Fix for the case of non-existent calibration files
[u/mrichter/AliRoot.git] / ITS / AliITSv11Geometry.cxx
CommitLineData
172b0d90 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
166d14ba 16/*
17 $Id$
18*/
19
20
21////////////////////////////////////////////////////////////////////////
22// This class is a base class for the ITS geometry version 11. It
23// contains common/standard functions used in many places in defining
24// the ITS geometry, version 11. Large posions of the ITS geometry,
25// version 11, should be derived from this class so as to make maximum
26// use of these common functions. This class also defines the proper
27// conversion valuse such, to cm and degrees, such that the most usefull
28// units, those used in the Engineering drawings, can be used.
29////////////////////////////////////////////////////////////////////////
30
31
172b0d90 32#include <Riostream.h>
33#include <TMath.h>
db486a6e 34#include <TArc.h>
35#include <TLine.h>
36#include <TArrow.h>
37#include <TCanvas.h>
38#include <TText.h>
172b0d90 39#include <TGeoPcon.h>
40#include <TGeoCone.h>
41#include <TGeoTube.h> // contaings TGeoTubeSeg
42#include <TGeoArb8.h>
54c9a3d9 43#include <TGeoElement.h>
44#include <TGeoMaterial.h>
166d14ba 45#include <TPolyMarker.h>
46#include <TPolyLine.h>
54c9a3d9 47#include <AliMagF.h>
48#include <AliRun.h>
172b0d90 49#include "AliITSv11Geometry.h"
50
fe7d86eb 51using std::endl;
52using std::cout;
53using std::cin;
172b0d90 54ClassImp(AliITSv11Geometry)
a98296c1 55
db486a6e 56const Double_t AliITSv11Geometry::fgkmicron = 1.0E-4;
a98296c1 57const Double_t AliITSv11Geometry::fgkmm = 0.10;
58const Double_t AliITSv11Geometry::fgkcm = 1.00;
59const Double_t AliITSv11Geometry::fgkDegree = 1.0;
60const Double_t AliITSv11Geometry::fgkRadian = 180./3.14159265358979323846;
a53658c6 61const Double_t AliITSv11Geometry::fgkgcm3 = 1.0; // assume default is g/cm^3
54c9a3d9 62const Double_t AliITSv11Geometry::fgkKgm3 = 1.0E+3;// assume Kg/m^3
63const Double_t AliITSv11Geometry::fgkKgdm3 = 1.0; // assume Kg/dm^3
a53658c6 64const Double_t AliITSv11Geometry::fgkCelsius = 1.0; // Assume default is C
65const Double_t AliITSv11Geometry::fgkPascal = 1.0E-3; // Assume kPascal
66const Double_t AliITSv11Geometry::fgkKPascal = 1.0; // Asume kPascal
67const Double_t AliITSv11Geometry::fgkeV = 1.0E-9; // GeV default
68const Double_t AliITSv11Geometry::fgkKeV = 1.0e-6; // GeV default
69const Double_t AliITSv11Geometry::fgkMeV = 1.0e-3; // GeV default
70const Double_t AliITSv11Geometry::fgkGeV = 1.0; // GeV default
172b0d90 71//______________________________________________________________________
798b4e0c 72void AliITSv11Geometry::IntersectLines(Double_t m, Double_t x0, Double_t y0,
73 Double_t n, Double_t x1, Double_t y1,
74 Double_t &xi, Double_t &yi)const{
75 // Given the two lines, one passing by (x0,y0) with slope m and
76 // the other passing by (x1,y1) with slope n, returns the coordinates
77 // of the intersecting point (xi,yi)
78 // Inputs:
79 // Double_t m The slope of the first line
80 // Double_t x0,y0 The x and y coord. of the first point
81 // Double_t n The slope of the second line
82 // Double_t x1,y1 The x and y coord. of the second point
83 // Outputs:
84 // The coordinates xi and yi of the intersection point
85 // Return:
86 // none.
87 // Created: 14 Dec 2009 Mario Sitta
88
89 if (TMath::Abs(m-n) < 0.000001) {
a5a317a9 90 AliError(Form("Lines are parallel: m = %f n = %f\n",m,n));
798b4e0c 91 return;
92 }
93
94 xi = (y1 - n*x1 - y0 + m*x0)/(m - n);
95 yi = y0 + m*(xi - x0);
96
97 return;
98}
99//______________________________________________________________________
100Bool_t AliITSv11Geometry::IntersectCircle(Double_t m, Double_t x0, Double_t y0,
101 Double_t rr, Double_t xc, Double_t yc,
102 Double_t &xi1, Double_t &yi1,
103 Double_t &xi2, Double_t &yi2){
104 // Given a lines passing by (x0,y0) with slope m and a circle with
105 // radius rr and center (xc,yc), returns the coordinates of the
106 // intersecting points (xi1,yi1) and (xi2,yi2) (xi1 > xi2)
107 // Inputs:
108 // Double_t m The slope of the line
109 // Double_t x0,y0 The x and y coord. of the point
110 // Double_t rr The radius of the circle
111 // Double_t xc,yc The x and y coord. of the center of circle
112 // Outputs:
113 // The coordinates xi and yi of the intersection points
114 // Return:
115 // kFALSE if the line does not intercept the circle, otherwise kTRUE
116 // Created: 18 Dec 2009 Mario Sitta
117
118 Double_t p = m*x0 - y0;
119 Double_t q = m*m + 1;
120
121 p = p-m*xc+yc;
122
123 Double_t delta = m*m*p*p - q*(p*p - rr*rr);
124
125 if (delta < 0)
126 return kFALSE;
127 else {
128 Double_t root = TMath::Sqrt(delta);
129 xi1 = (m*p + root)/q + xc;
130 xi2 = (m*p - root)/q + xc;
131 yi1 = m*(xi1 - x0) + y0;
132 yi2 = m*(xi2 - x0) + y0;
133 return kTRUE;
134 }
135}
136//______________________________________________________________________
166d14ba 137Double_t AliITSv11Geometry::Yfrom2Points(Double_t x0,Double_t y0,
138 Double_t x1,Double_t y1,
cee918ed 139 Double_t x)const{
166d14ba 140 // Given the two points (x0,y0) and (x1,y1) and the location x, returns
141 // the value y corresponding to that point x on the line defined by the
142 // two points.
143 // Inputs:
144 // Double_t x0 The first x value defining the line
145 // Double_t y0 The first y value defining the line
146 // Double_t x1 The second x value defining the line
147 // Double_t y1 The second y value defining the line
148 // Double_t x The x value for which the y value is wanted.
149 // Outputs:
150 // none.
151 // Return:
152 // The value y corresponding to the point x on the line defined by
153 // the two points (x0,y0) and (x1,y1).
154
155 if(x0==x1 && y0==y1) {
156 printf("Error: AliITSv11Geometry::Yfrom2Ponts The two points are "
157 "the same (%e,%e) and (%e,%e)",x0,y0,x1,y1);
158 return 0.0;
159 } // end if
160 if(x0==x1){
161 printf("Warning: AliITSv11Geometry::Yfrom2Points x0=%e == x1=%e. "
162 "line vertical ""returning mean y",x0,x1);
163 return 0.5*(y0+y1);
164 }// end if x0==x1
165 Double_t m = (y0-y1)/(x0-x1);
166 return m*(x-x0)+y0;
167}
168//______________________________________________________________________
169Double_t AliITSv11Geometry::Xfrom2Points(Double_t x0,Double_t y0,
170 Double_t x1,Double_t y1,
cee918ed 171 Double_t y)const{
166d14ba 172 // Given the two points (x0,y0) and (x1,y1) and the location y, returns
173 // the value x corresponding to that point y on the line defined by the
174 // two points.
175 // Inputs:
176 // Double_t x0 The first x value defining the line
177 // Double_t y0 The first y value defining the line
178 // Double_t x1 The second x value defining the line
179 // Double_t y1 The second y value defining the line
180 // Double_t y The y value for which the x value is wanted.
181 // Outputs:
182 // none.
183 // Return:
184 // The value x corresponding to the point y on the line defined by
185 // the two points (x0,y0) and (x1,y1).
186
187 if(x0==x1 && y0==y1) {
188 printf("Error: AliITSv11Geometry::Yfrom2Ponts The two points are "
189 "the same (%e,%e) and (%e,%e)",x0,y0,x1,y1);
190 return 0.0;
191 } // end if
192 if(y0==y1){
193 printf("Warrning: AliITSv11Geometry::Yfrom2Points y0=%e == y1=%e. "
194 "line horizontal returning mean x",y0,y1);
195 return 0.5*(x0+x1);
196 }// end if y0==y1
197 Double_t m = (x0-x1)/(y0-y1);
198 return m*(y-y0)+x0;
199}
200//______________________________________________________________________
201Double_t AliITSv11Geometry::RmaxFrom2Points(const TGeoPcon *p,Int_t i1,
cee918ed 202 Int_t i2,Double_t z)const{
172b0d90 203 // functions Require at parts of Volume A to be already defined.
204 // Retruns the value of Rmax corresponding to point z alone the line
205 // defined by the two points p.Rmax(i1),p-GetZ(i1) and p->GetRmax(i2),
206 // p->GetZ(i2).
166d14ba 207 // Inputs:
208 // TGeoPcon *p The Polycone where the two points come from
209 // Int_t i1 Point 1
210 // Int_t i2 Point 2
211 // Double_t z The value of z for which Rmax is to be found
212 // Outputs:
213 // none.
214 // Return:
215 // Double_t Rmax the value corresponding to z
172b0d90 216 Double_t d0,d1,d2,r;
217
218 d0 = p->GetRmax(i1)-p->GetRmax(i2);// cout <<"L263: d0="<<d0<<endl;
219 d1 = z-p->GetZ(i2);// cout <<"L264: d1="<<d1<<endl;
220 d2 = p->GetZ(i1)-p->GetZ(i2);// cout <<"L265: d2="<<d2<<endl;
221 r = p->GetRmax(i2) + d1*d0/d2;// cout <<"L266: r="<<r<<endl;
222 return r;
223}
224//______________________________________________________________________
166d14ba 225Double_t AliITSv11Geometry::RminFrom2Points(const TGeoPcon *p,Int_t i1,
cee918ed 226 Int_t i2,Double_t z)const{
172b0d90 227 // Retruns the value of Rmin corresponding to point z alone the line
228 // defined by the two points p->GetRmin(i1),p->GetZ(i1) and
229 // p->GetRmin(i2), p->GetZ(i2).
