New class AliITSRecoParam. It replaces AliITSRecoV2 (A.Dainese)
[u/mrichter/AliRoot.git] / ITS / AliITSv11Geometry.cxx
CommitLineData
172b0d90 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
166d14ba 16/*
17 $Id$
18*/
19
20
21////////////////////////////////////////////////////////////////////////
22// This class is a base class for the ITS geometry version 11. It
23// contains common/standard functions used in many places in defining
24// the ITS geometry, version 11. Large posions of the ITS geometry,
25// version 11, should be derived from this class so as to make maximum
26// use of these common functions. This class also defines the proper
27// conversion valuse such, to cm and degrees, such that the most usefull
28// units, those used in the Engineering drawings, can be used.
29////////////////////////////////////////////////////////////////////////
30
31
172b0d90 32#include <Riostream.h>
33#include <TMath.h>
db486a6e 34#include <TArc.h>
35#include <TLine.h>
36#include <TArrow.h>
37#include <TCanvas.h>
38#include <TText.h>
172b0d90 39#include <TGeoPcon.h>
40#include <TGeoCone.h>
41#include <TGeoTube.h> // contaings TGeoTubeSeg
42#include <TGeoArb8.h>
166d14ba 43#include <TPolyMarker.h>
44#include <TPolyLine.h>
172b0d90 45#include "AliITSv11Geometry.h"
46
47ClassImp(AliITSv11Geometry)
a98296c1 48
db486a6e 49const Double_t AliITSv11Geometry::fgkmicron = 1.0E-4;
a98296c1 50const Double_t AliITSv11Geometry::fgkmm = 0.10;
51const Double_t AliITSv11Geometry::fgkcm = 1.00;
52const Double_t AliITSv11Geometry::fgkDegree = 1.0;
53const Double_t AliITSv11Geometry::fgkRadian = 180./3.14159265358979323846;
a53658c6 54const Double_t AliITSv11Geometry::fgkgcm3 = 1.0; // assume default is g/cm^3
55const Double_t AliITSv11Geometry::fgkCelsius = 1.0; // Assume default is C
56const Double_t AliITSv11Geometry::fgkPascal = 1.0E-3; // Assume kPascal
57const Double_t AliITSv11Geometry::fgkKPascal = 1.0; // Asume kPascal
58const Double_t AliITSv11Geometry::fgkeV = 1.0E-9; // GeV default
59const Double_t AliITSv11Geometry::fgkKeV = 1.0e-6; // GeV default
60const Double_t AliITSv11Geometry::fgkMeV = 1.0e-3; // GeV default
61const Double_t AliITSv11Geometry::fgkGeV = 1.0; // GeV default
172b0d90 62//______________________________________________________________________
166d14ba 63Double_t AliITSv11Geometry::Yfrom2Points(Double_t x0,Double_t y0,
64 Double_t x1,Double_t y1,
cee918ed 65 Double_t x)const{
166d14ba 66 // Given the two points (x0,y0) and (x1,y1) and the location x, returns
67 // the value y corresponding to that point x on the line defined by the
68 // two points.
69 // Inputs:
70 // Double_t x0 The first x value defining the line
71 // Double_t y0 The first y value defining the line
72 // Double_t x1 The second x value defining the line
73 // Double_t y1 The second y value defining the line
74 // Double_t x The x value for which the y value is wanted.
75 // Outputs:
76 // none.
77 // Return:
78 // The value y corresponding to the point x on the line defined by
79 // the two points (x0,y0) and (x1,y1).
80
81 if(x0==x1 && y0==y1) {
82 printf("Error: AliITSv11Geometry::Yfrom2Ponts The two points are "
83 "the same (%e,%e) and (%e,%e)",x0,y0,x1,y1);
84 return 0.0;
85 } // end if
86 if(x0==x1){
87 printf("Warning: AliITSv11Geometry::Yfrom2Points x0=%e == x1=%e. "
88 "line vertical ""returning mean y",x0,x1);
89 return 0.5*(y0+y1);
90 }// end if x0==x1
91 Double_t m = (y0-y1)/(x0-x1);
92 return m*(x-x0)+y0;
93}
94//______________________________________________________________________
95Double_t AliITSv11Geometry::Xfrom2Points(Double_t x0,Double_t y0,
96 Double_t x1,Double_t y1,
cee918ed 97 Double_t y)const{
166d14ba 98 // Given the two points (x0,y0) and (x1,y1) and the location y, returns
99 // the value x corresponding to that point y on the line defined by the
100 // two points.
101 // Inputs:
102 // Double_t x0 The first x value defining the line
103 // Double_t y0 The first y value defining the line
104 // Double_t x1 The second x value defining the line
105 // Double_t y1 The second y value defining the line
106 // Double_t y The y value for which the x value is wanted.
107 // Outputs:
108 // none.
109 // Return:
110 // The value x corresponding to the point y on the line defined by
111 // the two points (x0,y0) and (x1,y1).
112
113 if(x0==x1 && y0==y1) {
114 printf("Error: AliITSv11Geometry::Yfrom2Ponts The two points are "
115 "the same (%e,%e) and (%e,%e)",x0,y0,x1,y1);
116 return 0.0;
117 } // end if
118 if(y0==y1){
119 printf("Warrning: AliITSv11Geometry::Yfrom2Points y0=%e == y1=%e. "
120 "line horizontal returning mean x",y0,y1);
121 return 0.5*(x0+x1);
122 }// end if y0==y1
123 Double_t m = (x0-x1)/(y0-y1);
124 return m*(y-y0)+x0;
125}
126//______________________________________________________________________
127Double_t AliITSv11Geometry::RmaxFrom2Points(const TGeoPcon *p,Int_t i1,
cee918ed 128 Int_t i2,Double_t z)const{
172b0d90 129 // functions Require at parts of Volume A to be already defined.
130 // Retruns the value of Rmax corresponding to point z alone the line
131 // defined by the two points p.Rmax(i1),p-GetZ(i1) and p->GetRmax(i2),
132 // p->GetZ(i2).
