Cosmetics
[u/mrichter/AliRoot.git] / ITS / AliITSv11GeometrySPD.cxx
CommitLineData
db486a6e 1/**************************************************************************
59da35b6 2 * Copyright(c) 2007-2009, ALICE Experiment at CERN, All rights reserved. *
db486a6e 3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
592651e2 15//
db486a6e 16// This class Defines the Geometry for the ITS services and support cones
17// outside of the ceneteral volume (except for the Ceneteral support
18// cylinders. Other classes define the rest of the ITS. Specificaly the ITS
bc3498f4 19// The SSD support cone, SSD Support central cylinder, SDD support cone,
20// The SDD cupport central cylinder, the SPD Thermal Sheald, The supports
db486a6e 21// and cable trays on both the RB26 (muon dump) and RB24 sides, and all of
592651e2 22// the cabling from the ladders/stave ends out past the TPC.
23//
db486a6e 24
543b7370 25/* $Id$ */
592651e2 26
db486a6e 27// General Root includes
28#include <Riostream.h>
29#include <TMath.h>
30#include <TLatex.h>
31#include <TCanvas.h>
32#include <TPolyLine.h>
297369a1 33#include <TPolyMarker.h>
bc3498f4 34
db486a6e 35// Root Geometry includes
db486a6e 36#include <TGeoVolume.h>
bc3498f4 37#include <TGeoPcon.h>
38#include <TGeoCone.h>
592651e2 39#include <TGeoTube.h> // contains TGeoTubeSeg
db486a6e 40#include <TGeoArb8.h>
41#include <TGeoEltu.h>
42#include <TGeoXtru.h>
db486a6e 43#include <TGeoMatrix.h>
a53658c6 44#include <TGeoMaterial.h>
45#include <TGeoMedium.h>
592651e2 46#include <TGeoCompositeShape.h>
bc3498f4 47
592651e2 48// AliRoot includes
bc3498f4 49#include "AliLog.h"
a53658c6 50#include "AliMagF.h"
51#include "AliRun.h"
bc3498f4 52
592651e2 53// Declaration file
db486a6e 54#include "AliITSv11GeometrySPD.h"
55
56ClassImp(AliITSv11GeometrySPD)
57
bc3498f4 58//#define SQ(A) (A)*(A)
db486a6e 59
bc3498f4 60AliITSv11GeometrySPD::AliITSv11GeometrySPD(Double_t gap) :
61 AliITSv11Geometry(), fAlignmentGap(gap),
62 fSPDsectorX0(0), fSPDsectorY0(0), fSPDsectorX1(0), fSPDsectorY1(0)
63{
64 //
65 // Default constructor.
66 // This does not initialize anything and is provided just for completeness.
67 // It is recommended to use the other one.
68 // The alignment gap is specified as argument (default = 0.0075 cm).
1b2b32e7 69 //
bc3498f4 70 Int_t i = 0;
71 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
72}
73//
74//__________________________________________________________________________________________
75AliITSv11GeometrySPD::AliITSv11GeometrySPD(Int_t debug, Double_t gap):
76 AliITSv11Geometry(debug), fAlignmentGap(gap),
77 fSPDsectorX0(0), fSPDsectorY0(0), fSPDsectorX1(0), fSPDsectorY1(0)
78{
79 //
80 // Constructor with debug setting argument
81 // This is the constructor which is recommended to be used.
82 // It sets a debug level, and initializes the name of the object.
83 // The alignment gap is specified as argument (default = 0.0075 cm).
1b2b32e7 84 //
bc3498f4 85 Int_t i = 0;
86 for (i = 0; i < 6; i++) fAddStave[i] = kTRUE;
87}
88//
89//__________________________________________________________________________________________
90TGeoMedium* AliITSv11GeometrySPD::GetMedium(const char* mediumName, TGeoManager *mgr) const
91{
92 //
93 // This function is used to recovery any medium
94 // used to build the geometry volumes.
95 // If the required medium does not exists,
96 // a NULL pointer is returned, and an error message is written.
97 //
98
99 Char_t itsMediumName[30];
100 sprintf(itsMediumName, "ITS_%s", mediumName);
101 TGeoMedium* medium = mgr->GetMedium(itsMediumName);
102 if (!medium) AliError(Form("Medium <%s> not found", mediumName));
103
104 return medium;
105}
106//
107//__________________________________________________________________________________________
59da35b6 108Int_t AliITSv11GeometrySPD::CreateSPDCentralMaterials(Int_t &medOffset, Int_t &matOffset) const
592651e2 109{
bc3498f4 110 //
111 // Define the specific materials used for the ITS SPD central detectors.
112 // ---
113 // NOTE: These are the same old names.
114 // By the ALICE naming conventions, they start with "ITS SPD ...."
115 // Data taken from ** AliITSvPPRasymmFMD::CreateMaterials() **.
116 // ---
117 // Arguments [the ones passed by reference contain output values]:
118 // - medOffset --> (by ref) starting number of the list of media
119 // - matOffset --> (by ref) starting number of the list of Materials
120 // ---
121 // Return value:
122 // - the last material index used + 1 (= next avaiable material index)
123 // ---
124 // Begin_Html
125 /*
126 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
127 title="SPD Sector drawing with all cross sections defined">
128 <p>The SPD Sector definition. In
129 <a href="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.hpgl">HPGL</a> format.
130 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly-10-modules.ps"
131 titile="SPD All Sectors end view with thermal sheald">
132 <p>The SPD all sector end view with thermal sheald.
133 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/assembly.ps"
134 title="SPD side view cross section">
135 <p>SPD side view cross section with condes and thermal shealds.
136 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-A_A.jpg"
137 title="Cross section A-A"><p>Cross section A-A.
138 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-B_B.jpg"
139 title="Cross section B-B"><p>Cross section B-B.
140 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-C_C.jpg"
141 title-"Cross section C-C"><p>Cross section C-C.
142 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-D_D.jpg"
143 title="Cross section D-D"><p>Cross section D-D.
144 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-E_E.jpg"
145 title="Cross section E-E"><p>Cross section E-E.
146 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-F_F.jpg"
147 title="Cross section F-F"><p>Cross section F-F.
148 <img src="http://alice.pd.infn.it/latestdr/Geometric-Revision/SECTION-G_G.jpg"
149 title="Cross section G-G"><p>Cross section G-G.
150 */
151 // End_Html
152 //
153 const Double_t ktmaxfd = 0.1 * fgkDegree; // Degree
154 const Double_t kstemax = 1.0 * fgkcm; // cm
155 const Double_t kdeemax = 0.1;//Fraction of particle's energy 0<deemax<=1
156 const Double_t kepsil = 1.0E-4; //
157 const Double_t kstmin = 0.0 * fgkcm; // cm "Default value used"
158 const Double_t ktmaxfdAir = 0.1 * fgkDegree; // Degree
159 const Double_t kstemaxAir = 1.0000E+00 * fgkcm; // cm
160 const Double_t kdeemaxAir = 0.1; // Fraction of particle's energy 0<deemax<=1
161 const Double_t kepsilAir = 1.0E-4;//
162 const Double_t kstminAir = 0.0 * fgkcm; // cm "Default value used"
163 const Double_t ktmaxfdSi = 0.1 * fgkDegree; // .10000E+01; // Degree
164 const Double_t kstemaxSi = 0.0075 * fgkcm; // .10000E+01; // cm
165 const Double_t kdeemaxSi = 0.1; // Fraction of particle's energy 0<deemax<=1
166 const Double_t kepsilSi = 1.0E-4;//
167 const Double_t kstminSi = 0.0 * fgkcm; // cm "Default value used"
168
169 Int_t matindex = matOffset;
170 Int_t medindex = medOffset;
171 TGeoMaterial *mat;
172 TGeoMixture *mix;
173 TGeoMedium *med;
174
175 Int_t ifield = (gAlice->Field()->Integ());
176 Double_t fieldm = (gAlice->Field()->Max());
177 Double_t params[8] = {8 * 0.0};
178 params[1] = (Double_t) ifield;
179 params[2] = fieldm;
180 params[3] = ktmaxfdSi;
181 params[4] = kstemaxSi;
182 params[5] = kdeemaxSi;
183 params[6] = kepsilSi;
184 params[7] = kstminSi;
185
186 //
187 // Definition of materials and mediums.
188 // Last argument in material definition is its pressure,
189 // which is initialized to ZERO.
190 // For better readability, it is simply set to zero.
191 // Then the writing "0.0 * fgkPascal" is replaced by "0."
192 // (Alberto)
193 //
194
195 // silicon definition for ITS (overall)
196 mat = new TGeoMaterial("ITS_SI", 28.086, 14.0, 2.33 * fgkgcm3,
197 TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.);
198 mat->SetIndex(matindex);
199 med = new TGeoMedium("SI", medindex++, mat, params);
200
201 // silicon for ladder chips
202 mat = new TGeoMaterial("SPD SI CHIP", 28.086, 14.0, 2.33 * fgkgcm3,
203 TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.);
204 mat->SetIndex(matindex);
205 med = new TGeoMedium("SPD SI CHIP", medindex++, mat, params);
206
207 // silicon for pixel bus
208 mat = new TGeoMaterial("SPD SI BUS", 28.086, 14.0, 2.33 * fgkgcm3,
209 TGeoMaterial::kMatStateSolid, 25.0 * fgkCelsius, 0.);
210 mat->SetIndex(matindex);
211 med = new TGeoMedium("SPD SI BUS", medindex++, mat, params);
212
213 // carbon fiber material is defined as a mix of C-O-N-H
214 // defined in terms of fractional weights according to 'C (M55J)'
215 // it is used for the support and clips
216 mix = new TGeoMixture("C (M55J)", 4, 1.9866 * fgkgcm3);
217 mix->SetIndex(matindex);
218 mix->DefineElement(0, 12.01070, 6.0, 0.908508078); // C by fractional weight
219 mix->DefineElement(1, 14.00670, 7.0, 0.010387573); // N by fractional weight
220 mix->DefineElement(2, 15.99940, 8.0, 0.055957585); // O by fractional weight
221 mix->DefineElement(3, 1.00794, 1.0, 0.025146765); // H by fractional weight
222 mix->SetPressure(0.0 * fgkPascal);
223 mix->SetTemperature(25.0 * fgkCelsius);
224 mix->SetState(TGeoMaterial::kMatStateSolid);
225 params[3] = ktmaxfd;
226 params[4] = kstemax;
227 params[5] = kdeemax;
228 params[6] = kepsil;
229 params[7] = kstmin;
230 med = new TGeoMedium("ITSspdCarbonFiber", medindex++, mix, params);
231
232 // air defined as a mixture of C-N-O-Ar:
233 // it is used to fill all containers
234 mix = new TGeoMixture("Air", 4, 1.20479E-3 * fgkgcm3);
235 mix->SetIndex(matindex);
236 mix->DefineElement(0, 12.0107, 6.0, 0.000124); // C by fractional weight
237 mix->DefineElement(1, 14.0067, 7.0, 0.755267); // N by fractional weight
238 mix->DefineElement(2, 15.9994, 8.0, 0.231781); // O by fractional weight
239 mix->DefineElement(3, 39.9480, 18.0, 0.012827); // Ar by fractional weight
240 mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
241 mix->SetTemperature(25.0 * fgkCelsius);
242 mix->SetState(TGeoMaterial::kMatStateGas);
243 params[3] = ktmaxfdAir;
244 params[4] = kstemaxAir;
245 params[5] = kdeemaxAir;
246 params[6] = kepsilAir;
247 params[7] = kstminAir;
248 med = new TGeoMedium("ITSspdAir", medindex++, mix, params);
249
250 // inox stainless steel, defined as a mixture
251 // used for all metallic parts
252 mix = new TGeoMixture("INOX", 9, 8.03 * fgkgcm3);
253 mix->SetIndex(matindex);
254 mix->DefineElement(0, 12.0107, 6., .0003); // C by fractional weight
255 mix->DefineElement(1, 54.9380, 25., .02); // Fe by fractional weight
256 mix->DefineElement(2, 28.0855, 14., .01); // Na by fractional weight
257 mix->DefineElement(3, 30.9738, 15., .00045); // P by fractional weight
258 mix->DefineElement(4, 32.066 , 16., .0003); // S by fractional weight
259 mix->DefineElement(5, 58.6928, 28., .12); // Ni by fractional weight
260 mix->DefineElement(6, 55.9961, 24., .17); // by fractional weight
261 mix->DefineElement(7, 95.84 , 42., .025); // by fractional weight
262 mix->DefineElement(8, 55.845 , 26., .654); // by fractional weight
263 mix->SetPressure(0.0 * fgkPascal);
264 mix->SetTemperature(25.0 * fgkCelsius);
265 mix->SetState(TGeoMaterial::kMatStateSolid);
266 params[3] = ktmaxfdAir;
267 params[4] = kstemaxAir;
268 params[5] = kdeemaxAir;
269 params[6] = kepsilAir;
270 params[7] = kstminAir;
271 med = new TGeoMedium("ITSspdStainlessSteel", medindex++, mix, params);
272
273 // freon gas which fills the cooling system (C+F)
274 mix = new TGeoMixture("Freon", 2, 1.63 * fgkgcm3);
275 mix->SetIndex(matindex);
276 mix->DefineElement(0, 12.0107 , 6.0, 4); // C by fractional weight
277 mix->DefineElement(1, 18.9984032, 9.0, 10); // F by fractional weight
278 mix->SetPressure(101325.0 * fgkPascal); // = 1 atmosphere
279 mix->SetTemperature(25.0 * fgkCelsius);
280 mix->SetState(TGeoMaterial::kMatStateLiquid);
281 params[3] = ktmaxfdAir;
282 params[4] = kstemaxAir;
283 params[5] = kdeemaxAir;
284 params[6] = kepsilAir;
285 params[7] = kstminAir;
286 med = new TGeoMedium("ITSspdCoolingFluid", medindex++, mix, params);
287
288 // return the next index to be used in case of adding new materials
289 medOffset = medindex;
290 matOffset = matindex;
291 return matOffset;
a53658c6 292}
bc3498f4 293//
294//__________________________________________________________________________________________
295void AliITSv11GeometrySPD::InitSPDCentral(Int_t offset, TVirtualMC *vmc) const
296{
297 //
298 // Do all SPD Central detector initializations (e.g.: transport cuts).
299 // ---
300 // Here follow some GEANT3 physics switches, which are interesting
301 // for these settings to be defined:
302 // - "MULTS" (MULtiple Scattering):
303 // the variable IMULS controls this process. See [PHYS320/325/328]
304 // 0 - No multiple scattering.
305 // 1 - (DEFAULT) Multiple scattering according to Moliere theory.
306 // 2 - Same as 1. Kept for backward compatibility.
307 // 3 - Pure Gaussian scattering according to the Rossi formula.
308 // - "DRAY" (Delta RAY production)
309 // The variable IDRAY controls this process. See [PHYS430]
310 // 0 - No delta rays production.
311 // 1 - (DEFAULT) Delta rays production with generation of.
312 // 2 - Delta rays production without generation of.
313 // - "LOSS" (continuous energy loss)
314 // The variable ILOSS controls this process.
315 // 0 - No continuous energy loss, IDRAY is set to 0.
316 // 1 - Continuous energy loss with generation of delta rays above
317 // DCUTE (common/GCUTS/) and restricted Landau fluctuations below DCUTE.
318 // 2 - (DEFAULT) Continuous energy loss without generation of delta rays
319 // and full Landau-Vavilov-Gauss fluctuations.
320 // In this case the variable IDRAY is forced to 0 to avoid
321 // double counting of fluctuations.
322 // 3 - Same as 1, kept for backward compatibility.
323 // 4 - Energy loss without fluctuation.
324 // The value obtained from the tables is used directly.
325 // ---
326 // Arguments:
327 // Int_t offset --> the material/medium index offset
328 // TVirtualMC *vmc --> pointer to the virtual Monte Carlo default gMC
329 //
a53658c6 330
bc3498f4 331 Int_t i, n = 4;
332
333 for(i=0;i<n;i++) {
334 vmc->Gstpar(i+offset, "CUTGAM", 30.0 * fgkKeV);
335 vmc->Gstpar(i+offset, "CUTELE", 30.0 * fgkKeV);
336 vmc->Gstpar(i+offset, "CUTNEU", 30.0 * fgkKeV);
337 vmc->Gstpar(i+offset, "CUTHAD", 30.0 * fgkKeV);
338 vmc->Gstpar(i+offset, "CUTMUO", 30.0 * fgkKeV);
339 vmc->Gstpar(i+offset, "BCUTE", 30.0 * fgkKeV);
340 vmc->Gstpar(i+offset, "BCUTM", 30.0 * fgkKeV);
341 vmc->Gstpar(i+offset, "DCUTE", 30.0 * fgkKeV);
342 vmc->Gstpar(i+offset, "DCUTM", 30.0 * fgkKeV);
343 //vmc->Gstpar(i+offset, "PPCUTM", );
344 //vmc->Gstpar(i+offset, "PAIR", );
345 //vmc->Gstpar(i+offset, "COMPT", );
346 //vmc->Gstpar(i+offset, "PHOT", );
347 //vmc->Gstpar(i+offset, "PFIS", );
348 vmc->Gstpar(i+offset, "DRAY", 1);
349 //vmc->Gstpar(i+offset, "ANNI", );
350 //vmc->Gstpar(i+offset, "BREM", );
351 //vmc->Gstpar(i+offset, "HADR", );
352 //vmc->Gstpar(i+offset, "MUNU", );
353 //vmc->Gstpar(i+offset, "DCAY", );
354 vmc->Gstpar(i+offset, "LOSS", 1);
355 //vmc->Gstpar(i+offset, "MULS", );
356 //vmc->Gstpar(i+offset, "GHCOR1", );
357 //vmc->Gstpar(i+offset, "BIRK1", );
358 //vmc->Gstpar(i+offset, "BRIK2", );
359 //vmc->Gstpar(i+offset, "BRIK3", );
360 //vmc->Gstpar(i+offset, "LABS", );
361 //vmc->Gstpar(i+offset, "SYNC", );
362 //vmc->Gstpar(i+offset, "STRA", );
363 }
a53658c6 364}
bc3498f4 365//
366//__________________________________________________________________________________________
367void AliITSv11GeometrySPD::SPDSector(TGeoVolume *moth, TGeoManager *mgr)
368{
369 //
370 // Creates a single SPD carbon fiber sector and places it
371 // in a container volume passed as first argument ('moth').
