Moving setting of the flag to ignore missing values for DCS DPs (FDR
[u/mrichter/AliRoot.git] / ITS / AliITSv11GeometrySPD.cxx
CommitLineData
db486a6e 1/**************************************************************************
59da35b6 2 * Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
db486a6e 3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
592651e2 15//
db486a6e 16// This class Defines the Geometry for the ITS services and support cones
54c9a3d9 17// outside of the central volume (except for the Central support
18// cylinders). Other classes define the rest of the ITS, specifically the
19// SSD support cone, the SSD Support central cylinder, the SDD support cone,
20// the SDD support central cylinder, the SPD Thermal Shield, The supports
db486a6e 21// and cable trays on both the RB26 (muon dump) and RB24 sides, and all of
592651e2 22// the cabling from the ladders/stave ends out past the TPC.
23//
54c9a3d9 24// Here is the calling sequence associated with this file
25// SPDSector(TGeoVolume *moth,TGeoManager *mgr)
26// -----CarbonFiberSector(TGeoVolume *moth,Double_t &xAAtubeCenter0,
27// Double_t &yAAtubeCenter0,TGeoManager *mgr)
28// -----2* SPDsectorShape(Int_t n,const Double_t *xc,const Double_t *yc,
29// | const Double_t *r,const Double_t *ths,
30// | const Double_t *the,Int_t npr,Int_t &m,
31// | Double_t **xp,Double_t **yp)
32// -----StavesInSector(TGeoVolume *moth,TGeoManager *mgr)
33// -----3* CreaeStave(Int_t layer,TArrayD &sizes,Bool_t addClips,
34// | TGeoManager *mgr)
35// | -----2* CreateHalfStave(Boot_t isRight,Int_t layer,
36// | Int_t idxCentral,Int_t idxSide,
37// | TArrayD &sizes,Bool_t addClips,
38// | TGeoManager *mgr)
39// | -----CreateGrondingFoil(Bool_t isRight,TArrayD &sizes,
40// | | TGeoManager *mgr)
41// | | -----4* CreateGroundingFoilSingle(Int_t type,
42// | | TArrayD &sizes,
43// | | TGeoManger *mgr)
44// | |----CreateLadder(Int_t layer, TArrayD &sizes,
45// | | TGeoManager *mgr)
46// | |----CreateMCM(Bool_t isRight,TArrayD &sizes,
47// | | TGeoManger *mgr)
48// | |----CreatePixelBus(Bool_t isRight,TArrayD &sizes,
49// | | TGeoManager *mgr)
50// | -----CreateClip(TArrayD &sizes,TGeoManager *mgr)
51// |----GetSectorMountingPoints(Int_t index,Double_t &x0,
52// | Double_t &y0,Double_t &x1,
53// | Double_t y1)
54// -----3* ParallelPosition(Double_t dist1,Double_t dist2,
55// Double_t phi,Double_t &x,Double_t &y)
56//
57// Obsoleate or presently unused routines are: setAddStave(Bool_t *mask),
58// CreatePixelBusAndExtensions(...) which calles CreateExtender(...).
db486a6e 59
543b7370 60/* $Id$ */
592651e2 61
4098f5dd 62
db486a6e 63// General Root includes
64#include <Riostream.h>
65#include <TMath.h>
66#include <TLatex.h>
67#include <TCanvas.h>
68#include <TPolyLine.h>
297369a1 69#include <TPolyMarker.h>
bc3498f4 70
db486a6e 71// Root Geometry includes
db486a6e 72#include <TGeoVolume.h>
592651e2 73#include <TGeoTube.h> // contains TGeoTubeSeg
db486a6e 74#include <TGeoEltu.h>
75#include <TGeoXtru.h>
db486a6e 76#include <TGeoMatrix.h>
a53658c6 77#include <TGeoMaterial.h>
78#include <TGeoMedium.h>
592651e2 79#include <TGeoCompositeShape.h>
bc3498f4 80
592651e2 81// AliRoot includes
bc3498f4 82#include "AliLog.h"
a53658c6 83#include "AliMagF.h"
84#include "AliRun.h"
bc3498f4 85
592651e2 86// Declaration file
db486a6e 87#include "AliITSv11GeometrySPD.h"
88
54c9a3d9 89// Constant definistions
90const Double_t AliITSv11GeometrySPD::fgkGapLadder =
91 AliITSv11Geometry::fgkmicron*75.; // 75 microns
92const Double_t AliITSv11GeometrySPD::fgkGapHalfStave =
93 AliITSv11Geometry::fgkmicron*120.; // 120 microns
7855ea93 94
db486a6e 95ClassImp(AliITSv11GeometrySPD)
54c9a3d9 96//______________________________________________________________________
97AliITSv11GeometrySPD::AliITSv11GeometrySPD(/*Double_t gap*/):
98AliITSv11Geometry(),// Default constructor of base class
99fAddStave(), // [DEBUG] must be TRUE for all staves which will be
100 // mounted in the sector (used to check overlaps)
101fSPDsectorX0(0), // X of first edge of sector plane for stave
102fSPDsectorY0(0), // Y of first edge of sector plane for stave
103fSPDsectorX1(0), // X of second edge of sector plane for stave
104fSPDsectorY1(0), // Y of second edge of sector plane for stave
105fTubeEndSector() // coordinate of cooling tube ends
106{
107 //
108 // Default constructor.
109 // This does not initialize anything and is provided just for
110 // completeness. It is recommended to use the other one.
111 // The alignment gap is specified as argument (default = 0.0075 cm).
112 // Inputs:
113 // none.
114 // Outputs:
115 // none.
116 // Return:
117 // A default constructed AliITSv11GeometrySPD class.
118 //
119 Int_t i = 0,j=0,k=0;
db486a6e 120
54c9a3d9 121 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
122 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
123 this->fTubeEndSector[k][0][i][j] = 0.0;
124 this->fTubeEndSector[k][1][i][j] = 0.0;
125 } // end for i,j
126}
127//______________________________________________________________________
128AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug/*, Double_t gap*/):
129AliITSv11Geometry(debug),// Default constructor of base class
130fAddStave(), // [DEBUG] must be TRUE for all staves which will be
131 // mounted in the sector (used to check overlaps)
132fSPDsectorX0(0), // X of first edge of sector plane for stave
133fSPDsectorY0(0), // Y of first edge of sector plane for stave
134fSPDsectorX1(0), // X of second edge of sector plane for stave
135fSPDsectorY1(0), // Y of second edge of sector plane for stave
136fTubeEndSector() // coordinate of cooling tube ends
137{
138 //
139 // Constructor with debug setting argument
140 // This is the constructor which is recommended to be used.
141 // It sets a debug level, and initializes the name of the object.
142 // The alignment gap is specified as argument (default = 0.0075 cm).
143 // Inputs:
144 // Int_t debug Debug level, 0= no debug output.
145 // Outputs:
146 // none.
147 // Return:
148 // A default constructed AliITSv11GeometrySPD class.
149 //
150 Int_t i = 0,j=0,k=0;
db486a6e 151
54c9a3d9 152 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
153 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
154 this->fTubeEndSector[k][0][i][j] = 0.0;
155 this->fTubeEndSector[k][1][i][j] = 0.0;
156 } // end for i,j
157}
158//______________________________________________________________________
159AliITSv11GeometrySPD::AliITSv11GeometrySPD(const AliITSv11GeometrySPD &s):
160AliITSv11Geometry(s),// Base Class Copy constructor
161fAddStave(), // [DEBUG] must be TRUE for all staves which will be
162 // mounted in the sector (used to check overlaps)
163fSPDsectorX0(s.fSPDsectorX0), // X of first edge of sector plane for stave
164fSPDsectorY0(s.fSPDsectorY0), // Y of first edge of sector plane for stave
165fSPDsectorX1(s.fSPDsectorX1), // X of second edge of sector plane for stave
166fSPDsectorY1(s.fSPDsectorY1) // Y of second edge of sector plane for stave
bc3498f4 167{
54c9a3d9 168 //
169 // Copy Constructor
170 // Inputs:
171 // AliITSv11GeometrySPD &s source class
172 // Outputs:
173 // none.
174 // Return:
175 // A copy of a AliITSv11GeometrySPD class.
176 //
177 Int_t i=0,j=0,k=0;
178
179 for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
180 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
181 this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
182 this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
183 } // end for i,j
bc3498f4 184}
54c9a3d9 185//______________________________________________________________________
186AliITSv11GeometrySPD& AliITSv11GeometrySPD::operator=(const
187 AliITSv11GeometrySPD &s)
bc3498f4 188{
54c9a3d9 189 //
190 // = operator
191 // Inputs:
192 // AliITSv11GeometrySPD &s source class
193 // Outputs:
194 // none.
195 // Return:
196 // A copy of a AliITSv11GeometrySPD class.
197 //
198 Int_t i=0,j=0,k=0;
199
200 if(this==&s) return *this;
201 for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
202 this->fSPDsectorX0=s.fSPDsectorX0;
203 this->fSPDsectorY0=s.fSPDsectorY0;
204 this->fSPDsectorX1=s.fSPDsectorX1;
205 this->fSPDsectorY1=s.fSPDsectorY1;
206 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
207 this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
208 this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
209 } // end for i,j
210 return *this;
bc3498f4 211}
54c9a3d9 212//______________________________________________________________________
213TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName,
214 TGeoManager *mgr) const
bc3498f4 215{
54c9a3d9 216 //
217 // This function is used to recovery any medium
218 // used to build the geometry volumes.
219 // If the required medium does not exists,
220 // a NULL pointer is returned, and an error message is written.
221 //
222 Char_t itsMediumName[30];
223
224 sprintf(itsMediumName, "ITS_%s", mediumName);
225 TGeoMedium* medium = mgr->GetMedium(itsMediumName);
226 if (!medium) AliError(Form("Medium <%s> not found", mediumName));
227
228 return medium;
bc3498f4 229}
54c9a3d9 230//______________________________________________________________________
231Int_t AliITSv11GeometrySPD::CreateSPDCentralMaterials(Int_t &medOffset,
232 Int_t &matOffset) const
592651e2 233{
54c9a3d9 234 //
235 // Define the specific materials used for the ITS SPD central detectors.
236 // ---
237 // NOTE: These are the same old names.
238 // By the ALICE naming conventions, they start with "ITS SPD ...."
239 // Data taken from ** AliITSvPPRasymmFMD::CreateMaterials() **.
240 // ---
241 // Arguments [the ones passed by reference contain output values]:
242 // - medOffset --> (by ref) starting number of the list of media
243 // - matOffset --> (by ref) starting number of the list of Materials
244 // ---
245 // Inputs:
246 // Int_t &medOffset Starting number of the list of media
247 // Int_t &matOffset Starting number of the list of materials
248 // Outputs:
249 // Int_t &medOffset Ending number of the list of media
250 // Int_t &matOffset Ending number of the list of materials
251 // Return:
252 // The last material indexused +1. (= next avaiable material index)
253 //
254 const Double_t ktmaxfd = 0.1 * fgkDegree; // Degree
255 const Double_t kstemax = 1.0 * fgkcm; // cm
256 const Double_t kdeemax = 0.1;//Fraction of particle's energy 0<deemax<=1
257 const Double_t kepsil = 1.0E-4; //
258 const Double_t kstmin = 0.0 * fgkcm; // cm "Default value used"
259 const Double_t ktmaxfdAir = 0.1 * fgkDegree; // Degree
260 const Double_t kstemaxAir = 1.0000E+00 * fgkcm; // cm
261 const Double_t kdeemaxAir = 0.1;//Fraction of particle's energy 0<deemax<=1
262 const Double_t kepsilAir = 1.0E-4;//
263 const Double_t kstminAir = 0.0 * fgkcm; // cm "Default value used"
264 const Double_t ktmaxfdSi = 0.1 * fgkDegree; // .10000E+01; // Degree
265 const Double_t kstemaxSi = 0.0075 * fgkcm; // .10000E+01; // cm
266 const Double_t kdeemaxSi = 0.1;//Fraction of particle's energy 0<deemax<=1
267 const Double_t kepsilSi = 1.0E-4;//
268 const Double_t kstminSi = 0.0 * fgkcm; // cm "Default value used"
269 //
270 Int_t matindex = matOffset;
271 Int_t medindex = medOffset;
272 TGeoMaterial *mat;
273 TGeoMixture *mix;
274 TGeoMedium *med;
275 //
276 Int_t ifield = (gAlice->Field()->Integ());
277 Double_t fieldm = (gAlice->Field()->Max());
278 Double_t params[8] = {8 * 0.0};
279
280 params[1] = (Double_t) ifield;
281 params[2] = fieldm;
282 params[3] = ktmaxfdSi;
283 params[4] = kstemaxSi;
284 params[5] = kdeemaxSi;
285 params[6] = kepsilSi;
286 params[7] = kstminSi;
287
288 // Definition of materials and mediums.
289 // Last argument in material definition is its pressure,
290 // which is initialized to ZERO.
291 // For better readability, it is simply set to zero.
292 // Then the writing "0.0 * fgkPascal" is replaced by "0."
293 // (Alberto)
294
295 // silicon definition for ITS (overall)
296 mat = new TGeoMaterial("ITS_SI", 28.086, 14.0, 2.33 * fgkgcm3,
297 TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.);
298 mat->SetIndex(matindex);
299 med = new TGeoMedium("SI", medindex++, mat, params);
300
301 // silicon for ladder chips
302 mat = new TGeoMaterial("SPD SI CHIP", 28.086, 14.0, 2.33 * fgkgcm3,
303 TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.);
304 mat->SetIndex(matindex);
305 med = new TGeoMedium("SPD SI CHIP", medindex++, mat, params);
306
307 // silicon for pixel bus
308 mat = new TGeoMaterial("SPD SI BUS", 28.086, 14.0, 2.33 * fgkgcm3,
309 TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.);
310 mat->SetIndex(matindex);
311 med = new TGeoMedium("SPD SI BUS", medindex++, mat, params);
312
313 // carbon fiber material is defined as a mix of C-O-N-H
314 // defined in terms of fractional weights according to 'C (M55J)'
315 // it is used for the support and clips
316 mix = new TGeoMixture("C (M55J)", 4, 1.9866 * fgkgcm3);
317 mix->SetIndex(matindex);
318 mix->DefineElement(0, 12.01070, 6.0, 0.908508078);// C by fractional weight
319 mix->DefineElement(1, 14.00670, 7.0, 0.010387573);// N by fractional weight
320 mix->DefineElement(2, 15.99940, 8.0, 0.055957585);// O by fractional weight
321 mix->DefineElement(3, 1.00794, 1.0, 0.025146765);// H by fractional weight
322 mix->SetPressure(0.0 * fgkPascal);
323 mix->SetTemperature(25.0 * fgkCelsius);
324 mix->SetState(TGeoMaterial::kMatStateSolid);
325 params[3] = ktmaxfd;
326 params[4] = kstemax;
327 params[5] = kdeemax;
328 params[6] = kepsil;
329 params[7] = kstmin;
330 med = new TGeoMedium("ITSspdCarbonFiber", medindex++, mix, params);
331
332 // air defined as a mixture of C-N-O-Ar:
333 // it is used to fill all containers
334 mix = new TGeoMixture("Air", 4, 1.20479E-3 * fgkgcm3);
335 mix->SetIndex(matindex);
336 mix->DefineElement(0, 12.0107, 6.0, 0.000124); // C by fractional weight
337 mix->DefineElement(1, 14.0067, 7.0, 0.755267); // N by fractional weight
338 mix->DefineElement(2, 15.9994, 8.0, 0.231781); // O by fractional weight
339 mix->DefineElement(3, 39.9480, 18.0, 0.012827); // Ar by fractional weight
340 mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
341 mix->SetTemperature(25.0 * fgkCelsius);
342 mix->SetState(TGeoMaterial::kMatStateGas);
343 params[3] = ktmaxfdAir;
344 params[4] = kstemaxAir;
345 params[5] = kdeemaxAir;
346 params[6] = kepsilAir;
347 params[7] = kstminAir;
348 med = new TGeoMedium("ITSspdAir", medindex++, mix, params);
349
350 // inox stainless steel, defined as a mixture
351 // used for all metallic parts
352 mix = new TGeoMixture("INOX", 9, 8.03 * fgkgcm3);
353 mix->SetIndex(matindex);
354 mix->DefineElement(0, 12.0107, 6., .0003); // C by fractional weight
355 mix->DefineElement(1, 54.9380, 25., .02); // Fe by fractional weight
356 mix->DefineElement(2, 28.0855, 14., .01); // Na by fractional weight
357 mix->DefineElement(3, 30.9738, 15., .00045); // P by fractional weight
358 mix->DefineElement(4, 32.066 , 16., .0003); // S by fractional weight
359 mix->DefineElement(5, 58.6928, 28., .12); // Ni by fractional weight
360 mix->DefineElement(6, 55.9961, 24., .17); // by fractional weight
361 mix->DefineElement(7, 95.84 , 42., .025); // by fractional weight
362 mix->DefineElement(8, 55.845 , 26., .654); // by fractional weight
363 mix->SetPressure(0.0 * fgkPascal);
364 mix->SetTemperature(25.0 * fgkCelsius);
365 mix->SetState(TGeoMaterial::kMatStateSolid);
366 params[3] = ktmaxfdAir;
367 params[4] = kstemaxAir;
368 params[5] = kdeemaxAir;
369 params[6] = kepsilAir;
370 params[7] = kstminAir;
371 med = new TGeoMedium("ITSspdStainlessSteel", medindex++, mix, params);
372
373 // freon gas which fills the cooling system (C+F)
374 mix = new TGeoMixture("Freon", 2, 1.63 * fgkgcm3);
375 mix->SetIndex(matindex);
376 mix->DefineElement(0, 12.0107 , 6.0, 4); // C by fractional weight
377 mix->DefineElement(1, 18.9984032, 9.0, 10); // F by fractional weight
378 mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
379 mix->SetTemperature(25.0 * fgkCelsius);
380 mix->SetState(TGeoMaterial::kMatStateLiquid);
381 params[3] = ktmaxfdAir;
382 params[4] = kstemaxAir;
383 params[5] = kdeemaxAir;
384 params[6] = kepsilAir;
385 params[7] = kstminAir;
386 med = new TGeoMedium("ITSspdCoolingFluid", medindex++, mix, params);
387
388 // return the next index to be used in case of adding new materials
389 medOffset = medindex;
390 matOffset = matindex;
391 return matOffset;
a53658c6 392}
54c9a3d9 393//______________________________________________________________________
bc3498f4 394void AliITSv11GeometrySPD::InitSPDCentral(Int_t offset, TVirtualMC *vmc) const
395{
54c9a3d9 396 //
397 // Do all SPD Central detector initializations (e.g.: transport cuts).
398 // ---
399 // Here follow some GEANT3 physics switches, which are interesting
400 // for these settings to be defined:
401 // - "MULTS" (MULtiple Scattering):
402 // the variable IMULS controls this process. See [PHYS320/325/328]
403 // 0 - No multiple scattering.
404 // 1 - (DEFAULT) Multiple scattering according to Moliere theory.
405 // 2 - Same as 1. Kept for backward compatibility.
406 // 3 - Pure Gaussian scattering according to the Rossi formula.
407 // - "DRAY" (Delta RAY production)
408 // The variable IDRAY controls this process. See [PHYS430]
409 // 0 - No delta rays production.
410 // 1 - (DEFAULT) Delta rays production with generation of.
411 // 2 - Delta rays production without generation of.
412 // - "LOSS" (continuous energy loss)
413 // The variable ILOSS controls this process.
414 // 0 - No continuous energy loss, IDRAY is set to 0.
415 // 1 - Continuous energy loss with generation of delta rays above
416 // DCUTE (common/GCUTS/) and restricted Landau fluctuations
417 // below DCUTE.
418 // 2 - (DEFAULT) Continuous energy loss without generation of
419 // delta rays
420 // and full Landau-Vavilov-Gauss fluctuations.
421 // In this case the variable IDRAY is forced to 0 to avoid
422 // double counting of fluctuations.
423 // 3 - Same as 1, kept for backward compatibility.
424 // 4 - Energy loss without fluctuation.
425 // The value obtained from the tables is used directly.
426 // ---
427 // Arguments:
428 // Int_t offset --> the material/medium index offset
429 // TVirtualMC *vmc --> pointer to the virtual Monte Carlo default gMC
430 //
431
432 Int_t i, n = 4;
433
434 for(i=0;i<n;i++) {
435 vmc->Gstpar(i+offset, "CUTGAM", 30.0 * fgkKeV);
436 vmc->Gstpar(i+offset, "CUTELE", 30.0 * fgkKeV);
437 vmc->Gstpar(i+offset, "CUTNEU", 30.0 * fgkKeV);
438 vmc->Gstpar(i+offset, "CUTHAD", 30.0 * fgkKeV);
439 vmc->Gstpar(i+offset, "CUTMUO", 30.0 * fgkKeV);
440 vmc->Gstpar(i+offset, "BCUTE", 30.0 * fgkKeV);
441 vmc->Gstpar(i+offset, "BCUTM", 30.0 * fgkKeV);
442 vmc->Gstpar(i+offset, "DCUTE", 30.0 * fgkKeV);
443 vmc->Gstpar(i+offset, "DCUTM", 30.0 * fgkKeV);
444 //vmc->Gstpar(i+offset, "PPCUTM", );
445 //vmc->Gstpar(i+offset, "PAIR", );
446 //vmc->Gstpar(i+offset, "COMPT", );
447 //vmc->Gstpar(i+offset, "PHOT", );
448 //vmc->Gstpar(i+offset, "PFIS", );
449 vmc->Gstpar(i+offset, "DRAY", 1);
450 //vmc->Gstpar(i+offset, "ANNI", );
451 //vmc->Gstpar(i+offset, "BREM", );
452 //vmc->Gstpar(i+offset, "HADR", );
453 //vmc->Gstpar(i+offset, "MUNU", );
454 //vmc->Gstpar(i+offset, "DCAY", );
455 vmc->Gstpar(i+offset, "LOSS", 1);
456 //vmc->Gstpar(i+offset, "MULS", );
457 //vmc->Gstpar(i+offset, "GHCOR1", );
458 //vmc->Gstpar(i+offset, "BIRK1", );
459 //vmc->Gstpar(i+offset, "BRIK2", );
460 //vmc->Gstpar(i+offset, "BRIK3", );
461 //vmc->Gstpar(i+offset, "LABS", );
462 //vmc->Gstpar(i+offset, "SYNC", );
463 //vmc->Gstpar(i+offset, "STRA", );
464 }
a53658c6 465}
54c9a3d9 466//______________________________________________________________________
bc3498f4 467void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr)
468{
54c9a3d9 469 //
470 // Creates a single SPD carbon fiber sector and places it
471 // in a container volume passed as first argument ('moth').
