streamlining storing in ocdb, adding comments
[u/mrichter/AliRoot.git] / ITS / AliITSv11GeometrySPD.cxx
CommitLineData
db486a6e 1/**************************************************************************
59da35b6 2 * Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
db486a6e 3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
592651e2 15//
db486a6e 16// This class Defines the Geometry for the ITS services and support cones
54c9a3d9 17// outside of the central volume (except for the Central support
18// cylinders). Other classes define the rest of the ITS, specifically the
19// SSD support cone, the SSD Support central cylinder, the SDD support cone,
20// the SDD support central cylinder, the SPD Thermal Shield, The supports
db486a6e 21// and cable trays on both the RB26 (muon dump) and RB24 sides, and all of
592651e2 22// the cabling from the ladders/stave ends out past the TPC.
23//
54c9a3d9 24// Here is the calling sequence associated with this file
25// SPDSector(TGeoVolume *moth,TGeoManager *mgr)
26// -----CarbonFiberSector(TGeoVolume *moth,Double_t &xAAtubeCenter0,
27// Double_t &yAAtubeCenter0,TGeoManager *mgr)
28// -----2* SPDsectorShape(Int_t n,const Double_t *xc,const Double_t *yc,
29// | const Double_t *r,const Double_t *ths,
30// | const Double_t *the,Int_t npr,Int_t &m,
31// | Double_t **xp,Double_t **yp)
32// -----StavesInSector(TGeoVolume *moth,TGeoManager *mgr)
33// -----3* CreaeStave(Int_t layer,TArrayD &sizes,Bool_t addClips,
34// | TGeoManager *mgr)
35// | -----2* CreateHalfStave(Boot_t isRight,Int_t layer,
36// | Int_t idxCentral,Int_t idxSide,
37// | TArrayD &sizes,Bool_t addClips,
38// | TGeoManager *mgr)
39// | -----CreateGrondingFoil(Bool_t isRight,TArrayD &sizes,
40// | | TGeoManager *mgr)
41// | | -----4* CreateGroundingFoilSingle(Int_t type,
42// | | TArrayD &sizes,
43// | | TGeoManger *mgr)
44// | |----CreateLadder(Int_t layer, TArrayD &sizes,
45// | | TGeoManager *mgr)
46// | |----CreateMCM(Bool_t isRight,TArrayD &sizes,
47// | | TGeoManger *mgr)
48// | |----CreatePixelBus(Bool_t isRight,TArrayD &sizes,
49// | | TGeoManager *mgr)
50// | -----CreateClip(TArrayD &sizes,TGeoManager *mgr)
51// |----GetSectorMountingPoints(Int_t index,Double_t &x0,
52// | Double_t &y0,Double_t &x1,
53// | Double_t y1)
54// -----3* ParallelPosition(Double_t dist1,Double_t dist2,
55// Double_t phi,Double_t &x,Double_t &y)
56//
57// Obsoleate or presently unused routines are: setAddStave(Bool_t *mask),
58// CreatePixelBusAndExtensions(...) which calles CreateExtender(...).
db486a6e 59
543b7370 60/* $Id$ */
592651e2 61
4098f5dd 62
db486a6e 63// General Root includes
64#include <Riostream.h>
65#include <TMath.h>
66#include <TLatex.h>
67#include <TCanvas.h>
68#include <TPolyLine.h>
297369a1 69#include <TPolyMarker.h>
bc3498f4 70
db486a6e 71// Root Geometry includes
db486a6e 72#include <TGeoVolume.h>
592651e2 73#include <TGeoTube.h> // contains TGeoTubeSeg
db486a6e 74#include <TGeoEltu.h>
75#include <TGeoXtru.h>
db486a6e 76#include <TGeoMatrix.h>
a53658c6 77#include <TGeoMaterial.h>
78#include <TGeoMedium.h>
592651e2 79#include <TGeoCompositeShape.h>
bc3498f4 80
592651e2 81// AliRoot includes
bc3498f4 82#include "AliLog.h"
a53658c6 83#include "AliMagF.h"
84#include "AliRun.h"
bc3498f4 85
592651e2 86// Declaration file
db486a6e 87#include "AliITSv11GeometrySPD.h"
88
54c9a3d9 89// Constant definistions
90const Double_t AliITSv11GeometrySPD::fgkGapLadder =
91 AliITSv11Geometry::fgkmicron*75.; // 75 microns
92const Double_t AliITSv11GeometrySPD::fgkGapHalfStave =
93 AliITSv11Geometry::fgkmicron*120.; // 120 microns
7855ea93 94
db486a6e 95ClassImp(AliITSv11GeometrySPD)
54c9a3d9 96//______________________________________________________________________
97AliITSv11GeometrySPD::AliITSv11GeometrySPD(/*Double_t gap*/):
98AliITSv11Geometry(),// Default constructor of base class
99fAddStave(), // [DEBUG] must be TRUE for all staves which will be
100 // mounted in the sector (used to check overlaps)
101fSPDsectorX0(0), // X of first edge of sector plane for stave
102fSPDsectorY0(0), // Y of first edge of sector plane for stave
103fSPDsectorX1(0), // X of second edge of sector plane for stave
104fSPDsectorY1(0), // Y of second edge of sector plane for stave
105fTubeEndSector() // coordinate of cooling tube ends
106{
107 //
108 // Default constructor.
109 // This does not initialize anything and is provided just for
110 // completeness. It is recommended to use the other one.
111 // The alignment gap is specified as argument (default = 0.0075 cm).
112 // Inputs:
113 // none.
114 // Outputs:
115 // none.
116 // Return:
117 // A default constructed AliITSv11GeometrySPD class.
118 //
119 Int_t i = 0,j=0,k=0;
db486a6e 120
54c9a3d9 121 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
122 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
123 this->fTubeEndSector[k][0][i][j] = 0.0;
124 this->fTubeEndSector[k][1][i][j] = 0.0;
125 } // end for i,j
126}
127//______________________________________________________________________
128AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug/*, Double_t gap*/):
129AliITSv11Geometry(debug),// Default constructor of base class
130fAddStave(), // [DEBUG] must be TRUE for all staves which will be
131 // mounted in the sector (used to check overlaps)
132fSPDsectorX0(0), // X of first edge of sector plane for stave
133fSPDsectorY0(0), // Y of first edge of sector plane for stave
134fSPDsectorX1(0), // X of second edge of sector plane for stave
135fSPDsectorY1(0), // Y of second edge of sector plane for stave
136fTubeEndSector() // coordinate of cooling tube ends
137{
138 //
139 // Constructor with debug setting argument
140 // This is the constructor which is recommended to be used.
141 // It sets a debug level, and initializes the name of the object.
142 // The alignment gap is specified as argument (default = 0.0075 cm).
143 // Inputs:
144 // Int_t debug Debug level, 0= no debug output.
145 // Outputs:
146 // none.
147 // Return:
148 // A default constructed AliITSv11GeometrySPD class.
149 //
150 Int_t i = 0,j=0,k=0;
db486a6e 151
54c9a3d9 152 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
153 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
154 this->fTubeEndSector[k][0][i][j] = 0.0;
155 this->fTubeEndSector[k][1][i][j] = 0.0;
156 } // end for i,j
157}
158//______________________________________________________________________
159AliITSv11GeometrySPD::AliITSv11GeometrySPD(const AliITSv11GeometrySPD &s):
160AliITSv11Geometry(s),// Base Class Copy constructor
161fAddStave(), // [DEBUG] must be TRUE for all staves which will be
162 // mounted in the sector (used to check overlaps)
163fSPDsectorX0(s.fSPDsectorX0), // X of first edge of sector plane for stave
164fSPDsectorY0(s.fSPDsectorY0), // Y of first edge of sector plane for stave
165fSPDsectorX1(s.fSPDsectorX1), // X of second edge of sector plane for stave
166fSPDsectorY1(s.fSPDsectorY1) // Y of second edge of sector plane for stave
bc3498f4 167{
54c9a3d9 168 //
169 // Copy Constructor
170 // Inputs:
171 // AliITSv11GeometrySPD &s source class
172 // Outputs:
173 // none.
174 // Return:
175 // A copy of a AliITSv11GeometrySPD class.
176 //
177 Int_t i=0,j=0,k=0;
178
179 for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
180 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
181 this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
182 this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
183 } // end for i,j
bc3498f4 184}
54c9a3d9 185//______________________________________________________________________
186AliITSv11GeometrySPD& AliITSv11GeometrySPD::operator=(const
187 AliITSv11GeometrySPD &s)
bc3498f4 188{
54c9a3d9 189 //
190 // = operator
191 // Inputs:
192 // AliITSv11GeometrySPD &s source class
193 // Outputs:
194 // none.
195 // Return:
196 // A copy of a AliITSv11GeometrySPD class.
197 //
198 Int_t i=0,j=0,k=0;
199
200 if(this==&s) return *this;
201 for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
202 this->fSPDsectorX0=s.fSPDsectorX0;
203 this->fSPDsectorY0=s.fSPDsectorY0;
204 this->fSPDsectorX1=s.fSPDsectorX1;
205 this->fSPDsectorY1=s.fSPDsectorY1;
206 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
207 this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
208 this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
209 } // end for i,j
210 return *this;
bc3498f4 211}
54c9a3d9 212//______________________________________________________________________
213TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName,
214 TGeoManager *mgr) const
bc3498f4 215{
54c9a3d9 216 //
217 // This function is used to recovery any medium
218 // used to build the geometry volumes.
219 // If the required medium does not exists,
220 // a NULL pointer is returned, and an error message is written.
221 //
222 Char_t itsMediumName[30];
223
224 sprintf(itsMediumName, "ITS_%s", mediumName);
225 TGeoMedium* medium = mgr->GetMedium(itsMediumName);
226 if (!medium) AliError(Form("Medium <%s> not found", mediumName));
227
228 return medium;
bc3498f4 229}
54c9a3d9 230//______________________________________________________________________
231Int_t AliITSv11GeometrySPD::CreateSPDCentralMaterials(Int_t &medOffset,
232 Int_t &matOffset) const
592651e2 233{
54c9a3d9 234 //
235 // Define the specific materials used for the ITS SPD central detectors.
236 // ---
237 // NOTE: These are the same old names.
238 // By the ALICE naming conventions, they start with "ITS SPD ...."
239 // Data taken from ** AliITSvPPRasymmFMD::CreateMaterials() **.
240 // ---
241 // Arguments [the ones passed by reference contain output values]:
242 // - medOffset --> (by ref) starting number of the list of media
243 // - matOffset --> (by ref) starting number of the list of Materials
244 // ---
245 // Inputs:
246 // Int_t &medOffset Starting number of the list of media
247 // Int_t &matOffset Starting number of the list of materials
248 // Outputs:
249 // Int_t &medOffset Ending number of the list of media
250 // Int_t &matOffset Ending number of the list of materials
251 // Return:
252 // The last material indexused +1. (= next avaiable material index)
253 //
254 const Double_t ktmaxfd = 0.1 * fgkDegree; // Degree
255 const Double_t kstemax = 1.0 * fgkcm; // cm
256 const Double_t kdeemax = 0.1;//Fraction of particle's energy 0<deemax<=1
257 const Double_t kepsil = 1.0E-4; //
258 const Double_t kstmin = 0.0 * fgkcm; // cm "Default value used"
259 const Double_t ktmaxfdAir = 0.1 * fgkDegree; // Degree
260 const Double_t kstemaxAir = 1.0000E+00 * fgkcm; // cm
261 const Double_t kdeemaxAir = 0.1;//Fraction of particle's energy 0<deemax<=1
262 const Double_t kepsilAir = 1.0E-4;//
263 const Double_t kstminAir = 0.0 * fgkcm; // cm "Default value used"
264 const Double_t ktmaxfdSi = 0.1 * fgkDegree; // .10000E+01; // Degree
265 const Double_t kstemaxSi = 0.0075 * fgkcm; // .10000E+01; // cm
266 const Double_t kdeemaxSi = 0.1;//Fraction of particle's energy 0<deemax<=1
267 const Double_t kepsilSi = 1.0E-4;//
268 const Double_t kstminSi = 0.0 * fgkcm; // cm "Default value used"
269 //
270 Int_t matindex = matOffset;
271 Int_t medindex = medOffset;
272 TGeoMaterial *mat;
273 TGeoMixture *mix;
274 TGeoMedium *med;
275 //
276 Int_t ifield = (gAlice->Field()->Integ());
277 Double_t fieldm = (gAlice->Field()->Max());
278 Double_t params[8] = {8 * 0.0};
279
280 params[1] = (Double_t) ifield;
281 params[2] = fieldm;
282 params[3] = ktmaxfdSi;
283 params[4] = kstemaxSi;
284 params[5] = kdeemaxSi;
285 params[6] = kepsilSi;
286 params[7] = kstminSi;
287
288 // Definition of materials and mediums.
289 // Last argument in material definition is its pressure,
290 // which is initialized to ZERO.
291 // For better readability, it is simply set to zero.
292 // Then the writing "0.0 * fgkPascal" is replaced by "0."
293 // (Alberto)
294
295 // silicon definition for ITS (overall)
296 mat = new TGeoMaterial("ITS_SI", 28.086, 14.0, 2.33 * fgkgcm3,
297 TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.);
298 mat->SetIndex(matindex);
299 med = new TGeoMedium("SI", medindex++, mat, params);
300
301 // silicon for ladder chips
302 mat = new TGeoMaterial("SPD SI CHIP", 28.086, 14.0, 2.33 * fgkgcm3,
303 TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.);
304 mat->SetIndex(matindex);
305 med = new TGeoMedium("SPD SI CHIP", medindex++, mat, params);
306
307 // silicon for pixel bus
308 mat = new TGeoMaterial("SPD SI BUS", 28.086, 14.0, 2.33 * fgkgcm3,
309 TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.);
310 mat->SetIndex(matindex);
311 med = new TGeoMedium("SPD SI BUS", medindex++, mat, params);
312
313 // carbon fiber material is defined as a mix of C-O-N-H
314 // defined in terms of fractional weights according to 'C (M55J)'
315 // it is used for the support and clips
316 mix = new TGeoMixture("C (M55J)", 4, 1.9866 * fgkgcm3);
317 mix->SetIndex(matindex);
318 mix->DefineElement(0, 12.01070, 6.0, 0.908508078);// C by fractional weight
319 mix->DefineElement(1, 14.00670, 7.0, 0.010387573);// N by fractional weight
320 mix->DefineElement(2, 15.99940, 8.0, 0.055957585);// O by fractional weight
321 mix->DefineElement(3, 1.00794, 1.0, 0.025146765);// H by fractional weight
322 mix->SetPressure(0.0 * fgkPascal);
323 mix->SetTemperature(25.0 * fgkCelsius);
324 mix->SetState(TGeoMaterial::kMatStateSolid);
325 params[3] = ktmaxfd;
326 params[4] = kstemax;
327 params[5] = kdeemax;
328 params[6] = kepsil;
329 params[7] = kstmin;
330 med = new TGeoMedium("ITSspdCarbonFiber", medindex++, mix, params);
331
332 // air defined as a mixture of C-N-O-Ar:
333 // it is used to fill all containers
334 mix = new TGeoMixture("Air", 4, 1.20479E-3 * fgkgcm3);
335 mix->SetIndex(matindex);
336 mix->DefineElement(0, 12.0107, 6.0, 0.000124); // C by fractional weight
337 mix->DefineElement(1, 14.0067, 7.0, 0.755267); // N by fractional weight
338 mix->DefineElement(2, 15.9994, 8.0, 0.231781); // O by fractional weight
339 mix->DefineElement(3, 39.9480, 18.0, 0.012827); // Ar by fractional weight
340 mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
341 mix->SetTemperature(25.0 * fgkCelsius);
342 mix->SetState(TGeoMaterial::kMatStateGas);
343 params[3] = ktmaxfdAir;
344 params[4] = kstemaxAir;
345 params[5] = kdeemaxAir;
346 params[6] = kepsilAir;
347 params[7] = kstminAir;
348 med = new TGeoMedium("ITSspdAir", medindex++, mix, params);
349
350 // inox stainless steel, defined as a mixture
351 // used for all metallic parts
352 mix = new TGeoMixture("INOX", 9, 8.03 * fgkgcm3);
353 mix->SetIndex(matindex);
354 mix->DefineElement(0, 12.0107, 6., .0003); // C by fractional weight
355 mix->DefineElement(1, 54.9380, 25., .02); // Fe by fractional weight
356 mix->DefineElement(2, 28.0855, 14., .01); // Na by fractional weight
357 mix->DefineElement(3, 30.9738, 15., .00045); // P by fractional weight
358 mix->DefineElement(4, 32.066 , 16., .0003); // S by fractional weight
359 mix->DefineElement(5, 58.6928, 28., .12); // Ni by fractional weight
360 mix->DefineElement(6, 55.9961, 24., .17); // by fractional weight
361 mix->DefineElement(7, 95.84 , 42., .025); // by fractional weight
362 mix->DefineElement(8, 55.845 , 26., .654); // by fractional weight
363 mix->SetPressure(0.0 * fgkPascal);
364 mix->SetTemperature(25.0 * fgkCelsius);
365 mix->SetState(TGeoMaterial::kMatStateSolid);
366 params[3] = ktmaxfdAir;
367 params[4] = kstemaxAir;
368 params[5] = kdeemaxAir;
369 params[6] = kepsilAir;
370 params[7] = kstminAir;
371 med = new TGeoMedium("ITSspdStainlessSteel", medindex++, mix, params);
372
373 // freon gas which fills the cooling system (C+F)
374 mix = new TGeoMixture("Freon", 2, 1.63 * fgkgcm3);
375 mix->SetIndex(matindex);
376 mix->DefineElement(0, 12.0107 , 6.0, 4); // C by fractional weight
377 mix->DefineElement(1, 18.9984032, 9.0, 10); // F by fractional weight
378 mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
379 mix->SetTemperature(25.0 * fgkCelsius);
380 mix->SetState(TGeoMaterial::kMatStateLiquid);
381 params[3] = ktmaxfdAir;
382 params[4] = kstemaxAir;
383 params[5] = kdeemaxAir;
384 params[6] = kepsilAir;
385 params[7] = kstminAir;
386 med = new TGeoMedium("ITSspdCoolingFluid", medindex++, mix, params);
387
388 // return the next index to be used in case of adding new materials
389 medOffset = medindex;
390 matOffset = matindex;
391 return matOffset;
a53658c6 392}
54c9a3d9 393//______________________________________________________________________
bc3498f4 394void AliITSv11GeometrySPD::InitSPDCentral(Int_t offset, TVirtualMC *vmc) const
395{
54c9a3d9 396 //
397 // Do all SPD Central detector initializations (e.g.: transport cuts).
398 // ---
399 // Here follow some GEANT3 physics switches, which are interesting
400 // for these settings to be defined:
401 // - "MULTS" (MULtiple Scattering):
402 // the variable IMULS controls this process. See [PHYS320/325/328]
403 // 0 - No multiple scattering.
404 // 1 - (DEFAULT) Multiple scattering according to Moliere theory.
405 // 2 - Same as 1. Kept for backward compatibility.
406 // 3 - Pure Gaussian scattering according to the Rossi formula.
407 // - "DRAY" (Delta RAY production)
408 // The variable IDRAY controls this process. See [PHYS430]
409 // 0 - No delta rays production.
410 // 1 - (DEFAULT) Delta rays production with generation of.
411 // 2 - Delta rays production without generation of.
412 // - "LOSS" (continuous energy loss)
413 // The variable ILOSS controls this process.
414 // 0 - No continuous energy loss, IDRAY is set to 0.
415 // 1 - Continuous energy loss with generation of delta rays above
416 // DCUTE (common/GCUTS/) and restricted Landau fluctuations
417 // below DCUTE.
418 // 2 - (DEFAULT) Continuous energy loss without generation of
419 // delta rays
420 // and full Landau-Vavilov-Gauss fluctuations.
421 // In this case the variable IDRAY is forced to 0 to avoid
422 // double counting of fluctuations.
423 // 3 - Same as 1, kept for backward compatibility.
424 // 4 - Energy loss without fluctuation.
425 // The value obtained from the tables is used directly.
426 // ---
427 // Arguments:
428 // Int_t offset --> the material/medium index offset
429 // TVirtualMC *vmc --> pointer to the virtual Monte Carlo default gMC
430 //
431
432 Int_t i, n = 4;
433
434 for(i=0;i<n;i++) {
435 vmc->Gstpar(i+offset, "CUTGAM", 30.0 * fgkKeV);
436 vmc->Gstpar(i+offset, "CUTELE", 30.0 * fgkKeV);
437 vmc->Gstpar(i+offset, "CUTNEU", 30.0 * fgkKeV);
438 vmc->Gstpar(i+offset, "CUTHAD", 30.0 * fgkKeV);
439 vmc->Gstpar(i+offset, "CUTMUO", 30.0 * fgkKeV);
440 vmc->Gstpar(i+offset, "BCUTE", 30.0 * fgkKeV);
441 vmc->Gstpar(i+offset, "BCUTM", 30.0 * fgkKeV);
442 vmc->Gstpar(i+offset, "DCUTE", 30.0 * fgkKeV);
443 vmc->Gstpar(i+offset, "DCUTM", 30.0 * fgkKeV);
444 //vmc->Gstpar(i+offset, "PPCUTM", );
445 //vmc->Gstpar(i+offset, "PAIR", );
446 //vmc->Gstpar(i+offset, "COMPT", );
447 //vmc->Gstpar(i+offset, "PHOT", );
448 //vmc->Gstpar(i+offset, "PFIS", );
449 vmc->Gstpar(i+offset, "DRAY", 1);
450 //vmc->Gstpar(i+offset, "ANNI", );
451 //vmc->Gstpar(i+offset, "BREM", );
452 //vmc->Gstpar(i+offset, "HADR", );
453 //vmc->Gstpar(i+offset, "MUNU", );
454 //vmc->Gstpar(i+offset, "DCAY", );
455 vmc->Gstpar(i+offset, "LOSS", 1);
456 //vmc->Gstpar(i+offset, "MULS", );
457 //vmc->Gstpar(i+offset, "GHCOR1", );
458 //vmc->Gstpar(i+offset, "BIRK1", );
459 //vmc->Gstpar(i+offset, "BRIK2", );
460 //vmc->Gstpar(i+offset, "BRIK3", );
461 //vmc->Gstpar(i+offset, "LABS", );
462 //vmc->Gstpar(i+offset, "SYNC", );
463 //vmc->Gstpar(i+offset, "STRA", );
464 }
a53658c6 465}
54c9a3d9 466//______________________________________________________________________
bc3498f4 467void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr)
468{
54c9a3d9 469 //
470 // Creates a single SPD carbon fiber sector and places it
471 // in a container volume passed as first argument ('moth').
