]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSsimulationSDD.cxx
Compilation warnings
[u/mrichter/AliRoot.git] / ITS / AliITSsimulationSDD.cxx
CommitLineData
b0f5e3fc 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
5c5273c2 15
88cb7938 16/* $Id$ */
b0f5e3fc 17
4ae5bbc4 18#include <Riostream.h>
b0f5e3fc 19#include <stdlib.h>
20#include <stdio.h>
1ca7869b 21#include <string.h>
22
ece86d9a 23#include <TCanvas.h>
24#include <TF1.h>
1ca7869b 25#include <TH1.h>
26#include <TFile.h>
e939a978 27#include <TRandom.h>
a1e17193 28#include <TROOT.h>
e8189707 29#include "AliITS.h"
e8189707 30#include "AliITSMapA2.h"
e8189707 31#include "AliITSRawData.h"
f77f13c8 32#include "AliITSdigitSPD.h"
33#include "AliITSetfSDD.h"
f77f13c8 34#include "AliITSmodule.h"
35#include "AliITSpList.h"
c7a4dac0 36#include "AliITSresponseSDD.h"
fcf95fc7 37#include "AliITSCalibrationSDD.h"
f77f13c8 38#include "AliITSsegmentationSDD.h"
1ca7869b 39#include "AliITSsimulationSDD.h"
f77f13c8 40#include "AliLog.h"
41#include "AliRun.h"
b0f5e3fc 42
b0f5e3fc 43ClassImp(AliITSsimulationSDD)
44////////////////////////////////////////////////////////////////////////
8ba39da9 45// Version: 0 //
46// Written by Piergiorgio Cerello //
47// November 23 1999 //
48// //
49// AliITSsimulationSDD is the simulation of SDDs. //
50////////////////////////////////////////////////////////////////////////
51
8a33ae9e 52//______________________________________________________________________
aacedc3e 53AliITSsimulationSDD::AliITSsimulationSDD():
54AliITSsimulation(),
55fITS(0),
56fHitMap2(0),
57fHitSigMap2(0),
58fHitNoiMap2(0),
aacedc3e 59fElectronics(0),
60fInZR(0),
61fInZI(0),
62fOutZR(0),
63fOutZI(0),
64fAnodeFire(0),
65fHis(0),
aacedc3e 66fFlag(kFALSE),
aacedc3e 67fCrosstalkFlag(kFALSE),
68fDoFFT(1),
69fNofMaps(0),
70fMaxNofSamples(0),
71fScaleSize(0){
72 // Default constructor
73 SetScaleFourier();
74 SetPerpendTracksFlag();
75 SetCrosstalkFlag();
76 SetDoFFT();
b0f5e3fc 77}
8a33ae9e 78//______________________________________________________________________
7537d03c 79AliITSsimulationSDD::AliITSsimulationSDD(const AliITSsimulationSDD &source) :
80 AliITSsimulation(source),
81fITS(source.fITS),
82fHitMap2(source.fHitMap2),
83fHitSigMap2(source.fHitSigMap2),
84fHitNoiMap2(source.fHitNoiMap2),
7537d03c 85fElectronics(source.fElectronics),
86fInZR(source.fInZR),
87fInZI(source.fInZI),
88fOutZR(source.fOutZR),
89fOutZI(source.fOutZI),
90fAnodeFire(source.fAnodeFire),
91fHis(source.fHis),
7537d03c 92fFlag(source.fFlag),
7537d03c 93fCrosstalkFlag(source.fCrosstalkFlag),
94fDoFFT(source.fDoFFT),
95fNofMaps(source.fNofMaps),
96fMaxNofSamples(source.fMaxNofSamples),
97fScaleSize(source.fScaleSize){
aacedc3e 98 // Copy constructor to satify Coding roules only.
8a33ae9e 99
b0f5e3fc 100}
8a33ae9e 101//______________________________________________________________________
d2f55a22 102AliITSsimulationSDD& AliITSsimulationSDD::operator=(const AliITSsimulationSDD &src){
103 // Assignment operator to satify Coding roules only.
104
105 if(this==&src) return *this;
106 Error("AliITSsimulationSDD","Not allowed to make a = with "
107 "AliITSsimulationSDD Using default creater instead");
108 return *this ;
109}
85f5e9c2 110/*
d2f55a22 111//______________________________________________________________________
5402d9ca 112AliITSsimulation& AliITSsimulationSDD::operator=(const AliITSsimulation &src){
aacedc3e 113 // Assignment operator to satify Coding roules only.
8a33ae9e 114
aacedc3e 115 if(this==&src) return *this;
116 Error("AliITSsimulationSSD","Not allowed to make a = with "
117 "AliITSsimulationSDD Using default creater instead");
118 return *this ;
b0f5e3fc 119}
85f5e9c2 120*/
8a33ae9e 121//______________________________________________________________________
8ba39da9 122AliITSsimulationSDD::AliITSsimulationSDD(AliITSDetTypeSim* dettyp):
123AliITSsimulation(dettyp),
aacedc3e 124fITS(0),
125fHitMap2(0),
126fHitSigMap2(0),
127fHitNoiMap2(0),
aacedc3e 128fElectronics(0),
129fInZR(0),
130fInZI(0),
131fOutZR(0),
132fOutZI(0),
133fAnodeFire(0),
134fHis(0),
aacedc3e 135fFlag(kFALSE),
aacedc3e 136fCrosstalkFlag(kFALSE),
137fDoFFT(1),
138fNofMaps(0),
139fMaxNofSamples(0),
140fScaleSize(0){
f45f6658 141 // Default Constructor
142 Init();
c7a4dac0 143}
144//______________________________________________________________________
aacedc3e 145void AliITSsimulationSDD::Init(){
146 // Standard Constructor
147
148 SetScaleFourier();
149 SetPerpendTracksFlag();
150 SetCrosstalkFlag();
