Added include file that are no londer included in AliITSgeom.h
[u/mrichter/AliRoot.git] / ITS / AliITSgeom.h
CommitLineData
b79e4bc3 1#ifndef ALIITSGEOM_H
2#define ALIITSGEOM_H
3da30618 3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
7
58005f18 8/////////////////////////////////////////////////////////////////////////
9// ITS geometry manipulation routines.
10// Created April 15 1999.
11// version: 0.0.0
12// By: Bjorn S. Nilsen
13//
14// A package of geometry routines to do transformations between
15// local, detector active area, and ALICE global coordinate system in such
16// a way as to allow for detector alignment studies and the like. All of
17// the information needed to do the coordinate transformation are kept in
18// a specialized structure for ease of implementation.
19/////////////////////////////////////////////////////////////////////////
20#include <fstream.h>
e8189707 21#include <TObjArray.h>
22#include <TVector.h>
23
cd44574c 24#include "AliITSgeomSPD.h"
25#include "AliITSgeomSDD.h"
26#include "AliITSgeomSSD.h"
269f57ed 27#include "AliITSgeomMatrix.h"
58005f18 28
269f57ed 29typedef enum {kSPD=0, kSDD=1, kSSD=2} AliITSDetector;
58005f18 30
31//_______________________________________________________________________
32
33class AliITSgeom : public TObject {
b79e4bc3 34
58005f18 35 public:
269f57ed 36 AliITSgeom(); // Default constructor
37 AliITSgeom(const char *filename); // Constructor
38 void ReadNewFile(const char *filename); // Constructor for new format.
39 AliITSgeom(AliITSgeom &source); // Copy constructor
40 void operator=(AliITSgeom &source);// = operator
41 virtual ~AliITSgeom(); // Default destructor
42// Getters
43 Int_t GetTransformationType() const {return fTrans;}
44//
45 Bool_t IsGeantToGeant() const {return (fTrans == 0);}
46 Bool_t IsGeantToTracking() const {return ((fTrans&&0xfffe)!= 0);}
47 Bool_t IsGeantToDisplaced() const {return ((fTrans&&0xfffd)!= 0);}
48//
49 // This function returns the number of detectors/ladder for a give
50 // layer. In particular it returns fNdet[layer-1].
51 Int_t GetNdetectors(const Int_t lay) const {return fNdet[lay-1];}
52 // This function returns the number of ladders for a give layer. In
53 // particular it returns fNlad[layer-1].
54 Int_t GetNladders(const Int_t lay) const {return fNlad[lay-1];}
55 // This function returns the number of layers defined in the ITS
56 // geometry. In particular it returns fNlayers.
57 Int_t GetNlayers() const {return fNlayers;}
58 Int_t GetModuleIndex(const Int_t lay,const Int_t lad,const Int_t det);
59 // This function returns the module index number given the layer,
60 // ladder and detector numbers put into the array id[3].
61 Int_t GetModuleIndex(const Int_t *id){
62 return GetModuleIndex(id[0],id[1],id[2]);}
63 void GetModuleId(const Int_t index,Int_t &lay,Int_t &lad,Int_t &det);
64//
65 Int_t GetStartDet(const Int_t dtype );
66 Int_t GetLastDet(const Int_t dtype);
67 // Returns the starting module index number for SPD detector,
68 // assuming the modules are placed in the "standard" cylindrical
69 // ITS structure.
70 Int_t GetStartSPD() {return GetModuleIndex(1,1,1);}
71 // Returns the ending module index number for SPD detector,
72 // assuming the modules are placed in the "standard" cylindrical
73 // ITS structure.
74 Int_t GetLastSPD() {return GetModuleIndex(2,fNlad[1],fNdet[1]);}
75 // Returns the starting module index number for SDD detector,
76 // assuming the modules are placed in the "standard" cylindrical
77 // ITS structure.
78 Int_t GetStartSDD() {return GetModuleIndex(3,1,1);}
79 // Returns the ending module index number for SDD detector,
80 // assuming the modules are placed in the "standard" cylindrical
81 // ITS structure.
82 Int_t GetLastSDD() {return GetModuleIndex(4,fNlad[3],fNdet[3]);}
83 // Returns the starting module index number for SSD detector,
84 // assuming the modules are placed in the "standard" cylindrical
85 // ITS structure.
86 Int_t GetStartSSD() {return GetModuleIndex(5,1,1);}
87 // Returns the ending module index number for SSD detector,
88 // assuming the modules are placed in the "standard" cylindrical
89 // ITS structure.
90 Int_t GetLastSSD() {return GetModuleIndex(6,fNlad[5],fNdet[5]);}
91 // Returns the last module index number.
