Histogram numbering offset and total number of histograms as a function of the task...
[u/mrichter/AliRoot.git] / ITS / AliITSv11GeometrySPD.cxx
CommitLineData
db486a6e 1/**************************************************************************
59da35b6 2 * Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
db486a6e 3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
592651e2 15//
db486a6e 16// This class Defines the Geometry for the ITS services and support cones
54c9a3d9 17// outside of the central volume (except for the Central support
18// cylinders). Other classes define the rest of the ITS, specifically the
19// SSD support cone, the SSD Support central cylinder, the SDD support cone,
20// the SDD support central cylinder, the SPD Thermal Shield, The supports
db486a6e 21// and cable trays on both the RB26 (muon dump) and RB24 sides, and all of
592651e2 22// the cabling from the ladders/stave ends out past the TPC.
23//
54c9a3d9 24// Here is the calling sequence associated with this file
25// SPDSector(TGeoVolume *moth,TGeoManager *mgr)
26// -----CarbonFiberSector(TGeoVolume *moth,Double_t &xAAtubeCenter0,
27// Double_t &yAAtubeCenter0,TGeoManager *mgr)
28// -----2* SPDsectorShape(Int_t n,const Double_t *xc,const Double_t *yc,
29// | const Double_t *r,const Double_t *ths,
30// | const Double_t *the,Int_t npr,Int_t &m,
31// | Double_t **xp,Double_t **yp)
32// -----StavesInSector(TGeoVolume *moth,TGeoManager *mgr)
33// -----3* CreaeStave(Int_t layer,TArrayD &sizes,Bool_t addClips,
34// | TGeoManager *mgr)
35// | -----2* CreateHalfStave(Boot_t isRight,Int_t layer,
36// | Int_t idxCentral,Int_t idxSide,
37// | TArrayD &sizes,Bool_t addClips,
38// | TGeoManager *mgr)
39// | -----CreateGrondingFoil(Bool_t isRight,TArrayD &sizes,
40// | | TGeoManager *mgr)
41// | | -----4* CreateGroundingFoilSingle(Int_t type,
42// | | TArrayD &sizes,
43// | | TGeoManger *mgr)
44// | |----CreateLadder(Int_t layer, TArrayD &sizes,
45// | | TGeoManager *mgr)
46// | |----CreateMCM(Bool_t isRight,TArrayD &sizes,
47// | | TGeoManger *mgr)
48// | |----CreatePixelBus(Bool_t isRight,TArrayD &sizes,
49// | | TGeoManager *mgr)
50// | -----CreateClip(TArrayD &sizes,TGeoManager *mgr)
51// |----GetSectorMountingPoints(Int_t index,Double_t &x0,
52// | Double_t &y0,Double_t &x1,
53// | Double_t y1)
54// -----3* ParallelPosition(Double_t dist1,Double_t dist2,
55// Double_t phi,Double_t &x,Double_t &y)
56//
57// Obsoleate or presently unused routines are: setAddStave(Bool_t *mask),
58// CreatePixelBusAndExtensions(...) which calles CreateExtender(...).
db486a6e 59
543b7370 60/* $Id$ */
592651e2 61
4098f5dd 62
db486a6e 63// General Root includes
64#include <Riostream.h>
65#include <TMath.h>
66#include <TLatex.h>
67#include <TCanvas.h>
68#include <TPolyLine.h>
297369a1 69#include <TPolyMarker.h>
bc3498f4 70
db486a6e 71// Root Geometry includes
db486a6e 72#include <TGeoVolume.h>
592651e2 73#include <TGeoTube.h> // contains TGeoTubeSeg
db486a6e 74#include <TGeoEltu.h>
75#include <TGeoXtru.h>
db486a6e 76#include <TGeoMatrix.h>
a53658c6 77#include <TGeoMaterial.h>
78#include <TGeoMedium.h>
592651e2 79#include <TGeoCompositeShape.h>
bc3498f4 80
592651e2 81// AliRoot includes
bc3498f4 82#include "AliLog.h"
a53658c6 83#include "AliMagF.h"
84#include "AliRun.h"
bc3498f4 85
592651e2 86// Declaration file
db486a6e 87#include "AliITSv11GeometrySPD.h"
88
54c9a3d9 89// Constant definistions
90const Double_t AliITSv11GeometrySPD::fgkGapLadder =
91 AliITSv11Geometry::fgkmicron*75.; // 75 microns
92const Double_t AliITSv11GeometrySPD::fgkGapHalfStave =
93 AliITSv11Geometry::fgkmicron*120.; // 120 microns
7855ea93 94
db486a6e 95ClassImp(AliITSv11GeometrySPD)
54c9a3d9 96//______________________________________________________________________
97AliITSv11GeometrySPD::AliITSv11GeometrySPD(/*Double_t gap*/):
98AliITSv11Geometry(),// Default constructor of base class
99fAddStave(), // [DEBUG] must be TRUE for all staves which will be
100 // mounted in the sector (used to check overlaps)
101fSPDsectorX0(0), // X of first edge of sector plane for stave
102fSPDsectorY0(0), // Y of first edge of sector plane for stave
103fSPDsectorX1(0), // X of second edge of sector plane for stave
104fSPDsectorY1(0), // Y of second edge of sector plane for stave
105fTubeEndSector() // coordinate of cooling tube ends
106{
107 //
108 // Default constructor.
109 // This does not initialize anything and is provided just for
110 // completeness. It is recommended to use the other one.
111 // The alignment gap is specified as argument (default = 0.0075 cm).
112 // Inputs:
113 // none.
114 // Outputs:
115 // none.
116 // Return:
117 // A default constructed AliITSv11GeometrySPD class.
118 //
119 Int_t i = 0,j=0,k=0;
db486a6e 120
54c9a3d9 121 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
122 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
123 this->fTubeEndSector[k][0][i][j] = 0.0;
124 this->fTubeEndSector[k][1][i][j] = 0.0;
125 } // end for i,j
126}
127//______________________________________________________________________
128AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug/*, Double_t gap*/):
129AliITSv11Geometry(debug),// Default constructor of base class
130fAddStave(), // [DEBUG] must be TRUE for all staves which will be
131 // mounted in the sector (used to check overlaps)
132fSPDsectorX0(0), // X of first edge of sector plane for stave
133fSPDsectorY0(0), // Y of first edge of sector plane for stave
134fSPDsectorX1(0), // X of second edge of sector plane for stave
135fSPDsectorY1(0), // Y of second edge of sector plane for stave
136fTubeEndSector() // coordinate of cooling tube ends
137{
138 //
139 // Constructor with debug setting argument
140 // This is the constructor which is recommended to be used.
141 // It sets a debug level, and initializes the name of the object.
142 // The alignment gap is specified as argument (default = 0.0075 cm).
143 // Inputs:
144 // Int_t debug Debug level, 0= no debug output.
145 // Outputs:
146 // none.
147 // Return:
148 // A default constructed AliITSv11GeometrySPD class.
149 //
150 Int_t i = 0,j=0,k=0;
db486a6e 151
54c9a3d9 152 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
153 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
154 this->fTubeEndSector[k][0][i][j] = 0.0;
155 this->fTubeEndSector[k][1][i][j] = 0.0;
156 } // end for i,j
157}
158//______________________________________________________________________
159AliITSv11GeometrySPD::AliITSv11GeometrySPD(const AliITSv11GeometrySPD &s):
160AliITSv11Geometry(s),// Base Class Copy constructor
161fAddStave(), // [DEBUG] must be TRUE for all staves which will be
162 // mounted in the sector (used to check overlaps)
163fSPDsectorX0(s.fSPDsectorX0), // X of first edge of sector plane for stave
164fSPDsectorY0(s.fSPDsectorY0), // Y of first edge of sector plane for stave
165fSPDsectorX1(s.fSPDsectorX1), // X of second edge of sector plane for stave
166fSPDsectorY1(s.fSPDsectorY1) // Y of second edge of sector plane for stave
bc3498f4 167{
54c9a3d9 168 //
169 // Copy Constructor
170 // Inputs:
171 // AliITSv11GeometrySPD &s source class
172 // Outputs:
173 // none.
174 // Return:
175 // A copy of a AliITSv11GeometrySPD class.
176 //
177 Int_t i=0,j=0,k=0;
178
179 for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
180 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
181 this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
182 this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
183 } // end for i,j
bc3498f4 184}
54c9a3d9 185//______________________________________________________________________
186AliITSv11GeometrySPD& AliITSv11GeometrySPD::operator=(const
187 AliITSv11GeometrySPD &s)
bc3498f4 188{
54c9a3d9 189 //
190 // = operator
191 // Inputs:
192 // AliITSv11GeometrySPD &s source class
193 // Outputs:
194 // none.
195 // Return:
196 // A copy of a AliITSv11GeometrySPD class.
197 //
198 Int_t i=0,j=0,k=0;
199
200 if(this==&s) return *this;
201 for (i = 0; i < 6; i++) this->fAddStave[i] = s.fAddStave[i];
202 this->fSPDsectorX0=s.fSPDsectorX0;
203 this->fSPDsectorY0=s.fSPDsectorY0;
204 this->fSPDsectorX1=s.fSPDsectorX1;
205 this->fSPDsectorY1=s.fSPDsectorY1;
206 for(k=0;k<10;k++)for(i=0;i<6;i++)for(j=0;j<3;j++){
207 this->fTubeEndSector[k][0][i][j] = s.fTubeEndSector[k][0][i][j];
208 this->fTubeEndSector[k][1][i][j] = s.fTubeEndSector[k][1][i][j];
209 } // end for i,j
210 return *this;
bc3498f4 211}
54c9a3d9 212//______________________________________________________________________
213TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName,
214 TGeoManager *mgr) const
bc3498f4 215{
54c9a3d9 216 //
217 // This function is used to recovery any medium
218 // used to build the geometry volumes.
219 // If the required medium does not exists,
220 // a NULL pointer is returned, and an error message is written.
221 //
222 Char_t itsMediumName[30];
223
224 sprintf(itsMediumName, "ITS_%s", mediumName);
225 TGeoMedium* medium = mgr->GetMedium(itsMediumName);
226 if (!medium) AliError(Form("Medium <%s> not found", mediumName));
227
228 return medium;
bc3498f4 229}
54c9a3d9 230//______________________________________________________________________
231Int_t AliITSv11GeometrySPD::CreateSPDCentralMaterials(Int_t &medOffset,
232 Int_t &matOffset) const
592651e2 233{
54c9a3d9 234 //
235 // Define the specific materials used for the ITS SPD central detectors.
236 // ---
237 // NOTE: These are the same old names.
238 // By the ALICE naming conventions, they start with "ITS SPD ...."
239 // Data taken from ** AliITSvPPRasymmFMD::CreateMaterials() **.
240 // ---
241 // Arguments [the ones passed by reference contain output values]:
242 // - medOffset --> (by ref) starting number of the list of media
243 // - matOffset --> (by ref) starting number of the list of Materials
244 // ---
245 // Inputs:
246 // Int_t &medOffset Starting number of the list of media
247 // Int_t &matOffset Starting number of the list of materials
248 // Outputs:
249 // Int_t &medOffset Ending number of the list of media
250 // Int_t &matOffset Ending number of the list of materials
251 // Return:
252 // The last material indexused +1. (= next avaiable material index)
253 //
254 const Double_t ktmaxfd = 0.1 * fgkDegree; // Degree
255 const Double_t kstemax = 1.0 * fgkcm; // cm
256 const Double_t kdeemax = 0.1;//Fraction of particle's energy 0<deemax<=1
257 const Double_t kepsil = 1.0E-4; //
258 const Double_t kstmin = 0.0 * fgkcm; // cm "Default value used"
259 const Double_t ktmaxfdAir = 0.1 * fgkDegree; // Degree
260 const Double_t kstemaxAir = 1.0000E+00 * fgkcm; // cm
261 const Double_t kdeemaxAir = 0.1;//Fraction of particle's energy 0<deemax<=1
262 const Double_t kepsilAir = 1.0E-4;//
263 const Double_t kstminAir = 0.0 * fgkcm; // cm "Default value used"
264 const Double_t ktmaxfdSi = 0.1 * fgkDegree; // .10000E+01; // Degree
265 const Double_t kstemaxSi = 0.0075 * fgkcm; // .10000E+01; // cm
266 const Double_t kdeemaxSi = 0.1;//Fraction of particle's energy 0<deemax<=1
267 const Double_t kepsilSi = 1.0E-4;//
268 const Double_t kstminSi = 0.0 * fgkcm; // cm "Default value used"
269 //
270 Int_t matindex = matOffset;
271 Int_t medindex = medOffset;
272 TGeoMaterial *mat;
273 TGeoMixture *mix;
274 TGeoMedium *med;
275 //
276 Int_t ifield = (gAlice->Field()->Integ());
277 Double_t fieldm = (gAlice->Field()->Max());
278 Double_t params[8] = {8 * 0.0};
279
280 params[1] = (Double_t) ifield;
281 params[2] = fieldm;
282 params[3] = ktmaxfdSi;
283 params[4] = kstemaxSi;
284 params[5] = kdeemaxSi;
285 params[6] = kepsilSi;
286 params[7] = kstminSi;
287
288 // Definition of materials and mediums.
289 // Last argument in material definition is its pressure,
290 // which is initialized to ZERO.
291 // For better readability, it is simply set to zero.
292 // Then the writing "0.0 * fgkPascal" is replaced by "0."
293 // (Alberto)
294
295 // silicon definition for ITS (overall)
296 mat = new TGeoMaterial("ITS_SI", 28.086, 14.0, 2.33 * fgkgcm3,
297 TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.);
298 mat->SetIndex(matindex);
299 med = new TGeoMedium("SI", medindex++, mat, params);
300
301 // silicon for ladder chips
302 mat = new TGeoMaterial("SPD SI CHIP", 28.086, 14.0, 2.33 * fgkgcm3,
303 TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.);
304 mat->SetIndex(matindex);
305 med = new TGeoMedium("SPD SI CHIP", medindex++, mat, params);
306
307 // silicon for pixel bus
308 mat = new TGeoMaterial("SPD SI BUS", 28.086, 14.0, 2.33 * fgkgcm3,
309 TGeoMaterial::kMatStateSolid, 25.0*fgkCelsius, 0.);
310 mat->SetIndex(matindex);
311 med = new TGeoMedium("SPD SI BUS", medindex++, mat, params);
312
313 // carbon fiber material is defined as a mix of C-O-N-H
314 // defined in terms of fractional weights according to 'C (M55J)'
315 // it is used for the support and clips
316 mix = new TGeoMixture("C (M55J)", 4, 1.9866 * fgkgcm3);
317 mix->SetIndex(matindex);
318 mix->DefineElement(0, 12.01070, 6.0, 0.908508078);// C by fractional weight
319 mix->DefineElement(1, 14.00670, 7.0, 0.010387573);// N by fractional weight
320 mix->DefineElement(2, 15.99940, 8.0, 0.055957585);// O by fractional weight
321 mix->DefineElement(3, 1.00794, 1.0, 0.025146765);// H by fractional weight
322 mix->SetPressure(0.0 * fgkPascal);
323 mix->SetTemperature(25.0 * fgkCelsius);
324 mix->SetState(TGeoMaterial::kMatStateSolid);
325 params[3] = ktmaxfd;
326 params[4] = kstemax;
327 params[5] = kdeemax;
328 params[6] = kepsil;
329 params[7] = kstmin;
330 med = new TGeoMedium("ITSspdCarbonFiber", medindex++, mix, params);
331
332 // air defined as a mixture of C-N-O-Ar:
333 // it is used to fill all containers
334 mix = new TGeoMixture("Air", 4, 1.20479E-3 * fgkgcm3);
335 mix->SetIndex(matindex);
336 mix->DefineElement(0, 12.0107, 6.0, 0.000124); // C by fractional weight
337 mix->DefineElement(1, 14.0067, 7.0, 0.755267); // N by fractional weight
338 mix->DefineElement(2, 15.9994, 8.0, 0.231781); // O by fractional weight
339 mix->DefineElement(3, 39.9480, 18.0, 0.012827); // Ar by fractional weight
340 mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
341 mix->SetTemperature(25.0 * fgkCelsius);
342 mix->SetState(TGeoMaterial::kMatStateGas);
343 params[3] = ktmaxfdAir;
344 params[4] = kstemaxAir;
345 params[5] = kdeemaxAir;
346 params[6] = kepsilAir;
347 params[7] = kstminAir;
348 med = new TGeoMedium("ITSspdAir", medindex++, mix, params);
349
350 // inox stainless steel, defined as a mixture
351 // used for all metallic parts
352 mix = new TGeoMixture("INOX", 9, 8.03 * fgkgcm3);
353 mix->SetIndex(matindex);
354 mix->DefineElement(0, 12.0107, 6., .0003); // C by fractional weight
355 mix->DefineElement(1, 54.9380, 25., .02); // Fe by fractional weight
356 mix->DefineElement(2, 28.0855, 14., .01); // Na by fractional weight
357 mix->DefineElement(3, 30.9738, 15., .00045); // P by fractional weight
358 mix->DefineElement(4, 32.066 , 16., .0003); // S by fractional weight
359 mix->DefineElement(5, 58.6928, 28., .12); // Ni by fractional weight
360 mix->DefineElement(6, 55.9961, 24., .17); // by fractional weight
361 mix->DefineElement(7, 95.84 , 42., .025); // by fractional weight
362 mix->DefineElement(8, 55.845 , 26., .654); // by fractional weight
363 mix->SetPressure(0.0 * fgkPascal);
364 mix->SetTemperature(25.0 * fgkCelsius);
365 mix->SetState(TGeoMaterial::kMatStateSolid);
366 params[3] = ktmaxfdAir;
367 params[4] = kstemaxAir;
368 params[5] = kdeemaxAir;
369 params[6] = kepsilAir;
370 params[7] = kstminAir;
371 med = new TGeoMedium("ITSspdStainlessSteel", medindex++, mix, params);
372
373 // freon gas which fills the cooling system (C+F)
374 mix = new TGeoMixture("Freon", 2, 1.63 * fgkgcm3);
375 mix->SetIndex(matindex);
376 mix->DefineElement(0, 12.0107 , 6.0, 4); // C by fractional weight
377 mix->DefineElement(1, 18.9984032, 9.0, 10); // F by fractional weight
378 mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
379 mix->SetTemperature(25.0 * fgkCelsius);
380 mix->SetState(TGeoMaterial::kMatStateLiquid);
381 params[3] = ktmaxfdAir;
382 params[4] = kstemaxAir;
383 params[5] = kdeemaxAir;
384 params[6] = kepsilAir;
385 params[7] = kstminAir;
386 med = new TGeoMedium("ITSspdCoolingFluid", medindex++, mix, params);
387
388 // return the next index to be used in case of adding new materials
389 medOffset = medindex;
390 matOffset = matindex;
391 return matOffset;
a53658c6 392}
54c9a3d9 393//______________________________________________________________________
bc3498f4 394void AliITSv11GeometrySPD::InitSPDCentral(Int_t offset, TVirtualMC *vmc) const
395{
54c9a3d9 396 //
397 // Do all SPD Central detector initializations (e.g.: transport cuts).
398 // ---
399 // Here follow some GEANT3 physics switches, which are interesting
400 // for these settings to be defined:
401 // - "MULTS" (MULtiple Scattering):
402 // the variable IMULS controls this process. See [PHYS320/325/328]
403 // 0 - No multiple scattering.
404 // 1 - (DEFAULT) Multiple scattering according to Moliere theory.
405 // 2 - Same as 1. Kept for backward compatibility.
406 // 3 - Pure Gaussian scattering according to the Rossi formula.
407 // - "DRAY" (Delta RAY production)
408 // The variable IDRAY controls this process. See [PHYS430]
409 // 0 - No delta rays production.
410 // 1 - (DEFAULT) Delta rays production with generation of.
411 // 2 - Delta rays production without generation of.
412 // - "LOSS" (continuous energy loss)
413 // The variable ILOSS controls this process.
414 // 0 - No continuous energy loss, IDRAY is set to 0.
415 // 1 - Continuous energy loss with generation of delta rays above
416 // DCUTE (common/GCUTS/) and restricted Landau fluctuations
417 // below DCUTE.
418 // 2 - (DEFAULT) Continuous energy loss without generation of
419 // delta rays
420 // and full Landau-Vavilov-Gauss fluctuations.
421 // In this case the variable IDRAY is forced to 0 to avoid
422 // double counting of fluctuations.
423 // 3 - Same as 1, kept for backward compatibility.
424 // 4 - Energy loss without fluctuation.
425 // The value obtained from the tables is used directly.
426 // ---
427 // Arguments:
428 // Int_t offset --> the material/medium index offset
429 // TVirtualMC *vmc --> pointer to the virtual Monte Carlo default gMC
430 //
431
432 Int_t i, n = 4;
433
434 for(i=0;i<n;i++) {
435 vmc->Gstpar(i+offset, "CUTGAM", 30.0 * fgkKeV);
436 vmc->Gstpar(i+offset, "CUTELE", 30.0 * fgkKeV);
437 vmc->Gstpar(i+offset, "CUTNEU", 30.0 * fgkKeV);
438 vmc->Gstpar(i+offset, "CUTHAD", 30.0 * fgkKeV);
439 vmc->Gstpar(i+offset, "CUTMUO", 30.0 * fgkKeV);
440 vmc->Gstpar(i+offset, "BCUTE", 30.0 * fgkKeV);
441 vmc->Gstpar(i+offset, "BCUTM", 30.0 * fgkKeV);
442 vmc->Gstpar(i+offset, "DCUTE", 30.0 * fgkKeV);
443 vmc->Gstpar(i+offset, "DCUTM", 30.0 * fgkKeV);
444 //vmc->Gstpar(i+offset, "PPCUTM", );
445 //vmc->Gstpar(i+offset, "PAIR", );
446 //vmc->Gstpar(i+offset, "COMPT", );
447 //vmc->Gstpar(i+offset, "PHOT", );
448 //vmc->Gstpar(i+offset, "PFIS", );
449 vmc->Gstpar(i+offset, "DRAY", 1);
450 //vmc->Gstpar(i+offset, "ANNI", );
451 //vmc->Gstpar(i+offset, "BREM", );
452 //vmc->Gstpar(i+offset, "HADR", );
453 //vmc->Gstpar(i+offset, "MUNU", );
454 //vmc->Gstpar(i+offset, "DCAY", );
455 vmc->Gstpar(i+offset, "LOSS", 1);
456 //vmc->Gstpar(i+offset, "MULS", );
457 //vmc->Gstpar(i+offset, "GHCOR1", );
458 //vmc->Gstpar(i+offset, "BIRK1", );
459 //vmc->Gstpar(i+offset, "BRIK2", );
460 //vmc->Gstpar(i+offset, "BRIK3", );
461 //vmc->Gstpar(i+offset, "LABS", );
462 //vmc->Gstpar(i+offset, "SYNC", );
463 //vmc->Gstpar(i+offset, "STRA", );
464 }
a53658c6 465}
54c9a3d9 466//______________________________________________________________________
bc3498f4 467void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr)
468{
54c9a3d9 469 //
470 // Creates a single SPD carbon fiber sector and places it
471 // in a container volume passed as first argument ('moth').