151 SetDoFFT();
aacedc3e 152
8ba39da9 153 AliITSsegmentationSDD* seg = (AliITSsegmentationSDD*)GetSegmentationModel(1);
154
f45f6658 155 AliITSresponseSDD* res = (AliITSresponseSDD*)fDetType->GetResponse(1);
8ba39da9 156 fpList = new AliITSpList( seg->Npz(),
157 fScaleSize*seg->Npx() );
158 fHitSigMap2 = new AliITSMapA2(seg,fScaleSize,1);
159 fHitNoiMap2 = new AliITSMapA2(seg,fScaleSize,1);
aacedc3e 160 fHitMap2 = fHitSigMap2;
161
8ba39da9 162 fNofMaps = seg->Npz();
163 fMaxNofSamples = seg->Npx();
aacedc3e 164 fAnodeFire = new Bool_t [fNofMaps];
43217ad9 165
8ba39da9 166 Float_t sddWidth = seg->Dz();
f6b6d58e 167 Float_t anodePitch = seg->Dpz(0);
168 Double_t timeStep = (Double_t)seg->Dpx(0);
aacedc3e 169
170 if(anodePitch*(fNofMaps/2) > sddWidth) {
171 Warning("AliITSsimulationSDD",
172 "Too many anodes %d or too big pitch %f \n",
173 fNofMaps/2,anodePitch);
174 } // end if
b0f5e3fc 175
b0f5e3fc 176
aacedc3e 177 fElectronics = new AliITSetfSDD(timeStep/fScaleSize,
f45f6658 178 res->Electronics());
b0f5e3fc 179
aacedc3e 180 char opt1[20], opt2[20];
f45f6658 181 res->ParamOptions(opt1,opt2);
aacedc3e 182
aacedc3e 183 fITS = (AliITS*)gAlice->GetModule("ITS");
20f3f947 184
aacedc3e 185 fInZR = new Double_t [fScaleSize*fMaxNofSamples];
186 fInZI = new Double_t [fScaleSize*fMaxNofSamples];
187 fOutZR = new Double_t [fScaleSize*fMaxNofSamples];
188 fOutZI = new Double_t [fScaleSize*fMaxNofSamples];
b0f5e3fc 189}
8a33ae9e 190//______________________________________________________________________
b0f5e3fc 191AliITSsimulationSDD::~AliITSsimulationSDD() {
aacedc3e 192 // destructor
193
194 // delete fpList;
195 delete fHitSigMap2;
196 delete fHitNoiMap2;
aacedc3e 197 delete fElectronics;
198
199 fITS = 0;
200
201 if (fHis) {
202 fHis->Delete();
203 delete fHis;
204 } // end if fHis
aacedc3e 205 if(fInZR) delete [] fInZR;
206 if(fInZI) delete [] fInZI;
207 if(fOutZR) delete [] fOutZR;
208 if(fOutZI) delete [] fOutZI;
209 if(fAnodeFire) delete [] fAnodeFire;
b0f5e3fc 210}
8a33ae9e 211//______________________________________________________________________
50d05d7b 212void AliITSsimulationSDD::InitSimulationModule( Int_t module, Int_t event ) {
aacedc3e 213 // create maps to build the lists of tracks for each summable digit
214 fModule = module;
215 fEvent = event;
216 ClearMaps();
217 memset(fAnodeFire,0,sizeof(Bool_t)*fNofMaps);
50d05d7b 218}
219//______________________________________________________________________
220void AliITSsimulationSDD::ClearMaps() {
aacedc3e 221 // clear maps
222 fpList->ClearMap();
223 fHitSigMap2->ClearMap();
224 fHitNoiMap2->ClearMap();
50d05d7b 225}
20f3f947 226//______________________________________________________________________
227void AliITSsimulationSDD::FastFourierTransform(Double_t *real,
228 Double_t *imag,Int_t direction) {
229 // Do a Fast Fourier Transform
230
231 Int_t samples = fElectronics->GetSamples();
232 Int_t l = (Int_t) ((log((Float_t) samples)/log(2.))+0.5);
233 Int_t m1 = samples;
234 Int_t m = samples/2;
235 Int_t m2 = samples/m1;
236 Int_t i,j,k;
237 for(i=1; i<=l; i++) {
238 for(j=0; j<samples; j += m1) {
239 Int_t p = 0;
240 for(k=j; k<= j+m-1; k++) {
241 Double_t wsr = fElectronics->GetWeightReal(p);
242 Double_t wsi = fElectronics->GetWeightImag(p);
243 if(direction == -1) wsi = -wsi;
244 Double_t xr = *(real+k+m);
245 Double_t xi = *(imag+k+m);
246 *(real+k+m) = wsr*(*(real+k)-xr) - wsi*(*(imag+k)-xi);
247 *(imag+k+m) = wsr*(*(imag+k)-xi) + wsi*(*(real+k)-xr);
248 *(real+k) += xr;
249 *(imag+k) += xi;
250 p += m2;
251 } // end for k
252 } // end for j
253 m1 = m;
254 m /= 2;
255 m2 += m2;
256 } // end for i
257
258 for(j=0; j<samples; j++) {
259 Int_t j1 = j;
260 Int_t p = 0;
261 Int_t i1;
262 for(i1=1; i1<=l; i1++) {
263 Int_t j2 = j1;
264 j1 /= 2;
265 p = p + p + j2 - j1 - j1;
266 } // end for i1
267 if(p >= j) {
268 Double_t xr = *(real+j);
269 Double_t xi = *(imag+j);
270 *(real+j) = *(real+p);
271 *(imag+j) = *(imag+p);
272 *(real+p) = xr;
273 *(imag+p) = xi;
274 } // end if p>=j
275 } // end for j
276 if(direction == -1) {
277 for(i=0; i<samples; i++) {
278 *(real+i) /= samples;
279 *(imag+i) /= samples;
280 } // end for i
281 } // end if direction == -1
282 return;
283}
284
50d05d7b 285//______________________________________________________________________
aacedc3e 286void AliITSsimulationSDD::SDigitiseModule(AliITSmodule *mod,Int_t md,Int_t ev){
287 // digitize module using the "slow" detector simulator creating
288 // summable digits.