166d14ba 230 // Inputs:
231 // TGeoPcon *p The Polycone where the two points come from
232 // Int_t i1 Point 1
233 // Int_t i2 Point 2
234 // Double_t z The value of z for which Rmax is to be found
235 // Outputs:
236 // none.
237 // Return:
238 // Double_t Rmax the value corresponding to z
172b0d90 239
240 return p->GetRmin(i2)+(p->GetRmin(i1)-p->GetRmin(i2))*(z-p->GetZ(i2))/
241 (p->GetZ(i1)-p->GetZ(i2));
242}
243//______________________________________________________________________
166d14ba 244Double_t AliITSv11Geometry::RFrom2Points(const Double_t *p,const Double_t *az,
cee918ed 245 Int_t i1,Int_t i2,Double_t z)const{
172b0d90 246 // Retruns the value of Rmin corresponding to point z alone the line
247 // defined by the two points p->GetRmin(i1),p->GetZ(i1) and
248 // p->GetRmin(i2), p->GetZ(i2).
166d14ba 249 // Inputs:
250 // Double_t az Array of z values
251 // Double_t r Array of r values
252 // Int_t i1 First Point in arrays
253 // Int_t i2 Second Point in arrays
254 // Double_t z Value z at which r is to be found
255 // Outputs:
256 // none.
257 // Return:
258 // The value r corresponding to z and the line defined by the two points
172b0d90 259
166d14ba 260 return p[i2]+(p[i1]-p[i2])*(z-az[i2])/(az[i1]-az[i2]);
172b0d90 261}
262//______________________________________________________________________
166d14ba 263Double_t AliITSv11Geometry::Zfrom2MinPoints(const TGeoPcon *p,Int_t i1,
cee918ed 264 Int_t i2,Double_t r)const{
172b0d90 265 // Retruns the value of Z corresponding to point R alone the line
266 // defined by the two points p->GetRmin(i1),p->GetZ(i1) and
267 // p->GetRmin(i2),p->GetZ(i2)
166d14ba 268 // Inputs:
269 // TGeoPcon *p The Poly cone where the two points come from.
270 // Int_t i1 First Point in arrays
271 // Int_t i2 Second Point in arrays
272 // Double_t r Value r min at which z is to be found
273 // Outputs:
274 // none.
275 // Return:
276 // The value z corresponding to r min and the line defined by
277 // the two points
172b0d90 278
279 return p->GetZ(i2)+(p->GetZ(i1)-p->GetZ(i2))*(r-p->GetRmin(i2))/
280 (p->GetRmin(i1)-p->GetRmin(i2));
281}
282//______________________________________________________________________
166d14ba 283Double_t AliITSv11Geometry::Zfrom2MaxPoints(const TGeoPcon *p,Int_t i1,
cee918ed 284 Int_t i2,Double_t r)const{
172b0d90 285 // Retruns the value of Z corresponding to point R alone the line
286 // defined by the two points p->GetRmax(i1),p->GetZ(i1) and
287 // p->GetRmax(i2),p->GetZ(i2)
166d14ba 288 // Inputs:
289 // TGeoPcon *p The Poly cone where the two points come from.
290 // Int_t i1 First Point in arrays
291 // Int_t i2 Second Point in arrays
292 // Double_t r Value r max at which z is to be found
293 // Outputs:
294 // none.
295 // Return:
296 // The value z corresponding to r max and the line defined by
297 // the two points
172b0d90 298
299 return p->GetZ(i2)+(p->GetZ(i1)-p->GetZ(i2))*(r-p->GetRmax(i2))/
300 (p->GetRmax(i1)-p->GetRmax(i2));
301}
302//______________________________________________________________________
166d14ba 303Double_t AliITSv11Geometry::Zfrom2Points(const Double_t *z,const Double_t *ar,
cee918ed 304 Int_t i1,Int_t i2,Double_t r)const{
166d14ba 305 // Retruns the value of z corresponding to point R alone the line
172b0d90 306 // defined by the two points p->GetRmax(i1),p->GetZ(i1) and
307 // p->GetRmax(i2),p->GetZ(i2)
166d14ba 308 // Inputs:
309 // Double_t z Array of z values
310 // Double_t ar Array of r values
311 // Int_t i1 First Point in arrays
312 // Int_t i2 Second Point in arrays
313 // Double_t r Value r at which z is to be found
314 // Outputs:
315 // none.
316 // Return:
317 // The value z corresponding to r and the line defined by the two points
172b0d90 318
166d14ba 319 return z[i2]+(z[i1]-z[i2])*(r-ar[i2])/(ar[i1]-ar[i2]);
172b0d90 320}
321//______________________________________________________________________
166d14ba 322Double_t AliITSv11Geometry::RmaxFromZpCone(const TGeoPcon *p,int ip,
323 Double_t tc,Double_t z,
cee918ed 324 Double_t th)const{
166d14ba 325 // General Outer Cone surface equation Rmax.
326 // Intputs:
327 // TGeoPcon *p The poly cone where the initial point comes from
328 // Int_t ip The index in p to get the point location
329 // Double_t tc The angle of that part of the cone is at
330 // Double_t z The value of z to compute Rmax from
331 // Double_t th The perpendicular distance the parralell line is
332 // from the point ip.
333 // Outputs:
334 // none.
335 // Return:
336 // The value Rmax correstponding to the line at angle th, offeset by
337 // th, and the point p->GetZ/Rmin[ip] at the location z.
cee918ed 338 Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
339 Double_t costc = TMath::Cos(tc*TMath::DegToRad());
172b0d90 340
341 return -tantc*(z-p->GetZ(ip))+p->GetRmax(ip)+th/costc;
342}
343//______________________________________________________________________
166d14ba 344Double_t AliITSv11Geometry::RFromZpCone(const Double_t *ar,
345 const Double_t *az,int ip,
346 Double_t tc,Double_t z,
cee918ed 347 Double_t th)const{
166d14ba 348 // General Cone surface equation R(z).
349 // Intputs:
350 // Double_t ar The array of R values
351 // Double_t az The array of Z values
352 // Int_t ip The index in p to get the point location
353 // Double_t tc The angle of that part of the cone is at
354 // Double_t z The value of z to compute R from
355 // Double_t th The perpendicular distance the parralell line is
356 // from the point ip.
357 // Outputs:
358 // none.
359 // Return:
360 // The value R correstponding to the line at angle th, offeset by
361 // th, and the point p->GetZ/Rmax[ip] at the locatin z.
cee918ed 362 Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
363 Double_t costc = TMath::Cos(tc*TMath::DegToRad());
172b0d90 364
166d14ba 365 return -tantc*(z-az[ip])+ar[ip]+th/costc;
172b0d90 366}
367//______________________________________________________________________
166d14ba 368Double_t AliITSv11Geometry::RminFromZpCone(const TGeoPcon *p,Int_t ip,
369 Double_t tc,Double_t z,
cee918ed 370 Double_t th)const{
166d14ba 371 // General Inner Cone surface equation Rmin.
372 // Intputs:
373 // TGeoPcon *p The poly cone where the initial point comes from
374 // Int_t ip The index in p to get the point location
375 // Double_t tc The angle of that part of the cone is at
376 // Double_t z The value of z to compute Rmin from
377 // Double_t th The perpendicular distance the parralell line is
378 // from the point ip.
379 // Outputs:
380 // none.
381 // Return:
382 // The value Rmin correstponding to the line at angle th, offeset by
383 // th, and the point p->GetZ/Rmin[ip] at the location z.
cee918ed 384 Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
385 Double_t costc = TMath::Cos(tc*TMath::DegToRad());
172b0d90 386
387 return -tantc*(z-p->GetZ(ip))+p->GetRmin(ip)+th/costc;
388}
389//______________________________________________________________________
166d14ba 390Double_t AliITSv11Geometry::ZFromRmaxpCone(const TGeoPcon *p,int ip,
391 Double_t tc,Double_t r,
cee918ed 392 Double_t th)const{
166d14ba 393 // General Outer cone Surface equation for z.
394 // Intputs:
395 // TGeoPcon *p The poly cone where the initial point comes from
396 // Int_t ip The index in p to get the point location
397 // Double_t tc The angle of that part of the cone is at
398 // Double_t r The value of Rmax to compute z from
399 // Double_t th The perpendicular distance the parralell line is
400 // from the point ip.
401 // Outputs:
402 // none.
403 // Return:
404 // The value Z correstponding to the line at angle th, offeset by
405 // th, and the point p->GetZ/Rmax[ip] at the location r.
cee918ed 406 Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
407 Double_t costc = TMath::Cos(tc*TMath::DegToRad());
172b0d90 408
409 return p->GetZ(ip)+(p->GetRmax(ip)+th/costc-r)/tantc;
410}
411//______________________________________________________________________
166d14ba 412Double_t AliITSv11Geometry::ZFromRmaxpCone(const Double_t *ar,
413 const Double_t *az,int ip,
414 Double_t tc,Double_t r,
cee918ed 415 Double_t th)const{
166d14ba 416 // General Outer cone Surface equation for z.
417 // Intputs:
418 // Double_t ar The array of R values
419 // Double_t az The array of Z values
420 // Int_t ip The index in p to get the point location
421 // Double_t tc The angle of that part of the cone is at
422 // Double_t r The value of Rmax to compute z from
423 // Double_t th The perpendicular distance the parralell line is
424 // from the point ip.
425 // Outputs:
426 // none.
427 // Return:
428 // The value Z correstponding to the line at angle th, offeset by
429 // th, and the point p->GetZ/Rmax[ip] at the locatin r.
cee918ed 430 Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
431 Double_t costc = TMath::Cos(tc*TMath::DegToRad());
172b0d90 432
166d14ba 433 return az[ip]+(ar[ip]+th/costc-r)/tantc;
172b0d90 434}
435//______________________________________________________________________
166d14ba 436Double_t AliITSv11Geometry::ZFromRminpCone(const TGeoPcon *p,int ip,
437 Double_t tc,Double_t r,
cee918ed 438 Double_t th)const{
166d14ba 439 // General Inner cone Surface equation for z.