472 // Second argument points to the TGeoManager which coordinates
473 // the overall volume creation.
474 // The position of the sector is based on distance of
475 // closest point of SPD stave to beam pipe
476 // (figures all-sections-modules.ps) of 7.22mm at section A-A.
477 //
478
479 // Begin_Html
480 /*
481 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
482 title="SPD Sector drawing with all cross sections defined">
483 <p>The SPD Sector definition. In
484 <a href="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.hpgl">HPGL</a> format.
485 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly-10-modules.ps"
486 titile="SPD All Sectors end view with thermal sheald">
487 <p>The SPD all sector end view with thermal sheald.
488 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
489 title="SPD side view cross section">
490 <p>SPD side view cross section with condes and thermal shealds.
491 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-A_A.jpg"
492 title="Cross section A-A"><p>Cross section A-A.
493 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-B_B.jpg"
494 title="Cross updated section A-A"><p>Cross updated section A-A.
495 <img src="http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf"
496 title="Cross section B-B"><p>Cross section B-B.
497 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-C_C.jpg"
498 title-"Cross section C-C"><p>Cross section C-C.
499 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-D_D.jpg"
500 title="Cross section D-D"><p>Cross section D-D.
501 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-E_E.jpg"
502 title="Cross section E-E"><p>Cross section E-E.
503 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-F_F.jpg"
504 title="Cross section F-F"><p>Cross section F-F.
505 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-G_G.jpg"
506 title="Cross section G-G"><p>Cross section G-G.
507 */
508 // End_Html
509
510 // Inputs:
511 // TGeoVolume *moth Pointer to mother volume where this object
512 // is to be placed in
513 // TGeoManager *mgr Pointer to the TGeoManager used, defaule is
514 // gGeoManager.
515 // Outputs:
516 // none.
517 // Return:
518 // none.
519 // Updated values for kSPDclossesStaveAA, kBeamPipeRadius, and
520 // staveThicknessAA are taken from
521 // http://physics.mps.ohio-state.edu/~nilsen/ITSfigures/Sezione_layerAA.pdf
522 //
3ffa185f 523 const Double_t kSPDclossesStaveAA = 7.25* fgkmm;
54c9a3d9 524 const Double_t kSectorStartingAngle = -72.0 * fgkDegree;
3ffa185f 525 const Int_t kNSectorsTotal = 10;
526 const Double_t kSectorRelativeAngle = 36.0 * fgkDegree; // = 360.0 / 10
527 const Double_t kBeamPipeRadius = 0.5 * 59.6 * fgkmm; // diam. = 59.6 mm
528 //const Double_t staveThicknessAA = 0.9 *fgkmm; // nominal thickness
529 const Double_t staveThicknessAA = 1.02 * fgkmm; // get from stave geometry.
530
531 Int_t i, j, k;
54c9a3d9 532 Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0;
3ffa185f 533 TGeoCombiTrans *secRot = new TGeoCombiTrans(), *comrot;
54c9a3d9 534 TGeoVolume *vCarbonFiberSector;
535 TGeoMedium *medSPDcf;
536
537 // Define an assembly and fill it with the support of
538 // a single carbon fiber sector and staves in it
539 medSPDcf = GetMedium("SPD C (M55J)$", mgr);
540 vCarbonFiberSector = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV");
541 vCarbonFiberSector->SetMedium(medSPDcf);
3ffa185f 542 CarbonFiberSector(vCarbonFiberSector, xAAtubeCenter0, yAAtubeCenter0, mgr);
54c9a3d9 543
544 // Compute the radial shift out of the sectors
3ffa185f 545 radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA;
546 radiusSector = GetSPDSectorTranslation(fSPDsectorX0.At(1), fSPDsectorY0.At(1),
547 fSPDsectorX1.At(1), fSPDsectorY1.At(1), radiusSector);
548 //radiusSector *= radiusSector; // squaring;
549 //radiusSector -= xAAtubeCenter0 * xAAtubeCenter0;
550 //radiusSector = -yAAtubeCenter0 + TMath::Sqrt(radiusSector);
551
552 AliDebug(1, Form("SPDSector : radiusSector=%f\n",radiusSector));
553 i = 1;
554 AliDebug(1, Form("i= %d x0=%f y0=%f x1=%f y1=%f\n", i,
555 fSPDsectorX0.At(i), fSPDsectorY0.At(i),
556 fSPDsectorX1.At(i),fSPDsectorY1.At(i)));
557
54c9a3d9 558 // add 10 single sectors, by replicating the virtual sector defined above
559 // and placing at different angles
560 Double_t shiftX, shiftY, tub[2][6][3];
3ffa185f 561 for(i=0;i<2;i++)for(j=0;j<6;j++)for(k=0;k<3;k++) tub[i][j][k] = fTubeEndSector[0][i][j][k];
54c9a3d9 562 angle = kSectorStartingAngle;
563 secRot->RotateZ(angle);
564 TGeoVolumeAssembly *vcenteral = new TGeoVolumeAssembly("ITSSPD");
3ffa185f 565 moth->AddNode(vcenteral, 1, 0);
566 for(i = 0; i < kNSectorsTotal; i++) {
54c9a3d9 567 shiftX = -radiusSector * TMath::Sin(angle/fgkRadian);
568 shiftY = radiusSector * TMath::Cos(angle/fgkRadian);
ed0e944d 569 //cout << "ANGLE = " << angle << endl;
3ffa185f 570 shiftX += 0.1094 * TMath::Cos((angle + 196.)/fgkRadian);
571 shiftY += 0.1094 * TMath::Sin((angle + 196.)/fgkRadian);
572 //shiftX -= 0.105;
573 //shiftY -= 0.031;
574 //shiftX -= 0.11 * TMath::Cos(angle/fgkRadian); // add by Alberto
575 //shiftY -= 0.11 * TMath::Sin(angle/fgkRadian); // don't ask me where that 0.11 comes from!
54c9a3d9 576 secRot->SetDx(shiftX);
577 secRot->SetDy(shiftY);
578 comrot = new TGeoCombiTrans(*secRot);
579 vcenteral->AddNode(vCarbonFiberSector,i+1,comrot);
580 for(j=0;j<2;j++)for(k=0;k<6;k++) // Transform Tube ends for each sector
581 comrot->LocalToMaster(tub[j][k],fTubeEndSector[i][j][k]);
582 if(GetDebug(5)) {
583 AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g "
584 "x=%g y=%g \n",i, angle, angle/fgkRadian,
585 radiusSector, shiftX, shiftY));
586 } // end if GetDebug(5)
587 angle += kSectorRelativeAngle;
588 secRot->RotateZ(kSectorRelativeAngle);
589 } // end for i
590 if(GetDebug(3)) moth->PrintNodes();
591 delete secRot;
7f69c251 592
593 CreateCones(moth);
a53658c6 594}
54c9a3d9 595//______________________________________________________________________
596void AliITSv11GeometrySPD::CarbonFiberSector(TGeoVolume *moth,
597 Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr)
bc3498f4 598{
54c9a3d9 599 //
600 // Define the detail SPD Carbon fiber support Sector geometry.
601 // Based on the drawings:
602 /*
603 http:///QA-construzione-profilo-modulo.ps
604 */
605 // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004)
606 // - ALICE-SUPPORTO "Costruzione Profilo Modulo"
607 // ---
608 // Define outside radii as negative, where "outside" means that the
609 // center of the arc is outside of the object (feb 16 2004).
610 // ---
611 // Arguments [the one passed by ref contain output values]:
612 // Inputs:
613 // TGeoVolume *moth the voulme which will contain this object
614 // TGeoManager *mgr TGeo builder defauls is gGeoManager
615 // Outputs:
616 // Double_t &xAAtubeCenter0 (by ref) x location of the outer surface
617 // of the cooling tube center for tube 0.
618 // Double_t &yAAtubeCenter0 (by ref) y location of the outer surface
619 // of the cooling tube center for tube 0.
620 // Return:
621 // none.
622 // ---
623 // Int the two variables passed by reference values will be stored
624 // which will then be used to correctly locate this sector.
625 // The information used for this is the distance between the
626 // center of the #0 detector and the beam pipe.
627 // Measurements are taken at cross section A-A.
628 //
629
630 //TGeoMedium *medSPDfs = 0;//SPD support cone inserto stesalite 4411w
631 //TGeoMedium *medSPDfo = 0;//SPD support cone foam, Rohacell 50A.
632 //TGeoMedium *medSPDal = 0;//SPD support cone SDD mounting bracket Al
633 TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr);
634 TGeoMedium *medSPDss = GetMedium("INOX$", mgr);
635 TGeoMedium *medSPDair = GetMedium("AIR$", mgr);
636 TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid
637 //
638 const Double_t ksecDz = 0.5 * 500.0 * fgkmm;
639 //const Double_t ksecLen = 30.0 * fgkmm;
640 const Double_t ksecCthick = 0.2 * fgkmm;
641 const Double_t ksecDipLength = 3.2 * fgkmm;
642 const Double_t ksecDipRadii = 0.4 * fgkmm;
643 //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm;
644 //
645 // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#')
646 // are the centers and radii of curvature of all the rounded corners
647 // between the straight borders of the SPD sector shape.
648 // To draw this SPD sector, the following steps are followed:
649 // 1) the (ksecX, ksecY) points are plotted
650 // and circles of the specified radii are drawn around them.
651 // 2) each pair of consecutive circles is connected by a line
652 // tangent to them, in accordance with the radii being "internal"
653 // or "external" with respect to the closed shape which describes
654 // the sector itself.
655 // The resulting connected shape is the section
656 // of the SPD sector surface in the transverse plane (XY).
657 //
658 const Double_t ksecX0 = -10.725 * fgkmm;
659 const Double_t ksecY0 = -14.853 * fgkmm;
660 const Double_t ksecR0 = -0.8 * fgkmm; // external
661 const Double_t ksecX1 = -13.187 * fgkmm;
662 const Double_t ksecY1 = -19.964 * fgkmm;
3ffa185f 663 const Double_t ksecR1 = +0.6 * fgkmm; // internal // (modif. by Alberto)
664 //const Double_t ksecR1 = +0.8 * fgkmm; // internal // (modif. by Alberto)
665
54c9a3d9 666 // const Double_t ksecDip0 = 5.9 * fgkmm;
667 //
3ffa185f 668 //const Double_t ksecX2 = -3.883 * fgkmm;
669 const Double_t ksecX2 = -3.833 * fgkmm; // (corr. by Alberto)
54c9a3d9 670 const Double_t ksecY2 = -17.805 * fgkmm;
3ffa185f 671 const Double_t ksecR2 = +0.6 * fgkmm; // internal (guess)
54c9a3d9 672 const Double_t ksecX3 = -3.123 * fgkmm;
673 const Double_t ksecY3 = -14.618 * fgkmm;
674 const Double_t ksecR3 = -0.6 * fgkmm; // external
675 //const Double_t ksecDip1 = 8.035 * fgkmm;
676 //
677 const Double_t ksecX4 = +11.280 * fgkmm;
678 const Double_t ksecY4 = -14.473 * fgkmm;
679 const Double_t ksecR4 = +0.8 * fgkmm; // internal
680 const Double_t ksecX5 = +19.544 * fgkmm;
681 const Double_t ksecY5 = +10.961 * fgkmm;
682 const Double_t ksecR5 = +0.8 * fgkmm; // internal
683 //const Double_t ksecDip2 = 4.553 * fgkmm;
684 //
685 const Double_t ksecX6 = +10.830 * fgkmm;
686 const Double_t ksecY6 = +16.858 * fgkmm;
687 const Double_t ksecR6 = +0.6 * fgkmm; // internal
688 const Double_t ksecX7 = +11.581 * fgkmm;
689 const Double_t ksecY7 = +13.317 * fgkmm;
690 const Double_t ksecR7 = -0.6 * fgkmm; // external
691 //const Double_t ksecDip3 = 6.978 * fgkmm;
692 //
693 const Double_t ksecX8 = -0.733 * fgkmm;
694 const Double_t ksecY8 = +17.486 * fgkmm;
695 const Double_t ksecR8 = +0.6 * fgkmm; // internal
696 const Double_t ksecX9 = +0.562 * fgkmm;
697 //const Double_t ksecY9 = +14.486 * fgkmm; // correction by
698 const Double_t ksecY9 = +14.107 * fgkmm; // Alberto
699 const Double_t ksecR9 = -0.6 * fgkmm; // external
700 //const Double_t ksecDip4 = 6.978 * fgkmm;
701 //
702 const Double_t ksecX10 = -12.252 * fgkmm;
703 const Double_t ksecY10 = +16.298 * fgkmm;
704 const Double_t ksecR10 = +0.6 * fgkmm; // internal
705 const Double_t ksecX11 = -10.445 * fgkmm;
706 const Double_t ksecY11 = +13.162 * fgkmm;
707 const Double_t ksecR11 = -0.6 * fgkmm; // external
708 //const Double_t ksecDip5 = 6.978 * fgkmm;
709 //
710 const Double_t ksecX12 = -22.276 * fgkmm;
711 const Double_t ksecY12 = +12.948 * fgkmm;
712 const Double_t ksecR12 = +0.85 * fgkmm; // internal
713 const Double_t ksecR13 = -0.8 * fgkmm; // external
714 const Double_t ksecAngleSide13 = 36.0 * fgkDegree;
715 //
716 const Int_t ksecNRadii = 20;
717 const Int_t ksecNPointsPerRadii = 4;
718 const Int_t ksecNCoolingTubeDips = 6;
719 //
720 // Since the rounded parts are approximated by a regular polygon
721 // and a cooling tube of the propper diameter must fit, a scaling factor
722 // increases the size of the polygon for the tube to fit.
723 //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/
724 // (Double_t)ksecNPointsPerRadii);
725 const Double_t ksecZEndLen = 30.000 * fgkmm;
726 //const Double_t ksecZFlangLen = 45.000 * fgkmm;
727 const Double_t ksecTl = 0.860 * fgkmm;
728 const Double_t ksecCthick2 = 0.600 * fgkmm;
729 //const Double_t ksecCthick3 = 1.80 * fgkmm;
730 //const Double_t ksecSidelen = 22.0 * fgkmm;
731 //const Double_t ksecSideD5 = 3.679 * fgkmm;
732 //const Double_t ksecSideD12 = 7.066 * fgkmm;
733 const Double_t ksecRCoolOut = 2.400 * fgkmm;
734 const Double_t ksecRCoolIn = 2.000 * fgkmm;
735 const Double_t ksecDl1 = 5.900 * fgkmm;
736 const Double_t ksecDl2 = 8.035 * fgkmm;
737 const Double_t ksecDl3 = 4.553 * fgkmm;
738 const Double_t ksecDl4 = 6.978 * fgkmm;
739 const Double_t ksecDl5 = 6.978 * fgkmm;
740 const Double_t ksecDl6 = 6.978 * fgkmm;
741 const Double_t ksecCoolTubeThick = 0.04 * fgkmm;
742 const Double_t ksecCoolTubeROuter = 2.6 * fgkmm;
743 const Double_t ksecCoolTubeFlatX = 3.696 * fgkmm;
744 const Double_t ksecCoolTubeFlatY = 0.68 * fgkmm;
745 //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess
746 //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess
747 //
748 // redefine some of the points already defined above
749 // in the format of arrays (???)
750 const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8;
751 Double_t secX[ksecNRadii] = {
752 ksecX0, ksecX1, -1000.0,
753 ksecX2, ksecX3, -1000.0,
754 ksecX4, ksecX5, -1000.0,
755 ksecX6, ksecX7, -1000.0,
756 ksecX8, ksecX9, -1000.0,
757 ksecX10, ksecX11, -1000.0,
758 ksecX12, -1000.0
759 };
760 Double_t secY[ksecNRadii] = {
761 ksecY0, ksecY1, -1000.0,
762 ksecY2, ksecY3, -1000.0,
763 ksecY4, ksecY5, -1000.0,
764 ksecY6, ksecY7, -1000.0,
765 ksecY8, ksecY9, -1000.0,
766 ksecY10, ksecY11, -1000.0,
767 ksecY12, -1000.0
768 };
769 Double_t secR[ksecNRadii] = {
770 ksecR0, ksecR1, -.5 * ksecDipLength - ksecDipRadii,
771 ksecR2, ksecR3, -.5 * ksecDipLength - ksecDipRadii,
772 ksecR4, ksecR5, -.5 * ksecDipLength - ksecDipRadii,
773 ksecR6, ksecR7, -.5 * ksecDipLength - ksecDipRadii,
774 ksecR8, ksecR9, -.5 * ksecDipLength - ksecDipRadii,
775 ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii,
776 ksecR12, ksecR13
777 };
778 /*
779 Double_t secDip[ksecNRadii] = {
780 0., 0., ksecDip0, 0., 0., ksecDip1,
781 0., 0., ksecDip2, 0., 0., ksecDip3,
782 0., 0., ksecDip4, 0., 0., ksecDip5,
783 0., 0.
784 };
785 */
786 Double_t secX2[ksecNRadii];
787 Double_t secY2[ksecNRadii];
788 Double_t secR2[ksecNRadii] = {
789 ksecR0, ksecR1, ksecRCoolOut,
790 ksecR2, ksecR3, ksecRCoolOut,
791 ksecR4, ksecR5, ksecRCoolOut,
792 ksecR6, ksecR7, ksecRCoolOut,
793 ksecR8, ksecR9, ksecRCoolOut,
794 ksecR10, ksecR11, ksecRCoolOut,
795 ksecR12, ksecR13
796 };
797 Double_t secDip2[ksecNCoolingTubeDips] = {
798 ksecDl1, ksecDl2, ksecDl3,
799 ksecDl4, ksecDl5, ksecDl6
800 };
801 Double_t secX3[ksecNRadii];
802 Double_t secY3[ksecNRadii];
803 const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17};
804 Double_t secAngleStart[ksecNRadii];
805 Double_t secAngleEnd[ksecNRadii];
806 Double_t secAngleStart2[ksecNRadii];
807 Double_t secAngleEnd2[ksecNRadii];
808 Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0};
809 //Double_t secAngleStart3[ksecNRadii];
810 //Double_t secAngleEnd3[ksecNRadii];
811 Double_t xpp[ksecNPoints], ypp[ksecNPoints];
812 Double_t xpp2[ksecNPoints], ypp2[ksecNPoints];
813 Double_t *xp[ksecNRadii], *xp2[ksecNRadii];
814 Double_t *yp[ksecNRadii], *yp2[ksecNRadii];
815 TGeoXtru *sA0, *sA1, *sB0, *sB1,*sB2;
816 TGeoBBox *sB3;
817 TGeoEltu *sTA0, *sTA1;
818 TGeoTube *sTB0, *sTB1; //,*sM0;
819 TGeoRotation *rot;
820 TGeoTranslation *trans;
821 TGeoCombiTrans *rotrans;
822 Double_t t, t0, t1, a, b, x0, y0,z0, x1, y1;
823 Int_t i, j, k, m;
824 Bool_t tst;
825
826 if(!moth) {
827 AliError("Container volume (argument) is NULL");
828 return;
829 } // end if(!moth)
830 for(i = 0; i < ksecNRadii; i++) {
831 xp[i] = &(xpp[i*(ksecNPointsPerRadii+1)]);
832 yp[i] = &(ypp[i*(ksecNPointsPerRadii+1)]);
833 xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]);
834 yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]);
835 secX2[i] = secX[i];
836 secY2[i] = secY[i];
837 secX3[i] = secX[i];
838 secY3[i] = secY[i];
839 } // end for i
840 //
841 // find starting and ending angles for all but cooling tube sections
842 secAngleStart[0] = 0.5 * ksecAngleSide13;
843 for(i = 0; i < ksecNRadii - 2; i++) {
844 tst = kFALSE;
845 for(j=0;j<ksecNCoolingTubeDips;j++) tst = (tst||i==ksecDipIndex[j]);
846 if (tst) continue;
847 tst = kFALSE;
848 for(j=0;j<ksecNCoolingTubeDips;j++) tst =(tst||(i+1)==ksecDipIndex[j]);
849 if (tst) j = i+2; else j = i+1;
850 AnglesForRoundedCorners(secX[i],secY[i],secR[i],secX[j],secY[j],
851 secR[j],t0,t1);
852 secAngleEnd[i] = t0;
853 secAngleStart[j] = t1;
854 if(secR[i] > 0.0 && secR[j] > 0.0) {
855 if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0;
856 } // end if(secR[i]>0.0 && secR[j]>0.0)
857 secAngleStart2[i] = secAngleStart[i];
858 secAngleEnd2[i] = secAngleEnd[i];
859 } // end for i
860 secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2] +
861 (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]);
862 if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0;
863 secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0;
864 secAngleEnd[ksecNRadii-1] = secAngleStart[0];
865 secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2];
866 secAngleEnd2[ksecNRadii-2] = secAngleEnd[ksecNRadii-2];
867 secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1];
868 secAngleEnd2[ksecNRadii-1] = secAngleEnd[ksecNRadii-1];
869 //
870 // find location of circle last rounded corner.