372 // Second argument points to the TGeoManager which coordinates
373 // the overall volume creation.
374 // The position of the sector is based on distance of
375 // closest point of SPD stave to beam pipe
376 // (figures all-sections-modules.ps) of 7.22mm at section A-A.
377 //
a53658c6 378
bc3498f4 379 const Double_t kSPDclossesStaveAA = 7.22 * fgkmm;
380 const Double_t kSectorStartingAngle = -72.0 * fgkDegree;
381 const Double_t kNSectorsTotal = 10.0;
382 const Double_t kSectorRelativeAngle = 360.0 / kNSectorsTotal * fgkDegree;
383 const Double_t kBeamPipeRadius = 0.5 * 60.0 * fgkmm;
384
385 Int_t i;
386 Double_t angle, radiusSector, xAAtubeCenter0, yAAtubeCenter0;
387 Double_t staveThicknessAA = 1.03 * fgkmm; // get from stave geometry.
388 TGeoCombiTrans *secRot = new TGeoCombiTrans();
389 TGeoVolume *vCarbonFiberSector;
390 TGeoMedium *medSPDcf;
391
392 // define an assembly and fill it with the support of
393 // a single carbon fiber sector and staves in it
394 medSPDcf = GetMedium("SPD C (M55J)$", mgr);
395 vCarbonFiberSector = new TGeoVolumeAssembly("ITSSPDCarbonFiberSectorV");
396 vCarbonFiberSector->SetMedium(medSPDcf);
397 CarbonFiberSector(vCarbonFiberSector, xAAtubeCenter0, yAAtubeCenter0, mgr);
398 vCarbonFiberSector->SetVisibility(kTRUE); // logical volume
399
400 // Compute the radial shift out of the sectors
401 radiusSector = kBeamPipeRadius + kSPDclossesStaveAA + staveThicknessAA;
402 radiusSector *= radiusSector; // squaring;
403 radiusSector -= xAAtubeCenter0 * xAAtubeCenter0;
404 radiusSector = -yAAtubeCenter0 + TMath::Sqrt(radiusSector);
405
406 // add 10 single sectors, by replicating the virtual sector defined above
407 // and placing at different angles
408 Double_t shiftX, shiftY;
409 angle = kSectorStartingAngle;
410 secRot->RotateZ(angle);
411 for(i = 0; i < (Int_t)kNSectorsTotal; i++) {
412 shiftX = -radiusSector * TMath::Sin(angle/fgkRadian);
413 shiftY = radiusSector * TMath::Cos(angle/fgkRadian);
414 secRot->SetDx(shiftX);
415 secRot->SetDy(shiftY);
416 moth->AddNode(vCarbonFiberSector, i+1, new TGeoCombiTrans(*secRot));
417 if(GetDebug(5)) {
418 AliInfo(Form("i=%d angle=%g angle[rad]=%g radiusSector=%g x=%g y=%g \n",
419 i, angle, angle/fgkRadian, radiusSector, shiftX, shiftY));
420 }
421 angle += kSectorRelativeAngle;
422 secRot->RotateZ(kSectorRelativeAngle);
423 }
424 if(GetDebug(3)) moth->PrintNodes();
425
426 delete secRot;
a53658c6 427}
bc3498f4 428//
429//__________________________________________________________________________________________
430void AliITSv11GeometrySPD::CarbonFiberSector
431(TGeoVolume *moth, Double_t &xAAtubeCenter0, Double_t &yAAtubeCenter0, TGeoManager *mgr)
432{
433 //
434 // Define the detail SPD Carbon fiber support Sector geometry.
435 // Based on the drawings:
436 // - ALICE-Pixel "Costruzione Profilo Modulo" (march 25 2004)
437 // - ALICE-SUPPORTO "Costruzione Profilo Modulo"
438 // ---
439 // Define outside radii as negative, where "outside" means that the
440 // center of the arc is outside of the object (feb 16 2004).
441 // ---
442 // Arguments [the one passed by ref contain output values]:
443 // TGeoVolume *moth --> the voulme which will contain this object
444 // Double_t &xAAtubeCenter0 --> (by ref) x location of the outer surface
445 // of the cooling tube center for tube 0.
446 // Double_t &yAAtubeCenter0 --> (by ref) y location of the outer surface
447 // of the cooling tube center for tube 0.
448 // TGeoManager *mgr --> TGeo builder
449 // ---
450 // Int the two variables passed by reference values will be stored
451 // which will then be used to correctly locate this sector.
452 // The information used for this is the distance between the
453 // center of the #0 detector and the beam pipe.
454 // Measurements are taken at cross section A-A.
455 //
456
457 //TGeoMedium *medSPDfs = 0; // SPD support cone inserto stesalite 4411w.
458 //TGeoMedium *medSPDfo = 0; // SPD support cone foam, Rohacell 50A.
459 //TGeoMedium *medSPDal = 0; // SPD support cone SDD mounting bracket Al
460 TGeoMedium *medSPDcf = GetMedium("SPD C (M55J)$", mgr);
461 TGeoMedium *medSPDss = GetMedium("INOX$", mgr);
462 TGeoMedium *medSPDair = GetMedium("AIR$", mgr);
463 TGeoMedium *medSPDcoolfl = GetMedium("Freon$", mgr); //ITSspdCoolingFluid
464
465 const Double_t ksecDz = 0.5 * 500.0 * fgkmm;
466 const Double_t ksecLen = 30.0 * fgkmm;
467 const Double_t ksecCthick = 0.2 * fgkmm;
468 const Double_t ksecDipLength = 3.2 * fgkmm;
469 const Double_t ksecDipRadii = 0.4 * fgkmm;
470 //const Double_t ksecCoolingTubeExtraDepth = 0.86 * fgkmm;
db486a6e 471
bc3498f4 472 // The following positions ('ksecX#' and 'ksecY#') and radii ('ksecR#')
473 // are the centers and radii of curvature of all the rounded corners
474 // between the straight borders of the SPD sector shape.
475 // To draw this SPD sector, the following steps are followed:
476 // 1) the (ksecX, ksecY) points are plotted
477 // and circles of the specified radii are drawn around them.
478 // 2) each pair of consecutive circles is connected by a line
479 // tangent to them, in accordance with the radii being "internal" or "external"
480 // with respect to the closed shape which describes the sector itself.
481 // The resulting connected shape is the section
482 // of the SPD sector surface in the transverse plane (XY).
483
484 const Double_t ksecX0 = -10.725 * fgkmm;
485 const Double_t ksecY0 = -14.853 * fgkmm;
486 const Double_t ksecR0 = -0.8 * fgkmm; // external
487 const Double_t ksecX1 = -13.187 * fgkmm;
488 const Double_t ksecY1 = -19.964 * fgkmm;
489 const Double_t ksecR1 = +0.6 * fgkmm; // internal
490 // const Double_t ksecDip0 = 5.9 * fgkmm;
491
492 const Double_t ksecX2 = -3.883 * fgkmm;
493 const Double_t ksecY2 = -17.805 * fgkmm;
494 const Double_t ksecR2 = +0.80 * fgkmm; // internal (guess)
495 const Double_t ksecX3 = -3.123 * fgkmm;
496 const Double_t ksecY3 = -14.618 * fgkmm;
497 const Double_t ksecR3 = -0.6 * fgkmm; // external
498 //const Double_t ksecDip1 = 8.035 * fgkmm;
499
500 const Double_t ksecX4 = +11.280 * fgkmm;
501 const Double_t ksecY4 = -14.473 * fgkmm;
502 const Double_t ksecR4 = +0.8 * fgkmm; // internal
503 const Double_t ksecX5 = +19.544 * fgkmm;
504 const Double_t ksecY5 = +10.961 * fgkmm;
505 const Double_t ksecR5 = +0.8 * fgkmm; // internal
506 //const Double_t ksecDip2 = 4.553 * fgkmm;
507
508 const Double_t ksecX6 = +10.830 * fgkmm;
509 const Double_t ksecY6 = +16.858 * fgkmm;
510 const Double_t ksecR6 = +0.6 * fgkmm; // internal
511 const Double_t ksecX7 = +11.581 * fgkmm;
512 const Double_t ksecY7 = +13.317 * fgkmm;
513 const Double_t ksecR7 = -0.6 * fgkmm; // external
514 //const Double_t ksecDip3 = 6.978 * fgkmm;
515
516 const Double_t ksecX8 = -0.733 * fgkmm;
517 const Double_t ksecY8 = +17.486 * fgkmm;
518 const Double_t ksecR8 = +0.6 * fgkmm; // internal
519 const Double_t ksecX9 = +0.562 * fgkmm;
520 //const Double_t ksecY9 = +14.486 * fgkmm; // correction by
521 const Double_t ksecY9 = +14.107 * fgkmm; // Alberto
522 const Double_t ksecR9 = -0.6 * fgkmm; // external
523 //const Double_t ksecDip4 = 6.978 * fgkmm;
db486a6e 524
bc3498f4 525 const Double_t ksecX10 = -12.252 * fgkmm;
526 const Double_t ksecY10 = +16.298 * fgkmm;
527 const Double_t ksecR10 = +0.6 * fgkmm; // internal
528 const Double_t ksecX11 = -10.445 * fgkmm;
529 const Double_t ksecY11 = +13.162 * fgkmm;
530 const Double_t ksecR11 = -0.6 * fgkmm; // external
531 //const Double_t ksecDip5 = 6.978 * fgkmm;
532
533 const Double_t ksecX12 = -22.276 * fgkmm;
534 const Double_t ksecY12 = +12.948 * fgkmm;
535 const Double_t ksecR12 = +0.85 * fgkmm; // internal
536 const Double_t ksecR13 = -0.8 * fgkmm; // external
537 const Double_t ksecAngleSide13 = 36.0 * fgkDegree;
538
539 const Int_t ksecNRadii = 20;
540 const Int_t ksecNPointsPerRadii = 4;
541 const Int_t ksecNCoolingTubeDips = 6;
542
543 // Since the rounded parts are approximated by a regular polygon
544 // and a cooling tube of the propper diameter must fit, a scaling factor
545 // increases the size of the polygon for the tube to fit.
546 //const Double_t ksecRCoolScale = 1./TMath::Cos(TMath::Pi()/(Double_t)ksecNPointsPerRadii);
547 const Double_t ksecZEndLen = 30.000 * fgkmm;
548 //const Double_t ksecZFlangLen = 45.000 * fgkmm;
549 const Double_t ksecTl = 0.860 * fgkmm;
550 const Double_t ksecCthick2 = 0.600 * fgkmm;
551 //const Double_t ksecCthick3 = 1.80 * fgkmm;
552 //const Double_t ksecSidelen = 22.0 * fgkmm;
553 //const Double_t ksecSideD5 = 3.679 * fgkmm;
554 //const Double_t ksecSideD12 = 7.066 * fgkmm;
555 const Double_t ksecRCoolOut = 2.400 * fgkmm;
556 const Double_t ksecRCoolIn = 2.000 * fgkmm;
557 const Double_t ksecDl1 = 5.900 * fgkmm;
558 const Double_t ksecDl2 = 8.035 * fgkmm;
559 const Double_t ksecDl3 = 4.553 * fgkmm;
560 const Double_t ksecDl4 = 6.978 * fgkmm;
561 const Double_t ksecDl5 = 6.978 * fgkmm;
562 const Double_t ksecDl6 = 6.978 * fgkmm;
563 const Double_t ksecCoolTubeThick = 0.04 * fgkmm;
564 const Double_t ksecCoolTubeROuter = 2.6 * fgkmm;
565 const Double_t ksecCoolTubeFlatX = 3.696 * fgkmm;
566 const Double_t ksecCoolTubeFlatY = 0.68 * fgkmm;
567 //const Double_t ksecBeamX0 = 0.0 * fgkmm; // guess
568 //const Double_t ksecBeamY0 = (15.223 + 40.) * fgkmm; // guess
297369a1 569
bc3498f4 570 // redefine some of the points already defined above
571 // in the format of arrays (???)
572 const Int_t ksecNPoints = (ksecNPointsPerRadii + 1) * ksecNRadii + 8;
573 Double_t secX[ksecNRadii] = {
574 ksecX0, ksecX1, -1000.0,
575 ksecX2, ksecX3, -1000.0,
576 ksecX4, ksecX5, -1000.0,
577 ksecX6, ksecX7, -1000.0,
578 ksecX8, ksecX9, -1000.0,
579 ksecX10, ksecX11, -1000.0,
580 ksecX12, -1000.0
581 };
582 Double_t secY[ksecNRadii] = {
583 ksecY0, ksecY1, -1000.0,
584 ksecY2, ksecY3, -1000.0,
585 ksecY4, ksecY5, -1000.0,
586 ksecY6, ksecY7, -1000.0,
587 ksecY8, ksecY9, -1000.0,
588 ksecY10, ksecY11, -1000.0,
589 ksecY12, -1000.0
590 };
591 Double_t secR[ksecNRadii] = {
592 ksecR0, ksecR1, -.5 * ksecDipLength - ksecDipRadii,
593 ksecR2, ksecR3, -.5 * ksecDipLength - ksecDipRadii,
594 ksecR4, ksecR5, -.5 * ksecDipLength - ksecDipRadii,
595 ksecR6, ksecR7, -.5 * ksecDipLength - ksecDipRadii,
596 ksecR8, ksecR9, -.5 * ksecDipLength - ksecDipRadii,
597 ksecR10, ksecR11, -.5 * ksecDipLength - ksecDipRadii,
598 ksecR12, ksecR13
599 };
600 /*
601 Double_t secDip[ksecNRadii] = {
602 0., 0., ksecDip0, 0., 0., ksecDip1,
603 0., 0., ksecDip2, 0., 0., ksecDip3,
604 0., 0., ksecDip4, 0., 0., ksecDip5,
605 0., 0.