166d14ba 133 // Inputs:
134 // TGeoPcon *p The Polycone where the two points come from
135 // Int_t i1 Point 1
136 // Int_t i2 Point 2
137 // Double_t z The value of z for which Rmax is to be found
138 // Outputs:
139 // none.
140 // Return:
141 // Double_t Rmax the value corresponding to z
172b0d90 142 Double_t d0,d1,d2,r;
143
144 d0 = p->GetRmax(i1)-p->GetRmax(i2);// cout <<"L263: d0="<<d0<<endl;
145 d1 = z-p->GetZ(i2);// cout <<"L264: d1="<<d1<<endl;
146 d2 = p->GetZ(i1)-p->GetZ(i2);// cout <<"L265: d2="<<d2<<endl;
147 r = p->GetRmax(i2) + d1*d0/d2;// cout <<"L266: r="<<r<<endl;
148 return r;
149}
150//______________________________________________________________________
166d14ba 151Double_t AliITSv11Geometry::RminFrom2Points(const TGeoPcon *p,Int_t i1,
cee918ed 152 Int_t i2,Double_t z)const{
172b0d90 153 // Retruns the value of Rmin corresponding to point z alone the line
154 // defined by the two points p->GetRmin(i1),p->GetZ(i1) and
155 // p->GetRmin(i2), p->GetZ(i2).
166d14ba 156 // Inputs:
157 // TGeoPcon *p The Polycone where the two points come from
158 // Int_t i1 Point 1
159 // Int_t i2 Point 2
160 // Double_t z The value of z for which Rmax is to be found
161 // Outputs:
162 // none.
163 // Return:
164 // Double_t Rmax the value corresponding to z
172b0d90 165
166 return p->GetRmin(i2)+(p->GetRmin(i1)-p->GetRmin(i2))*(z-p->GetZ(i2))/
167 (p->GetZ(i1)-p->GetZ(i2));
168}
169//______________________________________________________________________
166d14ba 170Double_t AliITSv11Geometry::RFrom2Points(const Double_t *p,const Double_t *az,
cee918ed 171 Int_t i1,Int_t i2,Double_t z)const{
172b0d90 172 // Retruns the value of Rmin corresponding to point z alone the line
173 // defined by the two points p->GetRmin(i1),p->GetZ(i1) and
174 // p->GetRmin(i2), p->GetZ(i2).
166d14ba 175 // Inputs:
176 // Double_t az Array of z values
177 // Double_t r Array of r values
178 // Int_t i1 First Point in arrays
179 // Int_t i2 Second Point in arrays
180 // Double_t z Value z at which r is to be found
181 // Outputs:
182 // none.
183 // Return:
184 // The value r corresponding to z and the line defined by the two points
172b0d90 185
166d14ba 186 return p[i2]+(p[i1]-p[i2])*(z-az[i2])/(az[i1]-az[i2]);
172b0d90 187}
188//______________________________________________________________________
166d14ba 189Double_t AliITSv11Geometry::Zfrom2MinPoints(const TGeoPcon *p,Int_t i1,
cee918ed 190 Int_t i2,Double_t r)const{
172b0d90 191 // Retruns the value of Z corresponding to point R alone the line
192 // defined by the two points p->GetRmin(i1),p->GetZ(i1) and
193 // p->GetRmin(i2),p->GetZ(i2)
166d14ba 194 // Inputs:
195 // TGeoPcon *p The Poly cone where the two points come from.
196 // Int_t i1 First Point in arrays
197 // Int_t i2 Second Point in arrays
198 // Double_t r Value r min at which z is to be found
199 // Outputs:
200 // none.
201 // Return:
202 // The value z corresponding to r min and the line defined by
203 // the two points
172b0d90 204
205 return p->GetZ(i2)+(p->GetZ(i1)-p->GetZ(i2))*(r-p->GetRmin(i2))/
206 (p->GetRmin(i1)-p->GetRmin(i2));
207}
208//______________________________________________________________________
166d14ba 209Double_t AliITSv11Geometry::Zfrom2MaxPoints(const TGeoPcon *p,Int_t i1,
cee918ed 210 Int_t i2,Double_t r)const{
172b0d90 211 // Retruns the value of Z corresponding to point R alone the line
212 // defined by the two points p->GetRmax(i1),p->GetZ(i1) and
213 // p->GetRmax(i2),p->GetZ(i2)
166d14ba 214 // Inputs:
215 // TGeoPcon *p The Poly cone where the two points come from.
216 // Int_t i1 First Point in arrays
217 // Int_t i2 Second Point in arrays
218 // Double_t r Value r max at which z is to be found
219 // Outputs:
220 // none.
221 // Return:
222 // The value z corresponding to r max and the line defined by
223 // the two points
172b0d90 224
225 return p->GetZ(i2)+(p->GetZ(i1)-p->GetZ(i2))*(r-p->GetRmax(i2))/
226 (p->GetRmax(i1)-p->GetRmax(i2));
227}
228//______________________________________________________________________
166d14ba 229Double_t AliITSv11Geometry::Zfrom2Points(const Double_t *z,const Double_t *ar,
cee918ed 230 Int_t i1,Int_t i2,Double_t r)const{
166d14ba 231 // Retruns the value of z corresponding to point R alone the line
172b0d90 232 // defined by the two points p->GetRmax(i1),p->GetZ(i1) and
233 // p->GetRmax(i2),p->GetZ(i2)
166d14ba 234 // Inputs:
235 // Double_t z Array of z values
236 // Double_t ar Array of r values
237 // Int_t i1 First Point in arrays
238 // Int_t i2 Second Point in arrays
239 // Double_t r Value r at which z is to be found
240 // Outputs:
241 // none.