440 // Intputs:
441 // TGeoPcon *p The poly cone where the initial point comes from
442 // Int_t ip The index in p to get the point location
443 // Double_t tc The angle of that part of the cone is at
444 // Double_t r The value of Rmin to compute z from
445 // Double_t th The perpendicular distance the parralell line is
446 // from the point ip.
447 // Outputs:
448 // none.
449 // Return:
450 // The value Z correstponding to the line at angle th, offeset by
451 // th, and the point p->GetZ/Rmin[ip] at the location r.
cee918ed 452 Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
453 Double_t costc = TMath::Cos(tc*TMath::DegToRad());
172b0d90 454
455 return p->GetZ(ip)+(p->GetRmin(ip)+th/costc-r)/tantc;
456}
457//______________________________________________________________________
166d14ba 458void AliITSv11Geometry::RadiusOfCurvature(Double_t rc,Double_t theta0,
459 Double_t z0,Double_t r0,
460 Double_t theta1,Double_t &z1,
cee918ed 461 Double_t &r1)const{
172b0d90 462 // Given a initial point z0,r0, the initial angle theta0, and the radius
463 // of curvature, returns the point z1, r1 at the angle theta1. Theta
464 // measured from the r axis in the clock wise direction [degrees].
166d14ba 465 // Inputs:
466 // Double_t rc The radius of curvature
467 // Double_t theta0 The starting angle (degrees)
468 // Double_t z0 The value of z at theta0
469 // Double_t r0 The value of r at theta0
470 // Double_t theta1 The ending angle (degrees)
471 // Outputs:
472 // Double_t &z1 The value of z at theta1
473 // Double_t &r1 The value of r at theta1
474 // Return:
475 // none.
172b0d90 476
cee918ed 477 z1 = rc*(TMath::Sin(theta1*TMath::DegToRad())-TMath::Sin(theta0*TMath::DegToRad()))+z0;
478 r1 = rc*(TMath::Cos(theta1*TMath::DegToRad())-TMath::Cos(theta0*TMath::DegToRad()))+r0;
172b0d90 479 return;
480}
481//______________________________________________________________________
166d14ba 482void AliITSv11Geometry::InsidePoint(const TGeoPcon *p,Int_t i1,Int_t i2,
483 Int_t i3,Double_t c,TGeoPcon *q,Int_t j1,
cee918ed 484 Bool_t max)const{
172b0d90 485 // Given two lines defined by the points i1, i2,i3 in the TGeoPcon
486 // class p that intersect at point p->GetZ(i2) return the point z,r
487 // that is Cthick away in the TGeoPcon class q. If points i1=i2
488 // and max == kTRUE, then p->GetRmin(i1) and p->GetRmax(i2) are used.
489 // if points i2=i3 and max=kTRUE then points p->GetRmax(i2) and
490 // p->GetRmin(i3) are used. If i2=i3 and max=kFALSE, then p->GetRmin(i2)
491 // and p->GetRmax(i3) are used.
492 // Inputs:
493 // TGeoPcon *p Class where points i1, i2, and i3 are taken from
494 // Int_t i1 First point in class p
495 // Int_t i2 Second point in class p
496 // Int_t i3 Third point in class p
497 // Double_t c Distance inside the outer surface/inner suface
498 // that the point j1 is to be computed for.
499 // TGeoPcon *q Pointer to class for results to be put into.
500 // Int_t j1 Point in class q where data is to be stored.
501 // Bool_t max if kTRUE, then a Rmax value is computed,
502 // else a Rmin valule is computed.
503 // Output:
504 // TGeoPcon *q Pointer to class for results to be put into.
505 // Return:
506 // none.
507 Double_t x0,y0,x1,y1,x2,y2,x,y;
508
509 if(max){
510 c = -c; //cout <<"L394 c="<<c<<endl;
511 y0 = p->GetRmax(i1);
512 if(i1==i2) y0 = p->GetRmin(i1); //cout <<"L396 y0="<<y0<<endl;
513 y1 = p->GetRmax(i2); //cout <<"L397 y1="<<y1<<endl;
514 y2 = p->GetRmax(i3); //cout <<"L398 y2="<<y2<<endl;
515 if(i2==i3) y2 = p->GetRmin(i3); //cout <<"L399 y2="<<y2<<endl;
516 }else{ // min
517 y0 = p->GetRmin(i1); //cout <<"L401 y0="<<y0<<endl;
518 y1 = p->GetRmin(i2); //cout <<"L402 y1="<<y1<<endl;
519 y2 = p->GetRmin(i3);
520 if(i2==i3) y2 = p->GetRmax(i3); //cout <<"L404 y2="<<y2<<endl;
521 } // end if
522 x0 = p->GetZ(i1); //cout <<"L406 x0="<<x0<<endl;
523 x1 = p->GetZ(i2); //cout <<"L407 x1="<<x1<<endl;
524 x2 = p->GetZ(i3); //cout <<"L408 x2="<<x2<<endl;
525 //
526 InsidePoint(x0,y0,x1,y1,x2,y2,c,x,y);
527 q->Z(j1) = x;
528 if(max) q->Rmax(j1) = y;
529 else q->Rmin(j1) = y;
530 return;
531}
532//----------------------------------------------------------------------
166d14ba 533void AliITSv11Geometry::InsidePoint(Double_t x0,Double_t y0,
534 Double_t x1,Double_t y1,
535 Double_t x2,Double_t y2,Double_t c,
cee918ed 536 Double_t &x,Double_t &y)const{
172b0d90 537 // Given two intersecting lines defined by the points (x0,y0), (x1,y1) and
543b7370 538 // (x1,y1), (x2,y2) {intersecting at (x1,y1)} the point (x,y) a distance
172b0d90 539 // c away is returned such that two lines a distance c away from the
540 // lines defined above intersect at (x,y).
541 // Inputs:
542 // Double_t x0 X point on the first intersecting sets of lines
543 // Double_t y0 Y point on the first intersecting sets of lines
544 // Double_t x1 X point on the first/second intersecting sets of lines
545 // Double_t y1 Y point on the first/second intersecting sets of lines
546 // Double_t x2 X point on the second intersecting sets of lines
547 // Double_t y2 Y point on the second intersecting sets of lines
548 // Double_t c Distance the two sets of lines are from each other
549 // Output:
550 // Double_t x X point for the intersecting sets of parellel lines
551 // Double_t y Y point for the intersecting sets of parellel lines
552 // Return:
553 // none.
166d14ba 554 Double_t dx01,dx12,dy01,dy12,r01,r12,m;
543b7370 555
556 //printf("InsidePoint: x0=% #12.7g y0=% #12.7g x1=% #12.7g y1=% #12.7g "
557 // "x2=% #12.7g y2=% #12.7g c=% #12.7g ",x0,y0,x1,y2,x2,y2,c);
172b0d90 558 dx01 = x0-x1; //cout <<"L410 dx01="<<dx01<<endl;
559 dx12 = x1-x2; //cout <<"L411 dx12="<<dx12<<endl;
560 dy01 = y0-y1; //cout <<"L412 dy01="<<dy01<<endl;
561 dy12 = y1-y2; //cout <<"L413 dy12="<<dy12<<endl;
166d14ba 562 r01 = TMath::Sqrt(dy01*dy01+dx01*dx01); //cout <<"L414 r01="<<r01<<endl;
563 r12 = TMath::Sqrt(dy12*dy12+dx12*dx12); //cout <<"L415 r12="<<r12<<endl;
172b0d90 564 m = dx12*dy01-dy12*dx01;
565 if(m*m<DBL_EPSILON){ // m == n
566 if(dy01==0.0){ // line are =
567 x = x1+c; //cout <<"L419 x="<<x<<endl;
568 y = y1; //cout <<"L420 y="<<y<<endl;
543b7370 569 //printf("dy01==0.0 x=% #12.7g y=% #12.7g\n",x,y);
172b0d90 570 return;
571 }else if(dx01==0.0){
572 x = x1;
573 y = y1+c;
543b7370 574 //printf("dx01==0.0 x=% #12.7g y=% #12.7g\n",x,y);
172b0d90 575 return;
576 }else{ // dx01!=0 and dy01 !=0.
166d14ba 577 x = x1-0.5*c*r01/dy01; //cout <<"L434 x="<<x<<endl;
578 y = y1+0.5*c*r01/dx01; //cout <<"L435 y="<<y<<endl;
543b7370 579 //printf("m*m<DBL_E x=% #12.7g y=% #12.7g\n",x,y);
172b0d90 580 } // end if
581 return;
582 } //
cee918ed 583 x = x1+c*(dx12*r01-dx01*r12)/m; //cout <<"L442 x="<<x<<endl;
584 y = y1+c*(dy12*r01-dy01*r12)/m; //cout <<"L443 y="<<y<<endl;
543b7370 585 //printf(" x=% #12.7g y=% #12.7g\n",x,y);
172b0d90 586 //cout <<"=============================================="<<endl;
587 return;
588}
589//----------------------------------------------------------------------
166d14ba 590void AliITSv11Geometry:: PrintArb8(const TGeoArb8 *a)const{
591 // Prints out the content of the TGeoArb8. Usefull for debugging.
592 // Inputs:
593 // TGeoArb8 *a
594 // Outputs:
595 // none.
596 // Return:
597 // none.
598
cee918ed 599 if(!GetDebug()) return;
600 printf("%s",a->GetName());
601 a->InspectShape();
166d14ba 602 return;
172b0d90 603}
604//----------------------------------------------------------------------
166d14ba 605void AliITSv11Geometry:: PrintPcon(const TGeoPcon *a)const{
606 // Prints out the content of the TGeoPcon. Usefull for debugging.
607 // Inputs:
608 // TGeoPcon *a
609 // Outputs:
610 // none.
611 // Return:
612 // none.
613
cee918ed 614 if(!GetDebug()) return;
166d14ba 615 cout << a->GetName() << ": N=" << a->GetNz() << " Phi1=" << a->GetPhi1()
616 << ", Dphi=" << a->GetDphi() << endl;
172b0d90 617 cout << "i\t Z \t Rmin \t Rmax" << endl;
166d14ba 618 for(Int_t iii=0;iii<a->GetNz();iii++){
619 cout << iii << "\t" << a->GetZ(iii) << "\t" << a->GetRmin(iii)
620 << "\t" << a->GetRmax(iii) << endl;
172b0d90 621 } // end for iii
166d14ba 622 return;
172b0d90 623}
624//----------------------------------------------------------------------
166d14ba 625void AliITSv11Geometry::PrintTube(const TGeoTube *a)const{
626 // Prints out the content of the TGeoTube. Usefull for debugging.
