SetByGeantAngles(GetModuleIndex(lay,lad,det),ang);}
309 //
269f57ed 310 // This function sets a new translation vector, given by the
311 // array x[3], for the Cartesian coordinate transformation
312 // for a give module index.
85f1e34a 313 void SetTrans(Int_t index,Double_t x[]){
023ae34b 314 GetGeomMatrix(index)->SetTranslation(x);}
269f57ed 315 // This function sets a new translation vector, given by the three
316 // variables x, y, and z, for the Cartesian coordinate transformation
317 // for the detector defined by layer, ladder and detector.
85f1e34a 318 void SetTrans(Int_t lay,Int_t lad,Int_t det,
269f57ed 319 Float_t x,Float_t y,Float_t z){Double_t t[3];
320 t[0] = x;t[1] = y;t[2] = z;
321 SetTrans(GetModuleIndex(lay,lad,det),t);}
023ae34b 322 //
269f57ed 323 // This function adds one more shape element to the TObjArray
324 // fShape. It is primarily used in the constructor functions of the
325 // AliITSgeom class. The pointer *shape can be the pointer to any
326 // class that is derived from TObject (this is true for nearly every
327 // ROOT class). This does not appear to be working properly at this time.
023ae34b 328 void AddShape(TObject *shp){fShape.AddLast(shp);}
269f57ed 329 // This function deletes an existing shape element, of type TObject,
330 // and replaces it with the one specified. This is primarily used to
023ae34b 331 // changes the parameters to the geom class for a particular
269f57ed 332 // type of detector.
85f1e34a 333 void ReSetShape(Int_t dtype,TObject *shp){
023ae34b 334 delete (fShape.At(dtype));fShape.AddAt(shp,dtype);}
335 //
336 // transformations
269f57ed 337 // Transforms from the ALICE Global coordinate system
338 // to the detector local coordinate system for the detector
339 // defined by the layer, ladder, and detector numbers. The
340 // global and local coordinate are given in two floating point
341 // arrays g[3], and l[3].
85f1e34a 342 void GtoL(Int_t lay,Int_t lad,Int_t det,
5cf690c1 343 const Float_t *g,Float_t *l)const{
023ae34b 344 GtoL(GetModuleIndex(lay,lad,det),g,l);}
269f57ed 345 // Transforms from the ALICE Global coordinate system
346 // to the detector local coordinate system for the detector
347 // defined by the id[0], id[1], and id[2] numbers. The
348 // global and local coordinate are given in two floating point
349 // arrays g[3], and l[3].
5cf690c1 350 void GtoL(const Int_t *id,const Float_t *g,Float_t *l)const{
023ae34b 351 GtoL(GetModuleIndex(id),g,l);}
269f57ed 352 // Transforms from the ALICE Global coordinate system
353 // to the detector local coordinate system for the detector
354 // module index number. The global and local coordinate are
355 // given in two floating point arrays g[3], and l[3].
5cf690c1 356 void GtoL(Int_t index,const Float_t *g,Float_t *l)const{
023ae34b 357 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
358 GetGeomMatrix(index)->GtoLPosition(dg,dl);
359 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 360 // Transforms from the ALICE Global coordinate system
361 // to the detector local coordinate system for the detector
362 // defined by the layer, ladder, and detector numbers. The
363 // global and local coordinate are given in two Double point
364 // arrays g[3], and l[3].
85f1e34a 365 void GtoL(Int_t lay,Int_t lad,Int_t det,
5cf690c1 366 const Double_t *g,Double_t *l)const{
023ae34b 367 GtoL(GetModuleIndex(lay,lad,det),g,l);}
269f57ed 368 // Transforms from the ALICE Global coordinate system
369 // to the detector local coordinate system for the detector
370 // defined by the id[0], id[1], and id[2] numbers. The
371 // global and local coordinate are given in two Double point
372 // arrays g[3], and l[3].
5cf690c1 373 void GtoL(const Int_t *id,const Double_t *g,Double_t *l)const{
023ae34b 374 GtoL(GetModuleIndex(id),g,l);}
269f57ed 375 // Transforms from the ALICE Global coordinate system
376 // to the detector local coordinate system for the detector
377 // module index number. The global and local coordinate are
378 // given in two Double point arrays g[3], and l[3].