242 // Return:
243 // The value z corresponding to r and the line defined by the two points
172b0d90 244
166d14ba 245 return z[i2]+(z[i1]-z[i2])*(r-ar[i2])/(ar[i1]-ar[i2]);
172b0d90 246}
247//______________________________________________________________________
166d14ba 248Double_t AliITSv11Geometry::RmaxFromZpCone(const TGeoPcon *p,int ip,
249 Double_t tc,Double_t z,
cee918ed 250 Double_t th)const{
166d14ba 251 // General Outer Cone surface equation Rmax.
252 // Intputs:
253 // TGeoPcon *p The poly cone where the initial point comes from
254 // Int_t ip The index in p to get the point location
255 // Double_t tc The angle of that part of the cone is at
256 // Double_t z The value of z to compute Rmax from
257 // Double_t th The perpendicular distance the parralell line is
258 // from the point ip.
259 // Outputs:
260 // none.
261 // Return:
262 // The value Rmax correstponding to the line at angle th, offeset by
263 // th, and the point p->GetZ/Rmin[ip] at the location z.
cee918ed 264 Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
265 Double_t costc = TMath::Cos(tc*TMath::DegToRad());
172b0d90 266
267 return -tantc*(z-p->GetZ(ip))+p->GetRmax(ip)+th/costc;
268}
269//______________________________________________________________________
166d14ba 270Double_t AliITSv11Geometry::RFromZpCone(const Double_t *ar,
271 const Double_t *az,int ip,
272 Double_t tc,Double_t z,
cee918ed 273 Double_t th)const{
166d14ba 274 // General Cone surface equation R(z).
275 // Intputs:
276 // Double_t ar The array of R values
277 // Double_t az The array of Z values
278 // Int_t ip The index in p to get the point location
279 // Double_t tc The angle of that part of the cone is at
280 // Double_t z The value of z to compute R from
281 // Double_t th The perpendicular distance the parralell line is
282 // from the point ip.
283 // Outputs:
284 // none.
285 // Return:
286 // The value R correstponding to the line at angle th, offeset by
287 // th, and the point p->GetZ/Rmax[ip] at the locatin z.
cee918ed 288 Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
289 Double_t costc = TMath::Cos(tc*TMath::DegToRad());
172b0d90 290
166d14ba 291 return -tantc*(z-az[ip])+ar[ip]+th/costc;
172b0d90 292}
293//______________________________________________________________________
166d14ba 294Double_t AliITSv11Geometry::RminFromZpCone(const TGeoPcon *p,Int_t ip,
295 Double_t tc,Double_t z,
cee918ed 296 Double_t th)const{
166d14ba 297 // General Inner Cone surface equation Rmin.
298 // Intputs:
299 // TGeoPcon *p The poly cone where the initial point comes from
300 // Int_t ip The index in p to get the point location
301 // Double_t tc The angle of that part of the cone is at
302 // Double_t z The value of z to compute Rmin from
303 // Double_t th The perpendicular distance the parralell line is
304 // from the point ip.
305 // Outputs:
306 // none.
307 // Return:
308 // The value Rmin correstponding to the line at angle th, offeset by
309 // th, and the point p->GetZ/Rmin[ip] at the location z.
cee918ed 310 Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
311 Double_t costc = TMath::Cos(tc*TMath::DegToRad());
172b0d90 312
313 return -tantc*(z-p->GetZ(ip))+p->GetRmin(ip)+th/costc;
314}
315//______________________________________________________________________
166d14ba 316Double_t AliITSv11Geometry::ZFromRmaxpCone(const TGeoPcon *p,int ip,
317 Double_t tc,Double_t r,
cee918ed 318 Double_t th)const{
166d14ba 319 // General Outer cone Surface equation for z.
320 // Intputs:
321 // TGeoPcon *p The poly cone where the initial point comes from
322 // Int_t ip The index in p to get the point location
323 // Double_t tc The angle of that part of the cone is at
324 // Double_t r The value of Rmax to compute z from
325 // Double_t th The perpendicular distance the parralell line is
326 // from the point ip.
327 // Outputs:
328 // none.
329 // Return:
330 // The value Z correstponding to the line at angle th, offeset by
331 // th, and the point p->GetZ/Rmax[ip] at the location r.
cee918ed 332 Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
333 Double_t costc = TMath::Cos(tc*TMath::DegToRad());
172b0d90 334
335 return p->GetZ(ip)+(p->GetRmax(ip)+th/costc-r)/tantc;
336}
337//______________________________________________________________________
166d14ba 338Double_t AliITSv11Geometry::ZFromRmaxpCone(const Double_t *ar,
339 const Double_t *az,int ip,
340 Double_t tc,Double_t r,
cee918ed 341 Double_t th)const{
166d14ba 342 // General Outer cone Surface equation for z.
343 // Intputs:
344 // Double_t ar The array of R values
345 // Double_t az The array of Z values
346 // Int_t ip The index in p to get the point location
347 // Double_t tc The angle of that part of the cone is at
348 // Double_t r The value of Rmax to compute z from
349 // Double_t th The perpendicular distance the parralell line is
350 // from the point ip.
351 // Outputs:
352 // none.
353 // Return:
354 // The value Z correstponding to the line at angle th, offeset by
355 // th, and the point p->GetZ/Rmax[ip] at the locatin r.
cee918ed 356 Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
357 Double_t costc = TMath::Cos(tc*TMath::DegToRad());
172b0d90 358
166d14ba 359 return az[ip]+(ar[ip]+th/costc-r)/tantc;
172b0d90 360}
361//______________________________________________________________________
166d14ba 362Double_t AliITSv11Geometry::ZFromRminpCone(const TGeoPcon *p,int ip,
363 Double_t tc,Double_t r,
cee918ed 364 Double_t th)const{
166d14ba 365 // General Inner cone Surface equation for z.
366 // Intputs:
367 // TGeoPcon *p The poly cone where the initial point comes from
368 // Int_t ip The index in p to get the point location
369 // Double_t tc The angle of that part of the cone is at
370 // Double_t r The value of Rmin to compute z from
371 // Double_t th The perpendicular distance the parralell line is
372 // from the point ip.
373 // Outputs:
374 // none.