472 // Second argument points to the TGeoManager which coordinates
473 // the overall volume creation.
474 // The position of the sector is based on distance of
475 // closest point of SPD stave to beam pipe
476 // (figures all-sections-modules.ps) of 7.22mm at section A-A.
477 //
478
479 // Begin_Html
480 /*
481 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
482 title="SPD Sector drawing with all cross sections defined">
483 <p>The SPD Sector definition. In
484 <a href="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.hpgl">HPGL</a> format.
485 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly-10-modules.ps"
486 titile="SPD All Sectors end view with thermal sheald">
487 <p>The SPD all sector end view with thermal sheald.
488 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
489 title="SPD side view cross section">
490 <p>SPD side view cross section with condes and thermal shealds.
491 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-A_A.jpg"
492 title="Cross section A-A"><p>Cross section A-A.
493 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-B_B.jpg"
494 title="Cross updated section A-A"><p>Cross updated section A-A.
495 <img src="http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf"
496 title="Cross section B-B"><p>Cross section B-B.
497 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-C_C.jpg"
498 title-"Cross section C-C"><p>Cross section C-C.
499 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-D_D.jpg"
500 title="Cross section D-D"><p>Cross section D-D.
501 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-E_E.jpg"
502 title="Cross section E-E"><p>Cross section E-E.
503 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-F_F.jpg"
504 title="Cross section F-F"><p>Cross section F-F.
505 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-G_G.jpg"
506 title="Cross section G-G"><p>Cross section G-G.
507 */
508 // End_Html
509
510 // Inputs:
511 // TGeoVolume *moth Pointer to mother volume where this object
512 // is to be placed in
513 // TGeoManager *mgr Pointer to the TGeoManager used, defaule is
514 // gGeoManager.
515 // Outputs:
516 // none.
517 // Return:
518 // none.
519 // Updated values for kSPDclossesStaveAA, kBeamPipeRadius, and
520 // staveThicknessAA are taken from
521 // http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf
522 //
523 const Double_t kSPDclossesStaveAA = 7.25*fgkmm;//7.22 * fgkmm;
524 const Double_t kSectorStartingAngle = -72.0 * fgkDegree;
525 const Double_t kNSectorsTotal = 10.0;
526 const Double_t kSectorRelativeAngle = 360.0 / kNSectorsTotal * fgkDegree;
527 const Double_t kBeamPipeRadius = 0.5*59.6*fgkmm;//0.5*60.0*fgkmm;
528
529 Int_t i,j,k;
530 Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0;
531 Double_t staveThicknessAA = 0.9*fgkmm;//1.03*fgkmm;// get from stave geometry.
532 TGeoCombiTrans *secRot = new TGeoCombiTrans(),*comrot;
533 TGeoVolume *vCarbonFiberSector;
534 TGeoMedium *medSPDcf;
535
536 // Define an assembly and fill it with the support of
537 // a single carbon fiber sector and staves in it
538 medSPDcf = GetMedium("SPD C (M55J)$", mgr);
539 vCarbonFiberSector = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV");
540 vCarbonFiberSector->SetMedium(medSPDcf);
541 CarbonFiberSector(vCarbonFiberSector,xAAtubeCenter0,yAAtubeCenter0,mgr);
542
543 // Compute the radial shift out of the sectors
544 radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA;
545 if(GetDebug(1))printf("SPDSector: radiusSector=%f\n",radiusSector); i=1;
546 //for(i=0;i<fSPDsectorX0.GetSize();i++)
547 if(GetDebug(1))printf( "i= %d x0=%f y0=%f x1=%f y1=%f\n",i,
548 fSPDsectorX0.At(i),fSPDsectorY0.At(i),
549 fSPDsectorX1.At(i),fSPDsectorY1.At(i));
550 radiusSector = GetSPDSectorTranslation(fSPDsectorX0.At(1),
551 fSPDsectorY0.At(1),fSPDsectorX1.At(1),fSPDsectorY1.At(1),
552 radiusSector);
553 if(GetDebug(1))printf(" q=%f\n",radiusSector);
554 //radiusSector *= radiusSector; // squaring;
555 //radiusSector -= xAAtubeCenter0 * xAAtubeCenter0;
556 //radiusSector = -yAAtubeCenter0 + TMath::Sqrt(radiusSector);
557
558 // add 10 single sectors, by replicating the virtual sector defined above
559 // and placing at different angles
560 Double_t shiftX, shiftY, tub[2][6][3];
561 for(i=0;i<2;i++)for(j=0;j<6;j++)for(k=0;k<3;k++)
562 tub[i][j][k] = fTubeEndSector[0][i][j][k];
563 angle = kSectorStartingAngle;
564 secRot->RotateZ(angle);
565 TGeoVolumeAssembly *vcenteral = new TGeoVolumeAssembly("ITSSPD");
566 moth->AddNode(vcenteral,1,0);
567 for(i = 0; i < (Int_t)kNSectorsTotal; i++) {
568 shiftX = -radiusSector * TMath::Sin(angle/fgkRadian);
569 shiftY = radiusSector * TMath::Cos(angle/fgkRadian);
570 secRot->SetDx(shiftX);
571 secRot->SetDy(shiftY);
572 comrot = new TGeoCombiTrans(*secRot);
573 vcenteral->AddNode(vCarbonFiberSector,i+1,comrot);
574 for(j=0;j<2;j++)for(k=0;k<6;k++) // Transform Tube ends for each sector
575 comrot->LocalToMaster(tub[j][k],fTubeEndSector[i][j][k]);
576 if(GetDebug(5)) {
577 AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g "
578 "x=%g y=%g \n",i, angle, angle/fgkRadian,
579 radiusSector, shiftX, shiftY));
580 } // end if GetDebug(5)
581 angle += kSectorRelativeAngle;
582 secRot->RotateZ(kSectorRelativeAngle);
583 } // end for i
584 if(GetDebug(3)) moth->PrintNodes();
585 delete secRot;
7f69c251 586
587 CreateCones(moth);
a53658c6 588}
54c9a3d9 589//______________________________________________________________________
590void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth,
591 Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr)
bc3498f4 592{
54c9a3d9 593 //
594 // Define the detail SPD Carbon fiber support Sector geometry.
595 // Based on the drawings:
596 /*
597 http:///QA-construzione-profilo-modulo.ps
598 */
599 // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004)
600 // - ALICE-SUPPORTO "Costruzione Profilo Modulo"
601 // ---
602 // Define outside radii as negative, where "outside" means that the
603 // center of the arc is outside of the object (feb 16 2004).
604 // ---
605 // Arguments [the one passed by ref contain output values]:
606 // Inputs:
607 // TGeoVolume *moth the voulme which will contain this object
608 // TGeoManager *mgr TGeo builder defauls is gGeoManager
609 // Outputs:
610 // Double_t &xAAtubeCenter0 (by ref) x location of the outer surface
611 // of the cooling tube center for tube 0.
612 // Double_t &yAAtubeCenter0 (by ref) y location of the outer surface
613 // of the cooling tube center for tube 0.
614 // Return:
615 // none.
616 // ---
617 // Int the two variables passed by reference values will be stored
618 // which will then be used to correctly locate this sector.
619 // The information used for this is the distance between the
620 // center of the #0 detector and the beam pipe.
621 // Measurements are taken at cross section A-A.
622 //
623
624 //TGeoMedium *medSPDfs = 0;//SPD support cone inserto stesalite 4411w
625 //TGeoMedium *medSPDfo = 0;//SPD support cone foam, Rohacell 50A.
626 //TGeoMedium *medSPDal = 0;//SPD support cone SDD mounting bracket Al
627 TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr);
628 TGeoMedium *medSPDss = GetMedium("INOX$", mgr);
629 TGeoMedium *medSPDair = GetMedium("AIR$", mgr);
630 TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid
631 //
632 const Double_t ksecDz = 0.5 * 500.0 * fgkmm;
633 //const Double_t ksecLen = 30.0 * fgkmm;
634 const Double_t ksecCthick = 0.2 * fgkmm;
635 const Double_t ksecDipLength = 3.2 * fgkmm;
636 const Double_t ksecDipRadii = 0.4 * fgkmm;
637 //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm;
638 //
639 // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#')
640 // are the centers and radii of curvature of all the rounded corners
641 // between the straight borders of the SPD sector shape.
642 // To draw this SPD sector, the following steps are followed:
643 // 1) the (ksecX, ksecY) points are plotted
644 // and circles of the specified radii are drawn around them.
645 // 2) each pair of consecutive circles is connected by a line
646 // tangent to them, in accordance with the radii being "internal"
647 // or "external" with respect to the closed shape which describes
648 // the sector itself.
649 // The resulting connected shape is the section
650 // of the SPD sector surface in the transverse plane (XY).
651 //
652 const Double_t ksecX0 = -10.725 * fgkmm;
653 const Double_t ksecY0 = -14.853 * fgkmm;
654 const Double_t ksecR0 = -0.8 * fgkmm; // external
655 const Double_t ksecX1 = -13.187 * fgkmm;
656 const Double_t ksecY1 = -19.964 * fgkmm;
657 const Double_t ksecR1 = +0.6 * fgkmm; // internal
658 // const Double_t ksecDip0 = 5.9 * fgkmm;
659 //
660 const Double_t ksecX2 = -3.883 * fgkmm;
661 const Double_t ksecY2 = -17.805 * fgkmm;
662 const Double_t ksecR2 = +0.80 * fgkmm; // internal (guess)
663 const Double_t ksecX3 = -3.123 * fgkmm;
664 const Double_t ksecY3 = -14.618 * fgkmm;
665 const Double_t ksecR3 = -0.6 * fgkmm; // external
666 //const Double_t ksecDip1 = 8.035 * fgkmm;
667 //
668 const Double_t ksecX4 = +11.280 * fgkmm;
669 const Double_t ksecY4 = -14.473 * fgkmm;
670 const Double_t ksecR4 = +0.8 * fgkmm; // internal
671 const Double_t ksecX5 = +19.544 * fgkmm;
672 const Double_t ksecY5 = +10.961 * fgkmm;
673 const Double_t ksecR5 = +0.8 * fgkmm; // internal
674 //const Double_t ksecDip2 = 4.553 * fgkmm;
675 //
676 const Double_t ksecX6 = +10.830 * fgkmm;
677 const Double_t ksecY6 = +16.858 * fgkmm;
678 const Double_t ksecR6 = +0.6 * fgkmm; // internal
679 const Double_t ksecX7 = +11.581 * fgkmm;
680 const Double_t ksecY7 = +13.317 * fgkmm;
681 const Double_t ksecR7 = -0.6 * fgkmm; // external
682 //const Double_t ksecDip3 = 6.978 * fgkmm;
683 //
684 const Double_t ksecX8 = -0.733 * fgkmm;
685 const Double_t ksecY8 = +17.486 * fgkmm;
686 const Double_t ksecR8 = +0.6 * fgkmm; // internal
687 const Double_t ksecX9 = +0.562 * fgkmm;
688 //const Double_t ksecY9 = +14.486 * fgkmm; // correction by
689 const Double_t ksecY9 = +14.107 * fgkmm; // Alberto
690 const Double_t ksecR9 = -0.6 * fgkmm; // external
691 //const Double_t ksecDip4 = 6.978 * fgkmm;
692 //
693 const Double_t ksecX10 = -12.252 * fgkmm;
694 const Double_t ksecY10 = +16.298 * fgkmm;
695 const Double_t ksecR10 = +0.6 * fgkmm; // internal
696 const Double_t ksecX11 = -10.445 * fgkmm;
697 const Double_t ksecY11 = +13.162 * fgkmm;
698 const Double_t ksecR11 = -0.6 * fgkmm; // external
699 //const Double_t ksecDip5 = 6.978 * fgkmm;
700 //
701 const Double_t ksecX12 = -22.276 * fgkmm;
702 const Double_t ksecY12 = +12.948 * fgkmm;
703 const Double_t ksecR12 = +0.85 * fgkmm; // internal
704 const Double_t ksecR13 = -0.8 * fgkmm; // external
705 const Double_t ksecAngleSide13 = 36.0 * fgkDegree;
706 //
707 const Int_t ksecNRadii = 20;
708 const Int_t ksecNPointsPerRadii = 4;
709 const Int_t ksecNCoolingTubeDips = 6;
710 //
711 // Since the rounded parts are approximated by a regular polygon
712 // and a cooling tube of the propper diameter must fit, a scaling factor
713 // increases the size of the polygon for the tube to fit.
714 //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/
715 // (Double_t)ksecNPointsPerRadii);
716 const Double_t ksecZEndLen = 30.000 * fgkmm;
717 //const Double_t ksecZFlangLen = 45.000 * fgkmm;
718 const Double_t ksecTl = 0.860 * fgkmm;
719 const Double_t ksecCthick2 = 0.600 * fgkmm;
720 //const Double_t ksecCthick3 = 1.80 * fgkmm;
721 //const Double_t ksecSidelen = 22.0 * fgkmm;
722 //const Double_t ksecSideD5 = 3.679 * fgkmm;
723 //const Double_t ksecSideD12 = 7.066 * fgkmm;
724 const Double_t ksecRCoolOut = 2.400 * fgkmm;
725 const Double_t ksecRCoolIn = 2.000 * fgkmm;
726 const Double_t ksecDl1 = 5.900 * fgkmm;
727 const Double_t ksecDl2 = 8.035 * fgkmm;
728 const Double_t ksecDl3 = 4.553 * fgkmm;
729 const Double_t ksecDl4 = 6.978 * fgkmm;
730 const Double_t ksecDl5 = 6.978 * fgkmm;
731 const Double_t ksecDl6 = 6.978 * fgkmm;
732 const Double_t ksecCoolTubeThick = 0.04 * fgkmm;
733 const Double_t ksecCoolTubeROuter = 2.6 * fgkmm;
734 const Double_t ksecCoolTubeFlatX = 3.696 * fgkmm;
735 const Double_t ksecCoolTubeFlatY = 0.68 * fgkmm;
736 //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess
737 //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess
738 //
739 // redefine some of the points already defined above
740 // in the format of arrays (???)
741 const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8;
742 Double_t secX[ksecNRadii] = {
743 ksecX0, ksecX1, -1000.0,
744 ksecX2, ksecX3, -1000.0,
745 ksecX4, ksecX5, -1000.0,
746 ksecX6, ksecX7, -1000.0,
747 ksecX8, ksecX9, -1000.0,
748 ksecX10, ksecX11, -1000.0,
749 ksecX12, -1000.0
750 };
751 Double_t secY[ksecNRadii] = {
752 ksecY0, ksecY1, -1000.0,
753 ksecY2, ksecY3, -1000.0,
754 ksecY4, ksecY5, -1000.0,
755 ksecY6, ksecY7, -1000.0,
756 ksecY8, ksecY9, -1000.0,
757 ksecY10, ksecY11, -1000.0,
758 ksecY12, -1000.0
759 };
760 Double_t secR[ksecNRadii] = {
761 ksecR0, ksecR1, -.5 * ksecDipLength - ksecDipRadii,
762 ksecR2, ksecR3, -.5 * ksecDipLength - ksecDipRadii,
763 ksecR4, ksecR5, -.5 * ksecDipLength - ksecDipRadii,
764 ksecR6, ksecR7, -.5 * ksecDipLength - ksecDipRadii,
765 ksecR8, ksecR9, -.5 * ksecDipLength - ksecDipRadii,
766 ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii,
767 ksecR12, ksecR13
768 };
769 /*
770 Double_t secDip[ksecNRadii] = {
771 0., 0., ksecDip0, 0., 0., ksecDip1,
772 0., 0., ksecDip2, 0., 0., ksecDip3,
773 0., 0., ksecDip4, 0., 0., ksecDip5,
774 0., 0.
775 };
776 */
777 Double_t secX2[ksecNRadii];
778 Double_t secY2[ksecNRadii];
779 Double_t secR2[ksecNRadii] = {
780 ksecR0, ksecR1, ksecRCoolOut,
781 ksecR2, ksecR3, ksecRCoolOut,
782 ksecR4, ksecR5, ksecRCoolOut,
783 ksecR6, ksecR7, ksecRCoolOut,
784 ksecR8, ksecR9, ksecRCoolOut,
785 ksecR10, ksecR11, ksecRCoolOut,
786 ksecR12, ksecR13
787 };
788 Double_t secDip2[ksecNCoolingTubeDips] = {
789 ksecDl1, ksecDl2, ksecDl3,
790 ksecDl4, ksecDl5, ksecDl6
791 };
792 Double_t secX3[ksecNRadii];
793 Double_t secY3[ksecNRadii];
794 const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17};
795 Double_t secAngleStart[ksecNRadii];
796 Double_t secAngleEnd[ksecNRadii];
797 Double_t secAngleStart2[ksecNRadii];
798 Double_t secAngleEnd2[ksecNRadii];
799 Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0};
800 //Double_t secAngleStart3[ksecNRadii];
801 //Double_t secAngleEnd3[ksecNRadii];
802 Double_t xpp[ksecNPoints], ypp[ksecNPoints];
803 Double_t xpp2[ksecNPoints], ypp2[ksecNPoints];
804 Double_t *xp[ksecNRadii], *xp2[ksecNRadii];
805 Double_t *yp[ksecNRadii], *yp2[ksecNRadii];
806 TGeoXtru *sA0, *sA1, *sB0, *sB1,*sB2;
807 TGeoBBox *sB3;
808 TGeoEltu *sTA0, *sTA1;
809 TGeoTube *sTB0, *sTB1; //,*sM0;
810 TGeoRotation *rot;
811 TGeoTranslation *trans;
812 TGeoCombiTrans *rotrans;
813 Double_t t, t0, t1, a, b, x0, y0,z0, x1, y1;
814 Int_t i, j, k, m;
815 Bool_t tst;
816
817 if(!moth) {
818 AliError("Container volume (argument) is NULL");
819 return;
820 } // end if(!moth)
821 for(i = 0; i < ksecNRadii; i++) {
822 xp[i] = &(xpp[i*(ksecNPointsPerRadii+1)]);
823 yp[i] = &(ypp[i*(ksecNPointsPerRadii+1)]);
824 xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]);
825 yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]);
826 secX2[i] = secX[i];
827 secY2[i] = secY[i];
828 secX3[i] = secX[i];
829 secY3[i] = secY[i];
830 } // end for i
831 //
832 // find starting and ending angles for all but cooling tube sections
833 secAngleStart[0] = 0.5 * ksecAngleSide13;
834 for(i = 0; i < ksecNRadii - 2; i++) {
835 tst = kFALSE;
836 for(j=0;j<ksecNCoolingTubeDips;j++) tst = (tst||i==ksecDipIndex[j]);
837 if (tst) continue;
838 tst = kFALSE;
839 for(j=0;j<ksecNCoolingTubeDips;j++) tst =(tst||(i+1)==ksecDipIndex[j]);
840 if (tst) j = i+2; else j = i+1;
841 AnglesForRoundedCorners(secX[i],secY[i],secR[i],secX[j],secY[j],
842 secR[j],t0,t1);
843 secAngleEnd[i] = t0;
844 secAngleStart[j] = t1;
845 if(secR[i] > 0.0 && secR[j] > 0.0) {
846 if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0;
847 } // end if(secR[i]>0.0 && secR[j]>0.0)
848 secAngleStart2[i] = secAngleStart[i];
849 secAngleEnd2[i] = secAngleEnd[i];
850 } // end for i
851 secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] +
852 (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]);
853 if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0;
854 secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0;
855 secAngleEnd[ksecNRadii-1] = secAngleStart[0];
856 secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2];
857 secAngleEnd2[ksecNRadii-2] = secAngleEnd[ksecNRadii-2];
858 secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1];
859 secAngleEnd2[ksecNRadii-1] = secAngleEnd[ksecNRadii-1];
860 //
861 // find location of circle last rounded corner.