606 };
607 */
608 Double_t secX2[ksecNRadii];
609 Double_t secY2[ksecNRadii];
610 Double_t secR2[ksecNRadii] = {
611 ksecR0, ksecR1, ksecRCoolOut,
612 ksecR2, ksecR3, ksecRCoolOut,
613 ksecR4, ksecR5, ksecRCoolOut,
614 ksecR6, ksecR7, ksecRCoolOut,
615 ksecR8, ksecR9, ksecRCoolOut,
616 ksecR10, ksecR11, ksecRCoolOut,
617 ksecR12, ksecR13
618 };
619 Double_t secDip2[ksecNCoolingTubeDips] = {
620 ksecDl1, ksecDl2, ksecDl3,
621 ksecDl4, ksecDl5, ksecDl6
622 };
623 Double_t secX3[ksecNRadii];
624 Double_t secY3[ksecNRadii];
625 const Int_t ksecDipIndex[ksecNCoolingTubeDips] = {2, 5, 8, 11, 14, 17};
626 Double_t secAngleStart[ksecNRadii];
627 Double_t secAngleEnd[ksecNRadii];
628 Double_t secAngleStart2[ksecNRadii];
629 Double_t secAngleEnd2[ksecNRadii];
630 Double_t secAngleTurbo[ksecNCoolingTubeDips] = {0., 0., 0., 0., 0., 0.0};
631 //Double_t secAngleStart3[ksecNRadii];
632 //Double_t secAngleEnd3[ksecNRadii];
633 Double_t xpp[ksecNPoints], ypp[ksecNPoints];
634 Double_t xpp2[ksecNPoints], ypp2[ksecNPoints];
635 Double_t *xp[ksecNRadii], *xp2[ksecNRadii];
636 Double_t *yp[ksecNRadii], *yp2[ksecNRadii];
637 TGeoXtru *sA0, *sA1, *sB0, *sB1;
638 TGeoEltu *sTA0, *sTA1;
639 TGeoTube *sTB0, *sTB1; //,*sM0;
640 TGeoRotation *rot;
641 TGeoTranslation *trans;
642 TGeoCombiTrans *rotrans;
643 Double_t t, t0, t1, a, b, x0, y0, x1, y1;
644 Int_t i, j, k, m;
645 Bool_t tst;
a53658c6 646
bc3498f4 647 if(!moth) {
648 AliError("Container volume (argument) is NULL");
649 return;
650 }
651 for(i = 0; i < ksecNRadii; i++) {
652 xp[i] = &(xpp[i*(ksecNPointsPerRadii+1)]);
653 yp[i] = &(ypp[i*(ksecNPointsPerRadii+1)]);
654 xp2[i] = &(xpp2[i*(ksecNPointsPerRadii+1)]);
655 yp2[i] = &(ypp2[i*(ksecNPointsPerRadii+1)]);
656 secX2[i] = secX[i];
657 secY2[i] = secY[i];
658 secX3[i] = secX[i];
659 secY3[i] = secY[i];
660 }
661
662 // find starting and ending angles for all but cooling tube sections
663 secAngleStart[0] = 0.5 * ksecAngleSide13;
664 for(i = 0; i < ksecNRadii - 2; i++) {
665 tst = kFALSE;
666 for(j = 0; j < ksecNCoolingTubeDips; j++) tst = (tst || i == ksecDipIndex[j]);
667 if (tst) continue;
668 tst = kFALSE;
669 for(j = 0; j < ksecNCoolingTubeDips; j++) tst = (tst || (i+1) == ksecDipIndex[j]);
670 if (tst) j = i+2; else j = i+1;
671 AnglesForRoundedCorners(secX[i], secY[i], secR[i], secX[j], secY[j], secR[j], t0, t1);
672 secAngleEnd[i] = t0;
673 secAngleStart[j] = t1;
674 if(secR[i] > 0.0 && secR[j] > 0.0) {
675 if(secAngleStart[i] > secAngleEnd[i]) secAngleEnd[i] += 360.0;
676 }
677 secAngleStart2[i] = secAngleStart[i];
678 secAngleEnd2[i] = secAngleEnd[i];
679 } // end for i
680 secAngleEnd[ksecNRadii-2] = secAngleStart[ksecNRadii-2]
681 + (secAngleEnd[ksecNRadii-5] - secAngleStart[ksecNRadii-5]);
682 if (secAngleEnd[ksecNRadii-2] < 0.0) secAngleEnd[ksecNRadii-2] += 360.0;
683 secAngleStart[ksecNRadii-1] = secAngleEnd[ksecNRadii-2] - 180.0;
684 secAngleEnd[ksecNRadii-1] = secAngleStart[0];
685 secAngleStart2[ksecNRadii-2] = secAngleStart[ksecNRadii-2];
686 secAngleEnd2[ksecNRadii-2] = secAngleEnd[ksecNRadii-2];
687 secAngleStart2[ksecNRadii-1] = secAngleStart[ksecNRadii-1];
688 secAngleEnd2[ksecNRadii-1] = secAngleEnd[ksecNRadii-1];
689
690 // find location of circle last rounded corner.
691 i = 0;
692 j = ksecNRadii - 2;
693 t0 = TanD(secAngleStart[i]-90.);
694 t1 = TanD(secAngleEnd[j]-90.);
695 t = secY[i] - secY[j];
696 // NOTE: secR[i=0] < 0; secR[j=18] > 0; and secR[j+1=19] < 0
697 t += (-secR[i]+secR[j+1]) * SinD(secAngleStart[i]);
698 t -= (secR[j]-secR[j+1]) * SinD(secAngleEnd[j]);
699 t += t1 * secX[j] - t0*secX[i];
700 t += t1 * (secR[j] - secR[j+1]) * CosD(secAngleEnd[j]);
701 t -= t0 * (-secR[i]+secR[j+1]) * CosD(secAngleStart[i]);
702 secX[ksecNRadii-1] = t / (t1-t0);
703 secY[ksecNRadii-1] = TanD(90. + 0.5*ksecAngleSide13) * (secX[ksecNRadii-1] - secX[0]) + secY[0];
704 secX2[ksecNRadii-1] = secX[ksecNRadii-1];
705 secY2[ksecNRadii-1] = secY[ksecNRadii-1];
706 secX3[ksecNRadii-1] = secX[ksecNRadii-1];
707 secY3[ksecNRadii-1] = secY[ksecNRadii-1];
708
709 // find location of cooling tube centers
710 for(i = 0; i < ksecNCoolingTubeDips; i++) {
711 j = ksecDipIndex[i];
712 x0 = secX[j-1] + TMath::Abs(secR[j-1]) * CosD(secAngleEnd[j-1]);
713 y0 = secY[j-1] + TMath::Abs(secR[j-1]) * SinD(secAngleEnd[j-1]);
714 x1 = secX[j+1] + TMath::Abs(secR[j+1]) * CosD(secAngleStart[j+1]);
715 y1 = secY[j+1] + TMath::Abs(secR[j+1]) * SinD(secAngleStart[j+1]);
716 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
717 t = secDip2[i] / t0;
718 a = x0+(x1-x0) * t;
719 b = y0+(y1-y0) * t;
720 if(i == 0) {
721 // get location of tube center->Surface for locating
722 // this sector around the beam pipe.
723 // This needs to be double checked, but I need my notes for that.
724 // (Bjorn Nilsen)
725 xAAtubeCenter0 = x0 + (x1 - x0) * t * 0.5;
726 yAAtubeCenter0 = y0 + (y1 - y0) * t * 0.5;
727 }
728 if(a + b*(a - x0) / (b - y0) > 0.0) {
729 secX[j] = a + TMath::Abs(y1-y0) * 2.0 * ksecDipRadii/t0;
730 secY[j] = b - TMath::Sign(2.0*ksecDipRadii,y1-y0) * (x1-x0)/t0;
731 secX2[j] = a + TMath::Abs(y1-y0) * ksecTl/t0;
732 secY2[j] = b - TMath::Sign(ksecTl,y1-y0) * (x1-x0) / t0;
733 secX3[j] = a + TMath::Abs(y1-y0) * (2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0;
734 secY3[j] = b - TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,y1-y0)*(x1-x0)/t0;
735 }
736 else {
737 secX[j] = a - TMath::Abs(y1-y0)*2.0*ksecDipRadii/t0;
738 secY[j] = b + TMath::Sign(2.0*ksecDipRadii,y1-y0)*(x1-x0)/t0;
739 secX2[j] = a - TMath::Abs(y1-y0)*ksecTl/t0;
740 secY2[j] = b + TMath::Sign(ksecTl,y1-y0)*(x1-x0)/t0;
741 secX3[j] = a - TMath::Abs(y1-y0)*(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY)/t0;
742 secY3[j] = b + TMath::Sign(2.0*ksecDipRadii-0.5*ksecCoolTubeFlatY,y1-y0)*(x1-x0)/t0;
743 }
744
745 // Set up Start and End angles to correspond to start/end of dips.
746 t1 = (secDip2[i]-TMath::Abs(secR[j])) / t0;
747 secAngleStart[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]);
748 if (secAngleStart[j]<0.0) secAngleStart[j] += 360.0;
749 secAngleStart2[j] = secAngleStart[j];
750 t1 = (secDip2[i]+TMath::Abs(secR[j]))/t0;
751 secAngleEnd[j] = TMath::RadToDeg()*TMath::ATan2(y0+(y1-y0)*t1-secY[j],x0+(x1-x0)*t1-secX[j]);
752 if (secAngleEnd[j]<0.0) secAngleEnd[j] += 360.0;
753 secAngleEnd2[j] = secAngleEnd[j];
754 if (secAngleEnd[j]>secAngleStart[j]) secAngleEnd[j] -= 360.0;
755 secR[j] = TMath::Sqrt(secR[j]*secR[j]+4.0*ksecDipRadii*ksecDipRadii);
756 } // end for i
757
758 // Special cases
759 secAngleStart2[8] -= 360.;
760 secAngleStart2[11] -= 360.;
761
762 SPDsectorShape(ksecNRadii, secX, secY, secR, secAngleStart, secAngleEnd,
763 ksecNPointsPerRadii, m, xp, yp);
764
765 // Fix up dips to be square.
766 for(i = 0; i < ksecNCoolingTubeDips; i++) {
767 j = ksecDipIndex[i];
768 t = 0.5*ksecDipLength+ksecDipRadii;
769 t0 = TMath::RadToDeg()*TMath::ATan(2.0*ksecDipRadii/t);
770 t1 = secAngleEnd[j] + t0;
771 t0 = secAngleStart[j] - t0;
772 x0 = xp[j][1] = secX[j] + t*CosD(t0);
773 y0 = yp[j][1] = secY[j] + t*SinD(t0);
774 x1 = xp[j][ksecNPointsPerRadii-1] = secX[j] + t*CosD(t1);
775 y1 = yp[j][ksecNPointsPerRadii-1] = secY[j] + t*SinD(t1);
776 t0 = 1./((Double_t)(ksecNPointsPerRadii-2));
777 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
778 // extra points spread them out.
779 t = ((Double_t)(k-1)) * t0;
780 xp[j][k] = x0+(x1-x0) * t;
781 yp[j][k] = y0+(y1-y0) * t;
782 } // end for k
783 secAngleTurbo[i] = -TMath::RadToDeg() * TMath::ATan2(y1-y0, x1-x0);
784 if(GetDebug(3)) {
785 AliInfo(Form("i=%d -- angle=%f -- x0,y0=(%f, %f) -- x1,y1=(%f, %f)", i, secAngleTurbo[i], x0, y0, x1, y1));
786 }
787 } // end for i
788 sA0 = new TGeoXtru(2);
789 sA0->SetName("ITS SPD Carbon fiber support Sector A0");
790 sA0->DefinePolygon(m, xpp, ypp);
791 sA0->DefineSection(0, -ksecDz);
792 sA0->DefineSection(1, ksecDz);
793
794 // store the edges of each XY segment which defines
795 // one of the plane zones where staves will have to be placed
796 fSPDsectorX0.Set(ksecNCoolingTubeDips);
797 fSPDsectorY0.Set(ksecNCoolingTubeDips);
798 fSPDsectorX1.Set(ksecNCoolingTubeDips);
799 fSPDsectorY1.Set(ksecNCoolingTubeDips);
800 Int_t ixy0, ixy1;
801 for(i = 0; i < ksecNCoolingTubeDips; i++) {
802 // Find index in xpp[] and ypp[] corresponding to where the
803 // SPD ladders are to be attached. Order them according to
804 // the ALICE numbering schema. Using array of indexes (+-1 for
805 // cooling tubes. For any "bend/dip/edge, there are
806 // ksecNPointsPerRadii+1 points involved.
807 if(i == 0) j = 1;
808 else if (i == 1) j = 0;
809 else j = i;
810 ixy0 = (ksecDipIndex[j]-1) * (ksecNPointsPerRadii+1) + (ksecNPointsPerRadii);
811 ixy1 = (ksecDipIndex[j]+1) * (ksecNPointsPerRadii+1);
812 fSPDsectorX0[i] = sA0->GetX(ixy0);
813 fSPDsectorY0[i] = sA0->GetY(ixy0);
814 fSPDsectorX1[i] = sA0->GetX(ixy1);
815 fSPDsectorY1[i] = sA0->GetY(ixy1);
816 }
817
818 //printf("SectorA#%d ",0);
819 InsidePoint(xpp[m-1], ypp[m-1], xpp[0], ypp[0], xpp[1], ypp[1], ksecCthick, xpp2[0], ypp2[0]);
820 for(i = 1; i < m - 1; i++) {
821 j = i / (ksecNPointsPerRadii+1);
822 //printf("SectorA#%d ",i);
823 InsidePoint(xpp[i-1], ypp[i-1], xpp[i], ypp[i], xpp[i+1], ypp[i+1], ksecCthick, xpp2[i], ypp2[i]);
824 }
825 //printf("SectorA#%d ",m);
826 InsidePoint(xpp[m-2], ypp[m-2], xpp[m-1], ypp[m-1], xpp[0], ypp[0], ksecCthick, xpp2[m-1], ypp2[m-1]);
827 // Fix center value of cooling tube dip and
828 // find location of cooling tube centers
829 for(i = 0; i < ksecNCoolingTubeDips; i++) {
830 j = ksecDipIndex[i];
831 x0 = xp2[j][1];
832 y0 = yp2[j][1];
833 x1 = xp2[j][ksecNPointsPerRadii-1];
834 y1 = yp2[j][ksecNPointsPerRadii-1];
835 t0 = TMath::Sqrt((x0-x1)*(x0-x1)+(y0-y1)*(y0-y1));
836 t = secDip2[i]/t0;
837 for(k = 2; k < ksecNPointsPerRadii - 1; k++) {
838 // extra points spread them out.
839 t = ((Double_t)(k-1)) * t0;
840 xp2[j][k] = x0+(x1-x0) * t;
841 yp2[j][k] = y0+(y1-y0) * t;
842 }
843 } // end for i
844 sA1 = new TGeoXtru(2);
845 sA1->SetName("ITS SPD Carbon fiber support Sector Air A1");
846 sA1->DefinePolygon(m, xpp2, ypp2);
847 sA1->DefineSection(0, -ksecDz);
848 sA1->DefineSection(1, ksecDz);
849
850 // Error in TGeoEltu. Semi-axis X must be < Semi-axis Y (?).
851 sTA0 = new TGeoEltu("ITS SPD Cooling Tube TA0", 0.5 * ksecCoolTubeFlatY, 0.5 * ksecCoolTubeFlatX, ksecDz);
852 sTA1 = new TGeoEltu("ITS SPD Cooling Tube coolant TA1",
853 sTA0->GetA() - ksecCoolTubeThick,
854 sTA0->GetB()-ksecCoolTubeThick,ksecDz);
855
856 SPDsectorShape(ksecNRadii, secX2, secY2, secR2, secAngleStart2, secAngleEnd2,
857 ksecNPointsPerRadii, m, xp, yp);
db486a6e 858
bc3498f4 859 sB0 = new TGeoXtru(2);
860 sB0->SetName("ITS SPD Carbon fiber support Sector End B0");
861 sB0->DefinePolygon(m, xpp, ypp);
862 sB0->DefineSection(0, ksecDz);
863 sB0->DefineSection(1, ksecDz + ksecZEndLen);
592651e2 864
bc3498f4 865 //printf("SectorB#%d ",0);
866 InsidePoint(xpp[m-1], ypp[m-1], xpp[0], ypp[0], xpp[1], ypp[1], ksecCthick2, xpp2[0], ypp2[0]);
867 for(i = 1; i < m - 1; i++) {
868 t = ksecCthick2;
869 for(k = 0; k < ksecNCoolingTubeDips; k++)
870 if((i/(ksecNPointsPerRadii+1))==ksecDipIndex[k])
871 if(!(ksecDipIndex[k]*(ksecNPointsPerRadii+1) == i ||
872 ksecDipIndex[k]*(ksecNPointsPerRadii+1) + ksecNPointsPerRadii == i))
873 t = ksecRCoolOut-ksecRCoolIn;
874 //printf("SectorB#%d ",i);
875 InsidePoint(xpp[i-1], ypp[i-1], xpp[i], ypp[i], xpp[i+1], ypp[i+1], t, xpp2[i], ypp2[i]);
876 }
877 //printf("SectorB#%d ",m);
878 InsidePoint(xpp[m-2], ypp[m-2], xpp[m-1], ypp[m-1], xpp[0], ypp[0], ksecCthick2, xpp2[m-1], ypp2[m-1]);
879 sB1 = new TGeoXtru(2);
880 sB1->SetName("ITS SPD Carbon fiber support Sector Air End B1");
881 sB1->DefinePolygon(m, xpp2, ypp2);
882 sB1->DefineSection(0, ksecDz);
883 sB1->DefineSection(1, ksecDz + ksecLen);
884 sTB0 = new TGeoTube("ITS SPD Cooling Tube End TB0", 0.0,
885 0.5 * ksecCoolTubeROuter, 0.5 * ksecLen);
886 sTB1 = new TGeoTube("ITS SPD Cooling Tube End coolant TB0", 0.0,
887 sTB0->GetRmax() - ksecCoolTubeThick, 0.5 * ksecLen);
888
889 if(GetDebug(3)) {
890 if(medSPDcf) medSPDcf->Dump(); else AliInfo("medSPDcf = 0");
891 if(medSPDss) medSPDss->Dump(); else AliInfo("medSPDss = 0");
892 if(medSPDair) medSPDair->Dump(); else AliInfo("medSPDAir = 0");
893 if(medSPDcoolfl) medSPDcoolfl->Dump(); else AliInfo("medSPDcoolfl = 0");
894 sA0->InspectShape();
895 sA1->InspectShape();
896 sB0->InspectShape();
897 sB1->InspectShape();
898 }
899
900 // create the assembly of the support and place staves on it
901 TGeoVolumeAssembly *vM0 = new TGeoVolumeAssembly("ITSSPDSensitiveVirtualvolumeM0");
902 StavesInSector(vM0);
903 // create other volumes with some graphical settings
904 TGeoVolume *vA0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorA0", sA0, medSPDcf);
905 vA0->SetVisibility(kTRUE);
906 vA0->SetLineColor(4); // Blue
907 vA0->SetLineWidth(1);
908 vA0->SetFillColor(vA0->GetLineColor());
909 vA0->SetFillStyle(4010); // 10% transparent
910 TGeoVolume *vA1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorAirA1", sA1, medSPDair);
911 vA1->SetVisibility(kTRUE);
912 vA1->SetLineColor(7); // light Blue
913 vA1->SetLineWidth(1);
914 vA1->SetFillColor(vA1->GetLineColor());
915 vA1->SetFillStyle(4090); // 90% transparent
916 TGeoVolume *vTA0 = new TGeoVolume("ITSSPDCoolingTubeTA0", sTA0, medSPDss);
917 vTA0->SetVisibility(kTRUE);
918 vTA0->SetLineColor(1); // Black
919 vTA0->SetLineWidth(1);
920 vTA0->SetFillColor(vTA0->GetLineColor());
921 vTA0->SetFillStyle(4000); // 0% transparent
922 TGeoVolume *vTA1 = new TGeoVolume("ITSSPDCoolingTubeFluidTA1", sTA1, medSPDcoolfl);
923 vTA1->SetVisibility(kTRUE);
924 vTA1->SetLineColor(6); // Purple
925 vTA1->SetLineWidth(1);
926 vTA1->SetFillColor(vTA1->GetLineColor());
927 vTA1->SetFillStyle(4000); // 0% transparent
928 TGeoVolume *vB0 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndB0", sB0, medSPDcf);
929 vB0->SetVisibility(kTRUE);
930 vB0->SetLineColor(4); // Blue
931 vB0->SetLineWidth(1);
932 vB0->SetFillColor(vB0->GetLineColor());
933 vB0->SetFillStyle(4010); // 10% transparent
934 TGeoVolume *vB1 = new TGeoVolume("ITSSPDCarbonFiberSupportSectorEndAirB1", sB1, medSPDair);
935 vB1->SetVisibility(kTRUE);
936 vB1->SetLineColor(7); // light Blue
937 vB1->SetLineWidth(1);
938 vB1->SetFillColor(vB1->GetLineColor());
939 vB1->SetFillStyle(4090); // 90% transparent
940 TGeoVolume *vTB0 = new TGeoVolume("ITSSPDCoolingTubeEndTB0", sTB0, medSPDss);
941 vTB0->SetVisibility(kTRUE);
942 vTB0->SetLineColor(1); // Black
943 vTB0->SetLineWidth(1);
944 vTB0->SetFillColor(vTB0->GetLineColor());
945 vTB0->SetFillStyle(4000); // 0% transparent
946 TGeoVolume *vTB1 = new TGeoVolume("ITSSPDCoolingTubeEndFluidTB1", sTB1, medSPDcoolfl);
947 vTB1->SetVisibility(kTRUE);
948 vTB1->SetLineColor(6); // Purple
949 vTB1->SetLineWidth(1);
950 vTB1->SetFillColor(vTB1->GetLineColor());
951 vTB1->SetFillStyle(4000); // 0% transparent
952
953 // add volumes to mother container passed as argument of this method
954 moth->AddNode(vM0,1,0); // Add virtual volume to mother
955 vA0->AddNode(vA1,1,0); // Put air inside carbon fiber.