375 // Return:
376 // The value Z correstponding to the line at angle th, offeset by
377 // th, and the point p->GetZ/Rmin[ip] at the location r.
cee918ed 378 Double_t tantc = TMath::Tan(tc*TMath::DegToRad());
379 Double_t costc = TMath::Cos(tc*TMath::DegToRad());
172b0d90 380
381 return p->GetZ(ip)+(p->GetRmin(ip)+th/costc-r)/tantc;
382}
383//______________________________________________________________________
166d14ba 384void AliITSv11Geometry::RadiusOfCurvature(Double_t rc,Double_t theta0,
385 Double_t z0,Double_t r0,
386 Double_t theta1,Double_t &z1,
cee918ed 387 Double_t &r1)const{
172b0d90 388 // Given a initial point z0,r0, the initial angle theta0, and the radius
389 // of curvature, returns the point z1, r1 at the angle theta1. Theta
390 // measured from the r axis in the clock wise direction [degrees].
166d14ba 391 // Inputs:
392 // Double_t rc The radius of curvature
393 // Double_t theta0 The starting angle (degrees)
394 // Double_t z0 The value of z at theta0
395 // Double_t r0 The value of r at theta0
396 // Double_t theta1 The ending angle (degrees)
397 // Outputs:
398 // Double_t &z1 The value of z at theta1
399 // Double_t &r1 The value of r at theta1
400 // Return:
401 // none.
172b0d90 402
cee918ed 403 z1 = rc*(TMath::Sin(theta1*TMath::DegToRad())-TMath::Sin(theta0*TMath::DegToRad()))+z0;
404 r1 = rc*(TMath::Cos(theta1*TMath::DegToRad())-TMath::Cos(theta0*TMath::DegToRad()))+r0;
172b0d90 405 return;
406}
407//______________________________________________________________________
166d14ba 408void AliITSv11Geometry::InsidePoint(const TGeoPcon *p,Int_t i1,Int_t i2,
409 Int_t i3,Double_t c,TGeoPcon *q,Int_t j1,
cee918ed 410 Bool_t max)const{
172b0d90 411 // Given two lines defined by the points i1, i2,i3 in the TGeoPcon
412 // class p that intersect at point p->GetZ(i2) return the point z,r
413 // that is Cthick away in the TGeoPcon class q. If points i1=i2
414 // and max == kTRUE, then p->GetRmin(i1) and p->GetRmax(i2) are used.
415 // if points i2=i3 and max=kTRUE then points p->GetRmax(i2) and
416 // p->GetRmin(i3) are used. If i2=i3 and max=kFALSE, then p->GetRmin(i2)
417 // and p->GetRmax(i3) are used.
418 // Inputs:
419 // TGeoPcon *p Class where points i1, i2, and i3 are taken from
420 // Int_t i1 First point in class p
421 // Int_t i2 Second point in class p
422 // Int_t i3 Third point in class p
423 // Double_t c Distance inside the outer surface/inner suface
424 // that the point j1 is to be computed for.
425 // TGeoPcon *q Pointer to class for results to be put into.
426 // Int_t j1 Point in class q where data is to be stored.
427 // Bool_t max if kTRUE, then a Rmax value is computed,
428 // else a Rmin valule is computed.
429 // Output:
430 // TGeoPcon *q Pointer to class for results to be put into.
431 // Return:
432 // none.
433 Double_t x0,y0,x1,y1,x2,y2,x,y;
434
435 if(max){
436 c = -c; //cout <<"L394 c="<<c<<endl;
437 y0 = p->GetRmax(i1);
438 if(i1==i2) y0 = p->GetRmin(i1); //cout <<"L396 y0="<<y0<<endl;
439 y1 = p->GetRmax(i2); //cout <<"L397 y1="<<y1<<endl;
440 y2 = p->GetRmax(i3); //cout <<"L398 y2="<<y2<<endl;
441 if(i2==i3) y2 = p->GetRmin(i3); //cout <<"L399 y2="<<y2<<endl;
442 }else{ // min
443 y0 = p->GetRmin(i1); //cout <<"L401 y0="<<y0<<endl;
444 y1 = p->GetRmin(i2); //cout <<"L402 y1="<<y1<<endl;
445 y2 = p->GetRmin(i3);
446 if(i2==i3) y2 = p->GetRmax(i3); //cout <<"L404 y2="<<y2<<endl;
447 } // end if
448 x0 = p->GetZ(i1); //cout <<"L406 x0="<<x0<<endl;
449 x1 = p->GetZ(i2); //cout <<"L407 x1="<<x1<<endl;
450 x2 = p->GetZ(i3); //cout <<"L408 x2="<<x2<<endl;
451 //
452 InsidePoint(x0,y0,x1,y1,x2,y2,c,x,y);
453 q->Z(j1) = x;
454 if(max) q->Rmax(j1) = y;
455 else q->Rmin(j1) = y;
456 return;
457}
458//----------------------------------------------------------------------
166d14ba 459void AliITSv11Geometry::InsidePoint(Double_t x0,Double_t y0,
460 Double_t x1,Double_t y1,
461 Double_t x2,Double_t y2,Double_t c,
cee918ed 462 Double_t &x,Double_t &y)const{
172b0d90 463 // Given two intersecting lines defined by the points (x0,y0), (x1,y1) and
464 // (x1,y1), (x1,y2) {intersecting at (x1,y1)} the point (x,y) a distance
465 // c away is returned such that two lines a distance c away from the
466 // lines defined above intersect at (x,y).
467 // Inputs:
468 // Double_t x0 X point on the first intersecting sets of lines
469 // Double_t y0 Y point on the first intersecting sets of lines
470 // Double_t x1 X point on the first/second intersecting sets of lines
471 // Double_t y1 Y point on the first/second intersecting sets of lines
472 // Double_t x2 X point on the second intersecting sets of lines
473 // Double_t y2 Y point on the second intersecting sets of lines
474 // Double_t c Distance the two sets of lines are from each other
475 // Output:
476 // Double_t x X point for the intersecting sets of parellel lines
477 // Double_t y Y point for the intersecting sets of parellel lines
478 // Return:
479 // none.