862 i = 0;
863 j = ksecNRadii - 2;
864 t0 = TanD(secAngleStart[i]-90.);
865 t1 = TanD(secAngleEnd[j]-90.);
866 t = secY[i] - secY[j];
867 // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0
868 t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]);
869 t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]);
870 t += t1 * secX[j] - t0*secX[i];
871 t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]);
872 t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]);
873 secX[ksecNRadii-1] = t / (t1-t0);
874 secY[ksecNRadii-1] = TanD(90.0+0.5*ksecAngleSide13)*
875 (secX[ksecNRadii-1]-secX[0])+secY[0];
876 secX2[ksecNRadii-1] = secX[ksecNRadii-1];
877 secY2[ksecNRadii-1] = secY[ksecNRadii-1];
878 secX3[ksecNRadii-1] = secX[ksecNRadii-1];
879 secY3[ksecNRadii-1] = secY[ksecNRadii-1];
880
881 // find location of cooling tube centers
882 for(i = 0; i < ksecNCoolingTubeDips; i++) {
883 j = ksecDipIndex[i];
884 x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]);
885 y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]);
886 x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]);
887 y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]);
888 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
889 t = secDip2[i] / t0;
890 a = x0+(x1-x0) * t;
891 b = y0+(y1-y0) * t;
892 if(i == 0) {
893 // get location of tube center->Surface for locating
894 // this sector around the beam pipe.
895 // This needs to be double checked, but I need my notes for that.
896 // (Bjorn Nilsen)
897 xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5;
898 yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5;
899 }// end if i==0
900 if(a + b*(a - x0) / (b - y0) > 0.0) {
901 secX[j] = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0;
902 secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0;
903 secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0;
904 secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0;
905 secX3[j] = a + TMath::Abs(y1-y0) *
906 (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0;
907 secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
908 y1-y0)*(x1-x0)/t0;
909 } else {
910 secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0;
911 secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0;
912 secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0;
913 secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0;
914 secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5*
915 ksecCoolTubeFlatY)/t0;
916 secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
917 y1-y0)*(x1-x0)/t0;
918 } // end if(a+b*(a-x0)/(b-y0)>0.0)
919
920 // Set up Start and End angles to correspond to start/end of dips.
921 t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0;
922 secAngleStart[j] =TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
923 x0+(x1-x0)*t1-secX[j]);
924 if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0;
925 secAngleStart2[j] = secAngleStart[j];
926 t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0;
927 secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
928 x0+(x1-x0)*t1-secX[j]);
929 if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0;
930 secAngleEnd2[j] = secAngleEnd[j];
931 if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0;
932 secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii);
933 } // end for i
934
935 // Special cases
936 secAngleStart2[8] -= 360.;
937 secAngleStart2[11] -= 360.;
938
939 SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd,
940 ksecNPointsPerRadii, m, xp, yp);
941
942 // Fix up dips to be square.
943 for(i = 0; i < ksecNCoolingTubeDips; i++) {
944 j = ksecDipIndex[i];
945 t = 0.5*ksecDipLength+ksecDipRadii;
946 t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t);
947 t1 = secAngleEnd[j] + t0;
948 t0 = secAngleStart[j] - t0;
949 x0 = xp[j][1] = secX[j] + t*CosD(t0);
950 y0 = yp[j][1] = secY[j] + t*SinD(t0);
951 x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1);
952 y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1);
953 t0 = 1./((Double_t)(ksecNPointsPerRadii-2));
954 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
955 // extra points spread them out.
956 t = ((Double_t)(k-1)) * t0;
957 xp[j][k] = x0+(x1-x0) * t;
958 yp[j][k] = y0+(y1-y0) * t;
959 } // end for k
960 secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0);
961 if(GetDebug(3)) {
962 AliInfo(
963 Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)",
964 i, secAngleTurbo[i], x0, y0, x1, y1));
965 } // end if GetDebug(3)
966 } // end for i
967 sA0 = new TGeoXtru(2);
968 sA0->SetName("ITS SPD Carbon fiber support Sector A0");
969 sA0->DefinePolygon(m, xpp, ypp);
970 sA0->DefineSection(0, -ksecDz);
971 sA0->DefineSection(1, ksecDz);
972
973 // store the edges of each XY segment which defines
974 // one of the plane zones where staves will have to be placed
975 fSPDsectorX0.Set(ksecNCoolingTubeDips);
976 fSPDsectorY0.Set(ksecNCoolingTubeDips);
977 fSPDsectorX1.Set(ksecNCoolingTubeDips);
978 fSPDsectorY1.Set(ksecNCoolingTubeDips);
979 Int_t ixy0, ixy1;
980 for(i = 0; i < ksecNCoolingTubeDips; i++) {
981 // Find index in xpp[] and ypp[] corresponding to where the
982 // SPD ladders are to be attached. Order them according to
983 // the ALICE numbering schema. Using array of indexes (+-1 for
984 // cooling tubes. For any "bend/dip/edge, there are
985 // ksecNPointsPerRadii+1 points involved.
986 if(i == 0) j = 1;
987 else if (i == 1) j = 0;
988 else j = i;
989 ixy0 = (ksecDipIndex[j]-1)*(ksecNPointsPerRadii+1)+
990 (ksecNPointsPerRadii);
991 ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1);
992 fSPDsectorX0[i] = sA0->GetX(ixy0);
993 fSPDsectorY0[i] = sA0->GetY(ixy0);
994 fSPDsectorX1[i] = sA0->GetX(ixy1);
995 fSPDsectorY1[i] = sA0->GetY(ixy1);
996 } // end for i
997
998 //printf("SectorA#%d ",0);
999 InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],ksecCthick,
1000 xpp2[0],ypp2[0]);
1001 for(i = 1; i < m - 1; i++) {
1002 j = i / (ksecNPointsPerRadii+1);
1003 //printf("SectorA#%d ",i);
1004 InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],
1005 ksecCthick,xpp2[i],ypp2[i]);
1006 } // end for i
1007 //printf("SectorA#%d ",m);
1008 InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
1009 ksecCthick,xpp2[m-1],ypp2[m-1]);
1010 // Fix center value of cooling tube dip and
1011 // find location of cooling tube centers
1012 for(i = 0; i < ksecNCoolingTubeDips; i++) {
1013 j = ksecDipIndex[i];
1014 x0 = xp2[j][1];
1015 y0 = yp2[j][1];
1016 x1 = xp2[j][ksecNPointsPerRadii-1];
1017 y1 = yp2[j][ksecNPointsPerRadii-1];
1018 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
1019 t = secDip2[i]/t0;
1020 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
1021 // extra points spread them out.
1022 t = ((Double_t)(k-1)) * t0;
1023 xp2[j][k] = x0+(x1-x0) * t;
1024 yp2[j][k] = y0+(y1-y0) * t;
1025 } // end for k
1026 } // end for i
1027 sA1 = new TGeoXtru(2);
1028 sA1->SetName("ITS SPD Carbon fiber support Sector Air A1");
1029 sA1->DefinePolygon(m, xpp2, ypp2);
1030 sA1->DefineSection(0, -ksecDz);
1031 sA1->DefineSection(1, ksecDz);
1032 //
1033 // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?).
1034 sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY,
1035 0.5 * ksecCoolTubeFlatX, ksecDz);
1036 sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1",
1037 sTA0->GetA() - ksecCoolTubeThick,
1038 sTA0->GetB()-ksecCoolTubeThick,ksecDz);
1039 SPDsectorShape(ksecNRadii,secX2,secY2,secR2,secAngleStart2,secAngleEnd2,
1040 ksecNPointsPerRadii, m, xp, yp);
1041 sB0 = new TGeoXtru(2);
1042 sB0->SetName("ITS SPD Carbon fiber support Sector End B0");
1043 sB0->DefinePolygon(m, xpp, ypp);
1044 sB0->DefineSection(0, ksecDz);
1045 sB0->DefineSection(1, ksecDz + ksecZEndLen);
1046
1047 //printf("SectorB#%d ",0);
1048 InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],
1049 ksecCthick2,xpp2[0],ypp2[0]);
1050 for(i = 1; i < m - 1; i++) {
1051 t = ksecCthick2;
1052 for(k = 0; k < ksecNCoolingTubeDips; k++)
1053 if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k])
1054 if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i ||
1055 ksecDipIndex[k]*(ksecNPointsPerRadii+1) +
1056 ksecNPointsPerRadii == i))
1057 t = ksecRCoolOut-ksecRCoolIn;
1058 //printf("SectorB#%d ",i);
1059 InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],t,
1060 xpp2[i],ypp2[i]);
1061 }// end for i
1062 //printf("SectorB#%d ",m);
1063 InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
1064 ksecCthick2,xpp2[m-1],ypp2[m-1]);
1065 sB1 = new TGeoXtru(2);
1066 sB1->SetName("ITS SPD Carbon fiber support Sector Air End B1");
1067 sB1->DefinePolygon(m, xpp2, ypp2);
1068 sB1->DefineSection(0,sB0->GetZ(0));
1069 sB1->DefineSection(1,sB0->GetZ(1)-ksecCthick2);
1070 const Double_t kspdEndHoleRadius1=5.698*fgkmm;
1071 const Double_t kspdEndHoleRadius2=2.336*fgkmm;
1072 const Double_t kspdEndHoleDisplacement=6.29*fgkmm;
1073 k = (m-1)/4;
1074 for(i=0;i<=k;i++){
1075 t= ((Double_t)i)/((Double_t)(k));
1076 if(!CFHolePoints(t,kspdEndHoleRadius1,kspdEndHoleRadius2,
1077 kspdEndHoleDisplacement,xpp2[i],ypp2[i])){
1078 Warning("CarbonFiberSector","CFHolePoints failed "
1079 "i=%d m=%d k=%d t=%e",i,m,k,t);
1080 } // end if
1081 // simitry in each quadrant.
1082 xpp2[2*k-i] = -xpp2[i];
1083 ypp2[2*k-i] = ypp2[i];
1084 xpp2[2*k+i] = -xpp2[i];
1085 ypp2[2*k+i] = -ypp2[i];
1086 xpp2[4*k-i] = xpp2[i];
1087 ypp2[4*k-i] = -ypp2[i];
1088 }// end for i
1089 //xpp2[m-1] = xpp2[0]; // begining point in
1090 //ypp2[m-1] = ypp2[0]; // comment with end point
1091 sB2 = new TGeoXtru(2);
1092 sB2->SetName("ITS SPD Hole in Carbon fiber support End plate");
1093 sB2->DefinePolygon(4*k, xpp2, ypp2);
1094 sB2->DefineSection(0,sB1->GetZ(1));
1095 sB2->DefineSection(1,sB0->GetZ(1));
1096 // SPD sector mount blocks
1097 const Double_t kMountBlock[3] = {0.5*(1.8-0.2)*fgkmm,0.5*22.0*fgkmm,
1098 0.5*45.0*fgkmm};
1099 sB3 = new TGeoBBox((Double_t*)kMountBlock);
1100 // SPD sector cooling tubes
1101 sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0,
7708d5f3 1102 0.5*ksecCoolTubeROuter,0.5*(sB1->GetZ(1)-sB1->GetZ(0)));
54c9a3d9 1103 sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0,
1104 sTB0->GetRmax() - ksecCoolTubeThick,sTB0->GetDz());
1105 //
1106 if(GetDebug(3)) {
1107 if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0");
1108 if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0");
1109 if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0");
1110 if(medSPDcoolfl) medSPDcoolfl->Dump();else AliInfo("medSPDcoolfl = 0");
1111 sA0->InspectShape();
1112 sA1->InspectShape();
1113 sB0->InspectShape();
1114 sB1->InspectShape();
1115 sB2->InspectShape();
1116 } // end if(GetDebug(3))
1117
1118 // create the assembly of the support and place staves on it
1119 TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly(
1120 "ITSSPDSensitiveVirtualvolumeM0");
1121 StavesInSector(vM0);
1122 // create other volumes with some graphical settings
1123 TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0",
1124 sA0, medSPDcf);
1125 vA0->SetVisibility(kTRUE);
1126 vA0->SetLineColor(4); // Blue
1127 vA0->SetLineWidth(1);
1128 vA0->SetFillColor(vA0->GetLineColor());
1129 vA0->SetFillStyle(4010); // 10% transparent
1130 TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1",
1131 sA1, medSPDair);
1132 vA1->SetVisibility(kTRUE);
1133 vA1->SetLineColor(7); // light Blue
1134 vA1->SetLineWidth(1);
1135 vA1->SetFillColor(vA1->GetLineColor());
1136 vA1->SetFillStyle(4090); // 90% transparent
1137 TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss);
1138 vTA0->SetVisibility(kTRUE);
1139 vTA0->SetLineColor(15); // gray
1140 vTA0->SetLineWidth(1);
1141 vTA0->SetFillColor(vTA0->GetLineColor());
1142 vTA0->SetFillStyle(4000); // 0% transparent
1143 TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1",
1144 sTA1, medSPDcoolfl);
1145 vTA1->SetVisibility(kTRUE);
1146 vTA1->SetLineColor(6); // Purple
1147 vTA1->SetLineWidth(1);
1148 vTA1->SetFillColor(vTA1->GetLineColor());
1149 vTA1->SetFillStyle(4000); // 0% transparent
1150 TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0",
1151 sB0, medSPDcf);
1152 vB0->SetVisibility(kTRUE);
1153 vB0->SetLineColor(1); // Black
1154 vB0->SetLineWidth(1);
1155 vB0->SetFillColor(vB0->GetLineColor());
1156 vB0->SetFillStyle(4000); // 0% transparent
1157 TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1",
1158 sB1, medSPDair);
1159 vB1->SetVisibility(kTRUE);
1160 vB1->SetLineColor(0); // white
1161 vB1->SetLineWidth(1);
1162 vB1->SetFillColor(vB1->GetLineColor());
1163 vB1->SetFillStyle(4100); // 100% transparent
1164 TGeoVolume *vB2 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB2",
1165 sB2, medSPDair);
1166 vB2->SetVisibility(kTRUE);
1167 vB2->SetLineColor(0); // white
1168 vB2->SetLineWidth(1);
1169 vB2->SetFillColor(vB2->GetLineColor());
1170 vB2->SetFillStyle(4100); // 100% transparent
1171 TGeoVolume *vB3 = new TGeoVolume(
1172 "ITSSPDCarbonFiberSupportSectorMountBlockB3",sB3, medSPDcf);
1173 vB3->SetVisibility(kTRUE);
1174 vB3->SetLineColor(1); // Black
1175 vB3->SetLineWidth(1);
1176 vB3->SetFillColor(vB3->GetLineColor());
1177 vB3->SetFillStyle(4000); // 0% transparent
1178 TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss);
1179 vTB0->SetVisibility(kTRUE);
1180 vTB0->SetLineColor(15); // gray
1181 vTB0->SetLineWidth(1);
1182 vTB0->SetFillColor(vTB0->GetLineColor());
1183 vTB0->SetFillStyle(4000); // 0% transparent
1184 TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1,
1185 medSPDcoolfl);
1186 vTB1->SetVisibility(kTRUE);
1187 vTB1->SetLineColor(7); // light blue
1188 vTB1->SetLineWidth(1);
1189 vTB1->SetFillColor(vTB1->GetLineColor());
1190 vTB1->SetFillStyle(4050); // 0% transparent
1191
1192 // add volumes to mother container passed as argument of this method
1193 moth->AddNode(vM0,1,0); // Add virtual volume to mother
1194 vA0->AddNode(vA1,1,0); // Put air inside carbon fiber.
1195 vB0->AddNode(vB1,1,0); // Put air inside carbon fiber ends.
1196 vB0->AddNode(vB2,1,0); // Put air wholes inside carbon fiber ends
1197 vTA0->AddNode(vTA1,1,0); // Put cooling liquid indide tube middel.
1198 vTB0->AddNode(vTB1,1,0); // Put cooling liquid inside tube end.
1199 Double_t tubeEndLocal[3]={0.0,0.0,sTA0->GetDz()};
1200 for(i = 0; i < ksecNCoolingTubeDips; i++) {
1201 x0 = secX3[ksecDipIndex[i]];
1202 y0 = secY3[ksecDipIndex[i]];
1203 t = 90.0 - secAngleTurbo[i];
1204 trans = new TGeoTranslation("",x0,y0,0.5*(sB1->GetZ(0)+sB1->GetZ(1)));
1205 vB1->AddNode(vTB0, i+1, trans);
1206 // Find location of tube ends for later use.
1207 trans->LocalToMaster(tubeEndLocal,fTubeEndSector[0][0][i]);
1208 rot = new TGeoRotation("", 0.0, 0.0, t);
1209 rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot);
1210 vM0->AddNode(vTA0, i+1, rotrans);
1211 } // end for i
1212 vM0->AddNode(vA0, 1, 0);
1213 vM0->AddNode(vB0, 1, 0);
1214 // Reflection.
1215 rot = new TGeoRotation("", 90., 0., 90., 90., 180., 0.);
1216 vM0->AddNode(vB0,2,rot);
1217 // Find location of tube ends for later use.
1218 for(i=0;i<ksecNCoolingTubeDips;i++) rot->LocalToMaster(
1219 fTubeEndSector[0][0][i],fTubeEndSector[0][1][i]);
1220 // left side
1221 t = -TMath::RadToDeg()*TMath::ATan2(
1222 sB0->GetX(0)-sB0->GetX(sB0->GetNvert()-1),
1223 sB0->GetY(0)-sB0->GetY(sB0->GetNvert()-1));
1224 rot = new TGeoRotation("",t,0.0,0.0);// z axis rotation
1225 x0 = 0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))+
1226 sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
1227 y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))+
1228 sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
1229 z0 = sB0->GetZ(0)+sB3->GetDZ();
1230 rotrans = new TGeoCombiTrans("",x0,y0,z0,rot);
1231 vM0->AddNode(vB3,1,rotrans); // Put Mounting bracket on sector
1232 rotrans = new TGeoCombiTrans("",x0,y0,-z0,rot);
1233 vM0->AddNode(vB3,2,rotrans); // Put Mounting bracket on sector
1234 /*
1235 j = 0; // right side, find point with largest x value
1236 x1 = sB0->GetX(0);
1237 for(i=1;i<sB0->GetNvert();i++)if(sB0->GetX(i)>x1) {j=i;x1=sB0->GetX(i);}
1238 j--; // Too big by 1
1239 //t = -TMath::RadToDeg()*TMath::ATan2(
1240 // sB0->GetX(j)-sB0->GetX(j-1),
1241 // sB0->GetY(j)-sB0->GetY(j-1));
1242 */
1243 t *= -1.0;
1244 rot = new TGeoRotation("",t,0.0,0.0); // z axis rotation
1245 /* // this way gets correct orientation but wrong "height"
1246 x0 = 0.5*(sB0->GetX(j)+sB0->GetX(j-1))+
1247 sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
1248 y0 = 0.5*(sB0->GetY(j)+sB0->GetY(j-1))+
1249 sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
1250 z0 = sB0->GetZ(0)+sB3->GetDZ();
1251 */ // I don't understand the need for this factor 3.5.
1252 // posibly the SPD sector as coded isn't symetric which the
1253 // plans would suggest.
1254 x0 = -0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))-3.5*
1255 sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
1256 y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))-3.5*
1257 sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
1258 rotrans = new TGeoCombiTrans("",x0,y0,z0,rot);
1259 vM0->AddNode(vB3,3,rotrans); // Put Mounting bracket on sector
1260 rotrans = new TGeoCombiTrans("",x0,y0,-z0,rot);
1261 vM0->AddNode(vB3,4,rotrans); // Put Mounting bracket on sector
1262 if(GetDebug(3)){
1263 vM0->PrintNodes();
1264 vA0->PrintNodes();
1265 vA1->PrintNodes();
1266 vB0->PrintNodes();
1267 vB1->PrintNodes();
1268 vB2->PrintNodes();
1269 vB3->PrintNodes();
1270 vTA0->PrintNodes();
1271 vTA1->PrintNodes();
1272 vTB0->PrintNodes();
1273 vTB1->PrintNodes();
1274 } // end if(GetDebug(3))
bc3498f4 1275}
54c9a3d9 1276//______________________________________________________________________
1277Bool_t AliITSv11GeometrySPD::CFHolePoints(Double_t s,Double_t r1,
1278 Double_t r2,Double_t l,Double_t &x,Double_t &y) const
bc3498f4 1279{
54c9a3d9 1280 //
1281 // Step along arck a distancs ds and compute boundry of
1282 // two holes (radius r1 and r2) a distance l apart (along
1283 // x-axis).
1284 // Inputs:
1285 // Double_t s fractional Distance along arcs [0-1]
1286 // where 0-> alpha=beta=0, 1-> alpha=90 degrees.
1287 // Double_t r1 radius at center circle
1288 // Double_t r2 radius of displaced circle
1289 // Double_t l Distance displaced circle is displaces (x-axis)
1290 // Output:
1291 // Double_t x x coordinate along double circle.
1292 // Double_t y y coordinate along double circle.
1293 // Return:
1294 // logical, kFALSE if an error
1295 //
1296 Double_t alpha,beta;
1297 Double_t ac,bc,scb,sca,t,alphac,betac; // at intersection of two circles
1298
1299 x=y=0.0;
1300 ac = r1*r1-l*l-r2*r2;
1301 bc = 2.*l*r2;
1302 if(bc==0.0) {printf("bc=0 l=%e r2=%e\n",l,r2);return kFALSE;}
1303 betac = TMath::ACos(ac/bc);
1304 alphac = TMath::Sqrt(bc*bc-ac*ac)/(2.*l*r1);
1305 scb = r2*betac;
1306 sca = r1*alphac;
1307 t = r1*0.5*TMath::Pi() - sca + scb;
1308 if(s<= scb/t){
1309 beta = s*t/r2;
1310 x = r2*TMath::Cos(beta) + l;
1311 y = r2*TMath::Sin(beta);
1312 //printf("betac=%e scb=%e t=%e s=%e beta=%e x=%e y=%e\n",
1313 // betac,scb,t,s,beta,x,y);
1314 return kTRUE;
1315 }else{
1316 beta = (s*t-scb+sca)/(r1*0.5*TMath::Pi());
1317 alpha = beta*0.5*TMath::Pi();
1318 x = r1*TMath::Cos(alpha);
1319 y = r1*TMath::Sin(alpha);
1320 //printf("alphac=%e sca=%e t=%e s=%e beta=%e alpha=%e x=%e y=%e\n",
1321 // alphac,sca,t,s,beta,alpha,x,y);
1322 return kTRUE;
1323 } // end if
1324 return kFALSE;
bc3498f4 1325}
54c9a3d9 1326//______________________________________________________________________
1327Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints(Int_t index,Double_t &x0,
1328 Double_t &y0, Double_t &x1, Double_t &y1) const
bc3498f4 1329{
54c9a3d9 1330 //
1331 // Returns the edges of the straight borders in the SPD sector shape,
1332 // which are used to mount staves on them.
