]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSresponseSDD.h
Added EDEFINE with the flags from Geant4
[u/mrichter/AliRoot.git] / ITS / AliITSresponseSDD.h
CommitLineData
b0f5e3fc 1#ifndef ALIITSRESPONSESDD_H
2#define ALIITSRESPONSESDD_H
3
7551c5b2 4#include "TArrayF.h"
5#include <TString.h>
6#include <iostream.h>
b0f5e3fc 7#include "AliITSresponse.h"
8
9// response for SDD
10
50d05d7b 11class AliITSresponseSDD :
12 public AliITSresponse {
13public:
14 //
15 // Configuration methods
16 //
b0f5e3fc 17
50d05d7b 18 AliITSresponseSDD();
19 AliITSresponseSDD(const char *dataType);
20
21 virtual ~AliITSresponseSDD();
7551c5b2 22
50d05d7b 23 void SetElectronics(Int_t p1=1) {
24 // Electronics: Pascal (1) or OLA (2)
25 fElectronics=p1;
26 }
7551c5b2 27
03898a57 28 Int_t Electronics() {
7551c5b2 29 // Electronics: 1 = Pascal; 2 = OLA
30 return fElectronics;
31 }
b0f5e3fc 32
03898a57 33 void SetMaxAdc(Float_t p1=1024.) {
b0f5e3fc 34 // Adc-count saturation value
35 fMaxAdc=p1;
36 }
03898a57 37 Float_t MaxAdc() {
b0f5e3fc 38 // Get maximum Adc-count value
39 return fMaxAdc;
40 }
41
2aea926d 42 void SetChargeLoss(Float_t p1=0.0) {
43 // Set Linear Charge Loss Steepness // 0.01 for 20%
7551c5b2 44 fChargeLoss=p1;
b0f5e3fc 45 }
03898a57 46 Float_t ChargeLoss() {
7551c5b2 47 // Get Charge Loss Coefficient
48 return fChargeLoss;
b0f5e3fc 49 }
50
03898a57 51 void SetDynamicRange(Float_t p1=132.) {
7551c5b2 52 // Set Dynamic Range
53 fDynamicRange=p1;
54 }
03898a57 55 Float_t DynamicRange() {
7551c5b2 56 // Get Dynamic Range
57 return fDynamicRange;
58 }
59
03898a57 60 void SetDiffCoeff(Float_t p1=3.23,Float_t p2=30.) {
e8189707 61 // Diffusion coefficients
b0f5e3fc 62 fDiffCoeff=p1;
e8189707 63 fDiffCoeff1=p2;
b0f5e3fc 64 }
03898a57 65 void DiffCoeff(Float_t&diff,Float_t&diff1) {
e8189707 66 // Get diffusion coefficients
67 diff = fDiffCoeff;
68 diff1 = fDiffCoeff1;
b0f5e3fc 69 }
70
03898a57 71 void SetDriftSpeed(Float_t p1=7.3) {
b0f5e3fc 72 // Drift velocity
73 fDriftSpeed=p1;
74 }
03898a57 75 Float_t DriftSpeed() {
b0f5e3fc 76 // drift speed
77 return fDriftSpeed;
78 }
79
03898a57 80 void SetTemperature(Float_t p1=23.) {
b0f5e3fc 81 // Temperature
82 fTemperature=p1;
83 }
03898a57 84 Float_t Temperature() {
b0f5e3fc 85 // Get temperature
86 return fTemperature;
87 }
88
03898a57 89 void SetDataType(const char *data="simulated") {
b0f5e3fc 90 // Type of data - real or simulated
91 fDataType=data;
92 }
03898a57 93 const char *DataType() const {
b0f5e3fc 94 // Get data type
e8189707 95 return fDataType.Data();
b0f5e3fc 96 }
97
03898a57 98 void SetParamOptions(const char *opt1="same",const char *opt2="same"){
b0f5e3fc 99 // Parameters: "same" or read from "file"
100 fParam1=opt1; fParam2=opt2;
101 }
03898a57 102 void ParamOptions(char *opt1,char *opt2) {
b0f5e3fc 103 // options
e8189707 104 strcpy(opt1,fParam1.Data()); strcpy(opt2,fParam2.Data());
b0f5e3fc 105 }
106
2aea926d 107 void SetNoiseParam(Float_t n=0., Float_t b=20.){
108 // Noise and baseline // 8.3 for ALICE with beam test measurements
b0f5e3fc 109 fNoise=n; fBaseline=b;
110 }
2aea926d 111 void SetNoiseAfterElectronics(Float_t n=0.){
112 // Noise after electronics (ADC units) // 1.6 for ALICE from beam test measurements