956 vB0->AddNode(vB1,1,0); // Put air inside carbon fiber.
957 vTA0->AddNode(vTA1,1,0); // Put air inside carbon fiber.
958 vTB0->AddNode(vTB1,1,0); // Put air inside carbon fiber.
959 for(i = 0; i < ksecNCoolingTubeDips; i++) {
960 x0 = secX3[ksecDipIndex[i]];
961 y0 = secY3[ksecDipIndex[i]];
962 t = 90.0 - secAngleTurbo[i];
963 trans = new TGeoTranslation("", x0, y0, 0.5 * (sB1->GetZ(0) + sB1->GetZ(1)));
964 vB1->AddNode(vTB0, i+1, trans);
965 rot = new TGeoRotation("", 0.0, 0.0, t);
966 rotrans = new TGeoCombiTrans("", x0, y0, 0.0, rot);
967 vM0->AddNode(vTA0, i+1, rotrans);
968 } // end for i
969 vM0->AddNode(vA0, 1, 0);
970 vM0->AddNode(vB0, 1, 0);
971 // Reflection.
972 vM0->AddNode(vB0, 2, new TGeoRotation("", 90., 0., 90., 90., 180., 0.));
973 if(GetDebug(3)){
974 vM0->PrintNodes();
975 vA0->PrintNodes();
976 vA1->PrintNodes();
977 vB0->PrintNodes();
978 vB1->PrintNodes();
979 vTA0->PrintNodes();
980 vTA1->PrintNodes();
981 vTB0->PrintNodes();
982 vTB1->PrintNodes();
983 }
984}
985//
986//__________________________________________________________________________________________
987Bool_t AliITSv11GeometrySPD::GetSectorMountingPoints
988(Int_t index, Double_t &x0, Double_t &y0, Double_t &x1, Double_t &y1) const
989{
990 //
991 // Returns the edges of the straight borders in the SPD sector shape,
992 // which are used to mount staves on them.
993 // Coordinate system is that of the carbon fiber sector volume.
592651e2 994 // ---
bc3498f4 995 // Index numbering is as follows:
996 // /5
997 // /\/4
998 // 1\ \/3
999 // 0|___\/2
592651e2 1000 // ---
bc3498f4 1001 // Arguments [the ones passed by reference contain output values]:
1002 // Int_t index --> location index according to above scheme [0-5]
1003 // Double_t &x0 --> (by ref) x0 location or the ladder sector [cm]
1004 // Double_t &y0 --> (by ref) y0 location of the ladder sector [cm]
1005 // Double_t &x1 --> (by ref) x1 location or the ladder sector [cm]
1006 // Double_t &y1 --> (by ref) y1 location of the ladder sector [cm]
1007 // TGeoManager *mgr --> The TGeo builder
592651e2 1008 // ---
bc3498f4 1009 // The location is described by a line going from (x0, y0) to (x1, y1)
592651e2 1010 // ---
bc3498f4 1011 // Returns kTRUE if no problems encountered.
1012 // Returns kFALSE if a problem was encountered (e.g.: shape not found).
1013 //
1014
1015 Int_t isize = fSPDsectorX0.GetSize();
1016 x0 = x1 = y0 = y1 = 0.0;
1017 if(index < 0 || index > isize) {
1018 AliError(Form("index = %d: allowed 0 --> %", index, isize));
1019 return kFALSE;
1020 }
592651e2 1021
bc3498f4 1022 x0 = fSPDsectorX0[index];
1023 x1 = fSPDsectorX1[index];
1024 y0 = fSPDsectorY0[index];
1025 y1 = fSPDsectorY1[index];
1026
1027 return kTRUE;
1028}
1029//
1030//__________________________________________________________________________________________
1031void AliITSv11GeometrySPD::SPDsectorShape
1032(Int_t n,
1033 const Double_t *xc, const Double_t *yc, const Double_t *r,
1034 const Double_t *ths, const Double_t *the,
1035 Int_t npr, Int_t &m, Double_t **xp, Double_t **yp) const
1036{
1037
1038 // Code to compute the points that make up the shape of the SPD
1039 // Carbon fiber support sections
1040 // Inputs:
1041 // Int_t n size of arrays xc,yc, and r.
1042 // Double_t *xc array of x values for radii centers.
1043 // Double_t *yc array of y values for radii centers.
1044 // Double_t *r array of signed radii values.
1045 // Double_t *ths array of starting angles [degrees].
1046 // Double_t *the array of ending angles [degrees].
1047 // Int_t npr the number of lines segments to aproximate the arc.
1048 // Outputs (arguments passed by reference):
1049 // Int_t m the number of enetries in the arrays *xp[npr+1] and *yp[npr+1].
1050 // Double_t **xp array of x coordinate values of the line segments
1051 // which make up the SPD support sector shape.
1052 // Double_t **yp array of y coordinate values of the line segments
1053 // which make up the SPD support sector shape.
1054 //
1055
1056 Int_t i, k;
1057 Double_t t, t0, t1;
1058
1059 m = n*(npr + 1);
1060 if(GetDebug(2)) {
1061 cout <<" X \t Y \t R \t S \t E" << m << endl;
1062 for(i = 0; i < n; i++) {
1063 cout << "{" << xc[i] << ", ";
1064 cout << yc[i] << ", ";
1065 cout << r[i] << ", ";
1066 cout << ths[i] << ", ";
1067 cout << the[i] << "}, " << endl;
1068 }
1069 }
1070
1071 if (GetDebug(3)) cout << "Double_t sA0 = [" << n*(npr+1)+1<<"][";
1072 if (GetDebug(4)) cout << "3] {";
1073 else if(GetDebug(3)) cout <<"2] {";
1074 t0 = (Double_t)npr;
1075 for(i = 0; i < n; i++) {
1076 t1 = (the[i] - ths[i]) / t0;
1077 if(GetDebug(5)) cout << "t1 = " << t1 << endl;
1078 for(k = 0; k <= npr; k++) {
1079 t = ths[i] + ((Double_t)k) * t1;
1080 xp[i][k] = TMath::Abs(r[i]) * CosD(t) + xc[i];
1081 yp[i][k] = TMath::Abs(r[i]) * SinD(t) + yc[i];
1082 if(GetDebug(3)) {
1083 cout << "{" << xp[i][k] << "," << yp[i][k];
1084 if (GetDebug(4)) cout << "," << t;
1085 cout << "},";
1086 } // end if GetDebug
1087 } // end for k
1088 if(GetDebug(3)) cout << endl;
1089 } // end of i
1090 if(GetDebug(3)) cout << "{" << xp[0][0] << ", " << yp[0][0];
1091 if(GetDebug(4)) cout << "," << ths[0];
1092 if(GetDebug(3)) cout << "}}" << endl;
1093}
1094//
1095//__________________________________________________________________________________________
1096TGeoVolume* AliITSv11GeometrySPD::CreateLadder
1097(Int_t layer,TArrayD &sizes, TGeoManager *mgr) const
1098{
1099 // Creates the "ladder" = silicon sensor + 5 chips.
1100 // Returns a TGeoVolume containing the following components:
1101 // - the sensor (TGeoBBox), whose name depends on the layer
1102 // - 5 identical chips (TGeoBBox)
1103 // - a guard ring around the sensor (subtraction of TGeoBBoxes),
1104 // which is separated from the rest of sensor because it is not
1105 // a sensitive part
1106 // - bump bondings (TGeoBBox stripes for the whole width of the
1107 // sensor, one per column).
1108 // ---
1109 // Arguments:
1110 // 1 - the owner layer (MUST be 1 or 2 or a fatal error is raised)
1111 // 2 - a TArrayD passed by reference, which contains some relevant
1112 // sizes of this object:
1113 // size[0] = 'thickness' (the direction orthogonal to the ALICE
1114 // Z axis, along which the different parts of the
1115 // stave are superimposed on each other)
1116 // size[1] = 'length' (the direction along the ALICE Z axis)
1117 // size[2] = 'width' (the direction orthogonal to both the
1118 // above ones)
1119 // 3 - the used TGeoManager
1120
1121 // ** CRITICAL CHECK **
592651e2 1122 // layer number can be ONLY 1 or 2
32b9c3dd 1123 if (layer != 1 && layer != 2) AliFatal("Layer number MUST be 1 or 2");
592651e2 1124
bc3498f4 1125 // ** MEDIA **
592651e2 1126 // instantiate all required media
bc3498f4 1127 TGeoMedium *medAir = GetMedium("AIR$",mgr);
1128 TGeoMedium *medSPDSiChip = GetMedium("SPD SI CHIP$",mgr);// SPD SI CHIP
1129 TGeoMedium *medSi = GetMedium("SI$",mgr);
1130 TGeoMedium *medBumpBond = GetMedium("COPPER$",mgr); // ??? BumpBond
1131
1132 // ** SIZES **
32b9c3dd 1133 // for the chip, also the spacing between them is required
1134 Double_t chipThickness = fgkmm * 0.150;
1135 Double_t chipWidth = fgkmm * 15.950;
1136 Double_t chipLength = fgkmm * 13.600;
bc3498f4 1137 Double_t chipSpacing = fgkmm * 0.400;
32b9c3dd 1138 // for the sensor, we define the area of sensitive volume
1139 // while the guard ring is added as a separate piece
1140 Double_t sensThickness = fgkmm * 0.200;
1141 Double_t sensLength = fgkmm * 69.600;
bc3498f4 1142 Double_t sensWidth = fgkmm * 12.800;
32b9c3dd 1143 Double_t guardRingWidth = fgkmm * 0.560;
32b9c3dd 1144 // bump bond is defined as a small stripe of height = 0.012 mm
1145 // and a suitable width to keep the same volume it has
1146 // before being compressed (a line of spheres of 0.025 mm radius)
1147 Double_t bbLength = fgkmm * 0.042;
1148 Double_t bbWidth = sensWidth;
1149 Double_t bbThickness = fgkmm * 0.012;
bc3498f4 1150 Double_t bbPos = 0.080; // Z position w.r. to left pixel edge
1151
1152 // ** VOLUMES **
1153 // for readability reasons, create references to
1154 // the overall sizes which will be returned in the TArrayD
1155 if (sizes.GetSize() != 3) sizes.Set(3);
1156 Double_t &thickness = sizes[0];
1157 Double_t &length = sizes[1];
1158 Double_t &width = sizes[2];
1159 // the container is a box which exactly enclose all the stuff;
1160 // it is filled with air and named according to the layer number
32b9c3dd 1161 width = chipWidth;
1162 length = sensLength + 2.0*guardRingWidth;
1163 thickness = sensThickness + chipThickness + bbThickness;
bc3498f4 1164 //TGeoVolume *container = mgr->MakeBox(Form("LAY%d_LADDER", layer),
1165 // medAir, 0.5*width, 0.5*thickness, 0.5*length);
1166 // We must have the x coordinate of this container conresponding to
1167 // the x corrdinate of the sensitive volume. In order to do that we
1168 // are going to create the container with a local reference system
1169 // that is not in the middle of the box. This need to call directly
1170 // the constructor of the shape, with an option :
1171 Double_t xSens = 0.5 * (width - sensWidth - 2.0*guardRingWidth);
1172 Double_t originShift[3] = {-xSens, 0., 0.};
1173 TGeoBBox *shapeContainer = new TGeoBBox(0.5*width, 0.5*thickness, 0.5*length, originShift);
1174 TGeoVolume *container = new TGeoVolume(Form("LAY%d_LADDER",layer), shapeContainer, medAir);
1175 // the chip
1176 TGeoVolume *volChip = mgr->MakeBox
1177 ("CHIP", medSPDSiChip, 0.5*chipWidth, 0.5*chipThickness, 0.5*chipLength);
1178 // the sensor
1179 TGeoVolume *volSens = mgr->MakeBox
1180 (GetSenstiveVolumeName(layer), medSi, 0.5*sensWidth, 0.5*sensThickness, 0.5*sensLength);
1181 // the guard ring shape is the subtraction of two boxes with the same center.
1182 TGeoBBox *shIn = new TGeoBBox(0.5*sensWidth, sensThickness, 0.5*sensLength);
1183 TGeoBBox *shOut = new TGeoBBox
1184 (0.5*sensWidth + guardRingWidth, 0.5*sensThickness, 0.5*sensLength + guardRingWidth);
32b9c3dd 1185 shIn->SetName("innerBox");
1186 shOut->SetName("outerBox");
bc3498f4 1187 TGeoCompositeShape *shBorder = new TGeoCompositeShape("", "outerBox-innerBox");
32b9c3dd 1188 TGeoVolume *volBorder = new TGeoVolume("GUARD_RING", shBorder, medSi);
bc3498f4 1189 // bump bonds for one whole column
1190 TGeoVolume *volBB = mgr->MakeBox
1191 ("BB", medBumpBond, 0.5*bbWidth, 0.5*bbThickness, 0.5*bbLength);
32b9c3dd 1192 // set colors of all objects for visualization
592651e2 1193 volSens->SetLineColor(kYellow + 1);
1194 volChip->SetLineColor(kGreen);
32b9c3dd 1195 volBorder->SetLineColor(kYellow + 3);
32b9c3dd 1196
bc3498f4 1197 // ** MOVEMENTS **
1198 // translation for the sensor parts: direction of width and
1199 // thickness (moved up)
1200 Double_t ySens = 0.5 * (thickness - sensThickness);
1201 Double_t zSens = 0.0;
1202 // We want that the x of the ladder is the same as the one of its sensitive volume
1203 TGeoTranslation *trSens = new TGeoTranslation(xSens - xSens, ySens, zSens);
32b9c3dd 1204 // translation for the bump bonds:
1205 // keep same y used for sensors, but change the Z
1206 TGeoTranslation *trBB[160];
bc3498f4 1207 Double_t x = xSens - xSens;
1208 Double_t y = 0.5 * (thickness - bbThickness) - sensThickness;
1209 Double_t z = -0.5 * sensLength + guardRingWidth + fgkmm*0.425 - bbPos;
1210 Int_t i;
32b9c3dd 1211 for (i = 0; i < 160; i++) {
1212 trBB[i] = new TGeoTranslation(x, y, z);
1213 switch(i) {
bc3498f4 1214 case 31:
1215 case 63:
1216 case 95:
1217 case 127:
1218 z += fgkmm * 0.625 + fgkmm * 0.2;
1219 break;
1220 default:
1221 z += fgkmm * 0.425;
297369a1 1222 } // end switch
1223 } // end for i
bc3498f4 1224 // translations for the chip box: direction of length and
1225 // thickness (moved down)
1226 TGeoTranslation *trChip[5] = {0, 0, 0, 0, 0};
1227 x = -xSens;
1228 y = 0.5 * (chipThickness - thickness);
1229 z = 0.0;
1230 for (i = 0; i < 5; i++) {
1231 z = -0.5*length + guardRingWidth
1232 + (Double_t)i*chipSpacing + ((Double_t)(i) + 0.5)*chipLength;
1233 trChip[i] = new TGeoTranslation(x, y, z);
1234 } // end for i
1235
592651e2 1236 // add nodes to container
1237 container->AddNode(volSens, 1, trSens);
32b9c3dd 1238 container->AddNode(volBorder, 1, trSens);
1239 for (i = 0; i < 160; i++) container->AddNode(volBB, i, trBB[i]);
bc3498f4 1240 for (i = 0; i < 5; i++) container->AddNode(volChip, i + 2, trChip[i]);
592651e2 1241
1242 // return the container
1243 return container;
1244}
bc3498f4 1245//
1246//__________________________________________________________________________________________
1247TGeoVolume* AliITSv11GeometrySPD::CreateClip
1248(TArrayD &sizes, TGeoManager *mgr) const
1249{
592651e2 1250 //
bc3498f4 1251 // Creates the carbon fiber clips which are added to the central ladders.