871 i = 0;
872 j = ksecNRadii - 2;
873 t0 = TanD(secAngleStart[i]-90.);
874 t1 = TanD(secAngleEnd[j]-90.);
875 t = secY[i] - secY[j];
876 // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0
877 t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]);
878 t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]);
879 t += t1 * secX[j] - t0*secX[i];
880 t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]);
881 t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]);
882 secX[ksecNRadii-1] = t / (t1-t0);
883 secY[ksecNRadii-1] = TanD(90.0+0.5*ksecAngleSide13)*
884 (secX[ksecNRadii-1]-secX[0])+secY[0];
885 secX2[ksecNRadii-1] = secX[ksecNRadii-1];
886 secY2[ksecNRadii-1] = secY[ksecNRadii-1];
887 secX3[ksecNRadii-1] = secX[ksecNRadii-1];
888 secY3[ksecNRadii-1] = secY[ksecNRadii-1];
889
890 // find location of cooling tube centers
891 for(i = 0; i < ksecNCoolingTubeDips; i++) {
892 j = ksecDipIndex[i];
893 x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]);
894 y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]);
895 x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]);
896 y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]);
897 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
898 t = secDip2[i] / t0;
899 a = x0+(x1-x0) * t;
900 b = y0+(y1-y0) * t;
901 if(i == 0) {
902 // get location of tube center->Surface for locating
903 // this sector around the beam pipe.
904 // This needs to be double checked, but I need my notes for that.
905 // (Bjorn Nilsen)
906 xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5;
907 yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5;
908 }// end if i==0
909 if(a + b*(a - x0) / (b - y0) > 0.0) {
910 secX[j] = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0;
911 secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0;
912 secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0;
913 secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0;
914 secX3[j] = a + TMath::Abs(y1-y0) *
915 (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0;
916 secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
917 y1-y0)*(x1-x0)/t0;
918 } else {
919 secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0;
920 secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0;
921 secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0;
922 secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0;
923 secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5*
924 ksecCoolTubeFlatY)/t0;
925 secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,
926 y1-y0)*(x1-x0)/t0;
927 } // end if(a+b*(a-x0)/(b-y0)>0.0)
928
929 // Set up Start and End angles to correspond to start/end of dips.
930 t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0;
931 secAngleStart[j] =TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
932 x0+(x1-x0)*t1-secX[j]);
933 if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0;
934 secAngleStart2[j] = secAngleStart[j];
935 t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0;
936 secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],
937 x0+(x1-x0)*t1-secX[j]);
938 if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0;
939 secAngleEnd2[j] = secAngleEnd[j];
940 if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0;
941 secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii);
942 } // end for i
943
944 // Special cases
945 secAngleStart2[8] -= 360.;
946 secAngleStart2[11] -= 360.;
947
948 SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd,
949 ksecNPointsPerRadii, m, xp, yp);
950
951 // Fix up dips to be square.
952 for(i = 0; i < ksecNCoolingTubeDips; i++) {
953 j = ksecDipIndex[i];
954 t = 0.5*ksecDipLength+ksecDipRadii;
955 t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t);
956 t1 = secAngleEnd[j] + t0;
957 t0 = secAngleStart[j] - t0;
958 x0 = xp[j][1] = secX[j] + t*CosD(t0);
959 y0 = yp[j][1] = secY[j] + t*SinD(t0);
960 x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1);
961 y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1);
962 t0 = 1./((Double_t)(ksecNPointsPerRadii-2));
963 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
964 // extra points spread them out.
965 t = ((Double_t)(k-1)) * t0;
966 xp[j][k] = x0+(x1-x0) * t;
967 yp[j][k] = y0+(y1-y0) * t;
968 } // end for k
969 secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0);
970 if(GetDebug(3)) {
971 AliInfo(
972 Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)",
973 i, secAngleTurbo[i], x0, y0, x1, y1));
974 } // end if GetDebug(3)
975 } // end for i
976 sA0 = new TGeoXtru(2);
977 sA0->SetName("ITS SPD Carbon fiber support Sector A0");
978 sA0->DefinePolygon(m, xpp, ypp);
979 sA0->DefineSection(0, -ksecDz);
980 sA0->DefineSection(1, ksecDz);
981
982 // store the edges of each XY segment which defines
983 // one of the plane zones where staves will have to be placed
984 fSPDsectorX0.Set(ksecNCoolingTubeDips);
985 fSPDsectorY0.Set(ksecNCoolingTubeDips);
986 fSPDsectorX1.Set(ksecNCoolingTubeDips);
987 fSPDsectorY1.Set(ksecNCoolingTubeDips);
988 Int_t ixy0, ixy1;
989 for(i = 0; i < ksecNCoolingTubeDips; i++) {
990 // Find index in xpp[] and ypp[] corresponding to where the
991 // SPD ladders are to be attached. Order them according to
992 // the ALICE numbering schema. Using array of indexes (+-1 for
993 // cooling tubes. For any "bend/dip/edge, there are
994 // ksecNPointsPerRadii+1 points involved.
995 if(i == 0) j = 1;
996 else if (i == 1) j = 0;
997 else j = i;
998 ixy0 = (ksecDipIndex[j]-1)*(ksecNPointsPerRadii+1)+
999 (ksecNPointsPerRadii);
1000 ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1);
1001 fSPDsectorX0[i] = sA0->GetX(ixy0);
1002 fSPDsectorY0[i] = sA0->GetY(ixy0);
1003 fSPDsectorX1[i] = sA0->GetX(ixy1);
1004 fSPDsectorY1[i] = sA0->GetY(ixy1);
1005 } // end for i
1006
1007 //printf("SectorA#%d ",0);
1008 InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],ksecCthick,
1009 xpp2[0],ypp2[0]);
1010 for(i = 1; i < m - 1; i++) {
1011 j = i / (ksecNPointsPerRadii+1);
1012 //printf("SectorA#%d ",i);
1013 InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],
1014 ksecCthick,xpp2[i],ypp2[i]);
1015 } // end for i
1016 //printf("SectorA#%d ",m);
1017 InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
1018 ksecCthick,xpp2[m-1],ypp2[m-1]);
1019 // Fix center value of cooling tube dip and
1020 // find location of cooling tube centers
1021 for(i = 0; i < ksecNCoolingTubeDips; i++) {
1022 j = ksecDipIndex[i];
1023 x0 = xp2[j][1];
1024 y0 = yp2[j][1];
1025 x1 = xp2[j][ksecNPointsPerRadii-1];
1026 y1 = yp2[j][ksecNPointsPerRadii-1];
1027 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
1028 t = secDip2[i]/t0;
1029 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
1030 // extra points spread them out.
1031 t = ((Double_t)(k-1)) * t0;
1032 xp2[j][k] = x0+(x1-x0) * t;
1033 yp2[j][k] = y0+(y1-y0) * t;
1034 } // end for k
1035 } // end for i
1036 sA1 = new TGeoXtru(2);
1037 sA1->SetName("ITS SPD Carbon fiber support Sector Air A1");
1038 sA1->DefinePolygon(m, xpp2, ypp2);
1039 sA1->DefineSection(0, -ksecDz);
1040 sA1->DefineSection(1, ksecDz);
1041 //
1042 // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?).
1043 sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY,
1044 0.5 * ksecCoolTubeFlatX, ksecDz);
1045 sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1",
1046 sTA0->GetA() - ksecCoolTubeThick,
1047 sTA0->GetB()-ksecCoolTubeThick,ksecDz);
1048 SPDsectorShape(ksecNRadii,secX2,secY2,secR2,secAngleStart2,secAngleEnd2,
1049 ksecNPointsPerRadii, m, xp, yp);
1050 sB0 = new TGeoXtru(2);
1051 sB0->SetName("ITS SPD Carbon fiber support Sector End B0");
1052 sB0->DefinePolygon(m, xpp, ypp);
1053 sB0->DefineSection(0, ksecDz);
1054 sB0->DefineSection(1, ksecDz + ksecZEndLen);
1055
1056 //printf("SectorB#%d ",0);
1057 InsidePoint(xpp[m-1],ypp[m-1],xpp[0],ypp[0],xpp[1],ypp[1],
1058 ksecCthick2,xpp2[0],ypp2[0]);
1059 for(i = 1; i < m - 1; i++) {
1060 t = ksecCthick2;
1061 for(k = 0; k < ksecNCoolingTubeDips; k++)
1062 if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k])
1063 if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i ||
1064 ksecDipIndex[k]*(ksecNPointsPerRadii+1) +
1065 ksecNPointsPerRadii == i))
1066 t = ksecRCoolOut-ksecRCoolIn;
1067 //printf("SectorB#%d ",i);
1068 InsidePoint(xpp[i-1],ypp[i-1],xpp[i],ypp[i],xpp[i+1],ypp[i+1],t,
1069 xpp2[i],ypp2[i]);
1070 }// end for i
1071 //printf("SectorB#%d ",m);
1072 InsidePoint(xpp[m-2],ypp[m-2],xpp[m-1],ypp[m-1],xpp[0],ypp[0],
1073 ksecCthick2,xpp2[m-1],ypp2[m-1]);
1074 sB1 = new TGeoXtru(2);
1075 sB1->SetName("ITS SPD Carbon fiber support Sector Air End B1");
1076 sB1->DefinePolygon(m, xpp2, ypp2);
1077 sB1->DefineSection(0,sB0->GetZ(0));
1078 sB1->DefineSection(1,sB0->GetZ(1)-ksecCthick2);
1079 const Double_t kspdEndHoleRadius1=5.698*fgkmm;
1080 const Double_t kspdEndHoleRadius2=2.336*fgkmm;
1081 const Double_t kspdEndHoleDisplacement=6.29*fgkmm;
1082 k = (m-1)/4;
1083 for(i=0;i<=k;i++){
1084 t= ((Double_t)i)/((Double_t)(k));
1085 if(!CFHolePoints(t,kspdEndHoleRadius1,kspdEndHoleRadius2,
1086 kspdEndHoleDisplacement,xpp2[i],ypp2[i])){
1087 Warning("CarbonFiberSector","CFHolePoints failed "
1088 "i=%d m=%d k=%d t=%e",i,m,k,t);
1089 } // end if
1090 // simitry in each quadrant.
1091 xpp2[2*k-i] = -xpp2[i];
1092 ypp2[2*k-i] = ypp2[i];
1093 xpp2[2*k+i] = -xpp2[i];
1094 ypp2[2*k+i] = -ypp2[i];
1095 xpp2[4*k-i] = xpp2[i];
1096 ypp2[4*k-i] = -ypp2[i];
1097 }// end for i
1098 //xpp2[m-1] = xpp2[0]; // begining point in
1099 //ypp2[m-1] = ypp2[0]; // comment with end point
1100 sB2 = new TGeoXtru(2);
1101 sB2->SetName("ITS SPD Hole in Carbon fiber support End plate");
1102 sB2->DefinePolygon(4*k, xpp2, ypp2);
1103 sB2->DefineSection(0,sB1->GetZ(1));
1104 sB2->DefineSection(1,sB0->GetZ(1));
1105 // SPD sector mount blocks
1106 const Double_t kMountBlock[3] = {0.5*(1.8-0.2)*fgkmm,0.5*22.0*fgkmm,
1107 0.5*45.0*fgkmm};
1108 sB3 = new TGeoBBox((Double_t*)kMountBlock);
1109 // SPD sector cooling tubes
1110 sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0,
7708d5f3 1111 0.5*ksecCoolTubeROuter,0.5*(sB1->GetZ(1)-sB1->GetZ(0)));
54c9a3d9 1112 sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0,
1113 sTB0->GetRmax() - ksecCoolTubeThick,sTB0->GetDz());
1114 //
1115 if(GetDebug(3)) {
1116 if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0");
1117 if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0");
1118 if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0");
1119 if(medSPDcoolfl) medSPDcoolfl->Dump();else AliInfo("medSPDcoolfl = 0");
1120 sA0->InspectShape();
1121 sA1->InspectShape();
1122 sB0->InspectShape();
1123 sB1->InspectShape();
1124 sB2->InspectShape();
1125 } // end if(GetDebug(3))
1126
1127 // create the assembly of the support and place staves on it
1128 TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly(
1129 "ITSSPDSensitiveVirtualvolumeM0");
1130 StavesInSector(vM0);
1131 // create other volumes with some graphical settings
1132 TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0",
1133 sA0, medSPDcf);
1134 vA0->SetVisibility(kTRUE);
1135 vA0->SetLineColor(4); // Blue
1136 vA0->SetLineWidth(1);
1137 vA0->SetFillColor(vA0->GetLineColor());
1138 vA0->SetFillStyle(4010); // 10% transparent
1139 TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1",
1140 sA1, medSPDair);
1141 vA1->SetVisibility(kTRUE);
1142 vA1->SetLineColor(7); // light Blue
1143 vA1->SetLineWidth(1);
1144 vA1->SetFillColor(vA1->GetLineColor());
1145 vA1->SetFillStyle(4090); // 90% transparent
1146 TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss);
1147 vTA0->SetVisibility(kTRUE);
1148 vTA0->SetLineColor(15); // gray
1149 vTA0->SetLineWidth(1);
1150 vTA0->SetFillColor(vTA0->GetLineColor());
1151 vTA0->SetFillStyle(4000); // 0% transparent
1152 TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1",
1153 sTA1, medSPDcoolfl);
1154 vTA1->SetVisibility(kTRUE);
1155 vTA1->SetLineColor(6); // Purple
1156 vTA1->SetLineWidth(1);
1157 vTA1->SetFillColor(vTA1->GetLineColor());
1158 vTA1->SetFillStyle(4000); // 0% transparent
1159 TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0",
1160 sB0, medSPDcf);
1161 vB0->SetVisibility(kTRUE);
1162 vB0->SetLineColor(1); // Black
1163 vB0->SetLineWidth(1);
1164 vB0->SetFillColor(vB0->GetLineColor());
1165 vB0->SetFillStyle(4000); // 0% transparent
1166 TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1",
1167 sB1, medSPDair);
1168 vB1->SetVisibility(kTRUE);
1169 vB1->SetLineColor(0); // white
1170 vB1->SetLineWidth(1);
1171 vB1->SetFillColor(vB1->GetLineColor());
1172 vB1->SetFillStyle(4100); // 100% transparent
1173 TGeoVolume *vB2 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB2",
1174 sB2, medSPDair);
1175 vB2->SetVisibility(kTRUE);
1176 vB2->SetLineColor(0); // white
1177 vB2->SetLineWidth(1);
1178 vB2->SetFillColor(vB2->GetLineColor());
1179 vB2->SetFillStyle(4100); // 100% transparent
1180 TGeoVolume *vB3 = new TGeoVolume(
1181 "ITSSPDCarbonFiberSupportSectorMountBlockB3",sB3, medSPDcf);
1182 vB3->SetVisibility(kTRUE);
1183 vB3->SetLineColor(1); // Black
1184 vB3->SetLineWidth(1);
1185 vB3->SetFillColor(vB3->GetLineColor());
1186 vB3->SetFillStyle(4000); // 0% transparent
1187 TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0",sTB0,medSPDss);
1188 vTB0->SetVisibility(kTRUE);
1189 vTB0->SetLineColor(15); // gray
1190 vTB0->SetLineWidth(1);
1191 vTB0->SetFillColor(vTB0->GetLineColor());
1192 vTB0->SetFillStyle(4000); // 0% transparent
1193 TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1",sTB1,
1194 medSPDcoolfl);
1195 vTB1->SetVisibility(kTRUE);
1196 vTB1->SetLineColor(7); // light blue
1197 vTB1->SetLineWidth(1);
1198 vTB1->SetFillColor(vTB1->GetLineColor());
1199 vTB1->SetFillStyle(4050); // 0% transparent
1200
1201 // add volumes to mother container passed as argument of this method
1202 moth->AddNode(vM0,1,0); // Add virtual volume to mother
1203 vA0->AddNode(vA1,1,0); // Put air inside carbon fiber.
1204 vB0->AddNode(vB1,1,0); // Put air inside carbon fiber ends.
1205 vB0->AddNode(vB2,1,0); // Put air wholes inside carbon fiber ends
1206 vTA0->AddNode(vTA1,1,0); // Put cooling liquid indide tube middel.
1207 vTB0->AddNode(vTB1,1,0); // Put cooling liquid inside tube end.
1208 Double_t tubeEndLocal[3]={0.0,0.0,sTA0->GetDz()};
1209 for(i = 0; i < ksecNCoolingTubeDips; i++) {
1210 x0 = secX3[ksecDipIndex[i]];
1211 y0 = secY3[ksecDipIndex[i]];
1212 t = 90.0 - secAngleTurbo[i];
1213 trans = new TGeoTranslation("",x0,y0,0.5*(sB1->GetZ(0)+sB1->GetZ(1)));
1214 vB1->AddNode(vTB0, i+1, trans);
1215 // Find location of tube ends for later use.
1216 trans->LocalToMaster(tubeEndLocal,fTubeEndSector[0][0][i]);
1217 rot = new TGeoRotation("", 0.0, 0.0, t);
1218 rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot);
1219 vM0->AddNode(vTA0, i+1, rotrans);
1220 } // end for i
1221 vM0->AddNode(vA0, 1, 0);
1222 vM0->AddNode(vB0, 1, 0);
1223 // Reflection.
1224 rot = new TGeoRotation("", 90., 0., 90., 90., 180., 0.);
1225 vM0->AddNode(vB0,2,rot);
1226 // Find location of tube ends for later use.
1227 for(i=0;i<ksecNCoolingTubeDips;i++) rot->LocalToMaster(
1228 fTubeEndSector[0][0][i],fTubeEndSector[0][1][i]);
1229 // left side
1230 t = -TMath::RadToDeg()*TMath::ATan2(
1231 sB0->GetX(0)-sB0->GetX(sB0->GetNvert()-1),
1232 sB0->GetY(0)-sB0->GetY(sB0->GetNvert()-1));
1233 rot = new TGeoRotation("",t,0.0,0.0);// z axis rotation
1234 x0 = 0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))+
1235 sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
1236 y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))+
1237 sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
1238 z0 = sB0->GetZ(0)+sB3->GetDZ();
1239 rotrans = new TGeoCombiTrans("",x0,y0,z0,rot);
1240 vM0->AddNode(vB3,1,rotrans); // Put Mounting bracket on sector
1241 rotrans = new TGeoCombiTrans("",x0,y0,-z0,rot);
1242 vM0->AddNode(vB3,2,rotrans); // Put Mounting bracket on sector
1243 /*
1244 j = 0; // right side, find point with largest x value
1245 x1 = sB0->GetX(0);
1246 for(i=1;i<sB0->GetNvert();i++)if(sB0->GetX(i)>x1) {j=i;x1=sB0->GetX(i);}
1247 j--; // Too big by 1
1248 //t = -TMath::RadToDeg()*TMath::ATan2(
1249 // sB0->GetX(j)-sB0->GetX(j-1),
1250 // sB0->GetY(j)-sB0->GetY(j-1));
1251 */
1252 t *= -1.0;
1253 rot = new TGeoRotation("",t,0.0,0.0); // z axis rotation
1254 /* // this way gets correct orientation but wrong "height"
1255 x0 = 0.5*(sB0->GetX(j)+sB0->GetX(j-1))+
1256 sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
1257 y0 = 0.5*(sB0->GetY(j)+sB0->GetY(j-1))+
1258 sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
1259 z0 = sB0->GetZ(0)+sB3->GetDZ();
1260 */ // I don't understand the need for this factor 3.5.
1261 // posibly the SPD sector as coded isn't symetric which the
1262 // plans would suggest.
1263 x0 = -0.5*(sB0->GetX(0)+sB0->GetX(sB0->GetNvert()-1))-3.5*
1264 sB3->GetDX()*TMath::Cos(t*TMath::DegToRad());
1265 y0 = 0.5*(sB0->GetY(0)+sB0->GetY(sB0->GetNvert()-1))-3.5*
1266 sB3->GetDX()*TMath::Sin(t*TMath::DegToRad());
22726349 1267 rotrans = new TGeoCombiTrans("",1.01*x0,y0,z0,rot);
54c9a3d9 1268 vM0->AddNode(vB3,3,rotrans); // Put Mounting bracket on sector
22726349 1269 rotrans = new TGeoCombiTrans("",1.01*x0,y0,-z0,rot);
54c9a3d9 1270 vM0->AddNode(vB3,4,rotrans); // Put Mounting bracket on sector
1271 if(GetDebug(3)){
1272 vM0->PrintNodes();
1273 vA0->PrintNodes();
1274 vA1->PrintNodes();
1275 vB0->PrintNodes();
1276 vB1->PrintNodes();
1277 vB2->PrintNodes();
1278 vB3->PrintNodes();
1279 vTA0->PrintNodes();
1280 vTA1->PrintNodes();
1281 vTB0->PrintNodes();
1282 vTB1->PrintNodes();
1283 } // end if(GetDebug(3))
bc3498f4 1284}
54c9a3d9 1285//______________________________________________________________________
1286Bool_t AliITSv11GeometrySPD::CFHolePoints(Double_t s,Double_t r1,
1287 Double_t r2,Double_t l,Double_t &x,Double_t &y) const
bc3498f4 1288{
54c9a3d9 1289 //
1290 // Step along arck a distancs ds and compute boundry of
1291 // two holes (radius r1 and r2) a distance l apart (along
1292 // x-axis).
1293 // Inputs:
1294 // Double_t s fractional Distance along arcs [0-1]
1295 // where 0-> alpha=beta=0, 1-> alpha=90 degrees.