472 // Second argument points to the TGeoManager which coordinates
473 // the overall volume creation.
474 // The position of the sector is based on distance of
475 // closest point of SPD stave to beam pipe
476 // (figures all-sections-modules.ps) of 7.22mm at section A-A.
477 //
478
479 // Begin_Html
480 /*
481 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
482 title="SPD Sector drawing with all cross sections defined">
483 <p>The SPD Sector definition. In
484 <a href="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.hpgl">HPGL</a> format.
485 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly-10-modules.ps"
486 titile="SPD All Sectors end view with thermal sheald">
487 <p>The SPD all sector end view with thermal sheald.
488 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
489 title="SPD side view cross section">
490 <p>SPD side view cross section with condes and thermal shealds.
491 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-A_A.jpg"
492 title="Cross section A-A"><p>Cross section A-A.
493 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-B_B.jpg"
494 title="Cross updated section A-A"><p>Cross updated section A-A.
495 <img src="http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf"
496 title="Cross section B-B"><p>Cross section B-B.
497 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-C_C.jpg"
498 title-"Cross section C-C"><p>Cross section C-C.
499 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-D_D.jpg"
500 title="Cross section D-D"><p>Cross section D-D.
501 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-E_E.jpg"
502 title="Cross section E-E"><p>Cross section E-E.
503 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-F_F.jpg"
504 title="Cross section F-F"><p>Cross section F-F.
505 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-G_G.jpg"
506 title="Cross section G-G"><p>Cross section G-G.
507 */
508 // End_Html
509
510 // Inputs:
511 // TGeoVolume *moth Pointer to mother volume where this object
512 // is to be placed in
513 // TGeoManager *mgr Pointer to the TGeoManager used, defaule is
514 // gGeoManager.
515 // Outputs:
516 // none.
517 // Return:
518 // none.
519 // Updated values for kSPDclossesStaveAA, kBeamPipeRadius, and
520 // staveThicknessAA are taken from
521 // http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf
522 //
523 const Double_t kSPDclossesStaveAA = 7.25*fgkmm;//7.22 * fgkmm;
524 const Double_t kSectorStartingAngle = -72.0 * fgkDegree;
525 const Double_t kNSectorsTotal = 10.0;
526 const Double_t kSectorRelativeAngle = 360.0 / kNSectorsTotal * fgkDegree;
527 const Double_t kBeamPipeRadius = 0.5*59.6*fgkmm;//0.5*60.0*fgkmm;
528
529 Int_t i,j,k;
530 Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0;
531 Double_t staveThicknessAA = 0.9*fgkmm;//1.03*fgkmm;// get from stave geometry.
532 TGeoCombiTrans *secRot = new TGeoCombiTrans(),*comrot;
533 TGeoVolume *vCarbonFiberSector;
534 TGeoMedium *medSPDcf;
535
536 // Define an assembly and fill it with the support of
537 // a single carbon fiber sector and staves in it
538 medSPDcf = GetMedium("SPD C (M55J)$", mgr);
539 vCarbonFiberSector = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV");
540 vCarbonFiberSector->SetMedium(medSPDcf);
541 CarbonFiberSector(vCarbonFiberSector,xAAtubeCenter0,yAAtubeCenter0,mgr);
542
543 // Compute the radial shift out of the sectors
544 radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA;
545 if(GetDebug(1))printf("SPDSector: radiusSector=%f\n",radiusSector); i=1;
546 //for(i=0;i<fSPDsectorX0.GetSize();i++)
547 if(GetDebug(1))printf( "i= %d x0=%f y0=%f x1=%f y1=%f\n",i,
548 fSPDsectorX0.At(i),fSPDsectorY0.At(i),
549 fSPDsectorX1.At(i),fSPDsectorY1.At(i));
550 radiusSector = GetSPDSectorTranslation(fSPDsectorX0.At(1),
551 fSPDsectorY0.At(1),fSPDsectorX1.At(1),fSPDsectorY1.At(1),
552 radiusSector);
553 if(GetDebug(1))printf(" q=%f\n",radiusSector);
554 //radiusSector *= radiusSector; // squaring;
555 //radiusSector -= xAAtubeCenter0 * xAAtubeCenter0;
556 //radiusSector = -yAAtubeCenter0 + TMath::Sqrt(radiusSector);
557
558 // add 10 single sectors, by replicating the virtual sector defined above
559 // and placing at different angles
560 Double_t shiftX, shiftY, tub[2][6][3];
561 for(i=0;i<2;i++)for(j=0;j<6;j++)for(k=0;k<3;k++)
562 tub[i][j][k] = fTubeEndSector[0][i][j][k];
563 angle = kSectorStartingAngle;
564 secRot->RotateZ(angle);
565 TGeoVolumeAssembly *vcenteral = new TGeoVolumeAssembly("ITSSPD");
566 moth->AddNode(vcenteral,1,0);
567 for(i = 0; i < (Int_t)kNSectorsTotal; i++) {
568 shiftX = -radiusSector * TMath::Sin(angle/fgkRadian);
569 shiftY = radiusSector * TMath::Cos(angle/fgkRadian);
570 secRot->SetDx(shiftX);
571 secRot->SetDy(shiftY);
572 comrot = new TGeoCombiTrans(*secRot);
573 vcenteral->AddNode(vCarbonFiberSector,i+1,comrot);
574 for(j=0;j<2;j++)for(k=0;k<6;k++) // Transform Tube ends for each sector
575 comrot->LocalToMaster(tub[j][k],fTubeEndSector[i][j][k]);
576 if(GetDebug(5)) {
577 AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g "
578 "x=%g y=%g \n",i, angle, angle/fgkRadian,
579 radiusSector, shiftX, shiftY));
580 } // end if GetDebug(5)
581 angle += kSectorRelativeAngle;
582 secRot->RotateZ(kSectorRelativeAngle);
583 } // end for i
584 if(GetDebug(3)) moth->PrintNodes();
585 delete secRot;
7f69c251 586
587 CreateCones(moth);
a53658c6 588}
54c9a3d9 589//______________________________________________________________________
590void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth,
591 Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr)
bc3498f4 592{
54c9a3d9 593 //
594 // Define the detail SPD Carbon fiber support Sector geometry.
595 // Based on the drawings:
596 /*
597 http:///QA-construzione-profilo-modulo.ps
598 */
599 // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004)
600 // - ALICE-SUPPORTO "Costruzione Profilo Modulo"
601 // ---
602 // Define outside radii as negative, where "outside" means that the
603 // center of the arc is outside of the object (feb 16 2004).
604 // ---
605 // Arguments [the one passed by ref contain output values]:
606 // Inputs:
607 // TGeoVolume *moth the voulme which will contain this object
608 // TGeoManager *mgr TGeo builder defauls is gGeoManager
609 // Outputs:
610 // Double_t &xAAtubeCenter0 (by ref) x location of the outer surface
611 // of the cooling tube center for tube 0.
612 // Double_t &yAAtubeCenter0 (by ref) y location of the outer surface
613 // of the cooling tube center for tube 0.
614 // Return:
615 // none.
616 // ---
617 // Int the two variables passed by reference values will be stored
618 // which will then be used to correctly locate this sector.
619 // The information used for this is the distance between the
620 // center of the #0 detector and the beam pipe.
621 // Measurements are taken at cross section A-A.
622 //
623
624 //TGeoMedium *medSPDfs = 0;//SPD support cone inserto stesalite 4411w
625 //TGeoMedium *medSPDfo = 0;//SPD support cone foam, Rohacell 50A.
626 //TGeoMedium *medSPDal = 0;//SPD support cone SDD mounting bracket Al
627 TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr);
628 TGeoMedium *medSPDss = GetMedium("INOX$", mgr);
629 TGeoMedium *medSPDair = GetMedium("AIR$", mgr);
630 TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid
631 //
632 const Double_t ksecDz = 0.5 * 500.0 * fgkmm;
633 //const Double_t ksecLen = 30.0 * fgkmm;
634 const Double_t ksecCthick = 0.2 * fgkmm;
635 const Double_t ksecDipLength = 3.2 * fgkmm;
636 const Double_t ksecDipRadii = 0.4 * fgkmm;
637 //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm;
638 //
639 // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#')
640 // are the centers and radii of curvature of all the rounded corners
641 // between the straight borders of the SPD sector shape.
642 // To draw this SPD sector, the following steps are followed:
643 // 1) the (ksecX, ksecY) points are plotted
644 // and circles of the specified radii are drawn around them.
645 // 2) each pair of consecutive circles is connected by a line
646 // tangent to them, in accordance with the radii being "internal"
647 // or "external" with respect to the closed shape which describes
648 // the sector itself.
649 // The resulting connected shape is the section
650 // of the SPD sector surface in the transverse plane (XY).
651 //
652 const Double_t ksecX0 = -10.725 * fgkmm;
653 const Double_t ksecY0 = -14.853 * fgkmm;
654 const Double_t ksecR0 = -0.8 * fgkmm; // external
655 const Double_t ksecX1 = -13.187 * fgkmm;
656 const Double_t ksecY1 = -19.964 * fgkmm;
657 const Double_t ksecR1 = +0.6 * fgkmm; // internal
658 // const Double_t ksecDip0 = 5.9 * fgkmm;
659 //
660 const Double_t ksecX2 = -3.883 * fgkmm;
661 const Double_t ksecY2 = -17.805 * fgkmm;
662 const Double_t ksecR2 = +0.80 * fgkmm; // internal (guess)
663 const Double_t ksecX3 = -3.123 * fgkmm;
664 const Double_t ksecY3 = -14.618 * fgkmm;
665 const Double_t ksecR3 = -0.6 * fgkmm; // external
666 //const Double_t ksecDip1 = 8.035 * fgkmm;
667 //
668 const Double_t ksecX4 = +11.280 * fgkmm;
669 const Double_t ksecY4 = -14.473 * fgkmm;
670 const Double_t ksecR4 = +0.8 * fgkmm; // internal
671 const Double_t ksecX5 = +19.544 * fgkmm;
672 const Double_t ksecY5 = +10.961 * fgkmm;
673 const Double_t ksecR5 = +0.8 * fgkmm; // internal
674 //const Double_t ksecDip2 = 4.553 * fgkmm;
675 //
676 const Double_t ksecX6 = +10.830 * fgkmm;
677 const Double_t ksecY6 = +16.858 * fgkmm;
678 const Double_t ksecR6 = +0.6 * fgkmm; // internal
679 const Double_t ksecX7 = +11.581 * fgkmm;
680 const Double_t ksecY7 = +13.317 * fgkmm;
681 const Double_t ksecR7 = -0.6 * fgkmm; // external
682 //const Double_t ksecDip3 = 6.978 * fgkmm;
683 //
684 const Double_t ksecX8 = -0.733 * fgkmm;
685 const Double_t ksecY8 = +17.486 * fgkmm;
686 const Double_t ksecR8 = +0.6 * fgkmm; // internal
687 const Double_t ksecX9 = +0.562 * fgkmm;
688 //const Double_t ksecY9 = +14.486 * fgkmm; // correction by
689 const Double_t ksecY9 = +14.107 * fgkmm; // Alberto
690 const Double_t ksecR9 = -0.6 * fgkmm; // external
691 //const Double_t ksecDip4 = 6.978 * fgkmm;
692 //
693 const Double_t ksecX10 = -12.252 * fgkmm;
694 const Double_t ksecY10 = +16.298 * fgkmm;
695 const Double_t ksecR10 = +0.6 * fgkmm; // internal
696 const Double_t ksecX11 = -10.445 * fgkmm;
697 const Double_t ksecY11 = +13.162 * fgkmm;
698 const Double_t ksecR11 = -0.6 * fgkmm; // external
699 //const Double_t ksecDip5 = 6.978 * fgkmm;
700 //
701 const Double_t ksecX12 = -22.276 * fgkmm;
702 const Double_t ksecY12 = +12.948 * fgkmm;
703 const Double_t ksecR12 = +0.85 * fgkmm; // internal
704 const Double_t ksecR13 = -0.8 * fgkmm; // external
705 const Double_t ksecAngleSide13 = 36.0 * fgkDegree;
706 //
707 const Int_t ksecNRadii = 20;
708 const Int_t ksecNPointsPerRadii = 4;
709 const Int_t ksecNCoolingTubeDips = 6;
710 //
711 // Since the rounded parts are approximated by a regular polygon
712 // and a cooling tube of the propper diameter must fit, a scaling factor
713 // increases the size of the polygon for the tube to fit.
714 //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/
715 // (Double_t)ksecNPointsPerRadii);
716 const Double_t ksecZEndLen = 30.000 * fgkmm;
717 //const Double_t ksecZFlangLen = 45.000 * fgkmm;
718 const Double_t ksecTl = 0.860 * fgkmm;
719 const Double_t ksecCthick2 = 0.600 * fgkmm;
720 //const Double_t ksecCthick3 = 1.80 * fgkmm;
721 //const Double_t ksecSidelen = 22.0 * fgkmm;
722 //const Double_t ksecSideD5 = 3.679 * fgkmm;
723 //const Double_t ksecSideD12 = 7.066 * fgkmm;
724 const Double_t ksecRCoolOut = 2.400 * fgkmm;
725 const Double_t ksecRCoolIn = 2.000 * fgkmm;
726 const Double_t ksecDl1 = 5.900 * fgkmm;
727 const Double_t ksecDl2 = 8.035 * fgkmm;
728 const Double_t ksecDl3 = 4.553 * fgkmm;
729 const Double_t ksecDl4 = 6.978 * fgkmm;
730 const Double_t ksecDl5 = 6.978 * fgkmm;
731 const Double_t ksecDl6 = 6.978 * fgkmm;
732 const Double_t ksecCoolTubeThick = 0.04 * fgkmm;
733 const Double_t ksecCoolTubeROuter = 2.6 * fgkmm;
734 const Double_t ksecCoolTubeFlatX = 3.696 * fgkmm;
735 const Double_t ksecCoolTubeFlatY = 0.68 * fgkmm;
736 //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess
737 //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess
738 //
739 // redefine some of the points already defined above
740 // in the format of arrays (???)
741 const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8;
742 Double_t secX[ksecNRadii] = {
743 ksecX0, ksecX1, -1000.0,
744 ksecX2, ksecX3, -1000.0,
745 ksecX4, ksecX5, -1000.0,
746 ksecX6, ksecX7, -1000.0,
747 ksecX8, ksecX9, -1000.0,
748 ksecX10, ksecX11, -1000.0,
749 ksecX12, -1000.0
750 };
751 Double_t secY[ksecNRadii] = {
752 ksecY0, ksecY1, -1000.0,
753 ksecY2, ksecY3, -1000.0,
754 ksecY4, ksecY5, -1000.0,
755 ksecY6, ksecY7, -1000.0,
756 ksecY8, ksecY9, -1000.0,
757 ksecY10, ksecY11, -1000.0,
758 ksecY12, -1000.0
759 };
760 Double_t secR[ksecNRadii] = {
761 ksecR0, ksecR1, -.5 * ksecDipLength - ksecDipRadii,
762 ksecR2, ksecR3, -.5 * ksecDipLength - ksecDipRadii,
763 ksecR4, ksecR5, -.5 * ksecDipLength - ksecDipRadii,
764 ksecR6, ksecR7, -.5 * ksecDipLength - ksecDipRadii,
765 ksecR8, ksecR9, -.5 * ksecDipLength - ksecDipRadii,
766 ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii,
767 ksecR12, ksecR13
768 };
769 /*
770 Double_t secDip[ksecNRadii] = {
771 0., 0., ksecDip0, 0., 0., ksecDip1,
772 0., 0., ksecDip2, 0., 0., ksecDip3,
773 0., 0., ksecDip4, 0., 0., ksecDip5,
774 0., 0.
775 };
776 */
777 Double_t secX2[ksecNRadii];
778 Double_t secY2[ksecNRadii];
779 Double_t secR2[ksecNRadii] = {
780 ksecR0, ksecR1, ksecRCoolOut,
781 ksecR2, ksecR3, ksecRCoolOut,
782 ksecR4, ksecR5, ksecRCoolOut,
783 ksecR6, ksecR7, ksecRCoolOut,
784 ksecR8, ksecR9, ksecRCoolOut,
785 ksecR10, ksecR11, ksecRCoolOut,
786 ksecR12, ksecR13
787 };
788 Double_t secDip2[ksecNCoolingTubeDips] = {
789 ksecDl1, ksecDl2, ksecDl3,
790 ksecDl4, ksecDl5, ksecDl6
791 };
792 Double_t secX3[ksecNRadii];
793 Double_t secY3[ksecNRadii];
794 const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17};
795 Double_t secAngleStart[ksecNRadii];
796 Double_t secAngleEnd[ksecNRadii];
797 Double_t secAngleStart2[ksecNRadii];
798 Double_t secAngleEnd2[ksecNRadii];
799 Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0};
800 //Double_t secAngleStart3[ksecNRadii];
801 //Double_t secAngleEnd3[ksecNRadii];
802 Double_t xpp[ksecNPoints], ypp[ksecNPoints];
803 Double_t xpp2[ksecNPoints], ypp2[ksecNPoints];
804 Double_t *xp[ksecNRadii], *xp2[ksecNRadii];
805 Double_t *yp[ksecNRadii], *yp2[ksecNRadii];
806 TGeoXtru *sA0, *sA1, *sB0, *sB1,*sB2;
807 TGeoBBox *sB3;
808 TGeoEltu *sTA0, *sTA1;
809 TGeoTube *sTB0, *sTB1; //,*sM0;
810 TGeoRotation *rot;
811 TGeoTranslation *trans;
812 TGeoCombiTrans *rotrans;
813 Double_t t, t0, t1, a, b, x0, y0,z0, x1, y1;
814 Int_t i, j, k, m;
815 Bool_t tst;
816
817 if(!moth) {
818 AliError("Container volume (argument) is NULL");
819 return;
820 } // end if(!moth)
821 for(i = 0; i < ksecNRadii; i++) {
822 xp[i] = &(xpp[i*(ksecNPointsPerRadii+1)]);
823 yp[i] = &(ypp[i*(ksecNPointsPerRadii+1)]);
824 xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]);
825 yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]);
826 secX2[i] = secX[i];
827 secY2[i] = secY[i];
828 secX3[i] = secX[i];
829 secY3[i] = secY[i];
830 } // end for i
831 //
832 // find starting and ending angles for all but cooling tube sections
833 secAngleStart[0] = 0.5 * ksecAngleSide13;
834 for(i = 0; i < ksecNRadii - 2; i++) {
835 tst = kFALSE;
836 for(j=0;j<ksecNCoolingTubeDips;j++) tst = (tst||i==ksecDipIndex[j]);
837 if (tst) continue;
838 tst = kFALSE;
839 for(j=0;j<ksecNCoolingTubeDips;j++) tst =(tst||(i+1)==ksecDipIndex[j]);
840 if (tst) j = i+2; else j = i+1;
841 AnglesForRoundedCorners(secX[i],secY[i],secR[i],secX[j],secY[j],
842 secR[j],t0,t1);
843 secAngleEnd[i] = t0;
844 secAngleStart[j] = t1;
845 if(secR[i] > 0.0 && secR[j] > 0.0) {
846 if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0;
847 } // end if(secR[i]>0.0 && secR[j]>0.0)
848 secAngleStart2[i] = secAngleStart[i];
849 secAngleEnd2[i] = secAngleEnd[i];
850 } // end for i
851 secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] +
852 (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]);
853 if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0;
854 secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0;
855 secAngleEnd[ksecNRadii-1] = secAngleStart[0];
856 secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2];
857 secAngleEnd2[ksecNRadii-2] = secAngleEnd[ksecNRadii-2];
858 secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1];
859 secAngleEnd2[ksecNRadii-1] = secAngleEnd[ksecNRadii-1];
860 //
861 // find location of circle last rounded corner.
862 i = 0;
863 j = ksecNRadii - 2;
864 t0 = TanD(secAngleStart[i]-90.);
865 t1 = TanD(secAngleEnd[j]-90.);
866 t = secY[i] - secY[j];
867 // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0
868 t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]);
869 t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]);
870 t += t1 * secX[j] - t0*secX[i];
871 t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]);
872 t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]);
873 secX[ksecNRadii-1] = t / (t1-t0);
874 secY[ksecNRadii-1] = TanD(90.0+0.5*ksecAngleSide13)*
875 (secX[ksecNRadii-1]-secX[0])+secY[0];
876 secX2[ksecNRadii-1] = secX[ksecNRadii-1];
877 secY2[ksecNRadii-1] = secY[ksecNRadii-1];
878 secX3[ksecNRadii-1] = secX[ksecNRadii-1];
879 secY3[ksecNRadii-1] = secY[ksecNRadii-1];
880
881 // find location of cooling tube centers
882 for(i = 0; i < ksecNCoolingTubeDips; i++) {
883 j = ksecDipIndex[i];
884 x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]);
885 y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]);
886 x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]);
887 y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]);
888 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
889 t = secDip2[i] / t0;
890 a = x0+(x1-x0) * t;
891 b = y0+(y1-y0) * t;
892 if(i == 0) {
893 // get location of tube center->Surface for locating
894 // this sector around the beam pipe.