7551c5b2 113 fNoiseAfterEl=n;
114 }
03898a57 115 void GetNoiseParam(Float_t &n, Float_t &b) {
b0f5e3fc 116 // get noise param
117 n=fNoise; b=fBaseline;
fa1750f9 118 }
03898a57 119 Float_t GetNoiseAfterElectronics(){
7551c5b2 120 // Noise after electronics (ADC units)
121 return fNoiseAfterEl;
122 }
fa1750f9 123
03898a57 124 void SetDo10to8(Bool_t bitcomp=kTRUE) {
fa1750f9 125 // set the option for 10 to 8 bit compression
126 fBitComp = bitcomp;
127 }
128
129 Bool_t Do10to8() {
130 // get 10 to 8 compression option
131 return fBitComp;
b0f5e3fc 132 }
133
03898a57 134 void SetZeroSupp (const char *opt="1D") {
b0f5e3fc 135 // Zero-suppression option - could be 1D, 2D or non-ZS
136 fOption=opt;
137 }
03898a57 138 const char *ZeroSuppOption() const {
b0f5e3fc 139 // Get zero-suppression option
e8189707 140 return fOption.Data();
b0f5e3fc 141 }
03898a57 142 void SetMinVal(Int_t mv=4) {
b0f5e3fc 143 // Min value used in 2D - could be used as a threshold setting
144 fMinVal = mv;
145 }
03898a57 146 Int_t MinVal() {
b0f5e3fc 147 // min val
148 return fMinVal;
149 }
150
03898a57 151 void SetFilenames(const char *f1="",const char *f2="",const char *f3="") {
b0f5e3fc 152 // Set filenames - input, output, parameters ....
153 fFileName1=f1; fFileName2=f2; fFileName3=f3;
154 }
03898a57 155 void Filenames(char *input,char *baseline,char *param) {
b0f5e3fc 156 // Filenames
e8189707 157 strcpy(input,fFileName1.Data()); strcpy(baseline,fFileName2.Data());
158 strcpy(param,fFileName3.Data());
b0f5e3fc 159 }
160
161
03898a57 162 void SetOutputOption(Bool_t write=kFALSE) {
b0f5e3fc 163 // set output option
164 fWrite = write;
165 }
166 Bool_t OutputOption() {
167 // output option
168 return fWrite;
169 }
170 //
171 // Compression parameters
03898a57 172 void SetCompressParam(Int_t cp[8]);
b0f5e3fc 173 void GiveCompressParam(Int_t *x);
174
175 //
176 // Detector type response methods
03898a57 177 void SetNSigmaIntegration(Float_t p1=3.) {
b0f5e3fc 178 // Set number of sigmas over which cluster disintegration is performed
e8189707 179 fNsigmas=p1;
b0f5e3fc 180 }
03898a57 181 Float_t NSigmaIntegration() {
b0f5e3fc 182 // Get number of sigmas over which cluster disintegration is performed
e8189707 183 return fNsigmas;
b0f5e3fc 184 }
03898a57 185 void SetNLookUp(Int_t p1=121) {
7551c5b2 186 // Set number of sigmas over which cluster disintegration is performed
187 fNcomps=p1;
188 fGaus = new TArrayF(fNcomps+1);
189 for(Int_t i=0; i<=fNcomps; i++) {
190 Float_t x = -fNsigmas + (2.*i*fNsigmas)/(fNcomps-1);
191 (*fGaus)[i] = exp(-((x*x)/2));
192 // cout << "fGaus[" << i << "]: " << fGaus->At(i) << endl;
193 }
194 }
7551c5b2 195 // Get number of intervals in which the gaussian lookup table is divided
03898a57 196 Int_t GausNLookUp() {return fNcomps;}
b0f5e3fc 197
03898a57 198 Float_t IntPH(Float_t eloss) {
b0f5e3fc 199 // Pulse height from scored quantity (eloss)
200 return 0.;
201 }
03898a57 202 Float_t IntXZ(AliITSsegmentation *) {
b0f5e3fc 203 // Charge disintegration
204 return 0.;
205 }
03898a57 206 Float_t GausLookUp(Int_t i) {
7551c5b2 207 if(i<0 || i>=fNcomps) return 0.;
208 return fGaus->At(i);
209 }