627 // Inputs:
628 // TGeoTube *a
629 // Outputs:
630 // none.
631 // Return:
632 // none.
633
cee918ed 634 if(!GetDebug()) return;
166d14ba 635 cout << a->GetName() <<": Rmin="<<a->GetRmin()
636 <<" Rmax=" <<a->GetRmax()<<" Dz="<<a->GetDz()<<endl;
637 return;
172b0d90 638}
639//----------------------------------------------------------------------
166d14ba 640void AliITSv11Geometry::PrintTubeSeg(const TGeoTubeSeg *a)const{
641 // Prints out the content of the TGeoTubeSeg. Usefull for debugging.
642 // Inputs:
643 // TGeoTubeSeg *a
644 // Outputs:
645 // none.
646 // Return:
647 // none.
648
cee918ed 649 if(!GetDebug()) return;
166d14ba 650 cout << a->GetName() <<": Phi1="<<a->GetPhi1()<<
651 " Phi2="<<a->GetPhi2()<<" Rmin="<<a->GetRmin()
652 <<" Rmax=" <<a->GetRmax()<<" Dz="<<a->GetDz()<<endl;
653 return;
172b0d90 654}
655//----------------------------------------------------------------------
166d14ba 656void AliITSv11Geometry::PrintConeSeg(const TGeoConeSeg *a)const{
657 // Prints out the content of the TGeoConeSeg. Usefull for debugging.
658 // Inputs:
659 // TGeoConeSeg *a
660 // Outputs:
661 // none.
662 // Return:
663 // none.
664
cee918ed 665 if(!GetDebug()) return;
166d14ba 666 cout << a->GetName() <<": Phi1="<<a->GetPhi1()<<
667 " Phi2="<<a->GetPhi2()<<" Rmin1="<<a->GetRmin1()
668 <<" Rmax1=" <<a->GetRmax1()<<" Rmin2="<<a->GetRmin2()
669 <<" Rmax2=" <<a->GetRmax2()<<" Dz="<<a->GetDz()<<endl;
670 return;
172b0d90 671}
672//----------------------------------------------------------------------
166d14ba 673void AliITSv11Geometry::PrintBBox(const TGeoBBox *a)const{
674 // Prints out the content of the TGeoBBox. Usefull for debugging.
675 // Inputs:
676 // TGeoBBox *a
677 // Outputs:
678 // none.
679 // Return:
680 // none.
681
cee918ed 682 if(!GetDebug()) return;
166d14ba 683 cout << a->GetName() <<": Dx="<<a->GetDX()<<
684 " Dy="<<a->GetDY()<<" Dz="<<a->GetDZ() <<endl;
685 return;
172b0d90 686}
166d14ba 687//---------------------------------------------------------------------
54c9a3d9 688void AliITSv11Geometry::CreateDefaultMaterials(){
689 // Create ITS materials
690 // Defined media here should correspond to the one defined in galice.cuts
691 // File which is red in (AliMC*) fMCApp::Init() { ReadTransPar(); }
692 // Inputs:
693 // none.
694 // Outputs:
695 // none.
696 // Return:
697 // none.
698 Int_t i;
699 Double_t w;
700
701 // Define some elements
702 TGeoElement *itsH = new TGeoElement("ITS_H","Hydrogen",1,1.00794);
703 TGeoElement *itsHe = new TGeoElement("ITS_He","Helium",2,4.002602);
704 TGeoElement *itsC = new TGeoElement("ITS_C","Carbon",6,12.0107);
705 TGeoElement *itsN = new TGeoElement("ITS_N","Nitrogen",7,14.0067);
706 TGeoElement *itsO = new TGeoElement("ITS_O","Oxygen",8,15.994);
707 TGeoElement *itsF = new TGeoElement("ITS_F","Florine",9,18.9984032);
708 TGeoElement *itsNe = new TGeoElement("ITS_Ne","Neon",10,20.1797);
709 TGeoElement *itsMg = new TGeoElement("ITS_Mg","Magnesium",12,24.3050);
710 TGeoElement *itsAl = new TGeoElement("ITS_Al","Aluminum",13,26981538);
711 TGeoElement *itsSi = new TGeoElement("ITS_Si","Silicon",14,28.0855);
712 TGeoElement *itsP = new TGeoElement("ITS_P" ,"Phosphorous",15,30.973761);
713 TGeoElement *itsS = new TGeoElement("ITS_S" ,"Sulfur",16,32.065);
714 TGeoElement *itsAr = new TGeoElement("ITS_Ar","Argon",18,39.948);
715 TGeoElement *itsTi = new TGeoElement("ITS_Ti","Titanium",22,47.867);
716 TGeoElement *itsCr = new TGeoElement("ITS_Cr","Chromium",24,51.9961);
717 TGeoElement *itsMn = new TGeoElement("ITS_Mn","Manganese",25,54.938049);
718 TGeoElement *itsFe = new TGeoElement("ITS_Fe","Iron",26,55.845);
719 TGeoElement *itsCo = new TGeoElement("ITS_Co","Cobalt",27,58.933200);
720 TGeoElement *itsNi = new TGeoElement("ITS_Ni","Nickrl",28,56.6930);
721 TGeoElement *itsCu = new TGeoElement("ITS_Cu","Copper",29,63.546);
722 TGeoElement *itsZn = new TGeoElement("ITS_Zn","Zinc",30,65.39);
723 TGeoElement *itsKr = new TGeoElement("ITS_Kr","Krypton",36,83.80);
724 TGeoElement *itsMo = new TGeoElement("ITS_Mo","Molylibdium",42,95.94);
725 TGeoElement *itsXe = new TGeoElement("ITS_Xe","Zeon",54,131.293);
726
727 // Start with the Materials since for any one material there
728 // can be defined more than one Medium.
729 // Air, dry. at 15degree C, 101325Pa at sea-level, % by volume
730 // (% by weight). Density is 351 Kg/m^3
731 // N2 78.084% (75.47%), O2 20.9476% (23.20%), Ar 0.934 (1.28%)%,
732 // C02 0.0314% (0.0590%), Ne 0.001818% (0.0012%, CH4 0.002% (),
733 // He 0.000524% (0.00007%), Kr 0.000114% (0.0003%), H2 0.00005% (3.5E-6%),
734 // Xe 0.0000087% (0.00004 %), H2O 0.0% (dry) + trace amounts at the ppm
735 // levels.
736 TGeoMixture *itsAir = new TGeoMixture("ITS_Air",9);
737 w = 75.47E-2;
738 itsAir->AddElement(itsN,w);// Nitorgen, atomic
739 w = 23.29E-2 + // O2
740 5.90E-4 * 2.*15.994/(12.0107+2.*15.994);// CO2.
741 itsAir->AddElement(itsO,w);// Oxygen, atomic
742 w = 1.28E-2;
743 itsAir->AddElement(itsAr,w);// Argon, atomic
744 w = 5.90E-4*12.0107/(12.0107+2.*15.994)+ // CO2
745 2.0E-5 *12.0107/(12.0107+4.* 1.00794); // CH4
746 itsAir->AddElement(itsC,w);// Carbon, atomic
747 w = 1.818E-5;
748 itsAir->AddElement(itsNe,w);// Ne, atomic
749 w = 3.5E-8;
750 itsAir->AddElement(itsHe,w);// Helium, atomic
751 w = 7.0E-7;
752 itsAir->AddElement(itsKr,w);// Krypton, atomic
753 w = 3.0E-6;
754 itsAir->AddElement(itsH,w);// Hydrogen, atomic
755 w = 4.0E-7;
756 itsAir->AddElement(itsXe,w);// Xenon, atomic
757 itsAir->SetDensity(351.0*fgkKgm3); //
758 itsAir->SetPressure(101325*fgkPascal);
759 itsAir->SetTemperature(15.0*fgkCelsius);
760 itsAir->SetState(TGeoMaterial::kMatStateGas);
761 //
762 // Silicone
763 TGeoMaterial *itsSiDet = new TGeoMaterial("ITS_Si",itsSi,2.33*fgkgcm3);
764 itsSiDet->SetTemperature(15.0*fgkCelsius);
765 itsSiDet->SetState(TGeoMaterial::kMatStateSolid);
766 //
767 // Epoxy C18 H19 O3
768 TGeoMixture *itsEpoxy = new TGeoMixture("ITS_Epoxy",3);
769 itsEpoxy->AddElement(itsC,18);
770 itsEpoxy->AddElement(itsH,19);
771 itsEpoxy->AddElement(itsO,3);
772 itsEpoxy->SetDensity(1.8*fgkgcm3);
773 itsEpoxy->SetTemperature(15.0*fgkCelsius);
774 itsEpoxy->SetState(TGeoMaterial::kMatStateSolid);
775 //
776 // Carbon Fiber, M55J, 60% fiber by volume. Fiber density
777 // 1.91 g/cm^3. See ToryaCA M55J data sheet.
778 //Begin_Html
779 /*
780 <A HREF="http://torayusa.com/cfa/pdfs/M55JDataSheet.pdf"> Data Sheet
781 </A>
782 */
783 //End_Html
784 TGeoMixture *itsCarbonFiber = new TGeoMixture("ITS_CarbonFiber-M55J",4);
785 // Assume that the epoxy fill in the space between the fibers and so
786 // no change in the total volume. To compute w, assume 1cm^3 total
787 // volume.
788 w = 1.91/(1.91+(1.-.60)*itsEpoxy->GetDensity());
789 itsCarbonFiber->AddElement(itsC,w);
790 w = (1.-.60)*itsEpoxy->GetDensity()/(1.91+(1.-.06)*itsEpoxy->GetDensity());
791 for(i=0;i<itsEpoxy->GetNelements();i++)
792 itsCarbonFiber->AddElement(itsEpoxy->GetElement(i),
793 itsEpoxy->GetWmixt()[i]*w);
794 itsCarbonFiber->SetDensity((1.91+(1.-.60)*itsEpoxy->GetDensity())*fgkgcm3);
795 itsCarbonFiber->SetTemperature(22.0*fgkCelsius);
796 itsCarbonFiber->SetState(TGeoMaterial::kMatStateSolid);
797 //
798 //
799 //
800 // Rohacell 51A millable foam product.