92 Int_t GetIndexMax() {return fNmodules;}
93//
94 // This function returns the rotation angles for a give module
95 // in the Double point array ang[3]. The angles are in radians
96 void GetAngles(const Int_t index,Double_t *ang) {
97 fGm[index]->GetAngles(ang);}
98 // This function returns the rotation angles for a give module
99 // in the three floating point variables provided. rx = frx,
100 // fy = fry, rz = frz. The angles are in radians
101 void GetAngles(const Int_t index,Float_t &rx,Float_t &ry,Float_t &rz) {
102 Double_t a[3];GetAngles(index,a);
103 rx = a[0];ry = a[1];rz = a[2];}
104 // This function returns the rotation angles for a give detector on
105 // a give ladder in a give layer in the three floating point variables
106 // provided. rx = frx, fy = fry, rz = frz. The angles are in radians
107 void GetAngles(const Int_t lay,const Int_t lad,const Int_t det,
108 Float_t &rx,Float_t &ry,Float_t &rz) {
109 GetAngles(GetModuleIndex(lay,lad,det),rx,ry,rz);}
110//
111 // This function returns the 6 GEANT rotation angles for a give
112 // module in the double point array ang[3]. The angles are in degrees
113 void GetGeantAngles(const Int_t index,Double_t *ang){
114 fGm[index]->SixAnglesFromMatrix(ang);}
115//
116 // This function returns the Cartesian translation for a give
117 // module in the Double array t[3]. The units are
118 // those of the Monte Carlo, generally cm.
119 void GetTrans(const Int_t index,Double_t *t) {
120 fGm[index]->GetTranslation(t);}
121 // This function returns the Cartesian translation for a give
122 // module index in the three floating point variables provided.
123 // x = fx0, y = fy0, z = fz0. The units are those of the Mont
124 // Carlo, generally cm.
125 void GetTrans(const Int_t index,Float_t &x,Float_t &y,Float_t &z) {
126 Double_t t[3];GetTrans(index,t);
127 x = t[0];y = t[1];z = t[2];}
128 // This function returns the Cartesian translation for a give
129 // detector on a give ladder in a give layer in the three floating
130 // point variables provided. x = fx0, y = fy0, z = fz0. The units are
131 // those of the Monte Carlo, generally cm.
132 void GetTrans(const Int_t lay,const Int_t lad,const Int_t det,
133 Float_t &x,Float_t &y,Float_t &z) {
134 GetTrans(GetModuleIndex(lay,lad,det),x,y,z);}
135//
136 // This function returns the Cartesian translation [cm] and the
137 // 6 GEANT rotation angles [degrees]for a given layer ladder and
138 // detector number, in the TVector x (at least 9 elements large).
139 void GetCenterThetaPhi(const Int_t lay,const Int_t lad,const Int_t det,
140 TVector &x){Double_t t[3],ang[6];
141 Int_t index=GetModuleIndex(lay,lad,det);
142 GetTrans(index,t);GetGeantAngles(index,ang);
143 x(0) = t[0];x(1) = t[1];x(2) = t[2];
144 x(3) = ang[0];x(4) = ang[1];x(5) = ang[2];
145 x(6) = ang[3];x(7) = ang[4];x(8) = ang[5];}
146//
147 // This function returns the rotation matrix in Double
148 // precision for a given module.
149 void GetRotMatrix(const Int_t index,Double_t mat[3][3]){
150 fGm[index]->GetMatrix(mat);}
151 // This function returns the rotation matrix in a Double
152 // precision pointer for a given module. mat[i][j] => mat[3*i+j].
153 void GetRotMatrix(const Int_t index,Double_t *mat){
154 Double_t rot[3][3];GetRotMatrix(index,rot);
155 for(Int_t i=0;i<3;i++)for(Int_t j=0;j<3;j++) mat[3*i+j] = rot[i][j];}
156 // This function returns the rotation matrix in a floating
157 // precision pointer for a given layer ladder and detector module.
158 // mat[i][j] => mat[3*i+j].
159 void GetRotMatrix(const Int_t lay,const Int_t lad,const Int_t det,
160 Float_t *mat){GetRotMatrix(GetModuleIndex(lay,lad,det),mat);}
161 // This function returns the rotation matrix in a Double
162 // precision pointer for a given layer ladder and detector module.
163 // mat[i][j] => mat[3*i+j].
164 void GetRotMatrix(const Int_t lay,const Int_t lad,const Int_t det,
165 Double_t *mat){GetRotMatrix(GetModuleIndex(lay,lad,det),mat);}
166 // This function returns the rotation matrix in a floating
167 // precision pointer for a given module. mat[i][j] => mat[3*i+j].