1252 // They have a complicated shape which is approximated by a TGeoXtru
1253 // Implementation of a single clip over an half-stave.
1254 // It has a complicated shape which is approximated to a section like this:
1255 //
1256 // 6
1257 // /\ .
1258 // 7 //\\ 5
1259 // / 1\\___________________4
1260 // 0 \___________________
1261 // 2 3
1262 // with a finite thickness for all the shape
1263 // Its local reference frame is such that point A corresponds to origin.
592651e2 1264 //
592651e2 1265
bc3498f4 1266 Double_t fullLength = fgkmm * 12.6; // = x4 - x0
1267 Double_t flatLength = fgkmm * 5.4; // = x4 - x3
1268 Double_t inclLongLength = fgkmm * 5.0; // = 5-6
1269 Double_t inclShortLength = fgkmm * 2.0; // = 6-7
1270 Double_t fullHeight = fgkmm * 2.8; // = y6 - y3
1271 Double_t thickness = fgkmm * 0.2; // thickness
1272 Double_t totalLength = fgkmm * 52.0; // total length in Z
1273 Double_t holeSize = fgkmm * 4.0; // dimension of cubic hole inserted for pt1000
1274 Double_t angle1 = 27.0; // supplementary of angle DCB
1275 Double_t angle2; // angle DCB
1276 Double_t angle3; // angle of GH with vertical
1277
1278 angle2 = 0.5 * (180.0 - angle1);
1279 angle3 = 90.0 - TMath::ACos(fullLength - flatLength - inclLongLength*TMath::Cos(angle1)) * TMath::RadToDeg();
1280
1281 angle1 *= TMath::DegToRad();
1282 angle2 *= TMath::DegToRad();
1283 angle3 *= TMath::DegToRad();
592651e2 1284
bc3498f4 1285 Double_t x[8], y[8];
592651e2 1286
bc3498f4 1287 x[0] = 0.0;
1288 x[1] = x[0] + fullLength - flatLength - inclLongLength*TMath::Cos(angle1);
1289 x[2] = x[0] + fullLength - flatLength;
1290 x[3] = x[0] + fullLength;
1291 x[4] = x[3];
1292 x[5] = x[4] - flatLength + thickness * TMath::Cos(angle2);
1293 x[6] = x[1];
1294 x[7] = x[0];
1295
1296 y[0] = 0.0;
1297 y[1] = y[0] + inclShortLength * TMath::Cos(angle3);
1298 y[2] = y[1] - inclLongLength * TMath::Sin(angle1);
1299 y[3] = y[2];
1300 y[4] = y[3] + thickness;
1301 y[5] = y[4];
1302 y[6] = y[1] + thickness;
1303 y[7] = y[0] + thickness;
1304
1305 sizes.Set(7);
1306 sizes[0] = totalLength;
1307 sizes[1] = fullHeight;
1308 sizes[2] = y[2];
1309 sizes[3] = y[6];
1310 sizes[4] = x[0];
1311 sizes[5] = x[3];
1312 sizes[6] = x[2];
1313
1314 TGeoXtru *shClip = new TGeoXtru(2);
1315 shClip->SetName("SHCLIP");
1316 shClip->DefinePolygon(8, x, y);
1317 shClip->DefineSection(0, -0.5*totalLength, 0., 0., 1.0);
1318 shClip->DefineSection(1, 0.5*totalLength, 0., 0., 1.0);
1319
1320 TGeoBBox *shHole = new TGeoBBox("SH_CLIPHOLE", 0.5*holeSize, 0.5*holeSize, 0.5*holeSize);
1321 TGeoTranslation *tr1 = new TGeoTranslation("TR_CLIPHOLE1", x[2], 0.0, fgkmm*14.);
1322 TGeoTranslation *tr2 = new TGeoTranslation("TR_CLIPHOLE2", x[2], 0.0, 0.0);
1323 TGeoTranslation *tr3 = new TGeoTranslation("TR_CLIPHOLE3", x[2], 0.0, -fgkmm*14.);
1324 tr1->RegisterYourself();
1325 tr2->RegisterYourself();
1326 tr3->RegisterYourself();
1327
1328 TString strExpr("SHCLIP-(");
1329 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr1->GetName()));
1330 strExpr.Append(Form("%s:%s+", shHole->GetName(), tr2->GetName()));
1331 strExpr.Append(Form("%s:%s)", shHole->GetName(), tr3->GetName()));
1332 TGeoCompositeShape *shClipHole = new TGeoCompositeShape("SHCLIPHOLES", strExpr.Data());
1333
1334 TGeoMedium *mat = GetMedium("ITSspdCarbonFiber", mgr);
1335 TGeoVolume *vClip = new TGeoVolume("clip", shClipHole, mat);
1336 vClip->SetLineColor(kGray + 2);
1337 return vClip;
592651e2 1338}
bc3498f4 1339//
1340//__________________________________________________________________________________________
1341TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateGroundingFoilSingle
1342(Int_t type, TArrayD &sizes, TGeoManager *mgr) const
1343{
1344 // Returns a TGeoVolume representing a single grounding foil layer.
1345 // This shape is used to create the two real foils of the GF (one in
1346 // kapton, and one in aluminum), and also to implement the glue
1347 // layers which link the GF to the carbon fiber support, and to the
1348 // ladders.
1349 // ---
1350 // The glue and kapton layers have exactly the same size, while
1351 // the aluminum foil has some small differences in its overall size
1352 // and in the dimensions of its holes. The first argument passed to
1353 // the function ("type") is used to choose between all these
1354 // possibilities:
1355 // - type = 0 --> kapton layer
1356 // - type = 1 --> aluminum layer
1357 // - type = 2 --> glue layer between support and GF
1358 // - type = 3 --> glue layer between GF and ladders
592651e2 1359 // ---
1360 // The complete object is created as the sum of the following parts:
1361 // 1) the part which is connected to the chips, which is a
bc3498f4 1362 // simple box with some box-shaped holes at regular intervals
592651e2 1363 // 2) a trapezoidal connection where the Y size changes
1364 // 3) another box with a unique hole of the same shape and size as above
1365 // 4) another trapezoidal connection where the Y size changes
1366 // 5) a final part which is built as a sequence of 4 BOX volumes
297369a1 1367 // where the first and the third are equal and the others have
bc3498f4 1368 // same size in Y.
592651e2 1369 // ---
bc3498f4 1370 // The sizes of all parts are parameterized with variable names,
1371 // even if their value is fixed according to engineers' drawings.
592651e2 1372 // ---
bc3498f4 1373 // The returns value is a TGeoVolume object which contains all parts
1374 // of this layer. The 'sizes' argument passed by reference will
1375 // contain the three dimensions of the container and some other
1376 // values which upper level methods (stave assemblier) must know:
1377 // - sizes[0] = full thickness
1378 // - sizes[1] = full length
1379 // - sizes[2] = full width
1380 // - sizes[3] = hole length
1381 // - sizes[4] = hole width
1382 // - sizes[5] = position of first hole center
1383 // - sizes[6] = standard separation between holes
1384 // - sizes[7] = separation between 5th and 6th hole
1385 // - sizes[8] = separation between 10th and 11th hole
1386 // - sizes[9] = separation between the upper hole border and the
1387 // foil border
1388 // ** MEDIA **
592651e2 1389 // - vacuum for the container volume
bc3498f4 1390 // - kapton/aluminum/glue for the pysical volume
1391 TGeoMedium *mat = GetMedium("SPD KAPTON(POLYCH2)$", mgr);
1392 // ** SIZES **
592651e2 1393 Double_t sizeZ = fgkmm * 0.05;
592651e2 1394 Double_t part1X = fgkmm * 140.71;
1395 Double_t part2X = fgkmm * 2.48;
1396 Double_t part3X = fgkmm * 26.78;
1397 Double_t part4X = fgkmm * 4.00;
1398 Double_t part5X = fgkmm * 10.00;
1399 Double_t part6X = fgkmm * 24.40;
1400 Double_t part7X = fgkmm * 10.00;
1401 Double_t part8X = fgkmm * 24.81;
592651e2 1402 Double_t sizeYMax = fgkmm * 15.95;
1403 Double_t sizeYMed1 = fgkmm * 15.00;
1404 Double_t sizeYMed2 = fgkmm * 11.00;
1405 Double_t sizeYMin = fgkmm * 4.40;
592651e2 1406 Double_t holeX = fgkmm * 10.00;
1407 Double_t holeY = fgkmm * 7.50;
bc3498f4 1408 Double_t holeFirstX = fgkmm * 7.05; // position of center of first hole
297369a1 1409 Double_t holeSepX = fgkmm * 14.00; // separation between the
bc3498f4 1410 // centers of two consecutive holes
1411 Double_t holeSepX1 = fgkmm * 1.42; // to be added after 4th hole in
1412 // volume 1
297369a1 1413 Double_t holeSepY = fgkmm * 4.40; // dist between hole's and
bc3498f4 1414 // volume's upper border
1415 Double_t holeAloneX = fgkmm * 13.28; // position of hole center in
1416 // box "part 3"
1417 // correct sizes/material in case we are on Aluminum foil
1418 if (type == 1) {
1419 mat = GetMedium("AL$", mgr);
1420 sizeZ = fgkmm * 0.025;
592651e2 1421 part1X -= fgkmm * 0.2;
1422 part5X -= fgkmm * 0.2;
1423 part6X += fgkmm * 0.4;
1424 part7X -= fgkmm * 0.4;
592651e2 1425 sizeYMax -= fgkmm * 0.4;
1426 sizeYMed1 -= fgkmm * 0.4;
1427 sizeYMed2 -= fgkmm * 0.4;
1428 sizeYMin -= fgkmm * 0.4;
592651e2 1429 holeX += fgkmm * 0.4;
1430 holeY += fgkmm * 0.4;
1431 holeFirstX -= fgkmm * 0.2;
1432 holeSepY -= fgkmm * 0.4;
bc3498f4 1433 } // end if type==1
1434
1435 // correct sizes/material in case we are in a glue layer
1436 if (type == 2) {
1437 mat = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT
1438 sizeZ = fgkmm * 0.1175;
1439 } // end if type ==2
1440 if (type == 3) {
1441 mat = GetMedium("EPOXY$", mgr); //??? GLUE_GF_SUPPORT
1442 sizeZ = fgkmm * 0.1175 - fAlignmentGap;
1443 if (sizeZ <= 0.0) {
1444 AliFatal("Too large gap thickness.");
1445 return 0;
1446 } // end if sizeZ<=0
1447 }// end if type==3
1448 // initialize the argument TArrayD
1449 if (sizes.GetSize() != 10) sizes.Set(10);
1450 Double_t &thickness = sizes[0];
1451 Double_t &length = sizes[1];
1452 Double_t &width = sizes[2];
592651e2 1453 // compute full length and width
bc3498f4 1454 length = part1X+part2X+part3X+part4X+part5X+part6X+part7X+part8X;
592651e2 1455 width = sizeYMax;
1456 thickness = sizeZ;
bc3498f4 1457 sizes[3] = holeX;
1458 sizes[4] = holeY;
1459 sizes[5] = holeFirstX;
1460 sizes[6] = holeSepX;
1461 sizes[7] = holeSepX + holeSepX1;
1462 sizes[8] = fgkmm * 22.0; // the last separation is not used in the
1463 // rest, and is implemented from scratch
1464 sizes[9] = holeSepY;
1465 // ** OBJECT NAMES **
1466 // define names for the object
1467 char stype[20];
1468 if (type == 0) strcpy(stype, "KAP");
1469 else if (type == 1) strcpy(stype, "ALU");
1470 else if (type == 2) strcpy(stype, "GLUE1");
1471 else if (type == 3) strcpy(stype, "GLUE2");
1472 else {
1473 AliFatal(Form("Type %d not allowed for grounding foil", type));
1474 } // end if else
1475 // ** VOLUMES **
1476 // grounding foil world, bounded exactly around the limits of the structure
1477 // TGeoVolume *container = mgr->MakeBox(Form("GFOIL_%s", stype),
1478 // air, 0.5*length, 0.5*sizeYMax, 0.5*sizeZ);
1479 TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("GFOIL_%s",
1480 stype));
592651e2 1481 // === PART 1: box with holes ===
592651e2 1482 TGeoBBox *shBox1 = 0, *shHole = 0;
bc3498f4 1483 shBox1 = new TGeoBBox(Form("GF%s_BOX1", stype), 0.5*part1X, 0.5*sizeYMax,
1484 0.5*sizeZ);
1485 shHole = new TGeoBBox(Form("GF%s_HOLE", stype), 0.5*holeX, 0.5*holeY,
1486 0.5*sizeZ + 0.01);
592651e2 1487 // define the position of all holes and compose the expression
1488 // to define the composite shape (box - holes)
1489 Double_t firstX = -0.5*part1X + holeFirstX;
1490 Double_t transY = 0.5*sizeYMax - holeSepY - 0.5*holeY;
1491 Double_t transX;
1492 TGeoTranslation *transHole[10];
1493 TString strComposite(Form("%s - (", shBox1->GetName()));
1494 for (Int_t i = 0; i < 10; i++) {
1495 transX = firstX + (Double_t)i * holeSepX;
1496 if (i > 4) transX += holeSepX1;
bc3498f4 1497 transHole[i] = new TGeoTranslation(Form("TGF%s_HOLE%d", stype, i),
1498 transX, transY, 0.0);
592651e2 1499 transHole[i]->RegisterYourself();
bc3498f4 1500 strComposite.Append(Form("%s:%s", shHole->GetName(),
1501 transHole[i]->GetName()));
1502 if (i < 9) strComposite.Append("+"); else strComposite.Append(")");
297369a1 1503 } // end for i
592651e2 1504 // create composite shape
297369a1 1505 TGeoCompositeShape *shPart1 = new TGeoCompositeShape(
bc3498f4 1506 Form("GF%s_PART1_SHAPE", stype), strComposite.Data());
592651e2 1507 // create the volume
bc3498f4 1508 TGeoVolume *volPart1 = new TGeoVolume(Form("GF%s_PART1", stype),
1509 shPart1, mat);
592651e2 1510 // === PART 2: first trapezoidal connection
592651e2 1511 TGeoArb8 *shTrap1 = new TGeoArb8(0.5*sizeZ);
1512 shTrap1->SetVertex(0, -0.5*part2X, 0.5*sizeYMax);
1513 shTrap1->SetVertex(1, 0.5*part2X, 0.5*sizeYMax);
1514 shTrap1->SetVertex(2, 0.5*part2X, 0.5*sizeYMax - sizeYMed1);
1515 shTrap1->SetVertex(3, -0.5*part2X, -0.5*sizeYMax);
1516 shTrap1->SetVertex(4, -0.5*part2X, 0.5*sizeYMax);
1517 shTrap1->SetVertex(5, 0.5*part2X, 0.5*sizeYMax);
1518 shTrap1->SetVertex(6, 0.5*part2X, 0.5*sizeYMax - sizeYMed1);
1519 shTrap1->SetVertex(7, -0.5*part2X, -0.5*sizeYMax);
bc3498f4 1520 TGeoVolume *volPart2 = new TGeoVolume(Form("GF%s_PART2", stype),
1521 shTrap1, mat);
592651e2 1522 // === PART 3: other box with one hole
592651e2 1523 TGeoBBox *shBox2 = 0;
bc3498f4 1524 shBox2 = new TGeoBBox(Form("GF%s_BOX2", stype), 0.5*part3X,
1525 0.5*sizeYMed1, 0.5*sizeZ);
592651e2 1526 // define the position of the hole
1527 transX = holeAloneX - 0.5*part3X;
bc3498f4 1528 transY -= 0.5*(sizeYMax - sizeYMed1);
297369a1 1529 TGeoTranslation *transHoleAlone = new TGeoTranslation(
bc3498f4 1530 Form("TGF%s_HOLE_ALONE", stype), transX, transY, 0.0);
592651e2 1531 transHoleAlone->RegisterYourself();
1532 // create composite shape
297369a1 1533 TGeoCompositeShape *shPart3 = new TGeoCompositeShape(
bc3498f4 1534 Form("GF%sPART3_SHAPE", stype),
1535 Form("%s - %s:%s", shBox2->GetName(),
1536 shHole->GetName(), transHoleAlone->GetName()));
592651e2 1537 // create the volume
bc3498f4 1538 TGeoVolume *volPart3 = new TGeoVolume(Form("GF%s_PART3", stype),
1539 shPart3, mat);
592651e2 1540 // === PART 4: second trapezoidal connection
592651e2 1541 TGeoArb8 *shTrap2 = new TGeoArb8(0.5*sizeZ);
1542 shTrap2->SetVertex(0, -0.5*part4X, 0.5*sizeYMed1);
1543 shTrap2->SetVertex(1, 0.5*part4X, 0.5*sizeYMed1);
1544 shTrap2->SetVertex(2, 0.5*part4X, 0.5*sizeYMed1 - sizeYMed2);
1545 shTrap2->SetVertex(3, -0.5*part4X, -0.5*sizeYMed1);
1546 shTrap2->SetVertex(4, -0.5*part4X, 0.5*sizeYMed1);
1547 shTrap2->SetVertex(5, 0.5*part4X, 0.5*sizeYMed1);
1548 shTrap2->SetVertex(6, 0.5*part4X, 0.5*sizeYMed1 - sizeYMed2);
1549 shTrap2->SetVertex(7, -0.5*part4X, -0.5*sizeYMed1);
bc3498f4 1550 TGeoVolume *volPart4 = new TGeoVolume(Form("GF%s_PART4", stype),
1551 shTrap2, mat);
592651e2 1552 // === PART 5 --> 8: sequence of boxes ===
bc3498f4 1553 TGeoVolume *volPart5 = mgr->MakeBox(Form("GF%s_BOX3", stype), mat,