1296 // Double_t r1 radius at center circle
1297 // Double_t r2 radius of displaced circle
1298 // Double_t l Distance displaced circle is displaces (x-axis)
1299 // Output:
1300 // Double_t x x coordinate along double circle.
1301 // Double_t y y coordinate along double circle.
1302 // Return:
1303 // logical, kFALSE if an error
1304 //
1305 Double_t alpha,beta;
1306 Double_t ac,bc,scb,sca,t,alphac,betac; // at intersection of two circles
1307
1308 x=y=0.0;
1309 ac = r1*r1-l*l-r2*r2;
1310 bc = 2.*l*r2;
1311 if(bc==0.0) {printf("bc=0 l=%e r2=%e\n",l,r2);return kFALSE;}
1312 betac = TMath::ACos(ac/bc);
1313 alphac = TMath::Sqrt(bc*bc-ac*ac)/(2.*l*r1);
1314 scb = r2*betac;
1315 sca = r1*alphac;
1316 t = r1*0.5*TMath::Pi() - sca + scb;
1317 if(s<= scb/t){
1318 beta = s*t/r2;
1319 x = r2*TMath::Cos(beta) + l;
1320 y = r2*TMath::Sin(beta);
1321 //printf("betac=%e scb=%e t=%e s=%e beta=%e x=%e y=%e\n",
1322 // betac,scb,t,s,beta,x,y);
1323 return kTRUE;
1324 }else{
1325 beta = (s*t-scb+sca)/(r1*0.5*TMath::Pi());
1326 alpha = beta*0.5*TMath::Pi();
1327 x = r1*TMath::Cos(alpha);
1328 y = r1*TMath::Sin(alpha);
1329 //printf("alphac=%e sca=%e t=%e s=%e beta=%e alpha=%e x=%e y=%e\n",
1330 // alphac,sca,t,s,beta,alpha,x,y);
1331 return kTRUE;
1332 } // end if
1333 return kFALSE;
bc3498f4 1334}
54c9a3d9 1335//______________________________________________________________________
1336Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints(Int_t index,Double_t &x0,
1337 Double_t &y0, Double_t &x1, Double_t &y1) const
bc3498f4 1338{
54c9a3d9 1339 //
1340 // Returns the edges of the straight borders in the SPD sector shape,
1341 // which are used to mount staves on them.
1342 // Coordinate system is that of the carbon fiber sector volume.
1343 // ---
1344 // Index numbering is as follows:
1345 // /5
1346 // /\/4
1347 // 1\ \/3
1348 // 0|___\/2
1349 // ---
1350 // Arguments [the ones passed by reference contain output values]:
1351 // Int_t index --> location index according to above scheme [0-5]
1352 // Double_t &x0 --> (by ref) x0 location or the ladder sector [cm]
1353 // Double_t &y0 --> (by ref) y0 location of the ladder sector [cm]
1354 // Double_t &x1 --> (by ref) x1 location or the ladder sector [cm]
1355 // Double_t &y1 --> (by ref) y1 location of the ladder sector [cm]
1356 // TGeoManager *mgr --> The TGeo builder
1357 // ---
1358 // The location is described by a line going from (x0, y0) to (x1, y1)
1359 // ---
1360 // Returns kTRUE if no problems encountered.
1361 // Returns kFALSE if a problem was encountered (e.g.: shape not found).
1362 //
1363 Int_t isize = fSPDsectorX0.GetSize();
1364
1365 x0 = x1 = y0 = y1 = 0.0;
1366 if(index < 0 || index > isize) {
1367 AliError(Form("index = %d: allowed 0 --> %", index, isize));
1368 return kFALSE;
1369 } // end if(index<0||index>isize)
1370 x0 = fSPDsectorX0[index];
1371 x1 = fSPDsectorX1[index];
1372 y0 = fSPDsectorY0[index];
1373 y1 = fSPDsectorY1[index];
1374 return kTRUE;
bc3498f4 1375}
54c9a3d9 1376//______________________________________________________________________
1377void AliITSv11GeometrySPD::SPDsectorShape(Int_t n,const Double_t *xc,
1378 const Double_t *yc, const Double_t *r,
1379 const Double_t *ths, const Double_t *the,
1380 Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const
bc3498f4 1381{
54c9a3d9 1382 //
1383 // Code to compute the points that make up the shape of the SPD
1384 // Carbon fiber support sections
1385 // Inputs:
1386 // Int_t n size of arrays xc,yc, and r.
1387 // Double_t *xc array of x values for radii centers.
1388 // Double_t *yc array of y values for radii centers.
1389 // Double_t *r array of signed radii values.
1390 // Double_t *ths array of starting angles [degrees].
1391 // Double_t *the array of ending angles [degrees].
1392 // Int_t npr the number of lines segments to aproximate the arc.
1393 // Outputs (arguments passed by reference):
1394 // Int_t m the number of enetries in the arrays *xp[npr+1]
1395 // and *yp[npr+1].
1396 // Double_t **xp array of x coordinate values of the line segments
1397 // which make up the SPD support sector shape.
1398 // Double_t **yp array of y coordinate values of the line segments
1399 // which make up the SPD support sector shape.
1400 //
1401 Int_t i, k;
1402 Double_t t, t0, t1;
1403
1404 m = n*(npr + 1);
1405 if(GetDebug(2)) {
1406 cout <<" X \t Y \t R \t S \t E" << m << endl;
1407 for(i = 0; i < n; i++) {
1408 cout << "{" << xc[i] << ", ";
1409 cout << yc[i] << ", ";
1410 cout << r[i] << ", ";
1411 cout << ths[i] << ", ";
1412 cout << the[i] << "}, " << endl;
1413 } // end for i
1414 } // end if(GetDebug(2))
1415 if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"][";
1416 if (GetDebug(4)) cout << "3] {";
1417 else if(GetDebug(3)) cout <<"2] {";
1418 t0 = (Double_t)npr;
1419 for(i = 0; i < n; i++) {
1420 t1 = (the[i] - ths[i]) / t0;
1421 if(GetDebug(5)) cout << "t1 = " << t1 << endl;
1422 for(k = 0; k <= npr; k++) {
1423 t = ths[i] + ((Double_t)k) * t1;
1424 xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i];
1425 yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i];
1426 if(GetDebug(3)) {
1427 cout << "{" << xp[i][k] << "," << yp[i][k];
1428 if (GetDebug(4)) cout << "," << t;
1429 cout << "},";
1430 } // end if GetDebug
1431 } // end for k
1432 if(GetDebug(3)) cout << endl;
1433 } // end of i
1434 if(GetDebug(3)) cout << "{" << xp[0][0] << ", " << yp[0][0];
1435 if(GetDebug(4)) cout << "," << ths[0];
1436 if(GetDebug(3)) cout << "}}" << endl;
592651e2 1437}
22726349 1438
54c9a3d9 1439//______________________________________________________________________
1440TGeoVolume* AliITSv11GeometrySPD::CreateLadder(Int_t layer,TArrayD &sizes,
1441 TGeoManager *mgr) const
bc3498f4 1442{
54c9a3d9 1443 //
1444 // Creates the "ladder" = silicon sensor + 5 chips.
1445 // Returns a TGeoVolume containing the following components:
1446 // - the sensor (TGeoBBox), whose name depends on the layer
1447 // - 5 identical chips (TGeoBBox)
1448 // - a guard ring around the sensor (subtraction of TGeoBBoxes),
1449 // which is separated from the rest of sensor because it is not
1450 // a sensitive part
1451 // - bump bondings (TGeoBBox stripes for the whole width of the
1452 // sensor, one per column).
1453 // ---
1454 // Arguments:
1455 // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised)
1456 // 2 - a TArrayD passed by reference, which will contain relevant
1457 // dimensions related to this object:
1458 // size[0] = 'thickness' (the smallest dimension)
1459 // size[1] = 'length' (the direction along the ALICE Z axis)
1460 // size[2] = 'width' (extension in the direction perp. to the
1461 // above ones)
1462 // 3 - the used TGeoManager
1463
3ffa185f 1464 // ** CRITICAL CHECK **
54c9a3d9 1465 // layer number can be ONLY 1 or 2
1466 if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
1467
1468 // ** MEDIA **
1469 TGeoMedium *medAir = GetMedium("AIR$",mgr);
1470 TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP
1471 TGeoMedium *medSi = GetMedium("SI$",mgr);
1472 TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond
1473
3ffa185f 1474 // ** SIZES **
54c9a3d9 1475 Double_t chipThickness = fgkmm * 0.150;
1476 Double_t chipWidth = fgkmm * 15.950;
1477 Double_t chipLength = fgkmm * 13.600;
1478 Double_t chipSpacing = fgkmm * 0.400; // separation of chips along Z
1479 Double_t sensThickness = fgkmm * 0.200;
1480 Double_t sensLength = fgkmm * 69.600;
1481 Double_t sensWidth = fgkmm * 12.800;
1482 Double_t guardRingWidth = fgkmm * 0.560; // a border of this thickness
1483 // all around the sensor
1484 Double_t bbLength = fgkmm * 0.042;
1485 Double_t bbWidth = sensWidth;
1486 Double_t bbThickness = fgkmm * 0.012;
1487 Double_t bbPos = 0.080; // Z position w.r. to left pixel edge
1488 // compute the size of the container volume which
1489 // will also be returned in the referenced TArrayD;
1490 // for readability, they are linked by reference to a more meaningful name
1491 sizes.Set(3);
1492 Double_t &thickness = sizes[0];
1493 Double_t &length = sizes[1];
1494 Double_t &width = sizes[2];
1495 // the container is a box which exactly enclose all the stuff;
1496 width = chipWidth;
1497 length = sensLength + 2.0*guardRingWidth;
1498 thickness = sensThickness + chipThickness + bbThickness;
1499
1500 // ** VOLUMES **
1501 // While creating this volume, since it is a sensitive volume,
1502 // we must respect some standard criteria for its local reference frame.
1503 // Local X must correspond to x coordinate of the sensitive volume:
1504 // this means that we are going to create the container with a local
1505 // reference system that is **not** in the middle of the box.
1506 // This is accomplished by calling the shape constructor with an
1507 // additional option ('originShift'):
1508 Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
1509 Double_t originShift[3] = {-xSens, 0., 0.};
1510 TGeoBBox *shapeContainer = new TGeoBBox(0.5*width,0.5*thickness,
1511 0.5*length,originShift);
1512 // then the volume is made of air, and using this shape
1513 TGeoVolume *container = new TGeoVolume(Form("ITSSPDlay%d-Ladder",layer),
1514 shapeContainer, medAir);
1515 // the chip is a common box
1516 TGeoVolume *volChip = mgr->MakeBox("ITSSPDchip",medSPDSiChip,
1517 0.5*chipWidth,0.5*chipThickness,0.5*chipLength);
1518 // the sensor as well
1519 TGeoVolume *volSens = mgr->MakeBox(GetSenstiveVolumeName(layer),medSi,
1520 0.5*sensWidth,0.5*sensThickness,0.5*sensLength);
1521 // the guard ring shape is the subtraction of two boxes with the
1522 // same center.
1523 TGeoBBox *shIn = new TGeoBBox(0.5*sensWidth,sensThickness,0.5*sensLength);
1524 TGeoBBox *shOut = new TGeoBBox(0.5*sensWidth+guardRingWidth,
1525 0.5*sensThickness,0.5*sensLength+guardRingWidth);
1526 shIn->SetName("ITSSPDinnerBox");
1527 shOut->SetName("ITSSPDouterBox");
1528 TGeoCompositeShape *shBorder = new TGeoCompositeShape(
1529 "ITSSPDgaurdRingBorder",Form("%s-%s",shOut->GetName(),shIn->GetName()));
1530 TGeoVolume *volBorder = new TGeoVolume("ITSSPDgaurdRing",shBorder,medSi);
1531 // bump bonds for one whole column
1532 TGeoVolume *volBB = mgr->MakeBox("ITSSPDbb",medBumpBond,0.5*bbWidth,
1533 0.5*bbThickness,0.5*bbLength);
1534 // set colors of all objects for visualization
1535 volSens->SetLineColor(kYellow + 1);
1536 volChip->SetLineColor(kGreen);
1537 volBorder->SetLineColor(kYellow + 3);
1538 volBB->SetLineColor(kGray);
1539
1540 // ** MOVEMENTS **
1541 // sensor is translated along thickness (X) and width (Y)
1542 Double_t ySens = 0.5 * (thickness - sensThickness);
1543 Double_t zSens = 0.0;
1544 // we want that the x of the ladder is the same as the one of
1545 // its sensitive volume
1546 TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens);
1547 // bump bonds are translated along all axes:
1548 // keep same Y used for sensors, but change the Z
1549 TGeoTranslation *trBB[160];
1550 Double_t x = 0.0;
1551 Double_t y = 0.5 * (thickness - bbThickness) - sensThickness;
1552 Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
1553 Int_t i;
1554 for (i = 0; i < 160; i++) {
1555 trBB[i] = new TGeoTranslation(x, y, z);
1556 switch(i) {
1557 case 31:case 63:case 95:case 127:
1558 z += fgkmm * 0.625 + fgkmm * 0.2;
1559 break;
1560 default:
1561 z += fgkmm * 0.425;
1562 } // end switch
1563 } // end for i
1564 // the chips are translated along the length (Z) and thickness (X)
1565 TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
1566 x = -xSens;
1567 y = 0.5 * (chipThickness - thickness);
1568 z = 0.0;
1569 for (i = 0; i < 5; i++) {
1570 z = -0.5*length + guardRingWidth
1571 + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
1572 trChip[i] = new TGeoTranslation(x, y, z);
1573 } // end ofr i
1574
1575 // add nodes to container
1576 container->AddNode(volSens, 1, trSens);
1577 container->AddNode(volBorder, 1, trSens);
1578 for (i = 0; i < 160; i++) container->AddNode(volBB,i+1,trBB[i]);
1579 for (i = 0; i < 5; i++) container->AddNode(volChip,i+3,trChip[i]);
1580 // return the container
1581 return container;
592651e2 1582}
22726349 1583
1584/*
1585//______________________________________________________________________
1586TGeoVolume* AliITSv11GeometrySPD::CreateLadder
1587 (Int_t layer, TArrayD &sizes, TGeoManager *mgr) const
1588{
1589 //
1590 // Creates the "ladder" = silicon sensor + 5 chips.
1591 // Returns a TGeoVolume containing the following components:
1592 // - the sensor (TGeoBBox), whose name depends on the layer
1593 // - 5 identical chips (TGeoBBox)
1594 // - a guard ring around the sensor (subtraction of TGeoBBoxes),
1595 // which is separated from the rest of sensor because it is not
1596 // a sensitive part
1597 // - bump bondings (TGeoBBox stripes for the whole width of the
1598 // sensor, one per column).
1599 // ---
1600 // Arguments:
1601 // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised)
1602 // 2 - a TArrayD passed by reference, which will contain relevant
1603 // dimensions related to this object:
1604 // size[0] = 'thickness' (the smallest dimension)
1605 // size[1] = 'length' (the direction along the ALICE Z axis)
1606 // size[2] = 'width' (extension in the direction perp. to the
1607 // above ones)
1608 // 3 - the used TGeoManager
1609
1610 // ** CRITICAL CHECK ******************************************************
1611 // layer number can be ONLY 1 or 2
1612 if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
1613
1614 // ** MEDIA ***************************************************************
1615
1616 TGeoMedium *medAir = GetMedium("AIR$",mgr);
1617 TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr); // SPD SI CHIP
1618 TGeoMedium *medSi = GetMedium("SI$",mgr);
1619 TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond
1620
1621 // ** SIZES ***************************************************************
3ffa185f 1622
22726349 1623 Double_t chipThickness = fgkmm * 0.150;
1624 Double_t chipWidth = fgkmm * 15.950;
1625 Double_t chipLength = fgkmm * 13.600;
1626 Double_t chipSpacing = fgkmm * 0.400; // separation of chips along Z
1627 Double_t sensThickness = fgkmm * 0.200;
1628 Double_t sensLength = fgkmm * 69.600;
1629 Double_t sensWidth = fgkmm * 12.800;
1630 Double_t guardRingWidth = fgkmm * 0.560; // guard ring around sensor
1631 Double_t bbLength = fgkmm * 0.042;
1632 Double_t bbWidth = sensWidth;
1633 Double_t bbThickness = fgkmm * 0.012;
1634 Double_t bbPos = 0.080; // Z position w.r. to left pixel edge
1635
1636 // the three dimensions of the box which contains the ladder
1637 // are returned in the 'sizes' argument, and are used for volumes positionement
1638 // for readability purpose, they are linked by reference to a more meaningful name
1639 sizes.Set(3);
1640 Double_t &thickness = sizes[0];
1641 Double_t &length = sizes[1];
1642 Double_t &width = sizes[2];
1643 // the container is a box which exactly enclose all the stuff
1644 width = chipWidth;
1645 length = sensLength + 2.0*guardRingWidth;
1646 thickness = sensThickness + chipThickness + bbThickness;
1647
1648 // ** VOLUMES *************************************************************
1649
1650 // This is a sensitive volume.
1651 // Local X must correspond to x coordinate of the sensitive volume:
1652 // to respect this, the origin of the local reference system
1653 // must be shifted from the middle of the box, using
1654 // an additional option ('originShift') when creating the container shape:
1655 Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
1656 Double_t originShift[3] = {-xSens, 0., 0.};
1657
1658 // now the container is a TGeoBBox with this shift,
1659 // and the volume is made of air (it does not exist in reality)
1660 TGeoBBox *shLadder = new TGeoBBox(0.5*width, 0.5*thickness, 0.5*length, originShift);
1661 TGeoVolume *vLadder = new TGeoVolume(Form("ITSSPDlay%d-Ladder", layer), shLadder, medAir);
1662
1663 // the chip is a common box
1664 TGeoVolume *vChip = mgr->MakeBox("ITSSPDchip", medSPDSiChip,
1665 0.5*chipWidth, 0.5*chipThickness, 0.5*chipLength);
1666
1667 // to build the sensor with its guard ring, we create a TGeoBBox with the size
1668 // of the sensor + guard ring, and we insert the true sensor into it as an
1669 // internal node: this simplifies the implementation with the same result
1670 TGeoVolume *vSensGuard = mgr->MakeBox(Form("%s-guardRing", GetSenstiveVolumeName(layer)),
1671 medSi,
1672 0.5*sensWidth + guardRingWidth,
1673 0.5*sensThickness,
1674 0.5*sensLength + guardRingWidth);
1675 TGeoVolume *vSens = mgr->MakeBox(GetSenstiveVolumeName(layer), medSi,
1676 0.5*sensWidth,0.5*sensThickness,0.5*sensLength);
1677 vSensGuard->AddNode(vSens, 0);
1678 vSensGuard->SetTransparency(50);
1679
1680 // bump bond is a common box for one whole column
1681 TGeoVolume *vBB = mgr->MakeBox("ITSSPDbb", medBumpBond,
1682 0.5*bbWidth, 0.5*bbThickness, 0.5*bbLength);
1683
1684 // set colors of all objects for visualization
1685 vLadder->SetLineColor(kRed);
1686 vSens->SetLineColor(kYellow + 1);
1687 vChip->SetLineColor(kGreen);
1688 vSensGuard->SetLineColor(kYellow + 3);
1689 vBB->SetLineColor(kGray);
1690
1691 // ** MOVEMENTS **
1692 // sensor is translated along thickness (Y) and width (X)
1693 Double_t ySens = 0.5 * (thickness - sensThickness);
1694 Double_t zSens = 0.0;
1695 // we want that the x of the ladder is the same as the one of
1696 // its sensitive volume
1697 TGeoTranslation *trSens = new TGeoTranslation(0.0, ySens, zSens);
1698 // bump bonds are translated along all axes:
1699 // keep same Y used for sensors, but change the Z
1700 TGeoTranslation *trBB[160];
1701 Double_t x = 0.0;
1702 Double_t y = 0.5 * (thickness - bbThickness) - sensThickness;
1703 Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
1704 Int_t i;
1705 for (i = 0; i < 160; i++) {
1706 trBB[i] = new TGeoTranslation(x, y, z);
1707 switch(i) {
1708 case 31:case 63:case 95:case 127:
1709 z += fgkmm * 0.625 + fgkmm * 0.2;
1710 break;
1711 default:
1712 z += fgkmm * 0.425;
1713 } // end switch
1714 } // end for i
1715 // the chips are translated along the length (Z) and thickness (X)
1716 TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
1717 x = -xSens;
1718 y = 0.5 * (chipThickness - thickness);
1719 z = 0.0;
1720 for (i = 0; i < 5; i++) {
1721 z = -0.5*length + guardRingWidth
1722 + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
1723 trChip[i] = new TGeoTranslation(x, y, z);
1724 } // end ofr i
1725
1726 // add nodes to container
1727 vLadder->AddNode(vSensGuard, 1, trSens);
1728 //vLadderAddNode(volBorder, 1, trSens);
1729 for (i = 0; i < 160; i++) vLadder->AddNode(vBB,i+1,trBB[i]);
1730 for (i = 0; i < 5; i++) vLadder->AddNode(vChip,i+3,trChip[i]);
1731 // return the container
1732 return vLadder;
1733}
1734*/
1735
7855ea93 1736//______________________________________________________________________
54c9a3d9 1737TGeoVolume* AliITSv11GeometrySPD::CreateClip(TArrayD &sizes,Bool_t isDummy,
1738 TGeoManager *mgr) const
1739{
1740 //
1741 // Creates the carbon fiber clips which are added to the central ladders.
1742 // They have a complicated shape which is approximated by a TGeoXtru
1743 // Implementation of a single clip over an half-stave.
1744 // It has a complicated shape which is approximated to a section like this:
1745 //
1746 // 6
1747 // /\ .
1748 // 7 //\\ 5
1749 // / 1\\___________________4
1750 // 0 \___________________
1751 // 2 3
1752 // with a finite thickness for all the shape
1753 // Its local reference frame is such that point A corresponds to origin.