5cf690c1 379 void GtoL(Int_t index,const Double_t g[3],Double_t l[3])const{
380 GetGeomMatrix(index)->GtoLPosition(g,l);}
023ae34b 381 //
269f57ed 382 // Transforms from the ALICE Global coordinate system
383 // to the detector local coordinate system (used for ITS tracking)
384 // for the detector module index number. The global and local
385 // coordinate are given in two Double point arrays g[3], and l[3].
5cf690c1 386 void GtoLtracking(Int_t index,const Double_t *g,Double_t *l)const{
023ae34b 387 if(IsGeantToTracking()) GtoL(index,g,l);
388 else GetGeomMatrix(index)->GtoLPositionTracking(g,l);}
269f57ed 389 // Transforms from the ALICE Global coordinate system
390 // to the detector local coordinate system (used for ITS tracking)
391 // for the detector id[3]. The global and local
392 // coordinate are given in two Double point arrays g[3], and l[3].
5cf690c1 393 void GtoLtracking(const Int_t *id,const Double_t *g,Double_t *l)const{
023ae34b 394 GtoLtracking(GetModuleIndex(id),g,l);}
269f57ed 395 // Transforms from the ALICE Global coordinate system
396 // to the detector local coordinate system (used for ITS tracking)
397 // for the detector layer ladder and detector numbers. The global
398 // and local coordinate are given in two Double point arrays g[3],
399 // and l[3].
85f1e34a 400 void GtoLtracking(Int_t lay,Int_t lad,Int_t det,
5cf690c1 401 const Double_t *g,Double_t *l)const{
023ae34b 402 GtoLtracking(GetModuleIndex(lay,lad,det),g,l);}
403 //
269f57ed 404 // Transforms of momentum types of quantities from the ALICE
405 // Global coordinate system to the detector local coordinate system
406 // for the detector layer ladder and detector numbers. The global
407 // and local coordinate are given in two float point arrays g[3],
408 // and l[3].
85f1e34a 409 void GtoLMomentum(Int_t lay,Int_t lad,Int_t det,
5cf690c1 410 const Float_t *g,Float_t *l)const{
023ae34b 411 GtoLMomentum(GetModuleIndex(lay,lad,det),g,l);}
269f57ed 412 // Transforms of momentum types of quantities from the ALICE
413 // Global coordinate system to the detector local coordinate system
414 // for the detector module index number. The global and local
415 // coordinate are given in two float point arrays g[3], and l[3].
5cf690c1 416 void GtoLMomentum(Int_t index,const Float_t *g,Float_t *l)const{
023ae34b 417 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
418 GetGeomMatrix(index)->GtoLMomentum(dg,dl);
419 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 420 // Transforms of momentum types of quantities from the ALICE
421 // Global coordinate system to the detector local coordinate system
422 // for the detector layer ladder and detector numbers. The global
423 // and local coordinate are given in two Double point arrays g[3],
424 // and l[3].
85f1e34a 425 void GtoLMomentum(Int_t lay,Int_t lad,Int_t det,
5cf690c1 426 const Double_t *g,Double_t *l)const{
023ae34b 427 GtoLMomentum(GetModuleIndex(lay,lad,det),g,l);}
269f57ed 428 // Transforms of momentum types of quantities from the ALICE
429 // Global coordinate system to the detector local coordinate system
430 // for the detector module index number. The global and local
431 // coordinate are given in two Double point arrays g[3], and l[3].
5cf690c1 432 void GtoLMomentum(Int_t index,const Double_t *g,Double_t *l)const{
023ae34b 433 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
434 GetGeomMatrix(index)->GtoLMomentum(dg,dl);
435 for(i=0;i<3;i++) l[i] =dl[i];}
436 //
269f57ed 437 // Transforms of momentum types of quantities from the ALICE
438 // Global coordinate system to the detector local coordinate system
439 // (used for ITS tracking) for the detector module index number.
440 // The global and local coordinate are given in two Double point
441 // arrays g[3], and l[3].
5cf690c1 442 void GtoLMomentumTracking(Int_t index,const Double_t *g,Double_t *l)const{
023ae34b 443 if(IsGeantToTracking()) GtoLMomentum(index,g,l);
444 else GetGeomMatrix(index)->GtoLMomentumTracking(g,l);}
269f57ed 445 // Transforms of momentum types of quantities from the ALICE
446 // Global coordinate system to the detector local coordinate system
447 // (used for ITS tracking) for the detector id[3].