168 void GetRotMatrix(const Int_t index,Float_t *mat){
169 Double_t rot[3][3];fGm[index]->GetMatrix(rot);
170 for(Int_t i=0;i<3;i++)for(Int_t j=0;j<3;j++) mat[3*i+j] = rot[i][j];}
171//
172 // This function returns a pointer to the class describing the
173 // detector for a particular module index. This will return a pointer
174 // to one of the classes AliITSgeomSPD, AliITSgeomSDD, or AliITSgeomSSD,
175 // for example.
176 virtual TObject *GetShape(const Int_t index)
177 {return fShape->At(fGm[index]->GetDetectorIndex());}
178 // This function returns a pointer to the class describing the
179 // detector for a particular layer ladder and detector numbers. This
180 // will return a pointer to one of the classes AliITSgeomSPD,
181 // AliITSgeomSDD, or AliITSgeomSSD, for example.
182 virtual TObject *GetShape(const Int_t lay,const Int_t lad,const Int_t det)
183 {return GetShape(GetModuleIndex(lay,lad,det));}
184//
185 // This function returns a pointer to the particular AliITSgeomMatrix
186 // class for a specific module index.
187 AliITSgeomMatrix *GetGeomMatrix(Int_t index){return fGm[index];}
188//
189// Setters
190 // Sets the rotation angles and matrix for a give module index
191 // via the double precision array a[3] [radians].
192 void SetByAngles(const Int_t index,const Double_t a[]){
193 fGm[index]->SetAngles(a);}
194 // Sets the rotation angles and matrix for a give module index
195 // via the 3 floating precision variables rx, ry, and rz [radians].
196 void SetByAngles(const Int_t index,
197 const Float_t rx,const Float_t ry,const Float_t rz) {
198 Double_t a[3];a[0] = rx;a[1] = ry;a[2] = rz;
199 fGm[index]->SetAngles(a);}
200 // Sets the rotation angles and matrix for a give layer, ladder,
201 // and detector numbers via the 3 floating precision variables rx,
202 // ry, and rz [radians].
203 void SetByAngles(const Int_t lay,const Int_t lad,const Int_t det,
204 const Float_t rx,const Float_t ry,const Float_t rz) {
205 SetByAngles(GetModuleIndex(lay,lad,det),rx,ry,rz);}
206//
207 // Sets the rotation angles and matrix for a give module index
208 // via the Double precision array a[6] [degree]. The angles are those
209 // defined by GEANT 3.12.
210 void SetByGeantAngles(const Int_t index,const Double_t *ang){
211 fGm[index]->MatrixFromSixAngles(ang);}
212 // Sets the rotation angles and matrix for a give layer, ladder
213 // and detector, in the array id[3] via the Double precision array
214 // a[6] [degree]. The angles are those defined by GEANT 3.12.
215 void SetByGeantAngles(const Int_t *id,const Double_t *ang){
216 SetByGeantAngles(GetModuleIndex(id),ang);}
217 // Sets the rotation angles and matrix for a give layer, ladder
218 // and detector, via the Double precision array a[6] [degree]. The
219 // angles are those defined by GEANT 3.12.
220 void SetByGeantAngles(const Int_t lay,const Int_t lad,const Int_t det,
221 const Double_t *ang){
222 SetByGeantAngles(GetModuleIndex(lay,lad,det),ang);}
223//
224 // This function sets a new translation vector, given by the
225 // array x[3], for the Cartesian coordinate transformation
226 // for a give module index.
227 void SetTrans(const Int_t index,Double_t x[]){
228 fGm[index]->SetTranslation(x);}
229 // This function sets a new translation vector, given by the three
230 // variables x, y, and z, for the Cartesian coordinate transformation
231 // for the detector defined by layer, ladder and detector.
232 void SetTrans(const Int_t lay,const Int_t lad,const Int_t det,
233 Float_t x,Float_t y,Float_t z){Double_t t[3];
234 t[0] = x;t[1] = y;t[2] = z;
235 SetTrans(GetModuleIndex(lay,lad,det),t);}
236//
237 // This function adds one more shape element to the TObjArray
238 // fShape. It is primarily used in the constructor functions of the
239 // AliITSgeom class. The pointer *shape can be the pointer to any
240 // class that is derived from TObject (this is true for nearly every
241 // ROOT class). This does not appear to be working properly at this time.
242 void AddShape(TObject *shp){fShape->AddLast(shp);}
243 // This function deletes an existing shape element, of type TObject,
244 // and replaces it with the one specified. This is primarily used to
245 // changes the parameters to the segmentation class for a particular
246 // type of detector.
247 void ReSetShape(const Int_t dtype,TObject *shp){
248 fShape->RemoveAt(dtype);fShape->AddAt(shp,dtype);}
249//
250// transformations
251 // Transforms from the ALICE Global coordinate system
252 // to the detector local coordinate system for the detector
253 // defined by the layer, ladder, and detector numbers. The
254 // global and local coordinate are given in two floating point
255 // arrays g[3], and l[3].