1754 //
1755 Double_t fullLength = fgkmm * 12.6; // = x4 - x0
1756 Double_t flatLength = fgkmm * 5.4; // = x4 - x3
1757 Double_t inclLongLength = fgkmm * 5.0; // = 5-6
1758 Double_t inclShortLength = fgkmm * 2.0; // = 6-7
1759 Double_t fullHeight = fgkmm * 2.8; // = y6 - y3
3ffa185f 1760 Double_t thickness = fgkmm * 0.18; // thickness
54c9a3d9 1761 Double_t totalLength = fgkmm * 52.0; // total length in Z
22726349 1762 Double_t holeSize = fgkmm * 5.0; // dimension of cubic
54c9a3d9 1763 // hole inserted for pt1000
1764 Double_t angle1 = 27.0; // supplementary of angle DCB
1765 Double_t angle2; // angle DCB
1766 Double_t angle3; // angle of GH with vertical
1767
1768 angle2 = 0.5 * (180.0 - angle1);
1769 angle3 = 90.0 - TMath::ACos(fullLength - flatLength -
1770 inclLongLength*TMath::Cos(angle1)) *
1771 TMath::RadToDeg();
1772 angle1 *= TMath::DegToRad();
1773 angle2 *= TMath::DegToRad();
1774 angle3 *= TMath::DegToRad();
1775
1776 Double_t x[8], y[8];
1777
1778 x[0] = 0.0;
1779 x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1);
1780 x[2] = x[0] + fullLength - flatLength;
1781 x[3] = x[0] + fullLength;
1782 x[4] = x[3];
1783 x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2);
1784 x[6] = x[1];
1785 x[7] = x[0];
1786
1787 y[0] = 0.0;
1788 y[1] = y[0] + inclShortLength * TMath::Cos(angle3);
1789 y[2] = y[1] - inclLongLength * TMath::Sin(angle1);
1790 y[3] = y[2];
1791 y[4] = y[3] + thickness;
1792 y[5] = y[4];
1793 y[6] = y[1] + thickness;
1794 y[7] = y[0] + thickness;
1795
1796 sizes.Set(7);
1797 sizes[0] = totalLength;
1798 sizes[1] = fullHeight;
1799 sizes[2] = y[2];
1800 sizes[3] = y[6];
1801 sizes[4] = x[0];
1802 sizes[5] = x[3];
1803 sizes[6] = x[2];
1804
1805 if(isDummy){// use this argument when on ewant just the
1806 // positions without create any volume
1807 return NULL;
1808 } // end if isDummy
1809
1810 TGeoXtru *shClip = new TGeoXtru(2);
1811 shClip->SetName("ITSSPDshclip");
1812 shClip->DefinePolygon(8, x, y);
1813 shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0);
1814 shClip->DefineSection(1, 0.5*totalLength, 0., 0., 1.0);
1815
1816 TGeoBBox *shHole = new TGeoBBox("ITSSPDSHClipHole",0.5*holeSize,
1817 0.5*holeSize,0.5*holeSize);
1818 TGeoTranslation *tr1 = new TGeoTranslation("ITSSPDTRClipHole1",x[2],0.0,
1819 fgkmm*14.);
1820 TGeoTranslation *tr2 = new TGeoTranslation("ITSSPDTRClipHole2",x[2],0.0,
1821 0.0);
1822 TGeoTranslation *tr3 = new TGeoTranslation("ITSSPDTRClipHole3",x[2],0.0,
1823 -fgkmm*14.);
1824 tr1->RegisterYourself();
1825 tr2->RegisterYourself();
1826 tr3->RegisterYourself();
1827
1828 //TString strExpr("ITSSPDshclip-(");
1829 TString strExpr(shClip->GetName());
1830 strExpr.Append("-(");
1831 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName()));
1832 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName()));
1833 strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName()));
1834 TGeoCompositeShape *shClipHole = new TGeoCompositeShape(
1835 "ITSSPDSHClipHoles",strExpr.Data());
1836
1837 TGeoMedium *mat = GetMedium("SPD C (M55J)$", mgr);
1838 TGeoVolume *vClip = new TGeoVolume("ITSSPDclip", shClipHole, mat);
1839 vClip->SetLineColor(kGray + 2);
1840 return vClip;
1841}//______________________________________________________________________
7855ea93 1842TGeoCompositeShape* AliITSv11GeometrySPD::CreateGroundingFoilShape
54c9a3d9 1843 (Int_t itype,Double_t &length,Double_t &width,
1844 Double_t thickness,TArrayD &sizes)
bc3498f4 1845{
54c9a3d9 1846 //
1847 // Creates the typical composite shape of the grounding foil:
1848 //
1849 // +---------------------------------------------------------+
1850 // | 5 6 9 |
1851 // | +-----------+ +------------+ 10
1852 // | O | | |
1853 // | 3 /-----+ 4 +------+
1854 // | 1 / 7 8
1855 // | /----------/
1856 // +-----/ 2 +
1857 // 0
1858 // Z + 11
1859 //
1860 // This shape is used 4 times: two layers of glue, one in kapton
1861 // and one in aluminum, taking into account that the aliminum
1862 // layer has small differences in the size of some parts.
1863 // ---
1864 // In order to overcome problems apparently due to a large number
1865 // of points, the shape creation is done according the following
1866 // steps:
1867 // 1) a TGeoBBox is created with a size right enough to contain
1868 // the whole shape (0-1-X-13)
1869 // 2) holes are defined as other TGeoBBox which are subtracted
1870 // from the main shape
1871 // 3) a TGeoXtru is defined connecting the points (0-->11-->0)
1872 // and is also subtracted from the main shape
1873 // ---
1874 // The argument ("type") is used to choose between all these
1875 // possibilities:
1876 // - type = 0 --> kapton layer
1877 // - type = 1 --> aluminum layer
1878 // - type = 2 --> glue layer between support and GF
1879 // - type = 3 --> glue layer between GF and ladders
1880 // Returns: a TGeoCompositeShape which will then be used to shape
1881 // several volumes. Since TGeoXtru is used, the local reference
1882 // frame of this object has X horizontal and Y vertical w.r to
1883 // the shape drawn above, and Z axis going perpendicularly to the screen.
1884 // This is not the correct reference for the half stave, for which
1885 // the "long" dimension is Z and the "short" is X, while Y goes in
1886 // the direction of thickness. This will imply some rotations when
1887 // using the volumes created with this shape.
3ffa185f 1888
54c9a3d9 1889 // suffix to differentiate names
1890 Char_t type[10];
1891
1892 // size of the virtual box containing exactly this volume
1893 length = fgkmm * 243.18;
1894 width = fgkmm * 15.95;
1895 if (itype == 1) {
1896 length -= fgkmm * 0.4;
1897 width -= fgkmm * 0.4;
1898 } // end if itype==1
1899 switch (itype) {
1900 case 0:
1901 sprintf(type,"Kap");
1902 break;
1903 case 1:
1904 sprintf(type,"Alu");
1905 break;
1906 case 2:
1907 sprintf(type,"Glue1");
1908 break;
1909 case 3:
1910 sprintf(type,"Glue2");
1911 break;
1912 }
1913 // we divide the shape in several slices along the horizontal
1914 // direction (local X) here we define define the length of all
1915 // sectors (from leftmost to rightmost)
1916 Int_t i;
1917 Double_t sliceLength[] = { 140.71, 2.48, 26.78, 4.00,
1918 10.00, 24.40, 10.00, 24.81 };
1919 for (i = 0; i < 8; i++) sliceLength[i] *= fgkmm;
1920 if (itype == 1) {
1921 sliceLength[0] -= fgkmm * 0.2;
1922 sliceLength[4] -= fgkmm * 0.2;
1923 sliceLength[5] += fgkmm * 0.4;
1924 sliceLength[6] -= fgkmm * 0.4;
1925 } // end if itype ==1
3ffa185f 1926
54c9a3d9 1927 // as shown in the drawing, we have four different widths
1928 // (along local Y) in this shape:
1929 Double_t widthMax = fgkmm * 15.95;
1930 Double_t widthMed1 = fgkmm * 15.00;
1931 Double_t widthMed2 = fgkmm * 11.00;
1932 Double_t widthMin = fgkmm * 4.40;
1933 if (itype == 1) {
1934 widthMax -= fgkmm * 0.4;
1935 widthMed1 -= fgkmm * 0.4;
1936 widthMed2 -= fgkmm * 0.4;
1937 widthMin -= fgkmm * 0.4;
1938 } // end if itype==1
1939
1940 // create the main shape
1941 TGeoBBox *shGroundFull = 0;
1942 shGroundFull = new TGeoBBox(Form("ITSSPDSHgFoil%sFull", type),
1943 0.5*length,0.5*width, 0.5*thickness);
1944
1945 // create the polygonal shape to be subtracted to give the correct
1946 // shape to the borders its vertices are defined in sugh a way that
1947 // this polygonal will be placed in the correct place considered
1948 // that the origin of the local reference frame is in the center
1949 // of the main box: we fix the starting point at the lower-left
1950 // edge of the shape (point 12), and add all points in order,
1951 // following a clockwise rotation
1952
1953 Double_t x[13], y[13];
1954 x[ 0] = -0.5 * length + sliceLength[0];
1955 y[ 0] = -0.5 * widthMax;
1956
1957 x[ 1] = x[0] + sliceLength[1];
1958 y[ 1] = y[0] + (widthMax - widthMed1);
1959
1960 x[ 2] = x[1] + sliceLength[2];
1961 y[ 2] = y[1];
1962
1963 x[ 3] = x[2] + sliceLength[3];
1964 y[ 3] = y[2] + (widthMed1 - widthMed2);
1965
1966 x[ 4] = x[3] + sliceLength[4];
1967 y[ 4] = y[3];
1968
1969 x[ 5] = x[4];
1970 y[ 5] = y[4] + (widthMed2 - widthMin);
1971
1972 x[ 6] = x[5] + sliceLength[5];
1973 y[ 6] = y[5];
1974
1975 x[ 7] = x[6];
1976 y[ 7] = y[4];
1977
1978 x[ 8] = x[7] + sliceLength[6];
1979 y[ 8] = y[7];
1980
1981 x[ 9] = x[8];
1982 y[ 9] = y[6];
1983
1984 x[10] = x[9] + sliceLength[7] + 0.5;
1985 y[10] = y[9];
1986
1987 x[11] = x[10];
1988 y[11] = y[0] - 0.5;
1989
1990 x[12] = x[0];
1991 y[12] = y[11];
1992
1993 // create the shape
1994 TGeoXtru *shGroundXtru = new TGeoXtru(2);
1995 shGroundXtru->SetName(Form("ITSSPDSHgFoil%sXtru", type));
1996 shGroundXtru->DefinePolygon(13, x, y);
1997 shGroundXtru->DefineSection(0, -thickness, 0., 0., 1.0);
1998 shGroundXtru->DefineSection(1, thickness, 0., 0., 1.0);
1999
2000 // define a string which will express the algebric operations among volumes
2001 // and add the subtraction of this shape from the main one
2002 TString strComposite(Form("ITSSPDSHgFoil%sFull-(%s+", type,
2003 shGroundXtru->GetName()));
2004
2005 // define the holes according to size information coming from drawings:
2006 Double_t holeLength = fgkmm * 10.00;
2007 Double_t holeWidth = fgkmm * 7.50;
2008 Double_t holeSepX0 = fgkmm * 7.05; // separation between center
2009 // of first hole and left border
2010 Double_t holeSepXC = fgkmm * 14.00; // separation between the centers
2011 // of two consecutive holes
2012 Double_t holeSepX1 = fgkmm * 15.42; // separation between centers of
2013 // 5th and 6th hole
2014 Double_t holeSepX2 = fgkmm * 22.00; // separation between centers of
2015 // 10th and 11th hole
2016 if (itype == 1) {
2017 holeSepX0 -= fgkmm * 0.2;
2018 holeLength += fgkmm * 0.4;
2019 holeWidth += fgkmm * 0.4;
2020 } // end if itype==1
2021 sizes.Set(7);
2022 sizes[0] = holeLength;
2023 sizes[1] = holeWidth;
2024 sizes[2] = holeSepX0;
2025 sizes[3] = holeSepXC;
2026 sizes[4] = holeSepX1;
2027 sizes[5] = holeSepX2;
2028 sizes[6] = fgkmm * 4.40;
2029
2030 // X position of hole center (will change for each hole)
2031 Double_t holeX = -0.5*length;
2032 // Y position of center of all holes (= 4.4 mm from upper border)
2033 Double_t holeY = 0.5*(width - holeWidth) - widthMin;
2034
2035 // create a shape for the holes (common)
2036 TGeoBBox *shHole = 0;
2037 shHole = new TGeoBBox(Form("ITSSPD%sGfoilHole", type),0.5*holeLength,
2038 0.5*holeWidth, thickness);
2039
2040 // insert the holes in the XTRU shape:
2041 // starting from the first value of X, they are simply
2042 // shifted along this axis
2043 char name[200];
2044 TGeoTranslation *transHole[11];
4adcf390 2045 for (i = 0; i < 11; i++) {
54c9a3d9 2046 // set the position of the hole, depending on index
2047 if (i == 0) {
2048 holeX += holeSepX0;
2049 }else if (i < 5) {
2050 holeX += holeSepXC;
2051 }else if (i == 5) {
2052 holeX += holeSepX1;
2053 }else if (i < 10) {
2054 holeX += holeSepXC;
2055 }else {
2056 holeX += holeSepX2;
2057 } // end if else if's
2058 //cout << i << " --> X = " << holeX << endl;
2059 sprintf(name,"ITSSPDTRgFoil%sHole%d", type, i);
2060 transHole[i] = new TGeoTranslation(name, holeX, holeY, 0.0);
2061 transHole[i]->RegisterYourself();
2062 strComposite.Append(Form("ITSSPD%sGfoilHole:%s", type, name));
2063 if (i < 10) strComposite.Append("+"); else strComposite.Append(")");
2064 } // end for i
2065
2066 // create composite shape
2067 TGeoCompositeShape *shGround = new TGeoCompositeShape(
2068 Form("ITSSPDSHgFoil%s", type), strComposite.Data());
2069
2070 return shGround;
592651e2 2071}
54c9a3d9 2072//______________________________________________________________________
2073TGeoVolume* AliITSv11GeometrySPD::CreateGroundingFoil(Bool_t isRight,
2074 TArrayD &sizes, TGeoManager *mgr)
bc3498f4 2075{
54c9a3d9 2076 //
2077 // Create a volume containing all parts of the grounding foil a
2078 // for a half-stave.
2079 // It consists of 4 layers with the same shape but different thickness:
2080 // 1) a layer of glue
2081 // 2) the aluminum layer
2082 // 3) the kapton layer
2083 // 4) another layer of glue
2084 // ---
2085 // Arguments:
2086 // 1: a boolean value to know if it is the grounding foir for
2087 // the right or left side
2088 // 2: a TArrayD which will contain the dimension of the container box:
2089 // - size[0] = length along Z (the beam line direction)
2090 // - size[1] = the 'width' of the stave, which defines, together
2091 // with Z, the plane of the carbon fiber support
2092 // - size[2] = 'thickness' (= the direction along which all
2093 // stave components are superimposed)
2094 // 3: the TGeoManager
2095 // ---
2096 // The return value is a TGeoBBox volume containing all grounding
2097 // foil components.
2098 // to avoid strange behaviour of the geometry manager,
2099 // create a suffix to be used in the names of all shapes
2100 //
2101 char suf[5];
2102 if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");
2103 // this volume will be created in order to ease its placement in
2104 // the half-stave; then, it is added here the small distance of
2105 // the "central" edge of each volume from the Z=0 plane in the stave
2106 // reference (which coincides with ALICE one)
2107 Double_t dist = fgkmm * 0.71;
2108
2109 // define materials
2110 TGeoMedium *medKap = GetMedium("SPD KAPTON(POLYCH2)$", mgr);
2111 TGeoMedium *medAlu = GetMedium("AL$", mgr);
2112 TGeoMedium *medGlue = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT
2113
2114 // compute the volume shapes (thicknesses change from one to the other)
2115 Double_t kpLength, kpWidth, alLength, alWidth;
2116 TArrayD kpSize, alSize, glSize;
ed0e944d 2117 Double_t kpThickness = fgkmm * 0.04;
2118 Double_t alThickness = fgkmm * 0.01;
2119//cout << "AL THICKNESS" << alThickness << endl;
2120 //Double_t g0Thickness = fgkmm * 0.1175 - fgkGapHalfStave;
2121 //Double_t g1Thickness = fgkmm * 0.1175 - fgkGapLadder;
2122 Double_t g0Thickness = fgkmm * 0.1275 - fgkGapHalfStave;
2123 Double_t g1Thickness = fgkmm * 0.1275 - fgkGapLadder;
54c9a3d9 2124 TGeoCompositeShape *kpShape = CreateGroundingFoilShape(0,kpLength,kpWidth,
2125 kpThickness, kpSize);
2126 TGeoCompositeShape *alShape = CreateGroundingFoilShape(1,alLength,alWidth,
2127 alThickness, alSize);
3ffa185f 2128 TGeoCompositeShape *g0Shape = CreateGroundingFoilShape(2,kpLength,kpWidth,
2129 g0Thickness, glSize);
2130 TGeoCompositeShape *g1Shape = CreateGroundingFoilShape(3,kpLength,kpWidth,
2131 g1Thickness, glSize);
54c9a3d9 2132 // create the component volumes and register their sizes in the
2133 // passed arrays for readability reasons, some reference variables
2134 // explicit the meaning of the array slots
2135 TGeoVolume *kpVol = new TGeoVolume(Form("ITSSPDgFoilKap%s",suf),
2136 kpShape, medKap);
2137 TGeoVolume *alVol = new TGeoVolume(Form("ITSSPDgFoilAlu%s",suf),
2138 alShape, medAlu);
3ffa185f 2139 TGeoVolume *g0Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf),
2140 g0Shape, medGlue);
2141 TGeoVolume *g1Vol = new TGeoVolume(Form("ITSSPDgFoilGlue%s",suf),
2142 g1Shape, medGlue);
54c9a3d9 2143 // set colors for the volumes
2144 kpVol->SetLineColor(kRed);
2145 alVol->SetLineColor(kGray);
3ffa185f 2146 g0Vol->SetLineColor(kYellow);
2147 g1Vol->SetLineColor(kYellow);
54c9a3d9 2148 // create references for the final size object
2149 if (sizes.GetSize() != 3) sizes.Set(3);
2150 Double_t &fullThickness = sizes[0];
2151 Double_t &fullLength = sizes[1];
2152 Double_t &fullWidth = sizes[2];
2153 // kapton leads the larger dimensions of the foil
2154 // (including the cited small distance from Z=0 stave reference plane)
2155 // the thickness is the sum of the ones of all components
2156 fullLength = kpLength + dist;
2157 fullWidth = kpWidth;
3ffa185f 2158 fullThickness = kpThickness + alThickness + g0Thickness + g1Thickness;
54c9a3d9 2159 // create the container
2160 TGeoMedium *air = GetMedium("AIR$", mgr);
2161 TGeoVolume *container = mgr->MakeBox(Form("ITSSPDgFOIL-%s",suf),
2162 air, 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength);
2163 // create the common correction rotation (which depends of what side
2164 // we are building)
2165 TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity);
2166 if (isRight) rotCorr->RotateY(90.0);
3ffa185f 2167 else rotCorr->RotateY(-90.0);
54c9a3d9 2168 // compute the translations, which are in the length and
2169 // thickness directions
2170 Double_t x, y, z, shift = 0.0;
2171 if (isRight) shift = dist;
2172 // glue (bottom)
3ffa185f 2173 x = -0.5*(fullThickness - g0Thickness);
54c9a3d9 2174 z = 0.5*(fullLength - kpLength) - shift;
2175 TGeoCombiTrans *glTrans0 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
2176 // kapton
3ffa185f 2177 x += 0.5*(g0Thickness + kpThickness);
54c9a3d9 2178 TGeoCombiTrans *kpTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
2179 // aluminum
2180 x += 0.5*(kpThickness + alThickness);
2181 z = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength);
2182 TGeoCombiTrans *alTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
2183 // glue (top)
3ffa185f 2184 x += 0.5*(alThickness + g1Thickness);
54c9a3d9 2185 z = 0.5*(fullLength - kpLength) - shift;
2186 TGeoCombiTrans *glTrans1 = new TGeoCombiTrans(x, 0.0, z, rotCorr);
3ffa185f 2187
ed0e944d 2188 //cout << fgkGapHalfStave << endl;
2189 //cout << g0Thickness << endl;
2190 //cout << kpThickness << endl;
2191 //cout << alThickness << endl;
2192 //cout << g1Thickness << endl;
54c9a3d9 2193
2194 // add to container
22726349 2195 container->SetLineColor(kMagenta-10);
54c9a3d9 2196 container->AddNode(kpVol, 1, kpTrans);
2197 container->AddNode(alVol, 1, alTrans);
3ffa185f 2198 container->AddNode(g0Vol, 1, glTrans0);
2199 container->AddNode(g1Vol, 2, glTrans1);
54c9a3d9 2200 // to add the grease we remember the sizes of the holes, stored as
2201 // additional parameters in the kapton layer size:
2202 // - sizes[3] = hole length
2203 // - sizes[4] = hole width
2204 // - sizes[5] = position of first hole center
2205 // - sizes[6] = standard separation between holes
2206 // - sizes[7] = separation between 5th and 6th hole
2207 // - sizes[8] = separation between 10th and 11th hole
2208 // - sizes[9] = separation between the upper hole border and
2209 // the foil border
2210 Double_t holeLength = kpSize[0];
2211 Double_t holeWidth = kpSize[1];
2212 Double_t holeFirstZ = kpSize[2];
2213 Double_t holeSepZ = kpSize[3];
2214 Double_t holeSep5th6th = kpSize[4];
2215 Double_t holeSep10th11th = kpSize[5];
2216 Double_t holeSepY = kpSize[6];
2217 // volume (common)
2218 // Grease has not been defined to date. Need much more information
2219 // no this material!