2aea926d 210 void SetDeadChannels(Int_t nmodules=0, Int_t nchips=0, Int_t nchannels=0);
50d05d7b 211
212 Int_t GetDeadModules() { return fDeadModules; }
213 Int_t GetDeadChips() { return fDeadChips; }
214 Int_t GetDeadChannels() { return fDeadChannels; }
215 Float_t Gain( Int_t mod, Int_t chip, Int_t ch)
216 { return fGain[mod][chip][ch]; }
217
218 // these functions should be move to AliITSsegmentationSDD
219 const Int_t Modules() const { return fModules; } // Total number of SDD modules
220 const Int_t Chips() const { return fChips; } // Number of chips/module
221 const Int_t Channels() const { return fChannels; } // Number of channels/chip
222 //********
223
2aea926d 224 void PrintGains();
03898a57 225 void Print();
226
227
228private:
229
230 AliITSresponseSDD(const AliITSresponseSDD &source); // copy constructor
231 AliITSresponseSDD& operator=(const AliITSresponseSDD &source); // ass. op.
7551c5b2 232
b0f5e3fc 233protected:
50d05d7b 234 // these statis const should be move to AliITSsegmentationSDD
2aea926d 235 static const Int_t fModules = 520; // Total number of SDD modules
236 static const Int_t fChips = 4; // Number of chips/module
237 static const Int_t fChannels = 64; // Number of channels/chip
50d05d7b 238 //*******
239
240 Int_t fDeadModules; // Total number of dead SDD modules
241 Int_t fDeadChips; // Number of dead chips
242 Int_t fDeadChannels; // Number of dead channels
2aea926d 243 Float_t fGain[fModules][fChips][fChannels]; // Array for channel gains
244
b0f5e3fc 245 Int_t fCPar[8]; // Hardware compression parameters
b0f5e3fc 246 Float_t fNoise; // Noise
247 Float_t fBaseline; // Baseline
7551c5b2 248 Float_t fNoiseAfterEl; // Noise after electronics
249 Float_t fDynamicRange; // Set Dynamic Range
250 Float_t fChargeLoss; // Set Linear Coefficient for Charge Loss
b0f5e3fc 251 Float_t fTemperature; // Temperature
252 Float_t fDriftSpeed; // Drift velocity
7551c5b2 253 Int_t fElectronics; // Electronics
b0f5e3fc 254
255 Float_t fMaxAdc; // Adc saturation value
e8189707 256 Float_t fDiffCoeff; // Diffusion Coefficient (scaling the time)
257 Float_t fDiffCoeff1; // Diffusion Coefficient (constant term)
258 Float_t fNsigmas; // Number of sigmas over which charge disintegration
259 // is performed
7551c5b2 260 TArrayF *fGaus; // Gaussian lookup table for signal generation
261 Int_t fNcomps; // Number of samplings along the gaussian
b0f5e3fc 262
b0f5e3fc 263 Int_t fMinVal; // Min value used in 2D zero-suppression algo
264
265 Bool_t fWrite; // Write option for the compression algorithms
fa1750f9 266 Bool_t fBitComp; // 10 to 8 bit compression option
267
e8189707 268 TString fOption; // Zero-suppresion option (1D, 2D or none)
269 TString fParam1; // Read baselines from file option
270 TString fParam2; // Read compression algo thresholds from file
271
272 TString fDataType; // data type - real or simulated
273 TString fFileName1; // input keys : run, module #
274 TString fFileName2; // baseline & noise val or output coded // signal or monitored bgr.
275 TString fFileName3; // param values or output coded signal
b0f5e3fc 276
a019575b 277 ClassDef(AliITSresponseSDD,3) // SDD response
50d05d7b 278
279 };
b0f5e3fc 280#endif
a019575b 281