166d14ba 480 Double_t dx01,dx12,dy01,dy12,r01,r12,m;
172b0d90 481 dx01 = x0-x1; //cout <<"L410 dx01="<<dx01<<endl;
482 dx12 = x1-x2; //cout <<"L411 dx12="<<dx12<<endl;
483 dy01 = y0-y1; //cout <<"L412 dy01="<<dy01<<endl;
484 dy12 = y1-y2; //cout <<"L413 dy12="<<dy12<<endl;
166d14ba 485 r01 = TMath::Sqrt(dy01*dy01+dx01*dx01); //cout <<"L414 r01="<<r01<<endl;
486 r12 = TMath::Sqrt(dy12*dy12+dx12*dx12); //cout <<"L415 r12="<<r12<<endl;
172b0d90 487 m = dx12*dy01-dy12*dx01;
488 if(m*m<DBL_EPSILON){ // m == n
489 if(dy01==0.0){ // line are =
490 x = x1+c; //cout <<"L419 x="<<x<<endl;
491 y = y1; //cout <<"L420 y="<<y<<endl;
492 return;
493 }else if(dx01==0.0){
494 x = x1;
495 y = y1+c;
496 return;
497 }else{ // dx01!=0 and dy01 !=0.
166d14ba 498 x = x1-0.5*c*r01/dy01; //cout <<"L434 x="<<x<<endl;
499 y = y1+0.5*c*r01/dx01; //cout <<"L435 y="<<y<<endl;
172b0d90 500 } // end if
501 return;
502 } //
cee918ed 503 x = x1+c*(dx12*r01-dx01*r12)/m; //cout <<"L442 x="<<x<<endl;
504 y = y1+c*(dy12*r01-dy01*r12)/m; //cout <<"L443 y="<<y<<endl;
172b0d90 505 //cout <<"=============================================="<<endl;
506 return;
507}
508//----------------------------------------------------------------------
166d14ba 509void AliITSv11Geometry:: PrintArb8(const TGeoArb8 *a)const{
510 // Prints out the content of the TGeoArb8. Usefull for debugging.
511 // Inputs:
512 // TGeoArb8 *a
513 // Outputs:
514 // none.
515 // Return:
516 // none.
517
cee918ed 518 if(!GetDebug()) return;
519 printf("%s",a->GetName());
520 a->InspectShape();
166d14ba 521 return;
172b0d90 522}
523//----------------------------------------------------------------------
166d14ba 524void AliITSv11Geometry:: PrintPcon(const TGeoPcon *a)const{
525 // Prints out the content of the TGeoPcon. Usefull for debugging.
526 // Inputs:
527 // TGeoPcon *a
528 // Outputs:
529 // none.
530 // Return:
531 // none.
532
cee918ed 533 if(!GetDebug()) return;
166d14ba 534 cout << a->GetName() << ": N=" << a->GetNz() << " Phi1=" << a->GetPhi1()
535 << ", Dphi=" << a->GetDphi() << endl;
172b0d90 536 cout << "i\t Z \t Rmin \t Rmax" << endl;
166d14ba 537 for(Int_t iii=0;iii<a->GetNz();iii++){
538 cout << iii << "\t" << a->GetZ(iii) << "\t" << a->GetRmin(iii)
539 << "\t" << a->GetRmax(iii) << endl;
172b0d90 540 } // end for iii
166d14ba 541 return;
172b0d90 542}
543//----------------------------------------------------------------------
166d14ba 544void AliITSv11Geometry::PrintTube(const TGeoTube *a)const{
545 // Prints out the content of the TGeoTube. Usefull for debugging.
546 // Inputs:
547 // TGeoTube *a
548 // Outputs:
549 // none.
550 // Return:
551 // none.
552
cee918ed 553 if(!GetDebug()) return;
166d14ba 554 cout << a->GetName() <<": Rmin="<<a->GetRmin()
555 <<" Rmax=" <<a->GetRmax()<<" Dz="<<a->GetDz()<<endl;
556 return;
172b0d90 557}
558//----------------------------------------------------------------------
166d14ba 559void AliITSv11Geometry::PrintTubeSeg(const TGeoTubeSeg *a)const{
560 // Prints out the content of the TGeoTubeSeg. Usefull for debugging.
561 // Inputs:
562 // TGeoTubeSeg *a
563 // Outputs:
564 // none.
565 // Return:
566 // none.
567
cee918ed 568 if(!GetDebug()) return;
166d14ba 569 cout << a->GetName() <<": Phi1="<<a->GetPhi1()<<
570 " Phi2="<<a->GetPhi2()<<" Rmin="<<a->GetRmin()
571 <<" Rmax=" <<a->GetRmax()<<" Dz="<<a->GetDz()<<endl;
572 return;
172b0d90 573}
574//----------------------------------------------------------------------
166d14ba 575void AliITSv11Geometry::PrintConeSeg(const TGeoConeSeg *a)const{
576 // Prints out the content of the TGeoConeSeg. Usefull for debugging.
577 // Inputs:
578 // TGeoConeSeg *a
579 // Outputs:
580 // none.
581 // Return:
582 // none.
583
cee918ed 584 if(!GetDebug()) return;
166d14ba 585 cout << a->GetName() <<": Phi1="<<a->GetPhi1()<<
586 " Phi2="<<a->GetPhi2()<<" Rmin1="<<a->GetRmin1()
587 <<" Rmax1=" <<a->GetRmax1()<<" Rmin2="<<a->GetRmin2()
588 <<" Rmax2=" <<a->GetRmax2()<<" Dz="<<a->GetDz()<<endl;
589 return;
172b0d90 590}
591//----------------------------------------------------------------------
166d14ba 592void AliITSv11Geometry::PrintBBox(const TGeoBBox *a)const{
593 // Prints out the content of the TGeoBBox. Usefull for debugging.
594 // Inputs:
595 // TGeoBBox *a
596 // Outputs:
597 // none.