2220 TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE
2221 TGeoVolume *hVol = mgr->MakeBox("ITSSPDGrease", grease,
2222 0.5*fullThickness, 0.5*holeWidth, 0.5*holeLength);
2223 hVol->SetLineColor(kBlue);
2224 // displacement of volumes in the container
2225 Int_t idx = 1; // copy numbers start from 1.
2226 x = 0.0;
2227 y = 0.5*(fullWidth - holeWidth) - holeSepY;
2228 if (isRight) z = holeFirstZ - 0.5*fullLength + dist;
2229 else z = 0.5*fullLength - holeFirstZ - dist;
2230 for (Int_t i = 0; i < 11; i++) {
2231 TGeoTranslation *t = 0;
2232 t = new TGeoTranslation(x, y, -z);
2233 container->AddNode(hVol, idx++, t);
2234 if (i < 4) shift = holeSepZ;
2235 else if (i == 4) shift = holeSep5th6th;
2236 else if (i < 9) shift = holeSepZ;
2237 else shift = holeSep10th11th;
2238 if (isRight) z += shift;
2239 else z -= shift;
2240 } // end for i
2241 return container;
592651e2 2242}
54c9a3d9 2243//___________________________________________________________________
2244TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM(Bool_t isRight,
2245 TArrayD &sizes, TGeoManager *mgr) const
bc3498f4 2246{
54c9a3d9 2247 //
2248 // Create a TGeoAssembly containing all the components of the MCM.
2249 // The TGeoVolume container is rejected due to the possibility of overlaps
2250 // when placing this object on the carbon fiber sector.
2251 // The assembly contains:
2252 // - the thin part of the MCM (integrated circuit)
2253 // - the MCM chips (specifications from EDMS)
2254 // - the cap which covers the zone where chips are bound to MCM
2255 // ---
2256 // The local reference frame of this assembly is defined in such a way
2257 // that all volumes are contained in a virtual box whose center
2258 // is placed exactly in the middle of the occupied space w.r to all
2259 // directions. This will ease the positioning of this object in the
2260 // half-stave. The sizes of this virtual box are stored in
2261 // the array passed by reference.
2262 // ---
2263 // Arguments:
2264 // - a boolean flag to know if this is the "left" or "right" MCM, when
2265 // looking at the stave from above (i.e. the direction from which
2266 // one sees bus over ladders over grounding foil) and keeping the
2267 // continuous border in the upper part, one sees the thicker part
2268 // on the left or right.
2269 // - an array passed by reference which will contain the size of
2270 // the virtual container.
2271 // - a pointer to the used TGeoManager.
2272 //
2273
2274 // to distinguish the "left" and "right" objects, a suffix is created
2275 char suf[5];
2276 if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");
2277
2278 // ** MEDIA **
2279 TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE
2280 TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr);
2281 TGeoMedium *medCap = GetMedium("AL$",mgr);
2282
2283 // The shape of the MCM is divided into 3 sectors with different
2284 // widths (Y) and lengths (X), like in this sketch:
2285 //
2286 // 0 1 2
2287 // +---------------------+-----------------------------------+
2288 // | 4 sect 2 |
2289 // | 6 sect 1 /-------------------+
2290 // | sect 0 /--------------/ 3
2291 // +--------------------/ 5
2292 // 8 7
2293 //
2294 // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees.
2295 // From drawings we can parametrize the dimensions of all these sectors,
2296 // then the shape of this part of the MCM is implemented as a
2297 // TGeoXtru centerd in the virtual XY space.
2298 // The first step is definig the relevant sizes of this shape:
2299 Int_t i, j;
2300 Double_t mcmThickness = fgkmm * 0.35;
2301 Double_t sizeXtot = fgkmm * 105.6; // total distance (0-2)
2302 // resp. 7-8, 5-6 and 3-4
2303 Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8};
2304 // resp. 0-8, 1-6 and 2-3
2305 Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm * 8.0};
2306 Double_t sizeSep01 = fgkmm * 4.0; // x(6)-x(7)
2307 Double_t sizeSep12 = fgkmm * 3.0; // x(4)-x(5)
2308
2309 // define sizes of chips (last is the thickest)
2310 Double_t chipLength[5] = { 4.00, 6.15, 3.85, 5.60, 18.00 };
2311 Double_t chipWidth[5] = { 3.00, 4.10, 3.85, 5.60, 5.45 };
2312 Double_t chipThickness[5] = { 0.60, 0.30, 0.30, 1.00, 1.20 };
2313 TString name[5];
2314 name[0] = "ITSSPDanalog";
2315 name[1] = "ITSSPDpilot";
2316 name[2] = "ITSSPDgol";
2317 name[3] = "ITSSPDrx40";
2318 name[4] = "ITSSPDoptical";
2319 Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange };
2320
2321 // define the sizes of the cover
2322 Double_t capThickness = fgkmm * 0.3;
2323 Double_t capHeight = fgkmm * 1.7;
2324
2325 // compute the total size of the virtual container box
2326 sizes.Set(3);
2327 Double_t &thickness = sizes[0];
2328 Double_t &length = sizes[1];
2329 Double_t &width = sizes[2];
2330 length = sizeXtot;
2331 width = sizeYsector[0];
2332 thickness = mcmThickness + capHeight;
2333
2334 // define all the relevant vertices of the polygon
2335 // which defines the transverse shape of the MCM.
2336 // These values are used to several purposes, and
2337 // for each one, some points must be excluded
2338 Double_t xRef[9], yRef[9];
2339 xRef[0] = -0.5*sizeXtot;
2340 yRef[0] = 0.5*sizeYsector[0];
2341 xRef[1] = xRef[0] + sizeXsector[0] + sizeSep01;
2342 yRef[1] = yRef[0];
2343 xRef[2] = -xRef[0];
2344 yRef[2] = yRef[0];
2345 xRef[3] = xRef[2];
2346 yRef[3] = yRef[2] - sizeYsector[2];
2347 xRef[4] = xRef[3] - sizeXsector[2];
2348 yRef[4] = yRef[3];
2349 xRef[5] = xRef[4] - sizeSep12;
2350 yRef[5] = yRef[4] - sizeSep12;
2351 xRef[6] = xRef[5] - sizeXsector[1];
2352 yRef[6] = yRef[5];
2353 xRef[7] = xRef[6] - sizeSep01;
2354 yRef[7] = yRef[6] - sizeSep01;
2355 xRef[8] = xRef[0];
2356 yRef[8] = -yRef[0];
2357
2358 // the above points are defined for the "right" MCM (if ve view the
2359 // stave from above) in order to change to the "left" one, we must
2360 // change the sign to all X values:
2361 if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i];
3ffa185f 2362
54c9a3d9 2363 // the shape of the MCM and glue layer are done excluding point 1,
2364 // which is not necessary and cause the geometry builder to get confused
2365 j = 0;
2366 Double_t xBase[8], yBase[8];
2367 for (i = 0; i < 9; i++) {
2368 if (i == 1) continue;
2369 xBase[j] = xRef[i];
2370 yBase[j] = yRef[i];
2371 j++;
2372 } // end for i
2373
2374 // the MCM cover is superimposed over the zones 1 and 2 only
2375 Double_t xCap[6], yCap[6];
2376 j = 0;
2377 for (i = 1; i <= 6; i++) {
2378 xCap[j] = xRef[i];
2379 yCap[j] = yRef[i];
2380 j++;
2381 } // end for i
2382
2383 // define positions of chips,
2384 // which must be added to the bottom-left corner of MCM
2385 // and divided by 1E4;
2386 Double_t chipX[5], chipY[5];
2387 if (isRight) {
2388 chipX[0] = 666320.;
2389 chipX[1] = 508320.;
2390 chipX[2] = 381320.;
2391 chipX[3] = 295320.;
2392 chipX[4] = 150320.;
2393 chipY[0] = 23750.;
2394 chipY[1] = 27750.;
2395 chipY[2] = 20750.;
2396 chipY[3] = 42750.;
2397 chipY[4] = 39750.;
2398 } else {
2399 chipX[0] = 389730.;
2400 chipX[1] = 548630.;
2401 chipX[2] = 674930.;
2402 chipX[3] = 761430.;
2403 chipX[4] = 905430.;
2404 chipY[0] = 96250.;
2405 chipY[1] = 91950.;
2406 chipY[2] = 99250.;
2407 chipY[3] = 107250.;
2408 chipY[4] = 109750.;
2409 } // end if isRight
2410 for (i = 0; i < 5; i++) {
2411 chipX[i] *= 0.00001;
2412 chipY[i] *= 0.00001;
2413 if (isRight) {
2414 chipX[i] += xRef[3];
2415 chipY[i] += yRef[3];
2416 } else {
2417 chipX[i] += xRef[8];
2418 chipY[i] += yRef[8];
2419 } // end for isRight
2420 chipLength[i] *= fgkmm;
2421 chipWidth[i] *= fgkmm;
2422 chipThickness[i] *= fgkmm;
2423 } // end for i
2424
2425 // create shapes for MCM
2426 Double_t z1, z2;
2427 TGeoXtru *shBase = new TGeoXtru(2);
2428 z1 = -0.5*thickness;
2429 z2 = z1 + mcmThickness;
2430 shBase->DefinePolygon(8, xBase, yBase);
2431 shBase->DefineSection(0, z1, 0., 0., 1.0);
2432 shBase->DefineSection(1, z2, 0., 0., 1.0);
2433
2434 // create volumes of MCM
2435 TGeoVolume *volBase = new TGeoVolume("ITSSPDbase", shBase, medBase);
2436 volBase->SetLineColor(kRed);
2437
2438 // to create the border of the MCM cover, it is required the
2439 // subtraction of two shapes the outer is created using the
2440 // reference points defined here
2441 TGeoXtru *shCapOut = new TGeoXtru(2);
2442 shCapOut->SetName(Form("ITSSPDshCAPOUT%s", suf));
2443 z1 = z2;
2444 z2 = z1 + capHeight - capThickness;
2445 shCapOut->DefinePolygon(6, xCap, yCap);
2446 shCapOut->DefineSection(0, z1, 0., 0., 1.0);
2447 shCapOut->DefineSection(1, z2, 0., 0., 1.0);
2448 // the inner is built similarly but subtracting the thickness
2449 Double_t angle, cs;
2450 Double_t xin[6], yin[6];
2451 if (!isRight) {
2452 angle = 45.0;
2453 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
2454 xin[0] = xCap[0] + capThickness;
2455 yin[0] = yCap[0] - capThickness;
2456 xin[1] = xCap[1] - capThickness;
2457 yin[1] = yin[0];
2458 xin[2] = xin[1];
2459 yin[2] = yCap[2] + capThickness;
2460 xin[3] = xCap[3] - capThickness*cs;
2461 yin[3] = yin[2];
2462 xin[4] = xin[3] - sizeSep12;
2463 yin[4] = yCap[4] + capThickness;
2464 xin[5] = xin[0];
2465 yin[5] = yin[4];
2466 } else {
2467 angle = 45.0;
2468 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
2469 xin[0] = xCap[0] - capThickness;
2470 yin[0] = yCap[0] - capThickness;
2471 xin[1] = xCap[1] + capThickness;
2472 yin[1] = yin[0];
2473 xin[2] = xin[1];
2474 yin[2] = yCap[2] + capThickness;
2475 xin[3] = xCap[3] - capThickness*cs;
2476 yin[3] = yin[2];
2477 xin[4] = xin[3] + sizeSep12;
2478 yin[4] = yCap[4] + capThickness;
2479 xin[5] = xin[0];
2480 yin[5] = yin[4];
2481 } // end if !isRight
2482 TGeoXtru *shCapIn = new TGeoXtru(2);
2483 shCapIn->SetName(Form("ITSSPDshCAPIN%s", suf));
2484 shCapIn->DefinePolygon(6, xin, yin);
2485 shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0);
2486 shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0);
2487 // compose shapes
2488 TGeoCompositeShape *shCapBorder = new TGeoCompositeShape(
2489 Form("ITSSPDshBORDER%s", suf),
2490 Form("%s-%s", shCapOut->GetName(),
2491 shCapIn->GetName()));
2492 // create volume
2493 TGeoVolume *volCapBorder = new TGeoVolume("ITSSPDcapBoarder",
2494 shCapBorder,medCap);
2495 volCapBorder->SetLineColor(kGreen);
2496 // finally, we create the top of the cover, which has the same
2497 // shape of outer border and a thickness equal of the one othe
2498 // cover border one
2499 TGeoXtru *shCapTop = new TGeoXtru(2);
2500 z1 = z2;
2501 z2 = z1 + capThickness;
2502 shCapTop->DefinePolygon(6, xCap, yCap);
2503 shCapTop->DefineSection(0, z1, 0., 0., 1.0);
2504 shCapTop->DefineSection(1, z2, 0., 0., 1.0);
2505 TGeoVolume *volCapTop = new TGeoVolume("ITSSPDcapTop", shCapTop, medCap);
2506 volCapTop->SetLineColor(kBlue);
2507
2508 // create container assembly with right suffix
2509 TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly(
2510 Form("ITSSPDmcm%s", suf));
2511
2512 // add mcm layer
2513 mcmAssembly->AddNode(volBase, 1, gGeoIdentity);
2514 // add chips
2515 for (i = 0; i < 5; i++) {
2516 TGeoVolume *box = gGeoManager->MakeBox(name[i],medChip,
2517 0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]);
2518 TGeoTranslation *tr = new TGeoTranslation(chipX[i],chipY[i],
2519 0.5*(-thickness + chipThickness[i]) + mcmThickness);
2520 box->SetLineColor(color[i]);
2521 mcmAssembly->AddNode(box, 1, tr);
2522 } // end for i
2523 // add cap border
2524 mcmAssembly->AddNode(volCapBorder, 1, gGeoIdentity);
2525 // add cap top
3ffa185f 2526 mcmAssembly->AddNode(volCapTop, 1, gGeoIdentity);
54c9a3d9 2527
2528 return mcmAssembly;
592651e2 2529}
7f69c251 2530
2531/*
2532//__________________________________________________________________________________________
2533TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
2534(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const
2535{
3ffa185f 2536 //
2537 // The pixel bus is implemented as a TGeoBBox with some objects on it,
2538 // which could affect the particle energy loss.
2539 // ---
2540 // In order to avoid confusion, the bus is directly displaced
2541 // according to the axis orientations which are used in the final stave:
2542 // X --> thickness direction
2543 // Y --> width direction
2544 // Z --> length direction
2545 //
7f69c251 2546
3ffa185f 2547
2548 // ** MEDIA **
2549
2550 //PIXEL BUS
2551 TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
2552 TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000
2553 // Capacity
2554 TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr);
2555 // ??? Resistance
2556 // TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr);
2557 TGeoMedium *medRes = GetMedium("ALUMINUM$",mgr);
2558 TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
2559 // ** SIZES & POSITIONS **
2560 Double_t busLength = 170.501 * fgkmm; // length of plane part
2561 Double_t busWidth = 13.800 * fgkmm; // width
2562 Double_t busThickness = 0.280 * fgkmm; // thickness
2563 Double_t pt1000Length = fgkmm * 1.50;
2564 Double_t pt1000Width = fgkmm * 3.10;
2565 Double_t pt1000Thickness = fgkmm * 0.60;
2566 Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
2567 Double_t capLength = fgkmm * 2.55;
2568 Double_t capWidth = fgkmm * 1.50;
2569 Double_t capThickness = fgkmm * 1.35;
2570 Double_t capY[2], capZ[2];
2571
2572 Double_t resLength = fgkmm * 2.20;
2573 Double_t resWidth = fgkmm * 0.80;
2574 Double_t resThickness = fgkmm * 0.35;
2575 Double_t resY[2], resZ[2];
2576
2577 Double_t extThickness = fgkmm * 0.25;
2578 Double_t ext1Length = fgkmm * (26.7 - 10.0);
2579 Double_t ext2Length = fgkmm * (285.0 - ext1Length + extThickness);
2580 Double_t extWidth = fgkmm * 11.0;
2581 Double_t extHeight = fgkmm * 2.5;
2582
2583
2584 // position of pt1000, resistors and capacitors depends on the
2585 // bus if it's left or right one
2586 if (!isRight) {
2587 pt1000Y = 64400.;
2588 pt1000Z[0] = 66160.;
2589 pt1000Z[1] = 206200.;
2590 pt1000Z[2] = 346200.;
2591 pt1000Z[3] = 486200.;
2592 pt1000Z[4] = 626200.;
2593 pt1000Z[5] = 776200.;
2594 pt1000Z[6] = 916200.;
2595 pt1000Z[7] = 1056200.;
2596 pt1000Z[8] = 1196200.;
2597 pt1000Z[9] = 1336200.;
2598 resZ[0] = 1397500.;
2599 resY[0] = 26900.;
2600 resZ[1] = 682500.;
2601 resY[1] = 27800.;
2602 capZ[0] = 1395700.;
2603 capY[0] = 45700.;
2604 capZ[1] = 692600.;
2605 capY[1] = 45400.;
2606 } else {
2607 pt1000Y = 66100.;
2608 pt1000Z[0] = 319700.;
2609 pt1000Z[1] = 459700.;
2610 pt1000Z[2] = 599700.;
2611 pt1000Z[3] = 739700.;
2612 pt1000Z[4] = 879700.;
2613 pt1000Z[5] = 1029700.;
2614 pt1000Z[6] = 1169700.;
2615 pt1000Z[7] = 1309700.;
2616 pt1000Z[8] = 1449700.;
2617 pt1000Z[9] = 1589700.;
2618 capY[0] = 44500.;
2619 capZ[0] = 266700.;
2620 capY[1] = 44300.;
2621 capZ[1] = 974700.;
2622 resZ[0] = 266500.;
2623 resY[0] = 29200.;
2624 resZ[1] = 974600.;
2625 resY[1] = 29900.;
2626 } // end if isRight
2627 Int_t i;
2628 pt1000Y *= 1E-4 * fgkmm;
2629 for (i = 0; i < 10; i++) {
2630 pt1000Z[i] *= 1E-4 * fgkmm;
2631 if (i < 2) {
2632 capZ[i] *= 1E-4 * fgkmm;
2633 capY[i] *= 1E-4 * fgkmm;
2634 resZ[i] *= 1E-4 * fgkmm;
2635 resY[i] *= 1E-4 * fgkmm;
2636 } // end if iM2
2637 } // end for i
2638
2639 Double_t &fullLength = sizes[1];
2640 Double_t &fullWidth = sizes[2];
2641 Double_t &fullThickness = sizes[0];
2642 fullLength = busLength;
2643 fullWidth = busWidth;
2644 // add the thickness of the thickest component on bus (capacity)
2645 fullThickness = busThickness + capThickness;
2646 // ** VOLUMES **
2647 TGeoVolumeAssembly *container = new TGeoVolumeAssembly("PixelBus");
2648 TGeoVolume *bus = mgr->MakeBox("Bus", medBus, 0.5*busThickness, 0.5*busWidth, 0.5*busLength);
2649 TGeoVolume *pt1000 = mgr->MakeBox("PT1000", medPt1000, 0.5*pt1000Thickness, 0.5*pt1000Width, 0.5*pt1000Length);
2650 TGeoVolume *res = mgr->MakeBox("Resistor", medRes, 0.5*resThickness, 0.5*resWidth, 0.5*resLength);
2651 TGeoVolume *cap = mgr->MakeBox("Capacitor", medCap, 0.5*capThickness, 0.5*capWidth, 0.5*capLength);
2652 TGeoVolume *ext1 = mgr->MakeBox("Extender1", medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length);
2653 TGeoVolume *ext2 = mgr->MakeBox("Extender2", medExt, 0.5*extHeight - extThickness, 0.5*extWidth, 0.5*extThickness);
2654 TGeoVolume *ext3 = mgr->MakeBox("Extender3", medExt, extThickness, 0.5*extWidth, 0.5*ext2Length);
2655 bus->SetLineColor(kYellow + 2);
2656 pt1000->SetLineColor(kGreen + 3);
2657 res->SetLineColor(kRed + 1);
2658 cap->SetLineColor(kBlue - 7);
2659 ext1->SetLineColor(kGray);
2660 ext2->SetLineColor(kGray);
2661 ext3->SetLineColor(kGray);
2662
2663 // ** MOVEMENTS AND POSITIONEMENT **
2664 // bus
2665 TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness -
2666 fullThickness), 0.0, 0.0);
2667 container->AddNode(bus, 0, trBus);
2668 Double_t zRef, yRef, x, y, z;
2669 if (isRight) {
2670 zRef = -0.5*fullLength;
2671 yRef = -0.5*fullWidth;
2672 } else {
2673 zRef = -0.5*fullLength;
2674 yRef = -0.5*fullWidth;
2675 } // end if isRight
2676 // pt1000
2677 x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
2678 for (i = 0; i < 10; i++) {
2679 y = yRef + pt1000Y;
2680 z = zRef + pt1000Z[i];
2681 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2682 container->AddNode(pt1000, i, tr);
2683 } // end for i
2684 // capacitors
2685 x = 0.5*(capThickness - fullThickness) + busThickness;
2686 for (i = 0; i < 2; i++) {
2687 y = yRef + capY[i];
2688 z = zRef + capZ[i];
2689 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2690 container->AddNode(cap, i, tr);
2691 } // end for i
2692 // resistors
2693 x = 0.5*(resThickness - fullThickness) + busThickness;
2694 for (i = 0; i < 2; i++) {
2695 y = yRef + resY[i];
2696 z = zRef + resZ[i];
2697 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2698 container->AddNode(res, i, tr);
2699 } // end for i
2700 // extender
2701 if (isRight) {
2702 y = 0.5 * (-fullWidth + extWidth);
2703 z = 0.5 * (-fullLength + fgkmm * 10.0);
2704 }
2705 else {
2706 y = 0.5 * (fullWidth - extWidth);
2707 z = 0.5 * ( fullLength - fgkmm * 10.0);
2708 }
2709 x = 0.5 * (extThickness - fullThickness) + busThickness;
2710 //y = 0.5 * (fullWidth - extWidth);
2711 TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z);
2712 if (isRight) {
2713 z -= 0.5 * (ext1Length - extThickness);
2714 }
2715 else {
2716 z += 0.5 * (ext1Length - extThickness);
2717 }
2718 x += 0.5*(extHeight - extThickness);
2719 TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z);
2720 if (isRight) {
2721 z -= 0.5 * (ext2Length - extThickness);
2722 }
2723 else {
2724 z += 0.5 * (ext2Length - extThickness);
2725 }
2726 x += 0.5*(extHeight - extThickness) + extThickness;
2727 TGeoTranslation *trExt3 = new TGeoTranslation(x, y, z);
2728 container->AddNode(ext1, 0, trExt1);
2729 container->AddNode(ext2, 0, trExt2);
2730 container->AddNode(ext3, 0, trExt3);
2731
2732
2733 sizes[3] = yRef + pt1000Y;
2734 sizes[4] = zRef + pt1000Z[2];
2735 sizes[5] = zRef + pt1000Z[7];
2736
2737 return container;
7f69c251 2738}
2739*/
2740
54c9a3d9 2741//______________________________________________________________________
bc3498f4 2742TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
22726349 2743(Bool_t isRight, Int_t ilayer, TArrayD &sizes, TGeoManager *mgr) const
bc3498f4 2744{
54c9a3d9 2745 //
2746 // The pixel bus is implemented as a TGeoBBox with some objects on it,
2747 // which could affect the particle energy loss.