289
290 TObjArray *fHits = mod->GetHits();
291 Int_t nhits = fHits->GetEntriesFast();
292 if( !nhits ) return;
293
294 InitSimulationModule( md, ev );
5683bd96 295 HitsToAnalogDigits( mod ); // fills fHitMap2 which is = fHitSigmap2
296 ChargeToSignal( fModule,kFALSE,kTRUE ); // - Process signal adding gain without adding noise
aacedc3e 297 fHitMap2 = fHitNoiMap2; // - Swap to noise map
5683bd96 298 ChargeToSignal( fModule,kTRUE,kFALSE ); // - Process only noise
aacedc3e 299 fHitMap2 = fHitSigMap2; // - Return to signal map
300 WriteSDigits();
301 ClearMaps();
50d05d7b 302}
303//______________________________________________________________________
aacedc3e 304Bool_t AliITSsimulationSDD::AddSDigitsToModule(TClonesArray *pItemArray,
305 Int_t mask ) {
306 // Add Summable digits to module maps.
f45f6658 307 AliITSresponseSDD* res = (AliITSresponseSDD*)fDetType->GetResponse(1);
aacedc3e 308 Int_t nItems = pItemArray->GetEntries();
f45f6658 309 Double_t maxadc = res->MaxAdc();
aacedc3e 310 Bool_t sig = kFALSE;
48058160 311
aacedc3e 312 // cout << "Adding "<< nItems <<" SDigits to module " << fModule << endl;
313 for( Int_t i=0; i<nItems; i++ ) {
314 AliITSpListItem * pItem = (AliITSpListItem *)(pItemArray->At( i ));
315 if( pItem->GetModule() != fModule ) {
316 Error( "AliITSsimulationSDD","Error reading, SDigits module "
317 "%d != current module %d: exit",
318 pItem->GetModule(), fModule );
319 return sig;
320 } // end if
321
322 if(pItem->GetSignal()>0.0 ) sig = kTRUE;
43217ad9 323
aacedc3e 324 fpList->AddItemTo( mask, pItem ); // Add SignalAfterElect + noise
325 AliITSpListItem * pItem2 = fpList->GetpListItem( pItem->GetIndex() );
326 Double_t sigAE = pItem2->GetSignalAfterElect();
327 if( sigAE >= maxadc ) sigAE = maxadc-1; // avoid overflow signal
328 Int_t ia;
329 Int_t it;
330 fpList->GetMapIndex( pItem->GetIndex(), ia, it );
331 fHitMap2->SetHit( ia, it, sigAE );
332 fAnodeFire[ia] = kTRUE;
333 }
334 return sig;
48058160 335}
50d05d7b 336//______________________________________________________________________
337void AliITSsimulationSDD::FinishSDigitiseModule() {
aacedc3e 338 // digitize module using the "slow" detector simulator from
339 // the sum of summable digits.
340 FinishDigits() ;
341 ClearMaps();
c7a4dac0 342}
343//______________________________________________________________________
b0f5e3fc 344void AliITSsimulationSDD::DigitiseModule(AliITSmodule *mod,Int_t md,Int_t ev){
aacedc3e 345 // create maps to build the lists of tracks for each digit
b0f5e3fc 346
aacedc3e 347 TObjArray *fHits = mod->GetHits();
348 Int_t nhits = fHits->GetEntriesFast();
8a33ae9e 349
aacedc3e 350 InitSimulationModule( md, ev );
20f3f947 351 if( !nhits ) return;
48058160 352
aacedc3e 353 HitsToAnalogDigits( mod );
5683bd96 354 ChargeToSignal( fModule,kTRUE,kTRUE ); // process signal + noise
aacedc3e 355
356 for( Int_t i=0; i<fNofMaps; i++ ) {
357 for( Int_t j=0; j<fMaxNofSamples; j++ ) {
358 Int_t jdx = j*fScaleSize;
359 Int_t index = fpList->GetHitIndex( i, j );
360 AliITSpListItem pItemTmp2( fModule, index, 0. );
361 // put the fScaleSize analog digits in only one
362 for( Int_t ik=0; ik<fScaleSize; ik++ ) {
363 AliITSpListItem *pItemTmp = fpList->GetpListItem( i, jdx+ik );
364 if( pItemTmp == 0 ) continue;
365 pItemTmp2.Add( pItemTmp );
366 }
367 fpList->DeleteHit( i, j );
368 fpList->AddItemTo( 0, &pItemTmp2 );
369 }
48058160 370 }
aacedc3e 371 FinishDigits();
372 ClearMaps();
c7a4dac0 373}
374//______________________________________________________________________
50d05d7b 375void AliITSsimulationSDD::FinishDigits() {
aacedc3e 376 // introduce the electronics effects and do zero-suppression if required
8a33ae9e 377
8ba39da9 378 if( fCrosstalkFlag ) ApplyCrosstalk(fModule);
50d05d7b 379
f45f6658 380 AliITSCalibrationSDD* res = (AliITSCalibrationSDD*)GetCalibrationModel(fModule);
fcf95fc7 381 const char *kopt = res->GetZeroSuppOption();
20f3f947 382 if (strstr(kopt,"ZS")) Compress2D();
383 else StoreAllDigits();
c7a4dac0 384}
385//______________________________________________________________________
50d05d7b 386void AliITSsimulationSDD::HitsToAnalogDigits( AliITSmodule *mod ) {
aacedc3e 387 // create maps to build the lists of tracks for each digit
8ba39da9 388 AliITSsegmentationSDD* seg = (AliITSsegmentationSDD*)GetSegmentationModel(1);
f45f6658 389 AliITSCalibrationSDD* res = (AliITSCalibrationSDD*)GetCalibrationModel(fModule);
8ba39da9 390 TObjArray *hits = mod->GetHits();
aacedc3e 391 Int_t nhits = hits->GetEntriesFast();
8ba39da9 392
aacedc3e 393 // Int_t arg[6] = {0,0,0,0,0,0};
d35ad08f 394 Int_t nofAnodes = fNofMaps/2;
395 Double_t sddLength = seg->Dx();
396 Double_t sddWidth = seg->Dz();
f6b6d58e 397 Double_t anodePitch = seg->Dpz(0);
398 Double_t timeStep = seg->Dpx(0);
4952f440 399 Double_t driftSpeed ; // drift velocity (anode dependent)
d35ad08f 400 //Float_t maxadc = res->GetMaxAdc();
401 //Float_t topValue = res->GetDynamicRange();
402 Double_t norm = res->GetMaxAdc()/res->GetDynamicRange(); // maxadc/topValue;
403 Double_t cHloss = res->GetChargeLoss();
404 Float_t dfCoeff, s1; res->DiffCoeff(dfCoeff,s1); // Signal 2d Shape
405 Double_t eVpairs = res->GetGeVToCharge()*1.0E9; // 3.6 eV by def.
406 Double_t nsigma = res->GetNSigmaIntegration(); //
407 Int_t nlookups = res->GetGausNLookUp(); //
408 Float_t jitter = res->GetJitterError(); //
aacedc3e 409
410 // Piergiorgio's part (apart for few variables which I made float
411 // when i thought that can be done
412 // Fill detector maps with GEANT hits
413 // loop over hits in the module
414
415 const Float_t kconv = 1.0e+6; // GeV->KeV
d35ad08f 416 Int_t itrack = 0;
d35ad08f 417 Int_t iWing; // which detector wing/side.