256 void GtoL(const Int_t lay,const Int_t lad,const Int_t det,
257 const Float_t *g,Float_t *l){
258 GtoL(GetModuleIndex(lay,lad,det),g,l);}
259 // Transforms from the ALICE Global coordinate system
260 // to the detector local coordinate system for the detector
261 // defined by the id[0], id[1], and id[2] numbers. The
262 // global and local coordinate are given in two floating point
263 // arrays g[3], and l[3].
264 void GtoL(const Int_t *id,const Float_t *g,Float_t *l){
265 GtoL(GetModuleIndex(id),g,l);}
266 // Transforms from the ALICE Global coordinate system
267 // to the detector local coordinate system for the detector
268 // module index number. The global and local coordinate are
269 // given in two floating point arrays g[3], and l[3].
270 void GtoL(const Int_t index,const Float_t *g,Float_t *l){
d962cab4 271 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
269f57ed 272 fGm[index]->GtoLPosition(dg,dl);
d962cab4 273 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 274 // Transforms from the ALICE Global coordinate system
275 // to the detector local coordinate system for the detector
276 // defined by the layer, ladder, and detector numbers. The
277 // global and local coordinate are given in two Double point
278 // arrays g[3], and l[3].
279 void GtoL(const Int_t lay,const Int_t lad,const Int_t det,
280 const Double_t *g,Double_t *l){
281 GtoL(GetModuleIndex(lay,lad,det),g,l);}
282 // Transforms from the ALICE Global coordinate system
283 // to the detector local coordinate system for the detector
284 // defined by the id[0], id[1], and id[2] numbers. The
285 // global and local coordinate are given in two Double point
286 // arrays g[3], and l[3].
287 void GtoL(const Int_t *id,const Double_t *g,Double_t *l){
288 GtoL(GetModuleIndex(id),g,l);}
289 // Transforms from the ALICE Global coordinate system
290 // to the detector local coordinate system for the detector
291 // module index number. The global and local coordinate are
292 // given in two Double point arrays g[3], and l[3].
293 void GtoL(const Int_t index,const Double_t *g,Double_t *l){
d962cab4 294 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
269f57ed 295 fGm[index]->GtoLPosition(dg,dl);
d962cab4 296 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 297//
298 // Transforms from the ALICE Global coordinate system
299 // to the detector local coordinate system (used for ITS tracking)
300 // for the detector module index number. The global and local
301 // coordinate are given in two Double point arrays g[3], and l[3].
302 void GtoLtracking(const Int_t index,const Double_t *g,Double_t *l){
303 if(IsGeantToTracking()) GtoL(index,g,l);
304 else fGm[index]->GtoLPositionTracking(g,l);}
305 // Transforms from the ALICE Global coordinate system
306 // to the detector local coordinate system (used for ITS tracking)
307 // for the detector id[3]. The global and local
308 // coordinate are given in two Double point arrays g[3], and l[3].
309 void GtoLtracking(const Int_t *id,const Double_t *g,Double_t *l){
310 GtoLtracking(GetModuleIndex(id),g,l);}
311 // Transforms from the ALICE Global coordinate system
312 // to the detector local coordinate system (used for ITS tracking)
313 // for the detector layer ladder and detector numbers. The global
314 // and local coordinate are given in two Double point arrays g[3],
315 // and l[3].
316 void GtoLtracking(const Int_t lay,const Int_t lad,const Int_t det,
317 const Double_t *g,Double_t *l){
318 GtoLtracking(GetModuleIndex(lay,lad,det),g,l);}
319//
320 // Transforms of momentum types of quantities from the ALICE
321 // Global coordinate system to the detector local coordinate system
322 // for the detector layer ladder and detector numbers. The global
323 // and local coordinate are given in two float point arrays g[3],
324 // and l[3].
325 void GtoLMomentum(const Int_t lay,const Int_t lad,const Int_t det,
326 const Float_t *g,Float_t *l){
327 GtoLMomentum(GetModuleIndex(lay,lad,det),g,l);}
328 // Transforms of momentum types of quantities from the ALICE
329 // Global coordinate system to the detector local coordinate system
330 // for the detector module index number. The global and local
331 // coordinate are given in two float point arrays g[3], and l[3].
332 void GtoLMomentum(const Int_t index,const Float_t *g,Float_t *l){
d962cab4 333 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
269f57ed 334 fGm[index]->GtoLMomentum(dg,dl);
d962cab4 335 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 336 // Transforms of momentum types of quantities from the ALICE
337 // Global coordinate system to the detector local coordinate system
338 // for the detector layer ladder and detector numbers. The global
339 // and local coordinate are given in two Double point arrays g[3],
340 // and l[3].