1333 // Coordinate system is that of the carbon fiber sector volume.
1334 // ---
1335 // Index numbering is as follows:
1336 // /5
1337 // /\/4
1338 // 1\ \/3
1339 // 0|___\/2
1340 // ---
1341 // Arguments [the ones passed by reference contain output values]:
1342 // Int_t index --> location index according to above scheme [0-5]
1343 // Double_t &x0 --> (by ref) x0 location or the ladder sector [cm]
1344 // Double_t &y0 --> (by ref) y0 location of the ladder sector [cm]
1345 // Double_t &x1 --> (by ref) x1 location or the ladder sector [cm]
1346 // Double_t &y1 --> (by ref) y1 location of the ladder sector [cm]
1347 // TGeoManager *mgr --> The TGeo builder
1348 // ---
1349 // The location is described by a line going from (x0, y0) to (x1, y1)
1350 // ---
1351 // Returns kTRUE if no problems encountered.
1352 // Returns kFALSE if a problem was encountered (e.g.: shape not found).
1353 //
1354 Int_t isize = fSPDsectorX0.GetSize();
1355
1356 x0 = x1 = y0 = y1 = 0.0;
1357 if(index < 0 || index > isize) {
1358 AliError(Form("index = %d: allowed 0 --> %", index, isize));
1359 return kFALSE;
1360 } // end if(index<0||index>isize)
1361 x0 = fSPDsectorX0[index];
1362 x1 = fSPDsectorX1[index];
1363 y0 = fSPDsectorY0[index];
1364 y1 = fSPDsectorY1[index];
1365 return kTRUE;
bc3498f4 1366}
54c9a3d9 1367//______________________________________________________________________
1368void AliITSv11GeometrySPD::SPDsectorShape(Int_t n,const Double_t *xc,
1369 const Double_t *yc, const Double_t *r,
1370 const Double_t *ths, const Double_t *the,
1371 Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const
bc3498f4 1372{
54c9a3d9 1373 //
1374 // Code to compute the points that make up the shape of the SPD
1375 // Carbon fiber support sections
1376 // Inputs:
1377 // Int_t n size of arrays xc,yc, and r.
1378 // Double_t *xc array of x values for radii centers.
1379 // Double_t *yc array of y values for radii centers.
1380 // Double_t *r array of signed radii values.
1381 // Double_t *ths array of starting angles [degrees].
1382 // Double_t *the array of ending angles [degrees].
1383 // Int_t npr the number of lines segments to aproximate the arc.
1384 // Outputs (arguments passed by reference):
1385 // Int_t m the number of enetries in the arrays *xp[npr+1]
1386 // and *yp[npr+1].
1387 // Double_t **xp array of x coordinate values of the line segments
1388 // which make up the SPD support sector shape.
1389 // Double_t **yp array of y coordinate values of the line segments
1390 // which make up the SPD support sector shape.
1391 //
1392 Int_t i, k;
1393 Double_t t, t0, t1;
1394
1395 m = n*(npr + 1);
1396 if(GetDebug(2)) {
1397 cout <<" X \t Y \t R \t S \t E" << m << endl;
1398 for(i = 0; i < n; i++) {
1399 cout << "{" << xc[i] << ", ";
1400 cout << yc[i] << ", ";
1401 cout << r[i] << ", ";
1402 cout << ths[i] << ", ";
1403 cout << the[i] << "}, " << endl;
1404 } // end for i
1405 } // end if(GetDebug(2))
1406 if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"][";
1407 if (GetDebug(4)) cout << "3] {";
1408 else if(GetDebug(3)) cout <<"2] {";
1409 t0 = (Double_t)npr;
1410 for(i = 0; i < n; i++) {
1411 t1 = (the[i] - ths[i]) / t0;
1412 if(GetDebug(5)) cout << "t1 = " << t1 << endl;
1413 for(k = 0; k <= npr; k++) {
1414 t = ths[i] + ((Double_t)k) * t1;
1415 xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i];
1416 yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i];
1417 if(GetDebug(3)) {
1418 cout << "{" << xp[i][k] << "," << yp[i][k];
1419 if (GetDebug(4)) cout << "," << t;
1420 cout << "},";
1421 } // end if GetDebug
1422 } // end for k
1423 if(GetDebug(3)) cout << endl;
1424 } // end of i
1425 if(GetDebug(3)) cout << "{" << xp[0][0] << ", " << yp[0][0];
1426 if(GetDebug(4)) cout << "," << ths[0];
1427 if(GetDebug(3)) cout << "}}" << endl;
592651e2 1428}
54c9a3d9 1429//______________________________________________________________________
1430TGeoVolume* AliITSv11GeometrySPD::CreateLadder(Int_t layer,TArrayD &sizes,
1431 TGeoManager *mgr) const
bc3498f4 1432{
54c9a3d9 1433 //
1434 // Creates the "ladder" = silicon sensor + 5 chips.
1435 // Returns a TGeoVolume containing the following components:
1436 // - the sensor (TGeoBBox), whose name depends on the layer
1437 // - 5 identical chips (TGeoBBox)
1438 // - a guard ring around the sensor (subtraction of TGeoBBoxes),
1439 // which is separated from the rest of sensor because it is not
1440 // a sensitive part
1441 // - bump bondings (TGeoBBox stripes for the whole width of the
1442 // sensor, one per column).
1443 // ---
1444 // Arguments:
1445 // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised)
1446 // 2 - a TArrayD passed by reference, which will contain relevant
1447 // dimensions related to this object:
1448 // size[0] = 'thickness' (the smallest dimension)
1449 // size[1] = 'length' (the direction along the ALICE Z axis)
1450 // size[2] = 'width' (extension in the direction perp. to the
1451 // above ones)
1452 // 3 - the used TGeoManager
1453
1454 // ** CRITICAL CHECK **
1455 // layer number can be ONLY 1 or 2
1456 if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
1457
1458 // ** MEDIA **
1459 TGeoMedium *medAir = GetMedium("AIR$",mgr);
1460 TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP
1461 TGeoMedium *medSi = GetMedium("SI$",mgr);
1462 TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond
1463
1464 // ** SIZES **
1465 Double_t chipThickness = fgkmm * 0.150;
1466 Double_t chipWidth = fgkmm * 15.950;
1467 Double_t chipLength = fgkmm * 13.600;
1468 Double_t chipSpacing = fgkmm * 0.400; // separation of chips along Z
1469 Double_t sensThickness = fgkmm * 0.200;
1470 Double_t sensLength = fgkmm * 69.600;
1471 Double_t sensWidth = fgkmm * 12.800;
1472 Double_t guardRingWidth = fgkmm * 0.560; // a border of this thickness
1473 // all around the sensor
1474 Double_t bbLength = fgkmm * 0.042;
1475 Double_t bbWidth = sensWidth;
1476 Double_t bbThickness = fgkmm * 0.012;
1477 Double_t bbPos = 0.080; // Z position w.r. to left pixel edge
1478 // compute the size of the container volume which
1479 // will also be returned in the referenced TArrayD;
1480 // for readability, they are linked by reference to a more meaningful name
1481 sizes.Set(3);
1482 Double_t &thickness = sizes[0];
1483 Double_t &length = sizes[1];
1484 Double_t &width = sizes[2];
1485 // the container is a box which exactly enclose all the stuff;
1486 width = chipWidth;
1487 length = sensLength + 2.0*guardRingWidth;
1488 thickness = sensThickness + chipThickness + bbThickness;
1489
1490 // ** VOLUMES **
1491 // While creating this volume, since it is a sensitive volume,
1492 // we must respect some standard criteria for its local reference frame.
1493 // Local X must correspond to x coordinate of the sensitive volume:
1494 // this means that we are going to create the container with a local
1495 // reference system that is **not** in the middle of the box.
1496 // This is accomplished by calling the shape constructor with an
1497 // additional option ('originShift'):
1498 Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
1499 Double_t originShift[3] = {-xSens, 0., 0.};
1500 TGeoBBox *shapeContainer = new TGeoBBox(0.5*width,0.5*thickness,
1501 0.5*length,originShift);
1502 // then the volume is made of air, and using this shape
1503 TGeoVolume *container = new TGeoVolume(Form("ITSSPDlay%d-Ladder",layer),
1504 shapeContainer, medAir);
1505 // the chip is a common box
1506 TGeoVolume *volChip = mgr->MakeBox("ITSSPDchip",medSPDSiChip,
1507 0.5*chipWidth,0.5*chipThickness,0.5*chipLength);
1508 // the sensor as well
1509 TGeoVolume *volSens = mgr->MakeBox(GetSenstiveVolumeName(layer),medSi,
1510 0.5*sensWidth,0.5*sensThickness,0.5*sensLength);
1511 // the guard ring shape is the subtraction of two boxes with the
1512 // same center.
1513 TGeoBBox *shIn = new TGeoBBox(0.5*sensWidth,sensThickness,0.5*sensLength);
1514 TGeoBBox *shOut = new TGeoBBox(0.5*sensWidth+guardRingWidth,
1515 0.5*sensThickness,0.5*sensLength+guardRingWidth);
1516 shIn->SetName("ITSSPDinnerBox");
1517 shOut->SetName("ITSSPDouterBox");
1518 TGeoCompositeShape *shBorder = new TGeoCompositeShape(
1519 "ITSSPDgaurdRingBorder",Form("%s-%s",shOut->GetName(),shIn->GetName()));
1520 TGeoVolume *volBorder = new TGeoVolume("ITSSPDgaurdRing",shBorder,medSi);
1521 // bump bonds for one whole column
1522 TGeoVolume *volBB = mgr->MakeBox("ITSSPDbb",medBumpBond,0.5*bbWidth,
1523 0.5*bbThickness,0.5*bbLength);
1524 // set colors of all objects for visualization
1525 volSens->SetLineColor(kYellow + 1);
1526 volChip->SetLineColor(kGreen);
1527 volBorder->SetLineColor(kYellow + 3);
1528 volBB->SetLineColor(kGray);
1529
1530 // ** MOVEMENTS **
1531 // sensor is translated along thickness (X) and width (Y)
1532 Double_t ySens = 0.5 * (thickness - sensThickness);
1533 Double_t zSens = 0.0;
1534 // we want that the x of the ladder is the same as the one of
1535 // its sensitive volume
1536 TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens);
1537 // bump bonds are translated along all axes:
1538 // keep same Y used for sensors, but change the Z
1539 TGeoTranslation *trBB[160];
1540 Double_t x = 0.0;
1541 Double_t y = 0.5 * (thickness - bbThickness) - sensThickness;
1542 Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
1543 Int_t i;
1544 for (i = 0; i < 160; i++) {
1545 trBB[i] = new TGeoTranslation(x, y, z);
1546 switch(i) {
1547 case 31:case 63:case 95:case 127:
1548 z += fgkmm * 0.625 + fgkmm * 0.2;
1549 break;
1550 default:
1551 z += fgkmm * 0.425;
1552 } // end switch
1553 } // end for i
1554 // the chips are translated along the length (Z) and thickness (X)
1555 TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
1556 x = -xSens;
1557 y = 0.5 * (chipThickness - thickness);
1558 z = 0.0;
1559 for (i = 0; i < 5; i++) {
1560 z = -0.5*length + guardRingWidth
1561 + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
1562 trChip[i] = new TGeoTranslation(x, y, z);
1563 } // end ofr i
1564
1565 // add nodes to container
1566 container->AddNode(volSens, 1, trSens);
1567 container->AddNode(volBorder, 1, trSens);
1568 for (i = 0; i < 160; i++) container->AddNode(volBB,i+1,trBB[i]);
1569 for (i = 0; i < 5; i++) container->AddNode(volChip,i+3,trChip[i]);
1570 // return the container
1571 return container;
592651e2 1572}
7855ea93 1573//______________________________________________________________________
54c9a3d9 1574TGeoVolume* AliITSv11GeometrySPD::CreateClip(TArrayD &sizes,Bool_t isDummy,
1575 TGeoManager *mgr) const
1576{
1577 //
1578 // Creates the carbon fiber clips which are added to the central ladders.
1579 // They have a complicated shape which is approximated by a TGeoXtru
1580 // Implementation of a single clip over an half-stave.
1581 // It has a complicated shape which is approximated to a section like this:
1582 //
1583 // 6
1584 // /\ .
1585 // 7 //\\ 5
1586 // / 1\\___________________4
1587 // 0 \___________________
1588 // 2 3
1589 // with a finite thickness for all the shape
1590 // Its local reference frame is such that point A corresponds to origin.
1591 //
1592 Double_t fullLength = fgkmm * 12.6; // = x4 - x0
1593 Double_t flatLength = fgkmm * 5.4; // = x4 - x3
1594 Double_t inclLongLength = fgkmm * 5.0; // = 5-6
1595 Double_t inclShortLength = fgkmm * 2.0; // = 6-7
1596 Double_t fullHeight = fgkmm * 2.8; // = y6 - y3
1597 Double_t thickness = fgkmm * 0.2; // thickness
1598 Double_t totalLength = fgkmm * 52.0; // total length in Z
1599 Double_t holeSize = fgkmm * 4.0; // dimension of cubic
1600 // hole inserted for pt1000
1601 Double_t angle1 = 27.0; // supplementary of angle DCB
1602 Double_t angle2; // angle DCB
1603 Double_t angle3; // angle of GH with vertical
1604
1605 angle2 = 0.5 * (180.0 - angle1);
1606 angle3 = 90.0 - TMath::ACos(fullLength - flatLength -
1607 inclLongLength*TMath::Cos(angle1)) *
1608 TMath::RadToDeg();
1609 angle1 *= TMath::DegToRad();
1610 angle2 *= TMath::DegToRad();
1611 angle3 *= TMath::DegToRad();
1612
1613 Double_t x[8], y[8];
1614
1615 x[0] = 0.0;
1616 x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1);
1617 x[2] = x[0] + fullLength - flatLength;
1618 x[3] = x[0] + fullLength;
1619 x[4] = x[3];
1620 x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2);
1621 x[6] = x[1];
1622 x[7] = x[0];
1623
1624 y[0] = 0.0;
1625 y[1] = y[0] + inclShortLength * TMath::Cos(angle3);
1626 y[2] = y[1] - inclLongLength * TMath::Sin(angle1);
1627 y[3] = y[2];
1628 y[4] = y[3] + thickness;
1629 y[5] = y[4];
1630 y[6] = y[1] + thickness;
1631 y[7] = y[0] + thickness;
1632
1633 sizes.Set(7);
1634 sizes[0] = totalLength;
1635 sizes[1] = fullHeight;
1636 sizes[2] = y[2];
1637 sizes[3] = y[6];
1638 sizes[4] = x[0];
1639 sizes[5] = x[3];
1640 sizes[6] = x[2];
1641
1642 if(isDummy){// use this argument when on ewant just the
1643 // positions without create any volume
1644 return NULL;
1645 } // end if isDummy
1646
1647 TGeoXtru *shClip = new TGeoXtru(2);
1648 shClip->SetName("ITSSPDshclip");
1649 shClip->DefinePolygon(8, x, y);
1650 shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0);
1651 shClip->DefineSection(1, 0.5*totalLength, 0., 0., 1.0);
1652
1653 TGeoBBox *shHole = new TGeoBBox("ITSSPDSHClipHole",0.5*holeSize,
1654 0.5*holeSize,0.5*holeSize);
1655 TGeoTranslation *tr1 = new TGeoTranslation("ITSSPDTRClipHole1",x[2],0.0,
1656 fgkmm*14.);
1657 TGeoTranslation *tr2 = new TGeoTranslation("ITSSPDTRClipHole2",x[2],0.0,
1658 0.0);
1659 TGeoTranslation *tr3 = new TGeoTranslation("ITSSPDTRClipHole3",x[2],0.0,
1660 -fgkmm*14.);
1661 tr1->RegisterYourself();
1662 tr2->RegisterYourself();
1663 tr3->RegisterYourself();
1664
1665 //TString strExpr("ITSSPDshclip-(");
1666 TString strExpr(shClip->GetName());
1667 strExpr.Append("-(");
1668 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName()));
1669 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName()));
1670 strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName()));
1671 TGeoCompositeShape *shClipHole = new TGeoCompositeShape(
1672 "ITSSPDSHClipHoles",strExpr.Data());
1673
1674 TGeoMedium *mat = GetMedium("SPD C (M55J)$", mgr);
1675 TGeoVolume *vClip = new TGeoVolume("ITSSPDclip", shClipHole, mat);
1676 vClip->SetLineColor(kGray + 2);
1677 return vClip;
1678}//______________________________________________________________________
7855ea93 1679TGeoCompositeShape* AliITSv11GeometrySPD::CreateGroundingFoilShape
54c9a3d9 1680 (Int_t itype,Double_t &length,Double_t &width,
1681 Double_t thickness,TArrayD &sizes)
bc3498f4 1682{
54c9a3d9 1683 //
1684 // Creates the typical composite shape of the grounding foil:
1685 //
1686 // +---------------------------------------------------------+
1687 // | 5 6 9 |
1688 // | +-----------+ +------------+ 10
1689 // | O | | |
1690 // | 3 /-----+ 4 +------+
1691 // | 1 / 7 8
1692 // | /----------/
1693 // +-----/ 2 +
1694 // 0
1695 // Z + 11
1696 //
1697 // This shape is used 4 times: two layers of glue, one in kapton
1698 // and one in aluminum, taking into account that the aliminum
1699 // layer has small differences in the size of some parts.
1700 // ---
1701 // In order to overcome problems apparently due to a large number
1702 // of points, the shape creation is done according the following
1703 // steps:
1704 // 1) a TGeoBBox is created with a size right enough to contain
1705 // the whole shape (0-1-X-13)
1706 // 2) holes are defined as other TGeoBBox which are subtracted
1707 // from the main shape
1708 // 3) a TGeoXtru is defined connecting the points (0-->11-->0)
1709 // and is also subtracted from the main shape
1710 // ---
1711 // The argument ("type") is used to choose between all these
1712 // possibilities:
1713 // - type = 0 --> kapton layer
1714 // - type = 1 --> aluminum layer
1715 // - type = 2 --> glue layer between support and GF
1716 // - type = 3 --> glue layer between GF and ladders
1717 // Returns: a TGeoCompositeShape which will then be used to shape
1718 // several volumes. Since TGeoXtru is used, the local reference
1719 // frame of this object has X horizontal and Y vertical w.r to
1720 // the shape drawn above, and Z axis going perpendicularly to the screen.
1721 // This is not the correct reference for the half stave, for which
1722 // the "long" dimension is Z and the "short" is X, while Y goes in
1723 // the direction of thickness. This will imply some rotations when
1724 // using the volumes created with this shape.