2748 // ---
2749 // In order to avoid confusion, the bus is directly displaced
2750 // according to the axis orientations which are used in the final stave:
2751 // X --> thickness direction
2752 // Y --> width direction
2753 // Z --> length direction
2754 //
22726349 2755
2756 // ** CRITICAL CHECK ******************************************************
2757 // layer number can be ONLY 1 or 2
2758 if (ilayer != 1 && ilayer != 2) AliFatal("Layer number MUST be 1 or 2");
54c9a3d9 2759
2760 // ** MEDIA **
2761 //PIXEL BUS
2762 TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
2763 TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000
2764 // Capacity
2765 TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr);
2766 // ??? Resistance
7f69c251 2767 //TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr);
2768 TGeoMedium *medRes = GetMedium("ALUMINUM$",mgr);
3ffa185f 2769 TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
54c9a3d9 2770 // ** SIZES & POSITIONS **
2771 Double_t busLength = 170.501 * fgkmm; // length of plane part
2772 Double_t busWidth = 13.800 * fgkmm; // width
2773 Double_t busThickness = 0.280 * fgkmm; // thickness
2774 Double_t pt1000Length = fgkmm * 1.50;
2775 Double_t pt1000Width = fgkmm * 3.10;
2776 Double_t pt1000Thickness = fgkmm * 0.60;
2777 Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
2778 Double_t capLength = fgkmm * 2.55;
2779 Double_t capWidth = fgkmm * 1.50;
2780 Double_t capThickness = fgkmm * 1.35;
2781 Double_t capY[2], capZ[2];
2782
2783 Double_t resLength = fgkmm * 2.20;
2784 Double_t resWidth = fgkmm * 0.80;
2785 Double_t resThickness = fgkmm * 0.35;
2786 Double_t resY[2], resZ[2];
7f69c251 2787
2788 Double_t extThickness = fgkmm * 0.25;
3ffa185f 2789 Double_t ext1Length = fgkmm * (26.7 - 10.0);
2790 Double_t ext2Length = fgkmm * (284.0 - ext1Length + extThickness);
2791 Double_t extWidth = fgkmm * 11.0;
2792 Double_t extHeight = fgkmm * 2.5;
54c9a3d9 2793
2794 // position of pt1000, resistors and capacitors depends on the
2795 // bus if it's left or right one
2796 if (!isRight) {
2797 pt1000Y = 64400.;
2798 pt1000Z[0] = 66160.;
2799 pt1000Z[1] = 206200.;
2800 pt1000Z[2] = 346200.;
2801 pt1000Z[3] = 486200.;
2802 pt1000Z[4] = 626200.;
2803 pt1000Z[5] = 776200.;
2804 pt1000Z[6] = 916200.;
2805 pt1000Z[7] = 1056200.;
2806 pt1000Z[8] = 1196200.;
2807 pt1000Z[9] = 1336200.;
2808 resZ[0] = 1397500.;
2809 resY[0] = 26900.;
2810 resZ[1] = 682500.;
2811 resY[1] = 27800.;
2812 capZ[0] = 1395700.;
2813 capY[0] = 45700.;
2814 capZ[1] = 692600.;
2815 capY[1] = 45400.;
2816 } else {
2817 pt1000Y = 66100.;
2818 pt1000Z[0] = 319700.;
2819 pt1000Z[1] = 459700.;
2820 pt1000Z[2] = 599700.;
2821 pt1000Z[3] = 739700.;
2822 pt1000Z[4] = 879700.;
2823 pt1000Z[5] = 1029700.;
2824 pt1000Z[6] = 1169700.;
2825 pt1000Z[7] = 1309700.;
2826 pt1000Z[8] = 1449700.;
2827 pt1000Z[9] = 1589700.;
2828 capY[0] = 44500.;
2829 capZ[0] = 266700.;
2830 capY[1] = 44300.;
2831 capZ[1] = 974700.;
2832 resZ[0] = 266500.;
2833 resY[0] = 29200.;
2834 resZ[1] = 974600.;
2835 resY[1] = 29900.;
2836 } // end if isRight
2837 Int_t i;
2838 pt1000Y *= 1E-4 * fgkmm;
2839 for (i = 0; i < 10; i++) {
2840 pt1000Z[i] *= 1E-4 * fgkmm;
2841 if (i < 2) {
2842 capZ[i] *= 1E-4 * fgkmm;
2843 capY[i] *= 1E-4 * fgkmm;
2844 resZ[i] *= 1E-4 * fgkmm;
2845 resY[i] *= 1E-4 * fgkmm;
2846 } // end if iM2
2847 } // end for i
2848
2849 Double_t &fullLength = sizes[1];
2850 Double_t &fullWidth = sizes[2];
2851 Double_t &fullThickness = sizes[0];
2852 fullLength = busLength;
2853 fullWidth = busWidth;
2854 // add the thickness of the thickest component on bus (capacity)
2855 fullThickness = busThickness + capThickness;
2856
2857 // ** VOLUMES **
2858 TGeoVolumeAssembly *container = new TGeoVolumeAssembly("ITSSPDpixelBus");
2859 TGeoVolume *bus = mgr->MakeBox("ITSSPDbus", medBus, 0.5*busThickness,
2860 0.5*busWidth, 0.5*busLength);
2861 TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",medPt1000,
2862 0.5*pt1000Thickness,0.5*pt1000Width, 0.5*pt1000Length);
2863 TGeoVolume *res = mgr->MakeBox("ITSSPDresistor", medRes, 0.5*resThickness,
2864 0.5*resWidth, 0.5*resLength);
2865 TGeoVolume *cap = mgr->MakeBox("ITSSPDcapacitor", medCap, 0.5*capThickness,
2866 0.5*capWidth, 0.5*capLength);
7f69c251 2867
2868 TGeoVolume *ext1 = mgr->MakeBox("Extender1", medExt, 0.5*extThickness, 0.5*extWidth, 0.5*ext1Length);
3ffa185f 2869 TGeoVolume *ext2 = mgr->MakeBox("Extender2", medExt, 0.5*extHeight - 2.*extThickness, 0.5*extWidth, 0.5*extThickness);
2870 TGeoVolume *ext3 = mgr->MakeBox("Extender3", medExt, 0.5*extThickness, 0.5*(extWidth-0.8*fgkmm), 0.5*ext2Length + extThickness); // Hardcode fix of a small overlap
54c9a3d9 2871 bus->SetLineColor(kYellow + 2);
2872 pt1000->SetLineColor(kGreen + 3);
2873 res->SetLineColor(kRed + 1);
2874 cap->SetLineColor(kBlue - 7);
7f69c251 2875 ext1->SetLineColor(kGray);
3ffa185f 2876 ext2->SetLineColor(kGray);
2877 ext3->SetLineColor(kGray);
54c9a3d9 2878
2879 // ** MOVEMENTS AND POSITIONEMENT **
2880 // bus
2881 TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness -
2882 fullThickness), 0.0, 0.0);
2883 container->AddNode(bus, 1, trBus);
2884 Double_t zRef, yRef, x, y, z;
2885 if (isRight) {
2886 zRef = -0.5*fullLength;
2887 yRef = -0.5*fullWidth;
2888 } else {
2889 zRef = -0.5*fullLength;
2890 yRef = -0.5*fullWidth;
2891 } // end if isRight
2892 // pt1000
2893 x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
2894 for (i = 0; i < 10; i++) {
2895 y = yRef + pt1000Y;
2896 z = zRef + pt1000Z[i];
2897 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2898 container->AddNode(pt1000, i+1, tr);
2899 } // end for i
2900 // capacitors
2901 x = 0.5*(capThickness - fullThickness) + busThickness;
2902 for (i = 0; i < 2; i++) {
2903 y = yRef + capY[i];
2904 z = zRef + capZ[i];
2905 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2906 container->AddNode(cap, i+1, tr);
2907 } // end for i
2908 // resistors
2909 x = 0.5*(resThickness - fullThickness) + busThickness;
2910 for (i = 0; i < 2; i++) {
2911 y = yRef + resY[i];
2912 z = zRef + resZ[i];
2913 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2914 container->AddNode(res, i+1, tr);
2915 } // end for i
2916
7f69c251 2917 // extender
22726349 2918 if (ilayer == 2) {
3ffa185f 2919 if (isRight) {
2920 y = 0.5 * (fullWidth - extWidth) - 0.1;
2921 z = 0.5 * (-fullLength + fgkmm * 10.0);
2922 }
2923 else {
2924 y = 0.5 * (fullWidth - extWidth) - 0.1;
2925 z = 0.5 * ( fullLength - fgkmm * 10.0);
2926 }
22726349 2927 }
2928 else {
2929 if (isRight) {
2930 y = -0.5 * (fullWidth - extWidth);
2931 z = 0.5 * (-fullLength + fgkmm * 10.0);
2932 }
2933 else {
2934 y = -0.5 * (fullWidth - extWidth);
2935 z = 0.5 * ( fullLength - fgkmm * 10.0);
2936 }
2937 }
3ffa185f 2938 x = 0.5 * (extThickness - fullThickness) + busThickness;
2939 //y = 0.5 * (fullWidth - extWidth);
2940 TGeoTranslation *trExt1 = new TGeoTranslation(x, y, z);
2941 if (isRight) {
2942 z -= 0.5 * (ext1Length - extThickness);
2943 }
2944 else {
2945 z += 0.5 * (ext1Length - extThickness);
2946 }
2947 x += 0.5*(extHeight - 3.*extThickness);
2948 TGeoTranslation *trExt2 = new TGeoTranslation(x, y, z);
2949 if (isRight) {
2950 z -= 0.5 * (ext2Length - extThickness) + 2.5*extThickness;
2951 }
2952 else {
2953 z += 0.5 * (ext2Length - extThickness) + 2.5*extThickness;
2954 }
2955 x += 0.5*(extHeight - extThickness) - 2.*extThickness;
2956 TGeoTranslation *trExt3 = new TGeoTranslation(x, y, z);
2957 container->AddNode(ext1, 0, trExt1);
2958 container->AddNode(ext2, 0, trExt2);
2959 container->AddNode(ext3, 0, trExt3);
7f69c251 2960
54c9a3d9 2961 sizes[3] = yRef + pt1000Y;
2962 sizes[4] = zRef + pt1000Z[2];
2963 sizes[5] = zRef + pt1000Z[7];
2964
2965 return container;
592651e2 2966}
7f69c251 2967
2968//______________________________________________________________________
0b9c8a10 2969TList* AliITSv11GeometrySPD::CreateConeModule(TGeoManager *mgr) const
7f69c251 2970{
2971 TGeoMedium *medInox = GetMedium("INOX$",mgr);
3ffa185f 2972 TGeoMedium *medExt = GetMedium("SDDKAPTON (POLYCH2)$", mgr);
2973 TGeoMedium *medPlate = GetMedium("SPD C (M55J)$", mgr);
2974
2975 Double_t extThickness = fgkmm * 0.25;
2976 Double_t ext1Length = fgkmm * (26.7 - 10.0);
2977 Double_t ext2Length = fgkmm * (285.0 - ext1Length + extThickness);
7f69c251 2978
2979 Double_t cableThickness = 1.5 * fgkmm;
2980 Double_t cableL1 = 350.0 * fgkmm - extThickness - ext1Length - ext2Length;
7708d5f3 2981 Double_t cableL2 = 426.0 * fgkmm;
7f69c251 2982 //Double_t cableL3 = 570.0 * fgkmm;
2983 Double_t cableL3 = 57.0 * fgkmm;
2984 Double_t cableW1 = 11.0 * fgkmm;
2985 Double_t cableW2 = 30.0 * fgkmm;
2986 Double_t cableW3 = 50.0 * fgkmm;
2987
2988 Double_t mcmThickness = 1.2 *fgkmm;
2989 Double_t mcmLength = cableL1 + cableL2 + cableL3;
2990 Double_t mcmWidth = cableW1;
2991
2992 Double_t plateLength = 200.0 * fgkmm;
2993 Double_t plateWidth = 50.0 * fgkmm;
2994 Double_t plateThickness = 5.0 * fgkmm;
2995
2996 Double_t x[12], y[12];
2997
2998 x[0] = 7.5;
2999 y[0] = 0.0 + 0.5 * cableW1;
3000
3001 x[1] = x[0] + cableL1 - 0.5*(cableW2 - cableW1);
3002 y[1] = y[0];
3003
3004 x[2] = x[0] + cableL1;
3005 y[2] = y[1] + 0.5*(cableW2 - cableW1);
3006
3007 x[3] = x[2] + cableL2;
3008 y[3] = y[2];
3009
3010 x[4] = x[3] + 0.5*(cableW3 - cableW2);
3011 y[4] = y[3] + 0.5*(cableW3 - cableW2);
3012
3013 x[5] = x[4] + cableL3 - 0.5*(cableW3 - cableW2);
3014 y[5] = y[4];
3015
3016 for (Int_t i = 6; i < 12; i++) {
3017 x[i] = x[11 - i];
3018 y[i] = -y[11 - i];
3019 }
3020
0b9c8a10 3021 TGeoVolumeAssembly* container[2];
3022 container[0] = new TGeoVolumeAssembly("ITSSPDConeModule");
3023 container[1] = new TGeoVolumeAssembly("ITSSPDCoolingModule");
7f69c251 3024
3025 TGeoXtru *shCable = new TGeoXtru(2);
3026 shCable->DefinePolygon(12, x, y);
3027 shCable->DefineSection(0, 0., 0., 0., 1.0);
3028 shCable->DefineSection(1, cableThickness, 0., 0., 1.0);
3029
3030 TGeoVolume *volCable = new TGeoVolume("ITSSPDExtender", shCable, medExt);
3031 volCable->SetLineColor(kGreen);
3032
0df245e4 3033 TGeoVolume *volTube = gGeoManager->MakeTube("ITSSPDCoolingTubeCone", medInox, 5.*fgkmm, 6.*fgkmm, 0.5*(x[5] - x[0]));
7f69c251 3034 volTube->SetLineColor(kGray);
3035
3036 Double_t thickness = cableThickness + mcmThickness;
3037 TGeoBBox *shOut = new TGeoBBox("ITSSPD_shape_plateout", 0.5*plateThickness, 0.5*plateLength, 0.5*plateWidth);
3038 TGeoBBox *shIn = new TGeoBBox("ITSSPD_shape_platein", 0.5*thickness, 0.52*plateLength, 0.5*cableW2);
3039 Char_t string[255];
3040 sprintf(string, "%s-%s", shOut->GetName(), shIn->GetName());
3041 TGeoCompositeShape *shPlate = new TGeoCompositeShape("ITSSPDPlate_shape", string);
3042 TGeoVolume *volPlate = new TGeoVolume("ITSSPDPlate", shPlate, medPlate);
3043 volPlate->SetLineColor(kRed);
3044
3045 TGeoVolume *volMCMExt = gGeoManager->MakeBox("ITSSPDextenderMCM", medExt, 0.5*mcmThickness, 0.5*mcmLength, 0.5*mcmWidth);
3046 volMCMExt->SetLineColor(kGreen+3);
3047
3048 TGeoRotation *rot = new TGeoRotation(*gGeoIdentity);
3049 rot->RotateX(90.0);
3050 rot->RotateZ(90.0);
0b9c8a10 3051 container[0]->AddNode(volCable, 0, rot);
7f69c251 3052
3053 TGeoTranslation *combi = new TGeoTranslation(cableThickness + 0.5*mcmThickness, x[0] + 0.5*mcmLength, 0.0);
0b9c8a10 3054 container[0]->AddNode(volMCMExt, 0, combi);
7f69c251 3055
3056 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
93cd1f79 3057 rot1->RotateX(87.5);
0b9c8a10 3058 TGeoCombiTrans *tr = new TGeoCombiTrans(1.15, x[0] + 0.5*(x[5] - x[0]), -2.95, rot1);
3059 container[1]->AddNode(volTube, 0, tr);
7f69c251 3060
3061 TGeoTranslation *tr1 = new TGeoTranslation(0.5*plateThickness - 0.5*(plateThickness-thickness), x[3] - x[0] - 0.52*plateLength, 0.0);
0b9c8a10 3062 container[0]->AddNode(volPlate, 0, tr1);
7f69c251 3063
0b9c8a10 3064 TList* conemodulelist = new TList();
3065
3066 conemodulelist->Add(container[0]);
3067 conemodulelist->Add(container[1]);
3068
3069 return conemodulelist;
7f69c251 3070}
3071
3072//______________________________________________________________________
3073void AliITSv11GeometrySPD::CreateCones(TGeoVolume *moth) const
3074{
3075
0b9c8a10 3076 TList* modulelist = CreateConeModule(gGeoManager);
3077 TGeoVolumeAssembly* module;
3078
7f69c251 3079 //Double_t angle[10] = {18., 54., 90., 126., 162., -18., -54., -90., -126., -162.};
0b9c8a10 3080 // angleNm for cone modules (cables), angleNc for cooling tubes
3081 Double_t angle1m[10] = {18., 54., 90., 129., 165., 201.0, 237.0, 273.0, 309.0, 345.0};
3082 Double_t angle2m[10] = {18., 53., 90., 126., 162., 198.0, 233.0, 270.0, 309.0, 342.0};
3083 Double_t angle1c[10] = {18., 54., 90., 129., 165., 201.0, 237.0, 273.0, 309.0, 345.0};
3084 Double_t angle2c[10] = {18., 44., 90., 126., 162., 198.0, 223.0, 270.0, 309.0, 342.0};
3085
3086 // First add the cables
3087 module = (TGeoVolumeAssembly*)modulelist->At(0);
7f69c251 3088 for (Int_t i = 0; i < 10; i++) {
3089 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
3090 rot1->RotateY(-90.0);
93cd1f79 3091 rot1->RotateX(43.7);
0b9c8a10 3092 angle1m[i] -= 1.5;
3093 rot1->RotateZ(90.0 - angle1m[i]);
93cd1f79 3094 TGeoCombiTrans *tr1 = new TGeoCombiTrans(0.0, 0.0, 40.4, rot1);
7f69c251 3095 moth->AddNode(module, 2*i, tr1);
3096 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
3097 rot2->RotateY(90.0);
93cd1f79 3098 rot2->RotateX(-43.7);
0b9c8a10 3099 angle2m[i] -= 1.5;
3100 rot2->RotateZ(90.0 - angle2m[i]);
3101 TGeoCombiTrans *tr2 = new TGeoCombiTrans(0.0, 0.0, -40.4, rot2);
3102 moth->AddNode(module, 2*i+1, tr2);
3103 }
3104
3105 // Then the cooling tubes
3106 module = (TGeoVolumeAssembly*)modulelist->At(1);
3107 for (Int_t i = 0; i < 10; i++) {
3108 TGeoRotation *rot1 = new TGeoRotation(*gGeoIdentity);
3109 rot1->RotateY(-90.0);
3110 rot1->RotateX(43.7);
3111 angle1c[i] -= 1.5;
3112 rot1->RotateZ(90.0 - angle1c[i]);
3113 TGeoCombiTrans *tr1 = new TGeoCombiTrans(0.0, 0.0, 40.4, rot1);
3114 moth->AddNode(module, 2*i, tr1);
3115 TGeoRotation *rot2 = new TGeoRotation(*gGeoIdentity);
3116 rot2->RotateY(90.0);
3117 rot2->RotateX(-43.4);
3118 angle2c[i] -= 1.5;
3119 rot2->RotateZ(90.0 - angle2c[i]);
93cd1f79 3120 TGeoCombiTrans *tr2 = new TGeoCombiTrans(0.0, 0.0, -40.4, rot2);
7f69c251 3121 moth->AddNode(module, 2*i+1, tr2);
3122 }
3123}
3124
54c9a3d9 3125//______________________________________________________________________
3126TGeoVolume* AliITSv11GeometrySPD::CreateExtender(
3127 const Double_t *extenderParams, const TGeoMedium *extenderMedium,
3128 TArrayD& sizes) const
bc3498f4 3129{
54c9a3d9 3130 //
3131 // ------------------ CREATE AN EXTENDER ------------------------
3132 //
3133 // This function creates the following picture (in plane xOy)
3134 // Should be useful for the definition of the pixel bus and MCM extenders
3135 // The origin corresponds to point 0 on the picture, at half-width
3136 // in Z direction
3137 //
3138 // Y 7 6 5
3139 // ^ +---+---------------------+
3140 // | / |
3141 // | / |
3142 // 0------> X / +---------------------+
3143 // / / 3 4
3144 // / /
3145 // 9 8 / /
3146 // +-----------+ /
3147 // | /
3148 // | /
3149 // ---> +-----------+---+
3150 // | 0 1 2
3151 // |
3152 // origin (0,0,0)
3153 //
3154 //
3155 // Takes 6 parameters in the following order :
3156 // |--> par 0 : inner length [0-1] / [9-8]
3157 // |--> par 1 : thickness ( = [0-9] / [4-5])
3158 // |--> par 2 : angle of the slope
3159 // |--> par 3 : total height in local Y direction
3160 // |--> par 4 : outer length [3-4] / [6-5]
3161 // |--> par 5 : width in local Z direction
3162 //
3163 Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1]
3164 * TMath::Cos(extenderParams[2])) /
3165 TMath::Tan(extenderParams[2]);
3166 Double_t extenderXtruX[10] = {
3167 0 ,
3168 extenderParams[0] ,
3169 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2]) ,
3170 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3171 slopeDeltaX ,
3172 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3173 slopeDeltaX + extenderParams[4],
3174 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3175 slopeDeltaX + extenderParams[4],
3176 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3177 slopeDeltaX ,
3178 extenderParams[0]+extenderParams[1]*TMath::Sin(extenderParams[2])+
3179 slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) ,
3180 extenderParams[0] ,
3181 0
3182 };
3183 Double_t extenderXtruY[10] = {
3184 0 ,
3185 0 ,
3186 extenderParams[1] * (1-TMath::Cos(extenderParams[2])) ,
3187 extenderParams[3] - extenderParams[1] ,
3188 extenderParams[3] - extenderParams[1] ,
3189 extenderParams[3] ,
3190 extenderParams[3] ,
3191 extenderParams[3]-extenderParams[1]*(1-TMath::Cos(extenderParams[2])) ,
3192 extenderParams[1] ,
3193 extenderParams[1]
3194 };
592651e2 3195
54c9a3d9 3196 if (sizes.GetSize() != 3) sizes.Set(3);
3197 Double_t &thickness = sizes[0];
3198 Double_t &length = sizes[1];
3199 Double_t &width = sizes[2];
3200
3201 thickness = extenderParams[3];
3202 width = extenderParams[5];
3203 length = extenderParams[0]+extenderParams[1]*
3204 TMath::Sin(extenderParams[2])+slopeDeltaX+extenderParams[4];
3205
3206 // creation of the volume
3207 TGeoXtru *extenderXtru = new TGeoXtru(2);
3208 TGeoVolume *extenderXtruVol = new TGeoVolume("ITSSPDextender",extenderXtru,
3209 extenderMedium);
3210 extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY);
3211 extenderXtru->DefineSection(0,-0.5*extenderParams[4]);
3212 extenderXtru->DefineSection(1, 0.5*extenderParams[4]);
3213 return extenderXtruVol;
3214}
bc3498f4 3215//______________________________________________________________________
3216TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBusAndExtensions
3217(Bool_t /*zpos*/, TGeoManager *mgr) const
3218{
54c9a3d9 3219 //
3220 // Creates an assembly which contains the pixel bus and its extension
3221 // and the extension of the MCM.