341 void GtoLMomentum(const Int_t lay,const Int_t lad,const Int_t det,
342 const Double_t *g,Double_t *l){
343 GtoLMomentum(GetModuleIndex(lay,lad,det),g,l);}
344 // Transforms of momentum types of quantities from the ALICE
345 // Global coordinate system to the detector local coordinate system
346 // for the detector module index number. The global and local
347 // coordinate are given in two Double point arrays g[3], and l[3].
348 void GtoLMomentum(const Int_t index,const Double_t *g,Double_t *l){
d962cab4 349 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dg[i] = g[i];
269f57ed 350 fGm[index]->GtoLMomentum(dg,dl);
d962cab4 351 for(i=0;i<3;i++) l[i] =dl[i];}
269f57ed 352//
353 // Transforms of momentum types of quantities from the ALICE
354 // Global coordinate system to the detector local coordinate system
355 // (used for ITS tracking) for the detector module index number.
356 // The global and local coordinate are given in two Double point
357 // arrays g[3], and l[3].
358 void GtoLMomentumTracking(const Int_t index,const Double_t *g,Double_t *l){
359 if(IsGeantToTracking()) GtoLMomentum(index,g,l);
360 else fGm[index]->GtoLMomentumTracking(g,l);}
361 // Transforms of momentum types of quantities from the ALICE
362 // Global coordinate system to the detector local coordinate system
363 // (used for ITS tracking) for the detector id[3].
364 // The global and local coordinate are given in two Double point
365 // arrays g[3], and l[3].
366 void GtoLMomentumTracking(const Int_t *id,const Double_t *g,Double_t *l){
367 GtoLMomentumTracking(GetModuleIndex(id),g,l);}
368 // Transforms of momentum types of quantities from the ALICE
369 // Global coordinate system to the detector local coordinate system
370 // (used for ITS tracking) for the detector layer ladder and detector
371 // numbers. The global and local coordinate are given in two Double point
372 // arrays g[3], and l[3].
373 void GtoLMomentumTracking(const Int_t lay,const Int_t lad,const Int_t det,
374 const Double_t *g,Double_t *l){
375 GtoLMomentumTracking(GetModuleIndex(lay,lad,det),g,l);}
376//
377 // Transforms from the detector local coordinate system
378 // to the ALICE Global coordinate system for the detector
379 // defined by the layer, ladder, and detector numbers. The
380 // global and local coordinate are given in two floating point
381 // arrays g[3], and l[3].
382 void LtoG(const Int_t lay,const Int_t lad,const Int_t det,
383 const Float_t *l,Float_t *g){
384 LtoG(GetModuleIndex(lay,lad,det),l,g);}
385 // Transforms from the detector local coordinate system
386 // to the ALICE Global coordinate system for the detector
387 // defined by the id[0], id[1], and id[2] numbers. The
388 // global and local coordinate are given in two floating point
389 // arrays g[3], and l[3].
390 void LtoG(const Int_t *id,const Float_t *l,Float_t *g){
391 LtoG(GetModuleIndex(id),l,g);}
392 // Transforms from the detector local coordinate system
393 // to the ALICE Global coordinate system for the detector
394 // module index number. The global and local coordinate are
395 // given in two floating point arrays g[3], and l[3].
396 void LtoG(const Int_t index,const Float_t *l,Float_t *g){
d962cab4 397 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dl[i] = l[i];
269f57ed 398 fGm[index]->LtoGPosition(dl,dg);
d962cab4 399 for(i=0;i<3;i++) g[i] =dg[i];}
269f57ed 400 // Transforms from the detector local coordinate system
401 // to the ALICE Global coordinate system for the detector
402 // defined by the layer, ladder, and detector numbers. The
403 // global and local coordinate are given in two Double point
404 // arrays g[3], and l[3].
405 void LtoG(const Int_t lay,const Int_t lad,const Int_t det,
406 const Double_t *l,Double_t *g){
407 LtoG(GetModuleIndex(lay,lad,det),l,g);}
408 // Transforms from the detector local coordinate system
409 // to the ALICE Global coordinate system for the detector
410 // defined by the id[0], id[1], and id[2] numbers. The
411 // global and local coordinate are given in two Double point
412 // arrays g[3], and l[3].
413 void LtoG(const Int_t *id,const Double_t *l,Double_t *g){
414 LtoG(GetModuleIndex(id),l,g);}
415 // Transforms from the detector local coordinate system
416 // to the ALICE Global coordinate system for the detector
417 // module index number. The global and local coordinate are
418 // given in two Double point arrays g[3], and l[3].