1554 0.5*part5X, 0.5*sizeYMed2, 0.5*sizeZ);
1555 TGeoVolume *volPart6 = mgr->MakeBox(Form("GF%s_BOX4", stype), mat,
1556 0.5*part6X, 0.5*sizeYMin , 0.5*sizeZ);
1557 TGeoVolume *volPart7 = mgr->MakeBox(Form("GF%s_BOX5", stype), mat,
1558 0.5*part7X, 0.5*sizeYMed2, 0.5*sizeZ);
1559 TGeoVolume *volPart8 = mgr->MakeBox(Form("GF%s_BOX6", stype), mat,
1560 0.5*part8X, 0.5*sizeYMin , 0.5*sizeZ);
592651e2 1561 // === SET COLOR ===
bc3498f4 1562 Color_t color = kRed + 3;
1563 if (type == 1) color = kGreen;
1564 if (type == 2 || type == 3) color = kYellow;
1565 volPart1->SetLineColor(color);
1566 volPart2->SetLineColor(color);
1567 volPart3->SetLineColor(color);
1568 volPart4->SetLineColor(color);
1569 volPart5->SetLineColor(color);
1570 volPart6->SetLineColor(color);
1571 volPart7->SetLineColor(color);
1572 volPart8->SetLineColor(color);
1573 // ** MOVEMENTS **
592651e2 1574 transX = 0.5*(part1X - length);
1575 TGeoTranslation *transPart1 = new TGeoTranslation(transX, 0.0, 0.0);
1576 transX += 0.5*(part1X + part2X);
1577 TGeoTranslation *transPart2 = new TGeoTranslation(transX, 0.0, 0.0);
1578 transX += 0.5*(part2X + part3X);
1579 transY = 0.5*(sizeYMax - sizeYMed1);
1580 TGeoTranslation *transPart3 = new TGeoTranslation(transX, transY, 0.0);
1581 transX += 0.5*(part3X + part4X);
1582 TGeoTranslation *transPart4 = new TGeoTranslation(transX, transY, 0.0);
1583 transX += 0.5*(part4X + part5X);
1584 transY = 0.5*(sizeYMax - sizeYMed2);
1585 TGeoTranslation *transPart5 = new TGeoTranslation(transX, transY, 0.0);
1586 transX += 0.5*(part5X + part6X);
1587 transY = 0.5*(sizeYMax - sizeYMin);
1588 TGeoTranslation *transPart6 = new TGeoTranslation(transX, transY, 0.0);
1589 transX += 0.5*(part6X + part7X);
1590 transY = 0.5*(sizeYMax - sizeYMed2);
1591 TGeoTranslation *transPart7 = new TGeoTranslation(transX, transY, 0.0);
1592 transX += 0.5*(part7X + part8X);
1593 transY = 0.5*(sizeYMax - sizeYMin);
1594 TGeoTranslation *transPart8 = new TGeoTranslation(transX, transY, 0.0);
592651e2 1595 // add the partial volumes to the container
1596 container->AddNode(volPart1, 1, transPart1);
1597 container->AddNode(volPart2, 2, transPart2);
1598 container->AddNode(volPart3, 3, transPart3);
1599 container->AddNode(volPart4, 4, transPart4);
1600 container->AddNode(volPart5, 5, transPart5);
1601 container->AddNode(volPart6, 6, transPart6);
1602 container->AddNode(volPart7, 7, transPart7);
1603 container->AddNode(volPart8, 8, transPart8);
592651e2 1604 return container;
1605}
bc3498f4 1606//
1607//__________________________________________________________________________________________
1608TGeoVolume* AliITSv11GeometrySPD::CreateGroundingFoil
1609(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const
1610{
1611 // Create a volume containing all parts of the grounding foil a
1612 // half-stave. The use of the TGeoXtru shape causes that in each
1613 // single component volume the Z axis lies perpendicularly to the
1614 // polygonal basis of this shape. Since we want that the Z axis
1615 // of this volume must coincide with the one of the ALICE global
1616 // reference frame, this requires some rotations of each component,
1617 // besides the necessary translations to place it correctly with
1618 // respect to the whole stave volume.
592651e2 1619 // ---
1620 // Arguments:
bc3498f4 1621 // 1: a boolean value to know if it is the grounding foir for
1622 // the right or left side
1623 // 2: a TArrayD which will contain the dimension of the container box:
1624 // - size[0] = length along Z (the beam line direction)
1625 // - size[1] = the 'width' of the stave, which defines, together
1626 // with Z, the plane of the carbon fiber support
1627 // - size[2] = 'thickness' (= the direction along which all
1628 // stave components are superimposed)
1629 // 3: the TGeoManager
592651e2 1630 // ---
bc3498f4 1631 // The return value is a TGeoBBox volume containing all grounding
1632 // foil components.
1633 // to avoid strange behaviour of the geometry manager,
1634 // create a suffix to be used in the names of all shapes
1635 char suf[5];
1636 if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");
1637 // this volume will be created in order to ease its placement in
1638 // the half-stave; then, it is added here the small distance of
1639 // the "central" edge of each volume from the Z=0 plane in the stave
1640 // reference (which coincides with ALICE one)
1641 Double_t dist = fgkmm * 0.71;
1642 // create the component volumes and register their sizes in the
1643 // passed arrays for readability reasons, some reference variables
1644 // explicit the meaning of the array slots
1645 TArrayD kpSize(9), alSize(9), g1Size(9), g2Size(9);
1646 TGeoVolume *kpVol = CreateGroundingFoilSingle(0, kpSize, mgr);
1647 TGeoVolume *alVol = CreateGroundingFoilSingle(1, alSize, mgr);
1648 TGeoVolume *g1Vol = CreateGroundingFoilSingle(2, g1Size, mgr);
1649 TGeoVolume *g2Vol = CreateGroundingFoilSingle(3, g2Size, mgr);
1650 Double_t &kpLength = kpSize[1],&kpThickness=kpSize[0];//,&kpWidth=kpSize[2];
1651 Double_t &alLength = alSize[1],&alThickness=alSize[0];//,&alWidth=alSize[2];
1652 Double_t &g1Thickness = g1Size[0], &g2Thickness = g2Size[0];
297369a1 1653
bc3498f4 1654 // create references for the final size object
1655 if (sizes.GetSize() != 3) sizes.Set(3);
1656 Double_t &fullThickness = sizes[0];
1657 Double_t &fullLength = sizes[1];
1658 Double_t &fullWidth = sizes[2];
1659 // kapton leads the larger dimensions of the foil
1660 // (including the cited small distance from Z=0 stave reference plane)
1661 // the thickness is the sum of the ones of all components
1662 fullLength = kpSize[1] + dist;
1663 fullWidth = kpSize[2];
1664 fullThickness = kpSize[0] + alSize[0] + g1Size[0] + g2Size[0];
592651e2 1665 // create the container
bc3498f4 1666 TGeoMedium *air = GetMedium("AIR$", mgr);
1667 TGeoVolume *container = mgr->MakeBox(Form("GFOIL_%s", suf), air,
1668 0.5*fullThickness, 0.5*fullWidth, 0.5*fullLength);
1669 // create the common correction rotation (which depends of what side
1670 // we are building)
1671 TGeoRotation *rotCorr = new TGeoRotation(*gGeoIdentity);
1672 if (isRight) rotCorr->RotateY(90.0);
1673 else rotCorr->RotateY(-90.0);
1674 // compute the translations, which are in the length and thickness
1675 // directions
1676 Double_t x, y, z, shift = 0.0;
1677 if (isRight) shift = dist;
1678 // glue (bottom)
1679 x = -0.5*(fullThickness - g1Thickness);
1680 z = 0.5*(fullLength - kpLength) - shift;
1681 TGeoCombiTrans *g1Trans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
1682 // kapton
1683 x += 0.5*(g1Thickness + kpThickness);
1684 TGeoCombiTrans *kpTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
1685 // aluminum
1686 x += 0.5*(kpThickness + alThickness);
1687 z = 0.5*(fullLength - alLength) - shift - 0.5*(kpLength - alLength);
1688 TGeoCombiTrans *alTrans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
1689 // glue (top)
1690 x += 0.5*(alThickness + g2Thickness);
1691 z = 0.5*(fullLength - kpLength) - shift;
1692 TGeoCombiTrans *g2Trans = new TGeoCombiTrans(x, 0.0, z, rotCorr);
592651e2 1693
1694 // add to container
bc3498f4 1695 container->AddNode(kpVol, 0, kpTrans);
1696 container->AddNode(alVol, 0, alTrans);
1697 container->AddNode(g1Vol, 0, g1Trans);
1698 container->AddNode(g2Vol, 0, g2Trans);
1699 // to add the grease we remember the sizes of the holes, stored as
1700 // additional parameters in the kapton layer size:
1701 // - sizes[3] = hole length
1702 // - sizes[4] = hole width
1703 // - sizes[5] = position of first hole center
1704 // - sizes[6] = standard separation between holes
1705 // - sizes[7] = separation between 5th and 6th hole
1706 // - sizes[8] = separation between 10th and 11th hole
1707 // - sizes[9] = separation between the upper hole border and
1708 // the foil border
1709 Double_t holeLength = kpSize[3];
1710 Double_t holeWidth = kpSize[4];
1711 Double_t holeFirstZ = kpSize[5];
1712 Double_t holeSepZ = kpSize[6];
1713 Double_t holeSep5th6th = kpSize[7];
1714 Double_t holeSep10th11th = kpSize[8];
1715 Double_t holeSepY = kpSize[9];
1716 // volume (common)
1717 TGeoMedium *grease = GetMedium("SPD KAPTON(POLYCH2)$", mgr); // ??? GREASE
1718 TGeoVolume *hVol = mgr->MakeBox("GREASE", grease, 0.5*fullThickness,
1719 0.5*holeWidth, 0.5*holeLength);
1720 hVol->SetLineColor(kBlue);
1721 // displacement of volumes in the container
1722 Int_t idx = 0;
1723 x = 0.0;
1724 y = 0.5*(fullWidth - holeWidth) - holeSepY;
1725 if (isRight) z = holeFirstZ - 0.5*fullLength + dist;
1726 else z = 0.5*fullLength - holeFirstZ - dist;
1727 for (Int_t i = 0; i < 11; i++) {
1728 TGeoTranslation *t = 0;
1729 t = new TGeoTranslation(x, y, -z);
1730 container->AddNode(hVol, idx++, t);
1731 if (i < 4) shift = holeSepZ;
1732 else if (i == 4) shift = holeSep5th6th;
1733 else if (i < 9) shift = holeSepZ;
1734 else shift = holeSep10th11th;
1735 if (isRight) z += shift;
1736 else z -= shift;
1737 }// end for i
592651e2 1738 return container;
1739}
bc3498f4 1740//
1741//__________________________________________________________________________________________
1742TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateMCM
1743(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const
1744{
1745 // Assemblies all the components of the MCM and builds it as an
1746 // assembly, because its large thickness could cause inexistent
1747 // overlaps if all components were put into a true TGeoBBox.
1748 // This assembly contains:
1749 // - a layer of glue which has the same size of the MCM itself,
1750 // and it the lowest part
1751 // - the thin part of the MCM
1752 // - the chips on the MCM, according to the specifications from EDMS
1753 // - the cover which is superimposed to the part of the MCM with the chips
592651e2 1754 // ---
bc3498f4 1755 // Even if this is an assembly, the placement of objects is made in
1756 // such a way that they are virtually contained in an imaginary box
1757 // whose center is placed exactly in the middle of the occupied space
1758 // in all directions. This will ease the positioning of this object
1759 // in the final stave. The sizes of this virtual box are stored in
1760 // the array passed by reference.
592651e2 1761 // ---
bc3498f4 1762 // Arguments:
1763 // - a boolean flag to know if this is the left or right MCM, when
1764 // looking at the stave from above (i.e. the direction from which
1765 // one sees bus over ladders over grounding foil) and keeping the
1766 // upper border continuous.
1767 // - an array passed by reference which will contain the size of a
1768 // virtual box containing all this stuff
1769 // - a pointer to the used TGeoManager.
1770 // to avoid strange behaviour of the geometry manager,
1771 // create a suffix to be used in the names of all shapes
1772 char suf[5];
1773 if (isRight) strcpy(suf, "R"); else strcpy(suf, "L");
1774 // ** MEDIA **
1775 TGeoMedium *medBase = GetMedium("SPD KAPTON(POLYCH2)$",mgr);// ??? MCM BASE
1776 TGeoMedium *medGlue = GetMedium("EPOXY$",mgr); // ??? GlueMCM
1777 TGeoMedium *medChip = GetMedium("SPD SI CHIP$",mgr);
1778 TGeoMedium *medCap = GetMedium("AL$",mgr);
1779 // The shape of the MCM is divided into 3 sectors with different
1780 // widths (Y) and lengths (X), like in this sketch:
592651e2 1781 //
bc3498f4 1782 // 0 1 2
1783 // +---------------------+-----------------------------------+
1784 // | 4 sect 2 |
1785 // | 6 sect 1 /-------------------+
1786 // | sect 0 /--------------/ 3
1787 // +--------------------/ 5
1788 // 8 7
1789 //
1790 // the inclination of all oblique borders (6-7, 4-5) is always 45 degrees.
1791 // From drawings we can parametrize the dimensions of all these sectors,
1792 // then the shape of this part of the MCM is implemented as a
1793 // TGeoXtru centerd in the virtual XY space. Since this shape
1794 // is used twice (to define the MCM itself and the glue below it),
1795 // we need to define two different shapes with different thicknesses
1796 // and, since we place them in an assembly, we displace them
1797 // directly in the right place with respect to the local Z axis
1798 // (which is in the direction of thickness). The first step is
1799 // definig the relevant sizes of this shape:
1800 Int_t i, j;
1801 Double_t mcmThickness = fgkmm * 0.35;
1802 Double_t glueThickness = fAlignmentGap;
1803 Double_t sizeXtot = fgkmm * 105.6; // total distance 0-2
1804 // resp. 7-8, 5-6 and 3-4
592651e2 1805 Double_t sizeXsector[3] = {fgkmm * 28.4, fgkmm * 41.4, fgkmm * 28.8};
bc3498f4 1806 // resp. 0-8, 1-6 and 2-3
592651e2 1807 Double_t sizeYsector[3] = {fgkmm * 15.0, fgkmm * 11.0, fgkmm * 8.0};
bc3498f4 1808 Double_t sizeSep01 = fgkmm * 4.0; // x(6)-x(7)
1809 Double_t sizeSep12 = fgkmm * 3.0; // x(4)-x(5)
1810 // define sizes of chips (last is the thickest)
1811 Double_t chipLength[5] = { 4.00, 6.15, 3.85, 5.60, 18.00 };
1812 Double_t chipWidth[5] = { 3.00, 4.10, 3.85, 5.60, 5.45 };
1813 Double_t chipThickness[5] = { 0.60, 0.30, 0.30, 1.00, 1.20 };
1814 TString name[5];
1815 name[0] = "ANALOG";
1816 name[1] = "PILOT";
1817 name[2] = "GOL";
1818 name[3] = "RX40";
1819 name[4] = "OPTICAL";
1820 Color_t color[5] = { kCyan, kGreen, kYellow, kBlue, kOrange };
1821
1822 // define the sizes of the cover
1823 Double_t capThickness = fgkmm * 0.3;
1824 Double_t capHeight = fgkmm * 1.7;
1825 // compute the total size of the virtual container box
1826 Double_t &thickness = sizes[0];
1827 Double_t &length = sizes[1];
1828 Double_t &width = sizes[2];
1829 length = sizeXtot;
1830 width = sizeYsector[0];
1831 thickness = glueThickness + mcmThickness + capHeight;
1832 // define all the relevant vertices of the polygon
1833 // which defines the transverse shape of the MCM.