d35ad08f 418 Int_t ii,kk,ka,kt; // loop indexs
419 Int_t ia,it,index; // sub-pixel integration indexies
420 Int_t iAnode; // anode number.
421 Int_t timeSample; // time buckett.
422 Int_t anodeWindow; // anode direction charge integration width
423 Int_t timeWindow; // time direction charge integration width
424 Int_t jamin,jamax; // anode charge integration window
425 Int_t jtmin,jtmax; // time charge integration window
426 Int_t ndiv; // Anode window division factor.
427 Int_t nsplit; // the number of splits in anode and time windows==1.
428 Int_t nOfSplits; // number of times track length is split into
429 Float_t nOfSplitsF; // Floating point version of nOfSplits.
430 Float_t kkF; // Floating point version of loop index kk.
431 Double_t pathInSDD; // Track length in SDD.
432 Double_t drPath; // average position of track in detector. in microns
433 Double_t drTime; // Drift time
434 Double_t nmul; // drift time window multiplication factor.
435 Double_t avDrft; // x position of path length segment in cm.
436 Double_t avAnode; // Anode for path length segment in Anode number (float)
f6b6d58e 437 Double_t zAnode; // Floating point anode number.
d35ad08f 438 Double_t driftPath; // avDrft in microns.
439 Double_t width; // width of signal at anodes.
aacedc3e 440 Double_t depEnergy; // Energy deposited in this GEANT step.
441 Double_t xL[3],dxL[3]; // local hit coordinates and diff.
d35ad08f 442 Double_t sigA; // sigma of signal at anode.
443 Double_t sigT; // sigma in time/drift direction for track segment
444 Double_t aStep,aConst; // sub-pixel size and offset anode
445 Double_t tStep,tConst; // sub-pixel size and offset time
446 Double_t amplitude; // signal amplitude for track segment in nanoAmpere
447 Double_t chargeloss; // charge loss for track segment.
448 Double_t anodeAmplitude; // signal amplitude in anode direction
449 Double_t aExpo; // exponent of Gaussian anode direction
450 Double_t timeAmplitude; // signal amplitude in time direction
451 Double_t tExpo; // exponent of Gaussian time direction
aacedc3e 452 // Double_t tof; // Time of flight in ns of this step.
453
454 for(ii=0; ii<nhits; ii++) {
f6b6d58e 455 if(!mod->LineSegmentL(ii,xL[0],dxL[0],xL[1],dxL[1],xL[2],dxL[2],
aacedc3e 456 depEnergy,itrack)) continue;
f6b6d58e 457 Float_t xloc=xL[0];
458 if(xloc>0) iWing=0; // left side, carlos channel 0
459 else iWing=1; // right side
460
461 Float_t zloc=xL[2]+0.5*dxL[2];
462 zAnode=seg->GetAnodeFromLocal(xloc,zloc); // anode number in the range 0.-511.
463 driftSpeed = res->GetDriftSpeedAtAnode(zAnode);
464 if(timeStep*fMaxNofSamples < sddLength/driftSpeed) {
465 AliWarning("Time Interval > Allowed Time Interval\n");
466 }
467 depEnergy *= kconv;
aacedc3e 468
f6b6d58e 469 // scale path to simulate a perpendicular track
470 // continue if the particle did not lose energy
471 // passing through detector
472 if (!depEnergy) {
473 AliDebug(1,
474 Form("fTrack = %d hit=%d module=%d This particle has passed without losing energy!",
475 itrack,ii,mod->GetIndex()));
476 continue;
477 } // end if !depEnergy
478
479 xL[0] += 0.0001*gRandom->Gaus( 0, jitter ); //
480 pathInSDD = TMath::Sqrt(dxL[0]*dxL[0]+dxL[1]*dxL[1]+dxL[2]*dxL[2]);
481
482 if (fFlag && pathInSDD) { depEnergy *= (0.03/pathInSDD); }
483 drPath = TMath::Abs(10000.*(dxL[0]+2.*xL[0])*0.5);
484 drPath = sddLength-drPath;
485 if(drPath < 0) {
486 AliDebug(1, // this should be fixed at geometry level
487 Form("negative drift path drPath=%e sddLength=%e dxL[0]=%e xL[0]=%e",
f77f13c8 488 drPath,sddLength,dxL[0],xL[0]));
f6b6d58e 489 continue;
490 } // end if drPath < 0
aacedc3e 491
492 // Compute number of segments to brake step path into
f6b6d58e 493 drTime = drPath/driftSpeed; // Drift Time
494 sigA = TMath::Sqrt(2.*dfCoeff*drTime+s1*s1);// Sigma along the anodes
495 // calcuate the number of time the path length should be split into.
496 nOfSplits = (Int_t) (1. + 10000.*pathInSDD/sigA);
497 if(fFlag) nOfSplits = 1;
498
499 // loop over path segments, init. some variables.
500 depEnergy /= nOfSplits;
501 nOfSplitsF = (Float_t) nOfSplits;
502 Float_t theAverage=0.,theSteps=0.;
503 for(kk=0;kk<nOfSplits;kk++) { // loop over path segments
504 kkF = (Float_t) kk + 0.5;
505 avDrft = xL[0]+dxL[0]*kkF/nOfSplitsF;
506 avAnode = xL[2]+dxL[2]*kkF/nOfSplitsF;
507 theSteps+=1.;
508 theAverage+=avAnode;
509 zAnode = seg->GetAnodeFromLocal(avDrft,avAnode);
510 driftSpeed = res->GetDriftSpeedAtAnode(zAnode);
511 driftPath = TMath::Abs(10000.*avDrft);
512 driftPath = sddLength-driftPath;
513 if(driftPath < 0) {
514 AliDebug(1, // this should be fixed at geometry level
515 Form("negative drift path driftPath=%e sddLength=%e avDrft=%e dxL[0]=%e xL[0]=%e",
516 driftPath,sddLength,avDrft,dxL[0],xL[0]));
517 continue;
518 } // end if driftPath < 0
519 drTime = driftPath/driftSpeed; // drift time for segment.
520 timeSample = (Int_t) (fScaleSize*drTime/timeStep + 1); // time bin in range 1-256 !!!
521 if(timeSample > fScaleSize*fMaxNofSamples) {
522 AliWarning(Form("Wrong Time Sample: %e",timeSample));
523 continue;
524 } // end if timeSample > fScaleSize*fMaxNoofSamples
525
526 if(zAnode>nofAnodes) zAnode-=nofAnodes; // to have the anode number between 0. and 256.