1725
1726 // suffix to differentiate names
1727 Char_t type[10];
1728
1729 // size of the virtual box containing exactly this volume
1730 length = fgkmm * 243.18;
1731 width = fgkmm * 15.95;
1732 if (itype == 1) {
1733 length -= fgkmm * 0.4;
1734 width -= fgkmm * 0.4;
1735 } // end if itype==1
1736 switch (itype) {
1737 case 0:
1738 sprintf(type,"Kap");
1739 break;
1740 case 1:
1741 sprintf(type,"Alu");
1742 break;
1743 case 2:
1744 sprintf(type,"Glue1");
1745 break;
1746 case 3:
1747 sprintf(type,"Glue2");
1748 break;
1749 }
1750 // we divide the shape in several slices along the horizontal
1751 // direction (local X) here we define define the length of all
1752 // sectors (from leftmost to rightmost)
1753 Int_t i;
1754 Double_t sliceLength[] = { 140.71, 2.48, 26.78, 4.00,
1755 10.00, 24.40, 10.00, 24.81 };
1756 for (i = 0; i < 8; i++) sliceLength[i] *= fgkmm;
1757 if (itype == 1) {
1758 sliceLength[0] -= fgkmm * 0.2;
1759 sliceLength[4] -= fgkmm * 0.2;
1760 sliceLength[5] += fgkmm * 0.4;
1761 sliceLength[6] -= fgkmm * 0.4;
1762 } // end if itype ==1
1763
1764 // as shown in the drawing, we have four different widths
1765 // (along local Y) in this shape:
1766 Double_t widthMax = fgkmm * 15.95;
1767 Double_t widthMed1 = fgkmm * 15.00;
1768 Double_t widthMed2 = fgkmm * 11.00;
1769 Double_t widthMin = fgkmm * 4.40;
1770 if (itype == 1) {
1771 widthMax -= fgkmm * 0.4;
1772 widthMed1 -= fgkmm * 0.4;
1773 widthMed2 -= fgkmm * 0.4;
1774 widthMin -= fgkmm * 0.4;
1775 } // end if itype==1
1776
1777 // create the main shape
1778 TGeoBBox *shGroundFull = 0;
1779 shGroundFull = new TGeoBBox(Form("ITSSPDSHgFoil%sFull", type),
1780 0.5*length,0.5*width, 0.5*thickness);
1781
1782 // create the polygonal shape to be subtracted to give the correct
1783 // shape to the borders its vertices are defined in sugh a way that
1784 // this polygonal will be placed in the correct place considered
1785 // that the origin of the local reference frame is in the center
1786 // of the main box: we fix the starting point at the lower-left
1787 // edge of the shape (point 12), and add all points in order,
1788 // following a clockwise rotation
1789
1790 Double_t x[13], y[13];
1791 x[ 0] = -0.5 * length + sliceLength[0];
1792 y[ 0] = -0.5 * widthMax;
1793
1794 x[ 1] = x[0] + sliceLength[1];
1795 y[ 1] = y[0] + (widthMax - widthMed1);
1796
1797 x[ 2] = x[1] + sliceLength[2];
1798 y[ 2] = y[1];
1799
1800 x[ 3] = x[2] + sliceLength[3];
1801 y[ 3] = y[2] + (widthMed1 - widthMed2);
1802
1803 x[ 4] = x[3] + sliceLength[4];
1804 y[ 4] = y[3];
1805
1806 x[ 5] = x[4];
1807 y[ 5] = y[4] + (widthMed2 - widthMin);
1808
1809 x[ 6] = x[5] + sliceLength[5];
1810 y[ 6] = y[5];
1811
1812 x[ 7] = x[6];
1813 y[ 7] = y[4];
1814
1815 x[ 8] = x[7] + sliceLength[6];
1816 y[ 8] = y[7];
1817
1818 x[ 9] = x[8];
1819 y[ 9] = y[6];
1820
1821 x[10] = x[9] + sliceLength[7] + 0.5;
1822 y[10] = y[9];
1823
1824 x[11] = x[10];
1825 y[11] = y[0] - 0.5;
1826
1827 x[12] = x[0];
1828 y[12] = y[11];
1829
1830 // create the shape
1831 TGeoXtru *shGroundXtru = new TGeoXtru(2);
1832 shGroundXtru->SetName(Form("ITSSPDSHgFoil%sXtru", type));
1833 shGroundXtru->DefinePolygon(13, x, y);
1834 shGroundXtru->DefineSection(0, -thickness, 0., 0., 1.0);
1835 shGroundXtru->DefineSection(1, thickness, 0., 0., 1.0);
1836
1837 // define a string which will express the algebric operations among volumes
1838 // and add the subtraction of this shape from the main one
1839 TString strComposite(Form("ITSSPDSHgFoil%sFull-(%s+", type,
1840 shGroundXtru->GetName()));
1841
1842 // define the holes according to size information coming from drawings:
1843 Double_t holeLength = fgkmm * 10.00;
1844 Double_t holeWidth = fgkmm * 7.50;
1845 Double_t holeSepX0 = fgkmm * 7.05; // separation between center
1846 // of first hole and left border
1847 Double_t holeSepXC = fgkmm * 14.00; // separation between the centers
1848 // of two consecutive holes
1849 Double_t holeSepX1 = fgkmm * 15.42; // separation between centers of
1850 // 5th and 6th hole
1851 Double_t holeSepX2 = fgkmm * 22.00; // separation between centers of
1852 // 10th and 11th hole
1853 if (itype == 1) {
1854 holeSepX0 -= fgkmm * 0.2;
1855 holeLength += fgkmm * 0.4;
1856 holeWidth += fgkmm * 0.4;
1857 } // end if itype==1
1858 sizes.Set(7);
1859 sizes[0] = holeLength;
1860 sizes[1] = holeWidth;
1861 sizes[2] = holeSepX0;
1862 sizes[3] = holeSepXC;
1863 sizes[4] = holeSepX1;
1864 sizes[5] = holeSepX2;
1865 sizes[6] = fgkmm * 4.40;
1866
1867 // X position of hole center (will change for each hole)
1868 Double_t holeX = -0.5*length;
1869 // Y position of center of all holes (= 4.4 mm from upper border)
1870 Double_t holeY = 0.5*(width - holeWidth) - widthMin;
1871
1872 // create a shape for the holes (common)
1873 TGeoBBox *shHole = 0;
1874 shHole = new TGeoBBox(Form("ITSSPD%sGfoilHole", type),0.5*holeLength,
1875 0.5*holeWidth, thickness);
1876
1877 // insert the holes in the XTRU shape:
1878 // starting from the first value of X, they are simply
1879 // shifted along this axis
1880 char name[200];
1881 TGeoTranslation *transHole[11];
4adcf390 1882 for (i = 0; i < 11; i++) {
54c9a3d9 1883 // set the position of the hole, depending on index
1884 if (i == 0) {
1885 holeX += holeSepX0;
1886 }else if (i < 5) {
1887 holeX += holeSepXC;
1888 }else if (i == 5) {
1889 holeX += holeSepX1;
1890 }else if (i < 10) {
1891 holeX += holeSepXC;
1892 }else {
1893 holeX += holeSepX2;
1894 } // end if else if's
1895 //cout << i << " --> X = " << holeX << endl;
1896 sprintf(name,"ITSSPDTRgFoil%sHole%d", type, i);
1897 transHole[i] = new TGeoTranslation(name, holeX, holeY, 0.0);
1898 transHole[i]->RegisterYourself();
1899 strComposite.Append(Form("ITSSPD%sGfoilHole:%s", type, name));
1900 if (i < 10) strComposite.Append("+"); else strComposite.Append(")");
1901 } // end for i
1902
1903 // create composite shape
1904 TGeoCompositeShape *shGround = new TGeoCompositeShape(
1905 Form("ITSSPDSHgFoil%s", type), strComposite.Data());
1906
1907 return shGround;
592651e2 1908}
54c9a3d9 1909//______________________________________________________________________
1910TGeoVolume* AliITSv11GeometrySPD::CreateGroundingFoil(Bool_t isRight,
1911 TArrayD &sizes, TGeoManager *mgr)
bc3498f4 1912{
54c9a3d9 1913 //
1914 // Create a volume containing all parts of the grounding foil a
1915 // for a half-stave.
1916 // It consists of 4 layers with the same shape but different thickness:
1917 // 1) a layer of glue
1918 // 2) the aluminum layer
1919 // 3) the kapton layer
1920 // 4) another layer of glue
1921 // ---
1922 // Arguments:
1923 // 1: a boolean value to know if it is the grounding foir for
1924 // the right or left side
1925 // 2: a TArrayD which will contain the dimension of the container box:
1926 // - size[0] = length along Z (the beam line direction)
1927 // - size[1] = the 'width' of the stave, which defines, together
1928 // with Z, the plane of the carbon fiber support
1929 // - size[2] = 'thickness' (= the direction along which all
1930 // stave components are superimposed)
1931 // 3: the TGeoManager
1932 // ---
1933 // The return value is a TGeoBBox volume containing all grounding
1934 // foil components.
1935 // to avoid strange behaviour of the geometry manager,
1936 // create a suffix to be used in the names of all shapes
1937 //
1938 char suf[5];
1939 if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");
1940 // this volume will be created in order to ease its placement in
1941 // the half-stave; then, it is added here the small distance of
1942 // the "central" edge of each volume from the Z=0 plane in the stave
1943 // reference (which coincides with ALICE one)
1944 Double_t dist = fgkmm * 0.71;
1945
1946 // define materials
1947 TGeoMedium *medKap = GetMedium("SPD KAPTON(POLYCH2)$", mgr);
1948 TGeoMedium *medAlu = GetMedium("AL$", mgr);
1949 TGeoMedium *medGlue = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT
1950
1951 // compute the volume shapes (thicknesses change from one to the other)
1952 Double_t kpLength, kpWidth, alLength, alWidth;
1953 TArrayD kpSize, alSize, glSize;
1954 Double_t kpThickness = fgkmm * 0.05;
1955 Double_t alThickness = fgkmm * 0.025;
1956 Double_t glThickness = fgkmm * 0.1175 - fgkGapLadder;
1957 TGeoCompositeShape *kpShape = CreateGroundingFoilShape(0,kpLength,kpWidth,
1958 kpThickness, kpSize);
1959 TGeoCompositeShape *alShape = CreateGroundingFoilShape(1,alLength,alWidth,
1960 alThickness, alSize);
1961 TGeoCompositeShape *glShape = CreateGroundingFoilShape(2,kpLength,kpWidth,
1962 glThickness, glSize);
1963 // create the component volumes and register their sizes in the
1964 // passed arrays for readability reasons, some reference variables
1965 // explicit the meaning of the array slots
1966 TGeoVolume *kpVol = new TGeoVolume(Form("ITSSPDgFoilKap%s",suf),
1967 kpShape, medKap);
1968 TGeoVolume *alVol = new TGeoVolume(Form("ITSSPDgFoilAlu%s",suf),
1969 alShape, medAlu);
1970 TGeoVolume *glVol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf),
1971 glShape, medGlue);
1972 // set colors for the volumes
1973 kpVol->SetLineColor(kRed);
1974 alVol->SetLineColor(kGray);
1975 glVol->SetLineColor(kYellow);
1976 // create references for the final size object
1977 if (sizes.GetSize() != 3) sizes.Set(3);
1978 Double_t &fullThickness = sizes[0];
1979 Double_t &fullLength = sizes[1];
1980 Double_t &fullWidth = sizes[2];
1981 // kapton leads the larger dimensions of the foil
1982 // (including the cited small distance from Z=0 stave reference plane)
1983 // the thickness is the sum of the ones of all components
1984 fullLength = kpLength + dist;
1985 fullWidth = kpWidth;
1986 fullThickness = kpThickness + alThickness + 2.0 * glThickness;
1987 // create the container
1988 TGeoMedium *air = GetMedium("AIR$", mgr);
1989 TGeoVolume *container = mgr->MakeBox(Form("ITSSPDgFOIL-%s",suf),
1990 air, 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength);
1991 // create the common correction rotation (which depends of what side
1992 // we are building)
1993 TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity);
1994 if (isRight) rotCorr->RotateY(90.0);
1995 else rotCorr->RotateY(-90.0);
1996 // compute the translations, which are in the length and
1997 // thickness directions
1998 Double_t x, y, z, shift = 0.0;
1999 if (isRight) shift = dist;
2000 // glue (bottom)
2001 x = -0.5*(fullThickness - glThickness);
2002 z = 0.5*(fullLength - kpLength) - shift;
2003 TGeoCombiTrans *glTrans0 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
2004 // kapton
2005 x += 0.5*(glThickness + kpThickness);
2006 TGeoCombiTrans *kpTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
2007 // aluminum
2008 x += 0.5*(kpThickness + alThickness);
2009 z = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength);
2010 TGeoCombiTrans *alTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
2011 // glue (top)
2012 x += 0.5*(alThickness + glThickness);
2013 z = 0.5*(fullLength - kpLength) - shift;
2014 TGeoCombiTrans *glTrans1 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
2015
2016 // add to container
2017 container->AddNode(kpVol, 1, kpTrans);
2018 container->AddNode(alVol, 1, alTrans);
2019 container->AddNode(glVol, 1, glTrans0);
2020 container->AddNode(glVol, 2, glTrans1);
2021 // to add the grease we remember the sizes of the holes, stored as
2022 // additional parameters in the kapton layer size:
2023 // - sizes[3] = hole length
2024 // - sizes[4] = hole width
2025 // - sizes[5] = position of first hole center
2026 // - sizes[6] = standard separation between holes
2027 // - sizes[7] = separation between 5th and 6th hole
2028 // - sizes[8] = separation between 10th and 11th hole
2029 // - sizes[9] = separation between the upper hole border and
2030 // the foil border
2031 Double_t holeLength = kpSize[0];
2032 Double_t holeWidth = kpSize[1];
2033 Double_t holeFirstZ = kpSize[2];
2034 Double_t holeSepZ = kpSize[3];
2035 Double_t holeSep5th6th = kpSize[4];
2036 Double_t holeSep10th11th = kpSize[5];
2037 Double_t holeSepY = kpSize[6];
2038 // volume (common)
2039 // Grease has not been defined to date. Need much more information
2040 // no this material!
2041 TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE
2042 TGeoVolume *hVol = mgr->MakeBox("ITSSPDGrease", grease,
2043 0.5*fullThickness, 0.5*holeWidth, 0.5*holeLength);
2044 hVol->SetLineColor(kBlue);
2045 // displacement of volumes in the container
2046 Int_t idx = 1; // copy numbers start from 1.
2047 x = 0.0;
2048 y = 0.5*(fullWidth - holeWidth) - holeSepY;
2049 if (isRight) z = holeFirstZ - 0.5*fullLength + dist;
2050 else z = 0.5*fullLength - holeFirstZ - dist;
2051 for (Int_t i = 0; i < 11; i++) {
2052 TGeoTranslation *t = 0;
2053 t = new TGeoTranslation(x, y, -z);
2054 container->AddNode(hVol, idx++, t);
2055 if (i < 4) shift = holeSepZ;
2056 else if (i == 4) shift = holeSep5th6th;
2057 else if (i < 9) shift = holeSepZ;
2058 else shift = holeSep10th11th;
2059 if (isRight) z += shift;
2060 else z -= shift;
2061 } // end for i
2062 return container;
592651e2 2063}
54c9a3d9 2064//___________________________________________________________________
2065TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM(Bool_t isRight,
2066 TArrayD &sizes, TGeoManager *mgr) const
bc3498f4 2067{
54c9a3d9 2068 //
2069 // Create a TGeoAssembly containing all the components of the MCM.
2070 // The TGeoVolume container is rejected due to the possibility of overlaps
2071 // when placing this object on the carbon fiber sector.
2072 // The assembly contains:
2073 // - the thin part of the MCM (integrated circuit)
2074 // - the MCM chips (specifications from EDMS)
2075 // - the cap which covers the zone where chips are bound to MCM
2076 // ---
2077 // The local reference frame of this assembly is defined in such a way
2078 // that all volumes are contained in a virtual box whose center
2079 // is placed exactly in the middle of the occupied space w.r to all
2080 // directions. This will ease the positioning of this object in the
2081 // half-stave. The sizes of this virtual box are stored in
2082 // the array passed by reference.
2083 // ---
2084 // Arguments:
2085 // - a boolean flag to know if this is the "left" or "right" MCM, when
2086 // looking at the stave from above (i.e. the direction from which
2087 // one sees bus over ladders over grounding foil) and keeping the
2088 // continuous border in the upper part, one sees the thicker part
2089 // on the left or right.
2090 // - an array passed by reference which will contain the size of
2091 // the virtual container.
2092 // - a pointer to the used TGeoManager.
2093 //
2094
2095 // to distinguish the "left" and "right" objects, a suffix is created
2096 char suf[5];
2097 if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");
2098
2099 // ** MEDIA **
2100 TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE
2101 TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr);
2102 TGeoMedium *medCap = GetMedium("AL$",mgr);
2103
2104 // The shape of the MCM is divided into 3 sectors with different
2105 // widths (Y) and lengths (X), like in this sketch:
2106 //
2107 // 0 1 2
2108 // +---------------------+-----------------------------------+
2109 // | 4 sect 2 |
2110 // | 6 sect 1 /-------------------+
2111 // | sect 0 /--------------/ 3
2112 // +--------------------/ 5
2113 // 8 7
2114 //
2115 // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees.
2116 // From drawings we can parametrize the dimensions of all these sectors,
2117 // then the shape of this part of the MCM is implemented as a
2118 // TGeoXtru centerd in the virtual XY space.
2119 // The first step is definig the relevant sizes of this shape:
2120 Int_t i, j;
2121 Double_t mcmThickness = fgkmm * 0.35;
2122 Double_t sizeXtot = fgkmm * 105.6; // total distance (0-2)
2123 // resp. 7-8, 5-6 and 3-4
2124 Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8};
2125 // resp. 0-8, 1-6 and 2-3
2126 Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm * 8.0};
2127 Double_t sizeSep01 = fgkmm * 4.0; // x(6)-x(7)
2128 Double_t sizeSep12 = fgkmm * 3.0; // x(4)-x(5)
2129
2130 // define sizes of chips (last is the thickest)
2131 Double_t chipLength[5] = { 4.00, 6.15, 3.85, 5.60, 18.00 };
2132 Double_t chipWidth[5] = { 3.00, 4.10, 3.85, 5.60, 5.45 };
2133 Double_t chipThickness[5] = { 0.60, 0.30, 0.30, 1.00, 1.20 };
2134 TString name[5];
2135 name[0] = "ITSSPDanalog";
2136 name[1] = "ITSSPDpilot";
2137 name[2] = "ITSSPDgol";
2138 name[3] = "ITSSPDrx40";
2139 name[4] = "ITSSPDoptical";
2140 Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange };
2141
2142 // define the sizes of the cover
2143 Double_t capThickness = fgkmm * 0.3;
2144 Double_t capHeight = fgkmm * 1.7;
2145
2146 // compute the total size of the virtual container box
2147 sizes.Set(3);
2148 Double_t &thickness = sizes[0];
2149 Double_t &length = sizes[1];
2150 Double_t &width = sizes[2];
2151 length = sizeXtot;
2152 width = sizeYsector[0];
2153 thickness = mcmThickness + capHeight;
2154
2155 // define all the relevant vertices of the polygon
2156 // which defines the transverse shape of the MCM.
2157 // These values are used to several purposes, and
2158 // for each one, some points must be excluded
2159 Double_t xRef[9], yRef[9];
2160 xRef[0] = -0.5*sizeXtot;
2161 yRef[0] = 0.5*sizeYsector[0];
2162 xRef[1] = xRef[0] + sizeXsector[0] + sizeSep01;
2163 yRef[1] = yRef[0];
2164 xRef[2] = -xRef[0];
2165 yRef[2] = yRef[0];
2166 xRef[3] = xRef[2];
2167 yRef[3] = yRef[2] - sizeYsector[2];
2168 xRef[4] = xRef[3] - sizeXsector[2];
2169 yRef[4] = yRef[3];
2170 xRef[5] = xRef[4] - sizeSep12;
2171 yRef[5] = yRef[4] - sizeSep12;
2172 xRef[6] = xRef[5] - sizeXsector[1];
2173 yRef[6] = yRef[5];
2174 xRef[7] = xRef[6] - sizeSep01;
2175 yRef[7] = yRef[6] - sizeSep01;
2176 xRef[8] = xRef[0];
2177 yRef[8] = -yRef[0];
2178
2179 // the above points are defined for the "right" MCM (if ve view the
2180 // stave from above) in order to change to the "left" one, we must
2181 // change the sign to all X values:
2182 if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i];
2183
2184 // the shape of the MCM and glue layer are done excluding point 1,
2185 // which is not necessary and cause the geometry builder to get confused
2186 j = 0;
2187 Double_t xBase[8], yBase[8];
2188 for (i = 0; i < 9; i++) {
2189 if (i == 1) continue;
2190 xBase[j] = xRef[i];
2191 yBase[j] = yRef[i];
2192 j++;
2193 } // end for i
2194
2195 // the MCM cover is superimposed over the zones 1 and 2 only
2196 Double_t xCap[6], yCap[6];
2197 j = 0;
2198 for (i = 1; i <= 6; i++) {
2199 xCap[j] = xRef[i];
2200 yCap[j] = yRef[i];
2201 j++;
2202 } // end for i
2203
2204 // define positions of chips,
2205 // which must be added to the bottom-left corner of MCM
2206 // and divided by 1E4;
2207 Double_t chipX[5], chipY[5];
2208 if (isRight) {
2209 chipX[0] = 666320.;
2210 chipX[1] = 508320.;
2211 chipX[2] = 381320.;
2212 chipX[3] = 295320.;
2213 chipX[4] = 150320.;
2214 chipY[0] = 23750.;
2215 chipY[1] = 27750.;
2216 chipY[2] = 20750.;
2217 chipY[3] = 42750.;
2218 chipY[4] = 39750.;
2219 } else {
2220 chipX[0] = 389730.;
2221 chipX[1] = 548630.;
2222 chipX[2] = 674930.;
2223 chipX[3] = 761430.;
2224 chipX[4] = 905430.;
2225 chipY[0] = 96250.;
2226 chipY[1] = 91950.;
2227 chipY[2] = 99250.;
2228 chipY[3] = 107250.;
2229 chipY[4] = 109750.;
2230 } // end if isRight
2231 for (i = 0; i < 5; i++) {
2232 chipX[i] *= 0.00001;
2233 chipY[i] *= 0.00001;
2234 if (isRight) {
2235 chipX[i] += xRef[3];
2236 chipY[i] += yRef[3];
2237 } else {
2238 chipX[i] += xRef[8];
2239 chipY[i] += yRef[8];
2240 } // end for isRight
2241 chipLength[i] *= fgkmm;
2242 chipWidth[i] *= fgkmm;
2243 chipThickness[i] *= fgkmm;
2244 } // end for i
2245
2246 // create shapes for MCM
2247 Double_t z1, z2;
2248 TGeoXtru *shBase = new TGeoXtru(2);
2249 z1 = -0.5*thickness;
2250 z2 = z1 + mcmThickness;
2251 shBase->DefinePolygon(8, xBase, yBase);
2252 shBase->DefineSection(0, z1, 0., 0., 1.0);
2253 shBase->DefineSection(1, z2, 0., 0., 1.0);
2254
2255 // create volumes of MCM
2256 TGeoVolume *volBase = new TGeoVolume("ITSSPDbase", shBase, medBase);
2257 volBase->SetLineColor(kRed);
2258
2259 // to create the border of the MCM cover, it is required the
2260 // subtraction of two shapes the outer is created using the
2261 // reference points defined here
2262 TGeoXtru *shCapOut = new TGeoXtru(2);
2263 shCapOut->SetName(Form("ITSSPDshCAPOUT%s", suf));
2264 z1 = z2;
2265 z2 = z1 + capHeight - capThickness;
2266 shCapOut->DefinePolygon(6, xCap, yCap);
2267 shCapOut->DefineSection(0, z1, 0., 0., 1.0);
2268 shCapOut->DefineSection(1, z2, 0., 0., 1.0);
2269 // the inner is built similarly but subtracting the thickness
2270 Double_t angle, cs;
2271 Double_t xin[6], yin[6];
2272 if (!isRight) {
2273 angle = 45.0;
2274 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
2275 xin[0] = xCap[0] + capThickness;
2276 yin[0] = yCap[0] - capThickness;
2277 xin[1] = xCap[1] - capThickness;
2278 yin[1] = yin[0];
2279 xin[2] = xin[1];
2280 yin[2] = yCap[2] + capThickness;
2281 xin[3] = xCap[3] - capThickness*cs;
2282 yin[3] = yin[2];
2283 xin[4] = xin[3] - sizeSep12;
2284 yin[4] = yCap[4] + capThickness;
2285 xin[5] = xin[0];
2286 yin[5] = yin[4];
2287 } else {
2288 angle = 45.0;
2289 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
2290 xin[0] = xCap[0] - capThickness;
2291 yin[0] = yCap[0] - capThickness;
2292 xin[1] = xCap[1] + capThickness;
2293 yin[1] = yin[0];
2294 xin[2] = xin[1];
2295 yin[2] = yCap[2] + capThickness;
2296 xin[3] = xCap[3] - capThickness*cs;
2297 yin[3] = yin[2];
2298 xin[4] = xin[3] + sizeSep12;
2299 yin[4] = yCap[4] + capThickness;
2300 xin[5] = xin[0];
2301 yin[5] = yin[4];
2302 } // end if !isRight
2303 TGeoXtru *shCapIn = new TGeoXtru(2);
2304 shCapIn->SetName(Form("ITSSPDshCAPIN%s", suf));
2305 shCapIn->DefinePolygon(6, xin, yin);
2306 shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0);
2307 shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0);
2308 // compose shapes
2309 TGeoCompositeShape *shCapBorder = new TGeoCompositeShape(
2310 Form("ITSSPDshBORDER%s", suf),
2311 Form("%s-%s", shCapOut->GetName(),
2312 shCapIn->GetName()));
2313 // create volume
2314 TGeoVolume *volCapBorder = new TGeoVolume("ITSSPDcapBoarder",
2315 shCapBorder,medCap);
2316 volCapBorder->SetLineColor(kGreen);
2317 // finally, we create the top of the cover, which has the same
2318 // shape of outer border and a thickness equal of the one othe
2319 // cover border one
2320 TGeoXtru *shCapTop = new TGeoXtru(2);
2321 z1 = z2;
2322 z2 = z1 + capThickness;
2323 shCapTop->DefinePolygon(6, xCap, yCap);
2324 shCapTop->DefineSection(0, z1, 0., 0., 1.0);
2325 shCapTop->DefineSection(1, z2, 0., 0., 1.0);
2326 TGeoVolume *volCapTop = new TGeoVolume("ITSSPDcapTop", shCapTop, medCap);
2327 volCapTop->SetLineColor(kBlue);
2328
2329 // create container assembly with right suffix
2330 TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly(
2331 Form("ITSSPDmcm%s", suf));
2332
2333 // add mcm layer
2334 mcmAssembly->AddNode(volBase, 1, gGeoIdentity);
2335 // add chips
2336 for (i = 0; i < 5; i++) {
2337 TGeoVolume *box = gGeoManager->MakeBox(name[i],medChip,
2338 0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]);
2339 TGeoTranslation *tr = new TGeoTranslation(chipX[i],chipY[i],
2340 0.5*(-thickness + chipThickness[i]) + mcmThickness);
2341 box->SetLineColor(color[i]);
2342 mcmAssembly->AddNode(box, 1, tr);
2343 } // end for i
2344 // add cap border
2345 mcmAssembly->AddNode(volCapBorder, 1, gGeoIdentity);
2346 // add cap top
2347 mcmAssembly->AddNode(volCapTop, 1, gGeoIdentity);
2348
2349 return mcmAssembly;
592651e2 2350}
7f69c251 2351
2352/*
2353//__________________________________________________________________________________________
2354TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
2355(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const
2356{
2357 //
2358 // The pixel bus is implemented as a TGeoBBox with some objects on it,
2359 // which could affect the particle energy loss.