598 // Return:
599 // none.
600
cee918ed 601 if(!GetDebug()) return;
166d14ba 602 cout << a->GetName() <<": Dx="<<a->GetDX()<<
603 " Dy="<<a->GetDY()<<" Dz="<<a->GetDZ() <<endl;
604 return;
172b0d90 605}
166d14ba 606//---------------------------------------------------------------------
607void AliITSv11Geometry::DrawCrossSection(const TGeoPcon *p,
608 Int_t fillc,Int_t fills,
609 Int_t linec,Int_t lines,Int_t linew,
610 Int_t markc,Int_t marks,Float_t marksize)const{
611 // Draws a cross sectional view of the TGeoPcon, Primarily for debugging.
612 // A TCanvas should exist first.
613 // Inputs:
614 // TGeoPcon *p The TGeoPcon to be "drawn"
615 // Int_t fillc The fill color to be used
616 // Int_t fills The fill style to be used
617 // Int_t linec The line color to be used
618 // Int_t lines The line style to be used
619 // Int_t linew The line width to be used
620 // Int_t markc The markder color to be used
621 // Int_t marks The markder style to be used
622 // Float_t marksize The marker size
623 // Outputs:
624 // none.
625 // Return:
626 // none.
627 Int_t n=0,m=0,i=0;
628 Double_t *z=0,*r=0;
629 TPolyMarker *pts=0;
630 TPolyLine *line=0;
172b0d90 631
166d14ba 632 n = p->GetNz();
633 if(n<=0) return;
634 m = 2*n+1;
635 z = new Double_t[m];
636 r = new Double_t[m];
637
638 for(i=0;i<n;i++){
639 z[i] = p->GetZ(i);
640 r[i] = p->GetRmax(i);
641 z[i+n] = p->GetZ(n-1-i);
642 r[i+n] = p->GetRmin(n-1-i);
643 } // end for i
644 z[n-1] = z[0];
645 r[n-1] = r[0];
646
647 line = new TPolyLine(n,z,r);
648 pts = new TPolyMarker(n,z,r);
649
650 line->SetFillColor(fillc);
651 line->SetFillStyle(fills);
652 line->SetLineColor(linec);
653 line->SetLineStyle(lines);
654 line->SetLineWidth(linew);
655 pts->SetMarkerColor(markc);
656 pts->SetMarkerStyle(marks);
657 pts->SetMarkerSize(marksize);
658
659 line->Draw("f");
660 line->Draw();
661 pts->Draw();
662
663 delete[] z;
664 delete[] r;
665
666 cout<<"Hit Return to continue"<<endl;
667 cin >> n;
668 delete line;
669 delete pts;
670 return;
671}
db486a6e 672//______________________________________________________________________
673Bool_t AliITSv11Geometry::AngleOfIntersectionWithLine(Double_t x0,Double_t y0,
674 Double_t x1,Double_t y1,
675 Double_t xc,Double_t yc,
676 Double_t rc,Double_t &t0,
677 Double_t &t1)const{
678 // Computes the angles, t0 and t1 corresponding to the intersection of
679 // the line, defined by {x0,y0} {x1,y1}, and the circle, defined by
680 // its center {xc,yc} and radius r. If the line does not intersect the
681 // line, function returns kFALSE, otherwise it returns kTRUE. If the
682 // line is tangent to the circle, the angles t0 and t1 will be the same.
683 // Inputs:
684 // Double_t x0 X of first point defining the line
685 // Double_t y0 Y of first point defining the line
686 // Double_t x1 X of Second point defining the line
687 // Double_t y1 Y of Second point defining the line
688 // Double_t xc X of Circle center point defining the line
689 // Double_t yc Y of Circle center point defining the line
690 // Double_t r radius of circle
691 // Outputs:
692 // Double_t &t0 First angle where line intersects circle
693 // Double_t &t1 Second angle where line intersects circle
694 // Return:
695 // kTRUE, line intersects circle, kFALSE line does not intersect circle
696 // or the line is not properly defined point {x0,y0} and {x1,y1}
697 // are the same point.
698 Double_t dx,dy,cx,cy,s2,t[4];
699 Double_t a0,b0,c0,a1,b1,c1,sinthp,sinthm,costhp,costhm;
700 Int_t i,j;
701
702 t0 = 400.0;
703 t1 = 400.0;
704 dx = x1-x0;
705 dy = y1-y0;
706 cx = xc-x0;
707 cy = yc-y0;
708 s2 = dx*dx+dy*dy;
709 if(s2==0.0) return kFALSE;
710
711 a0 = rc*rc*s2;
712 if(a0==0.0) return kFALSE;
713 b0 = 2.0*rc*dx*(dx*cy-cx*dy);
714 c0 = dx*dx*cy*cy-2.0*dy*dx*cy*cx+cx*cx*dy*dy-rc*rc*dy*dy;
715 c0 = 0.25*b0*b0/(a0*a0)-c0/a0;
716 if(c0<0.0) return kFALSE;
717 sinthp = -0.5*b0/a0+TMath::Sqrt(c0);
718 sinthm = -0.5*b0/a0-TMath::Sqrt(c0);
719
720 a1 = rc*rc*s2;
721 if(a1==0.0) return kFALSE;
722 b1 = 2.0*rc*dy*(dy*cx-dx*cy);
723 c1 = dy*dy*cx*cx-2.0*dy*dx*cy*cx+dx*dx*cy*cy-rc*rc*dx*dx;
724 c1 = 0.25*b1*b1/(a1*a1)-c1/a1;
725 if(c1<0.0) return kFALSE;
726 costhp = -0.5*b1/a1+TMath::Sqrt(c1);