1834 // These values are used to several purposes, and
1835 // for each one, some points must be excluded
1836 Double_t xRef[9], yRef[9];
1837 xRef[0] = -0.5*sizeXtot;
1838 yRef[0] = 0.5*sizeYsector[0];
1839 xRef[1] = xRef[0] + sizeXsector[0] + sizeSep01;
1840 yRef[1] = yRef[0];
1841 xRef[2] = -xRef[0];
1842 yRef[2] = yRef[0];
1843 xRef[3] = xRef[2];
1844 yRef[3] = yRef[2] - sizeYsector[2];
1845 xRef[4] = xRef[3] - sizeXsector[2];
1846 yRef[4] = yRef[3];
1847 xRef[5] = xRef[4] - sizeSep12;
1848 yRef[5] = yRef[4] - sizeSep12;
1849 xRef[6] = xRef[5] - sizeXsector[1];
1850 yRef[6] = yRef[5];
1851 xRef[7] = xRef[6] - sizeSep01;
1852 yRef[7] = yRef[6] - sizeSep01;
1853 xRef[8] = xRef[0];
1854 yRef[8] = -yRef[0];
1855 // the above points are defined for the "right" MCM (if ve view the
1856 // stave from above) in order to change to the "left" one, we must
1857 // change the sign to all X values:
1858 if (isRight) for (i = 0; i < 9; i++) xRef[i] = -xRef[i];
1859 // the shape of the MCM and glue layer are done excluding point 1,
1860 // which is not necessary and cause the geometry builder to get confused
1861 j = 0;
1862 Double_t xBase[8], yBase[8];
1863 for (i = 0; i < 9; i++) {
1864 if (i == 1) continue;
1865 xBase[j] = xRef[i];
1866 yBase[j] = yRef[i];
1867 j++;
1868 } // end for i
592651e2 1869
bc3498f4 1870 // the MCM cover is superimposed over the sectors 1 and 2 only
1871 Double_t xCap[6], yCap[6];
1872 j = 0;
1873 for (i = 1; i <= 6; i++) {
1874 xCap[j] = xRef[i];
1875 yCap[j] = yRef[i];
1876 j++;
1877 } // end for i
592651e2 1878
bc3498f4 1879 // define positions of chips,
1880 // which must be added to the bottom-left corner of MCM
1881 // and divided by 1E4;
1882 Double_t chipX[5], chipY[5];
1883 if (isRight) {
1884 chipX[0] = 666320.;
1885 chipX[1] = 508320.;
1886 chipX[2] = 381320.;
1887 chipX[3] = 295320.;
1888 chipX[4] = 150320.;
1889 chipY[0] = 23750.;
1890 chipY[1] = 27750.;
1891 chipY[2] = 20750.;
1892 chipY[3] = 42750.;
1893 chipY[4] = 39750.;
1894 } else {
1895 chipX[0] = 389730.;
1896 chipX[1] = 548630.;
1897 chipX[2] = 674930.;
1898 chipX[3] = 761430.;
1899 chipX[4] = 905430.;
1900 chipY[0] = 96250.;
1901 chipY[1] = 91950.;
1902 chipY[2] = 99250.;
1903 chipY[3] = 107250.;
1904 chipY[4] = 109750.;
1905 } // end for isRight
1906 for (i = 0; i < 5; i++) {
1907 chipX[i] *= 0.00001;
1908 chipY[i] *= 0.00001;
1909 if (isRight) {
1910 chipX[i] += xRef[3];
1911 chipY[i] += yRef[3];
1912 } else {
1913 chipX[i] += xRef[8];
1914 chipY[i] += yRef[8];
1915 } // end for isRight
1916 chipLength[i] *= fgkmm;
1917 chipWidth[i] *= fgkmm;
1918 chipThickness[i] *= fgkmm;
1919 } // end for i
1920 // create shapes for MCM
1921 Double_t z1, z2;
1922 TGeoXtru *shBase = new TGeoXtru(2);
1923 TGeoXtru *shGlue = new TGeoXtru(2);
1924 z1 = -0.5*thickness;
1925 z2 = z1 + glueThickness;
1926 shGlue->DefinePolygon(8, xBase, yBase);
1927 shGlue->DefineSection(0, z1, 0., 0., 1.0);
1928 shGlue->DefineSection(1, z2, 0., 0., 1.0);
1929 z1 = z2;
1930 z2 = z1 + mcmThickness;
1931 shBase->DefinePolygon(8, xBase, yBase);
1932 shBase->DefineSection(0, z1, 0., 0., 1.0);
1933 shBase->DefineSection(1, z2, 0., 0., 1.0);
1934
1935 // create volumes of MCM
1936 TGeoVolume *volBase = new TGeoVolume("BASE", shBase, medBase);
592651e2 1937 volBase->SetLineColor(kRed);
bc3498f4 1938 TGeoVolume *volGlue = new TGeoVolume("GLUE", shGlue, medGlue);
1939 volGlue->SetLineColor(kYellow + 1);
1940
1941 // to create the border of the MCM cover, it is required the
1942 // subtraction of two shapes the outer is created using the
1943 // reference points defined here
1944 TGeoXtru *shCapOut = new TGeoXtru(2);
1945 shCapOut->SetName(Form("SHCAPOUT%s", suf));
1946 z1 = z2;
1947 z2 = z1 + capHeight - capThickness;
1948 shCapOut->DefinePolygon(6, xCap, yCap);
1949 shCapOut->DefineSection(0, z1, 0., 0., 1.0);
1950 shCapOut->DefineSection(1, z2, 0., 0., 1.0);
1951 // the inner is built similarly but subtracting the thickness
1952 Double_t angle, cs;
592651e2 1953 Double_t xin[6], yin[6];
bc3498f4 1954 if (!isRight) {
1955 angle = 45.0;
1956 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
1957 xin[0] = xCap[0] + capThickness;
1958 yin[0] = yCap[0] - capThickness;
1959 xin[1] = xCap[1] - capThickness;
1960 yin[1] = yin[0];
1961 xin[2] = xin[1];
1962 yin[2] = yCap[2] + capThickness;
1963 xin[3] = xCap[3] - capThickness*cs;
1964 yin[3] = yin[2];
1965 xin[4] = xin[3] - sizeSep12;
1966 yin[4] = yCap[4] + capThickness;
1967 xin[5] = xin[0];
1968 yin[5] = yin[4];
1969 } else {
1970 angle = 45.0;
1971 cs = TMath::Cos( 0.5*(TMath::Pi() - angle*TMath::DegToRad()) );
1972 xin[0] = xCap[0] - capThickness;
1973 yin[0] = yCap[0] - capThickness;
1974 xin[1] = xCap[1] + capThickness;
1975 yin[1] = yin[0];
1976 xin[2] = xin[1];
1977 yin[2] = yCap[2] + capThickness;
1978 xin[3] = xCap[3] - capThickness*cs;
1979 yin[3] = yin[2];
1980 xin[4] = xin[3] + sizeSep12;
1981 yin[4] = yCap[4] + capThickness;
1982 xin[5] = xin[0];
1983 yin[5] = yin[4];
1984 } // end if isRight
1985 TGeoXtru *shCapIn = new TGeoXtru(2);
1986 shCapIn->SetName(Form("SHCAPIN%s", suf));
1987 shCapIn->DefinePolygon(6, xin, yin);
1988 shCapIn->DefineSection(0, z1 - 0.01, 0., 0., 1.0);
1989 shCapIn->DefineSection(1, z2 + 0.01, 0., 0., 1.0);
1990 // compose shapes
1991 TGeoCompositeShape *shCapBorder = new TGeoCompositeShape(
1992 Form("SHBORDER%s", suf),
1993 Form("%s-%s", shCapOut->GetName(),
1994 shCapIn->GetName()));
592651e2 1995 // create volume
bc3498f4 1996 TGeoVolume *volCapBorder = new TGeoVolume("CAPBORDER",shCapBorder,medCap);
1997 volCapBorder->SetLineColor(kGreen);
1998 // finally, we create the top of the cover, which has the same
1999 // shape of outer border and a thickness equal of the one othe
2000 // cover border one
2001 TGeoXtru *shCapTop = new TGeoXtru(2);
2002 z1 = z2;
2003 z2 = z1 + capThickness;
2004 shCapTop->DefinePolygon(6, xCap, yCap);
2005 shCapTop->DefineSection(0, z1, 0., 0., 1.0);
2006 shCapTop->DefineSection(1, z2, 0., 0., 1.0);
2007 TGeoVolume *volCapTop = new TGeoVolume("CAPTOP", shCapTop, medCap);
2008 volCapTop->SetLineColor(kBlue);
2009
2010 // create container assembly
2011 TGeoVolumeAssembly *mcmAssembly = new TGeoVolumeAssembly("MCM");
2012
2013 // add objects in the assembly
2014
2015 // glue
2016 mcmAssembly->AddNode(volGlue, 0, gGeoIdentity);
2017 // mcm layer
2018 mcmAssembly->AddNode(volBase, 0, gGeoIdentity);
2019 // chips
2020 for (i = 0; i < 5; i++) {
2021 TGeoVolume *box = gGeoManager->MakeBox(name[i], medChip,
2022 0.5*chipLength[i], 0.5*chipWidth[i], 0.5*chipThickness[i]);
2023 TGeoTranslation *tr = new TGeoTranslation(chipX[i], chipY[i],
2024 0.5*(-thickness + chipThickness[i]) + mcmThickness +
2025 glueThickness);
2026 box->SetLineColor(color[i]);
2027 mcmAssembly->AddNode(box, 0, tr);
2028 } // end for i
2029 // cap border
2030 mcmAssembly->AddNode(volCapBorder, 0, gGeoIdentity);
2031 // cap top
2032 mcmAssembly->AddNode(volCapTop, 0, gGeoIdentity);
2033 return mcmAssembly;
592651e2 2034}
bc3498f4 2035//
2036//__________________________________________________________________________________________
2037TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBus
2038(Bool_t isRight, TArrayD &sizes, TGeoManager *mgr) const
2039{
2040 //
2041 // The pixel bus is implemented as a TGeoBBox with some objects on it,
2042 // which could affect the particle energy loss.
592651e2 2043 // ---
bc3498f4 2044 // In order to avoid confusion, the bus is directly displaced
2045 // according to the axis orientations which are used in the final stave:
2046 // X --> thickness direction
2047 // Y --> width direction
2048 // Z --> length direction
592651e2 2049 //
bc3498f4 2050
592651e2 2051
bc3498f4 2052 // ** MEDIA **
2053
2054 //PIXEL BUS
2055 TGeoMedium *medBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr);
2056 TGeoMedium *medPt1000 = GetMedium("CERAMICS$",mgr); // ??? PT1000
2057 // Capacity
2058 TGeoMedium *medCap = GetMedium("SDD X7R capacitors$",mgr);
2059 // ??? Resistance
2060 TGeoMedium *medRes = GetMedium("SDD X7R capacitors$",mgr);
2061 // ** SIZES & POSITIONS **
2062 Double_t busLength = 170.501 * fgkmm; // length of plane part
2063 Double_t busWidth = 13.800 * fgkmm; // width
2064 Double_t busThickness = 0.280 * fgkmm; // thickness
2065 Double_t pt1000Length = fgkmm * 1.50;
2066 Double_t pt1000Width = fgkmm * 3.10;
2067 Double_t pt1000Thickness = fgkmm * 0.60;
2068 Double_t pt1000Y, pt1000Z[10];// position of the pt1000's along the bus
2069 Double_t capLength = fgkmm * 2.55;
2070 Double_t capWidth = fgkmm * 1.50;
2071 Double_t capThickness = fgkmm * 1.35;
2072 Double_t capY[2], capZ[2];
2073
2074 Double_t resLength = fgkmm * 2.20;
2075 Double_t resWidth = fgkmm * 0.80;
2076 Double_t resThickness = fgkmm * 0.35;
2077 Double_t resY[2], resZ[2];
2078
2079 // position of pt1000, resistors and capacitors depends on the
2080 // bus if it's left or right one
2081 if (!isRight) {
2082 pt1000Y = 64400.;
2083 pt1000Z[0] = 66160.;
2084 pt1000Z[1] = 206200.;
2085 pt1000Z[2] = 346200.;
2086 pt1000Z[3] = 486200.;
2087 pt1000Z[4] = 626200.;
2088 pt1000Z[5] = 776200.;
2089 pt1000Z[6] = 916200.;
2090 pt1000Z[7] = 1056200.;
2091 pt1000Z[8] = 1196200.;
2092 pt1000Z[9] = 1336200.;
2093 resZ[0] = 1397500.;
2094 resY[0] = 26900.;
2095 resZ[1] = 682500.;
2096 resY[1] = 27800.;
2097 capZ[0] = 1395700.;
2098 capY[0] = 45700.;
2099 capZ[1] = 692600.;
2100 capY[1] = 45400.;
2101 } else {
2102 pt1000Y = 66100.;
2103 pt1000Z[0] = 319700.;
2104 pt1000Z[1] = 459700.;
2105 pt1000Z[2] = 599700.;
2106 pt1000Z[3] = 739700.;
2107 pt1000Z[4] = 879700.;
2108 pt1000Z[5] = 1029700.;
2109 pt1000Z[6] = 1169700.;
2110 pt1000Z[7] = 1309700.;
2111 pt1000Z[8] = 1449700.;
2112 pt1000Z[9] = 1589700.;
2113 capY[0] = 44500.;
2114 capZ[0] = 266700.;
2115 capY[1] = 44300.;
2116 capZ[1] = 974700.;
2117 resZ[0] = 266500.;
2118 resY[0] = 29200.;
2119 resZ[1] = 974600.;
2120 resY[1] = 29900.;
2121 } // end if isRight
2122 Int_t i;
2123 pt1000Y *= 1E-4 * fgkmm;
2124 for (i = 0; i < 10; i++) {
2125 pt1000Z[i] *= 1E-4 * fgkmm;
2126 if (i < 2) {
2127 capZ[i] *= 1E-4 * fgkmm;
2128 capY[i] *= 1E-4 * fgkmm;
2129 resZ[i] *= 1E-4 * fgkmm;
2130 resY[i] *= 1E-4 * fgkmm;
2131 } // end if iM2
2132 } // end for i
592651e2 2133
bc3498f4 2134 Double_t &fullLength = sizes[1];
2135 Double_t &fullWidth = sizes[2];
2136 Double_t &fullThickness = sizes[0];
2137 fullLength = busLength;
2138 fullWidth = busWidth;
2139 // add the thickness of the thickest component on bus (capacity)
2140 fullThickness = busThickness + capThickness;
2141 // ** VOLUMES **
2142 TGeoVolumeAssembly *container = new TGeoVolumeAssembly("PixelBus");
2143 TGeoVolume *bus = mgr->MakeBox("Bus", medBus, 0.5*busThickness,
2144 0.5*busWidth, 0.5*busLength);
2145 TGeoVolume *pt1000 = mgr->MakeBox("PT1000", medPt1000,
2146 0.5*pt1000Thickness, 0.5*pt1000Width, 0.5*pt1000Length);
2147 TGeoVolume *res = mgr->MakeBox("Resistor", medRes, 0.5*resThickness,
2148 0.5*resWidth, 0.5*resLength);
2149 TGeoVolume *cap = mgr->MakeBox("Capacitor", medCap, 0.5*capThickness,
2150 0.5*capWidth, 0.5*capLength);
2151 bus->SetLineColor(kYellow + 2);
2152 pt1000->SetLineColor(kGreen + 3);
2153 res->SetLineColor(kRed + 1);
2154 cap->SetLineColor(kBlue - 7);
2155 // ** MOVEMENTS AND POSITIONEMENT **
2156 // bus
2157 TGeoTranslation *trBus = new TGeoTranslation(0.5 * (busThickness -
2158 fullThickness), 0.0, 0.0);
2159 container->AddNode(bus, 0, trBus);
2160 Double_t zRef, yRef, x, y, z;
2161 if (isRight) {
2162 zRef = -0.5*fullLength;
2163 yRef = -0.5*fullWidth;
2164 } else {
2165 zRef = -0.5*fullLength;
2166 yRef = -0.5*fullWidth;
2167 } // end if isRight
2168 // pt1000
2169 x = 0.5*(pt1000Thickness - fullThickness) + busThickness;
2170 for (i = 0; i < 10; i++) {
2171 y = yRef + pt1000Y;
2172 z = zRef + pt1000Z[i];
2173 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2174 container->AddNode(pt1000, i, tr);
2175 } // end for i
2176 // capacitors
2177 x = 0.5*(capThickness - fullThickness) + busThickness;
2178 for (i = 0; i < 2; i++) {
2179 y = yRef + capY[i];
2180 z = zRef + capZ[i];
2181 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2182 container->AddNode(cap, i, tr);
2183 } // end for i
2184 // resistors
2185 x = 0.5*(resThickness - fullThickness) + busThickness;
2186 for (i = 0; i < 2; i++) {
2187 y = yRef + resY[i];
2188 z = zRef + resZ[i];