895 // This needs to be double checked, but I need my notes for that.
896 // (Bjorn Nilsen)
897 xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5;
898 yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5;
899 }// end if i==0
900 if(a + b*(a - x0) / (b - y0) > 0.0) {
901 secX[j] = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0;
902 secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0;
903 secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0;
904 secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0;
905 secX3[j] = a + TMath::Abs(y1-y0) *
906 (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0;
907 secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
908 y1-y0)*(x1-x0)/t0;
909 } else {
910 secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0;
911 secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0;
912 secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0;
913 secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0;
914 secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5*
915 ksecCoolTubeFlatY)/t0;
916 secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
917 y1-y0)*(x1-x0)/t0;
918 } // end if(a+b*(a-x0)/(b-y0)>0.0)
919
920 // Set up Start and End angles to correspond to start/end of dips.
921 t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0;
922 secAngleStart[j] =TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
923 x0+(x1-x0)*t1-secX[j]);
924 if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0;
925 secAngleStart2[j] = secAngleStart[j];
926 t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0;
927 secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
928 x0+(x1-x0)*t1-secX[j]);
929 if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0;
930 secAngleEnd2[j] = secAngleEnd[j];
931 if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0;
932 secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii);
933 } // end for i
934
935 // Special cases
936 secAngleStart2[8] -= 360.;
937 secAngleStart2[11] -= 360.;
938
939 SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd,
940 ksecNPointsPerRadii, m, xp, yp);
941
942 // Fix up dips to be square.
943 for(i = 0; i < ksecNCoolingTubeDips; i++) {
944 j = ksecDipIndex[i];
945 t = 0.5*ksecDipLength+ksecDipRadii;
946 t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t);
947 t1 = secAngleEnd[j] + t0;
948 t0 = secAngleStart[j] - t0;
949 x0 = xp[j][1] = secX[j] + t*CosD(t0);
950 y0 = yp[j][1] = secY[j] + t*SinD(t0);
951 x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1);
952 y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1);
953 t0 = 1./((Double_t)(ksecNPointsPerRadii-2));
954 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
955 // extra points spread them out.
956 t = ((Double_t)(k-1)) * t0;
957 xp[j][k] = x0+(x1-x0) * t;
958 yp[j][k] = y0+(y1-y0) * t;
959 } // end for k
960 secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0);
961 if(GetDebug(3)) {
962 AliInfo(
963 Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)",
964 i, secAngleTurbo[i], x0, y0, x1, y1));
965 } // end if GetDebug(3)
966 } // end for i
967 sA0 = new TGeoXtru(2);
968 sA0->SetName("ITS SPD Carbon fiber support Sector A0");
969 sA0->DefinePolygon(m, xpp, ypp);
970 sA0->DefineSection(0, -ksecDz);
971 sA0->DefineSection(1, ksecDz);
972
973 // store the edges of each XY segment which defines
974 // one of the plane zones where staves will have to be placed
975 fSPDsectorX0.Set(ksecNCoolingTubeDips);
976 fSPDsectorY0.Set(ksecNCoolingTubeDips);
977 fSPDsectorX1.Set(ksecNCoolingTubeDips);
978 fSPDsectorY1.Set(ksecNCoolingTubeDips);
979 Int_t ixy0, ixy1;
980 for(i = 0; i < ksecNCoolingTubeDips; i++) {
981 // Find index in xpp[] and ypp[] corresponding to where the
982 // SPD ladders are to be attached. Order them according to
983 // the ALICE numbering schema. Using array of indexes (+-1 for
984 // cooling tubes. For any "bend/dip/edge, there are
985 // ksecNPointsPerRadii+1 points involved.
986 if(i == 0) j = 1;
987 else if (i == 1) j = 0;
988 else j = i;
989 ixy0 = (ksecDipIndex[j]-1)*(ksecNPointsPerRadii+1)+
990 (ksecNPointsPerRadii);
991 ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1);
992 fSPDsectorX0[i] = sA0->GetX(ixy0);
993 fSPDsectorY0[i] = sA0->GetY(ixy0);
994 fSPDsectorX1[i] = sA0->GetX(ixy1);
995 fSPDsectorY1[i] = sA0->GetY(ixy1);
996 } // end for i
997
998 //printf("SectorA#%d ",0);
999 InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],ksecCthick,
1000 xpp2[0],ypp2[0]);
1001 for(i = 1; i < m - 1; i++) {
1002 j = i / (ksecNPointsPerRadii+1);
1003 //printf("SectorA#%d ",i);
1004 InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],
1005 ksecCthick,xpp2[i],ypp2[i]);
1006 } // end for i
1007 //printf("SectorA#%d ",m);
1008 InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
1009 ksecCthick,xpp2[m-1],ypp2[m-1]);
1010 // Fix center value of cooling tube dip and
1011 // find location of cooling tube centers
1012 for(i = 0; i < ksecNCoolingTubeDips; i++) {
1013 j = ksecDipIndex[i];
1014 x0 = xp2[j][1];
1015 y0 = yp2[j][1];
1016 x1 = xp2[j][ksecNPointsPerRadii-1];
1017 y1 = yp2[j][ksecNPointsPerRadii-1];
1018 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
1019 t = secDip2[i]/t0;
1020 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
1021 // extra points spread them out.
1022 t = ((Double_t)(k-1)) * t0;
1023 xp2[j][k] = x0+(x1-x0) * t;
1024 yp2[j][k] = y0+(y1-y0) * t;
1025 } // end for k
1026 } // end for i
1027 sA1 = new TGeoXtru(2);
1028 sA1->SetName("ITS SPD Carbon fiber support Sector Air A1");
1029 sA1->DefinePolygon(m, xpp2, ypp2);
1030 sA1->DefineSection(0, -ksecDz);
1031 sA1->DefineSection(1, ksecDz);
1032 //
1033 // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?).
1034 sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY,
1035 0.5 * ksecCoolTubeFlatX, ksecDz);
1036 sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1",
1037 sTA0->GetA() - ksecCoolTubeThick,
1038 sTA0->GetB()-ksecCoolTubeThick,ksecDz);
1039 SPDsectorShape(ksecNRadii,secX2,secY2,secR2,secAngleStart2,secAngleEnd2,
1040 ksecNPointsPerRadii, m, xp, yp);
1041 sB0 = new TGeoXtru(2);
1042 sB0->SetName("ITS SPD Carbon fiber support Sector End B0");
1043 sB0->DefinePolygon(m, xpp, ypp);
1044 sB0->DefineSection(0, ksecDz);
1045 sB0->DefineSection(1, ksecDz + ksecZEndLen);
1046
1047 //printf("SectorB#%d ",0);
1048 InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],
1049 ksecCthick2,xpp2[0],ypp2[0]);
1050 for(i = 1; i < m - 1; i++) {
1051 t = ksecCthick2;
1052 for(k = 0; k < ksecNCoolingTubeDips; k++)
1053 if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k])
1054 if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i ||
1055 ksecDipIndex[k]*(ksecNPointsPerRadii+1) +
1056 ksecNPointsPerRadii == i))
1057 t = ksecRCoolOut-ksecRCoolIn;
1058 //printf("SectorB#%d ",i);
1059 InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],t,
1060 xpp2[i],ypp2[i]);
1061 }// end for i
1062 //printf("SectorB#%d ",m);
1063 InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
1064 ksecCthick2,xpp2[m-1],ypp2[m-1]);
1065 sB1 = new TGeoXtru(2);
1066 sB1->SetName("ITS SPD Carbon fiber support Sector Air End B1");
1067 sB1->DefinePolygon(m, xpp2, ypp2);
1068 sB1->DefineSection(0,sB0->GetZ(0));
1069 sB1->DefineSection(1,sB0->GetZ(1)-ksecCthick2);
1070 const Double_t kspdEndHoleRadius1=5.698*fgkmm;
1071 const Double_t kspdEndHoleRadius2=2.336*fgkmm;
1072 const Double_t kspdEndHoleDisplacement=6.29*fgkmm;
1073 k = (m-1)/4;
1074 for(i=0;i<=k;i++){
1075 t= ((Double_t)i)/((Double_t)(k));
1076 if(!CFHolePoints(t,kspdEndHoleRadius1,kspdEndHoleRadius2,
1077 kspdEndHoleDisplacement,xpp2[i],ypp2[i])){
1078 Warning("CarbonFiberSector","CFHolePoints failed "
1079 "i=%d m=%d k=%d t=%e",i,m,k,t);
1080 } // end if
1081 // simitry in each quadrant.
1082 xpp2[2*k-i] = -xpp2[i];
1083 ypp2[2*k-i] = ypp2[i];
1084 xpp2[2*k+i] = -xpp2[i];
1085 ypp2[2*k+i] = -ypp2[i];
1086 xpp2[4*k-i] = xpp2[i];
1087 ypp2[4*k-i] = -ypp2[i];
1088 }// end for i
1089 //xpp2[m-1] = xpp2[0]; // begining point in
1090 //ypp2[m-1] = ypp2[0]; // comment with end point
1091 sB2 = new TGeoXtru(2);
1092 sB2->SetName("ITS SPD Hole in Carbon fiber support End plate");
1093 sB2->DefinePolygon(4*k, xpp2, ypp2);
1094 sB2->DefineSection(0,sB1->GetZ(1));
1095 sB2->DefineSection(1,sB0->GetZ(1));
1096 // SPD sector mount blocks
1097 const Double_t kMountBlock[3] = {0.5*(1.8-0.2)*fgkmm,0.5*22.0*fgkmm,
1098 0.5*45.0*fgkmm};
1099 sB3 = new TGeoBBox((Double_t*)kMountBlock);
1100 // SPD sector cooling tubes
1101 sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0,
7708d5f3 1102 0.5*ksecCoolTubeROuter,0.5*(sB1->GetZ(1)-sB1->GetZ(0)));
54c9a3d9 1103 sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0,
1104 sTB0->GetRmax() - ksecCoolTubeThick,sTB0->GetDz());
1105 //
1106 if(GetDebug(3)) {
1107 if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0");
1108 if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0");
1109 if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0");
1110 if(medSPDcoolfl) medSPDcoolfl->Dump();else AliInfo("medSPDcoolfl = 0");
1111 sA0->InspectShape();
1112 sA1->InspectShape();
1113 sB0->InspectShape();
1114 sB1->InspectShape();
1115 sB2->InspectShape();
1116 } // end if(GetDebug(3))
1117
1118 // create the assembly of the support and place staves on it
1119 TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly(
1120 "ITSSPDSensitiveVirtualvolumeM0");
1121 StavesInSector(vM0);
1122 // create other volumes with some graphical settings
1123 TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0",
1124 sA0, medSPDcf);
1125 vA0->SetVisibility(kTRUE);
1126 vA0->SetLineColor(4); // Blue
1127 vA0->SetLineWidth(1);
1128 vA0->SetFillColor(vA0->GetLineColor());
1129 vA0->SetFillStyle(4010); // 10% transparent
1130 TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1",
1131 sA1, medSPDair);
1132 vA1->SetVisibility(kTRUE);
1133 vA1->SetLineColor(7); // light Blue
1134 vA1->SetLineWidth(1);
1135 vA1->SetFillColor(vA1->GetLineColor());
1136 vA1->SetFillStyle(4090); // 90% transparent
1137 TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss);
1138 vTA0->SetVisibility(kTRUE);
1139 vTA0->SetLineColor(15); // gray
1140 vTA0->SetLineWidth(1);
1141 vTA0->SetFillColor(vTA0->GetLineColor());
1142 vTA0->SetFillStyle(4000); // 0% transparent
1143 TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1",
1144 sTA1, medSPDcoolfl);
1145 vTA1->SetVisibility(kTRUE);
1146 vTA1->SetLineColor(6); // Purple
1147 vTA1->SetLineWidth(1);
1148 vTA1->SetFillColor(vTA1->GetLineColor());
1149 vTA1->SetFillStyle(4000); // 0% transparent
1150 TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0",
1151 sB0, medSPDcf);
1152 vB0->SetVisibility(kTRUE);
1153 vB0->SetLineColor(1); // Black
1154 vB0->SetLineWidth(1);
1155 vB0->SetFillColor(vB0->GetLineColor());
1156 vB0->SetFillStyle(4000); // 0% transparent
1157 TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1",
1158 sB1, medSPDair);
1159 vB1->SetVisibility(kTRUE);
1160 vB1->SetLineColor(0); // white
1161 vB1->SetLineWidth(1);
1162 vB1->SetFillColor(vB1->GetLineColor());
1163 vB1->SetFillStyle(4100); // 100% transparent
1164 TGeoVolume *vB2 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB2",
1165 sB2, medSPDair);
1166 vB2->SetVisibility(kTRUE);
1167 vB2->SetLineColor(0); // white
1168 vB2->SetLineWidth(1);
1169 vB2->SetFillColor(vB2->GetLineColor());
1170 vB2->SetFillStyle(4100); // 100% transparent
1171 TGeoVolume *vB3 = new TGeoVolume(
1172 "ITSSPDCarbonFiberSupportSectorMountBlockB3",sB3, medSPDcf);
1173 vB3->SetVisibility(kTRUE);
1174 vB3->SetLineColor(1); // Black
1175 vB3->SetLineWidth(1);
1176 vB3->SetFillColor(vB3->GetLineColor());
1177 vB3->SetFillStyle(4000); // 0% transparent
1178 TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss);
1179 vTB0->SetVisibility(kTRUE);
1180 vTB0->SetLineColor(15); // gray
1181 vTB0->SetLineWidth(1);
1182 vTB0->SetFillColor(vTB0->GetLineColor());
1183 vTB0->SetFillStyle(4000); // 0% transparent
1184 TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1,
1185 medSPDcoolfl);
1186 vTB1->SetVisibility(kTRUE);
1187 vTB1->SetLineColor(7); // light blue
1188 vTB1->SetLineWidth(1);
1189 vTB1->SetFillColor(vTB1->GetLineColor());
1190 vTB1->SetFillStyle(4050); // 0% transparent
1191
1192 // add volumes to mother container passed as argument of this method
1193 moth->AddNode(vM0,1,0); // Add virtual volume to mother
1194 vA0->AddNode(vA1,1,0); // Put air inside carbon fiber.
1195 vB0->AddNode(vB1,1,0); // Put air inside carbon fiber ends.
1196 vB0->AddNode(vB2,1,0); // Put air wholes inside carbon fiber ends
1197 vTA0->AddNode(vTA1,1,0); // Put cooling liquid indide tube middel.
1198 vTB0->AddNode(vTB1,1,0); // Put cooling liquid inside tube end.
1199 Double_t tubeEndLocal[3]={0.0,0.0,sTA0->GetDz()};
1200 for(i = 0; i < ksecNCoolingTubeDips; i++) {
1201 x0 = secX3[ksecDipIndex[i]];
1202 y0 = secY3[ksecDipIndex[i]];
1203 t = 90.0 - secAngleTurbo[i];
1204 trans = new TGeoTranslation("",x0,y0,0.5*(sB1->GetZ(0)+sB1->GetZ(1)));
1205 vB1->AddNode(vTB0, i+1, trans);
1206 // Find location of tube ends for later use.
1207 trans->LocalToMaster(tubeEndLocal,fTubeEndSector[0][0][i]);
1208 rot = new TGeoRotation("", 0.0, 0.0, t);
1209 rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot);
1210 vM0->AddNode(vTA0, i+1, rotrans);
1211 } // end for i
1212 vM0->AddNode(vA0, 1, 0);
1213 vM0->AddNode(vB0, 1, 0);
1214 // Reflection.
1215 rot = new TGeoRotation("", 90., 0., 90., 90., 180., 0.);
1216 vM0->AddNode(vB0,2,rot);
1217 // Find location of tube ends for later use.
1218 for(i=0;i<ksecNCoolingTubeDips;i++) rot->LocalToMaster(
1219 fTubeEndSector[0][0][i],fTubeEndSector[0][1][i]);
1220 // left side
1221 t = -TMath::RadToDeg()*TMath::ATan2(
1222 sB0->GetX(0)-sB0->GetX(sB0->GetNvert()-1),
1223 sB0->GetY(0)-sB0->GetY(sB0->GetNvert()-1));
1224 rot = new TGeoRotation("",t,0.0,0.0);// z axis rotation
1225 x0 = 0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))+
1226 sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
1227 y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))+
1228 sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
1229 z0 = sB0->GetZ(0)+sB3->GetDZ();
1230 rotrans = new TGeoCombiTrans("",x0,y0,z0,rot);
1231 vM0->AddNode(vB3,1,rotrans); // Put Mounting bracket on sector
1232 rotrans = new TGeoCombiTrans("",x0,y0,-z0,rot);
1233 vM0->AddNode(vB3,2,rotrans); // Put Mounting bracket on sector
1234 /*
1235 j = 0; // right side, find point with largest x value
1236 x1 = sB0->GetX(0);
1237 for(i=1;i<sB0->GetNvert();i++)if(sB0->GetX(i)>x1) {j=i;x1=sB0->GetX(i);}
1238 j--; // Too big by 1
1239 //t = -TMath::RadToDeg()*TMath::ATan2(
1240 // sB0->GetX(j)-sB0->GetX(j-1),
1241 // sB0->GetY(j)-sB0->GetY(j-1));
1242 */
1243 t *= -1.0;
1244 rot = new TGeoRotation("",t,0.0,0.0); // z axis rotation
1245 /* // this way gets correct orientation but wrong "height"
1246 x0 = 0.5*(sB0->GetX(j)+sB0->GetX(j-1))+
1247 sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
1248 y0 = 0.5*(sB0->GetY(j)+sB0->GetY(j-1))+
1249 sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
1250 z0 = sB0->GetZ(0)+sB3->GetDZ();
1251 */ // I don't understand the need for this factor 3.5.
1252 // posibly the SPD sector as coded isn't symetric which the
1253 // plans would suggest.
1254 x0 = -0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))-3.5*
1255 sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
1256 y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))-3.5*
1257 sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
22726349 1258 rotrans = new TGeoCombiTrans("",1.01*x0,y0,z0,rot);
54c9a3d9 1259 vM0->AddNode(vB3,3,rotrans); // Put Mounting bracket on sector
22726349 1260 rotrans = new TGeoCombiTrans("",1.01*x0,y0,-z0,rot);
54c9a3d9 1261 vM0->AddNode(vB3,4,rotrans); // Put Mounting bracket on sector
1262 if(GetDebug(3)){
1263 vM0->PrintNodes();
1264 vA0->PrintNodes();
1265 vA1->PrintNodes();
1266 vB0->PrintNodes();
1267 vB1->PrintNodes();
1268 vB2->PrintNodes();
1269 vB3->PrintNodes();
1270 vTA0->PrintNodes();
1271 vTA1->PrintNodes();
1272 vTB0->PrintNodes();
1273 vTB1->PrintNodes();
1274 } // end if(GetDebug(3))
bc3498f4 1275}
54c9a3d9 1276//______________________________________________________________________
1277Bool_t AliITSv11GeometrySPD::CFHolePoints(Double_t s,Double_t r1,
1278 Double_t r2,Double_t l,Double_t &x,Double_t &y) const
bc3498f4 1279{
54c9a3d9 1280 //
1281 // Step along arck a distancs ds and compute boundry of
1282 // two holes (radius r1 and r2) a distance l apart (along
1283 // x-axis).
1284 // Inputs:
1285 // Double_t s fractional Distance along arcs [0-1]
1286 // where 0-> alpha=beta=0, 1-> alpha=90 degrees.
1287 // Double_t r1 radius at center circle
1288 // Double_t r2 radius of displaced circle
1289 // Double_t l Distance displaced circle is displaces (x-axis)
1290 // Output:
1291 // Double_t x x coordinate along double circle.
1292 // Double_t y y coordinate along double circle.
1293 // Return:
1294 // logical, kFALSE if an error
1295 //
1296 Double_t alpha,beta;
1297 Double_t ac,bc,scb,sca,t,alphac,betac; // at intersection of two circles
1298
1299 x=y=0.0;
1300 ac = r1*r1-l*l-r2*r2;
1301 bc = 2.*l*r2;
1302 if(bc==0.0) {printf("bc=0 l=%e r2=%e\n",l,r2);return kFALSE;}
1303 betac = TMath::ACos(ac/bc);
1304 alphac = TMath::Sqrt(bc*bc-ac*ac)/(2.*l*r1);
1305 scb = r2*betac;
1306 sca = r1*alphac;
1307 t = r1*0.5*TMath::Pi() - sca + scb;
1308 if(s<= scb/t){
1309 beta = s*t/r2;
1310 x = r2*TMath::Cos(beta) + l;
1311 y = r2*TMath::Sin(beta);
1312 //printf("betac=%e scb=%e t=%e s=%e beta=%e x=%e y=%e\n",
1313 // betac,scb,t,s,beta,x,y);
1314 return kTRUE;
1315 }else{
1316 beta = (s*t-scb+sca)/(r1*0.5*TMath::Pi());
1317 alpha = beta*0.5*TMath::Pi();
1318 x = r1*TMath::Cos(alpha);
1319 y = r1*TMath::Sin(alpha);
1320 //printf("alphac=%e sca=%e t=%e s=%e beta=%e alpha=%e x=%e y=%e\n",
1321 // alphac,sca,t,s,beta,alpha,x,y);
1322 return kTRUE;
1323 } // end if
1324 return kFALSE;
bc3498f4 1325}
54c9a3d9 1326//______________________________________________________________________
1327Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints(Int_t index,Double_t &x0,
1328 Double_t &y0, Double_t &x1, Double_t &y1) const
bc3498f4 1329{
54c9a3d9 1330 //
1331 // Returns the edges of the straight borders in the SPD sector shape,
1332 // which are used to mount staves on them.