2360 // ---
2361 // In order to avoid confusion, the bus is directly displaced
2362 // according to the axis orientations which are used in the final stave:
2363 // X --> thickness direction
2364 // Y --> width direction
2365 // Z --> length direction
2366 //
2367
2368
2369 // ** MEDIA **
2370
2371 //PIXEL BUS
2372 TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
2373 TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000
2374 // Capacity
2375 TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr);
2376 // ??? Resistance
2377 // TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr);
2378 TGeoMedium *medRes = GetMedium("ALUMINUM$",mgr);
2379 TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
2380 // ** SIZES & POSITIONS **
2381 Double_t busLength = 170.501 * fgkmm; // length of plane part
2382 Double_t busWidth = 13.800 * fgkmm; // width
2383 Double_t busThickness = 0.280 * fgkmm; // thickness
2384 Double_t pt1000Length = fgkmm * 1.50;
2385 Double_t pt1000Width = fgkmm * 3.10;
2386 Double_t pt1000Thickness = fgkmm * 0.60;
2387 Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
2388 Double_t capLength = fgkmm * 2.55;
2389 Double_t capWidth = fgkmm * 1.50;
2390 Double_t capThickness = fgkmm * 1.35;
2391 Double_t capY[2], capZ[2];
2392
2393 Double_t resLength = fgkmm * 2.20;
2394 Double_t resWidth = fgkmm * 0.80;
2395 Double_t resThickness = fgkmm * 0.35;
2396 Double_t resY[2], resZ[2];
2397
2398 Double_t extThickness = fgkmm * 0.25;
2399 Double_t ext1Length = fgkmm * (26.7 - 10.0);
2400 Double_t ext2Length = fgkmm * (285.0 - ext1Length + extThickness);
2401 Double_t extWidth = fgkmm * 11.0;
2402 Double_t extHeight = fgkmm * 2.5;
2403
2404
2405 // position of pt1000, resistors and capacitors depends on the
2406 // bus if it's left or right one
2407 if (!isRight) {
2408 pt1000Y = 64400.;
2409 pt1000Z[0] = 66160.;
2410 pt1000Z[1] = 206200.;
2411 pt1000Z[2] = 346200.;
2412 pt1000Z[3] = 486200.;
2413 pt1000Z[4] = 626200.;
2414 pt1000Z[5] = 776200.;
2415 pt1000Z[6] = 916200.;
2416 pt1000Z[7] = 1056200.;
2417 pt1000Z[8] = 1196200.;
2418 pt1000Z[9] = 1336200.;
2419 resZ[0] = 1397500.;
2420 resY[0] = 26900.;
2421 resZ[1] = 682500.;
2422 resY[1] = 27800.;
2423 capZ[0] = 1395700.;
2424 capY[0] = 45700.;
2425 capZ[1] = 692600.;
2426 capY[1] = 45400.;
2427 } else {
2428 pt1000Y = 66100.;
2429 pt1000Z[0] = 319700.;
2430 pt1000Z[1] = 459700.;
2431 pt1000Z[2] = 599700.;
2432 pt1000Z[3] = 739700.;
2433 pt1000Z[4] = 879700.;
2434 pt1000Z[5] = 1029700.;
2435 pt1000Z[6] = 1169700.;
2436 pt1000Z[7] = 1309700.;
2437 pt1000Z[8] = 1449700.;
2438 pt1000Z[9] = 1589700.;
2439 capY[0] = 44500.;
2440 capZ[0] = 266700.;
2441 capY[1] = 44300.;
2442 capZ[1] = 974700.;
2443 resZ[0] = 266500.;
2444 resY[0] = 29200.;
2445 resZ[1] = 974600.;
2446 resY[1] = 29900.;
2447 } // end if isRight
2448 Int_t i;
2449 pt1000Y *= 1E-4 * fgkmm;
2450 for (i = 0; i < 10; i++) {
2451 pt1000Z[i] *= 1E-4 * fgkmm;
2452 if (i < 2) {
2453 capZ[i] *= 1E-4 * fgkmm;
2454 capY[i] *= 1E-4 * fgkmm;
2455 resZ[i] *= 1E-4 * fgkmm;
2456 resY[i] *= 1E-4 * fgkmm;
2457 } // end if iM2
2458 } // end for i
2459
2460 Double_t &fullLength = sizes[1];
2461 Double_t &fullWidth = sizes[2];
2462 Double_t &fullThickness = sizes[0];
2463 fullLength = busLength;
2464 fullWidth = busWidth;
2465 // add the thickness of the thickest component on bus (capacity)
2466 fullThickness = busThickness + capThickness;
2467 // ** VOLUMES **
2468 TGeoVolumeAssembly *container = new TGeoVolumeAssembly("PixelBus");
2469 TGeoVolume *bus = mgr->MakeBox("Bus", medBus, 0.5*busThickness, 0.5*busWidth, 0.5*busLength);
2470 TGeoVolume *pt1000 = mgr->MakeBox("PT1000", medPt1000, 0.5*pt1000Thickness, 0.5*pt1000Width, 0.5*pt1000Length);
2471 TGeoVolume *res = mgr->MakeBox("Resistor", medRes, 0.5*resThickness, 0.5*resWidth, 0.5*resLength);
2472 TGeoVolume *cap = mgr->MakeBox("Capacitor", medCap, 0.5*capThickness, 0.5*capWidth, 0.5*capLength);
2473 TGeoVolume *ext1 = mgr->MakeBox("Extender1", medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length);
2474 TGeoVolume *ext2 = mgr->MakeBox("Extender2", medExt, 0.5*extHeight - extThickness, 0.5*extWidth, 0.5*extThickness);
2475 TGeoVolume *ext3 = mgr->MakeBox("Extender3", medExt, extThickness, 0.5*extWidth, 0.5*ext2Length);
2476 bus->SetLineColor(kYellow + 2);
2477 pt1000->SetLineColor(kGreen + 3);
2478 res->SetLineColor(kRed + 1);
2479 cap->SetLineColor(kBlue - 7);
2480 ext1->SetLineColor(kGray);
2481 ext2->SetLineColor(kGray);
2482 ext3->SetLineColor(kGray);
2483
2484 // ** MOVEMENTS AND POSITIONEMENT **
2485 // bus
2486 TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness -
2487 fullThickness), 0.0, 0.0);
2488 container->AddNode(bus, 0, trBus);
2489 Double_t zRef, yRef, x, y, z;
2490 if (isRight) {
2491 zRef = -0.5*fullLength;
2492 yRef = -0.5*fullWidth;
2493 } else {
2494 zRef = -0.5*fullLength;
2495 yRef = -0.5*fullWidth;
2496 } // end if isRight
2497 // pt1000
2498 x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
2499 for (i = 0; i < 10; i++) {
2500 y = yRef + pt1000Y;
2501 z = zRef + pt1000Z[i];
2502 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2503 container->AddNode(pt1000, i, tr);
2504 } // end for i
2505 // capacitors
2506 x = 0.5*(capThickness - fullThickness) + busThickness;
2507 for (i = 0; i < 2; i++) {
2508 y = yRef + capY[i];
2509 z = zRef + capZ[i];
2510 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2511 container->AddNode(cap, i, tr);
2512 } // end for i
2513 // resistors
2514 x = 0.5*(resThickness - fullThickness) + busThickness;
2515 for (i = 0; i < 2; i++) {
2516 y = yRef + resY[i];
2517 z = zRef + resZ[i];
2518 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2519 container->AddNode(res, i, tr);
2520 } // end for i
2521 // extender
2522 if (isRight) {
2523 y = 0.5 * (-fullWidth + extWidth);
2524 z = 0.5 * (-fullLength + fgkmm * 10.0);
2525 }
2526 else {
2527 y = 0.5 * (fullWidth - extWidth);
2528 z = 0.5 * ( fullLength - fgkmm * 10.0);
2529 }
2530 x = 0.5 * (extThickness - fullThickness) + busThickness;
2531 //y = 0.5 * (fullWidth - extWidth);
2532 TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z);
2533 if (isRight) {
2534 z -= 0.5 * (ext1Length - extThickness);
2535 }
2536 else {
2537 z += 0.5 * (ext1Length - extThickness);
2538 }
2539 x += 0.5*(extHeight - extThickness);
2540 TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z);
2541 if (isRight) {
2542 z -= 0.5 * (ext2Length - extThickness);
2543 }
2544 else {
2545 z += 0.5 * (ext2Length - extThickness);
2546 }
2547 x += 0.5*(extHeight - extThickness) + extThickness;
2548 TGeoTranslation *trExt3 = new TGeoTranslation(x, y, z);
2549 container->AddNode(ext1, 0, trExt1);
2550 container->AddNode(ext2, 0, trExt2);
2551 container->AddNode(ext3, 0, trExt3);
2552
2553
2554 sizes[3] = yRef + pt1000Y;
2555 sizes[4] = zRef + pt1000Z[2];
2556 sizes[5] = zRef + pt1000Z[7];
2557
2558 return container;
2559}
2560*/
2561
54c9a3d9 2562//______________________________________________________________________
bc3498f4 2563TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
2564(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const
2565{
54c9a3d9 2566 //
2567 // The pixel bus is implemented as a TGeoBBox with some objects on it,
2568 // which could affect the particle energy loss.
2569 // ---
2570 // In order to avoid confusion, the bus is directly displaced
2571 // according to the axis orientations which are used in the final stave:
2572 // X --> thickness direction
2573 // Y --> width direction
2574 // Z --> length direction
2575 //
2576
2577 // ** MEDIA **
2578 //PIXEL BUS
2579 TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
2580 TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000
2581 // Capacity
2582 TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr);
2583 // ??? Resistance
7f69c251 2584 //TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr);
2585 TGeoMedium *medRes = GetMedium("ALUMINUM$",mgr);
2586 TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
54c9a3d9 2587 // ** SIZES & POSITIONS **
2588 Double_t busLength = 170.501 * fgkmm; // length of plane part
2589 Double_t busWidth = 13.800 * fgkmm; // width
2590 Double_t busThickness = 0.280 * fgkmm; // thickness
2591 Double_t pt1000Length = fgkmm * 1.50;
2592 Double_t pt1000Width = fgkmm * 3.10;
2593 Double_t pt1000Thickness = fgkmm * 0.60;
2594 Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
2595 Double_t capLength = fgkmm * 2.55;
2596 Double_t capWidth = fgkmm * 1.50;
2597 Double_t capThickness = fgkmm * 1.35;
2598 Double_t capY[2], capZ[2];
2599
2600 Double_t resLength = fgkmm * 2.20;
2601 Double_t resWidth = fgkmm * 0.80;
2602 Double_t resThickness = fgkmm * 0.35;
2603 Double_t resY[2], resZ[2];
7f69c251 2604
2605 Double_t extThickness = fgkmm * 0.25;
2606 Double_t ext1Length = fgkmm * (26.7 - 10.0);
4098f5dd 2607 Double_t ext2Length = fgkmm * (284.0 - ext1Length + extThickness);
7f69c251 2608 Double_t extWidth = fgkmm * 11.0;
2609 Double_t extHeight = fgkmm * 2.5;
54c9a3d9 2610
2611 // position of pt1000, resistors and capacitors depends on the
2612 // bus if it's left or right one
2613 if (!isRight) {
2614 pt1000Y = 64400.;
2615 pt1000Z[0] = 66160.;
2616 pt1000Z[1] = 206200.;
2617 pt1000Z[2] = 346200.;
2618 pt1000Z[3] = 486200.;
2619 pt1000Z[4] = 626200.;
2620 pt1000Z[5] = 776200.;
2621 pt1000Z[6] = 916200.;
2622 pt1000Z[7] = 1056200.;
2623 pt1000Z[8] = 1196200.;
2624 pt1000Z[9] = 1336200.;
2625 resZ[0] = 1397500.;
2626 resY[0] = 26900.;
2627 resZ[1] = 682500.;
2628 resY[1] = 27800.;
2629 capZ[0] = 1395700.;
2630 capY[0] = 45700.;
2631 capZ[1] = 692600.;
2632 capY[1] = 45400.;
2633 } else {
2634 pt1000Y = 66100.;
2635 pt1000Z[0] = 319700.;
2636 pt1000Z[1] = 459700.;
2637 pt1000Z[2] = 599700.;
2638 pt1000Z[3] = 739700.;
2639 pt1000Z[4] = 879700.;
2640 pt1000Z[5] = 1029700.;
2641 pt1000Z[6] = 1169700.;
2642 pt1000Z[7] = 1309700.;
2643 pt1000Z[8] = 1449700.;
2644 pt1000Z[9] = 1589700.;
2645 capY[0] = 44500.;
2646 capZ[0] = 266700.;
2647 capY[1] = 44300.;
2648 capZ[1] = 974700.;
2649 resZ[0] = 266500.;
2650 resY[0] = 29200.;
2651 resZ[1] = 974600.;
2652 resY[1] = 29900.;
2653 } // end if isRight
2654 Int_t i;
2655 pt1000Y *= 1E-4 * fgkmm;
2656 for (i = 0; i < 10; i++) {
2657 pt1000Z[i] *= 1E-4 * fgkmm;
2658 if (i < 2) {
2659 capZ[i] *= 1E-4 * fgkmm;
2660 capY[i] *= 1E-4 * fgkmm;
2661 resZ[i] *= 1E-4 * fgkmm;
2662 resY[i] *= 1E-4 * fgkmm;
2663 } // end if iM2
2664 } // end for i
2665
2666 Double_t &fullLength = sizes[1];
2667 Double_t &fullWidth = sizes[2];
2668 Double_t &fullThickness = sizes[0];
2669 fullLength = busLength;
2670 fullWidth = busWidth;
2671 // add the thickness of the thickest component on bus (capacity)
2672 fullThickness = busThickness + capThickness;
2673
2674 // ** VOLUMES **
2675 TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDpixelBus");
2676 TGeoVolume *bus = mgr->MakeBox("ITSSPDbus", medBus, 0.5*busThickness,
2677 0.5*busWidth, 0.5*busLength);
2678 TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",medPt1000,
2679 0.5*pt1000Thickness,0.5*pt1000Width, 0.5*pt1000Length);
2680 TGeoVolume *res = mgr->MakeBox("ITSSPDresistor", medRes, 0.5*resThickness,
2681 0.5*resWidth, 0.5*resLength);
2682 TGeoVolume *cap = mgr->MakeBox("ITSSPDcapacitor", medCap, 0.5*capThickness,
2683 0.5*capWidth, 0.5*capLength);
7f69c251 2684
2685 TGeoVolume *ext1 = mgr->MakeBox("Extender1", medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length);
2686 TGeoVolume *ext2 = mgr->MakeBox("Extender2", medExt, 0.5*extHeight - extThickness, 0.5*extWidth, 0.5*extThickness);
7708d5f3 2687 TGeoVolume *ext3 = mgr->MakeBox("Extender3", medExt, extThickness, 0.5*(extWidth-0.8*fgkmm), 0.5*ext2Length); // Hardcode fix of a small overlap
54c9a3d9 2688 bus->SetLineColor(kYellow + 2);
2689 pt1000->SetLineColor(kGreen + 3);
2690 res->SetLineColor(kRed + 1);
2691 cap->SetLineColor(kBlue - 7);
7f69c251 2692 ext1->SetLineColor(kGray);
2693 ext2->SetLineColor(kGray);
2694 ext3->SetLineColor(kGray);
54c9a3d9 2695
2696 // ** MOVEMENTS AND POSITIONEMENT **
2697 // bus
2698 TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness -
2699 fullThickness), 0.0, 0.0);
2700 container->AddNode(bus, 1, trBus);
2701 Double_t zRef, yRef, x, y, z;
2702 if (isRight) {
2703 zRef = -0.5*fullLength;
2704 yRef = -0.5*fullWidth;
2705 } else {
2706 zRef = -0.5*fullLength;
2707 yRef = -0.5*fullWidth;
2708 } // end if isRight
2709 // pt1000
2710 x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
2711 for (i = 0; i < 10; i++) {
2712 y = yRef + pt1000Y;
2713 z = zRef + pt1000Z[i];
2714 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2715 container->AddNode(pt1000, i+1, tr);
2716 } // end for i
2717 // capacitors
2718 x = 0.5*(capThickness - fullThickness) + busThickness;
2719 for (i = 0; i < 2; i++) {
2720 y = yRef + capY[i];
2721 z = zRef + capZ[i];
2722 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2723 container->AddNode(cap, i+1, tr);
2724 } // end for i
2725 // resistors
2726 x = 0.5*(resThickness - fullThickness) + busThickness;
2727 for (i = 0; i < 2; i++) {
2728 y = yRef + resY[i];
2729 z = zRef + resZ[i];
2730 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2731 container->AddNode(res, i+1, tr);
2732 } // end for i
2733
7f69c251 2734 // extender
2735 if (isRight) {
d5d0fe2d 2736 y = 0.5 * (fullWidth - extWidth) - 0.1;
7f69c251 2737 z = 0.5 * (-fullLength + fgkmm * 10.0);
2738 }
2739 else {
d5d0fe2d 2740 y = 0.5 * (fullWidth - extWidth) - 0.1;
7f69c251 2741 z = 0.5 * ( fullLength - fgkmm * 10.0);
2742 }
2743 x = 0.5 * (extThickness - fullThickness) + busThickness;
2744 //y = 0.5 * (fullWidth - extWidth);
2745 TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z);
2746 if (isRight) {
2747 z -= 0.5 * (ext1Length - extThickness);
2748 }
2749 else {
2750 z += 0.5 * (ext1Length - extThickness);
2751 }
2752 x += 0.5*(extHeight - extThickness);
2753 TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z);
2754 if (isRight) {
2755 z -= 0.5 * (ext2Length - extThickness);
2756 }
2757 else {
2758 z += 0.5 * (ext2Length - extThickness);
2759 }
2760 x += 0.5*(extHeight - extThickness) + extThickness;
2761 TGeoTranslation *trExt3 = new TGeoTranslation(x, y, z);
2762 container->AddNode(ext1, 0, trExt1);
2763 container->AddNode(ext2, 0, trExt2);
2764 container->AddNode(ext3, 0, trExt3);
2765
54c9a3d9 2766 sizes[3] = yRef + pt1000Y;
2767 sizes[4] = zRef + pt1000Z[2];
2768 sizes[5] = zRef + pt1000Z[7];
2769
2770 return container;
592651e2 2771}
7f69c251 2772
2773//______________________________________________________________________
2774TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateConeModule(TGeoManager *mgr) const
2775{
2776 TGeoMedium *medInox = GetMedium("INOX$",mgr);
2777 TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
2778 TGeoMedium *medPlate = GetMedium("SPD C (M55J)$", mgr);
2779
2780 Double_t extThickness = fgkmm * 0.25;
2781 Double_t ext1Length = fgkmm * (26.7 - 10.0);
2782 Double_t ext2Length = fgkmm * (285.0 - ext1Length + extThickness);
2783
2784 Double_t cableThickness = 1.5 * fgkmm;
2785 Double_t cableL1 = 350.0 * fgkmm - extThickness - ext1Length - ext2Length;
7708d5f3 2786 Double_t cableL2 = 426.0 * fgkmm;
7f69c251 2787 //Double_t cableL3 = 570.0 * fgkmm;
2788 Double_t cableL3 = 57.0 * fgkmm;
2789 Double_t cableW1 = 11.0 * fgkmm;
2790 Double_t cableW2 = 30.0 * fgkmm;
2791 Double_t cableW3 = 50.0 * fgkmm;
2792
2793 Double_t mcmThickness = 1.2 *fgkmm;
2794 Double_t mcmLength = cableL1 + cableL2 + cableL3;
2795 Double_t mcmWidth = cableW1;
2796
2797 Double_t plateLength = 200.0 * fgkmm;
2798 Double_t plateWidth = 50.0 * fgkmm;
2799 Double_t plateThickness = 5.0 * fgkmm;
2800
2801 Double_t x[12], y[12];
2802
2803 x[0] = 7.5;
2804 y[0] = 0.0 + 0.5 * cableW1;
2805
2806 x[1] = x[0] + cableL1 - 0.5*(cableW2 - cableW1);
2807 y[1] = y[0];
2808
2809 x[2] = x[0] + cableL1;
2810 y[2] = y[1] + 0.5*(cableW2 - cableW1);
2811
2812 x[3] = x[2] + cableL2;
2813 y[3] = y[2];
2814
2815 x[4] = x[3] + 0.5*(cableW3 - cableW2);
2816 y[4] = y[3] + 0.5*(cableW3 - cableW2);
2817