727 costhm = -0.5*b1/a1-TMath::Sqrt(c1);
728
729 t[0] = t[1] = t[2] = t[3] = 400.;
730 a0 = TMath::ATan2(sinthp,costhp); if(a0<0.0) a0 += 2.0*TMath::Pi();
731 a1 = TMath::ATan2(sinthp,costhm); if(a1<0.0) a1 += 2.0*TMath::Pi();
732 b0 = TMath::ATan2(sinthm,costhp); if(b0<0.0) b0 += 2.0*TMath::Pi();
733 b1 = TMath::ATan2(sinthm,costhm); if(b1<0.0) b1 += 2.0*TMath::Pi();
734 x1 = xc+rc*TMath::Cos(a0);
735 y1 = yc+rc*TMath::Sin(a0);
736 s2 = dx*(y1-y0)-dy*(x1-x0);
737 if(s2*s2<DBL_EPSILON) t[0] = a0*TMath::RadToDeg();
738 x1 = xc+rc*TMath::Cos(a1);
739 y1 = yc+rc*TMath::Sin(a1);
740 s2 = dx*(y1-y0)-dy*(x1-x0);
741 if(s2*s2<DBL_EPSILON) t[1] = a1*TMath::RadToDeg();
742 x1 = xc+rc*TMath::Cos(b0);
743 y1 = yc+rc*TMath::Sin(b0);
744 s2 = dx*(y1-y0)-dy*(x1-x0);
745 if(s2*s2<DBL_EPSILON) t[2] = b0*TMath::RadToDeg();
746 x1 = xc+rc*TMath::Cos(b1);
747 y1 = yc+rc*TMath::Sin(b1);
748 s2 = dx*(y1-y0)-dy*(x1-x0);
749 if(s2*s2<DBL_EPSILON) t[3] = b1*TMath::RadToDeg();
750 for(i=0;i<4;i++)for(j=i+1;j<4;j++){
751 if(t[i]>t[j]) {t0 = t[i];t[i] = t[j];t[j] = t0;}
752 } // end for i,j
753 t0 = t[0];
754 t1 = t[1];
755 //
756 return kTRUE;
757}
758//______________________________________________________________________
759Double_t AliITSv11Geometry::AngleForRoundedCorners0(Double_t dx,Double_t dy,
760 Double_t sdr)const{
761 // Basic function used to determine the ending angle and starting angles
762 // for rounded corners given the relative distance between the centers
763 // of the circles and the difference/sum of their radii. Case 0.
764 // Inputs:
765 // Double_t dx difference in x locations of the circle centers
766 // Double_t dy difference in y locations of the circle centers
767 // Double_t sdr difference or sum of the circle radii
768 // Outputs:
769 // none.
770 // Return:
771 // the angle in Degrees
772 Double_t a,b;
773
774 b = dy*dy+dx*dx-sdr*sdr;
775 if(b<0.0) Error("AngleForRoundedCorners0",
776 "dx^2(%e)+dy^2(%e)-sdr^2(%e)=b=%e<0",dx,dy,sdr,b);
777 b = TMath::Sqrt(b);
778 a = -sdr*dy+dx*b;
779 b = -sdr*dx-dy*b;
780 return TMath::ATan2(a,b)*TMath::RadToDeg();
781
782}
783//______________________________________________________________________
784Double_t AliITSv11Geometry::AngleForRoundedCorners1(Double_t dx,Double_t dy,
785 Double_t sdr)const{
786 // Basic function used to determine the ending angle and starting angles
787 // for rounded corners given the relative distance between the centers
788 // of the circles and the difference/sum of their radii. Case 1.
789 // Inputs:
790 // Double_t dx difference in x locations of the circle centers
791 // Double_t dy difference in y locations of the circle centers
792 // Double_t sdr difference or sum of the circle radii
793 // Outputs:
794 // none.
795 // Return:
796 // the angle in Degrees
797 Double_t a,b;
798
799 b = dy*dy+dx*dx-sdr*sdr;
800 if(b<0.0) Error("AngleForRoundedCorners1",
801 "dx^2(%e)+dy^2(%e)-sdr^2(%e)=b=%e<0",dx,dy,sdr,b);
802 b = TMath::Sqrt(b);
803 a = -sdr*dy-dx*b;
804 b = -sdr*dx+dy*b;
805 return TMath::ATan2(a,b)*TMath::RadToDeg();
806
807}
166d14ba 808//----------------------------------------------------------------------
db486a6e 809void AliITSv11Geometry::AnglesForRoundedCorners(Double_t x0,Double_t y0,
810 Double_t r0,Double_t x1,
811 Double_t y1,Double_t r1,
812 Double_t &t0,Double_t &t1)
813 const{
814 // Function to compute the ending angle, for arc 0, and starting angle,
815 // for arc 1, such that a straight line will connect them with no
816 // discontinuities.
817 //Begin_Html
818 /*
819 <img src="picts/ITS/AliITSv11Geometry_AnglesForRoundedCorners.gif">
820 */
821 //End_Html
822 // Inputs:
823 // Double_t x0 X Coordinate of arc 0 center.
824 // Double_t y0 Y Coordinate of arc 0 center.
825 // Double_t r0 Radius of curvature of arc 0. For signe see figure.
826 // Double_t x1 X Coordinate of arc 1 center.
827 // Double_t y1 Y Coordinate of arc 1 center.
828 // Double_t r1 Radius of curvature of arc 1. For signe see figure.
829 // Outputs:
830 // Double_t t0 Ending angle of arch 0, with respect to x axis, Degrees.
831 // Double_t t1 Starting angle of arch 1, with respect to x axis,
832 // Degrees.
833 // Return:
834 // none.