801 // C9 H13 N1 O2 52Kg/m^3
802 // Elemental composition, Private comunications with
803 // Bjorn S. Nilsen
804 //Begin_Html
805 /*
806 <A HREF="http://www.rohacell.com/en/performanceplastics8344.html">
807 Rohacell-A see Properties
808 </A>
809 */
810 //End_Html
811 TGeoMixture *itsFoam = new TGeoMixture("ITS_Foam",4);
812 itsFoam->AddElement(itsC,9);
813 itsFoam->AddElement(itsH,13);
814 itsFoam->AddElement(itsN,1);
815 itsFoam->AddElement(itsO,2);
816 itsFoam->SetTitle("Rohacell 51 A");
817 itsFoam->SetDensity(52.*fgkKgm3);
818 itsFoam->SetTemperature(22.0*fgkCelsius);
819 itsFoam->SetState(TGeoMaterial::kMatStateSolid);
820 //
821 // Kapton % by weight, H 2.6362, C69.1133, N 7.3270, O 20.0235
822 // Density 1.42 g/cm^3
823 //Begin_Html
824 /*
825 <A HREF="http://www2.dupont.com/Kapton/en_US/assets/downloads/pdf/summaryofprop.pdf">
826 Kapton. also see </A>
827 <A HREF="http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=179">
828 </A>
829 */
830 //End_Html
831 TGeoMixture *itsKapton = new TGeoMixture("ITS_Kapton",4);
832 itsKapton->AddElement(itsH,0.026362);
833 itsKapton->AddElement(itsC,0.691133);
834 itsKapton->AddElement(itsN,0.073270);
835 itsKapton->AddElement(itsO,0.200235);
836 itsKapton->SetTitle("Kapton ribon and cable base");
837 itsKapton->SetDensity(1.42*fgkgcm3);
838 itsKapton->SetTemperature(22.0*fgkCelsius);
839 itsKapton->SetState(TGeoMaterial::kMatStateSolid);
840 //
841 // UPILEX-S C16 H6 O4 N2 polymer (a Kapton like material)
842 // Density 1.47 g/cm^3
843 //Begin_Html
844 /*
845 <A HREF="http://northamerica.ube.com/page.php?pageid=9">
846 UPILEX-S. also see </A>
847 <A HREF="http://northamerica.ube.com/page.php?pageid=81">
848 </A>
849 */
850 //End_Html
851 TGeoMixture *itsUpilex = new TGeoMixture("ITS_Upilex",4);
852 itsUpilex->AddElement(itsC,16);
853 itsUpilex->AddElement(itsH,6);
854 itsUpilex->AddElement(itsN,2);
855 itsUpilex->AddElement(itsO,4);
856 itsUpilex->SetTitle("Upilex ribon, cable, and pcb base");
857 itsUpilex->SetDensity(1.47*fgkgcm3);
858 itsUpilex->SetTemperature(22.0*fgkCelsius);
859 itsUpilex->SetState(TGeoMaterial::kMatStateSolid);
860 //
861 // Aluminum 6061 (Al used by US groups)
862 // % by weight, Cr 0.04-0.35 range [0.0375 nominal value used]
863 // Cu 0.15-0.4 [0.275], Fe Max 0.7 [0.35], Mg 0.8-1.2 [1.0],
864 // Mn Max 0.15 [0.075] Si 0.4-0.8 [0.6], Ti Max 0.15 [0.075],
865 // Zn Max 0.25 [0.125], Rest Al [97.4625]. Density 2.7 g/cm^3
866 //Begin_Html
867 /*
868 <A HREG="http://www.matweb.com/SpecificMaterial.asp?bassnum=MA6016&group=General">
869 Aluminum 6061 specifications
870 </A>
871 */
872 //End_Html
873 TGeoMixture *itsAl6061 = new TGeoMixture("ITS_Al6061",9);
874 itsAl6061->AddElement(itsCr,0.000375);
875 itsAl6061->AddElement(itsCu,0.00275);
876 itsAl6061->AddElement(itsFe,0.0035);
877 itsAl6061->AddElement(itsMg,0.01);
878 itsAl6061->AddElement(itsMn,0.00075);
879 itsAl6061->AddElement(itsSi,0.006);
880 itsAl6061->AddElement(itsTi,0.00075);
881 itsAl6061->AddElement(itsZn,0.00125);
882 itsAl6061->AddElement(itsAl,0.974625);
883 itsAl6061->SetTitle("Aluminum Alloy 6061");
884 itsAl6061->SetDensity(2.7*fgkgcm3);
885 itsAl6061->SetTemperature(22.0*fgkCelsius);
886 itsAl6061->SetState(TGeoMaterial::kMatStateSolid);
887 //
888 // Aluminum 7075 (Al used by Italian groups)
889 // % by weight, Cr 0.18-0.28 range [0.23 nominal value used]
890 // Cu 1.2-2.0 [1.6], Fe Max 0.5 [0.25], Mg 2.1-2.9 [2.5],
891 // Mn Max 0.3 [0.125] Si Max 0.4 [0.2], Ti Max 0.2 [0.1],
892 // Zn 5.1-6.1 [5.6], Rest Al [89.395]. Density 2.81 g/cm^3
893 //Begin_Html
894 /*
895 <A HREG="http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7075T6">
896 Aluminum 7075 specifications
897 </A>
898 */
899 //End_Html
900 TGeoMixture *itsAl7075 = new TGeoMixture("ITS_Al7075",9);
901 itsAl7075->AddElement(itsCr,0.0023);
902 itsAl7075->AddElement(itsCu,0.016);
903 itsAl7075->AddElement(itsFe,0.0025);
904 itsAl7075->AddElement(itsMg,0.025);
905 itsAl7075->AddElement(itsMn,0.00125);
906 itsAl7075->AddElement(itsSi,0.002);
907 itsAl7075->AddElement(itsTi,0.001);
908 itsAl7075->AddElement(itsZn,0.056);
909 itsAl7075->AddElement(itsAl,0.89395);
910 itsAl7075->SetTitle("Aluminum Alloy 7075");
911 itsAl7075->SetDensity(2.81*fgkgcm3);
912 itsAl7075->SetTemperature(22.0*fgkCelsius);
913 itsAl7075->SetState(TGeoMaterial::kMatStateSolid);
914 //
915 // "Ruby" spheres, Al2 O3
916 // "Ruby" Sphere posts, Ryton R-4 04
917 //Begin_Html
918 /*
919 <A HREF="">
920 Ruby Sphere Posts
921 </A>
922 */
923 //End_Html
924 TGeoMixture *itsRuby = new TGeoMixture("ITS_RubySphere",2);
925 itsRuby->AddElement(itsAl,2);
926 itsRuby->AddElement(itsO,3);
927 itsRuby->SetTitle("Ruby reference sphere");
928 itsRuby->SetDensity(2.81*fgkgcm3);
929 itsRuby->SetTemperature(22.0*fgkCelsius);
930 itsRuby->SetState(TGeoMaterial::kMatStateSolid);
931 //
932 //
933 // Inox, AISI 304L, compoistion % by weight (assumed)
934 // C Max 0.03 [0.015], Mn Max 2.00 [1.00], Si Max 1.00 [0.50]
935 // P Max 0.045 [0.0225], S Max 0.03 [0.015], Ni 8.0-10.5 [9.25]
936 // Cr 18-20 [19.], Mo 2.-2.5 [2.25], rest Fe: density 7.93 Kg/dm^3
937 //Begin_Html
938 /*
939 <A HREF="http://www.cimap.fr/caracter.pdf">
940 Stainless steal (INOX) AISI 304L composition
941 </A>
942 */
943 //End_Html
944 TGeoMixture *itsInox304L = new TGeoMixture("ITS_Inox304L",9);
945 itsInox304L->AddElement(itsC,0.00015);
946 itsInox304L->AddElement(itsMn,0.010);
947 itsInox304L->AddElement(itsSi,0.005);
948 itsInox304L->AddElement(itsP,0.000225);
949 itsInox304L->AddElement(itsS,0.00015);
950 itsInox304L->AddElement(itsNi,0.0925);
951 itsInox304L->AddElement(itsCr,0.1900);
952 itsInox304L->AddElement(itsMo,0.0225);
953 itsInox304L->AddElement(itsFe,0.679475); // Rest Fe
954 itsInox304L->SetTitle("ITS Stainless Steal (Inox) type AISI 304L");
955 itsInox304L->SetDensity(7.93*fgkKgdm3);
956 itsInox304L->SetTemperature(22.0*fgkCelsius);
957 itsInox304L->SetState(TGeoMaterial::kMatStateSolid);
958 //
959 // Inox, AISI 316L, composition % by weight (assumed)
960 // C Max 0.03 [0.015], Mn Max 2.00 [1.00], Si Max 1.00 [0.50]
961 // P Max 0.045 [0.0225], S Max 0.03 [0.015], Ni 10.0-14. [12.]
962 // Cr 16-18 [17.], Mo 2-3 [2.5]: density 7.97 Kg/dm^3
963 //Begin_Html
964 /*
965 <A HREF="http://www.cimap.fr/caracter.pdf">
966 Stainless steal (INOX) AISI 316L composition
967 </A>
968 */
969 //End_Html
970 TGeoMixture *itsInox316L = new TGeoMixture("ITS_Inox316L",9);
971 itsInox316L->AddElement(itsC,0.00015);
972 itsInox316L->AddElement(itsMn,0.010);
973 itsInox316L->AddElement(itsSi,0.005);
974 itsInox316L->AddElement(itsP,0.000225);
975 itsInox316L->AddElement(itsS,0.00015);
976 itsInox316L->AddElement(itsNi,0.12);
977 itsInox316L->AddElement(itsCr,0.17);
978 itsInox316L->AddElement(itsMo,0.025);
979 itsInox316L->AddElement(itsFe,0.66945); // Rest Fe
980 itsInox316L->SetTitle("ITS Stainless Steal (Inox) type AISI 316L");
981 itsInox316L->SetDensity(7.97*fgkKgdm3);
982 itsInox316L->SetTemperature(22.0*fgkCelsius);
983 itsInox316L->SetState(TGeoMaterial::kMatStateSolid);
984 //
985 // Inox, Phynox or Elgiloy AMS 5833, composition % by weight
986 // C Max 0.15 [0.15], Mn Max 2.00 [2.00], Be max 0.0001 [none]
987 // Ni 18. [18.], Cr 21.5 [21.5], Mo 7.5 [7.5], Co 42 [42.]:
988 // density 8.3 Kg/dm^3
989 //Begin_Html
990 /*
991 <A HREF="http://www.freepatentsonline.com/20070032816.html">
992 Compostion of Phynox or Elgiloy AMS 5833, also see
993 </A>
994 <A HREF="http://www.alloywire.com/phynox_alloy.html">
995 under corss reference number [0024].