419 void LtoG(const Int_t index,const Double_t *l,Double_t *g){
d962cab4 420 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dl[i] = l[i];
269f57ed 421 fGm[index]->LtoGPosition(dl,dg);
d962cab4 422 for(i=0;i<3;i++) g[i] =dg[i];}
269f57ed 423//
424 // Transforms from the detector local coordinate system (used
425 // for ITS tracking) to the ALICE Global coordinate system
426 // for the detector module index number. The global and local
427 // coordinate are given in two Double point arrays g[3], and l[3].
428 void LtoGtracking(const Int_t index,const Double_t *l,Double_t *g){
429 if(IsGeantToTracking()) LtoG(index,l,g);
430 else fGm[index]->LtoGPositionTracking(l,g);}
431 // Transforms from the detector local coordinate system (used
432 // for ITS tracking) to the ALICE Global coordinate system
433 // for the detector id[3]. The global and local
434 // coordinate are given in two Double point arrays g[3], and l[3].
435 void LtoGtracking(const Int_t *id,const Double_t *l,Double_t *g){
436 LtoGtracking(GetModuleIndex(id),l,g);}
437 // Transforms from the detector local coordinate system (used
438 // for ITS tracking) to the detector local coordinate system
439 // for the detector layer ladder and detector numbers. The global
440 // and local coordinate are given in two Double point arrays g[3],
441 // and l[3].
442 void LtoGtracking(const Int_t lay,const Int_t lad,const Int_t det,
443 const Double_t *l,Double_t *g){
444 LtoGtracking(GetModuleIndex(lay,lad,det),l,g);}
445//
446 // Transforms of momentum types of quantities from the detector
447 // local coordinate system to the ALICE Global coordinate system
448 // for the detector layer ladder and detector numbers. The global
449 // and local coordinate are given in two float point arrays g[3],
450 // and l[3].
451 void LtoGMomentum(const Int_t lay,const Int_t lad,const Int_t det,
452 const Float_t *l,Float_t *g){
453 LtoGMomentum(GetModuleIndex(lay,lad,det),l,g);}
454 // Transforms of momentum types of quantities from the detector
455 // local coordinate system to the ALICE Global coordinate system
456 // for the detector module index number. The global and local
457 // coordinate are given in two float point arrays g[3], and l[3].
458 void LtoGMomentum(const Int_t index,const Float_t *l,Float_t *g){
d962cab4 459 Double_t dg[3],dl[3];Int_t i;for(i=0;i<3;i++) dl[i] = l[i];
269f57ed 460 fGm[index]->LtoGMomentum(dl,dg);
d962cab4 461 for(i=0;i<3;i++) g[i] =dg[i];}
269f57ed 462 // Transforms of momentum types of quantities from the detector
463 // local coordinate system to the ALICE Global coordinate system
464 // for the detector layer ladder and detector numbers. The global
465 // and local coordinate are given in two Double point arrays g[3],
466 // and l[3].
467 void LtoGMomentum(const Int_t lay,const Int_t lad,const Int_t det,
468 const Double_t *l,Double_t *g){
469 LtoGMomentum(GetModuleIndex(lay,lad,det),l,g);}
470 // Transforms of momentum types of quantities from the detector
471 // local coordinate system to the ALICE Global coordinate system
472 // for the detector module index number. The global and local
473 // coordinate are given in two Double point arrays g[3], and l[3].
474 void LtoGMomentum(const Int_t index,const Double_t *l,Double_t *g){
475 fGm[index]->LtoGMomentum(l,g);}
476//
477 // Transforms of momentum types of quantities from the detector
478 // local coordinate system (used for ITS tracking) to the detector
479 // system ALICE Global for the detector module index number.
480 // The global and local coordinate are given in two Double point
481 // arrays g[3], and l[3].
482 void LtoGMomentumTracking(const Int_t index,const Double_t *l,Double_t *g){
483 if(IsGeantToTracking()) LtoGMomentum(index,l,g);
484 else fGm[index]->LtoGMomentumTracking(l,g);}
485 // Transforms of momentum types of quantities from the detector
486 // local coordinate system (used for ITS tracking) to the ALICE
487 // Global coordinate system for the detector id[3].
488 // The global and local coordinate are given in two Double point
489 // arrays g[3], and l[3].
490 void LtoGMomentumTracking(const Int_t *id,const Double_t *l,Double_t *g){
491 LtoGMomentumTracking(GetModuleIndex(id),l,g);}
492 // Transforms of momentum types of quantities from the detector
493 // local coordinate system (used for ITS tracking) to the ALICE
494 // Global coordinate system for the detector layer ladder and detector
495 // numbers. The global and local coordinate are given in two Double point
496 // arrays g[3], and l[3].