1333 // Coordinate system is that of the carbon fiber sector volume.
1334 // ---
1335 // Index numbering is as follows:
1336 // /5
1337 // /\/4
1338 // 1\ \/3
1339 // 0|___\/2
1340 // ---
1341 // Arguments [the ones passed by reference contain output values]:
1342 // Int_t index --> location index according to above scheme [0-5]
1343 // Double_t &x0 --> (by ref) x0 location or the ladder sector [cm]
1344 // Double_t &y0 --> (by ref) y0 location of the ladder sector [cm]
1345 // Double_t &x1 --> (by ref) x1 location or the ladder sector [cm]
1346 // Double_t &y1 --> (by ref) y1 location of the ladder sector [cm]
1347 // TGeoManager *mgr --> The TGeo builder
1348 // ---
1349 // The location is described by a line going from (x0, y0) to (x1, y1)
1350 // ---
1351 // Returns kTRUE if no problems encountered.
1352 // Returns kFALSE if a problem was encountered (e.g.: shape not found).
1353 //
1354 Int_t isize = fSPDsectorX0.GetSize();
1355
1356 x0 = x1 = y0 = y1 = 0.0;
1357 if(index < 0 || index > isize) {
1358 AliError(Form("index = %d: allowed 0 --> %", index, isize));
1359 return kFALSE;
1360 } // end if(index<0||index>isize)
1361 x0 = fSPDsectorX0[index];
1362 x1 = fSPDsectorX1[index];
1363 y0 = fSPDsectorY0[index];
1364 y1 = fSPDsectorY1[index];
1365 return kTRUE;
bc3498f4 1366}
54c9a3d9 1367//______________________________________________________________________
1368void AliITSv11GeometrySPD::SPDsectorShape(Int_t n,const Double_t *xc,
1369 const Double_t *yc, const Double_t *r,
1370 const Double_t *ths, const Double_t *the,
1371 Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const
bc3498f4 1372{
54c9a3d9 1373 //
1374 // Code to compute the points that make up the shape of the SPD
1375 // Carbon fiber support sections
1376 // Inputs:
1377 // Int_t n size of arrays xc,yc, and r.
1378 // Double_t *xc array of x values for radii centers.
1379 // Double_t *yc array of y values for radii centers.
1380 // Double_t *r array of signed radii values.
1381 // Double_t *ths array of starting angles [degrees].
1382 // Double_t *the array of ending angles [degrees].
1383 // Int_t npr the number of lines segments to aproximate the arc.
1384 // Outputs (arguments passed by reference):
1385 // Int_t m the number of enetries in the arrays *xp[npr+1]
1386 // and *yp[npr+1].
1387 // Double_t **xp array of x coordinate values of the line segments
1388 // which make up the SPD support sector shape.
1389 // Double_t **yp array of y coordinate values of the line segments
1390 // which make up the SPD support sector shape.
1391 //
1392 Int_t i, k;
1393 Double_t t, t0, t1;
1394
1395 m = n*(npr + 1);
1396 if(GetDebug(2)) {
1397 cout <<" X \t Y \t R \t S \t E" << m << endl;
1398 for(i = 0; i < n; i++) {
1399 cout << "{" << xc[i] << ", ";
1400 cout << yc[i] << ", ";
1401 cout << r[i] << ", ";
1402 cout << ths[i] << ", ";
1403 cout << the[i] << "}, " << endl;
1404 } // end for i
1405 } // end if(GetDebug(2))
1406 if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"][";
1407 if (GetDebug(4)) cout << "3] {";
1408 else if(GetDebug(3)) cout <<"2] {";
1409 t0 = (Double_t)npr;
1410 for(i = 0; i < n; i++) {
1411 t1 = (the[i] - ths[i]) / t0;
1412 if(GetDebug(5)) cout << "t1 = " << t1 << endl;
1413 for(k = 0; k <= npr; k++) {
1414 t = ths[i] + ((Double_t)k) * t1;
1415 xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i];
1416 yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i];
1417 if(GetDebug(3)) {
1418 cout << "{" << xp[i][k] << "," << yp[i][k];
1419 if (GetDebug(4)) cout << "," << t;
1420 cout << "},";
1421 } // end if GetDebug
1422 } // end for k
1423 if(GetDebug(3)) cout << endl;
1424 } // end of i
1425 if(GetDebug(3)) cout << "{" << xp[0][0] << ", " << yp[0][0];
1426 if(GetDebug(4)) cout << "," << ths[0];
1427 if(GetDebug(3)) cout << "}}" << endl;
592651e2 1428}
22726349 1429
54c9a3d9 1430//______________________________________________________________________
1431TGeoVolume* AliITSv11GeometrySPD::CreateLadder(Int_t layer,TArrayD &sizes,
1432 TGeoManager *mgr) const
bc3498f4 1433{
54c9a3d9 1434 //
1435 // Creates the "ladder" = silicon sensor + 5 chips.
1436 // Returns a TGeoVolume containing the following components:
1437 // - the sensor (TGeoBBox), whose name depends on the layer
1438 // - 5 identical chips (TGeoBBox)
1439 // - a guard ring around the sensor (subtraction of TGeoBBoxes),
1440 // which is separated from the rest of sensor because it is not
1441 // a sensitive part
1442 // - bump bondings (TGeoBBox stripes for the whole width of the
1443 // sensor, one per column).
1444 // ---
1445 // Arguments:
1446 // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised)
1447 // 2 - a TArrayD passed by reference, which will contain relevant
1448 // dimensions related to this object:
1449 // size[0] = 'thickness' (the smallest dimension)
1450 // size[1] = 'length' (the direction along the ALICE Z axis)
1451 // size[2] = 'width' (extension in the direction perp. to the
1452 // above ones)
1453 // 3 - the used TGeoManager
1454
1455 // ** CRITICAL CHECK **
1456 // layer number can be ONLY 1 or 2
1457 if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
1458
1459 // ** MEDIA **
1460 TGeoMedium *medAir = GetMedium("AIR$",mgr);
1461 TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP
1462 TGeoMedium *medSi = GetMedium("SI$",mgr);
1463 TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond
1464
1465 // ** SIZES **
1466 Double_t chipThickness = fgkmm * 0.150;
1467 Double_t chipWidth = fgkmm * 15.950;
1468 Double_t chipLength = fgkmm * 13.600;
1469 Double_t chipSpacing = fgkmm * 0.400; // separation of chips along Z
1470 Double_t sensThickness = fgkmm * 0.200;
1471 Double_t sensLength = fgkmm * 69.600;
1472 Double_t sensWidth = fgkmm * 12.800;
1473 Double_t guardRingWidth = fgkmm * 0.560; // a border of this thickness
1474 // all around the sensor
1475 Double_t bbLength = fgkmm * 0.042;
1476 Double_t bbWidth = sensWidth;
1477 Double_t bbThickness = fgkmm * 0.012;
1478 Double_t bbPos = 0.080; // Z position w.r. to left pixel edge
1479 // compute the size of the container volume which
1480 // will also be returned in the referenced TArrayD;
1481 // for readability, they are linked by reference to a more meaningful name
1482 sizes.Set(3);
1483 Double_t &thickness = sizes[0];
1484 Double_t &length = sizes[1];
1485 Double_t &width = sizes[2];
1486 // the container is a box which exactly enclose all the stuff;
1487 width = chipWidth;
1488 length = sensLength + 2.0*guardRingWidth;
1489 thickness = sensThickness + chipThickness + bbThickness;
1490
1491 // ** VOLUMES **
1492 // While creating this volume, since it is a sensitive volume,
1493 // we must respect some standard criteria for its local reference frame.
1494 // Local X must correspond to x coordinate of the sensitive volume:
1495 // this means that we are going to create the container with a local
1496 // reference system that is **not** in the middle of the box.
1497 // This is accomplished by calling the shape constructor with an
1498 // additional option ('originShift'):
1499 Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
1500 Double_t originShift[3] = {-xSens, 0., 0.};
1501 TGeoBBox *shapeContainer = new TGeoBBox(0.5*width,0.5*thickness,
1502 0.5*length,originShift);
1503 // then the volume is made of air, and using this shape
1504 TGeoVolume *container = new TGeoVolume(Form("ITSSPDlay%d-Ladder",layer),
1505 shapeContainer, medAir);
1506 // the chip is a common box
1507 TGeoVolume *volChip = mgr->MakeBox("ITSSPDchip",medSPDSiChip,
1508 0.5*chipWidth,0.5*chipThickness,0.5*chipLength);
1509 // the sensor as well
1510 TGeoVolume *volSens = mgr->MakeBox(GetSenstiveVolumeName(layer),medSi,
1511 0.5*sensWidth,0.5*sensThickness,0.5*sensLength);
1512 // the guard ring shape is the subtraction of two boxes with the
1513 // same center.
1514 TGeoBBox *shIn = new TGeoBBox(0.5*sensWidth,sensThickness,0.5*sensLength);
1515 TGeoBBox *shOut = new TGeoBBox(0.5*sensWidth+guardRingWidth,
1516 0.5*sensThickness,0.5*sensLength+guardRingWidth);
1517 shIn->SetName("ITSSPDinnerBox");
1518 shOut->SetName("ITSSPDouterBox");
1519 TGeoCompositeShape *shBorder = new TGeoCompositeShape(
1520 "ITSSPDgaurdRingBorder",Form("%s-%s",shOut->GetName(),shIn->GetName()));
1521 TGeoVolume *volBorder = new TGeoVolume("ITSSPDgaurdRing",shBorder,medSi);
1522 // bump bonds for one whole column
1523 TGeoVolume *volBB = mgr->MakeBox("ITSSPDbb",medBumpBond,0.5*bbWidth,
1524 0.5*bbThickness,0.5*bbLength);
1525 // set colors of all objects for visualization
1526 volSens->SetLineColor(kYellow + 1);
1527 volChip->SetLineColor(kGreen);
1528 volBorder->SetLineColor(kYellow + 3);
1529 volBB->SetLineColor(kGray);
1530
1531 // ** MOVEMENTS **
1532 // sensor is translated along thickness (X) and width (Y)
1533 Double_t ySens = 0.5 * (thickness - sensThickness);
1534 Double_t zSens = 0.0;
1535 // we want that the x of the ladder is the same as the one of
1536 // its sensitive volume
1537 TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens);
1538 // bump bonds are translated along all axes:
1539 // keep same Y used for sensors, but change the Z
1540 TGeoTranslation *trBB[160];
1541 Double_t x = 0.0;
1542 Double_t y = 0.5 * (thickness - bbThickness) - sensThickness;
1543 Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
1544 Int_t i;
1545 for (i = 0; i < 160; i++) {
1546 trBB[i] = new TGeoTranslation(x, y, z);
1547 switch(i) {
1548 case 31:case 63:case 95:case 127:
1549 z += fgkmm * 0.625 + fgkmm * 0.2;
1550 break;
1551 default:
1552 z += fgkmm * 0.425;
1553 } // end switch
1554 } // end for i
1555 // the chips are translated along the length (Z) and thickness (X)
1556 TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
1557 x = -xSens;
1558 y = 0.5 * (chipThickness - thickness);
1559 z = 0.0;
1560 for (i = 0; i < 5; i++) {
1561 z = -0.5*length + guardRingWidth
1562 + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
1563 trChip[i] = new TGeoTranslation(x, y, z);
1564 } // end ofr i
1565
1566 // add nodes to container
1567 container->AddNode(volSens, 1, trSens);
1568 container->AddNode(volBorder, 1, trSens);
1569 for (i = 0; i < 160; i++) container->AddNode(volBB,i+1,trBB[i]);
1570 for (i = 0; i < 5; i++) container->AddNode(volChip,i+3,trChip[i]);
1571 // return the container
1572 return container;
592651e2 1573}
22726349 1574
1575/*
1576//______________________________________________________________________
1577TGeoVolume* AliITSv11GeometrySPD::CreateLadder
1578 (Int_t layer, TArrayD &sizes, TGeoManager *mgr) const
1579{
1580 //
1581 // Creates the "ladder" = silicon sensor + 5 chips.
1582 // Returns a TGeoVolume containing the following components:
1583 // - the sensor (TGeoBBox), whose name depends on the layer
1584 // - 5 identical chips (TGeoBBox)
1585 // - a guard ring around the sensor (subtraction of TGeoBBoxes),
1586 // which is separated from the rest of sensor because it is not
1587 // a sensitive part
1588 // - bump bondings (TGeoBBox stripes for the whole width of the
1589 // sensor, one per column).
1590 // ---
1591 // Arguments:
1592 // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised)
1593 // 2 - a TArrayD passed by reference, which will contain relevant
1594 // dimensions related to this object:
1595 // size[0] = 'thickness' (the smallest dimension)
1596 // size[1] = 'length' (the direction along the ALICE Z axis)
1597 // size[2] = 'width' (extension in the direction perp. to the
1598 // above ones)
1599 // 3 - the used TGeoManager
1600
1601 // ** CRITICAL CHECK ******************************************************
1602 // layer number can be ONLY 1 or 2
1603 if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
1604
1605 // ** MEDIA ***************************************************************
1606
1607 TGeoMedium *medAir = GetMedium("AIR$",mgr);
1608 TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP
1609 TGeoMedium *medSi = GetMedium("SI$",mgr);
1610 TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond
1611
1612 // ** SIZES ***************************************************************
1613
1614 Double_t chipThickness = fgkmm * 0.150;
1615 Double_t chipWidth = fgkmm * 15.950;
1616 Double_t chipLength = fgkmm * 13.600;
1617 Double_t chipSpacing = fgkmm * 0.400; // separation of chips along Z
1618 Double_t sensThickness = fgkmm * 0.200;
1619 Double_t sensLength = fgkmm * 69.600;
1620 Double_t sensWidth = fgkmm * 12.800;
1621 Double_t guardRingWidth = fgkmm * 0.560; // guard ring around sensor
1622 Double_t bbLength = fgkmm * 0.042;
1623 Double_t bbWidth = sensWidth;
1624 Double_t bbThickness = fgkmm * 0.012;
1625 Double_t bbPos = 0.080; // Z position w.r. to left pixel edge
1626
1627 // the three dimensions of the box which contains the ladder
1628 // are returned in the 'sizes' argument, and are used for volumes positionement
1629 // for readability purpose, they are linked by reference to a more meaningful name
1630 sizes.Set(3);
1631 Double_t &thickness = sizes[0];
1632 Double_t &length = sizes[1];
1633 Double_t &width = sizes[2];
1634 // the container is a box which exactly enclose all the stuff
1635 width = chipWidth;
1636 length = sensLength + 2.0*guardRingWidth;
1637 thickness = sensThickness + chipThickness + bbThickness;
1638
1639 // ** VOLUMES *************************************************************
1640
1641 // This is a sensitive volume.
1642 // Local X must correspond to x coordinate of the sensitive volume:
1643 // to respect this, the origin of the local reference system
1644 // must be shifted from the middle of the box, using
1645 // an additional option ('originShift') when creating the container shape:
1646 Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
1647 Double_t originShift[3] = {-xSens, 0., 0.};
1648
1649 // now the container is a TGeoBBox with this shift,
1650 // and the volume is made of air (it does not exist in reality)
1651 TGeoBBox *shLadder = new TGeoBBox(0.5*width, 0.5*thickness, 0.5*length, originShift);
1652 TGeoVolume *vLadder = new TGeoVolume(Form("ITSSPDlay%d-Ladder", layer), shLadder, medAir);
1653
1654 // the chip is a common box
1655 TGeoVolume *vChip = mgr->MakeBox("ITSSPDchip", medSPDSiChip,
1656 0.5*chipWidth, 0.5*chipThickness, 0.5*chipLength);
1657
1658 // to build the sensor with its guard ring, we create a TGeoBBox with the size
1659 // of the sensor + guard ring, and we insert the true sensor into it as an
1660 // internal node: this simplifies the implementation with the same result
1661 TGeoVolume *vSensGuard = mgr->MakeBox(Form("%s-guardRing", GetSenstiveVolumeName(layer)),
1662 medSi,
1663 0.5*sensWidth + guardRingWidth,
1664 0.5*sensThickness,
1665 0.5*sensLength + guardRingWidth);
1666 TGeoVolume *vSens = mgr->MakeBox(GetSenstiveVolumeName(layer), medSi,
1667 0.5*sensWidth,0.5*sensThickness,0.5*sensLength);
1668 vSensGuard->AddNode(vSens, 0);
1669 vSensGuard->SetTransparency(50);
1670
1671 // bump bond is a common box for one whole column
1672 TGeoVolume *vBB = mgr->MakeBox("ITSSPDbb", medBumpBond,
1673 0.5*bbWidth, 0.5*bbThickness, 0.5*bbLength);
1674
1675 // set colors of all objects for visualization
1676 vLadder->SetLineColor(kRed);
1677 vSens->SetLineColor(kYellow + 1);
1678 vChip->SetLineColor(kGreen);
1679 vSensGuard->SetLineColor(kYellow + 3);
1680 vBB->SetLineColor(kGray);
1681
1682 // ** MOVEMENTS **
1683 // sensor is translated along thickness (Y) and width (X)
1684 Double_t ySens = 0.5 * (thickness - sensThickness);
1685 Double_t zSens = 0.0;
1686 // we want that the x of the ladder is the same as the one of
1687 // its sensitive volume
1688 TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens);
1689 // bump bonds are translated along all axes:
1690 // keep same Y used for sensors, but change the Z
1691 TGeoTranslation *trBB[160];
1692 Double_t x = 0.0;
1693 Double_t y = 0.5 * (thickness - bbThickness) - sensThickness;
1694 Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
1695 Int_t i;
1696 for (i = 0; i < 160; i++) {
1697 trBB[i] = new TGeoTranslation(x, y, z);
1698 switch(i) {
1699 case 31:case 63:case 95:case 127:
1700 z += fgkmm * 0.625 + fgkmm * 0.2;
1701 break;
1702 default:
1703 z += fgkmm * 0.425;
1704 } // end switch
1705 } // end for i
1706 // the chips are translated along the length (Z) and thickness (X)
1707 TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
1708 x = -xSens;
1709 y = 0.5 * (chipThickness - thickness);
1710 z = 0.0;
1711 for (i = 0; i < 5; i++) {
1712 z = -0.5*length + guardRingWidth
1713 + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
1714 trChip[i] = new TGeoTranslation(x, y, z);
1715 } // end ofr i
1716
1717 // add nodes to container
1718 vLadder->AddNode(vSensGuard, 1, trSens);
1719 //vLadderAddNode(volBorder, 1, trSens);
1720 for (i = 0; i < 160; i++) vLadder->AddNode(vBB,i+1,trBB[i]);
1721 for (i = 0; i < 5; i++) vLadder->AddNode(vChip,i+3,trChip[i]);
1722 // return the container
1723 return vLadder;
1724}
1725*/
1726
7855ea93 1727//______________________________________________________________________
54c9a3d9 1728TGeoVolume* AliITSv11GeometrySPD::CreateClip(TArrayD &sizes,Bool_t isDummy,
1729 TGeoManager *mgr) const
1730{
1731 //
1732 // Creates the carbon fiber clips which are added to the central ladders.
1733 // They have a complicated shape which is approximated by a TGeoXtru
1734 // Implementation of a single clip over an half-stave.
1735 // It has a complicated shape which is approximated to a section like this:
1736 //
1737 // 6
1738 // /\ .
1739 // 7 //\\ 5
1740 // / 1\\___________________4
1741 // 0 \___________________
1742 // 2 3
1743 // with a finite thickness for all the shape
1744 // Its local reference frame is such that point A corresponds to origin.