996 </A>
997 */
998 //End_Html
999 TGeoMixture *itsPhynox = new TGeoMixture("ITS_Phynox",7);
1000 itsPhynox->AddElement(itsC,0.0015);
1001 itsPhynox->AddElement(itsMn,0.020);
1002 itsPhynox->AddElement(itsNi,0.18);
1003 itsPhynox->AddElement(itsCr,0.215);
1004 itsPhynox->AddElement(itsMo,0.075);
1005 itsPhynox->AddElement(itsCo,0.42);
1006 itsPhynox->AddElement(itsFe,0.885);
1007 itsPhynox->SetTitle("ITS Cooling tube alloy");
1008 itsPhynox->SetDensity(8.3*fgkgcm3);
1009 itsPhynox->SetTemperature(22.0*fgkCelsius);
1010 itsPhynox->SetState(TGeoMaterial::kMatStateSolid);
1011 //
1012 // G10FR4
1013 //
1014 // Demineralized Water H2O SDD & SSD Cooling liquid
1015 TGeoMixture *itsWater = new TGeoMixture("ITS_Water",2);
1016 itsWater->AddElement(itsH,2);
1017 itsWater->AddElement(itsO,1);
1018 itsWater->SetTitle("ITS Cooling Water");
1019 itsWater->SetDensity(1.0*fgkgcm3);
1020 itsWater->SetTemperature(22.0*fgkCelsius);
1021 itsWater->SetState(TGeoMaterial::kMatStateLiquid);
1022 //
1023 // Freon SPD Cooling liquid PerFluorobuthane C4F10
1024 //Begin_Html
1025 /*
1026 <A HREF=" http://st-support-cooling-electronics.web.cern.ch/st-support-cooling-electronics/default.htm">
1027 SPD 2 phase cooling using PerFluorobuthane
1028 </A>
1029 */
1030 //End_Html
1031 TGeoMixture *itsFreon = new TGeoMixture("ITS_SPD_Freon",2);
1032 itsFreon->AddElement(itsC,4);
1033 itsFreon->AddElement(itsF,10);
1034 itsFreon->SetTitle("ITS SPD 2 phase Cooling freon");
1035 itsFreon->SetDensity(1.52*fgkgcm3);
1036 itsFreon->SetTemperature(22.0*fgkCelsius);
1037 itsFreon->SetState(TGeoMaterial::kMatStateLiquid);
1038 //
f7a1cc68 1039 // Int_t ifield = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Integ();
1040 // Float_t fieldm = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max();
54c9a3d9 1041
1042 // Float_t tmaxfd = 0.1;// 1.0;// Degree
1043 // Float_t stemax = 1.0;// cm
1044 // Float_t deemax = 0.1;// 30.0;// Fraction of particle's energy 0<deemax<=1
1045 // Float_t epsil = 1.0E-4;// 1.0; cm
1046 // Float_t stmin = 0.0; // cm "Default value used"
1047
1048 // Float_t tmaxfdSi = 0.1; // .10000E+01; // Degree
1049 // Float_t stemaxSi = 0.0075; // .10000E+01; // cm
1050 // Float_t deemaxSi = 0.1; // Fraction of particle's energy 0<deemax<=1
1051 // Float_t epsilSi = 1.0E-4;// .10000E+01;
1052 /*
1053 Float_t stminSi = 0.0; // cm "Default value used"
1054
1055 Float_t tmaxfdAir = 0.1; // .10000E+01; // Degree
1056 Float_t stemaxAir = .10000E+01; // cm
1057 Float_t deemaxAir = 0.1; // 0.30000E-02; // Fraction of particle's energy 0<deemax<=1
1058 Float_t epsilAir = 1.0E-4;// .10000E+01;
1059 Float_t stminAir = 0.0; // cm "Default value used"
1060
1061 Float_t tmaxfdServ = 1.0; // 10.0; // Degree
1062 Float_t stemaxServ = 1.0; // 0.01; // cm
1063 Float_t deemaxServ = 0.5; // 0.1; // Fraction of particle's energy 0<deemax<=1
1064 Float_t epsilServ = 1.0E-3; // 0.003; // cm
1065 Float_t stminServ = 0.0; //0.003; // cm "Default value used"
1066
1067 // Freon PerFluorobuthane C4F10 see
1068 // http://st-support-cooling-electronics.web.cern.ch/
1069 // st-support-cooling-electronics/default.htm
1070 Float_t afre[2] = { 12.011,18.9984032 };
1071 Float_t zfre[2] = { 6., 9. };
1072 Float_t wfre[2] = { 4.,10. };
1073 Float_t densfre = 1.52;
1074
1075 //CM55J
1076 Float_t aCM55J[4]={12.0107,14.0067,15.9994,1.00794};
1077 Float_t zCM55J[4]={6.,7.,8.,1.};
1078 Float_t wCM55J[4]={0.908508078,0.010387573,0.055957585,0.025146765};
1079 Float_t dCM55J = 1.63;
1080
1081 //ALCM55J
1082 Float_t aALCM55J[5]={12.0107,14.0067,15.9994,1.00794,26.981538};
1083 Float_t zALCM55J[5]={6.,7.,8.,1.,13.};
1084 Float_t wALCM55J[5]={0.817657902,0.0093488157,0.0503618265,0.0226320885,0.1};
1085 Float_t dALCM55J = 1.9866;
1086
1087 //Si Chips
1088 Float_t aSICHIP[6]={12.0107,14.0067,15.9994,1.00794,28.0855,107.8682};
1089 Float_t zSICHIP[6]={6.,7.,8.,1.,14., 47.};
1090 Float_t wSICHIP[6]={0.039730642,0.001396798,0.01169634,
1091 0.004367771,0.844665,0.09814344903};
1092 Float_t dSICHIP = 2.36436;
1093
1094 //Inox
1095 Float_t aINOX[9]={12.0107,54.9380, 28.0855,30.9738,32.066,
1096 58.6928,55.9961,95.94,55.845};
1097 Float_t zINOX[9]={6.,25.,14.,15.,16., 28.,24.,42.,26.};
1098 Float_t wINOX[9]={0.0003,0.02,0.01,0.00045,0.0003,0.12,0.17,0.025,0.654};
1099 Float_t dINOX = 8.03;
1100
1101 //SDD HV microcable
1102 Float_t aHVm[5]={12.0107,1.00794,14.0067,15.9994,26.981538};
1103 Float_t zHVm[5]={6.,1.,7.,8.,13.};
1104 Float_t wHVm[5]={0.520088819984,0.01983871336,0.0551367996,0.157399667056, 0.247536};
1105 Float_t dHVm = 1.6087;
1106
1107 //SDD LV+signal cable
1108 Float_t aLVm[5]={12.0107,1.00794,14.0067,15.9994,26.981538};
1109 Float_t zLVm[5]={6.,1.,7.,8.,13.};
1110 Float_t wLVm[5]={0.21722436468,0.0082859922,0.023028867,0.06574077612, 0.68572};
1111 Float_t dLVm = 2.1035;
1112
1113 //SDD hybrid microcab
1114 Float_t aHLVm[5]={12.0107,1.00794,14.0067,15.9994,26.981538};
1115 Float_t zHLVm[5]={6.,1.,7.,8.,13.};
1116 Float_t wHLVm[5]={0.24281879711,0.00926228815,0.02574224025,0.07348667449, 0.64869};
1117 Float_t dHLVm = 2.0502;
1118
1119 //SDD anode microcab
1120 Float_t aALVm[5]={12.0107,1.00794,14.0067,15.9994,26.981538};
1121 Float_t zALVm[5]={6.,1.,7.,8.,13.};
1122 Float_t wALVm[5]={0.392653705471,0.0128595919215,
1123 0.041626868025,0.118832707289, 0.431909};
1124 Float_t dALVm = 2.0502;
1125
1126 //X7R capacitors
1127 Float_t aX7R[7]={137.327,47.867,15.9994,58.6928,63.5460,118.710,207.2};
1128 Float_t zX7R[7]={56.,22.,8.,28.,29.,50.,82.};
1129 Float_t wX7R[7]={0.251639432,0.084755042,0.085975822,
1130 0.038244751,0.009471271,0.321736471,0.2081768};
1131 Float_t dX7R = 7.14567;
1132
1133 // AIR
1134 Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
1135 Float_t zAir[4]={6.,7.,8.,18.};
1136 Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
1137 Float_t dAir = 1.20479E-3;
1138
1139 // Water
1140 Float_t aWater[2]={1.00794,15.9994};
1141 Float_t zWater[2]={1.,8.};
1142 Float_t wWater[2]={0.111894,0.888106};
1143 Float_t dWater = 1.0;
1144
1145 // CERAMICS
1146 // 94.4% Al2O3 , 2.8% SiO2 , 2.3% MnO , 0.5% Cr2O3
1147 Float_t acer[5] = { 26.981539,15.9994,28.0855,54.93805,51.9961 };
1148 Float_t zcer[5] = { 13., 8., 14., 25., 24. };
1149 Float_t wcer[5] = {.4443408,.5213375,.0130872,.0178135,.003421};
1150 Float_t denscer = 3.6;
1151
1152 // G10FR4
1153 Float_t zG10FR4[14] = {14.00, 20.00, 13.00, 12.00, 5.00,
1154 22.00, 11.00, 19.00, 26.00, 9.00,
1155 8.00, 6.00, 7.00, 1.00};
1156 Float_t aG10FR4[14] = {28.0855000,40.0780000,26.9815380,24.3050000,
1157 10.8110000,47.8670000,22.9897700,39.0983000,
1158 55.8450000,18.9984000,15.9994000,12.0107000,
1159 14.0067000,1.0079400};
1160 Float_t wG10FR4[14] = {0.15144894,0.08147477,0.04128158,0.00904554,
1161 0.01397570,0.00287685,0.00445114,0.00498089,
1162 0.00209828,0.00420000,0.36043788,0.27529426,
1163 0.01415852,0.03427566};
1164 Float_t densG10FR4= 1.8;
1165
1166 //--- EPOXY --- C18 H19 O3
1167 Float_t aEpoxy[3] = {15.9994, 1.00794, 12.0107} ;
1168 Float_t zEpoxy[3] = { 8., 1., 6.} ;
1169 Float_t wEpoxy[3] = { 3., 19., 18.} ;
1170 Float_t dEpoxy = 1.8 ;
1171
1172 // rohacell: C9 H13 N1 O2
1173 Float_t arohac[4] = {12.01, 1.01, 14.010, 16.};
1174 Float_t zrohac[4] = { 6., 1., 7., 8.};
1175 Float_t wrohac[4] = { 9., 13., 1., 2.};
1176 Float_t drohac = 0.05;
1177
1178 // If he/she means stainless steel (inox) + Aluminium and Zeff=15.3383 then
1179 // %Al=81.6164 %inox=100-%Al
1180 Float_t aInAl[5] = {27., 55.847,51.9961,58.6934,28.0855 };
1181 Float_t zInAl[5] = {13., 26.,24.,28.,14. };
1182 Float_t wInAl[5] = {.816164, .131443,.0330906,.0183836,.000919182};
1183 Float_t dInAl = 3.075;
1184
1185 // Kapton
1186 Float_t aKapton[4]={1.00794,12.0107, 14.010,15.9994};
1187 Float_t zKapton[4]={1.,6.,7.,8.};
1188 Float_t wKapton[4]={0.026362,0.69113,0.07327,0.209235};
1189 Float_t dKapton = 1.42;
1190
1191 //SDD ruby sph.