448 // The global and local coordinate are given in two Double point
449 // arrays g[3], and l[3].
5cf690c1 450 void GtoLMomentumTracking(const Int_t *id,
451 const Double_t *g,Double_t *l)const{
023ae34b 452 GtoLMomentumTracking(GetModuleIndex(id),g,l);}
269f57ed 453 // Transforms of momentum types of quantities from the ALICE
454 // Global coordinate system to the detector local coordinate system
455 // (used for ITS tracking) for the detector layer ladder and detector
456 // numbers. The global and local coordinate are given in two Double point
457 // arrays g[3], and l[3].
85f1e34a 458 void GtoLMomentumTracking(Int_t lay,Int_t lad,Int_t det,
5cf690c1 459 const Double_t *g,Double_t *l)const{
023ae34b 460 GtoLMomentumTracking(GetModuleIndex(lay,lad,det),g,l);}
461 //
269f57ed 462 // Transforms from the detector local coordinate system
463 // to the ALICE Global coordinate system for the detector
464 // defined by the layer, ladder, and detector numbers. The
465 // global and local coordinate are given in two floating point
466 // arrays g[3], and l[3].
85f1e34a 467 void LtoG(Int_t lay,Int_t lad,Int_t det,
5cf690c1 468 const Float_t *l,Float_t *g)const{
023ae34b 469 LtoG(GetModuleIndex(lay,lad,det),l,g);}
269f57ed 470 // Transforms from the detector local coordinate system
471 // to the ALICE Global coordinate system for the detector
472 // defined by the id[0], id[1], and id[2] numbers. The
473 // global and local coordinate are given in two floating point
474 // arrays g[3], and l[3].
5cf690c1 475 void LtoG(const Int_t *id,const Float_t *l,Float_t *g)const{
023ae34b 476 LtoG(GetModuleIndex(id),l,g);}
269f57ed 477 // Transforms from the detector local coordinate system
478 // to the ALICE Global coordinate system for the detector
479 // module index number. The global and local coordinate are
480 // given in two floating point arrays g[3], and l[3].
5cf690c1 481 void LtoG(Int_t index,const Float_t *l,Float_t *g)const{
023ae34b 482 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dl[i] = l[i];
483 GetGeomMatrix(index)->LtoGPosition(dl,dg);
484 for(i=0;i<3;i++) g[i] =dg[i];}
269f57ed 485 // Transforms from the detector local coordinate system
486 // to the ALICE Global coordinate system for the detector
487 // defined by the layer, ladder, and detector numbers. The
488 // global and local coordinate are given in two Double point
489 // arrays g[3], and l[3].
85f1e34a 490 void LtoG(Int_t lay,Int_t lad,Int_t det,
5cf690c1 491 const Double_t *l,Double_t *g)const{
023ae34b 492 LtoG(GetModuleIndex(lay,lad,det),l,g);}
269f57ed 493 // Transforms from the detector local coordinate system
494 // to the ALICE Global coordinate system for the detector
495 // defined by the id[0], id[1], and id[2] numbers. The
496 // global and local coordinate are given in two Double point
497 // arrays g[3], and l[3].
5cf690c1 498 void LtoG(const Int_t *id,const Double_t *l,Double_t *g)const{
023ae34b 499 LtoG(GetModuleIndex(id),l,g);}
269f57ed 500 // Transforms from the detector local coordinate system
501 // to the ALICE Global coordinate system for the detector
502 // module index number. The global and local coordinate are
503 // given in two Double point arrays g[3], and l[3].
5cf690c1 504 void LtoG(Int_t index,const Double_t *l,Double_t *g)const{
505 GetGeomMatrix(index)->LtoGPosition(l,g);}
023ae34b 506 //
269f57ed 507 // Transforms from the detector local coordinate system (used
508 // for ITS tracking) to the ALICE Global coordinate system
509 // for the detector module index number. The global and local
510 // coordinate are given in two Double point arrays g[3], and l[3].
5cf690c1 511 void LtoGtracking(Int_t index,const Double_t *l,Double_t *g)const{
023ae34b 512 if(IsGeantToTracking()) LtoG(index,l,g);
513 else GetGeomMatrix(index)->LtoGPositionTracking(l,g);}
269f57ed 514 // Transforms from the detector local coordinate system (used
515 // for ITS tracking) to the ALICE Global coordinate system
516 // for the detector id[3]. The global and local
517 // coordinate are given in two Double point arrays g[3], and l[3].