527 if(zAnode*anodePitch > sddWidth || zAnode*anodePitch < 0.)
528 AliWarning(Form("Exceeding sddWidth=%e Z = %e",sddWidth,zAnode*anodePitch));
529 iAnode = (Int_t) (1.+zAnode); // iAnode in range 1-256 !!!!
530 if(iAnode < 1 || iAnode > nofAnodes) {
531 AliWarning(Form("Wrong iAnode: 1<%d>%d (xanode=%e)",iAnode,nofAnodes, zAnode));
532 continue;
533 } // end if iAnode < 1 || iAnode > nofAnodes
534
535 // store straight away the particle position in the array
536 // of particles and take idhit=ii only when part is entering (this
537 // requires FillModules() in the macro for analysis) :
538
539 // Sigma along the anodes for track segment.
540 sigA = TMath::Sqrt(2.*dfCoeff*drTime+s1*s1);
541 sigT = sigA/driftSpeed;
542 // Peak amplitude in nanoAmpere
543 amplitude = fScaleSize*160.*depEnergy/
544 (timeStep*eVpairs*2.*acos(-1.)*sigT*sigA);
545 amplitude *= timeStep/25.; // WARNING!!!!! Amplitude scaling to
546 // account for clock variations
547 // (reference value: 40 MHz)
548 chargeloss = 1.-cHloss*driftPath/1000.;
549 amplitude *= chargeloss;
550 width = 2.*nsigma/(nlookups-1);
551 // Spread the charge
552 // Pixel index
553 ndiv = 2;
554 nmul = 3.;
555 if(drTime > 1200.) {
556 ndiv = 4;
557 nmul = 1.5;
558 } // end if drTime > 1200.
559 // Sub-pixel index
560 nsplit = 4; // hard-wired //nsplit=4;nsplit = (nsplit+1)/2*2;
561 // Sub-pixel size see computation of aExpo and tExpo.
562 aStep = anodePitch/(nsplit*fScaleSize*sigA);
563 aConst = zAnode*anodePitch/sigA;
564 tStep = timeStep/(nsplit*fScaleSize*sigT);
565 tConst = drTime/sigT;
566 // Define SDD window corresponding to the hit
567 anodeWindow = (Int_t)(fScaleSize*nsigma*sigA/anodePitch+1);
568 timeWindow = (Int_t) (fScaleSize*nsigma*sigT/timeStep+1.);
569 jamin = (iAnode - anodeWindow/ndiv - 2)*fScaleSize*nsplit +1;
570 jamax = (iAnode + anodeWindow/ndiv + 1)*fScaleSize*nsplit;
571 if(jamin <= 0) jamin = 1;
572 if(jamax > fScaleSize*nofAnodes*nsplit)
573 jamax = fScaleSize*nofAnodes*nsplit;
574 // jtmin and jtmax are Hard-wired
575 jtmin = (Int_t)(timeSample-timeWindow*nmul-1)*nsplit+1;
576 jtmax = (Int_t)(timeSample+timeWindow*nmul)*nsplit;
577 if(jtmin <= 0) jtmin = 1;
578 if(jtmax > fScaleSize*fMaxNofSamples*nsplit)
579 jtmax = fScaleSize*fMaxNofSamples*nsplit;
580 // Spread the charge in the anode-time window
581 for(ka=jamin; ka <=jamax; ka++) {
582 ia = (ka-1)/(fScaleSize*nsplit) + 1;
583 if(ia <= 0) {
584 Warning("HitsToAnalogDigits","ia < 1: ");
585 continue;
586 } // end if
587 if(ia > nofAnodes) ia = nofAnodes;
588 aExpo = (aStep*(ka-0.5)-aConst);
589 if(TMath::Abs(aExpo) > nsigma) anodeAmplitude = 0.;
590 else {
591 Int_t theBin = (Int_t) ((aExpo+nsigma)/width+0.5);
592 anodeAmplitude = amplitude*res->GetGausLookUp(theBin);
593 } // end if TMath::Abs(aEspo) > nsigma
594 // index starts from 0
595 index = iWing*nofAnodes+ia-1;
596 if(anodeAmplitude){
597 for(kt=jtmin; kt<=jtmax; kt++) {
598 it = (kt-1)/nsplit+1; // it starts from 1
599 if(it<=0){
600 Warning("HitsToAnalogDigits","it < 1:");
601 continue;
602 } // end if
603 if(it>fScaleSize*fMaxNofSamples)
604 it = fScaleSize*fMaxNofSamples;
605 tExpo = (tStep*(kt-0.5)-tConst);
606 if(TMath::Abs(tExpo) > nsigma) timeAmplitude = 0.;
607 else {
608 Int_t theBin = (Int_t) ((tExpo+nsigma)/width+0.5);
609 timeAmplitude = anodeAmplitude*res->GetGausLookUp(theBin);
610 } // end if TMath::Abs(tExpo) > nsigma
611 // build the list of Sdigits for this module
612 // arg[0] = index;
613 // arg[1] = it;
614 // arg[2] = itrack; // track number
615 // arg[3] = ii-1; // hit number.
616 timeAmplitude *= norm;
617 timeAmplitude *= 10;
618 // ListOfFiredCells(arg,timeAmplitude,alst,padr);
619 Double_t charge = timeAmplitude;
620 charge += fHitMap2->GetSignal(index,it-1);
621 fHitMap2->SetHit(index, it-1, charge);
622 fpList->AddSignal(index,it-1,itrack,ii-1,
623 mod->GetIndex(),timeAmplitude);
624 fAnodeFire[index] = kTRUE;
625 } // end loop over time in window
626 } // end if anodeAmplitude
627 } // loop over anodes in window
628 } // end loop over "sub-hits"
aacedc3e 629 } // end loop over hits
b0f5e3fc 630}
aacedc3e 631
b0f5e3fc 632//____________________________________________
83ec5e27 633void AliITSsimulationSDD::AddDigit( Int_t i, Int_t j, Int_t signalc, Int_t signale) {
20f3f947 634 // Adds a Digit.