3222 // By: Renaud Vernet
3223 // NOTE: to be defined its material and its extension in the outside
3224 // direction
3225 //
3226 // ==== constants =====
3227 //get the media
3228 // PIXEL BUS
3229 //TGeoMedium *medPixelBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
3230 // IXEL BUS EXTENDER
3231 TGeoMedium *medPBExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr);
3232 //MCM EXTENDER
3233 TGeoMedium *medMCMExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr);
3234 // //geometrical constants
3235 const Double_t kPbextenderThickness = 0.07 * fgkmm;
3236 //design=?? 70 deg. seems OK
3237 const Double_t kPbExtenderSlopeAngle = 70.0 * TMath::Pi()/180.;
3238 // = 2.6 - (0.28+0.05+0.35) cf design
3239 const Double_t kPbExtenderHeight = 1.92 * fgkmm;
3240 const Double_t kPbExtenderWidthY = 11.0 * fgkmm;
3241 //design=?? 70 deg. seems OK
3242 const Double_t kMcmExtenderSlopeAngle = 70.0 * TMath::Pi()/180.;
3243 const Double_t kMcmExtenderThickness = 0.10 * fgkmm;
3244 const Double_t kMcmExtenderHeight = 1.8 * fgkmm;
3245 const Double_t kMcmExtenderWidthY = kPbExtenderWidthY;
3246 // const Double_t groundingThickness = 0.07 * fgkmm;
3247 // const Double_t grounding2pixelBusDz = 0.625 * fgkmm;
3248 // const Double_t pixelBusThickness = 0.28 * fgkmm;
3249 // const Double_t groundingWidthX = 170.501 * fgkmm;
3250 // const Double_t pixelBusContactDx = 1.099 * fgkmm;
3251 // const Double_t pixelBusWidthY = 13.8 * fgkmm;
3252 //design=20 deg.
3253 // const Double_t pixelBusContactPhi = 20.0 * TMath::Pi()/180.
3254 // const Double_t pbExtenderTopZ = 2.72 * fgkmm;
3255 // const Double_t mcmThickness = 0.35 * fgkmm;
3256 // const Double_t halfStaveTotalLength = 247.64 * fgkmm;
3257 // const Double_t deltaYOrigin = 15.95/2.* fgkmm;
3258 // const Double_t deltaXOrigin = 1.1 * fgkmm;
3259 // const Double_t deltaZOrigin = halfStaveTotalLength / 2.;
3260 // const Double_t grounding2pixelBusDz2 = grounding2pixelBusDz+
3261 // groundingThickness/2. + pixelBusThickness/2.;
3262 // const Double_t pixelBusWidthX = groundingWidthX;
3263 // const Double_t pixelBusRaiseLength = (pixelBusContactDx-
3264 // pixelBusThickness*TMath::Sin(pixelBusContactPhi))/
3265 // TMath::Cos(pixelBusContactPhi);
3266 // const Double_t pbExtenderBaseZ = grounding2pixelBusDz2 +
3267 // pixelBusRaiseLength*TMath::Sin(pixelBusContactPhi) +
3268 // 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*
3269 // TMath::Tan(pixelBusContactPhi);
3270 // const Double_t pbExtenderDeltaZ = pbExtenderTopZ-pbExtenderBaseZ;
3271 // const Double_t pbExtenderEndPointX = 2*deltaZOrigin -
3272 // groundingWidthX - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi);
3273 // const Double_t pbExtenderXtru3L = 1.5 * fgkmm; //arbitrary ?
3274 // const Double_t pbExtenderXtru4L = (pbExtenderDeltaZ +
3275 // pixelBusThickness*(TMath::Cos(extenderSlope)-2))/
3276 // TMath::Sin(extenderSlope);
3277 // const Double_t kMcmExtenderEndPointX = deltaZOrigin - 48.2 * fgkmm;
3278 // const Double_t kMcmExtenderXtru3L = 1.5 * fgkmm;
3279 // //===== end constants =====
3280 const Double_t kPbExtenderInnerLength = 10. * fgkmm;
3281 const Double_t kPbExtenderOuterLength = 15. * fgkmm;
3282 const Double_t kMcmExtenderInnerLength = 10. * fgkmm;
3283 const Double_t kMcmExtenderOuterLength = 15. * fgkmm;
3284 Double_t pbExtenderParams[6] = {kPbExtenderInnerLength, //0
3285 kPbextenderThickness, //1
3286 kPbExtenderSlopeAngle, //2
3287 kPbExtenderHeight, //3
3288 kPbExtenderOuterLength, //4
3289 kPbExtenderWidthY}; //5
3290
3291 Double_t mcmExtenderParams[6] = {kMcmExtenderInnerLength, //0
3292 kMcmExtenderThickness, //1
3293 kMcmExtenderSlopeAngle, //2
3294 kMcmExtenderHeight, //3
3295 kMcmExtenderOuterLength, //4
3296 kMcmExtenderWidthY}; //5
3297
3298 TArrayD sizes(3);
3299 TGeoVolume* pbExtender = CreateExtender(pbExtenderParams,medPBExtender,
3300 sizes);
3301 if(GetDebug(1))printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\t"
3302 "LENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
3303 TGeoVolume* mcmExtender = CreateExtender(mcmExtenderParams,medMCMExtender,
3304 sizes);
3305 if(GetDebug(1))printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\t"
3306 "LENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
3307 // Double_t pixelBusValues[5] = {pixelBusWidthX, //0
3308 // pixelBusThickness, //1
3309 // pixelBusContactPhi, //2
3310 // pixelBusRaiseLength, //3
3311 // pixelBusWidthY}; //4
3312
3313 // Double_t pbExtenderValues[8] = {pixelBusRaiseLength, //0
3314 // pixelBusContactPhi, //1
3315 // pbExtenderXtru3L, //2
3316 // pixelBusThickness, //3
3317 // extenderSlope, //4
3318 // pbExtenderXtru4L, //5
3319 // pbExtenderEndPointX, //6
3320 // kPbExtenderWidthY}; //7
3321
3322 // Double_t mcmExtenderValues[6] = {mcmExtenderXtru3L, //0
3323 // mcmExtenderThickness, //1
3324 // extenderSlope, //2
3325 // deltaMcmMcmExtender, //3
3326 // mcmExtenderEndPointX, //4
3327 // mcmExtenderWidthY}; //5
3328 // TGeoVolumeAssembly *pixelBus=new TGeoVolumeAssembly("ITSSPDpixelBus");
3329 // CreatePixelBus(pixelBus,pixelBusValues,medPixelBus);
3330 // TGeoVolumeAssembly *pbExtender = new TGeoVolumeAssembly(
3331 // "ITSSPDpixelBusExtender");
3332 // CreatePixelBusExtender(pbExtender,pbExtenderValues,medPBExtender);
3333 // TGeoVolumeAssembly *mcmExtender = new TGeoVolumeAssembly(
3334 // "ITSSPDmcmExtender");
3335 // CreateMCMExtender(mcmExtender,mcmExtenderValues,medMCMExtender);
3336 //-------------- DEFINITION OF GEOMETRICAL TRANSFORMATIONS --------
3337 // TGeoRotation * commonRot = new TGeoRotation("commonRot",0,90,0);
3338 // commonRot->MultiplyBy(new TGeoRotation("rot",-90,0,0));
3339 // TGeoTranslation * pixelBusTrans = new TGeoTranslation(
3340 // pixelBusThickness/2. - deltaXOrigin + 0.52*fgkmm ,
3341 // -pixelBusWidthY/2. + deltaYOrigin ,
3342 // -groundingWidthX/2. + deltaZOrigin);
3343 // TGeoRotation *pixelBusRot = new TGeoRotation(*commonRot);
3344 // TGeoTranslation *pbExtenderTrans =new TGeoTranslation(*pixelBusTrans);
3345 // TGeoRotation *pbExtenderRot = new TGeoRotation(*pixelBusRot);
3346 // pbExtenderTrans->SetDz(*(pbExtenderTrans->GetTranslation()+2) -
3347 // pixelBusWidthX/2. - 2*pixelBusThickness*
3348 // TMath::Sin(pixelBusContactPhi));
3349 // if (!zpos) {
3350 // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) -
3351 // (pixelBusWidthY - kPbExtenderWidthY)/2.);
3352 // } else {
3353 // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) +
3354 // (pixelBusWidthY - kPbExtenderWidthY)/2.);
3355 // }
3356 // pbExtenderTrans->SetDx(*(pbExtenderTrans->GetTranslation()) +
3357 // pixelBusThickness/2 + 2*pixelBusThickness*
3358 // TMath::Sin(pixelBusContactPhi)*
3359 // TMath::Tan(pixelBusContactPhi));
3360 // TGeoTranslation * mcmExtenderTrans = new TGeoTranslation(0.12*fgkmm +
3361 // mcmThickness - deltaXOrigin,
3362 // pbExtenderTrans->GetTranslation()[1],
3363 // -4.82);
3364 // TGeoRotation * mcmExtenderRot = new TGeoRotation(*pbExtenderRot);
3365 // // add pt1000 components
3366 // Double_t pt1000Z = fgkmm * 64400. * 1E-4;
3367 // //Double_t pt1000X[10] = {319700., 459700., 599700., 739700.,
3368 // 879700., 1029700., 1169700., 1309700.,
3369 // 1449700., 1589700.};
3370 // Double_t pt1000X[10] ={66160., 206200., 346200., 486200., 626200.,
3371 // 776200., 916200., 1056200., 1196200., 1336200.};
3372 // Double_t pt1000size[3] = {fgkmm*1.5, fgkmm*0.6, fgkmm*3.1};
3373 // Int_t i;
3374 // for (i = 0; i < 10; i++) {
3375 // pt1000X[i] *= fgkmm * 1E-4;
3376 // }
3377 // TGeoVolume *pt1000 = mgr->MakeBox("ITSSPDpt1000",0,0.5*pt1000size[0],
3378 // 0.5*pt1000size[1], 0.5*pt1000size[2]);
3379 // pt1000->SetLineColor(kGray);
3380 // Double_t refThickness = - pixelBusThickness;
3381 // for (i = 0; i < 10; i++) {
3382 // TGeoTranslation *tr = new TGeoTranslation(pt1000X[i]-
3383 // 0.5*pixelBusWidthX, 0.002+0.5*(-3.*refThickness+pt1000size[3]),
3384 // pt1000Z -0.5*pixelBusWidthY);
3385 // pixelBus->AddNode(pt1000, i+1, tr);
3386 // }
3387
3388 //CREATE FINAL VOLUME ASSEMBLY AND ROTATE IT
3389 TGeoVolumeAssembly *assembly = new TGeoVolumeAssembly("ITSSPDextenders");
3390 // assembly->AddNode((TGeoVolume*)pixelBus,1,
3391 // new TGeoCombiTrans(*pixelBusTrans,*pixelBusRot));
3392 // assembly->AddNode((TGeoVolume*)pbExtender,1,
3393 // new TGeoCombiTrans(*pbExtenderTrans,*pbExtenderRot));
3394 // assembly->AddNode((TGeoVolume*)mcmExtender,1,
3395 // new TGeoCombiTrans(*mcmExtenderTrans,*mcmExtenderRot));
3396 // assembly->AddNode(mcmExtender,1,new TGeoIdentity());
3397 assembly->AddNode(pbExtender,1);
3398 assembly->AddNode(mcmExtender,1);
3399 // assembly->SetTransparency(50);
3400
3401 return assembly;
592651e2 3402}
54c9a3d9 3403//______________________________________________________________________
3404TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave(Bool_t isRight,
3405Int_t layer,Int_t idxCentral,Int_t idxSide,TArrayD &sizes,TGeoManager *mgr)
bc3498f4 3406{
54c9a3d9 3407 //
3408 // Implementation of an half-stave, which depends on the side where
3409 // we are on the stave. The convention for "left" and "right" is the
3410 // same as for the MCM. The return value is a TGeoAssembly which is
3411 // structured in such a way that the origin of its local reference
3412 // frame coincides with the origin of the whole stave.
3413 // The TArrayD passed by reference will contain details of the shape:
3414 // - sizes[0] = thickness
3415 // - sizes[1] = length
3416 // - sizes[2] = width
3417 // - sizes[3] = common 'x' position for eventual clips
3418 // - sizes[4] = common 'y' position for eventual clips
3419 // - sizes[5] = 'z' position of first clip
3420 // - sizes[6] = 'z' position of second clip
3421 //
3422
3423 // ** CHECK **
3424
3425 // idxCentral and idxSide must be different
3426 if (idxCentral == idxSide) {
3427 AliInfo("Ladders must be inserted in half-stave with "
3428 "different indexes.");
3429 idxSide = idxCentral + 1;
3430 AliInfo(Form("Central ladder will be inserted with index %d",
3431 idxCentral));
3432 AliInfo(Form("Side ladder will be inserted with index %d",idxSide));
3433 } // end if
3434
3435 // define the separations along Z direction between the objects
3436 Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders
3437 Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder
3438 // and the Z=0 plane in stave ref.
3439 Double_t sepLadderMCM = fgkmm * 0.3; // sep. btw the "external" ladder
3440 // and MCM
3441 Double_t sepBusCenter = fgkmm * 0.3; // sep. btw the bus central edge
3442 // and the Z=0 plane in stave ref.
3443
3444 // ** VOLUMES **
3445
3446 // grounding foil
3447 TArrayD grndSize(3);
3448 // This one line repalces the 3 bellow, BNS.
3449 TGeoVolume *grndVol = CreateGroundingFoil(isRight, grndSize, mgr);
3450 Double_t &grndThickness = grndSize[0];
3451 Double_t &grndLength = grndSize[1];
3452
3453 // ladder
3454 TArrayD ladderSize(3);
3455 TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr);
3456 Double_t ladderThickness = ladderSize[0];
3457 Double_t ladderLength = ladderSize[1];
3458 Double_t ladderWidth = ladderSize[2];
3459
3460 // MCM
3461 TArrayD mcmSize(3);
3462 TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr);
3463 Double_t mcmThickness = mcmSize[0];
3464 Double_t mcmLength = mcmSize[1];
3465 Double_t mcmWidth = mcmSize[2];
3ffa185f 3466
54c9a3d9 3467 // bus
3468 TArrayD busSize(6);
22726349 3469 TGeoVolumeAssembly *bus = CreatePixelBus(isRight, layer, busSize, mgr);
54c9a3d9 3470 Double_t busThickness = busSize[0];
3471 Double_t busLength = busSize[1];
3472 Double_t busWidth = busSize[2];
3473
3474 // glue between ladders and pixel bus
3475 TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr);
3476 Double_t ladGlueThickness = fgkmm * 0.1175 - fgkGapLadder;
3477 TGeoVolume *ladderGlue = mgr->MakeBox("ITSSPDladderGlue",medLadGlue,
3478 0.5*ladGlueThickness, 0.5*busWidth, 0.5*busLength);
3479 ladderGlue->SetLineColor(kYellow + 5);
3480
3481 // create references for the whole object, as usual
3482 sizes.Set(7);
3483 Double_t &fullThickness = sizes[0];
3484 Double_t &fullLength = sizes[1];
3485 Double_t &fullWidth = sizes[2];
3ffa185f 3486
54c9a3d9 3487 // compute the full size of the container
3488 fullLength = sepLadderCenter+2.0*ladderLength+sepLadderMCM+
3489 sepLadderLadder+mcmLength;
3490 fullWidth = ladderWidth;
3491 fullThickness = grndThickness + fgkGapLadder + mcmThickness + busThickness;
ed0e944d 3492 //cout << "HSTAVE FULL THICKNESS = " << fullThickness << endl;
54c9a3d9 3493
3494 // ** MOVEMENTS **
3495
3496 // grounding foil (shifted only along thickness)
3497 Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness;
3498 Double_t zGrnd = -0.5*grndLength;
3499 if (!isRight) zGrnd = -zGrnd;
3500 TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd);
3501
3502 // ladders (translations along thickness and length)
3503 // layers must be sorted going from the one at largest Z to the
3504 // one at smallest Z:
3505 // -|Zmax| ------> |Zmax|
3506 // 3 2 1 0
3507 // then, for layer 1 ladders they must be placed exactly this way,
3508 // and in layer 2 at the opposite. In order to remember the placements,
3509 // we define as "inner" and "outer" ladder respectively the one close
3510 // to barrel center, and the one closer to MCM, respectively.
3511 Double_t xLad, zLadIn, zLadOut;
3512 xLad = xGrnd + 0.5*(grndThickness + ladderThickness) +
3513 0.01175 - fgkGapLadder;
3514 zLadIn = -sepLadderCenter - 0.5*ladderLength;
3515 zLadOut = zLadIn - sepLadderLadder - ladderLength;
3516 if (!isRight) {
3517 zLadIn = -zLadIn;
3518 zLadOut = -zLadOut;
3519 } // end if !isRight
3520 TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity);
3521 rotLad->RotateZ(90.0);
3522 rotLad->RotateY(180.0);
3523 Double_t sensWidth = fgkmm * 12.800;
3524 Double_t chipWidth = fgkmm * 15.950;
3525 Double_t guardRingWidth = fgkmm * 0.560;
3526 Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth);
3527 TGeoCombiTrans *trLadIn = new TGeoCombiTrans(xLad,ladderShift,zLadIn,
3528 rotLad);
3529 TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad,ladderShift,zLadOut,
3530 rotLad);
3531
3532 // MCM (length and thickness direction, placing at same level as the
3533 // ladder, which implies to recompute the position of center, because
3534 // ladder and MCM have NOT the same thickness) the two copies of the
3535 // MCM are placed at the same distance from the center, on both sides
3536 Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness +
3537 0.01175 - fgkGapLadder;
3538 Double_t yMCM = 0.5*(fullWidth - mcmWidth);
3539 Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM;
3540 if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength +
3541 sepLadderMCM;
3542
3543 // create the correction rotations
3544 TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity);
3545 rotMCM->RotateY(90.0);
3546 TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM);
3547
3548 // glue between ladders and pixel bus
3549 Double_t xLadGlue = xLad + 0.5*ladderThickness + 0.01175 -
3550 fgkGapLadder + 0.5*ladGlueThickness;
3551
3552 // bus (length and thickness direction)
3553 Double_t xBus = xLadGlue + 0.5*ladGlueThickness + 0.5*busThickness;
7708d5f3 3554 Double_t yBus = 0.5*(fullWidth - busWidth) + 0.075; // Hardcode fix of a small overlap
54c9a3d9 3555 Double_t zBus = -0.5*busLength - sepBusCenter;
3556 if (!isRight) zBus = -zBus;
3557 TGeoTranslation