497 void LtoGMomentumTracking(const Int_t lay,const Int_t lad,const Int_t det,
498 const Double_t *l,Double_t *g){
499 LtoGMomentumTracking(GetModuleIndex(lay,lad,det),l,g);}
500//
501 // Transforms from one detector local coordinate system
502 // to another detector local coordinate system for the detector
503 // module index1 number to the detector module index2 number. The
504 // local coordinates are given in two Double point arrays l1[3],
505 // and l2[3].
506 void LtoL(const Int_t index1,const Int_t index2,Double_t *l1,Double_t *l2){
507 Double_t g[3]; LtoG(index1,l1,g);GtoL(index2,g,l2);}
508 // Transforms from one detector local coordinate system
509 // to another detector local coordinate system for the detector
510 // id1[3] to the detector id2[3]. The local coordinates are given
511 // in two Double point arrays l1[3], and l2[3].
512 void LtoL(const Int_t *id1,const Int_t *id2,Double_t *l1,Double_t *l2){
513 LtoL(GetModuleIndex(id1[0],id1[1],id1[2]),
514 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
515//
516 // Transforms from one detector local coordinate system (used for
517 // ITS tracking) to another detector local coordinate system (used
518 // for ITS tracking) for the detector module index1 number to the
519 // detector module index2 number. The local coordinates are given
520 // in two Double point arrays l1[3], and l2[3].
521 void LtoLtracking(const Int_t index1,const Int_t index2,
522 Double_t *l1,Double_t *l2){
523 Double_t g[3]; LtoGtracking(index1,l1,g);GtoLtracking(index2,g,l2);}
524 // Transforms from one detector local coordinate system (used for
525 // ITS tracking) to another detector local coordinate system (used
526 // for ITS tracking) for the detector id1[3] to the detector id2[3].
527 // The local coordinates are given in two Double point arrays l1[3],
528 // and l2[3].
529 void LtoLtracking(const Int_t *id1,const Int_t *id2,
530 Double_t *l1,Double_t *l2){
531 LtoLtracking(GetModuleIndex(id1[0],id1[1],id1[2]),
532 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
533//
534 // Transforms of momentum types of quantities from one detector
535 // local coordinate system to another detector local coordinate
536 // system for the detector module index1 number to the detector
537 // module index2 number. The local coordinates are given in two
538 // Double point arrays l1[3], and l2[3].
539 void LtoLMomentum(const Int_t index1,const Int_t index2,
540 const Double_t *l1,Double_t *l2){
541 Double_t g[3]; LtoGMomentum(index1,l1,g);GtoLMomentum(index2,g,l2);}
542 // Transforms of momentum types of quantities from one detector
543 // local coordinate system to another detector local coordinate
544 // system for the detector id1[3] to the detector id2[3]. The local
545 // coordinates are given in two Double point arrays l1[3], and l2[3].
b79e4bc3 546 void LtoLMomentum(const Int_t *id1,const Int_t *id2,
269f57ed 547 const Double_t *l1,Double_t *l2){
548 LtoLMomentum(GetModuleIndex(id1[0],id1[1],id1[2]),
549 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
550//
551 // Transforms of momentum types of quantities from one detector
552 // local coordinate system (used by ITS tracking) to another detector
553 // local coordinate system (used by ITS tracking) for the detector
554 // module index1 number to the detector module index2 number. The
555 // local coordinates are given in two Double point arrays l1[3],
556 // and l2[3].
557 void LtoLMomentumTracking(const Int_t index1,const Int_t index2,
558 Double_t *l1,Double_t *l2){
559 Double_t g[3]; LtoGMomentumTracking(index1,l1,g);
560 GtoLMomentumTracking(index2,g,l2);}
561 // Transforms of momentum types of quantities from one detector
562 // local coordinate system (used by ITS tracking) to another detector
563 // local coordinate system (used by ITS tracking) for the detector
564 // id1[3] to the detector id2[3]. The local coordinates are given in
565 // two Double point arrays l1[3], and l2[3].
566 void LtoLMomentumTracking(const Int_t *id1,const Int_t *id2,
567 Double_t *l1,Double_t *l2){
568 LtoLMomentumTracking(GetModuleIndex(id1[0],id1[1],id1[2]),
569 GetModuleIndex(id2[0],id2[1],id2[2]),l1,l2);}
570//
571 // Transforms a matrix, like an Uncertainty or Error matrix from
572 // the ALICE Global coordinate system to a detector local coordinate
573 // system. The specific detector is determined by the module index
574 // number.
575 void GtoLErrorMatrix(const Int_t index,const Double_t **g,Double_t **l){
d962cab4 576 fGm[index]->GtoLPositionError((Double_t (*)[3])g,(Double_t (*)[3])l);}
269f57ed 577//
578 // Transforms a matrix, like an Uncertainty or Error matrix from
579 // the ALICE Global coordinate system to a detector local coordinate
580 // system (used by ITS tracking). The specific detector is determined
581 // by the module index number.