1745 //
1746 Double_t fullLength = fgkmm * 12.6; // = x4 - x0
1747 Double_t flatLength = fgkmm * 5.4; // = x4 - x3
1748 Double_t inclLongLength = fgkmm * 5.0; // = 5-6
1749 Double_t inclShortLength = fgkmm * 2.0; // = 6-7
1750 Double_t fullHeight = fgkmm * 2.8; // = y6 - y3
1751 Double_t thickness = fgkmm * 0.2; // thickness
1752 Double_t totalLength = fgkmm * 52.0; // total length in Z
22726349 1753 Double_t holeSize = fgkmm * 5.0; // dimension of cubic
54c9a3d9 1754 // hole inserted for pt1000
1755 Double_t angle1 = 27.0; // supplementary of angle DCB
1756 Double_t angle2; // angle DCB
1757 Double_t angle3; // angle of GH with vertical
1758
1759 angle2 = 0.5 * (180.0 - angle1);
1760 angle3 = 90.0 - TMath::ACos(fullLength - flatLength -
1761 inclLongLength*TMath::Cos(angle1)) *
1762 TMath::RadToDeg();
1763 angle1 *= TMath::DegToRad();
1764 angle2 *= TMath::DegToRad();
1765 angle3 *= TMath::DegToRad();
1766
1767 Double_t x[8], y[8];
1768
1769 x[0] = 0.0;
1770 x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1);
1771 x[2] = x[0] + fullLength - flatLength;
1772 x[3] = x[0] + fullLength;
1773 x[4] = x[3];
1774 x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2);
1775 x[6] = x[1];
1776 x[7] = x[0];
1777
1778 y[0] = 0.0;
1779 y[1] = y[0] + inclShortLength * TMath::Cos(angle3);
1780 y[2] = y[1] - inclLongLength * TMath::Sin(angle1);
1781 y[3] = y[2];
1782 y[4] = y[3] + thickness;
1783 y[5] = y[4];
1784 y[6] = y[1] + thickness;
1785 y[7] = y[0] + thickness;
1786
1787 sizes.Set(7);
1788 sizes[0] = totalLength;
1789 sizes[1] = fullHeight;
1790 sizes[2] = y[2];
1791 sizes[3] = y[6];
1792 sizes[4] = x[0];
1793 sizes[5] = x[3];
1794 sizes[6] = x[2];
1795
1796 if(isDummy){// use this argument when on ewant just the
1797 // positions without create any volume
1798 return NULL;
1799 } // end if isDummy
1800
1801 TGeoXtru *shClip = new TGeoXtru(2);
1802 shClip->SetName("ITSSPDshclip");
1803 shClip->DefinePolygon(8, x, y);
1804 shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0);
1805 shClip->DefineSection(1, 0.5*totalLength, 0., 0., 1.0);
1806
1807 TGeoBBox *shHole = new TGeoBBox("ITSSPDSHClipHole",0.5*holeSize,
1808 0.5*holeSize,0.5*holeSize);
1809 TGeoTranslation *tr1 = new TGeoTranslation("ITSSPDTRClipHole1",x[2],0.0,
1810 fgkmm*14.);
1811 TGeoTranslation *tr2 = new TGeoTranslation("ITSSPDTRClipHole2",x[2],0.0,
1812 0.0);
1813 TGeoTranslation *tr3 = new TGeoTranslation("ITSSPDTRClipHole3",x[2],0.0,
1814 -fgkmm*14.);
1815 tr1->RegisterYourself();
1816 tr2->RegisterYourself();
1817 tr3->RegisterYourself();
1818
1819 //TString strExpr("ITSSPDshclip-(");
1820 TString strExpr(shClip->GetName());
1821 strExpr.Append("-(");
1822 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName()));
1823 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName()));
1824 strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName()));
1825 TGeoCompositeShape *shClipHole = new TGeoCompositeShape(
1826 "ITSSPDSHClipHoles",strExpr.Data());
1827
1828 TGeoMedium *mat = GetMedium("SPD C (M55J)$", mgr);
1829 TGeoVolume *vClip = new TGeoVolume("ITSSPDclip", shClipHole, mat);
1830 vClip->SetLineColor(kGray + 2);
1831 return vClip;
1832}//______________________________________________________________________
7855ea93 1833TGeoCompositeShape* AliITSv11GeometrySPD::CreateGroundingFoilShape
54c9a3d9 1834 (Int_t itype,Double_t &length,Double_t &width,
1835 Double_t thickness,TArrayD &sizes)
bc3498f4 1836{
54c9a3d9 1837 //
1838 // Creates the typical composite shape of the grounding foil:
1839 //
1840 // +---------------------------------------------------------+
1841 // | 5 6 9 |
1842 // | +-----------+ +------------+ 10
1843 // | O | | |
1844 // | 3 /-----+ 4 +------+
1845 // | 1 / 7 8
1846 // | /----------/
1847 // +-----/ 2 +
1848 // 0
1849 // Z + 11
1850 //
1851 // This shape is used 4 times: two layers of glue, one in kapton
1852 // and one in aluminum, taking into account that the aliminum
1853 // layer has small differences in the size of some parts.
1854 // ---
1855 // In order to overcome problems apparently due to a large number
1856 // of points, the shape creation is done according the following
1857 // steps:
1858 // 1) a TGeoBBox is created with a size right enough to contain
1859 // the whole shape (0-1-X-13)
1860 // 2) holes are defined as other TGeoBBox which are subtracted
1861 // from the main shape
1862 // 3) a TGeoXtru is defined connecting the points (0-->11-->0)
1863 // and is also subtracted from the main shape
1864 // ---
1865 // The argument ("type") is used to choose between all these
1866 // possibilities:
1867 // - type = 0 --> kapton layer
1868 // - type = 1 --> aluminum layer
1869 // - type = 2 --> glue layer between support and GF
1870 // - type = 3 --> glue layer between GF and ladders
1871 // Returns: a TGeoCompositeShape which will then be used to shape
1872 // several volumes. Since TGeoXtru is used, the local reference
1873 // frame of this object has X horizontal and Y vertical w.r to
1874 // the shape drawn above, and Z axis going perpendicularly to the screen.
1875 // This is not the correct reference for the half stave, for which
1876 // the "long" dimension is Z and the "short" is X, while Y goes in
1877 // the direction of thickness. This will imply some rotations when
1878 // using the volumes created with this shape.
1879
1880 // suffix to differentiate names
1881 Char_t type[10];
1882
1883 // size of the virtual box containing exactly this volume
1884 length = fgkmm * 243.18;
1885 width = fgkmm * 15.95;
1886 if (itype == 1) {
1887 length -= fgkmm * 0.4;
1888 width -= fgkmm * 0.4;
1889 } // end if itype==1
1890 switch (itype) {
1891 case 0:
1892 sprintf(type,"Kap");
1893 break;
1894 case 1:
1895 sprintf(type,"Alu");
1896 break;
1897 case 2:
1898 sprintf(type,"Glue1");
1899 break;
1900 case 3:
1901 sprintf(type,"Glue2");
1902 break;
1903 }
1904 // we divide the shape in several slices along the horizontal
1905 // direction (local X) here we define define the length of all
1906 // sectors (from leftmost to rightmost)
1907 Int_t i;
1908 Double_t sliceLength[] = { 140.71, 2.48, 26.78, 4.00,
1909 10.00, 24.40, 10.00, 24.81 };
1910 for (i = 0; i < 8; i++) sliceLength[i] *= fgkmm;
1911 if (itype == 1) {
1912 sliceLength[0] -= fgkmm * 0.2;
1913 sliceLength[4] -= fgkmm * 0.2;
1914 sliceLength[5] += fgkmm * 0.4;
1915 sliceLength[6] -= fgkmm * 0.4;
1916 } // end if itype ==1
1917
1918 // as shown in the drawing, we have four different widths
1919 // (along local Y) in this shape:
1920 Double_t widthMax = fgkmm * 15.95;
1921 Double_t widthMed1 = fgkmm * 15.00;
1922 Double_t widthMed2 = fgkmm * 11.00;
1923 Double_t widthMin = fgkmm * 4.40;
1924 if (itype == 1) {
1925 widthMax -= fgkmm * 0.4;
1926 widthMed1 -= fgkmm * 0.4;
1927 widthMed2 -= fgkmm * 0.4;
1928 widthMin -= fgkmm * 0.4;
1929 } // end if itype==1
1930
1931 // create the main shape
1932 TGeoBBox *shGroundFull = 0;
1933 shGroundFull = new TGeoBBox(Form("ITSSPDSHgFoil%sFull", type),
1934 0.5*length,0.5*width, 0.5*thickness);
1935
1936 // create the polygonal shape to be subtracted to give the correct
1937 // shape to the borders its vertices are defined in sugh a way that
1938 // this polygonal will be placed in the correct place considered
1939 // that the origin of the local reference frame is in the center
1940 // of the main box: we fix the starting point at the lower-left
1941 // edge of the shape (point 12), and add all points in order,
1942 // following a clockwise rotation
1943
1944 Double_t x[13], y[13];
1945 x[ 0] = -0.5 * length + sliceLength[0];
1946 y[ 0] = -0.5 * widthMax;
1947
1948 x[ 1] = x[0] + sliceLength[1];
1949 y[ 1] = y[0] + (widthMax - widthMed1);
1950
1951 x[ 2] = x[1] + sliceLength[2];
1952 y[ 2] = y[1];
1953
1954 x[ 3] = x[2] + sliceLength[3];
1955 y[ 3] = y[2] + (widthMed1 - widthMed2);
1956
1957 x[ 4] = x[3] + sliceLength[4];
1958 y[ 4] = y[3];
1959
1960 x[ 5] = x[4];
1961 y[ 5] = y[4] + (widthMed2 - widthMin);
1962
1963 x[ 6] = x[5] + sliceLength[5];
1964 y[ 6] = y[5];
1965
1966 x[ 7] = x[6];
1967 y[ 7] = y[4];
1968
1969 x[ 8] = x[7] + sliceLength[6];
1970 y[ 8] = y[7];
1971
1972 x[ 9] = x[8];
1973 y[ 9] = y[6];
1974
1975 x[10] = x[9] + sliceLength[7] + 0.5;
1976 y[10] = y[9];
1977
1978 x[11] = x[10];
1979 y[11] = y[0] - 0.5;
1980
1981 x[12] = x[0];
1982 y[12] = y[11];
1983
1984 // create the shape
1985 TGeoXtru *shGroundXtru = new TGeoXtru(2);
1986 shGroundXtru->SetName(Form("ITSSPDSHgFoil%sXtru", type));
1987 shGroundXtru->DefinePolygon(13, x, y);
1988 shGroundXtru->DefineSection(0, -thickness, 0., 0., 1.0);
1989 shGroundXtru->DefineSection(1, thickness, 0., 0., 1.0);
1990
1991 // define a string which will express the algebric operations among volumes
1992 // and add the subtraction of this shape from the main one
1993 TString strComposite(Form("ITSSPDSHgFoil%sFull-(%s+", type,
1994 shGroundXtru->GetName()));
1995
1996 // define the holes according to size information coming from drawings:
1997 Double_t holeLength = fgkmm * 10.00;
1998 Double_t holeWidth = fgkmm * 7.50;
1999 Double_t holeSepX0 = fgkmm * 7.05; // separation between center
2000 // of first hole and left border
2001 Double_t holeSepXC = fgkmm * 14.00; // separation between the centers
2002 // of two consecutive holes
2003 Double_t holeSepX1 = fgkmm * 15.42; // separation between centers of
2004 // 5th and 6th hole
2005 Double_t holeSepX2 = fgkmm * 22.00; // separation between centers of
2006 // 10th and 11th hole
2007 if (itype == 1) {
2008 holeSepX0 -= fgkmm * 0.2;
2009 holeLength += fgkmm * 0.4;
2010 holeWidth += fgkmm * 0.4;
2011 } // end if itype==1
2012 sizes.Set(7);
2013 sizes[0] = holeLength;
2014 sizes[1] = holeWidth;
2015 sizes[2] = holeSepX0;
2016 sizes[3] = holeSepXC;
2017 sizes[4] = holeSepX1;
2018 sizes[5] = holeSepX2;
2019 sizes[6] = fgkmm * 4.40;
2020
2021 // X position of hole center (will change for each hole)
2022 Double_t holeX = -0.5*length;
2023 // Y position of center of all holes (= 4.4 mm from upper border)
2024 Double_t holeY = 0.5*(width - holeWidth) - widthMin;
2025
2026 // create a shape for the holes (common)
2027 TGeoBBox *shHole = 0;
2028 shHole = new TGeoBBox(Form("ITSSPD%sGfoilHole", type),0.5*holeLength,
2029 0.5*holeWidth, thickness);
2030
2031 // insert the holes in the XTRU shape:
2032 // starting from the first value of X, they are simply
2033 // shifted along this axis
2034 char name[200];
2035 TGeoTranslation *transHole[11];
4adcf390 2036 for (i = 0; i < 11; i++) {
54c9a3d9 2037 // set the position of the hole, depending on index
2038 if (i == 0) {
2039 holeX += holeSepX0;
2040 }else if (i < 5) {
2041 holeX += holeSepXC;
2042 }else if (i == 5) {
2043 holeX += holeSepX1;
2044 }else if (i < 10) {
2045 holeX += holeSepXC;
2046 }else {
2047 holeX += holeSepX2;
2048 } // end if else if's
2049 //cout << i << " --> X = " << holeX << endl;
2050 sprintf(name,"ITSSPDTRgFoil%sHole%d", type, i);
2051 transHole[i] = new TGeoTranslation(name, holeX, holeY, 0.0);
2052 transHole[i]->RegisterYourself();
2053 strComposite.Append(Form("ITSSPD%sGfoilHole:%s", type, name));
2054 if (i < 10) strComposite.Append("+"); else strComposite.Append(")");
2055 } // end for i
2056
2057 // create composite shape
2058 TGeoCompositeShape *shGround = new TGeoCompositeShape(
2059 Form("ITSSPDSHgFoil%s", type), strComposite.Data());
2060
2061 return shGround;
592651e2 2062}
54c9a3d9 2063//______________________________________________________________________
2064TGeoVolume* AliITSv11GeometrySPD::CreateGroundingFoil(Bool_t isRight,
2065 TArrayD &sizes, TGeoManager *mgr)
bc3498f4 2066{
54c9a3d9 2067 //
2068 // Create a volume containing all parts of the grounding foil a
2069 // for a half-stave.
2070 // It consists of 4 layers with the same shape but different thickness:
2071 // 1) a layer of glue
2072 // 2) the aluminum layer
2073 // 3) the kapton layer
2074 // 4) another layer of glue
2075 // ---
2076 // Arguments:
2077 // 1: a boolean value to know if it is the grounding foir for
2078 // the right or left side
2079 // 2: a TArrayD which will contain the dimension of the container box:
2080 // - size[0] = length along Z (the beam line direction)
2081 // - size[1] = the 'width' of the stave, which defines, together
2082 // with Z, the plane of the carbon fiber support
2083 // - size[2] = 'thickness' (= the direction along which all
2084 // stave components are superimposed)
2085 // 3: the TGeoManager
2086 // ---
2087 // The return value is a TGeoBBox volume containing all grounding
2088 // foil components.
2089 // to avoid strange behaviour of the geometry manager,
2090 // create a suffix to be used in the names of all shapes
2091 //
2092 char suf[5];
2093 if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");
2094 // this volume will be created in order to ease its placement in
2095 // the half-stave; then, it is added here the small distance of
2096 // the "central" edge of each volume from the Z=0 plane in the stave
2097 // reference (which coincides with ALICE one)
2098 Double_t dist = fgkmm * 0.71;
2099
2100 // define materials
2101 TGeoMedium *medKap = GetMedium("SPD KAPTON(POLYCH2)$", mgr);
2102 TGeoMedium *medAlu = GetMedium("AL$", mgr);
2103 TGeoMedium *medGlue = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT
2104
2105 // compute the volume shapes (thicknesses change from one to the other)
2106 Double_t kpLength, kpWidth, alLength, alWidth;
2107 TArrayD kpSize, alSize, glSize;
2108 Double_t kpThickness = fgkmm * 0.05;
2109 Double_t alThickness = fgkmm * 0.025;
2110 Double_t glThickness = fgkmm * 0.1175 - fgkGapLadder;
2111 TGeoCompositeShape *kpShape = CreateGroundingFoilShape(0,kpLength,kpWidth,
2112 kpThickness, kpSize);
2113 TGeoCompositeShape *alShape = CreateGroundingFoilShape(1,alLength,alWidth,
2114 alThickness, alSize);
2115 TGeoCompositeShape *glShape = CreateGroundingFoilShape(2,kpLength,kpWidth,
2116 glThickness, glSize);
2117 // create the component volumes and register their sizes in the
2118 // passed arrays for readability reasons, some reference variables
2119 // explicit the meaning of the array slots
2120 TGeoVolume *kpVol = new TGeoVolume(Form("ITSSPDgFoilKap%s",suf),
2121 kpShape, medKap);
2122 TGeoVolume *alVol = new TGeoVolume(Form("ITSSPDgFoilAlu%s",suf),
2123 alShape, medAlu);
2124 TGeoVolume *glVol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf),
2125 glShape, medGlue);
2126 // set colors for the volumes
2127 kpVol->SetLineColor(kRed);
2128 alVol->SetLineColor(kGray);
2129 glVol->SetLineColor(kYellow);
2130 // create references for the final size object
2131 if (sizes.GetSize() != 3) sizes.Set(3);
2132 Double_t &fullThickness = sizes[0];
2133 Double_t &fullLength = sizes[1];
2134 Double_t &fullWidth = sizes[2];
2135 // kapton leads the larger dimensions of the foil
2136 // (including the cited small distance from Z=0 stave reference plane)
2137 // the thickness is the sum of the ones of all components
2138 fullLength = kpLength + dist;
2139 fullWidth = kpWidth;
2140 fullThickness = kpThickness + alThickness + 2.0 * glThickness;
2141 // create the container
2142 TGeoMedium *air = GetMedium("AIR$", mgr);
2143 TGeoVolume *container = mgr->MakeBox(Form("ITSSPDgFOIL-%s",suf),
2144 air, 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength);
2145 // create the common correction rotation (which depends of what side
2146 // we are building)
2147 TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity);
2148 if (isRight) rotCorr->RotateY(90.0);
2149 else rotCorr->RotateY(-90.0);
2150 // compute the translations, which are in the length and
2151 // thickness directions
2152 Double_t x, y, z, shift = 0.0;
2153 if (isRight) shift = dist;
2154 // glue (bottom)
2155 x = -0.5*(fullThickness - glThickness);
2156 z = 0.5*(fullLength - kpLength) - shift;
2157 TGeoCombiTrans *glTrans0 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
2158 // kapton
2159 x += 0.5*(glThickness + kpThickness);
2160 TGeoCombiTrans *kpTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
2161 // aluminum
2162 x += 0.5*(kpThickness + alThickness);
2163 z = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength);
2164 TGeoCombiTrans *alTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
2165 // glue (top)
2166 x += 0.5*(alThickness + glThickness);
2167 z = 0.5*(fullLength - kpLength) - shift;
2168 TGeoCombiTrans *glTrans1 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
2169
2170 // add to container
22726349 2171 container->SetLineColor(kMagenta-10);
54c9a3d9 2172 container->AddNode(kpVol, 1, kpTrans);
2173 container->AddNode(alVol, 1, alTrans);
2174 container->AddNode(glVol, 1, glTrans0);
2175 container->AddNode(glVol, 2, glTrans1);
2176 // to add the grease we remember the sizes of the holes, stored as
2177 // additional parameters in the kapton layer size:
2178 // - sizes[3] = hole length
2179 // - sizes[4] = hole width
2180 // - sizes[5] = position of first hole center
2181 // - sizes[6] = standard separation between holes
2182 // - sizes[7] = separation between 5th and 6th hole
2183 // - sizes[8] = separation between 10th and 11th hole
2184 // - sizes[9] = separation between the upper hole border and
2185 // the foil border
2186 Double_t holeLength = kpSize[0];
2187 Double_t holeWidth = kpSize[1];
2188 Double_t holeFirstZ = kpSize[2];
2189 Double_t holeSepZ = kpSize[3];
2190 Double_t holeSep5th6th = kpSize[4];
2191 Double_t holeSep10th11th = kpSize[5];
2192 Double_t holeSepY = kpSize[6];
2193 // volume (common)
2194 // Grease has not been defined to date. Need much more information
2195 // no this material!
2196 TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE
2197 TGeoVolume *hVol = mgr->MakeBox("ITSSPDGrease", grease,
2198 0.5*fullThickness, 0.5*holeWidth, 0.5*holeLength);
2199 hVol->SetLineColor(kBlue);
2200 // displacement of volumes in the container
2201 Int_t idx = 1; // copy numbers start from 1.
2202 x = 0.0;
2203 y = 0.5*(fullWidth - holeWidth) - holeSepY;
2204 if (isRight) z = holeFirstZ - 0.5*fullLength + dist;
2205 else z = 0.5*fullLength - holeFirstZ - dist;
2206 for (Int_t i = 0; i < 11; i++) {
2207 TGeoTranslation *t = 0;
2208 t = new TGeoTranslation(x, y, -z);
2209 container->AddNode(hVol, idx++, t);
2210 if (i < 4) shift = holeSepZ;
2211 else if (i == 4) shift = holeSep5th6th;
2212 else if (i < 9) shift = holeSepZ;
2213 else shift = holeSep10th11th;
2214 if (isRight) z += shift;
2215 else z -= shift;
2216 } // end for i
2217 return container;
592651e2 2218}
54c9a3d9 2219//___________________________________________________________________
2220TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM(Bool_t isRight,
2221 TArrayD &sizes, TGeoManager *mgr) const
bc3498f4 2222{
54c9a3d9 2223 //
2224 // Create a TGeoAssembly containing all the components of the MCM.
2225 // The TGeoVolume container is rejected due to the possibility of overlaps
2226 // when placing this object on the carbon fiber sector.
2227 // The assembly contains:
2228 // - the thin part of the MCM (integrated circuit)
2229 // - the MCM chips (specifications from EDMS)
2230 // - the cap which covers the zone where chips are bound to MCM
2231 // ---
2232 // The local reference frame of this assembly is defined in such a way
2233 // that all volumes are contained in a virtual box whose center
2234 // is placed exactly in the middle of the occupied space w.r to all
2235 // directions. This will ease the positioning of this object in the
2236 // half-stave. The sizes of this virtual box are stored in
2237 // the array passed by reference.
2238 // ---
2239 // Arguments:
2240 // - a boolean flag to know if this is the "left" or "right" MCM, when
2241 // looking at the stave from above (i.e. the direction from which
2242 // one sees bus over ladders over grounding foil) and keeping the
2243 // continuous border in the upper part, one sees the thicker part
2244 // on the left or right.
2245 // - an array passed by reference which will contain the size of
2246 // the virtual container.
2247 // - a pointer to the used TGeoManager.