635 Int_t size = AliITSdigit::GetNTracks();
636
637 Int_t digits[3];
638 Int_t * tracks = new Int_t[size];
639 Int_t * hits = new Int_t[size];
640 Float_t phys;
641 Float_t * charges = new Float_t[size];
642
643 digits[0] = i;
644 digits[1] = j;
83ec5e27 645 digits[2] = signalc;
20f3f947 646
647 AliITSpListItem *pItem = fpList->GetpListItem( i, j );
648 if( pItem == 0 ) {
649 phys = 0.0;
650 for( Int_t l=0; l<size; l++ ) {
651 tracks[l] = 0;
652 hits[l] = 0;
653 charges[l] = 0.0;
50d05d7b 654 }
20f3f947 655 } else {
656 Int_t idtrack = pItem->GetTrack( 0 );
657 if( idtrack >= 0 ) phys = pItem->GetSignal();
658 else phys = 0.0;
659
660 for( Int_t l=0; l<size; l++ ) if(l<pItem->GetMaxKept()) {
661 tracks[l] = pItem->GetTrack( l );
662 hits[l] = pItem->GetHit( l );
663 charges[l] = pItem->GetSignal( l );
664 }else{
665 tracks[l] = -3;
666 hits[l] = -1;
667 charges[l] = 0.0;
668 }// end for if
669 }
50d05d7b 670
83ec5e27 671 fITS->AddSimDigit( 1, phys, digits, tracks, hits, charges, signale );
20f3f947 672 delete [] tracks;
673 delete [] hits;
674 delete [] charges;
aacedc3e 675}
8a33ae9e 676//______________________________________________________________________
5683bd96 677void AliITSsimulationSDD::ChargeToSignal(Int_t mod,Bool_t bAddNoise, Bool_t bAddGain) {
678 // add baseline, noise, gain, electronics and ADC saturation effects
679 // apply dead channels
680
681 char opt1[20], opt2[20];
682 AliITSCalibrationSDD* res = (AliITSCalibrationSDD*)GetCalibrationModel(mod);
683 res->GetParamOptions(opt1,opt2);
684 Double_t baseline=0;
685 Double_t noise=0;
686 Double_t gain=0;
687 Float_t contrib=0;
688 Int_t i,k,kk;
689 Float_t maxadc = res->GetMaxAdc();
690
691 for (i=0;i<fNofMaps;i++) {
692 if( !fAnodeFire[i] ) continue;
693 baseline = res->GetBaseline(i);
694 noise = res->GetNoise(i);
695 gain = res->GetChannelGain(i);
eefec958 696 if(res->IsBad()) gain=0.;
13a2b50d 697 if( res->IsChipBad(res->GetChip(i)) )gain=0.;
5683bd96 698 for(k=0; k<fScaleSize*fMaxNofSamples; k++) {
699 fInZR[k] = fHitMap2->GetSignal(i,k);
700 if(bAddGain) fInZR[k]*=gain;
701 if( bAddNoise ) {
702 contrib = (baseline + noise*gRandom->Gaus());
703 fInZR[k] += contrib;
704 }
705 fInZI[k] = 0.;
706 } // end for k
aacedc3e 707 if(!fDoFFT) {
5683bd96 708 for(k=0; k<fMaxNofSamples; k++) {
709 Double_t newcont = 0.;
710 Double_t maxcont = 0.;
711 for(kk=0;kk<fScaleSize;kk++) {
712 newcont = fInZR[fScaleSize*k+kk];
713 if(newcont > maxcont) maxcont = newcont;
714 } // end for kk
715 newcont = maxcont;
716 if (newcont >= maxadc) newcont = maxadc -1;
717 if(newcont >= baseline){
718 Warning("","newcont=%d>=baseline=%d",newcont,baseline);
719 } // end if
720 // back to analog: ?
721 fHitMap2->SetHit(i,k,newcont);
722 } // end for k
723 }else{
20f3f947 724 FastFourierTransform(&fInZR[0],&fInZI[0],1);
5683bd96 725 for(k=0; k<fScaleSize*fMaxNofSamples; k++) {
726 Double_t rw = fElectronics->GetTraFunReal(k);
727 Double_t iw = fElectronics->GetTraFunImag(k);
728 fOutZR[k] = fInZR[k]*rw - fInZI[k]*iw;
729 fOutZI[k] = fInZR[k]*iw + fInZI[k]*rw;
730 } // end for k
20f3f947 731 FastFourierTransform(&fOutZR[0],&fOutZI[0],-1);
5683bd96 732 for(k=0; k<fMaxNofSamples; k++) {
733 Double_t newcont1 = 0.;
734 Double_t maxcont1 = 0.;
735 for(kk=0;kk<fScaleSize;kk++) {
736 newcont1 = fOutZR[fScaleSize*k+kk];
737 if(newcont1 > maxcont1) maxcont1 = newcont1;
738 } // end for kk
739 newcont1 = maxcont1;
740 if (newcont1 >= maxadc) newcont1 = maxadc -1;
741 fHitMap2->SetHit(i,k,newcont1);
742 } // end for k
743 }
744 } // end for i loop over anodes
745 return;
50d05d7b 746}
5683bd96 747
50d05d7b 748//______________________________________________________________________
8ba39da9 749void AliITSsimulationSDD::ApplyCrosstalk(Int_t mod) {
aacedc3e 750 // function add the crosstalk effect to signal
751 // temporal function, should be checked...!!!