5cf690c1 518 void LtoGtracking(const Int_t *id,const Double_t *l,Double_t *g)const{
023ae34b 519 LtoGtracking(GetModuleIndex(id),l,g);}
269f57ed 520 // Transforms from the detector local coordinate system (used
521 // for ITS tracking) to the detector local coordinate system
522 // for the detector layer ladder and detector numbers. The global
523 // and local coordinate are given in two Double point arrays g[3],
524 // and l[3].
85f1e34a 525 void LtoGtracking(Int_t lay,Int_t lad,Int_t det,
5cf690c1 526 const Double_t *l,Double_t *g)const{
023ae34b 527 LtoGtracking(GetModuleIndex(lay,lad,det),l,g);}
528 //
269f57ed 529 // Transforms of momentum types of quantities from the detector
530 // local coordinate system to the ALICE Global coordinate system
531 // for the detector layer ladder and detector numbers. The global
532 // and local coordinate are given in two float point arrays g[3],
533 // and l[3].
85f1e34a 534 void LtoGMomentum(Int_t lay,Int_t lad,Int_t det,
5cf690c1 535 const Float_t *l,Float_t *g)const{
023ae34b 536 LtoGMomentum(GetModuleIndex(lay,lad,det),l,g);}
269f57ed 537 // Transforms of momentum types of quantities from the detector
538 // local coordinate system to the ALICE Global coordinate system
539 // for the detector module index number. The global and local
540 // coordinate are given in two float point arrays g[3], and l[3].
5cf690c1 541 void LtoGMomentum(Int_t index,const Float_t *l,Float_t *g)const{
023ae34b 542 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dl[i] = l[i];
543 GetGeomMatrix(index)->LtoGMomentum(dl,dg);
544 for(i=0;i<3;i++) g[i] =dg[i];}
269f57ed 545 // Transforms of momentum types of quantities from the detector
546 // local coordinate system to the ALICE Global coordinate system
547 // for the detector layer ladder and detector numbers. The global
548 // and local coordinate are given in two Double point arrays g[3],
549 // and l[3].
85f1e34a 550 void LtoGMomentum(Int_t lay,Int_t lad,Int_t det,
5cf690c1 551 const Double_t *l,Double_t *g)const{
023ae34b 552 LtoGMomentum(GetModuleIndex(lay,lad,det),l,g);}
269f57ed 553 // Transforms of momentum types of quantities from the detector
554 // local coordinate system to the ALICE Global coordinate system
555 // for the detector module index number. The global and local
556 // coordinate are given in two Double point arrays g[3], and l[3].
5cf690c1 557 void LtoGMomentum(Int_t index,const Double_t *l,Double_t *g)const{
023ae34b 558 GetGeomMatrix(index)->LtoGMomentum(l,g);}
559 //
269f57ed 560 // Transforms of momentum types of quantities from the detector
561 // local coordinate system (used for ITS tracking) to the detector
562 // system ALICE Global for the detector module index number.
563 // The global and local coordinate are given in two Double point
564 // arrays g[3], and l[3].
5cf690c1 565 void LtoGMomentumTracking(Int_t index,const Double_t *l,Double_t *g)const{
023ae34b 566 if(IsGeantToTracking()) LtoGMomentum(index,l,g);
567 else GetGeomMatrix(index)->LtoGMomentumTracking(l,g);}
269f57ed 568 // Transforms of momentum types of quantities from the detector
569 // local coordinate system (used for ITS tracking) to the ALICE
570 // Global coordinate system for the detector id[3].
571 // The global and local coordinate are given in two Double point
572 // arrays g[3], and l[3].
5cf690c1 573 void LtoGMomentumTracking(const Int_t *id,const Double_t *l,Double_t *g)const{
023ae34b 574 LtoGMomentumTracking(GetModuleIndex(id),l,g);}
269f57ed 575 // Transforms of momentum types of quantities from the detector
576 // local coordinate system (used for ITS tracking) to the ALICE
577 // Global coordinate system for the detector layer ladder and detector
578 // numbers. The global and local coordinate are given in two Double point
579 // arrays g[3], and l[3].