2818 x[5] = x[4] + cableL3 - 0.5*(cableW3 - cableW2);
2819 y[5] = y[4];
2820
2821 for (Int_t i = 6; i < 12; i++) {
2822 x[i] = x[11 - i];
2823 y[i] = -y[11 - i];
2824 }
2825
2826 TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDConeModule");
2827
2828 TGeoXtru *shCable = new TGeoXtru(2);
2829 shCable->DefinePolygon(12, x, y);
2830 shCable->DefineSection(0, 0., 0., 0., 1.0);
2831 shCable->DefineSection(1, cableThickness, 0., 0., 1.0);
2832
2833 TGeoVolume *volCable = new TGeoVolume("ITSSPDExtender", shCable, medExt);
2834 volCable->SetLineColor(kGreen);
2835
2836 TGeoVolume *volTube = gGeoManager->MakeTube("ITSSPDCoolingTubeCone", medInox, 5.*fgkmm, 6.*fgkmm, 0.5*(x[5] - x[0]));
2837 volTube->SetLineColor(kGray);
2838
2839 Double_t thickness = cableThickness + mcmThickness;
2840 TGeoBBox *shOut = new TGeoBBox("ITSSPD_shape_plateout", 0.5*plateThickness, 0.5*plateLength, 0.5*plateWidth);
2841 TGeoBBox *shIn = new TGeoBBox("ITSSPD_shape_platein", 0.5*thickness, 0.52*plateLength, 0.5*cableW2);
2842 Char_t string[255];
2843 sprintf(string, "%s-%s", shOut->GetName(), shIn->GetName());
2844 TGeoCompositeShape *shPlate = new TGeoCompositeShape("ITSSPDPlate_shape", string);
2845 TGeoVolume *volPlate = new TGeoVolume("ITSSPDPlate", shPlate, medPlate);
2846 volPlate->SetLineColor(kRed);
2847
2848 TGeoVolume *volMCMExt = gGeoManager->MakeBox("ITSSPDextenderMCM", medExt, 0.5*mcmThickness, 0.5*mcmLength, 0.5*mcmWidth);
2849 volMCMExt->SetLineColor(kGreen+3);
2850
2851 TGeoRotation *rot = new TGeoRotation(*gGeoIdentity);
2852 rot->RotateX(90.0);
2853 rot->RotateZ(90.0);
2854 container->AddNode(volCable, 0, rot);
2855
2856 TGeoTranslation *combi = new TGeoTranslation(cableThickness + 0.5*mcmThickness, x[0] + 0.5*mcmLength, 0.0);
2857 container->AddNode(volMCMExt, 0, combi);
2858
2859 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
2860 rot1->RotateX(88.5);
2861 TGeoCombiTrans *tr = new TGeoCombiTrans(1.0, x[0] + 0.5*(x[5] - x[0]), -3.0, rot1);
2862 container->AddNode(volTube, 0, tr);
2863
2864 TGeoTranslation *tr1 = new TGeoTranslation(0.5*plateThickness - 0.5*(plateThickness-thickness), x[3] - x[0] - 0.52*plateLength, 0.0);
2865 container->AddNode(volPlate, 0, tr1);
2866
2867 return container;
2868}
2869
2870//______________________________________________________________________
2871void AliITSv11GeometrySPD::CreateCones(TGeoVolume *moth) const
2872{
2873
2874 TGeoVolumeAssembly *module = CreateConeModule(gGeoManager);
2875
2876 //Double_t angle[10] = {18., 54., 90., 126., 162., -18., -54., -90., -126., -162.};
2877 Double_t angle[10] = {18., 54., 90., 126., 162., 198.0, 234.0, 270.0, 306.0, 342.0};
2878 for (Int_t i = 0; i < 10; i++) {
2879 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
2880 rot1->RotateY(-90.0);
2881 rot1->RotateX(45.0);
2882 rot1->RotateZ(90.0 - angle[i]);
2883 TGeoCombiTrans *tr1 = new TGeoCombiTrans(0.0, 0.0, 40.5, rot1);
2884 moth->AddNode(module, 2*i, tr1);
2885 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
2886 rot2->RotateY(90.0);
2887 rot2->RotateX(-45.0);
2888 rot2->RotateZ(90.0 - angle[i]);
2889 TGeoCombiTrans *tr2 = new TGeoCombiTrans(0.0, 0.0, -40.5, rot2);
2890 moth->AddNode(module, 2*i+1, tr2);
2891 }
2892}
2893
54c9a3d9 2894//______________________________________________________________________
2895TGeoVolume* AliITSv11GeometrySPD::CreateExtender(
2896 const Double_t *extenderParams, const TGeoMedium *extenderMedium,
2897 TArrayD& sizes) const
bc3498f4 2898{
54c9a3d9 2899 //
2900 // ------------------ CREATE AN EXTENDER ------------------------
2901 //
2902 // This function creates the following picture (in plane xOy)
2903 // Should be useful for the definition of the pixel bus and MCM extenders
2904 // The origin corresponds to point 0 on the picture, at half-width
2905 // in Z direction
2906 //
2907 // Y 7 6 5
2908 // ^ +---+---------------------+
2909 // | / |
2910 // | / |
2911 // 0------> X / +---------------------+
2912 // / / 3 4
2913 // / /
2914 // 9 8 / /
2915 // +-----------+ /
2916 // | /
2917 // | /
2918 // ---> +-----------+---+
2919 // | 0 1 2
2920 // |
2921 // origin (0,0,0)
2922 //
2923 //
2924 // Takes 6 parameters in the following order :
2925 // |--> par 0 : inner length [0-1] / [9-8]
2926 // |--> par 1 : thickness ( = [0-9] / [4-5])
2927 // |--> par 2 : angle of the slope
2928 // |--> par 3 : total height in local Y direction
2929 // |--> par 4 : outer length [3-4] / [6-5]
2930 // |--> par 5 : width in local Z direction
2931 //
2932 Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1]
2933 * TMath::Cos(extenderParams[2])) /
2934 TMath::Tan(extenderParams[2]);
2935 Double_t extenderXtruX[10] = {
2936 0 ,
2937 extenderParams[0] ,
2938 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2]) ,
2939 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
2940 slopeDeltaX ,
2941 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
2942 slopeDeltaX + extenderParams[4],
2943 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
2944 slopeDeltaX + extenderParams[4],
2945 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
2946 slopeDeltaX ,
2947 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
2948 slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) ,
2949 extenderParams[0] ,
2950 0
2951 };
2952 Double_t extenderXtruY[10] = {
2953 0 ,
2954 0 ,
2955 extenderParams[1] * (1-TMath::Cos(extenderParams[2])) ,
2956 extenderParams[3] - extenderParams[1] ,
2957 extenderParams[3] - extenderParams[1] ,
2958 extenderParams[3] ,
2959 extenderParams[3] ,
2960 extenderParams[3]-extenderParams[1]*(1-TMath::Cos(extenderParams[2])) ,
2961 extenderParams[1] ,
2962 extenderParams[1]
2963 };
592651e2 2964
54c9a3d9 2965 if (sizes.GetSize() != 3) sizes.Set(3);
2966 Double_t &thickness = sizes[0];
2967 Double_t &length = sizes[1];
2968 Double_t &width = sizes[2];
2969
2970 thickness = extenderParams[3];
2971 width = extenderParams[5];
2972 length = extenderParams[0]+extenderParams[1]*
2973 TMath::Sin(extenderParams[2])+slopeDeltaX+extenderParams[4];
2974
2975 // creation of the volume
2976 TGeoXtru *extenderXtru = new TGeoXtru(2);
2977 TGeoVolume *extenderXtruVol = new TGeoVolume("ITSSPDextender",extenderXtru,
2978 extenderMedium);
2979 extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY);
2980 extenderXtru->DefineSection(0,-0.5*extenderParams[4]);
2981 extenderXtru->DefineSection(1, 0.5*extenderParams[4]);
2982 return extenderXtruVol;
2983}
bc3498f4 2984//______________________________________________________________________
2985TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBusAndExtensions
2986(Bool_t /*zpos*/, TGeoManager *mgr) const
2987{
54c9a3d9 2988 //
2989 // Creates an assembly which contains the pixel bus and its extension
2990 // and the extension of the MCM.
2991 // By: Renaud Vernet
2992 // NOTE: to be defined its material and its extension in the outside
2993 // direction
2994 //
2995 // ==== constants =====
2996 //get the media
2997 // PIXEL BUS
2998 //TGeoMedium *medPixelBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
2999 // IXEL BUS EXTENDER
3000 TGeoMedium *medPBExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr);
3001 //MCM EXTENDER
3002 TGeoMedium *medMCMExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr);
3003 // //geometrical constants
3004 const Double_t kPbextenderThickness = 0.07 * fgkmm;
3005 //design=?? 70 deg. seems OK
3006 const Double_t kPbExtenderSlopeAngle = 70.0 * TMath::Pi()/180.;
3007 // = 2.6 - (0.28+0.05+0.35) cf design
3008 const Double_t kPbExtenderHeight = 1.92 * fgkmm;
3009 const Double_t kPbExtenderWidthY = 11.0 * fgkmm;
3010 //design=?? 70 deg. seems OK
3011 const Double_t kMcmExtenderSlopeAngle = 70.0 * TMath::Pi()/180.;
3012 const Double_t kMcmExtenderThickness = 0.10 * fgkmm;
3013 const Double_t kMcmExtenderHeight = 1.8 * fgkmm;
3014 const Double_t kMcmExtenderWidthY = kPbExtenderWidthY;
3015 // const Double_t groundingThickness = 0.07 * fgkmm;
3016 // const Double_t grounding2pixelBusDz = 0.625 * fgkmm;
3017 // const Double_t pixelBusThickness = 0.28 * fgkmm;
3018 // const Double_t groundingWidthX = 170.501 * fgkmm;
3019 // const Double_t pixelBusContactDx = 1.099 * fgkmm;
3020 // const Double_t pixelBusWidthY = 13.8 * fgkmm;
3021 //design=20 deg.
3022 // const Double_t pixelBusContactPhi = 20.0 * TMath::Pi()/180.
3023 // const Double_t pbExtenderTopZ = 2.72 * fgkmm;
3024 // const Double_t mcmThickness = 0.35 * fgkmm;
3025 // const Double_t halfStaveTotalLength = 247.64 * fgkmm;
3026 // const Double_t deltaYOrigin = 15.95/2.* fgkmm;
3027 // const Double_t deltaXOrigin = 1.1 * fgkmm;
3028 // const Double_t deltaZOrigin = halfStaveTotalLength / 2.;
3029 // const Double_t grounding2pixelBusDz2 = grounding2pixelBusDz+
3030 // groundingThickness/2. + pixelBusThickness/2.;
3031 // const Double_t pixelBusWidthX = groundingWidthX;
3032 // const Double_t pixelBusRaiseLength = (pixelBusContactDx-
3033 // pixelBusThickness*TMath::Sin(pixelBusContactPhi))/
3034 // TMath::Cos(pixelBusContactPhi);
3035 // const Double_t pbExtenderBaseZ = grounding2pixelBusDz2 +
3036 // pixelBusRaiseLength*TMath::Sin(pixelBusContactPhi) +
3037 // 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*
3038 // TMath::Tan(pixelBusContactPhi);
3039 // const Double_t pbExtenderDeltaZ = pbExtenderTopZ-pbExtenderBaseZ;
3040 // const Double_t pbExtenderEndPointX = 2*deltaZOrigin -
3041 // groundingWidthX - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi);
3042 // const Double_t pbExtenderXtru3L = 1.5 * fgkmm; //arbitrary ?
3043 // const Double_t pbExtenderXtru4L = (pbExtenderDeltaZ +
3044 // pixelBusThickness*(TMath::Cos(extenderSlope)-2))/
3045 // TMath::Sin(extenderSlope);
3046 // const Double_t kMcmExtenderEndPointX = deltaZOrigin - 48.2 * fgkmm;
3047 // const Double_t kMcmExtenderXtru3L = 1.5 * fgkmm;
3048 // //===== end constants =====
3049 const Double_t kPbExtenderInnerLength = 10. * fgkmm;
3050 const Double_t kPbExtenderOuterLength = 15. * fgkmm;
3051 const Double_t kMcmExtenderInnerLength = 10. * fgkmm;
3052 const Double_t kMcmExtenderOuterLength = 15. * fgkmm;
3053 Double_t pbExtenderParams[6] = {kPbExtenderInnerLength, //0
3054 kPbextenderThickness, //1
3055 kPbExtenderSlopeAngle, //2
3056 kPbExtenderHeight, //3
3057 kPbExtenderOuterLength, //4
3058 kPbExtenderWidthY}; //5
3059
3060 Double_t mcmExtenderParams[6] = {kMcmExtenderInnerLength, //0
3061 kMcmExtenderThickness, //1
3062 kMcmExtenderSlopeAngle, //2
3063 kMcmExtenderHeight, //3
3064 kMcmExtenderOuterLength, //4
3065 kMcmExtenderWidthY}; //5
3066
3067 TArrayD sizes(3);
3068 TGeoVolume* pbExtender = CreateExtender(pbExtenderParams,medPBExtender,
3069 sizes);
3070 if(GetDebug(1))printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\t"
3071 "LENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
3072 TGeoVolume* mcmExtender = CreateExtender(mcmExtenderParams,medMCMExtender,
3073 sizes);
3074 if(GetDebug(1))printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\t"
3075 "LENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
3076 // Double_t pixelBusValues[5] = {pixelBusWidthX, //0
3077 // pixelBusThickness, //1
3078 // pixelBusContactPhi, //2
3079 // pixelBusRaiseLength, //3
3080 // pixelBusWidthY}; //4
3081
3082 // Double_t pbExtenderValues[8] = {pixelBusRaiseLength, //0
3083 // pixelBusContactPhi, //1
3084 // pbExtenderXtru3L, //2
3085 // pixelBusThickness, //3
3086 // extenderSlope, //4
3087 // pbExtenderXtru4L, //5
3088 // pbExtenderEndPointX, //6
3089 // kPbExtenderWidthY}; //7
3090
3091 // Double_t mcmExtenderValues[6] = {mcmExtenderXtru3L, //0
3092 // mcmExtenderThickness, //1
3093 // extenderSlope, //2
3094 // deltaMcmMcmExtender, //3
3095 // mcmExtenderEndPointX, //4
3096 // mcmExtenderWidthY}; //5
3097 // TGeoVolumeAssembly *pixelBus=new TGeoVolumeAssembly("ITSSPDpixelBus");
3098 // CreatePixelBus(pixelBus,pixelBusValues,medPixelBus);
3099 // TGeoVolumeAssembly *pbExtender = new TGeoVolumeAssembly(
3100 // "ITSSPDpixelBusExtender");
3101 // CreatePixelBusExtender(pbExtender,pbExtenderValues,medPBExtender);
3102 // TGeoVolumeAssembly *mcmExtender = new TGeoVolumeAssembly(
3103 // "ITSSPDmcmExtender");
3104 // CreateMCMExtender(mcmExtender,mcmExtenderValues,medMCMExtender);
3105 //-------------- DEFINITION OF GEOMETRICAL TRANSFORMATIONS --------
3106 // TGeoRotation * commonRot = new TGeoRotation("commonRot",0,90,0);
3107 // commonRot->MultiplyBy(new TGeoRotation("rot",-90,0,0));
3108 // TGeoTranslation * pixelBusTrans = new TGeoTranslation(
3109 // pixelBusThickness/2. - deltaXOrigin + 0.52*fgkmm ,
3110 // -pixelBusWidthY/2. + deltaYOrigin ,
3111 // -groundingWidthX/2. + deltaZOrigin);
3112 // TGeoRotation *pixelBusRot = new TGeoRotation(*commonRot);
3113 // TGeoTranslation *pbExtenderTrans =new TGeoTranslation(*pixelBusTrans);
3114 // TGeoRotation *pbExtenderRot = new TGeoRotation(*pixelBusRot);
3115 // pbExtenderTrans->SetDz(*(pbExtenderTrans->GetTranslation()+2) -
3116 // pixelBusWidthX/2. - 2*pixelBusThickness*
3117 // TMath::Sin(pixelBusContactPhi));
3118 // if (!zpos) {
3119 // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) -
3120 // (pixelBusWidthY - kPbExtenderWidthY)/2.);
3121 // } else {
3122 // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) +
3123 // (pixelBusWidthY - kPbExtenderWidthY)/2.);
3124 // }
3125 // pbExtenderTrans->SetDx(*(pbExtenderTrans->GetTranslation()) +
3126 // pixelBusThickness/2 + 2*pixelBusThickness*
3127 // TMath::Sin(pixelBusContactPhi)*
3128 // TMath::Tan(pixelBusContactPhi));
3129 // TGeoTranslation * mcmExtenderTrans = new TGeoTranslation(0.12*fgkmm +
3130 // mcmThickness - deltaXOrigin,
3131 // pbExtenderTrans->GetTranslation()[1],
3132 // -4.82);
3133 // TGeoRotation * mcmExtenderRot = new TGeoRotation(*pbExtenderRot);
3134 // // add pt1000 components
3135 // Double_t pt1000Z = fgkmm * 64400. * 1E-4;
3136 // //Double_t pt1000X[10] = {319700., 459700., 599700., 739700.,
3137 // 879700., 1029700., 1169700., 1309700.,
3138 // 1449700., 1589700.};
3139 // Double_t pt1000X[10] ={66160., 206200., 346200., 486200., 626200.,
3140 // 776200., 916200., 1056200., 1196200., 1336200.};
3141 // Double_t pt1000size[3] = {fgkmm*1.5, fgkmm*0.6, fgkmm*3.1};
3142 // Int_t i;
3143 // for (i = 0; i < 10; i++) {
3144 // pt1000X[i] *= fgkmm * 1E-4;
3145 // }
3146 // TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",0,0.5*pt1000size[0],
3147 // 0.5*pt1000size[1], 0.5*pt1000size[2]);
3148 // pt1000->SetLineColor(kGray);
3149 // Double_t refThickness = - pixelBusThickness;
3150 // for (i = 0; i < 10; i++) {
3151 // TGeoTranslation *tr = new TGeoTranslation(pt1000X[i]-
3152 // 0.5*pixelBusWidthX, 0.002+0.5*(-3.*refThickness+pt1000size[3]),
3153 // pt1000Z -0.5*pixelBusWidthY);
3154 // pixelBus->AddNode(pt1000, i+1, tr);
3155 // }
3156
3157 //CREATE FINAL VOLUME ASSEMBLY AND ROTATE IT
3158 TGeoVolumeAssembly *assembly = new TGeoVolumeAssembly("ITSSPDextenders");
3159 // assembly->AddNode((TGeoVolume*)pixelBus,1,
3160 // new TGeoCombiTrans(*pixelBusTrans,*pixelBusRot));
3161 // assembly->AddNode((TGeoVolume*)pbExtender,1,
3162 // new TGeoCombiTrans(*pbExtenderTrans,*pbExtenderRot));
3163 // assembly->AddNode((TGeoVolume*)mcmExtender,1,
3164 // new TGeoCombiTrans(*mcmExtenderTrans,*mcmExtenderRot));
3165 // assembly->AddNode(mcmExtender,1,new TGeoIdentity());
3166 assembly->AddNode(pbExtender,1);
3167 assembly->AddNode(mcmExtender,1);
3168 // assembly->SetTransparency(50);
3169
3170 return assembly;
592651e2 3171}
54c9a3d9 3172//______________________________________________________________________
3173TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave(Bool_t isRight,
3174Int_t layer,Int_t idxCentral,Int_t idxSide,TArrayD &sizes,TGeoManager *mgr)
bc3498f4 3175{
54c9a3d9 3176 //
3177 // Implementation of an half-stave, which depends on the side where
3178 // we are on the stave. The convention for "left" and "right" is the
3179 // same as for the MCM. The return value is a TGeoAssembly which is
3180 // structured in such a way that the origin of its local reference
3181 // frame coincides with the origin of the whole stave.