8ba39da9 752
aacedc3e 753 // create and inizialice crosstalk map
754 Float_t* ctk = new Float_t[fNofMaps*fMaxNofSamples+1];
755 if( ctk == NULL ) {
756 Error( "ApplyCrosstalk", "no memory for temporal map: exit \n" );
757 return;
758 }
759 memset( ctk, 0, sizeof(Float_t)*(fNofMaps*fMaxNofSamples+1) );
f45f6658 760 AliITSCalibrationSDD* calibr = (AliITSCalibrationSDD*)GetCalibrationModel(mod);
aacedc3e 761 for( Int_t z=0; z<fNofMaps; z++ ) {
f45f6658 762 Double_t baseline = calibr->GetBaseline(z);
aacedc3e 763 Bool_t on = kFALSE;
764 Int_t tstart = 0;
765 Int_t tstop = 0;
766 Int_t nTsteps = 0;
50d05d7b 767
aacedc3e 768 for( Int_t l=0; l<fMaxNofSamples; l++ ) {
769 Float_t fadc = (Float_t)fHitMap2->GetSignal( z, l );
770 if( fadc > baseline ) {
771 if( on == kFALSE && l<fMaxNofSamples-4 ) {
772 Float_t fadc1 = (Float_t)fHitMap2->GetSignal( z, l+1 );
773 if( fadc1 < fadc ) continue;
774 on = kTRUE;
775 nTsteps = 0;
776 tstart = l;
777 }
778 nTsteps++;
779 }
780 else { // end fadc > baseline
781 if( on == kTRUE ) {
782 if( nTsteps > 2 ) {
783 tstop = l;
784 // make smooth derivative
785 Float_t* dev = new Float_t[fMaxNofSamples+1];
786 memset( dev, 0, sizeof(Float_t)*(fMaxNofSamples+1) );
787 if( ctk == NULL ) {
788 Error( "ApplyCrosstalk",
789 "no memory for temporal array: exit \n" );
790 return;
791 }
792 for( Int_t i=tstart; i<tstop; i++ ) {
793 if( i > 2 && i < fMaxNofSamples-2 )
794 dev[i] = -0.2*fHitMap2->GetSignal( z,i-2 )
795 -0.1*fHitMap2->GetSignal( z,i-1 )
796 +0.1*fHitMap2->GetSignal( z,i+1 )
797 +0.2*fHitMap2->GetSignal( z,i+2 );
798 }
50d05d7b 799
aacedc3e 800 // add crosstalk contribution to neibourg anodes
801 for( Int_t i=tstart; i<tstop; i++ ) {
802 Int_t anode = z - 1;
803 Int_t i1 = (Int_t)((i-tstart)*.61+tstart+0.5); //
804 Float_t ctktmp = -dev[i1] * 0.25;
805 if( anode > 0 ) {
806 ctk[anode*fMaxNofSamples+i] += ctktmp;
807 }
808 anode = z + 1;
809 if( anode < fNofMaps ) {
810 ctk[anode*fMaxNofSamples+i] += ctktmp;
811 }
812 }
813 delete [] dev;
50d05d7b 814
aacedc3e 815 } // if( nTsteps > 2 )
816 on = kFALSE;
817 } // if( on == kTRUE )
818 } // else
819 }
3d2c9d72 820 }
50d05d7b 821
aacedc3e 822 for( Int_t a=0; a<fNofMaps; a++ )
823 for( Int_t t=0; t<fMaxNofSamples; t++ ) {
824 Float_t signal = fHitMap2->GetSignal(a,t)+ctk[a*fMaxNofSamples+t];
825 fHitMap2->SetHit( a, t, signal );
826 }
827
828 delete [] ctk;
50d05d7b 829}
f45f6658 830
8a33ae9e 831//______________________________________________________________________
832Int_t AliITSsimulationSDD::Convert10to8(Int_t signal) const {
aacedc3e 833 // To the 10 to 8 bit lossive compression.
834 // code from Davide C. and Albert W.
835
836 if (signal < 128) return signal;
837 if (signal < 256) return (128+((signal-128)>>1));
838 if (signal < 512) return (192+((signal-256)>>3));
839 if (signal < 1024) return (224+((signal-512)>>4));
840 return 0;
b0f5e3fc 841}
8a33ae9e 842//______________________________________________________________________
83ec5e27 843Int_t AliITSsimulationSDD::Convert8to10(Int_t signal) const {
844 // Decompression from 8 to 10 bit
845
846 if (signal < 0 || signal > 255) {
847 AliWarning(Form("Signal value %d out of range",signal));
848 return 0;
849 } // end if signal <0 || signal >255
850
851 if (signal < 128) return signal;
852 if (signal < 192) {
853 if (TMath::Odd(signal)) return (128+((signal-128)<<1));
854 else return (128+((signal-128)<<1)+1);
855 } // end if signal < 192
856 if (signal < 224) {
857 if (TMath::Odd(signal)) return (256+((signal-192)<<3)+3);
858 else return (256+((signal-192)<<3)+4);
859 } // end if signal < 224
860 if (TMath::Odd(signal)) return (512+((signal-224)<<4)+7);
861 return (512+((signal-224)<<4)+8);
862}
863//______________________________________________________________________
b0f5e3fc 864void AliITSsimulationSDD::Compress2D(){
20f3f947 865 // 2D zero-suppression algorithm as described in ALICE-INT-1999-28 V10
866 AliITSCalibrationSDD* res = (AliITSCalibrationSDD*)GetCalibrationModel(fModule);
20f3f947 867 for (Int_t iWing=0; iWing<2; iWing++) {
868 Int_t tL=res->GetZSLowThreshold(iWing);
869 Int_t tH=res->GetZSHighThreshold(iWing);
870 for (Int_t i=0; i<fNofMaps/2; i++) {
871 Int_t ian=i+iWing*fNofMaps/2;
872 if( !fAnodeFire[ian] ) continue;
873 for (Int_t itb=0; itb<fMaxNofSamples; itb++) {
8343dab6 874 Int_t nLow=0, nHigh=0;
20f3f947 875 Float_t cC=fHitMap2->GetSignal(ian,itb);
876 if(cC<=tL) continue;
8343dab6 877 nLow++; // cC is greater than tL
878 if(cC>tH) nHigh++;
20f3f947 879 // N
880 // Get "quintuple": WCE
881 // S
882 Float_t wW=0.;
883 if(itb>0) wW=fHitMap2->GetSignal(ian,itb-1);
8343dab6 884 if(wW>tL) nLow++;
885 if(wW>tH) nHigh++;
20f3f947 886 Float_t eE=0.;
887 if(itb<fMaxNofSamples-1) eE=fHitMap2->GetSignal(ian,itb+1);
8343dab6 888 if(eE>tL) nLow++;
889 if(eE>tH) nHigh++;
20f3f947 890 Float_t nN=0.;
891 if(i<(fNofMaps/2-1)) nN=fHitMap2->GetSignal(ian+1,itb);
8343dab6 892 if(nN>tL) nLow++;
893 if(nN>tH) nHigh++;
20f3f947 894 Float_t sS=0.;
895 if(i>0) sS=fHitMap2->GetSignal(ian-1,itb);
8343dab6 896 if(sS>tL) nLow++;
897 if(sS>tH) nHigh++;
898
899 if(nLow>=3 && nHigh>=1){
83ec5e27 900 Int_t signal=(Int_t)cC;
901 Int_t signalc = Convert10to8(signal);
902 Int_t signale = Convert8to10(signalc);