1192 Float_t aAlOxide[2] = { 26.981539,15.9994};
1193 Float_t zAlOxide[2] = { 13., 8.};
1194 Float_t wAlOxide[2] = {0.4707, 0.5293};
1195 Float_t dAlOxide = 3.97;
1196 */
1197}
1198//---------------------------------------------------------------------
166d14ba 1199void AliITSv11Geometry::DrawCrossSection(const TGeoPcon *p,
1200 Int_t fillc,Int_t fills,
1201 Int_t linec,Int_t lines,Int_t linew,
1202 Int_t markc,Int_t marks,Float_t marksize)const{
1203 // Draws a cross sectional view of the TGeoPcon, Primarily for debugging.
1204 // A TCanvas should exist first.
1205 // Inputs:
1206 // TGeoPcon *p The TGeoPcon to be "drawn"
1207 // Int_t fillc The fill color to be used
1208 // Int_t fills The fill style to be used
1209 // Int_t linec The line color to be used
1210 // Int_t lines The line style to be used
1211 // Int_t linew The line width to be used
1212 // Int_t markc The markder color to be used
1213 // Int_t marks The markder style to be used
1214 // Float_t marksize The marker size
1215 // Outputs:
1216 // none.
1217 // Return:
1218 // none.
1219 Int_t n=0,m=0,i=0;
1220 Double_t *z=0,*r=0;
1221 TPolyMarker *pts=0;
1222 TPolyLine *line=0;
172b0d90 1223
166d14ba 1224 n = p->GetNz();
1225 if(n<=0) return;
1226 m = 2*n+1;
1227 z = new Double_t[m];
1228 r = new Double_t[m];
1229
1230 for(i=0;i<n;i++){
1231 z[i] = p->GetZ(i);
1232 r[i] = p->GetRmax(i);
1233 z[i+n] = p->GetZ(n-1-i);
1234 r[i+n] = p->GetRmin(n-1-i);
1235 } // end for i
1236 z[n-1] = z[0];
1237 r[n-1] = r[0];
1238
1239 line = new TPolyLine(n,z,r);
1240 pts = new TPolyMarker(n,z,r);
1241
1242 line->SetFillColor(fillc);
1243 line->SetFillStyle(fills);
1244 line->SetLineColor(linec);
1245 line->SetLineStyle(lines);
1246 line->SetLineWidth(linew);
1247 pts->SetMarkerColor(markc);
1248 pts->SetMarkerStyle(marks);
1249 pts->SetMarkerSize(marksize);
1250
1251 line->Draw("f");
1252 line->Draw();
1253 pts->Draw();
1254
1255 delete[] z;
1256 delete[] r;
1257
1258 cout<<"Hit Return to continue"<<endl;
1259 cin >> n;
1260 delete line;
1261 delete pts;
1262 return;
1263}
db486a6e 1264//______________________________________________________________________
1265Bool_t AliITSv11Geometry::AngleOfIntersectionWithLine(Double_t x0,Double_t y0,
1266 Double_t x1,Double_t y1,
1267 Double_t xc,Double_t yc,
1268 Double_t rc,Double_t &t0,
1269 Double_t &t1)const{
1270 // Computes the angles, t0 and t1 corresponding to the intersection of
1271 // the line, defined by {x0,y0} {x1,y1}, and the circle, defined by
1272 // its center {xc,yc} and radius r. If the line does not intersect the
1273 // line, function returns kFALSE, otherwise it returns kTRUE. If the
1274 // line is tangent to the circle, the angles t0 and t1 will be the same.
1275 // Inputs:
1276 // Double_t x0 X of first point defining the line
1277 // Double_t y0 Y of first point defining the line
1278 // Double_t x1 X of Second point defining the line
1279 // Double_t y1 Y of Second point defining the line
1280 // Double_t xc X of Circle center point defining the line
1281 // Double_t yc Y of Circle center point defining the line
1282 // Double_t r radius of circle
1283 // Outputs:
1284 // Double_t &t0 First angle where line intersects circle
1285 // Double_t &t1 Second angle where line intersects circle
1286 // Return:
1287 // kTRUE, line intersects circle, kFALSE line does not intersect circle
1288 // or the line is not properly defined point {x0,y0} and {x1,y1}
1289 // are the same point.
1290 Double_t dx,dy,cx,cy,s2,t[4];
1291 Double_t a0,b0,c0,a1,b1,c1,sinthp,sinthm,costhp,costhm;
1292 Int_t i,j;
1293
1294 t0 = 400.0;
1295 t1 = 400.0;
1296 dx = x1-x0;
1297 dy = y1-y0;
1298 cx = xc-x0;
1299 cy = yc-y0;
1300 s2 = dx*dx+dy*dy;
1301 if(s2==0.0) return kFALSE;
1302
1303 a0 = rc*rc*s2;
1304 if(a0==0.0) return kFALSE;
1305 b0 = 2.0*rc*dx*(dx*cy-cx*dy);
1306 c0 = dx*dx*cy*cy-2.0*dy*dx*cy*cx+cx*cx*dy*dy-rc*rc*dy*dy;
1307 c0 = 0.25*b0*b0/(a0*a0)-c0/a0;
1308 if(c0<0.0) return kFALSE;
1309 sinthp = -0.5*b0/a0+TMath::Sqrt(c0);
1310 sinthm = -0.5*b0/a0-TMath::Sqrt(c0);
1311
1312 a1 = rc*rc*s2;
1313 if(a1==0.0) return kFALSE;
1314 b1 = 2.0*rc*dy*(dy*cx-dx*cy);
1315 c1 = dy*dy*cx*cx-2.0*dy*dx*cy*cx+dx*dx*cy*cy-rc*rc*dx*dx;
1316 c1 = 0.25*b1*b1/(a1*a1)-c1/a1;
1317 if(c1<0.0) return kFALSE;
1318 costhp = -0.5*b1/a1+TMath::Sqrt(c1);
1319 costhm = -0.5*b1/a1-TMath::Sqrt(c1);
1320
1321 t[0] = t[1] = t[2] = t[3] = 400.;
1322 a0 = TMath::ATan2(sinthp,costhp); if(a0<0.0) a0 += 2.0*TMath::Pi();
1323 a1 = TMath::ATan2(sinthp,costhm); if(a1<0.0) a1 += 2.0*TMath::Pi();
1324 b0 = TMath::ATan2(sinthm,costhp); if(b0<0.0) b0 += 2.0*TMath::Pi();
1325 b1 = TMath::ATan2(sinthm,costhm); if(b1<0.0) b1 += 2.0*TMath::Pi();
1326 x1 = xc+rc*TMath::Cos(a0);
1327 y1 = yc+rc*TMath::Sin(a0);
1328 s2 = dx*(y1-y0)-dy*(x1-x0);
1329 if(s2*s2<DBL_EPSILON) t[0] = a0*TMath::RadToDeg();
1330 x1 = xc+rc*TMath::Cos(a1);
1331 y1 = yc+rc*TMath::Sin(a1);
1332 s2 = dx*(y1-y0)-dy*(x1-x0);
1333 if(s2*s2<DBL_EPSILON) t[1] = a1*TMath::RadToDeg();
1334 x1 = xc+rc*TMath::Cos(b0);
1335 y1 = yc+rc*TMath::Sin(b0);
1336 s2 = dx*(y1-y0)-dy*(x1-x0);
1337 if(s2*s2<DBL_EPSILON) t[2] = b0*TMath::RadToDeg();
1338 x1 = xc+rc*TMath::Cos(b1);
1339 y1 = yc+rc*TMath::Sin(b1);
1340 s2 = dx*(y1-y0)-dy*(x1-x0);
1341 if(s2*s2<DBL_EPSILON) t[3] = b1*TMath::RadToDeg();
1342 for(i=0;i<4;i++)for(j=i+1;j<4;j++){
1343 if(t[i]>t[j]) {t0 = t[i];t[i] = t[j];t[j] = t0;}
1344 } // end for i,j
1345 t0 = t[0];
1346 t1 = t[1];
1347 //
1348 return kTRUE;
1349}
1350//______________________________________________________________________
1351Double_t AliITSv11Geometry::AngleForRoundedCorners0(Double_t dx,Double_t dy,
1352 Double_t sdr)const{
1353 // Basic function used to determine the ending angle and starting angles
1354 // for rounded corners given the relative distance between the centers
1355 // of the circles and the difference/sum of their radii. Case 0.