2248 //
2249
2250 // to distinguish the "left" and "right" objects, a suffix is created
2251 char suf[5];
2252 if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");
2253
2254 // ** MEDIA **
2255 TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE
2256 TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr);
2257 TGeoMedium *medCap = GetMedium("AL$",mgr);
2258
2259 // The shape of the MCM is divided into 3 sectors with different
2260 // widths (Y) and lengths (X), like in this sketch:
2261 //
2262 // 0 1 2
2263 // +---------------------+-----------------------------------+
2264 // | 4 sect 2 |
2265 // | 6 sect 1 /-------------------+
2266 // | sect 0 /--------------/ 3
2267 // +--------------------/ 5
2268 // 8 7
2269 //
2270 // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees.
2271 // From drawings we can parametrize the dimensions of all these sectors,
2272 // then the shape of this part of the MCM is implemented as a
2273 // TGeoXtru centerd in the virtual XY space.
2274 // The first step is definig the relevant sizes of this shape:
2275 Int_t i, j;
2276 Double_t mcmThickness = fgkmm * 0.35;
2277 Double_t sizeXtot = fgkmm * 105.6; // total distance (0-2)
2278 // resp. 7-8, 5-6 and 3-4
2279 Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8};
2280 // resp. 0-8, 1-6 and 2-3
2281 Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm * 8.0};
2282 Double_t sizeSep01 = fgkmm * 4.0; // x(6)-x(7)
2283 Double_t sizeSep12 = fgkmm * 3.0; // x(4)-x(5)
2284
2285 // define sizes of chips (last is the thickest)
2286 Double_t chipLength[5] = { 4.00, 6.15, 3.85, 5.60, 18.00 };
2287 Double_t chipWidth[5] = { 3.00, 4.10, 3.85, 5.60, 5.45 };
2288 Double_t chipThickness[5] = { 0.60, 0.30, 0.30, 1.00, 1.20 };
2289 TString name[5];
2290 name[0] = "ITSSPDanalog";
2291 name[1] = "ITSSPDpilot";
2292 name[2] = "ITSSPDgol";
2293 name[3] = "ITSSPDrx40";
2294 name[4] = "ITSSPDoptical";
2295 Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange };
2296
2297 // define the sizes of the cover
2298 Double_t capThickness = fgkmm * 0.3;
2299 Double_t capHeight = fgkmm * 1.7;
2300
2301 // compute the total size of the virtual container box
2302 sizes.Set(3);
2303 Double_t &thickness = sizes[0];
2304 Double_t &length = sizes[1];
2305 Double_t &width = sizes[2];
2306 length = sizeXtot;
2307 width = sizeYsector[0];
2308 thickness = mcmThickness + capHeight;
2309
2310 // define all the relevant vertices of the polygon
2311 // which defines the transverse shape of the MCM.
2312 // These values are used to several purposes, and
2313 // for each one, some points must be excluded
2314 Double_t xRef[9], yRef[9];
2315 xRef[0] = -0.5*sizeXtot;
2316 yRef[0] = 0.5*sizeYsector[0];
2317 xRef[1] = xRef[0] + sizeXsector[0] + sizeSep01;
2318 yRef[1] = yRef[0];
2319 xRef[2] = -xRef[0];
2320 yRef[2] = yRef[0];
2321 xRef[3] = xRef[2];
2322 yRef[3] = yRef[2] - sizeYsector[2];
2323 xRef[4] = xRef[3] - sizeXsector[2];
2324 yRef[4] = yRef[3];
2325 xRef[5] = xRef[4] - sizeSep12;
2326 yRef[5] = yRef[4] - sizeSep12;
2327 xRef[6] = xRef[5] - sizeXsector[1];
2328 yRef[6] = yRef[5];
2329 xRef[7] = xRef[6] - sizeSep01;
2330 yRef[7] = yRef[6] - sizeSep01;
2331 xRef[8] = xRef[0];
2332 yRef[8] = -yRef[0];
2333
2334 // the above points are defined for the "right" MCM (if ve view the
2335 // stave from above) in order to change to the "left" one, we must
2336 // change the sign to all X values:
2337 if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i];
2338
2339 // the shape of the MCM and glue layer are done excluding point 1,
2340 // which is not necessary and cause the geometry builder to get confused
2341 j = 0;
2342 Double_t xBase[8], yBase[8];
2343 for (i = 0; i < 9; i++) {
2344 if (i == 1) continue;
2345 xBase[j] = xRef[i];
2346 yBase[j] = yRef[i];
2347 j++;
2348 } // end for i
2349
2350 // the MCM cover is superimposed over the zones 1 and 2 only
2351 Double_t xCap[6], yCap[6];
2352 j = 0;
2353 for (i = 1; i <= 6; i++) {
2354 xCap[j] = xRef[i];
2355 yCap[j] = yRef[i];
2356 j++;
2357 } // end for i
2358
2359 // define positions of chips,
2360 // which must be added to the bottom-left corner of MCM
2361 // and divided by 1E4;
2362 Double_t chipX[5], chipY[5];
2363 if (isRight) {
2364 chipX[0] = 666320.;
2365 chipX[1] = 508320.;
2366 chipX[2] = 381320.;
2367 chipX[3] = 295320.;
2368 chipX[4] = 150320.;
2369 chipY[0] = 23750.;
2370 chipY[1] = 27750.;
2371 chipY[2] = 20750.;
2372 chipY[3] = 42750.;
2373 chipY[4] = 39750.;
2374 } else {
2375 chipX[0] = 389730.;
2376 chipX[1] = 548630.;
2377 chipX[2] = 674930.;
2378 chipX[3] = 761430.;
2379 chipX[4] = 905430.;
2380 chipY[0] = 96250.;
2381 chipY[1] = 91950.;
2382 chipY[2] = 99250.;
2383 chipY[3] = 107250.;
2384 chipY[4] = 109750.;
2385 } // end if isRight
2386 for (i = 0; i < 5; i++) {
2387 chipX[i] *= 0.00001;
2388 chipY[i] *= 0.00001;
2389 if (isRight) {
2390 chipX[i] += xRef[3];
2391 chipY[i] += yRef[3];
2392 } else {
2393 chipX[i] += xRef[8];
2394 chipY[i] += yRef[8];
2395 } // end for isRight
2396 chipLength[i] *= fgkmm;
2397 chipWidth[i] *= fgkmm;
2398 chipThickness[i] *= fgkmm;
2399 } // end for i
2400
2401 // create shapes for MCM
2402 Double_t z1, z2;
2403 TGeoXtru *shBase = new TGeoXtru(2);
2404 z1 = -0.5*thickness;
2405 z2 = z1 + mcmThickness;
2406 shBase->DefinePolygon(8, xBase, yBase);
2407 shBase->DefineSection(0, z1, 0., 0., 1.0);
2408 shBase->DefineSection(1, z2, 0., 0., 1.0);
2409
2410 // create volumes of MCM
2411 TGeoVolume *volBase = new TGeoVolume("ITSSPDbase", shBase, medBase);
2412 volBase->SetLineColor(kRed);
2413
2414 // to create the border of the MCM cover, it is required the
2415 // subtraction of two shapes the outer is created using the
2416 // reference points defined here
2417 TGeoXtru *shCapOut = new TGeoXtru(2);
2418 shCapOut->SetName(Form("ITSSPDshCAPOUT%s", suf));
2419 z1 = z2;
2420 z2 = z1 + capHeight - capThickness;
2421 shCapOut->DefinePolygon(6, xCap, yCap);
2422 shCapOut->DefineSection(0, z1, 0., 0., 1.0);
2423 shCapOut->DefineSection(1, z2, 0., 0., 1.0);
2424 // the inner is built similarly but subtracting the thickness
2425 Double_t angle, cs;
2426 Double_t xin[6], yin[6];
2427 if (!isRight) {
2428 angle = 45.0;
2429 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
2430 xin[0] = xCap[0] + capThickness;
2431 yin[0] = yCap[0] - capThickness;
2432 xin[1] = xCap[1] - capThickness;
2433 yin[1] = yin[0];
2434 xin[2] = xin[1];
2435 yin[2] = yCap[2] + capThickness;
2436 xin[3] = xCap[3] - capThickness*cs;
2437 yin[3] = yin[2];
2438 xin[4] = xin[3] - sizeSep12;
2439 yin[4] = yCap[4] + capThickness;
2440 xin[5] = xin[0];
2441 yin[5] = yin[4];
2442 } else {
2443 angle = 45.0;
2444 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
2445 xin[0] = xCap[0] - capThickness;
2446 yin[0] = yCap[0] - capThickness;
2447 xin[1] = xCap[1] + capThickness;
2448 yin[1] = yin[0];
2449 xin[2] = xin[1];
2450 yin[2] = yCap[2] + capThickness;
2451 xin[3] = xCap[3] - capThickness*cs;
2452 yin[3] = yin[2];
2453 xin[4] = xin[3] + sizeSep12;
2454 yin[4] = yCap[4] + capThickness;
2455 xin[5] = xin[0];
2456 yin[5] = yin[4];
2457 } // end if !isRight
2458 TGeoXtru *shCapIn = new TGeoXtru(2);
2459 shCapIn->SetName(Form("ITSSPDshCAPIN%s", suf));
2460 shCapIn->DefinePolygon(6, xin, yin);
2461 shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0);
2462 shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0);
2463 // compose shapes
2464 TGeoCompositeShape *shCapBorder = new TGeoCompositeShape(
2465 Form("ITSSPDshBORDER%s", suf),
2466 Form("%s-%s", shCapOut->GetName(),
2467 shCapIn->GetName()));
2468 // create volume
2469 TGeoVolume *volCapBorder = new TGeoVolume("ITSSPDcapBoarder",
2470 shCapBorder,medCap);
2471 volCapBorder->SetLineColor(kGreen);
2472 // finally, we create the top of the cover, which has the same
2473 // shape of outer border and a thickness equal of the one othe
2474 // cover border one
2475 TGeoXtru *shCapTop = new TGeoXtru(2);
2476 z1 = z2;
2477 z2 = z1 + capThickness;
2478 shCapTop->DefinePolygon(6, xCap, yCap);
2479 shCapTop->DefineSection(0, z1, 0., 0., 1.0);
2480 shCapTop->DefineSection(1, z2, 0., 0., 1.0);
2481 TGeoVolume *volCapTop = new TGeoVolume("ITSSPDcapTop", shCapTop, medCap);
2482 volCapTop->SetLineColor(kBlue);
2483
2484 // create container assembly with right suffix
2485 TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly(
2486 Form("ITSSPDmcm%s", suf));
2487
2488 // add mcm layer
2489 mcmAssembly->AddNode(volBase, 1, gGeoIdentity);
2490 // add chips
2491 for (i = 0; i < 5; i++) {
2492 TGeoVolume *box = gGeoManager->MakeBox(name[i],medChip,
2493 0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]);
2494 TGeoTranslation *tr = new TGeoTranslation(chipX[i],chipY[i],
2495 0.5*(-thickness + chipThickness[i]) + mcmThickness);
2496 box->SetLineColor(color[i]);
2497 mcmAssembly->AddNode(box, 1, tr);
2498 } // end for i
2499 // add cap border
2500 mcmAssembly->AddNode(volCapBorder, 1, gGeoIdentity);
2501 // add cap top
2502 mcmAssembly->AddNode(volCapTop, 1, gGeoIdentity);
2503
2504 return mcmAssembly;
592651e2 2505}
7f69c251 2506
2507/*
2508//__________________________________________________________________________________________
2509TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
2510(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const
2511{
2512 //
2513 // The pixel bus is implemented as a TGeoBBox with some objects on it,
2514 // which could affect the particle energy loss.
2515 // ---
2516 // In order to avoid confusion, the bus is directly displaced
2517 // according to the axis orientations which are used in the final stave:
2518 // X --> thickness direction
2519 // Y --> width direction
2520 // Z --> length direction
2521 //
2522
2523
2524 // ** MEDIA **
2525
2526 //PIXEL BUS
2527 TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
2528 TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000
2529 // Capacity
2530 TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr);
2531 // ??? Resistance
2532 // TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr);
2533 TGeoMedium *medRes = GetMedium("ALUMINUM$",mgr);
2534 TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
2535 // ** SIZES & POSITIONS **
2536 Double_t busLength = 170.501 * fgkmm; // length of plane part
2537 Double_t busWidth = 13.800 * fgkmm; // width
2538 Double_t busThickness = 0.280 * fgkmm; // thickness
2539 Double_t pt1000Length = fgkmm * 1.50;
2540 Double_t pt1000Width = fgkmm * 3.10;
2541 Double_t pt1000Thickness = fgkmm * 0.60;
2542 Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
2543 Double_t capLength = fgkmm * 2.55;
2544 Double_t capWidth = fgkmm * 1.50;
2545 Double_t capThickness = fgkmm * 1.35;
2546 Double_t capY[2], capZ[2];
2547
2548 Double_t resLength = fgkmm * 2.20;
2549 Double_t resWidth = fgkmm * 0.80;
2550 Double_t resThickness = fgkmm * 0.35;
2551 Double_t resY[2], resZ[2];
2552
2553 Double_t extThickness = fgkmm * 0.25;
2554 Double_t ext1Length = fgkmm * (26.7 - 10.0);
2555 Double_t ext2Length = fgkmm * (285.0 - ext1Length + extThickness);
2556 Double_t extWidth = fgkmm * 11.0;
2557 Double_t extHeight = fgkmm * 2.5;
2558
2559
2560 // position of pt1000, resistors and capacitors depends on the
2561 // bus if it's left or right one
2562 if (!isRight) {
2563 pt1000Y = 64400.;
2564 pt1000Z[0] = 66160.;
2565 pt1000Z[1] = 206200.;
2566 pt1000Z[2] = 346200.;
2567 pt1000Z[3] = 486200.;
2568 pt1000Z[4] = 626200.;
2569 pt1000Z[5] = 776200.;
2570 pt1000Z[6] = 916200.;
2571 pt1000Z[7] = 1056200.;
2572 pt1000Z[8] = 1196200.;
2573 pt1000Z[9] = 1336200.;
2574 resZ[0] = 1397500.;
2575 resY[0] = 26900.;
2576 resZ[1] = 682500.;
2577 resY[1] = 27800.;
2578 capZ[0] = 1395700.;
2579 capY[0] = 45700.;
2580 capZ[1] = 692600.;
2581 capY[1] = 45400.;
2582 } else {
2583 pt1000Y = 66100.;
2584 pt1000Z[0] = 319700.;
2585 pt1000Z[1] = 459700.;
2586 pt1000Z[2] = 599700.;
2587 pt1000Z[3] = 739700.;
2588 pt1000Z[4] = 879700.;
2589 pt1000Z[5] = 1029700.;
2590 pt1000Z[6] = 1169700.;
2591 pt1000Z[7] = 1309700.;
2592 pt1000Z[8] = 1449700.;
2593 pt1000Z[9] = 1589700.;
2594 capY[0] = 44500.;
2595 capZ[0] = 266700.;
2596 capY[1] = 44300.;
2597 capZ[1] = 974700.;
2598 resZ[0] = 266500.;
2599 resY[0] = 29200.;
2600 resZ[1] = 974600.;
2601 resY[1] = 29900.;
2602 } // end if isRight
2603 Int_t i;
2604 pt1000Y *= 1E-4 * fgkmm;
2605 for (i = 0; i < 10; i++) {
2606 pt1000Z[i] *= 1E-4 * fgkmm;
2607 if (i < 2) {
2608 capZ[i] *= 1E-4 * fgkmm;
2609 capY[i] *= 1E-4 * fgkmm;
2610 resZ[i] *= 1E-4 * fgkmm;
2611 resY[i] *= 1E-4 * fgkmm;
2612 } // end if iM2
2613 } // end for i
2614
2615 Double_t &fullLength = sizes[1];
2616 Double_t &fullWidth = sizes[2];
2617 Double_t &fullThickness = sizes[0];
2618 fullLength = busLength;
2619 fullWidth = busWidth;
2620 // add the thickness of the thickest component on bus (capacity)
2621 fullThickness = busThickness + capThickness;
2622 // ** VOLUMES **
2623 TGeoVolumeAssembly *container = new TGeoVolumeAssembly("PixelBus");
2624 TGeoVolume *bus = mgr->MakeBox("Bus", medBus, 0.5*busThickness, 0.5*busWidth, 0.5*busLength);
2625 TGeoVolume *pt1000 = mgr->MakeBox("PT1000", medPt1000, 0.5*pt1000Thickness, 0.5*pt1000Width, 0.5*pt1000Length);
2626 TGeoVolume *res = mgr->MakeBox("Resistor", medRes, 0.5*resThickness, 0.5*resWidth, 0.5*resLength);
2627 TGeoVolume *cap = mgr->MakeBox("Capacitor", medCap, 0.5*capThickness, 0.5*capWidth, 0.5*capLength);
2628 TGeoVolume *ext1 = mgr->MakeBox("Extender1", medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length);
2629 TGeoVolume *ext2 = mgr->MakeBox("Extender2", medExt, 0.5*extHeight - extThickness, 0.5*extWidth, 0.5*extThickness);
2630 TGeoVolume *ext3 = mgr->MakeBox("Extender3", medExt, extThickness, 0.5*extWidth, 0.5*ext2Length);
2631 bus->SetLineColor(kYellow + 2);
2632 pt1000->SetLineColor(kGreen + 3);
2633 res->SetLineColor(kRed + 1);
2634 cap->SetLineColor(kBlue - 7);
2635 ext1->SetLineColor(kGray);
2636 ext2->SetLineColor(kGray);
2637 ext3->SetLineColor(kGray);
2638
2639 // ** MOVEMENTS AND POSITIONEMENT **
2640 // bus
2641 TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness -
2642 fullThickness), 0.0, 0.0);
2643 container->AddNode(bus, 0, trBus);
2644 Double_t zRef, yRef, x, y, z;
2645 if (isRight) {
2646 zRef = -0.5*fullLength;
2647 yRef = -0.5*fullWidth;
2648 } else {
2649 zRef = -0.5*fullLength;
2650 yRef = -0.5*fullWidth;
2651 } // end if isRight
2652 // pt1000
2653 x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
2654 for (i = 0; i < 10; i++) {
2655 y = yRef + pt1000Y;
2656 z = zRef + pt1000Z[i];
2657 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2658 container->AddNode(pt1000, i, tr);
2659 } // end for i
2660 // capacitors
2661 x = 0.5*(capThickness - fullThickness) + busThickness;
2662 for (i = 0; i < 2; i++) {
2663 y = yRef + capY[i];
2664 z = zRef + capZ[i];
2665 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2666 container->AddNode(cap, i, tr);
2667 } // end for i
2668 // resistors
2669 x = 0.5*(resThickness - fullThickness) + busThickness;
2670 for (i = 0; i < 2; i++) {
2671 y = yRef + resY[i];
2672 z = zRef + resZ[i];
2673 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2674 container->AddNode(res, i, tr);
2675 } // end for i
2676 // extender
2677 if (isRight) {
2678 y = 0.5 * (-fullWidth + extWidth);
2679 z = 0.5 * (-fullLength + fgkmm * 10.0);
2680 }
2681 else {
2682 y = 0.5 * (fullWidth - extWidth);
2683 z = 0.5 * ( fullLength - fgkmm * 10.0);
2684 }
2685 x = 0.5 * (extThickness - fullThickness) + busThickness;
2686 //y = 0.5 * (fullWidth - extWidth);
2687 TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z);
2688 if (isRight) {
2689 z -= 0.5 * (ext1Length - extThickness);
2690 }
2691 else {
2692 z += 0.5 * (ext1Length - extThickness);
2693 }
2694 x += 0.5*(extHeight - extThickness);
2695 TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z);
2696 if (isRight) {
2697 z -= 0.5 * (ext2Length - extThickness);
2698 }
2699 else {
2700 z += 0.5 * (ext2Length - extThickness);
2701 }
2702 x += 0.5*(extHeight - extThickness) + extThickness;
2703 TGeoTranslation *trExt3 = new TGeoTranslation(x, y, z);
2704 container->AddNode(ext1, 0, trExt1);
2705 container->AddNode(ext2, 0, trExt2);
2706 container->AddNode(ext3, 0, trExt3);
2707
2708
2709 sizes[3] = yRef + pt1000Y;
2710 sizes[4] = zRef + pt1000Z[2];
2711 sizes[5] = zRef + pt1000Z[7];
2712
2713 return container;
2714}
2715*/
2716
54c9a3d9 2717//______________________________________________________________________
bc3498f4 2718TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
22726349 2719(Bool_t isRight, Int_t ilayer, TArrayD &sizes, TGeoManager *mgr) const
bc3498f4 2720{
54c9a3d9 2721 //
2722 // The pixel bus is implemented as a TGeoBBox with some objects on it,
2723 // which could affect the particle energy loss.