835 Double_t t;
836
837 if(r0>=0.0&&r1>=0.0) { // Inside to inside ++
838 t = AngleForRoundedCorners1(x1-x0,y1-y0,r1-r0);
839 t0 = t1 = t;
840 return;
841 }else if(r0>=0.0&&r1<=0.0){ // Inside to Outside +-
842 r1 = -r1; // make positive
843 t = AngleForRoundedCorners0(x1-x0,y1-y0,r1+r0);
844 t0 = 180.0 + t;
845 if(t0<0.0) t += 360.;
846 if(t<0.0) t += 360.;
847 t1 = t;
848 return;
849 }else if(r0<=0.0&&r1>=0.0){ // Outside to Inside -+
850 r0 = - r0; // make positive
851 t = AngleForRoundedCorners1(x1-x0,y1-y0,r1+r0);
852 t0 = 180.0 + t;
853 if(t0>180.) t0 -= 360.;
854 if(t >180.) t -= 360.;
855 t1 = t;
856 return;
857 }else if(r0<=0.0&&r1<=0.0) { // Outside to outside --
858 r0 = -r0; // make positive
859 r1 = -r1; // make positive
860 t = AngleForRoundedCorners0(x1-x0,y1-y0,r1-r0);
861 t0 = t1 = t;
862 return;
863 } // end if
864 return;
865}
866//----------------------------------------------------------------------
867void AliITSv11Geometry::MakeFigure1(Double_t x0,Double_t y0,Double_t r0,
868 Double_t x1,Double_t y1,Double_t r1){
869 // Function to create the figure discribing how the function
870 // AnglesForRoundedCorners works.
871 //
872 // Inputs:
873 // Double_t x0 X Coordinate of arc 0 center.
874 // Double_t y0 Y Coordinate of arc 0 center.
875 // Double_t r0 Radius of curvature of arc 0. For signe see figure.
876 // Double_t x1 X Coordinate of arc 1 center.
877 // Double_t y1 Y Coordinate of arc 1 center.
878 // Double_t r1 Radius of curvature of arc 1. For signe see figure.
879 // Outputs:
880 // none.
881 // Return:
882 // none.
883 Double_t t0[4],t1[4],xa0[4],ya0[4],xa1[4],ya1[4],ra0[4],ra1[4];
884 Double_t xmin,ymin,xmax,ymax,h;
885 Int_t j;
886
887 for(j=0;j<4;j++) {
888 ra0[j] = r0; if(j%2) ra0[j] = -r0;
889 ra1[j] = r1; if(j>1) ra1[j] = -r1;
890 AnglesForRoundedCorners(x0,y0,ra0[j],x1,y1,ra1[j],t0[j],t1[j]);
891 xa0[j] = TMath::Abs(r0)*CosD(t0[j])+x0;
892 ya0[j] = TMath::Abs(r0)*SinD(t0[j])+y0;
893 xa1[j] = TMath::Abs(r1)*CosD(t1[j])+x1;
894 ya1[j] = TMath::Abs(r1)*SinD(t1[j])+y1;
895 } // end for j
896 if(r0<0.0) r0 = -r0;
897 if(r1<0.0) r1 = -r1;
898 xmin = TMath::Min(x0 - r0,x1-r1);
899 ymin = TMath::Min(y0 - r0,y1-r1);
900 xmax = TMath::Max(x0 + r0,x1+r1);
901 ymax = TMath::Max(y0 + r0,y1+r1);
902 for(j=1;j<4;j++) {
903 xmin = TMath::Min(xmin,xa0[j]);
904 xmin = TMath::Min(xmin,xa1[j]);
905 ymin = TMath::Min(ymin,ya0[j]);
906 ymin = TMath::Min(ymin,ya1[j]);
907
908 xmax = TMath::Max(xmax,xa0[j]);
909 xmax = TMath::Max(xmax,xa1[j]);
910 ymax = TMath::Max(ymax,ya0[j]);
911 ymax = TMath::Max(ymax,ya1[j]);
912 } // end for j
913 if(xmin<0.0) xmin *= 1.1; else xmin *= 0.9;
914 if(ymin<0.0) ymin *= 1.1; else ymin *= 0.9;
915 if(xmax<0.0) xmax *= 0.9; else xmax *= 1.1;
916 if(ymax<0.0) ymax *= 0.9; else ymax *= 1.1;
917 j = (Int_t)(500.0*(ymax-ymin)/(xmax-xmin));
918 TCanvas *can = new TCanvas("AliITSv11Geometry_AnglesForRoundedCorners",
919 "Figure for AliITSv11Geometry",500,j);
920 h = ymax-ymin; if(h<0) h = -h;
921 can->Range(xmin,ymin,xmax,ymax);
922 TArc *c0 = new TArc(x0,y0,r0);
923 TArc *c1 = new TArc(x1,y1,r1);
924 TLine *line[4];
925 TArrow *ar0[4];
926 TArrow *ar1[4];
927 for(j=0;j<4;j++){
928 ar0[j] = new TArrow(x0,y0,xa0[j],ya0[j]);
929 ar1[j] = new TArrow(x1,y1,xa1[j],ya1[j]);
930 line[j] = new TLine(xa0[j],ya0[j],xa1[j],ya1[j]);
931 ar0[j]->SetLineColor(j+1);
932 ar0[j]->SetArrowSize(0.1*r0/h);
933 ar1[j]->SetLineColor(j+1);
934 ar1[j]->SetArrowSize(0.1*r1/h);
935 line[j]->SetLineColor(j+1);
936 } // end for j
937 c0->Draw();
938 c1->Draw();
939 for(j=0;j<4;j++){
940 ar0[j]->Draw();
941 ar1[j]->Draw();
942 line[j]->Draw();
943 } // end for j
944 TText *t = new TText();
945 t->SetTextSize(0.02);
946 Char_t txt[100];
947 sprintf(txt,"(x0=%5.2f,y0=%5.2f)",x0,y0);
948 t->DrawText(x0,y0,txt);
949 sprintf(txt,"(x1=%5.2f,y1=%5.2f)",x1,y1);
950 for(j=0;j<4;j++) {
951 t->SetTextColor(j+1);
952 t->DrawText(x1,y1,txt);
953 sprintf(txt,"r0=%5.2f",ra0[j]);
954 t->DrawText(0.5*(x0+xa0[j]),0.5*(y0+ya0[j]),txt);
955 sprintf(txt,"r1=%5.2f",ra1[j]);
956 t->DrawText(0.5*(x1+xa1[j]),0.5*(y1+ya1[j]),txt);
957 } // end for j
958}