903 signalc-=tL; // subtract low threshold after 10 to 8 bit compression
904 AddDigit(ian,itb,signalc,signale); // store C
20f3f947 905 }
906 }
907 }
908 }
b0f5e3fc 909}
8ba39da9 910
aacedc3e 911
8a33ae9e 912//______________________________________________________________________
b0f5e3fc 913void AliITSsimulationSDD::StoreAllDigits(){
fa4f0f62 914 // store digits for non-zero-suppressed data
915 for (Int_t ian=0; ian<fNofMaps; ian++) {
916 for (Int_t itb=0; itb<fMaxNofSamples; itb++){
917 Int_t signal=(Int_t)(fHitMap2->GetSignal(ian,itb));
918 Int_t signalc = Convert10to8(signal);
919 Int_t signale = Convert8to10(signalc);
920 AddDigit(ian,itb,signalc,signale);
921 }
922 }
b0f5e3fc 923}
8a33ae9e 924//______________________________________________________________________
ece86d9a 925void AliITSsimulationSDD::CreateHistograms(Int_t scale){
aacedc3e 926 // Creates histograms of maps for debugging
927 Int_t i;
928
929 fHis=new TObjArray(fNofMaps);
930 for (i=0;i<fNofMaps;i++) {
931 TString sddName("sdd_");
932 Char_t candNum[4];
933 sprintf(candNum,"%d",i+1);
934 sddName.Append(candNum);
935 fHis->AddAt(new TH1F(sddName.Data(),"SDD maps",scale*fMaxNofSamples,
936 0.,(Float_t) scale*fMaxNofSamples), i);
937 } // end for i
b0f5e3fc 938}
8a33ae9e 939//______________________________________________________________________
ece86d9a 940void AliITSsimulationSDD::FillHistograms(){
aacedc3e 941 // fill 1D histograms from map
8a33ae9e 942
aacedc3e 943 if (!fHis) return;
8a33ae9e 944
aacedc3e 945 for( Int_t i=0; i<fNofMaps; i++) {
946 TH1F *hist =(TH1F *)fHis->UncheckedAt(i);
947 Int_t nsamples = hist->GetNbinsX();
948 for( Int_t j=0; j<nsamples; j++) {
949 Double_t signal=fHitMap2->GetSignal(i,j);
950 hist->Fill((Float_t)j,signal);
951 } // end for j
952 } // end for i
ece86d9a 953}
8a33ae9e 954//______________________________________________________________________
b0f5e3fc 955void AliITSsimulationSDD::ResetHistograms(){
aacedc3e 956 // Reset histograms for this detector
957 Int_t i;
8a33ae9e 958
aacedc3e 959 for (i=0;i<fNofMaps;i++ ) {
960 if (fHis->At(i)) ((TH1F*)fHis->At(i))->Reset();
961 } // end for i
b0f5e3fc 962}
8a33ae9e 963//______________________________________________________________________
b0f5e3fc 964TH1F *AliITSsimulationSDD::GetAnode(Int_t wing, Int_t anode) {
aacedc3e 965 // Fills a histogram from a give anode.
8a33ae9e 966
aacedc3e 967 if (!fHis) return 0;
8a33ae9e 968
aacedc3e 969 if(wing <=0 || wing > 2) {
970 Warning("GetAnode","Wrong wing number: %d",wing);
971 return NULL;
972 } // end if wing <=0 || wing >2
973 if(anode <=0 || anode > fNofMaps/2) {
974 Warning("GetAnode","Wrong anode number: %d",anode);
975 return NULL;
976 } // end if ampde <=0 || andoe > fNofMaps/2
8a33ae9e 977
aacedc3e 978 Int_t index = (wing-1)*fNofMaps/2 + anode-1;
979 return (TH1F*)(fHis->At(index));
b0f5e3fc 980}
8a33ae9e 981//______________________________________________________________________
b0f5e3fc 982void AliITSsimulationSDD::WriteToFile(TFile *hfile) {
aacedc3e 983 // Writes the histograms to a file
b0f5e3fc 984
aacedc3e 985 if (!fHis) return;
8a33ae9e 986
aacedc3e 987 hfile->cd();
988 Int_t i;
989 for(i=0; i<fNofMaps; i++) fHis->At(i)->Write(); //fAdcs[i]->Write();
990 return;
b0f5e3fc 991}
8a33ae9e 992//______________________________________________________________________
50d05d7b 993void AliITSsimulationSDD::WriteSDigits(){
aacedc3e 994 // Fills the Summable digits Tree
995 static AliITS *aliITS = (AliITS*)gAlice->GetModule("ITS");
996
997 for( Int_t i=0; i<fNofMaps; i++ ) {
998 if( !fAnodeFire[i] ) continue;
f6b6d58e 999 for( Int_t j=0; j<fMaxNofSamples; j++ ) {
aacedc3e 1000 Double_t sig = fHitMap2->GetSignal( i, j );
1001 if( sig > 0.2 ) {
1002 Int_t jdx = j*fScaleSize;
1003 Int_t index = fpList->GetHitIndex( i, j );
1004 AliITSpListItem pItemTmp2( fModule, index, 0. );
1005 // put the fScaleSize analog digits in only one
1006 for( Int_t ik=0; ik<fScaleSize; ik++ ) {
1007 AliITSpListItem *pItemTmp = fpList->GetpListItem(i,jdx+ik);
1008 if( pItemTmp == 0 ) continue;
1009 pItemTmp2.Add( pItemTmp );
1010 }
1011 pItemTmp2.AddSignalAfterElect( fModule, index, sig );
1012 pItemTmp2.AddNoise(fModule,index,fHitNoiMap2->GetSignal(i,j));
1013 aliITS->AddSumDigit( pItemTmp2 );
1014 } // end if (sig > 0.2)
1015 }
48058160 1016 }
aacedc3e 1017 return;
b0f5e3fc 1018}
8a33ae9e 1019//______________________________________________________________________
d2f55a22 1020void AliITSsimulationSDD::PrintStatus() const {
aacedc3e 1021 // Print SDD simulation Parameters
1022
1023 cout << "**************************************************" << endl;
1024 cout << " Silicon Drift Detector Simulation Parameters " << endl;
1025 cout << "**************************************************" << endl;
1026 cout << "Flag for Perpendicular tracks: " << (Int_t) fFlag << endl;
aacedc3e 1027 cout << "Flag to switch off electronics: " << (Int_t) fDoFFT << endl;
20f3f947 1028 cout << "Number of Anodes used: " << fNofMaps << endl;
aacedc3e 1029 cout << "Number of Time Samples: " << fMaxNofSamples << endl;
1030 cout << "Scale size factor: " << fScaleSize << endl;
1031 cout << "**************************************************" << endl;
44a312c3 1032}