3182 // The TArrayD passed by reference will contain details of the shape:
3183 // - sizes[0] = thickness
3184 // - sizes[1] = length
3185 // - sizes[2] = width
3186 // - sizes[3] = common 'x' position for eventual clips
3187 // - sizes[4] = common 'y' position for eventual clips
3188 // - sizes[5] = 'z' position of first clip
3189 // - sizes[6] = 'z' position of second clip
3190 //
3191
3192 // ** CHECK **
3193
3194 // idxCentral and idxSide must be different
3195 if (idxCentral == idxSide) {
3196 AliInfo("Ladders must be inserted in half-stave with "
3197 "different indexes.");
3198 idxSide = idxCentral + 1;
3199 AliInfo(Form("Central ladder will be inserted with index %d",
3200 idxCentral));
3201 AliInfo(Form("Side ladder will be inserted with index %d",idxSide));
3202 } // end if
3203
3204 // define the separations along Z direction between the objects
3205 Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders
3206 Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder
3207 // and the Z=0 plane in stave ref.
3208 Double_t sepLadderMCM = fgkmm * 0.3; // sep. btw the "external" ladder
3209 // and MCM
3210 Double_t sepBusCenter = fgkmm * 0.3; // sep. btw the bus central edge
3211 // and the Z=0 plane in stave ref.
3212
3213 // ** VOLUMES **
3214
3215 // grounding foil
3216 TArrayD grndSize(3);
3217 // This one line repalces the 3 bellow, BNS.
3218 TGeoVolume *grndVol = CreateGroundingFoil(isRight, grndSize, mgr);
3219 Double_t &grndThickness = grndSize[0];
3220 Double_t &grndLength = grndSize[1];
3221
3222 // ladder
3223 TArrayD ladderSize(3);
3224 TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr);
3225 Double_t ladderThickness = ladderSize[0];
3226 Double_t ladderLength = ladderSize[1];
3227 Double_t ladderWidth = ladderSize[2];
3228
3229 // MCM
3230 TArrayD mcmSize(3);
3231 TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr);
3232 Double_t mcmThickness = mcmSize[0];
3233 Double_t mcmLength = mcmSize[1];
3234 Double_t mcmWidth = mcmSize[2];
3235
3236 // bus
3237 TArrayD busSize(6);
3238 TGeoVolumeAssembly *bus = CreatePixelBus(isRight, busSize, mgr);
3239 Double_t busThickness = busSize[0];
3240 Double_t busLength = busSize[1];
3241 Double_t busWidth = busSize[2];
3242
3243 // glue between ladders and pixel bus
3244 TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr);
3245 Double_t ladGlueThickness = fgkmm * 0.1175 - fgkGapLadder;
3246 TGeoVolume *ladderGlue = mgr->MakeBox("ITSSPDladderGlue",medLadGlue,
3247 0.5*ladGlueThickness, 0.5*busWidth, 0.5*busLength);
3248 ladderGlue->SetLineColor(kYellow + 5);
3249
3250 // create references for the whole object, as usual
3251 sizes.Set(7);
3252 Double_t &fullThickness = sizes[0];
3253 Double_t &fullLength = sizes[1];
3254 Double_t &fullWidth = sizes[2];
3255
3256 // compute the full size of the container
3257 fullLength = sepLadderCenter+2.0*ladderLength+sepLadderMCM+
3258 sepLadderLadder+mcmLength;
3259 fullWidth = ladderWidth;
3260 fullThickness = grndThickness + fgkGapLadder + mcmThickness + busThickness;
3261
3262 // ** MOVEMENTS **
3263
3264 // grounding foil (shifted only along thickness)
3265 Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness;
3266 Double_t zGrnd = -0.5*grndLength;
3267 if (!isRight) zGrnd = -zGrnd;
3268 TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd);
3269
3270 // ladders (translations along thickness and length)
3271 // layers must be sorted going from the one at largest Z to the
3272 // one at smallest Z:
3273 // -|Zmax| ------> |Zmax|
3274 // 3 2 1 0
3275 // then, for layer 1 ladders they must be placed exactly this way,
3276 // and in layer 2 at the opposite. In order to remember the placements,
3277 // we define as "inner" and "outer" ladder respectively the one close
3278 // to barrel center, and the one closer to MCM, respectively.
3279 Double_t xLad, zLadIn, zLadOut;
3280 xLad = xGrnd + 0.5*(grndThickness + ladderThickness) +
3281 0.01175 - fgkGapLadder;
3282 zLadIn = -sepLadderCenter - 0.5*ladderLength;
3283 zLadOut = zLadIn - sepLadderLadder - ladderLength;
3284 if (!isRight) {
3285 zLadIn = -zLadIn;
3286 zLadOut = -zLadOut;
3287 } // end if !isRight
3288 TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity);
3289 rotLad->RotateZ(90.0);
3290 rotLad->RotateY(180.0);
3291 Double_t sensWidth = fgkmm * 12.800;
3292 Double_t chipWidth = fgkmm * 15.950;
3293 Double_t guardRingWidth = fgkmm * 0.560;
3294 Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth);
3295 TGeoCombiTrans *trLadIn = new TGeoCombiTrans(xLad,ladderShift,zLadIn,
3296 rotLad);
3297 TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad,ladderShift,zLadOut,
3298 rotLad);
3299
3300 // MCM (length and thickness direction, placing at same level as the
3301 // ladder, which implies to recompute the position of center, because
3302 // ladder and MCM have NOT the same thickness) the two copies of the
3303 // MCM are placed at the same distance from the center, on both sides
3304 Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness +
3305 0.01175 - fgkGapLadder;
3306 Double_t yMCM = 0.5*(fullWidth - mcmWidth);
3307 Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM;
3308 if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength +
3309 sepLadderMCM;
3310
3311 // create the correction rotations
3312 TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity);
3313 rotMCM->RotateY(90.0);
3314 TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM);
3315
3316 // glue between ladders and pixel bus
3317 Double_t xLadGlue = xLad + 0.5*ladderThickness + 0.01175 -
3318 fgkGapLadder + 0.5*ladGlueThickness;
3319
3320 // bus (length and thickness direction)
3321 Double_t xBus = xLadGlue + 0.5*ladGlueThickness + 0.5*busThickness;
7708d5f3 3322 Double_t yBus = 0.5*(fullWidth - busWidth) + 0.075; // Hardcode fix of a small overlap
54c9a3d9 3323 Double_t zBus = -0.5*busLength - sepBusCenter;
3324 if (!isRight) zBus = -zBus;
3325 TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus);
3326
3327 TGeoTranslation *trLadGlue = new TGeoTranslation(xLadGlue, 0.0, zBus);
3328
3329 // create the container
3330 TGeoVolumeAssembly *container = 0;
3331 if (idxCentral+idxSide==5) {
3332 container = new TGeoVolumeAssembly("ITSSPDhalf-Stave1");
3333 } else {
3334 container = new TGeoVolumeAssembly("ITSSPDhalf-Stave0");
3335 } // end if
3336
3337 // add to container all objects
3338 container->AddNode(grndVol, 1, grndTrans);
3339 // ladders are inserted in different order to respect numbering scheme
3340 // which is inverted when going from outer to inner layer
3341 container->AddNode(ladder, idxCentral+1, trLadIn);
3342 container->AddNode(ladder, idxSide+1, trLadOut);
3343 container->AddNode(ladderGlue, 1, trLadGlue);
3344 container->AddNode(mcm, 1, trMCM);
3345 container->AddNode(bus, 1, trBus);
3346
3347 // since the clips are placed in correspondence of two pt1000s,
3348 // their position is computed here, but they are not added by default
3349 // it will be the StavesInSector method which will decide to add them
3350 // anyway, to recovery some size informations on the clip, it must be
3351 // created
3352 TArrayD clipSize;
3353 // TGeoVolume *clipDummy = CreateClip(clipSize, kTRUE, mgr);
3354 CreateClip(clipSize, kTRUE, mgr);
3355 // define clip movements (width direction)
3356 sizes[3] = xBus + 0.5*busThickness;
3357 sizes[4] = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.48;
3358 sizes[5] = zBus + busSize[4];
3359 sizes[6] = zBus + busSize[5];
3360
3361 return container;
bc3498f4 3362}
54c9a3d9 3363//______________________________________________________________________
3364TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave(Int_t layer,
3365 TArrayD &sizes, TGeoManager *mgr)
7855ea93 3366{
54c9a3d9 3367 //
3368 // This method uses all other ones which create pieces of the stave
3369 // and assemblies everything together, in order to return the whole
3370 // stave implementation, which is returned as a TGeoVolumeAssembly,
3371 // due to the presence of some parts which could generate fake overlaps
3372 // when put on the sector.
3373 // This assembly contains, going from bottom to top in the thickness
3374 // direction:
3375 // - the complete grounding foil, defined by the "CreateGroundingFoil"
3376 // method which already joins some glue and real groudning foil
3377 // layers for the whole stave (left + right);
3378 // - 4 ladders, which are sorted according to the ALICE numbering
3379 // scheme, which depends on the layer we are building this stave for;
3380 // - 2 MCMs (a left and a right one);
3381 // - 2 pixel buses (a left and a right one);
3382 // ---
3383 // Arguments:
3384 // - the layer number, which determines the displacement and naming
3385 // of sensitive volumes
3386 // - a TArrayD passed by reference which will contain the size
3387 // of virtual box containing the stave
3388 // - the TGeoManager
3389 //
3390
3391 // create the container
3392 TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form(
3393 "ITSSPDlay%d-Stave",layer));
3394 // define the indexes of the ladders in order to have the correct order
3395 // keeping in mind that the staves will be inserted as they are on layer
3396 // 2, while they are rotated around their local Y axis when inserted
3397 // on layer 1, so in this case they must be put in the "wrong" order
3398 // to turn out to be right at the end. The convention is:
3399 // -|Zmax| ------> |Zmax|
3400 // 3 2 1 0
3401 // with respect to the "native" stave reference frame, "left" is in
3402 // the positive Z this leads the definition of these indexes:
3403 Int_t idxCentralL, idxSideL, idxCentralR, idxSideR;
3404
3405 if (layer == 1) {
3406 idxSideL = 3;
3407 idxCentralL = 2;
3408 idxCentralR = 1;
3409 idxSideR = 0;
3410 } else {
3411 idxSideL = 0;
3412 idxCentralL = 1;
3413 idxCentralR = 2;
3414 idxSideR = 3;
3415 } // end if layer ==1
3416
3417 // create the two half-staves
3418 TArrayD sizeL, sizeR;
3419 TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL,
3420 idxSideL, sizeL,mgr);
3421 TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR,
3422 idxSideR, sizeR, mgr);
3423 // copy the size to the stave's one
3424 sizes.Set(9);
3425 sizes[0] = sizeL[0];
3426 sizes[1] = sizeR[1] + sizeL[1];
3427 sizes[2] = sizeL[2];
3428 sizes[3] = sizeL[3];
3429 sizes[4] = sizeL[4];
3430 sizes[5] = sizeL[5];
3431 sizes[6] = sizeL[6];
3432 sizes[7] = sizeR[5];
3433 sizes[8] = sizeR[6];
3434
3435 // add to container all objects
3436 container->AddNode(hstaveL, 1);
3437 container->AddNode(hstaveR, 1);
3438
3439 return container;
592651e2 3440}
54c9a3d9 3441//______________________________________________________________________
bc3498f4 3442void AliITSv11GeometrySPD::SetAddStave(Bool_t *mask)
3443{
54c9a3d9 3444 //
3445 // Define a mask which states qhich staves must be placed.
3446 // It is a string which must contain '0' or '1' depending if
3447 // a stave must be placed or not.
3448 // Each place is referred to one of the staves, so the first
3449 // six characters of the string will be checked.
3450 //
3451 Int_t i;
3452
3453 for (i = 0; i < 6; i++) fAddStave[i] = mask[i];
bc3498f4 3454}
54c9a3d9 3455//______________________________________________________________________
3456void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr)
3457{
3458 //
3459 // Unification of essentially two methods:
3460 // - the one which creates the sector structure
3461 // - the one which returns the complete stave
3462 // ---
3463 // For compatibility, this method requires the same arguments
3464 // asked by "CarbonFiberSector" method, which is recalled here.
3465 // Like this cited method, this one does not return any value,
3466 // but it inserts in the mother volume (argument 'moth') all the stuff
3467 // which composes the complete SPD sector.
3468 // ---
3469 // In the following, the stave numbering order used for arrays is the
3470 // same as defined in the GetSectorMountingPoints():
3471 // /5
3472 // /\/4
3473 // 1\ \/3
3474 // 0|___\/2
3475 // ---
3476 // Arguments: see description of "CarbonFiberSector" method.
3477 //
3478
3479 Double_t shift[6]; // shift from the innermost position in the
3480 // sector placement plane (where the stave
3481 // edge is in the point where the rounded
3482 // corner begins)
3483
3484 shift[0] = fgkmm * -0.691;
3485 shift[1] = fgkmm * 5.041;
3486 shift[2] = fgkmm * 1.816;
3487 shift[3] = fgkmm * -0.610;
3488 shift[4] = fgkmm * -0.610;
3489 shift[5] = fgkmm * -0.610;
3490
3491 // create stave volumes (different for layer 1 and 2)
3492 TArrayD staveSizes1(9), staveSizes2(9), clipSize(5);
3493 Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0];
3494 TGeoVolume *stave1 = CreateStave(1, staveSizes1, mgr);
3495 TGeoVolume *stave2 = CreateStave(2, staveSizes2, mgr);
3496 TGeoVolume *clip = CreateClip(clipSize, kFALSE, mgr);
3497
3498 Double_t xL, yL; // leftmost edge of mounting point (XY projection)
3499 Double_t xR, yR; // rightmost edge of mounting point (XY projection)
3500 Double_t xM, yM; // middle point of the segment L-R
3501 Double_t dx, dy; // (xL - xR) and (yL - yR)
3502 Double_t widthLR; // width of the segment L-R
3503 Double_t angle; // stave rotation angle in degrees
3504 Double_t diffWidth; // difference between mounting plane width and
3505 // stave width (smaller)
3506 Double_t xPos, yPos; // final translation of the stave
3507 Double_t parMovement; // translation in the LR plane direction
3508
3509 staveThickness += fgkGapHalfStave;
3510
3511 // loop on staves
3512 Int_t i, iclip = 1;
3513 for (i = 0; i < 6; i++) {
3514 // in debug mode, if this stave is not required, it is skipped
3515 if (!fAddStave[i]) continue;
3516 // retrieve reference points
3517 GetSectorMountingPoints(i, xL, yL, xR, yR);
3518 xM = 0.5 * (xL + xR);
3519 yM = 0.5 * (yL + yR);
3520 dx = xL - xR;
3521 dy = yL - yR;
3522 angle = TMath::ATan2(dy, dx);
3523 widthLR = TMath::Sqrt(dx*dx + dy*dy);
3524 diffWidth = 0.5*(widthLR - staveHeight);
3525 // first, a movement along this plane must be done
3526 // by an amount equal to the width difference
3527 // and then the fixed shift must also be added
3528 parMovement = diffWidth + shift[i];
3529 // due to stave thickness, another movement must be done
3530 // in the direction normal to the mounting plane
3531 // which is computed using an internal method, in a reference
3532 // frame where the LR segment has its middle point in the origin
3533 // and axes parallel to the master reference frame
3534 if (i == 0) {
3535 ParallelPosition(-0.5*staveThickness, -parMovement, angle,
3536 xPos, yPos);
3537 } // end if i==0
3538 if (i == 1) {
3539 ParallelPosition( 0.5*staveThickness, -parMovement, angle,
3540 xPos, yPos);
3541 }else {
3542 ParallelPosition( 0.5*staveThickness, parMovement, angle,
3543 xPos, yPos);
3544 } // end if i==1
3545 // then we go into the true reference frame
3546 xPos += xM;
3547 yPos += yM;
3548 // using the parameters found here, compute the
3549 // translation and rotation of this stave:
3550 TGeoRotation *rot = new TGeoRotation(*gGeoIdentity);
3551 if (i == 0 || i == 1) rot->RotateX(180.0);
3552 rot->RotateZ(90.0 + angle * TMath::RadToDeg());
3553 TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot);
3554 if (i == 0 || i == 1) {
3555 moth->AddNode(stave1, i+1, trans);
3556 }else {
3557 moth->AddNode(stave2, i - 1, trans);
3558 if (i != 2) {
3559 // except in the case of stave #2,
3560 // clips must be added, and this is done directly on the sector
3561 Int_t j;
4adcf390 3562 //TArrayD clipSize;
54c9a3d9 3563 TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity);
3564 rotClip->RotateZ(-90.0);
3565 rotClip->RotateX(180.0);
3566 Double_t x = staveSizes2[3] + fgkGapHalfStave;
3567 Double_t y = staveSizes2[4];
3568 Double_t z[4] = { staveSizes2[5], staveSizes2[6],
3569 staveSizes2[7], staveSizes2[8] };
3570 for (j = 0; j < 4; j++) {
3571 TGeoCombiTrans *trClip = new TGeoCombiTrans(x, y, z[j],
3572 rotClip);
3573 *trClip = *trans * *trClip;
3574 moth->AddNode(clip, iclip++, trClip);
3575 } // end for j
3576 } // end if i!=2
3577 } // end if i==0||i==1 else
3578 } // end for i
592651e2 3579}
54c9a3d9 3580//______________________________________________________________________
bc3498f4 3581void AliITSv11GeometrySPD::ParallelPosition(Double_t dist1, Double_t dist2,
54c9a3d9 3582 Double_t phi, Double_t &x, Double_t &y) const
3583{
3584 //
3585 // Performs the following steps:
3586 // 1 - finds a straight line parallel to the one passing through
3587 // the origin and with angle 'phi' with X axis(phi in RADIANS);
3588 // 2 - finds another line parallel to the previous one, with a
3589 // distance 'dist1' from it
3590 // 3 - takes a reference point in the second line in the intersection
3591 // between the normal to both lines passing through the origin
3592 // 4 - finds a point whith has distance 'dist2' from this reference,
3593 // in the second line (point 2)
3594 // ----
3595 // According to the signs given to dist1 and dist2, the point is
3596 // found in different position w.r. to the origin
3597 // compute the point
3598 //
3599 Double_t cs = TMath::Cos(phi);
3600 Double_t sn = TMath::Sin(phi);
3601
3602 x = dist2*cs - dist1*sn;
3603 y = dist1*cs + dist2*sn;
592651e2 3604}
54c9a3d9 3605//______________________________________________________________________
3606Double_t AliITSv11GeometrySPD::GetSPDSectorTranslation(
3607 Double_t x0,Double_t y0,Double_t x1,Double_t y1,Double_t r) const
3608{
3609 //
3610 // Comutes the radial translation of a sector to give the
3611 // proper distance between SPD detectors and the beam pipe.
3612 // Units in are units out.
3613 //
3614
3615 //Begin_Html
3616 /*
3617 <A HREF="http://www.physics.ohio-state.edu/HIRG/SoftWareDoc/SPD_Sector_Position.png">
3618 Figure showing the geometry used in the computation below. </A>
3619 */
3620 //End_Html
3621
3622 // Inputs:
3623 // Double_t x0 Point x0 on Sector surface for the inner
3624 // most detector mounting
3625 // Double_t y0 Point y0 on Sector surface for the innor
3626 // most detector mounting
3627 // Double_t x1 Point x1 on Sector surface for the inner
3628 // most detector mounting
3629 // Double_t y1 Point y1 on Sector surface for the innor
3630 // most detector mounting
3631 // Double_t r The radial distance this mounting surface
3632 // should be from the center of the beam pipe.
3633 // Outputs:
3634 // none.
3635 // Return:
3636 // The distance the SPD sector should be displaced radialy.
3637 //
3638 Double_t a,b,c;
3639
3640 a = x0-x1;
3641 if(a==0.0) return 0.0;
3642 a = (y0-y1)/a;
3643 b = TMath::Sqrt(1.0+a*a);
3644 c = y0-a*x0-r*b;
3