1356 // Inputs:
1357 // Double_t dx difference in x locations of the circle centers
1358 // Double_t dy difference in y locations of the circle centers
1359 // Double_t sdr difference or sum of the circle radii
1360 // Outputs:
1361 // none.
1362 // Return:
1363 // the angle in Degrees
1364 Double_t a,b;
1365
1366 b = dy*dy+dx*dx-sdr*sdr;
1367 if(b<0.0) Error("AngleForRoundedCorners0",
1368 "dx^2(%e)+dy^2(%e)-sdr^2(%e)=b=%e<0",dx,dy,sdr,b);
1369 b = TMath::Sqrt(b);
1370 a = -sdr*dy+dx*b;
1371 b = -sdr*dx-dy*b;
1372 return TMath::ATan2(a,b)*TMath::RadToDeg();
1373
1374}
1375//______________________________________________________________________
1376Double_t AliITSv11Geometry::AngleForRoundedCorners1(Double_t dx,Double_t dy,
1377 Double_t sdr)const{
1378 // Basic function used to determine the ending angle and starting angles
1379 // for rounded corners given the relative distance between the centers
1380 // of the circles and the difference/sum of their radii. Case 1.
1381 // Inputs:
1382 // Double_t dx difference in x locations of the circle centers
1383 // Double_t dy difference in y locations of the circle centers
1384 // Double_t sdr difference or sum of the circle radii
1385 // Outputs:
1386 // none.
1387 // Return:
1388 // the angle in Degrees
1389 Double_t a,b;
1390
1391 b = dy*dy+dx*dx-sdr*sdr;
1392 if(b<0.0) Error("AngleForRoundedCorners1",
1393 "dx^2(%e)+dy^2(%e)-sdr^2(%e)=b=%e<0",dx,dy,sdr,b);
1394 b = TMath::Sqrt(b);
1395 a = -sdr*dy-dx*b;
1396 b = -sdr*dx+dy*b;
1397 return TMath::ATan2(a,b)*TMath::RadToDeg();
1398
1399}
166d14ba 1400//----------------------------------------------------------------------
db486a6e 1401void AliITSv11Geometry::AnglesForRoundedCorners(Double_t x0,Double_t y0,
1402 Double_t r0,Double_t x1,
1403 Double_t y1,Double_t r1,
1404 Double_t &t0,Double_t &t1)
1405 const{
1406 // Function to compute the ending angle, for arc 0, and starting angle,
1407 // for arc 1, such that a straight line will connect them with no
1408 // discontinuities.
1409 //Begin_Html
1410 /*
1411 <img src="picts/ITS/AliITSv11Geometry_AnglesForRoundedCorners.gif">
1412 */
1413 //End_Html
1414 // Inputs:
1415 // Double_t x0 X Coordinate of arc 0 center.
1416 // Double_t y0 Y Coordinate of arc 0 center.
1417 // Double_t r0 Radius of curvature of arc 0. For signe see figure.
1418 // Double_t x1 X Coordinate of arc 1 center.
1419 // Double_t y1 Y Coordinate of arc 1 center.
1420 // Double_t r1 Radius of curvature of arc 1. For signe see figure.
1421 // Outputs:
1422 // Double_t t0 Ending angle of arch 0, with respect to x axis, Degrees.
1423 // Double_t t1 Starting angle of arch 1, with respect to x axis,
1424 // Degrees.
1425 // Return:
1426 // none.
1427 Double_t t;
1428
1429 if(r0>=0.0&&r1>=0.0) { // Inside to inside ++
1430 t = AngleForRoundedCorners1(x1-x0,y1-y0,r1-r0);
1431 t0 = t1 = t;
1432 return;
1433 }else if(r0>=0.0&&r1<=0.0){ // Inside to Outside +-
1434 r1 = -r1; // make positive
1435 t = AngleForRoundedCorners0(x1-x0,y1-y0,r1+r0);
1436 t0 = 180.0 + t;
1437 if(t0<0.0) t += 360.;
1438 if(t<0.0) t += 360.;
1439 t1 = t;
1440 return;
1441 }else if(r0<=0.0&&r1>=0.0){ // Outside to Inside -+
1442 r0 = - r0; // make positive
1443 t = AngleForRoundedCorners1(x1-x0,y1-y0,r1+r0);
1444 t0 = 180.0 + t;
1445 if(t0>180.) t0 -= 360.;
1446 if(t >180.) t -= 360.;
1447 t1 = t;
1448 return;
1449 }else if(r0<=0.0&&r1<=0.0) { // Outside to outside --
1450 r0 = -r0; // make positive
1451 r1 = -r1; // make positive
1452 t = AngleForRoundedCorners0(x1-x0,y1-y0,r1-r0);
1453 t0 = t1 = t;
1454 return;
1455 } // end if
1456 return;
1457}
1458//----------------------------------------------------------------------
1459void AliITSv11Geometry::MakeFigure1(Double_t x0,Double_t y0,Double_t r0,
1460 Double_t x1,Double_t y1,Double_t r1){
1461 // Function to create the figure discribing how the function
1462 // AnglesForRoundedCorners works.
1463 //
1464 // Inputs:
1465 // Double_t x0 X Coordinate of arc 0 center.
1466 // Double_t y0 Y Coordinate of arc 0 center.
1467 // Double_t r0 Radius of curvature of arc 0. For signe see figure.
1468 // Double_t x1 X Coordinate of arc 1 center.
1469 // Double_t y1 Y Coordinate of arc 1 center.
1470 // Double_t r1 Radius of curvature of arc 1. For signe see figure.
1471 // Outputs:
1472 // none.
1473 // Return:
1474 // none.
1475 Double_t t0[4],t1[4],xa0[4],ya0[4],xa1[4],ya1[4],ra0[4],ra1[4];
1476 Double_t xmin,ymin,xmax,ymax,h;
1477 Int_t j;
1478
1479 for(j=0;j<4;j++) {
1480 ra0[j] = r0; if(j%2) ra0[j] = -r0;
1481 ra1[j] = r1; if(j>1) ra1[j] = -r1;
1482 AnglesForRoundedCorners(x0,y0,ra0[j],x1,y1,ra1[j],t0[j],t1[j]);
1483 xa0[j] = TMath::Abs(r0)*CosD(t0[j])+x0;
1484 ya0[j] = TMath::Abs(r0)*SinD(t0[j])+y0;
1485 xa1[j] = TMath::Abs(r1)*CosD(t1[j])+x1;
1486 ya1[j] = TMath::Abs(r1)*SinD(t1[j])+y1;
1487 } // end for j
1488 if(r0<0.0) r0 = -r0;
1489 if(r1<0.0) r1 = -r1;
1490 xmin = TMath::Min(x0 - r0,x1-r1);
1491 ymin = TMath::Min(y0 - r0,y1-r1);
1492 xmax = TMath::Max(x0 + r0,x1+r1);
1493 ymax = TMath::Max(y0 + r0,y1+r1);
1494 for(j=1;j<4;j++) {
1495 xmin = TMath::Min(xmin,xa0[j]);
1496 xmin = TMath::Min(xmin,xa1[j]);
1497 ymin = TMath::Min(ymin,ya0[j]);
1498 ymin = TMath::Min(ymin,ya1[j]);
1499
1500 xmax = TMath::Max(xmax,xa0[j]);
1501 xmax = TMath::Max(xmax,xa1[j]);
1502 ymax = TMath::Max(ymax,ya0[j]);
1503 ymax = TMath::Max(ymax,ya1[j]);
1504 } // end for j
1505 if(xmin<0.0) xmin *= 1.1; else xmin *= 0.9;
1506 if(ymin<0.0) ymin *= 1.1; else ymin *= 0.9;
1507 if(xmax<0.0) xmax *= 0.9; else xmax *= 1.1;
1508 if(ymax<0.0) ymax *= 0.9; else ymax *= 1.1;
1509 j = (Int_t)(500.0*(ymax-ymin)/(xmax-xmin));
1510 TCanvas *can = new TCanvas("AliITSv11Geometry_AnglesForRoundedCorners",
1511 "Figure for AliITSv11Geometry",500,j);
1512 h = ymax-ymin; if(h<0) h = -h;
1513 can->Range(xmin,ymin,xmax,ymax);
1514 TArc *c0 = new TArc(x0,y0,r0);
1515 TArc *c1 = new TArc(x1,y1,r1);
1516 TLine *line[4];
1517 TArrow *ar0[4];
1518 TArrow *ar1[4];
1519 for(j=0;j<4;j++){
1520 ar0[j] = new TArrow(x0,y0,xa0[j],ya0[j]);
1521 ar1[j] = new TArrow(x1,y1,xa1[j],ya1[j]);
1522 line[j] = new TLine(xa0[j],ya0[j],xa1[j],ya1[j]);
1523 ar0[j]->SetLineColor(j+1);
1524 ar0[j]->SetArrowSize(0.1*r0/h);
1525 ar1[j]->SetLineColor(j+1);
1526 ar1[j]->SetArrowSize(0.1*r1/h);
1527 line[j]->SetLineColor(j+1);
1528 } // end for j
1529 c0->Draw();
1530 c1->Draw();
1531 for(j=0;j<4;j++){
1532 ar0[j]->Draw();
1533 ar1[j]->Draw();
1534 line[j]->Draw();
1535 } // end for j
1536 TText *t = new TText();
1537 t->SetTextSize(0.02);
1538 Char_t txt[100];
c98634db 1539 snprintf(txt,99,"(x0=%5.2f,y0=%5.2f)",x0,y0);
db486a6e 1540 t->DrawText(x0,y0,txt);
c98634db 1541 snprintf(txt,99,"(x1=%5.2f,y1=%5.2f)",x1,y1);
db486a6e 1542 for(j=0;j<4;j++) {
1543 t->SetTextColor(j+1);
1544 t->DrawText(x1,y1,txt);
c98634db 1545 snprintf(txt,99,"r0=%5.2f",ra0[j]);
db486a6e 1546 t->DrawText(0.5*(x0+xa0[j]),0.5*(y0+ya0[j]),txt);
c98634db 1547 snprintf(txt,99,"r1=%5.2f",ra1[j]);
db486a6e 1548 t->DrawText(0.5*(x1+xa1[j]),0.5*(y1+ya1[j]),txt);
1549 } // end for j
1550}