85f1e34a 580 void LtoGMomentumTracking(Int_t lay,Int_t lad,Int_t det,
5cf690c1 581 const Double_t *l,Double_t *g)const{
269f57ed 582 LtoGMomentumTracking(GetModuleIndex(lay,lad,det),l,g);}
023ae34b 583 //
269f57ed 584 // Transforms from one detector local coordinate system
585 // to another detector local coordinate system for the detector
586 // module index1 number to the detector module index2 number. The
587 // local coordinates are given in two Double point arrays l1[3],
588 // and l2[3].
5cf690c1 589 void LtoL(Int_t index1,Int_t index2,Double_t *l1,Double_t *l2)const{
023ae34b 590 Double_t g[3]; LtoG(index1,l1,g);GtoL(index2,g,l2);}
269f57ed 591 // Transforms from one detector local coordinate system
592 // to another detector local coordinate system for the detector
593 // id1[3] to the detector id2[3]. The local coordinates are given
594 // in two Double point arrays l1[3], and l2[3].
5cf690c1 595 void LtoL(const Int_t *id1,const Int_t *id2,Double_t *l1,Double_t *l2)const{
023ae34b 596 LtoL(GetModuleIndex(id1[0],id1[1],id1[2]),
269f57ed 597 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
023ae34b 598 //
269f57ed 599 // Transforms from one detector local coordinate system (used for
600 // ITS tracking) to another detector local coordinate system (used
601 // for ITS tracking) for the detector module index1 number to the
602 // detector module index2 number. The local coordinates are given
603 // in two Double point arrays l1[3], and l2[3].
85f1e34a 604 void LtoLtracking(Int_t index1,Int_t index2,
5cf690c1 605 Double_t *l1,Double_t *l2)const{
023ae34b 606 Double_t g[3]; LtoGtracking(index1,l1,g);GtoLtracking(index2,g,l2);}
269f57ed 607 // Transforms from one detector local coordinate system (used for
608 // ITS tracking) to another detector local coordinate system (used
609 // for ITS tracking) for the detector id1[3] to the detector id2[3].
610 // The local coordinates are given in two Double point arrays l1[3],
611 // and l2[3].
612 void LtoLtracking(const Int_t *id1,const Int_t *id2,
5cf690c1 613 Double_t *l1,Double_t *l2)const{
023ae34b 614 LtoLtracking(GetModuleIndex(id1[0],id1[1],id1[2]),
615 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
616 //
269f57ed 617 // Transforms of momentum types of quantities from one detector
618 // local coordinate system to another detector local coordinate
619 // system for the detector module index1 number to the detector
620 // module index2 number. The local coordinates are given in two
621 // Double point arrays l1[3], and l2[3].
85f1e34a 622 void LtoLMomentum(Int_t index1,Int_t index2,
5cf690c1 623 const Double_t *l1,Double_t *l2)const{
023ae34b 624 Double_t g[3]; LtoGMomentum(index1,l1,g);GtoLMomentum(index2,g,l2);}
269f57ed 625 // Transforms of momentum types of quantities from one detector
626 // local coordinate system to another detector local coordinate
627 // system for the detector id1[3] to the detector id2[3]. The local
628 // coordinates are given in two Double point arrays l1[3], and l2[3].
b79e4bc3 629 void LtoLMomentum(const Int_t *id1,const Int_t *id2,
5cf690c1 630 const Double_t *l1,Double_t *l2)const{
023ae34b 631 LtoLMomentum(GetModuleIndex(id1[0],id1[1],id1[2]),
632 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
633 //
269f57ed 634 // Transforms of momentum types of quantities from one detector
635 // local coordinate system (used by ITS tracking) to another detector
636 // local coordinate system (used by ITS tracking) for the detector
637 // module index1 number to the detector module index2 number. The
638 // local coordinates are given in two Double point arrays l1[3],
639 // and l2[3].
85f1e34a 640 void LtoLMomentumTracking(Int_t index1,Int_t index2,
5cf690c1 641 Double_t *l1,Double_t *l2)const{
023ae34b 642 Double_t g[3]; LtoGMomentumTracking(index1,l1,g);
643 GtoLMomentumTracking(index2,g,l2);}
269f57ed 644 // Transforms of momentum types of quantities from one detector
645 // local coordinate system (used by ITS tracking) to another detector
646 // local coordinate system (used by ITS tracking) for the detector
647 // id1[3] to the detector id2[3]. The local coordinates are given in
648 // two Double point arrays l1[3], and l2[3].