2724 // ---
2725 // In order to avoid confusion, the bus is directly displaced
2726 // according to the axis orientations which are used in the final stave:
2727 // X --> thickness direction
2728 // Y --> width direction
2729 // Z --> length direction
2730 //
22726349 2731
2732 // ** CRITICAL CHECK ******************************************************
2733 // layer number can be ONLY 1 or 2
2734 if (ilayer != 1 && ilayer != 2) AliFatal("Layer number MUST be 1 or 2");
54c9a3d9 2735
2736 // ** MEDIA **
2737 //PIXEL BUS
2738 TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
2739 TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000
2740 // Capacity
2741 TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr);
2742 // ??? Resistance
7f69c251 2743 //TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr);
2744 TGeoMedium *medRes = GetMedium("ALUMINUM$",mgr);
2745 TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
54c9a3d9 2746 // ** SIZES & POSITIONS **
2747 Double_t busLength = 170.501 * fgkmm; // length of plane part
2748 Double_t busWidth = 13.800 * fgkmm; // width
2749 Double_t busThickness = 0.280 * fgkmm; // thickness
2750 Double_t pt1000Length = fgkmm * 1.50;
2751 Double_t pt1000Width = fgkmm * 3.10;
2752 Double_t pt1000Thickness = fgkmm * 0.60;
2753 Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
2754 Double_t capLength = fgkmm * 2.55;
2755 Double_t capWidth = fgkmm * 1.50;
2756 Double_t capThickness = fgkmm * 1.35;
2757 Double_t capY[2], capZ[2];
2758
2759 Double_t resLength = fgkmm * 2.20;
2760 Double_t resWidth = fgkmm * 0.80;
2761 Double_t resThickness = fgkmm * 0.35;
2762 Double_t resY[2], resZ[2];
7f69c251 2763
2764 Double_t extThickness = fgkmm * 0.25;
2765 Double_t ext1Length = fgkmm * (26.7 - 10.0);
4098f5dd 2766 Double_t ext2Length = fgkmm * (284.0 - ext1Length + extThickness);
7f69c251 2767 Double_t extWidth = fgkmm * 11.0;
2768 Double_t extHeight = fgkmm * 2.5;
54c9a3d9 2769
2770 // position of pt1000, resistors and capacitors depends on the
2771 // bus if it's left or right one
2772 if (!isRight) {
2773 pt1000Y = 64400.;
2774 pt1000Z[0] = 66160.;
2775 pt1000Z[1] = 206200.;
2776 pt1000Z[2] = 346200.;
2777 pt1000Z[3] = 486200.;
2778 pt1000Z[4] = 626200.;
2779 pt1000Z[5] = 776200.;
2780 pt1000Z[6] = 916200.;
2781 pt1000Z[7] = 1056200.;
2782 pt1000Z[8] = 1196200.;
2783 pt1000Z[9] = 1336200.;
2784 resZ[0] = 1397500.;
2785 resY[0] = 26900.;
2786 resZ[1] = 682500.;
2787 resY[1] = 27800.;
2788 capZ[0] = 1395700.;
2789 capY[0] = 45700.;
2790 capZ[1] = 692600.;
2791 capY[1] = 45400.;
2792 } else {
2793 pt1000Y = 66100.;
2794 pt1000Z[0] = 319700.;
2795 pt1000Z[1] = 459700.;
2796 pt1000Z[2] = 599700.;
2797 pt1000Z[3] = 739700.;
2798 pt1000Z[4] = 879700.;
2799 pt1000Z[5] = 1029700.;
2800 pt1000Z[6] = 1169700.;
2801 pt1000Z[7] = 1309700.;
2802 pt1000Z[8] = 1449700.;
2803 pt1000Z[9] = 1589700.;
2804 capY[0] = 44500.;
2805 capZ[0] = 266700.;
2806 capY[1] = 44300.;
2807 capZ[1] = 974700.;
2808 resZ[0] = 266500.;
2809 resY[0] = 29200.;
2810 resZ[1] = 974600.;
2811 resY[1] = 29900.;
2812 } // end if isRight
2813 Int_t i;
2814 pt1000Y *= 1E-4 * fgkmm;
2815 for (i = 0; i < 10; i++) {
2816 pt1000Z[i] *= 1E-4 * fgkmm;
2817 if (i < 2) {
2818 capZ[i] *= 1E-4 * fgkmm;
2819 capY[i] *= 1E-4 * fgkmm;
2820 resZ[i] *= 1E-4 * fgkmm;
2821 resY[i] *= 1E-4 * fgkmm;
2822 } // end if iM2
2823 } // end for i
2824
2825 Double_t &fullLength = sizes[1];
2826 Double_t &fullWidth = sizes[2];
2827 Double_t &fullThickness = sizes[0];
2828 fullLength = busLength;
2829 fullWidth = busWidth;
2830 // add the thickness of the thickest component on bus (capacity)
2831 fullThickness = busThickness + capThickness;
2832
2833 // ** VOLUMES **
2834 TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDpixelBus");
2835 TGeoVolume *bus = mgr->MakeBox("ITSSPDbus", medBus, 0.5*busThickness,
2836 0.5*busWidth, 0.5*busLength);
2837 TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",medPt1000,
2838 0.5*pt1000Thickness,0.5*pt1000Width, 0.5*pt1000Length);
2839 TGeoVolume *res = mgr->MakeBox("ITSSPDresistor", medRes, 0.5*resThickness,
2840 0.5*resWidth, 0.5*resLength);
2841 TGeoVolume *cap = mgr->MakeBox("ITSSPDcapacitor", medCap, 0.5*capThickness,
2842 0.5*capWidth, 0.5*capLength);
7f69c251 2843
2844 TGeoVolume *ext1 = mgr->MakeBox("Extender1", medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length);
22726349 2845 TGeoVolume *ext2 = mgr->MakeBox("Extender2", medExt, 0.5*extHeight - 2.*extThickness, 0.5*extWidth, 0.5*extThickness);
2846 TGeoVolume *ext3 = mgr->MakeBox("Extender3", medExt, 0.5*extThickness, 0.5*(extWidth-0.8*fgkmm), 0.5*ext2Length + extThickness); // Hardcode fix of a small overlap
54c9a3d9 2847 bus->SetLineColor(kYellow + 2);
2848 pt1000->SetLineColor(kGreen + 3);
2849 res->SetLineColor(kRed + 1);
2850 cap->SetLineColor(kBlue - 7);
7f69c251 2851 ext1->SetLineColor(kGray);
2852 ext2->SetLineColor(kGray);
2853 ext3->SetLineColor(kGray);
54c9a3d9 2854
2855 // ** MOVEMENTS AND POSITIONEMENT **
2856 // bus
2857 TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness -
2858 fullThickness), 0.0, 0.0);
2859 container->AddNode(bus, 1, trBus);
2860 Double_t zRef, yRef, x, y, z;
2861 if (isRight) {
2862 zRef = -0.5*fullLength;
2863 yRef = -0.5*fullWidth;
2864 } else {
2865 zRef = -0.5*fullLength;
2866 yRef = -0.5*fullWidth;
2867 } // end if isRight
2868 // pt1000
2869 x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
2870 for (i = 0; i < 10; i++) {
2871 y = yRef + pt1000Y;
2872 z = zRef + pt1000Z[i];
2873 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2874 container->AddNode(pt1000, i+1, tr);
2875 } // end for i
2876 // capacitors
2877 x = 0.5*(capThickness - fullThickness) + busThickness;
2878 for (i = 0; i < 2; i++) {
2879 y = yRef + capY[i];
2880 z = zRef + capZ[i];
2881 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2882 container->AddNode(cap, i+1, tr);
2883 } // end for i
2884 // resistors
2885 x = 0.5*(resThickness - fullThickness) + busThickness;
2886 for (i = 0; i < 2; i++) {
2887 y = yRef + resY[i];
2888 z = zRef + resZ[i];
2889 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2890 container->AddNode(res, i+1, tr);
2891 } // end for i
2892
7f69c251 2893 // extender
22726349 2894 if (ilayer == 2) {
2895 if (isRight) {
2896 y = 0.5 * (fullWidth - extWidth) - 0.1;
2897 z = 0.5 * (-fullLength + fgkmm * 10.0);
2898 }
2899 else {
2900 y = 0.5 * (fullWidth - extWidth) - 0.1;
2901 z = 0.5 * ( fullLength - fgkmm * 10.0);
2902 }
2903 }
2904 else {
2905 if (isRight) {
2906 y = -0.5 * (fullWidth - extWidth);
2907 z = 0.5 * (-fullLength + fgkmm * 10.0);
2908 }
2909 else {
2910 y = -0.5 * (fullWidth - extWidth);
2911 z = 0.5 * ( fullLength - fgkmm * 10.0);
2912 }
2913 }
7f69c251 2914 x = 0.5 * (extThickness - fullThickness) + busThickness;
2915 //y = 0.5 * (fullWidth - extWidth);
2916 TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z);
2917 if (isRight) {
2918 z -= 0.5 * (ext1Length - extThickness);
2919 }
2920 else {
2921 z += 0.5 * (ext1Length - extThickness);
2922 }
22726349 2923 x += 0.5*(extHeight - 3.*extThickness);
7f69c251 2924 TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z);
2925 if (isRight) {
22726349 2926 z -= 0.5 * (ext2Length - extThickness) + 2.5*extThickness;
7f69c251 2927 }
2928 else {
22726349 2929 z += 0.5 * (ext2Length - extThickness) + 2.5*extThickness;
7f69c251 2930 }
22726349 2931 x += 0.5*(extHeight - extThickness) - 2.*extThickness;
7f69c251 2932 TGeoTranslation *trExt3 = new TGeoTranslation(x, y, z);
2933 container->AddNode(ext1, 0, trExt1);
2934 container->AddNode(ext2, 0, trExt2);
2935 container->AddNode(ext3, 0, trExt3);
2936
54c9a3d9 2937 sizes[3] = yRef + pt1000Y;
2938 sizes[4] = zRef + pt1000Z[2];
2939 sizes[5] = zRef + pt1000Z[7];
2940
2941 return container;
592651e2 2942}
7f69c251 2943
2944//______________________________________________________________________
2945TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateConeModule(TGeoManager *mgr) const
2946{
2947 TGeoMedium *medInox = GetMedium("INOX$",mgr);
2948 TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
2949 TGeoMedium *medPlate = GetMedium("SPD C (M55J)$", mgr);
2950
2951 Double_t extThickness = fgkmm * 0.25;
2952 Double_t ext1Length = fgkmm * (26.7 - 10.0);
2953 Double_t ext2Length = fgkmm * (285.0 - ext1Length + extThickness);
2954
2955 Double_t cableThickness = 1.5 * fgkmm;
2956 Double_t cableL1 = 350.0 * fgkmm - extThickness - ext1Length - ext2Length;
7708d5f3 2957 Double_t cableL2 = 426.0 * fgkmm;
7f69c251 2958 //Double_t cableL3 = 570.0 * fgkmm;
2959 Double_t cableL3 = 57.0 * fgkmm;
2960 Double_t cableW1 = 11.0 * fgkmm;
2961 Double_t cableW2 = 30.0 * fgkmm;
2962 Double_t cableW3 = 50.0 * fgkmm;
2963
2964 Double_t mcmThickness = 1.2 *fgkmm;
2965 Double_t mcmLength = cableL1 + cableL2 + cableL3;
2966 Double_t mcmWidth = cableW1;
2967
2968 Double_t plateLength = 200.0 * fgkmm;
2969 Double_t plateWidth = 50.0 * fgkmm;
2970 Double_t plateThickness = 5.0 * fgkmm;
2971
2972 Double_t x[12], y[12];
2973
2974 x[0] = 7.5;
2975 y[0] = 0.0 + 0.5 * cableW1;
2976
2977 x[1] = x[0] + cableL1 - 0.5*(cableW2 - cableW1);
2978 y[1] = y[0];
2979
2980 x[2] = x[0] + cableL1;
2981 y[2] = y[1] + 0.5*(cableW2 - cableW1);
2982
2983 x[3] = x[2] + cableL2;
2984 y[3] = y[2];
2985
2986 x[4] = x[3] + 0.5*(cableW3 - cableW2);
2987 y[4] = y[3] + 0.5*(cableW3 - cableW2);
2988
2989 x[5] = x[4] + cableL3 - 0.5*(cableW3 - cableW2);
2990 y[5] = y[4];
2991
2992 for (Int_t i = 6; i < 12; i++) {
2993 x[i] = x[11 - i];
2994 y[i] = -y[11 - i];
2995 }
2996
2997 TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDConeModule");
2998
2999 TGeoXtru *shCable = new TGeoXtru(2);
3000 shCable->DefinePolygon(12, x, y);
3001 shCable->DefineSection(0, 0., 0., 0., 1.0);
3002 shCable->DefineSection(1, cableThickness, 0., 0., 1.0);
3003
3004 TGeoVolume *volCable = new TGeoVolume("ITSSPDExtender", shCable, medExt);
3005 volCable->SetLineColor(kGreen);
3006
3007 TGeoVolume *volTube = gGeoManager->MakeTube("ITSSPDCoolingTubeCone", medInox, 5.*fgkmm, 6.*fgkmm, 0.5*(x[5] - x[0]));
3008 volTube->SetLineColor(kGray);
3009
3010 Double_t thickness = cableThickness + mcmThickness;
3011 TGeoBBox *shOut = new TGeoBBox("ITSSPD_shape_plateout", 0.5*plateThickness, 0.5*plateLength, 0.5*plateWidth);
3012 TGeoBBox *shIn = new TGeoBBox("ITSSPD_shape_platein", 0.5*thickness, 0.52*plateLength, 0.5*cableW2);
3013 Char_t string[255];
3014 sprintf(string, "%s-%s", shOut->GetName(), shIn->GetName());
3015 TGeoCompositeShape *shPlate = new TGeoCompositeShape("ITSSPDPlate_shape", string);
3016 TGeoVolume *volPlate = new TGeoVolume("ITSSPDPlate", shPlate, medPlate);
3017 volPlate->SetLineColor(kRed);
3018
3019 TGeoVolume *volMCMExt = gGeoManager->MakeBox("ITSSPDextenderMCM", medExt, 0.5*mcmThickness, 0.5*mcmLength, 0.5*mcmWidth);
3020 volMCMExt->SetLineColor(kGreen+3);
3021
3022 TGeoRotation *rot = new TGeoRotation(*gGeoIdentity);
3023 rot->RotateX(90.0);
3024 rot->RotateZ(90.0);
3025 container->AddNode(volCable, 0, rot);
3026
3027 TGeoTranslation *combi = new TGeoTranslation(cableThickness + 0.5*mcmThickness, x[0] + 0.5*mcmLength, 0.0);
3028 container->AddNode(volMCMExt, 0, combi);
3029
3030 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
3031 rot1->RotateX(88.5);
3032 TGeoCombiTrans *tr = new TGeoCombiTrans(1.0, x[0] + 0.5*(x[5] - x[0]), -3.0, rot1);
3033 container->AddNode(volTube, 0, tr);
3034
3035 TGeoTranslation *tr1 = new TGeoTranslation(0.5*plateThickness - 0.5*(plateThickness-thickness), x[3] - x[0] - 0.52*plateLength, 0.0);
3036 container->AddNode(volPlate, 0, tr1);
3037
3038 return container;
3039}
3040
3041//______________________________________________________________________
3042void AliITSv11GeometrySPD::CreateCones(TGeoVolume *moth) const
3043{
3044
3045 TGeoVolumeAssembly *module = CreateConeModule(gGeoManager);
3046
3047 //Double_t angle[10] = {18., 54., 90., 126., 162., -18., -54., -90., -126., -162.};
3048 Double_t angle[10] = {18., 54., 90., 126., 162., 198.0, 234.0, 270.0, 306.0, 342.0};
3049 for (Int_t i = 0; i < 10; i++) {
3050 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
3051 rot1->RotateY(-90.0);
3052 rot1->RotateX(45.0);
3053 rot1->RotateZ(90.0 - angle[i]);
3054 TGeoCombiTrans *tr1 = new TGeoCombiTrans(0.0, 0.0, 40.5, rot1);
3055 moth->AddNode(module, 2*i, tr1);
3056 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
3057 rot2->RotateY(90.0);
3058 rot2->RotateX(-45.0);
3059 rot2->RotateZ(90.0 - angle[i]);
3060 TGeoCombiTrans *tr2 = new TGeoCombiTrans(0.0, 0.0, -40.5, rot2);
3061 moth->AddNode(module, 2*i+1, tr2);
3062 }
3063}
3064
54c9a3d9 3065//______________________________________________________________________
3066TGeoVolume* AliITSv11GeometrySPD::CreateExtender(
3067 const Double_t *extenderParams, const TGeoMedium *extenderMedium,
3068 TArrayD& sizes) const
bc3498f4 3069{
54c9a3d9 3070 //
3071 // ------------------ CREATE AN EXTENDER ------------------------
3072 //
3073 // This function creates the following picture (in plane xOy)
3074 // Should be useful for the definition of the pixel bus and MCM extenders
3075 // The origin corresponds to point 0 on the picture, at half-width
3076 // in Z direction
3077 //
3078 // Y 7 6 5
3079 // ^ +---+---------------------+
3080 // | / |
3081 // | / |
3082 // 0------> X / +---------------------+
3083 // / / 3 4
3084 // / /
3085 // 9 8 / /
3086 // +-----------+ /
3087 // | /
3088 // | /
3089 // ---> +-----------+---+
3090 // | 0 1 2
3091 // |
3092 // origin (0,0,0)
3093 //
3094 //
3095 // Takes 6 parameters in the following order :
3096 // |--> par 0 : inner length [0-1] / [9-8]
3097 // |--> par 1 : thickness ( = [0-9] / [4-5])
3098 // |--> par 2 : angle of the slope
3099 // |--> par 3 : total height in local Y direction
3100 // |--> par 4 : outer length [3-4] / [6-5]
3101 // |--> par 5 : width in local Z direction
3102 //
3103 Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1]
3104 * TMath::Cos(extenderParams[2])) /
3105 TMath::Tan(extenderParams[2]);
3106 Double_t extenderXtruX[10] = {
3107 0 ,
3108 extenderParams[0] ,
3109 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2]) ,
3110 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3111 slopeDeltaX ,
3112 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3113 slopeDeltaX + extenderParams[4],
3114 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3115 slopeDeltaX + extenderParams[4],
3116 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3117 slopeDeltaX ,
3118 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3119 slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) ,
3120 extenderParams[0] ,
3121 0
3122 };
3123 Double_t extenderXtruY[10] = {
3124 0 ,
3125 0 ,
3126 extenderParams[1] * (1-TMath::Cos(extenderParams[2])) ,
3127 extenderParams[3] - extenderParams[1] ,
3128 extenderParams[3] - extenderParams[1] ,
3129 extenderParams[3] ,
3130 extenderParams[3] ,
3131 extenderParams[3]-extenderParams[1]*(1-TMath::Cos(extenderParams[2])) ,
3132 extenderParams[1] ,
3133 extenderParams[1]
3134 };
592651e2 3135
54c9a3d9 3136 if (sizes.GetSize() != 3) sizes.Set(3);
3137 Double_t &thickness = sizes[0];
3138 Double_t &length = sizes[1];
3139 Double_t &width = sizes[2];
3140
3141 thickness = extenderParams[3];
3142 width = extenderParams[5];
3143 length = extenderParams[0]+extenderParams[1]*
3144 TMath::Sin(extenderParams[2])+slopeDeltaX+extenderParams[4];
3145
3146 // creation of the volume
3147 TGeoXtru *extenderXtru = new TGeoXtru(2);
3148 TGeoVolume *extenderXtruVol = new TGeoVolume("ITSSPDextender",extenderXtru,
3149 extenderMedium);
3150 extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY);
3151 extenderXtru->DefineSection(0,-0.5*extenderParams[4]);
3152 extenderXtru->DefineSection(1, 0.5*extenderParams[4]);
3153 return extenderXtruVol;
3154}
bc3498f4 3155//______________________________________________________________________
3156TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBusAndExtensions
3157(Bool_t /*zpos*/, TGeoManager *mgr) const
3158{
54c9a3d9 3159 //
3160 // Creates an assembly which contains the pixel bus and its extension
3161 // and the extension of the MCM.
3162 // By: Renaud Vernet
3163 // NOTE: to be defined its material and its extension in the outside
3164 // direction
3165 //
3166 // ==== constants =====
3167 //get the media
3168 // PIXEL BUS
3169 //TGeoMedium *medPixelBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
3170 // IXEL BUS EXTENDER
3171 TGeoMedium *medPBExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr);
3172 //MCM EXTENDER
3173 TGeoMedium *medMCMExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr);
3174 // //geometrical constants
3175 const Double_t kPbextenderThickness = 0.07 * fgkmm;
3176 //design=?? 70 deg. seems OK
3177 const Double_t kPbExtenderSlopeAngle = 70.0 * TMath::Pi()/180.;
3178 // = 2.6 - (0.28+0.05+0.35) cf design
3179 const Double_t kPbExtenderHeight = 1.92 * fgkmm;
3180 const Double_t kPbExtenderWidthY = 11.0 * fgkmm;
3181 //design=?? 70 deg. seems OK
3182 const Double_t kMcmExtenderSlopeAngle = 70.0 * TMath::Pi()/180.;
3183 const Double_t kMcmExtenderThickness = 0.10 * fgkmm;
3184 const Double_t kMcmExtenderHeight = 1.8 * fgkmm;
3185 const Double_t kMcmExtenderWidthY = kPbExtenderWidthY;
3186 // const Double_t groundingThickness = 0.07 * fgkmm;
3187 // const Double_t grounding2pixelBusDz = 0.625 * fgkmm;
3188 // const Double_t pixelBusThickness = 0.28 * fgkmm;
3189 // const Double_t groundingWidthX = 170.501 * fgkmm;
3190 // const Double_t pixelBusContactDx = 1.099 * fgkmm;
3191 // const Double_t pixelBusWidthY = 13.8 * fgkmm;
3192 //design=20 deg.
3193 // const Double_t pixelBusContactPhi = 20.0 * TMath::Pi()/180.