582 void GtoLErrorMatrixTracking(const Int_t index,const Double_t **g,
583 Double_t **l){
584 if(IsGeantToTracking()) fGm[index]->GtoLPositionError((
d962cab4 585 Double_t (*)[3])g,(Double_t (*)[3])l);
269f57ed 586 else fGm[index]->GtoLPositionErrorTracking(
d962cab4 587 (Double_t (*)[3])g,(Double_t (*)[3])l);}
269f57ed 588//
589 // Transforms a matrix, like an Uncertainty or Error matrix from
590 // the detector local coordinate system to a ALICE Global coordinate
591 // system. The specific detector is determined by the module index
592 // number.
593 void LtoGErrorMatrix(const Int_t index,const Double_t **l,Double_t **g){
d962cab4 594 fGm[index]->LtoGPositionError((Double_t (*)[3])l,(Double_t (*)[3])g);}
269f57ed 595//
596 // Transforms a matrix, like an Uncertainty or Error matrix from
597 // the detector local coordinate system (used by ITS tracking) to a
598 // ALICE Global coordinate system. The specific detector is determined
599 // by the module index number.
600 void LtoGErrorMatrixTracking(const Int_t index,const Double_t **l,
601 Double_t **g){
602 if(IsGeantToTracking()) fGm[index]->LtoGPositionError((
d962cab4 603 Double_t (*)[3])g,(Double_t (*)[3])l);
604 else fGm[index]->LtoGPositionErrorTracking((Double_t (*)[3])l,
605 (Double_t (*)[3])g);}
269f57ed 606//
607 // Transforms a matrix, like an Uncertainty or Error matrix from
608 // one detector local coordinate system to another detector local
609 // coordinate system. The specific detector is determined by the
610 // two module index number index1 and index2.
b79e4bc3 611 void LtoLErrorMatrix(const Int_t index1,const Int_t index2,
269f57ed 612 const Double_t **l1,Double_t **l2){
613 Double_t g[3][3];
614 LtoGErrorMatrix(index1,l1,(Double_t **)g);
615 GtoLErrorMatrix(index2,(const Double_t **)g,l2);}
616//
617 // Transforms a matrix, like an Uncertainty or Error matrix from
618 // one detector local coordinate system (used by ITS tracking) to
619 // another detector local coordinate system (used by ITS tracking).
620 // The specific detector is determined by the two module index number
621 // index1 and index2.
622 void LtoLErrorMatrixTraking(const Int_t index1,const Int_t index2,
623 const Double_t **l1,Double_t **l2){Double_t g[3][3];
624 LtoGErrorMatrixTracking(index1,l1,(Double_t **)g);
625 GtoLErrorMatrixTracking(index2,(const Double_t **)g,l2);}
626// Find Specific Modules
627 Int_t GetNearest(const Double_t g[3],const Int_t lay=0);
628 void GetNearest27(const Double_t g[3],Int_t n[27],const Int_t lay=0);
629 // Returns the distance [cm] between the point g[3] and the center of
630 // the detector/module specified by the the module index number.
631 Double_t Distance(const Int_t index,const Double_t g[3]){
632 return TMath::Sqrt(fGm[index]->Distance2(g));}
633// Geometry manipulation
634 void GlobalChange(const Float_t *tran,const Float_t *rot);
635 void GlobalCylindericalChange(const Float_t *tran,const Float_t *rot);
636 void RandomChange(const Float_t *stran,const Float_t *srot);
637 void RandomCylindericalChange(const Float_t *stran,const Float_t *srot);
638 void GeantToTracking(AliITSgeom &source); // This converts the geometry
639// Other routines.
58005f18 640 void PrintComparison(FILE *fp,AliITSgeom *other);
269f57ed 641 void PrintData(FILE *fp,const Int_t lay,const Int_t lad,const Int_t det);
58005f18 642 ofstream &PrintGeom(ofstream &out);
643 ifstream &ReadGeom(ifstream &in);
e8189707 644
085bb6ed 645 private:
269f57ed 646 Int_t fTrans; //Flag to keep track of which transformation
647 Int_t fNlayers; //The number of layers.
2ab0c725 648 Int_t fNmodules;//The total number of modules
a8a6107b 649 Int_t *fNlad; //[fNlayers] Array of the number of ladders/layer(layer)
650 Int_t *fNdet; //[fNlayers] Array of the number of detectors/ladder(layer)
269f57ed 651 AliITSgeomMatrix **fGm; //[fNmodules] Structure of trans. and rotation.
652 TObjArray *fShape; //Array of shapes and detector information.
b79e4bc3 653
269f57ed 654 ClassDef(AliITSgeom,2) // ITS geometry class
58005f18 655};
656
657#endif