649 void LtoLMomentumTracking(const Int_t *id1,const Int_t *id2,
5cf690c1 650 Double_t *l1,Double_t *l2)const{
023ae34b 651 LtoLMomentumTracking(GetModuleIndex(id1[0],id1[1],id1[2]),
269f57ed 652 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
023ae34b 653 //
269f57ed 654 // Transforms a matrix, like an Uncertainty or Error matrix from
655 // the ALICE Global coordinate system to a detector local coordinate
656 // system. The specific detector is determined by the module index
657 // number.
5cf690c1 658 void GtoLErrorMatrix(Int_t index,const Double_t **g,Double_t **l)const{
023ae34b 659 GetGeomMatrix(index)->GtoLPositionError((Double_t (*)[3])g,(Double_t (*)[3])l);}
660 //
269f57ed 661 // Transforms a matrix, like an Uncertainty or Error matrix from
662 // the ALICE Global coordinate system to a detector local coordinate
663 // system (used by ITS tracking). The specific detector is determined
664 // by the module index number.
85f1e34a 665 void GtoLErrorMatrixTracking(Int_t index,const Double_t **g,
5cf690c1 666 Double_t **l)const{
023ae34b 667 if(IsGeantToTracking()) GetGeomMatrix(index)->GtoLPositionError((
668 Double_t (*)[3])g,(Double_t (*)[3])l);
669 else GetGeomMatrix(index)->GtoLPositionErrorTracking(
670 (Double_t (*)[3])g,(Double_t (*)[3])l);}
671 //
269f57ed 672 // Transforms a matrix, like an Uncertainty or Error matrix from
673 // the detector local coordinate system to a ALICE Global coordinate
674 // system. The specific detector is determined by the module index
675 // number.
5cf690c1 676 void LtoGErrorMatrix(Int_t index,const Double_t **l,Double_t **g)const{
023ae34b 677 GetGeomMatrix(index)->LtoGPositionError((Double_t (*)[3])l,(Double_t (*)[3])g);}
678 //
269f57ed 679 // Transforms a matrix, like an Uncertainty or Error matrix from
680 // the detector local coordinate system (used by ITS tracking) to a
681 // ALICE Global coordinate system. The specific detector is determined
682 // by the module index number.
85f1e34a 683 void LtoGErrorMatrixTracking(Int_t index,const Double_t **l,
5cf690c1 684 Double_t **g)const{
023ae34b 685 if(IsGeantToTracking()) GetGeomMatrix(index)->LtoGPositionError((
686 Double_t (*)[3])g,(Double_t (*)[3])l);
687 else GetGeomMatrix(index)->LtoGPositionErrorTracking((Double_t (*)[3])l,
688 (Double_t (*)[3])g);}
689 //
269f57ed 690 // Transforms a matrix, like an Uncertainty or Error matrix from
691 // one detector local coordinate system to another detector local
692 // coordinate system. The specific detector is determined by the
693 // two module index number index1 and index2.
85f1e34a 694 void LtoLErrorMatrix(Int_t index1,Int_t index2,
5cf690c1 695 const Double_t **l1,Double_t **l2)const{
023ae34b 696 Double_t g[3][3];
697 LtoGErrorMatrix(index1,l1,(Double_t **)g);
698 GtoLErrorMatrix(index2,(const Double_t **)g,l2);}
699 //
269f57ed 700 // Transforms a matrix, like an Uncertainty or Error matrix from
701 // one detector local coordinate system (used by ITS tracking) to
702 // another detector local coordinate system (used by ITS tracking).
703 // The specific detector is determined by the two module index number
704 // index1 and index2.
85f1e34a 705 void LtoLErrorMatrixTraking(Int_t index1,Int_t index2,
5cf690c1 706 const Double_t **l1,Double_t **l2)const{
023ae34b 707 Double_t g[3][3];
708 LtoGErrorMatrixTracking(index1,l1,(Double_t **)g);
709 GtoLErrorMatrixTracking(index2,(const Double_t **)g,l2);}
710 // Find Specific Modules
85f1e34a 711 // Locate the nearest module to the point g, in ALICE global Cartesian
712 // coordinates [cm] in a give layer. If layer = 0 then it search in
713 // all layers.