3194 // const Double_t pbExtenderTopZ = 2.72 * fgkmm;
3195 // const Double_t mcmThickness = 0.35 * fgkmm;
3196 // const Double_t halfStaveTotalLength = 247.64 * fgkmm;
3197 // const Double_t deltaYOrigin = 15.95/2.* fgkmm;
3198 // const Double_t deltaXOrigin = 1.1 * fgkmm;
3199 // const Double_t deltaZOrigin = halfStaveTotalLength / 2.;
3200 // const Double_t grounding2pixelBusDz2 = grounding2pixelBusDz+
3201 // groundingThickness/2. + pixelBusThickness/2.;
3202 // const Double_t pixelBusWidthX = groundingWidthX;
3203 // const Double_t pixelBusRaiseLength = (pixelBusContactDx-
3204 // pixelBusThickness*TMath::Sin(pixelBusContactPhi))/
3205 // TMath::Cos(pixelBusContactPhi);
3206 // const Double_t pbExtenderBaseZ = grounding2pixelBusDz2 +
3207 // pixelBusRaiseLength*TMath::Sin(pixelBusContactPhi) +
3208 // 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*
3209 // TMath::Tan(pixelBusContactPhi);
3210 // const Double_t pbExtenderDeltaZ = pbExtenderTopZ-pbExtenderBaseZ;
3211 // const Double_t pbExtenderEndPointX = 2*deltaZOrigin -
3212 // groundingWidthX - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi);
3213 // const Double_t pbExtenderXtru3L = 1.5 * fgkmm; //arbitrary ?
3214 // const Double_t pbExtenderXtru4L = (pbExtenderDeltaZ +
3215 // pixelBusThickness*(TMath::Cos(extenderSlope)-2))/
3216 // TMath::Sin(extenderSlope);
3217 // const Double_t kMcmExtenderEndPointX = deltaZOrigin - 48.2 * fgkmm;
3218 // const Double_t kMcmExtenderXtru3L = 1.5 * fgkmm;
3219 // //===== end constants =====
3220 const Double_t kPbExtenderInnerLength = 10. * fgkmm;
3221 const Double_t kPbExtenderOuterLength = 15. * fgkmm;
3222 const Double_t kMcmExtenderInnerLength = 10. * fgkmm;
3223 const Double_t kMcmExtenderOuterLength = 15. * fgkmm;
3224 Double_t pbExtenderParams[6] = {kPbExtenderInnerLength, //0
3225 kPbextenderThickness, //1
3226 kPbExtenderSlopeAngle, //2
3227 kPbExtenderHeight, //3
3228 kPbExtenderOuterLength, //4
3229 kPbExtenderWidthY}; //5
3230
3231 Double_t mcmExtenderParams[6] = {kMcmExtenderInnerLength, //0
3232 kMcmExtenderThickness, //1
3233 kMcmExtenderSlopeAngle, //2
3234 kMcmExtenderHeight, //3
3235 kMcmExtenderOuterLength, //4
3236 kMcmExtenderWidthY}; //5
3237
3238 TArrayD sizes(3);
3239 TGeoVolume* pbExtender = CreateExtender(pbExtenderParams,medPBExtender,
3240 sizes);
3241 if(GetDebug(1))printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\t"
3242 "LENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
3243 TGeoVolume* mcmExtender = CreateExtender(mcmExtenderParams,medMCMExtender,
3244 sizes);
3245 if(GetDebug(1))printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\t"
3246 "LENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
3247 // Double_t pixelBusValues[5] = {pixelBusWidthX, //0
3248 // pixelBusThickness, //1
3249 // pixelBusContactPhi, //2
3250 // pixelBusRaiseLength, //3
3251 // pixelBusWidthY}; //4
3252
3253 // Double_t pbExtenderValues[8] = {pixelBusRaiseLength, //0
3254 // pixelBusContactPhi, //1
3255 // pbExtenderXtru3L, //2
3256 // pixelBusThickness, //3
3257 // extenderSlope, //4
3258 // pbExtenderXtru4L, //5
3259 // pbExtenderEndPointX, //6
3260 // kPbExtenderWidthY}; //7
3261
3262 // Double_t mcmExtenderValues[6] = {mcmExtenderXtru3L, //0
3263 // mcmExtenderThickness, //1
3264 // extenderSlope, //2
3265 // deltaMcmMcmExtender, //3
3266 // mcmExtenderEndPointX, //4
3267 // mcmExtenderWidthY}; //5
3268 // TGeoVolumeAssembly *pixelBus=new TGeoVolumeAssembly("ITSSPDpixelBus");
3269 // CreatePixelBus(pixelBus,pixelBusValues,medPixelBus);
3270 // TGeoVolumeAssembly *pbExtender = new TGeoVolumeAssembly(
3271 // "ITSSPDpixelBusExtender");
3272 // CreatePixelBusExtender(pbExtender,pbExtenderValues,medPBExtender);
3273 // TGeoVolumeAssembly *mcmExtender = new TGeoVolumeAssembly(
3274 // "ITSSPDmcmExtender");
3275 // CreateMCMExtender(mcmExtender,mcmExtenderValues,medMCMExtender);
3276 //-------------- DEFINITION OF GEOMETRICAL TRANSFORMATIONS --------
3277 // TGeoRotation * commonRot = new TGeoRotation("commonRot",0,90,0);
3278 // commonRot->MultiplyBy(new TGeoRotation("rot",-90,0,0));
3279 // TGeoTranslation * pixelBusTrans = new TGeoTranslation(
3280 // pixelBusThickness/2. - deltaXOrigin + 0.52*fgkmm ,
3281 // -pixelBusWidthY/2. + deltaYOrigin ,
3282 // -groundingWidthX/2. + deltaZOrigin);
3283 // TGeoRotation *pixelBusRot = new TGeoRotation(*commonRot);
3284 // TGeoTranslation *pbExtenderTrans =new TGeoTranslation(*pixelBusTrans);
3285 // TGeoRotation *pbExtenderRot = new TGeoRotation(*pixelBusRot);
3286 // pbExtenderTrans->SetDz(*(pbExtenderTrans->GetTranslation()+2) -
3287 // pixelBusWidthX/2. - 2*pixelBusThickness*
3288 // TMath::Sin(pixelBusContactPhi));
3289 // if (!zpos) {
3290 // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) -
3291 // (pixelBusWidthY - kPbExtenderWidthY)/2.);
3292 // } else {
3293 // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) +
3294 // (pixelBusWidthY - kPbExtenderWidthY)/2.);
3295 // }
3296 // pbExtenderTrans->SetDx(*(pbExtenderTrans->GetTranslation()) +
3297 // pixelBusThickness/2 + 2*pixelBusThickness*
3298 // TMath::Sin(pixelBusContactPhi)*
3299 // TMath::Tan(pixelBusContactPhi));
3300 // TGeoTranslation * mcmExtenderTrans = new TGeoTranslation(0.12*fgkmm +
3301 // mcmThickness - deltaXOrigin,
3302 // pbExtenderTrans->GetTranslation()[1],
3303 // -4.82);
3304 // TGeoRotation * mcmExtenderRot = new TGeoRotation(*pbExtenderRot);
3305 // // add pt1000 components
3306 // Double_t pt1000Z = fgkmm * 64400. * 1E-4;
3307 // //Double_t pt1000X[10] = {319700., 459700., 599700., 739700.,
3308 // 879700., 1029700., 1169700., 1309700.,
3309 // 1449700., 1589700.};
3310 // Double_t pt1000X[10] ={66160., 206200., 346200., 486200., 626200.,
3311 // 776200., 916200., 1056200., 1196200., 1336200.};
3312 // Double_t pt1000size[3] = {fgkmm*1.5, fgkmm*0.6, fgkmm*3.1};
3313 // Int_t i;
3314 // for (i = 0; i < 10; i++) {
3315 // pt1000X[i] *= fgkmm * 1E-4;
3316 // }
3317 // TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",0,0.5*pt1000size[0],
3318 // 0.5*pt1000size[1], 0.5*pt1000size[2]);
3319 // pt1000->SetLineColor(kGray);
3320 // Double_t refThickness = - pixelBusThickness;
3321 // for (i = 0; i < 10; i++) {
3322 // TGeoTranslation *tr = new TGeoTranslation(pt1000X[i]-
3323 // 0.5*pixelBusWidthX, 0.002+0.5*(-3.*refThickness+pt1000size[3]),
3324 // pt1000Z -0.5*pixelBusWidthY);
3325 // pixelBus->AddNode(pt1000, i+1, tr);
3326 // }
3327
3328 //CREATE FINAL VOLUME ASSEMBLY AND ROTATE IT
3329 TGeoVolumeAssembly *assembly = new TGeoVolumeAssembly("ITSSPDextenders");
3330 // assembly->AddNode((TGeoVolume*)pixelBus,1,
3331 // new TGeoCombiTrans(*pixelBusTrans,*pixelBusRot));
3332 // assembly->AddNode((TGeoVolume*)pbExtender,1,
3333 // new TGeoCombiTrans(*pbExtenderTrans,*pbExtenderRot));
3334 // assembly->AddNode((TGeoVolume*)mcmExtender,1,
3335 // new TGeoCombiTrans(*mcmExtenderTrans,*mcmExtenderRot));
3336 // assembly->AddNode(mcmExtender,1,new TGeoIdentity());
3337 assembly->AddNode(pbExtender,1);
3338 assembly->AddNode(mcmExtender,1);
3339 // assembly->SetTransparency(50);
3340
3341 return assembly;
592651e2 3342}
54c9a3d9 3343//______________________________________________________________________
3344TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave(Bool_t isRight,
3345Int_t layer,Int_t idxCentral,Int_t idxSide,TArrayD &sizes,TGeoManager *mgr)
bc3498f4 3346{
54c9a3d9 3347 //
3348 // Implementation of an half-stave, which depends on the side where
3349 // we are on the stave. The convention for "left" and "right" is the
3350 // same as for the MCM. The return value is a TGeoAssembly which is
3351 // structured in such a way that the origin of its local reference
3352 // frame coincides with the origin of the whole stave.
3353 // The TArrayD passed by reference will contain details of the shape:
3354 // - sizes[0] = thickness
3355 // - sizes[1] = length
3356 // - sizes[2] = width
3357 // - sizes[3] = common 'x' position for eventual clips
3358 // - sizes[4] = common 'y' position for eventual clips
3359 // - sizes[5] = 'z' position of first clip
3360 // - sizes[6] = 'z' position of second clip
3361 //
3362
3363 // ** CHECK **
3364
3365 // idxCentral and idxSide must be different
3366 if (idxCentral == idxSide) {
3367 AliInfo("Ladders must be inserted in half-stave with "
3368 "different indexes.");
3369 idxSide = idxCentral + 1;
3370 AliInfo(Form("Central ladder will be inserted with index %d",
3371 idxCentral));
3372 AliInfo(Form("Side ladder will be inserted with index %d",idxSide));
3373 } // end if
3374
3375 // define the separations along Z direction between the objects
3376 Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders
3377 Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder
3378 // and the Z=0 plane in stave ref.
3379 Double_t sepLadderMCM = fgkmm * 0.3; // sep. btw the "external" ladder
3380 // and MCM
3381 Double_t sepBusCenter = fgkmm * 0.3; // sep. btw the bus central edge
3382 // and the Z=0 plane in stave ref.
3383
3384 // ** VOLUMES **
3385
3386 // grounding foil
3387 TArrayD grndSize(3);
3388 // This one line repalces the 3 bellow, BNS.
3389 TGeoVolume *grndVol = CreateGroundingFoil(isRight, grndSize, mgr);
3390 Double_t &grndThickness = grndSize[0];
3391 Double_t &grndLength = grndSize[1];
3392
3393 // ladder
3394 TArrayD ladderSize(3);
3395 TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr);
3396 Double_t ladderThickness = ladderSize[0];
3397 Double_t ladderLength = ladderSize[1];
3398 Double_t ladderWidth = ladderSize[2];
3399
3400 // MCM
3401 TArrayD mcmSize(3);
3402 TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr);
3403 Double_t mcmThickness = mcmSize[0];
3404 Double_t mcmLength = mcmSize[1];
3405 Double_t mcmWidth = mcmSize[2];
3406
3407 // bus
3408 TArrayD busSize(6);
22726349 3409 TGeoVolumeAssembly *bus = CreatePixelBus(isRight, layer, busSize, mgr);
54c9a3d9 3410 Double_t busThickness = busSize[0];
3411 Double_t busLength = busSize[1];
3412 Double_t busWidth = busSize[2];
3413
3414 // glue between ladders and pixel bus
3415 TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr);
3416 Double_t ladGlueThickness = fgkmm * 0.1175 - fgkGapLadder;
3417 TGeoVolume *ladderGlue = mgr->MakeBox("ITSSPDladderGlue",medLadGlue,
3418 0.5*ladGlueThickness, 0.5*busWidth, 0.5*busLength);
3419 ladderGlue->SetLineColor(kYellow + 5);
3420
3421 // create references for the whole object, as usual
3422 sizes.Set(7);
3423 Double_t &fullThickness = sizes[0];
3424 Double_t &fullLength = sizes[1];
3425 Double_t &fullWidth = sizes[2];
3426
3427 // compute the full size of the container
3428 fullLength = sepLadderCenter+2.0*ladderLength+sepLadderMCM+
3429 sepLadderLadder+mcmLength;
3430 fullWidth = ladderWidth;
3431 fullThickness = grndThickness + fgkGapLadder + mcmThickness + busThickness;
3432
3433 // ** MOVEMENTS **
3434
3435 // grounding foil (shifted only along thickness)
3436 Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness;
3437 Double_t zGrnd = -0.5*grndLength;
3438 if (!isRight) zGrnd = -zGrnd;
3439 TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd);
3440
3441 // ladders (translations along thickness and length)
3442 // layers must be sorted going from the one at largest Z to the
3443 // one at smallest Z:
3444 // -|Zmax| ------> |Zmax|
3445 // 3 2 1 0
3446 // then, for layer 1 ladders they must be placed exactly this way,
3447 // and in layer 2 at the opposite. In order to remember the placements,
3448 // we define as "inner" and "outer" ladder respectively the one close
3449 // to barrel center, and the one closer to MCM, respectively.
3450 Double_t xLad, zLadIn, zLadOut;
3451 xLad = xGrnd + 0.5*(grndThickness + ladderThickness) +
3452 0.01175 - fgkGapLadder;
3453 zLadIn = -sepLadderCenter - 0.5*ladderLength;
3454 zLadOut = zLadIn - sepLadderLadder - ladderLength;
3455 if (!isRight) {
3456 zLadIn = -zLadIn;
3457 zLadOut = -zLadOut;
3458 } // end if !isRight
3459 TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity);
3460 rotLad->RotateZ(90.0);
3461 rotLad->RotateY(180.0);
3462 Double_t sensWidth = fgkmm * 12.800;
3463 Double_t chipWidth = fgkmm * 15.950;
3464 Double_t guardRingWidth = fgkmm * 0.560;
3465 Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth);
3466 TGeoCombiTrans *trLadIn = new TGeoCombiTrans(xLad,ladderShift,zLadIn,
3467 rotLad);
3468 TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad,ladderShift,zLadOut,
3469 rotLad);
3470
3471 // MCM (length and thickness direction, placing at same level as the
3472 // ladder, which implies to recompute the position of center, because
3473 // ladder and MCM have NOT the same thickness) the two copies of the
3474 // MCM are placed at the same distance from the center, on both sides
3475 Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness +
3476 0.01175 - fgkGapLadder;
3477 Double_t yMCM = 0.5*(fullWidth - mcmWidth);
3478 Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM;
3479 if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength +
3480 sepLadderMCM;
3481
3482 // create the correction rotations
3483 TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity);
3484 rotMCM->RotateY(90.0);
3485 TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM);
3486
3487 // glue between ladders and pixel bus
3488 Double_t xLadGlue = xLad + 0.5*ladderThickness + 0.01175 -
3489 fgkGapLadder + 0.5*ladGlueThickness;
3490
3491 // bus (length and thickness direction)
3492 Double_t xBus = xLadGlue + 0.5*ladGlueThickness + 0.5*busThickness;
7708d5f3 3493 Double_t yBus = 0.5*(fullWidth - busWidth) + 0.075; // Hardcode fix of a small overlap
54c9a3d9 3494 Double_t zBus = -0.5*busLength - sepBusCenter;
3495 if (!isRight) zBus = -zBus;
3496 TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus);
3497
3498 TGeoTranslation *trLadGlue = new TGeoTranslation(xLadGlue, 0.0, zBus);
3499
3500 // create the container
3501 TGeoVolumeAssembly *container = 0;
3502 if (idxCentral+idxSide==5) {
3503 container = new TGeoVolumeAssembly("ITSSPDhalf-Stave1");
3504 } else {
3505 container = new TGeoVolumeAssembly("ITSSPDhalf-Stave0");
3506 } // end if
3507
3508 // add to container all objects
3509 container->AddNode(grndVol, 1, grndTrans);
3510 // ladders are inserted in different order to respect numbering scheme
3511 // which is inverted when going from outer to inner layer
3512 container->AddNode(ladder, idxCentral+1, trLadIn);
3513 container->AddNode(ladder, idxSide+1, trLadOut);
3514 container->AddNode(ladderGlue, 1, trLadGlue);
3515 container->AddNode(mcm, 1, trMCM);
3516 container->AddNode(bus, 1, trBus);
3517
3518 // since the clips are placed in correspondence of two pt1000s,
3519 // their position is computed here, but they are not added by default
3520 // it will be the StavesInSector method which will decide to add them
3521 // anyway, to recovery some size informations on the clip, it must be
3522 // created
3523 TArrayD clipSize;
3524 // TGeoVolume *clipDummy = CreateClip(clipSize, kTRUE, mgr);
3525 CreateClip(clipSize, kTRUE, mgr);
3526 // define clip movements (width direction)
3527 sizes[3] = xBus + 0.5*busThickness;
3528 sizes[4] = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.48;
3529 sizes[5] = zBus + busSize[4];
3530 sizes[6] = zBus + busSize[5];
3531
3532 return container;
bc3498f4 3533}
54c9a3d9 3534//______________________________________________________________________
3535TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave(Int_t layer,
3536 TArrayD &sizes, TGeoManager *mgr)
7855ea93 3537{
54c9a3d9 3538 //
3539 // This method uses all other ones which create pieces of the stave
3540 // and assemblies everything together, in order to return the whole
3541 // stave implementation, which is returned as a TGeoVolumeAssembly,
3542 // due to the presence of some parts which could generate fake overlaps
3543 // when put on the sector.
3544 // This assembly contains, going from bottom to top in the thickness
3545 // direction:
3546 // - the complete grounding foil, defined by the "CreateGroundingFoil"
3547 // method which already joins some glue and real groudning foil
3548 // layers for the whole stave (left + right);
3549 // - 4 ladders, which are sorted according to the ALICE numbering
3550 // scheme, which depends on the layer we are building this stave for;
3551 // - 2 MCMs (a left and a right one);
3552 // - 2 pixel buses (a left and a right one);
3553 // ---
3554 // Arguments:
3555 // - the layer number, which determines the displacement and naming
3556 // of sensitive volumes
3557 // - a TArrayD passed by reference which will contain the size
3558 // of virtual box containing the stave
3559 // - the TGeoManager
3560 //
3561
3562 // create the container
3563 TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form(
3564 "ITSSPDlay%d-Stave",layer));
3565 // define the indexes of the ladders in order to have the correct order
3566 // keeping in mind that the staves will be inserted as they are on layer
3567 // 2, while they are rotated around their local Y axis when inserted
3568 // on layer 1, so in this case they must be put in the "wrong" order
3569 // to turn out to be right at the end. The convention is:
3570 // -|Zmax| ------> |Zmax|
3571 // 3 2 1 0
3572 // with respect to the "native" stave reference frame, "left" is in
3573 // the positive Z this leads the definition of these indexes:
3574 Int_t idxCentralL, idxSideL, idxCentralR, idxSideR;
3575
3576 if (layer == 1) {
3577 idxSideL = 3;
3578 idxCentralL = 2;
3579 idxCentralR = 1;
3580 idxSideR = 0;
3581 } else {
3582 idxSideL = 0;
3583 idxCentralL = 1;
3584 idxCentralR = 2;
3585 idxSideR = 3;
3586 } // end if layer ==1
3587
3588 // create the two half-staves
3589 TArrayD sizeL, sizeR;
3590 TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL,
3591 idxSideL, sizeL,mgr);
3592 TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR,
3593 idxSideR, sizeR, mgr);
3594 // copy the size to the stave's one
3595 sizes.Set(9);
3596 sizes[0] = sizeL[0];
3597 sizes[1] = sizeR[1] + sizeL[1];
3598 sizes[2] = sizeL[2];
3599 sizes[3] = sizeL[3];
3600 sizes[4] = sizeL[4];
3601 sizes[5] = sizeL[5];
3602 sizes[6] = sizeL[6];
3603 sizes[7] = sizeR[5];
3604 sizes[8] = sizeR[6];
3605
3606 // add to container all objects
3607 container->AddNode(hstaveL, 1);
3608 container->AddNode(hstaveR, 1);
3609
3610 return container;
592651e2 3611}
54c9a3d9 3612//______________________________________________________________________
bc3498f4 3613void AliITSv11GeometrySPD::SetAddStave(Bool_t *mask)
3614{
54c9a3d9 3615 //
3616 // Define a mask which states qhich staves must be placed.
3617 // It is a string which must contain '0' or '1' depending if
3618 // a stave must be placed or not.
3619 // Each place is referred to one of the staves, so the first
3620 // six characters of the string will be checked.
3621 //
3622 Int_t i;
3623
3624 for (i = 0; i < 6; i++) fAddStave[i] = mask[i];
bc3498f4 3625}
54c9a3d9 3626//______________________________________________________________________
3627void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr)
3628{
3629 //
3630 // Unification of essentially two methods:
3631 // - the one which creates the sector structure