5cf690c1 714 Int_t GetNearest(const Double_t g[3],Int_t lay=0)const;
85f1e34a 715 // Locates the nearest 27 modules, in nearest order, to the point g, in
716 // ALICE global Cartesian coordinates [cm] in a give layer. If layer = 0
717 // then it searches in all layers. (there are 27 elements in a 3x3x3
718 // cube.
5cf690c1 719 void GetNearest27(const Double_t g[3],Int_t n[27],Int_t lay=0)const;
269f57ed 720 // Returns the distance [cm] between the point g[3] and the center of
721 // the detector/module specified by the the module index number.
5cf690c1 722 Double_t Distance(Int_t index,const Double_t g[3])const{
023ae34b 723 return TMath::Sqrt(GetGeomMatrix(index)->Distance2(g));}
724 // loops over modules and computes the average cylindrical
725 // radius to a given layer and the range.
5cf690c1 726 Double_t GetAverageRadiusOfLayer(Int_t layer,Double_t &range)const;
023ae34b 727 // Geometry manipulation
85f1e34a 728 // This function performs a Cartesian translation and rotation of
729 // the full ITS from its default position by an amount determined by
730 // the three element arrays tran and rot.
269f57ed 731 void GlobalChange(const Float_t *tran,const Float_t *rot);
85f1e34a 732 // This function performs a Cylindrical translation and rotation of
733 // the full ITS from its default position by an amount determined by
734 // the three element arrays tran and rot.
269f57ed 735 void GlobalCylindericalChange(const Float_t *tran,const Float_t *rot);
85f1e34a 736 // This function performs a Gaussian random displacement and/or
737 // rotation about the present global position of each active
738 // volume/detector of the ITS with variances given by stran and srot.
269f57ed 739 void RandomChange(const Float_t *stran,const Float_t *srot);
85f1e34a 740 // This function performs a Gaussian random displacement and/or
741 // rotation about the present global position of each active
742 // volume/detector of the ITS with variances given by stran and srot.
743 // But in Cylindrical coordinates.
269f57ed 744 void RandomCylindericalChange(const Float_t *stran,const Float_t *srot);
85f1e34a 745 // This function converts these transformations from Alice global and
746 // local to Tracking global and local.
5cf690c1 747 void GeantToTracking(const AliITSgeom &source); // This converts the geometry
023ae34b 748 // Other routines.
85f1e34a 749 // This routine prints, to a file, the difference between this class
750 // and "other".
5cf690c1 751 void PrintComparison(FILE *fp,AliITSgeom *other)const;
85f1e34a 752 // This routine prints, to a file, the contents of this class.
5cf690c1 753 void PrintData(FILE *fp,Int_t lay,Int_t lad,Int_t det)const;
85f1e34a 754 // This function prints out this class in a single stream. This steam
755 // can be read by ReadGeom.
5cf690c1 756 ofstream &PrintGeom(ofstream &out)const;
85f1e34a 757 // This function reads in that single steam printed out by PrintGeom.
58005f18 758 ifstream &ReadGeom(ifstream &in);
e8189707 759
00a7cc50 760 //Conversion from det. local coordinates to local ("V2") coordinates
761 //used for tracking
762
763 void DetLToTrackingV2(Int_t md, Float_t xin, Float_t zin, Float_t &yout, Float_t &zout);
764
765 void TrackingV2ToDetL(Int_t md,Float_t yin,Float_t zin,Float_t &xout,Float_t &zout);
766
4bfbde86 767
085bb6ed 768 private:
023ae34b 769 TString fVersion; // Transformation version.
8253cd9a 770 Int_t fTrans; // Flag to keep track of which transformation
771 Int_t fNmodules;// The total number of modules
772 Int_t fNlayers; // The number of layers.
023ae34b 773 TArrayI fNlad; // Array of the number of ladders/layer(layer)
774 TArrayI fNdet; // Array of the number of detector/ladder(layer)
775 TObjArray fGm; // Structure of translation. and rotation.
776 TObjArray fShape; // Array of shapes and detector information.
8253cd9a 777
023ae34b 778 ClassDef(AliITSgeom,3) // ITS geometry class
58005f18 779};
780
781#endif