2189 TGeoTranslation *tr = new TGeoTranslation(x, y, z);
2190 container->AddNode(res, i, tr);
2191 } // end for i
592651e2 2192
bc3498f4 2193 sizes[3] = yRef + pt1000Y;
2194 sizes[4] = zRef + pt1000Z[2];
2195 sizes[5] = zRef + pt1000Z[7];
592651e2 2196
2197 return container;
2198}
bc3498f4 2199//
2200//__________________________________________________________________________________________
2201TGeoVolume* AliITSv11GeometrySPD::CreateExtender
2202(const Double_t *extenderParams, const TGeoMedium *extenderMedium, TArrayD& sizes) const
2203{
2204 // ------------------ CREATE AN EXTENDER ------------------------
2205 //
2206 // This function creates the following picture (in plane xOy)
2207 // Should be useful for the definition of the pixel bus and MCM extenders
2208 // The origin corresponds to point 0 on the picture, at half-width in Z direction
2209 //
2210 // Y 7 6 5
2211 // ^ +---+---------------------+
2212 // | / |
2213 // | / |
2214 // 0------> X / +---------------------+
2215 // / / 3 4
2216 // / /
2217 // 9 8 / /
2218 // +-----------+ /
2219 // | /
2220 // | /
2221 // ---> +-----------+---+
2222 // | 0 1 2
2223 // |
2224 // origin (0,0,0)
2225 //
2226 //
2227 // Takes 6 parameters in the following order :
2228 // |--> par 0 : inner length [0-1] / [9-8]
2229 // |--> par 1 : thickness ( = [0-9] / [4-5])
2230 // |--> par 2 : angle of the slope
2231 // |--> par 3 : total height in local Y direction
2232 // |--> par 4 : outer length [3-4] / [6-5]
2233 // |--> par 5 : width in local Z direction
2234 //
592651e2 2235
592651e2 2236
bc3498f4 2237 Double_t slopeDeltaX = (extenderParams[3] - extenderParams[1] * TMath::Cos(extenderParams[2])) / TMath::Tan(extenderParams[2]);
592651e2 2238
bc3498f4 2239 Double_t extenderXtruX[10] = {
2240 0 ,
2241 extenderParams[0] ,
2242 extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) ,
2243 extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX ,
2244 extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4],
2245 extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4],
2246 extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX ,
2247 extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX - extenderParams[1] * TMath::Sin(extenderParams[2]) ,
2248 extenderParams[0] ,
2249 0
2250 } ;
592651e2 2251
bc3498f4 2252 Double_t extenderXtruY[10] = {
2253 0 ,
2254 0 ,
2255 extenderParams[1] * (1-TMath::Cos(extenderParams[2])) ,
2256 extenderParams[3] - extenderParams[1] ,
2257 extenderParams[3] - extenderParams[1] ,
2258 extenderParams[3] ,
2259 extenderParams[3] ,
2260 extenderParams[3] - extenderParams[1] * (1-TMath::Cos(extenderParams[2])) ,
2261 extenderParams[1] ,
2262 extenderParams[1]
2263 } ;
592651e2 2264
bc3498f4 2265 if (sizes.GetSize() != 3) sizes.Set(3);
2266 Double_t &thickness = sizes[0] ;
2267 Double_t &length = sizes[1] ;
2268 Double_t &width = sizes[2] ;
592651e2 2269
bc3498f4 2270 thickness = extenderParams[3] ;
2271 width = extenderParams[5] ;
2272 length = extenderParams[0] + extenderParams[1] * TMath::Sin(extenderParams[2]) + slopeDeltaX + extenderParams[4] ;
592651e2 2273
bc3498f4 2274 // creation of the volume
2275 TGeoXtru *extenderXtru = new TGeoXtru(2);
2276 TGeoVolume *extenderXtruVol = new TGeoVolume("EXTENDER",extenderXtru,extenderMedium) ;
2277 extenderXtru->DefinePolygon(10,extenderXtruX,extenderXtruY);
2278 extenderXtru->DefineSection(0,-0.5*extenderParams[4]);
2279 extenderXtru->DefineSection(1, 0.5*extenderParams[4]);
2280 return extenderXtruVol ;
2281}
592651e2 2282
bc3498f4 2283//______________________________________________________________________
2284TGeoVolumeAssembly* AliITSv11GeometrySPD::CreatePixelBusAndExtensions
2285(Bool_t /*zpos*/, TGeoManager *mgr) const
2286{
2287 //
2288 // Creates an assembly which contains the pixel bus and its extension
2289 // and the extension of the MCM.
2290 // By: Renaud Vernet
2291 // NOTE: to be defined its material and its extension in the outside direction
2292 //
2293
2294 // ==== constants =====
592651e2 2295
bc3498f4 2296 //get the media
2297 //TGeoMedium *medPixelBus = GetMedium("SPDBUS(AL+KPT+EPOX)$",mgr) ; // ??? PIXEL BUS
2298 TGeoMedium *medPBExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr) ; // ??? IXEL BUS EXTENDER
2299 TGeoMedium *medMCMExtender = GetMedium("SDDKAPTON (POLYCH2)$",mgr) ; // ??? MCM EXTENDER
2300
2301 // //geometrical constants
2302 const Double_t kPbextenderThickness = 0.07 * fgkmm ;
2303 const Double_t kPbExtenderSlopeAngle = 70.0 * TMath::Pi()/180. ; //design=?? 70 deg. seems OK
2304 const Double_t kPbExtenderHeight = 1.92 * fgkmm ; // = 2.6 - (0.28+0.05+0.35) cf design
2305 const Double_t kPbExtenderWidthY = 11.0 * fgkmm ;
2306 const Double_t kMcmExtenderSlopeAngle = 70.0 * TMath::Pi()/180. ; //design=?? 70 deg. seems OK
2307 const Double_t kMcmExtenderThickness = 0.10 * fgkmm ;
2308 const Double_t kMcmExtenderHeight = 1.8 * fgkmm ;
2309 const Double_t kMcmExtenderWidthY = kPbExtenderWidthY ;
2310 // const Double_t groundingThickness = 0.07 * fgkmm ;
2311 // const Double_t grounding2pixelBusDz = 0.625 * fgkmm ;
2312 // const Double_t pixelBusThickness = 0.28 * fgkmm ;
2313 // const Double_t groundingWidthX = 170.501 * fgkmm ;
2314 // const Double_t pixelBusContactDx = 1.099 * fgkmm ;
2315 // const Double_t pixelBusWidthY = 13.8 * fgkmm ;
2316 // const Double_t pixelBusContactPhi = 20.0 * TMath::Pi()/180. ; //design=20 deg.
2317 // const Double_t pbExtenderTopZ = 2.72 * fgkmm ;
2318 // const Double_t mcmThickness = 0.35 * fgkmm ;
2319 // const Double_t halfStaveTotalLength = 247.64 * fgkmm ;
2320 // const Double_t deltaYOrigin = 15.95/2.* fgkmm ;
2321 // const Double_t deltaXOrigin = 1.1 * fgkmm ;
2322 // const Double_t deltaZOrigin = halfStaveTotalLength / 2. ;
2323 // const Double_t grounding2pixelBusDz2 = grounding2pixelBusDz+groundingThickness/2. + pixelBusThickness/2. ;
2324 // const Double_t pixelBusWidthX = groundingWidthX ;
2325 // const Double_t pixelBusRaiseLength = (pixelBusContactDx-pixelBusThickness*TMath::Sin(pixelBusContactPhi))/TMath::Cos(pixelBusContactPhi) ;
592651e2 2326
bc3498f4 2327 // const Double_t pbExtenderBaseZ = grounding2pixelBusDz2 + pixelBusRaiseLength*TMath::Sin(pixelBusContactPhi) + 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*TMath::Tan(pixelBusContactPhi) ;
2328 // const Double_t pbExtenderDeltaZ = pbExtenderTopZ-pbExtenderBaseZ ;
2329 // const Double_t pbExtenderEndPointX = 2*deltaZOrigin - groundingWidthX - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi) ;
2330 // const Double_t pbExtenderXtru3L = 1.5 * fgkmm ; //arbitrary ?
2331 // const Double_t pbExtenderXtru4L = (pbExtenderDeltaZ + pixelBusThickness*(TMath::Cos(extenderSlope)-2))/TMath::Sin(extenderSlope) ;
592651e2 2332
bc3498f4 2333 // const Double_t kMcmExtenderEndPointX = deltaZOrigin - 48.2 * fgkmm ;
2334 // const Double_t kMcmExtenderXtru3L = 1.5 * fgkmm ;
592651e2 2335
bc3498f4 2336 // //===== end constants =====
592651e2 2337
592651e2 2338
bc3498f4 2339 const Double_t kPbExtenderInnerLength = 10. * fgkmm ;
2340 const Double_t kPbExtenderOuterLength = 15. * fgkmm ;
2341 const Double_t kMcmExtenderInnerLength = 10. * fgkmm ;
2342 const Double_t kMcmExtenderOuterLength = 15. * fgkmm ;
592651e2 2343
bc3498f4 2344 Double_t pbExtenderParams[6] = {kPbExtenderInnerLength, //0
2345 kPbextenderThickness, //1
2346 kPbExtenderSlopeAngle, //2
2347 kPbExtenderHeight, //3
2348 kPbExtenderOuterLength, //4
2349 kPbExtenderWidthY}; //5
2350
2351 Double_t mcmExtenderParams[6] = {kMcmExtenderInnerLength, //0
2352 kMcmExtenderThickness, //1
2353 kMcmExtenderSlopeAngle, //2
2354 kMcmExtenderHeight, //3
2355 kMcmExtenderOuterLength, //4
2356 kMcmExtenderWidthY}; //5
592651e2 2357
bc3498f4 2358 TArrayD sizes(3);
2359 TGeoVolume* pbExtender = CreateExtender(pbExtenderParams, medPBExtender, sizes) ;
2360 printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\tLENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
2361 TGeoVolume* mcmExtender = CreateExtender(mcmExtenderParams, medMCMExtender, sizes) ;
2362 printf("CREATED AN EXTENDER : THICKNESS = %5.5f cm\tLENGTH=%5.5f cm\tWIDTH=%5.5f cm\n",sizes[0],sizes[1],sizes[2]);
592651e2 2363
2364
592651e2 2365
bc3498f4 2366 // Double_t pixelBusValues[5] = {pixelBusWidthX, //0
2367 // pixelBusThickness, //1
2368 // pixelBusContactPhi, //2
2369 // pixelBusRaiseLength, //3
2370 // pixelBusWidthY} ; //4
592651e2 2371
bc3498f4 2372 // Double_t pbExtenderValues[8] = {pixelBusRaiseLength, //0
2373 // pixelBusContactPhi, //1
2374 // pbExtenderXtru3L, //2
2375 // pixelBusThickness, //3
2376 // extenderSlope, //4
2377 // pbExtenderXtru4L, //5
2378 // pbExtenderEndPointX, //6
2379 // kPbExtenderWidthY} ; //7
592651e2 2380
bc3498f4 2381 // Double_t mcmExtenderValues[6] = {mcmExtenderXtru3L, //0
2382 // mcmExtenderThickness, //1
2383 // extenderSlope, //2
2384 // deltaMcmMcmExtender, //3
2385 // mcmExtenderEndPointX, //4
2386 // mcmExtenderWidthY}; //5
2387
2388 // TGeoVolumeAssembly *pixelBus = new TGeoVolumeAssembly("PIXEL BUS");
2389 // CreatePixelBus(pixelBus,pixelBusValues,medPixelBus) ;
2390 // TGeoVolumeAssembly *pbExtender = new TGeoVolumeAssembly("PIXEL BUS EXTENDER");
2391 // CreatePixelBusExtender(pbExtender,pbExtenderValues,medPBExtender) ;
2392 // TGeoVolumeAssembly *mcmExtender = new TGeoVolumeAssembly("MCM EXTENDER");
2393 // CreateMCMExtender(mcmExtender,mcmExtenderValues,medMCMExtender) ;
2394
2395 // //-------------- DEFINITION OF GEOMETRICAL TRANSFORMATIONS -------------------
2396 // TGeoRotation * commonRot = new TGeoRotation("commonRot",0,90,0);
2397 // commonRot->MultiplyBy(new TGeoRotation("rot",-90,0,0)) ;
2398 // TGeoTranslation * pixelBusTrans = new TGeoTranslation(pixelBusThickness/2. - deltaXOrigin + 0.52*fgkmm ,
2399 // -pixelBusWidthY/2. + deltaYOrigin ,
2400 // -groundingWidthX/2. + deltaZOrigin) ;
2401 // TGeoRotation * pixelBusRot = new TGeoRotation(*commonRot);
2402 // TGeoTranslation * pbExtenderTrans = new TGeoTranslation(*pixelBusTrans) ;
2403 // TGeoRotation * pbExtenderRot = new TGeoRotation(*pixelBusRot) ;
2404 // pbExtenderTrans->SetDz(*(pbExtenderTrans->GetTranslation()+2) - pixelBusWidthX/2. - 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)) ;
2405 // if (!zpos) {
2406 // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) - (pixelBusWidthY - kPbExtenderWidthY)/2.);
2407 // }
2408 // else {
2409 // pbExtenderTrans->SetDy(*(pbExtenderTrans->GetTranslation()+1) + (pixelBusWidthY - kPbExtenderWidthY)/2.);
2410 // }
2411 // pbExtenderTrans->SetDx(*(pbExtenderTrans->GetTranslation()) + pixelBusThickness/2 + 2*pixelBusThickness*TMath::Sin(pixelBusContactPhi)*TMath::Tan(pixelBusContactPhi)) ;
2412 // TGeoTranslation * mcmExtenderTrans = new TGeoTranslation(0.12*fgkmm + mcmThickness - deltaXOrigin,
2413 // pbExtenderTrans->GetTranslation()[1],
2414 // -4.82);
2415 // TGeoRotation * mcmExtenderRot = new TGeoRotation(*pbExtenderRot);
2416
2417 // // add pt1000 components
2418 // Double_t pt1000Z = fgkmm * 64400. * 1E-4;
2419 // //Double_t pt1000X[10] = {319700., 459700., 599700., 739700., 879700., 1029700., 1169700., 1309700., 1449700., 1589700.};
2420 // Double_t pt1000X[10] = {66160., 206200., 346200., 486200., 626200., 776200., 916200., 1056200., 1196200., 1336200.};
2421 // Double_t pt1000size[3] = {fgkmm*1.5, fgkmm*0.6, fgkmm*3.1};
2422 // Int_t i;
2423 // for (i = 0; i < 10; i++) {
2424 // pt1000X[i] *= fgkmm * 1E-4;
2425 // }
2426 // TGeoVolume *pt1000 = mgr->MakeBox("PT1000", 0, 0.5*pt1000size[0], 0.5*pt1000size[1], 0.5*pt1000size[2]);
2427 // pt1000->SetLineColor(kGray);
2428 // Double_t refThickness = - pixelBusThickness ;
2429 // for (i = 0; i < 10; i++) {
2430 // TGeoTranslation *tr = new TGeoTranslation(pt1000X[i]-0.5*pixelBusWidthX, 0.002+0.5*(-3.*refThickness+pt1000size[3]), pt1000Z -0.5*pixelBusWidthY);
2431 // pixelBus->AddNode(pt1000, i, tr);
2432 // }
2433
2434 //CREATE FINAL VOLUME ASSEMBLY AND ROTATE IT
2435 TGeoVolumeAssembly *assembly = new TGeoVolumeAssembly("EXTENDERS");
2436 // assembly->AddNode((TGeoVolume*)pixelBus ,0, new TGeoCombiTrans(*pixelBusTrans,*pixelBusRot));
2437 // assembly->AddNode((TGeoVolume*)pbExtender ,0, new TGeoCombiTrans(*pbExtenderTrans,*pbExtenderRot));
2438 // assembly->AddNode((TGeoVolume*)mcmExtender ,0, new TGeoCombiTrans(*mcmExtenderTrans,*mcmExtenderRot));
2439 // assembly->AddNode(mcmExtender,0,new TGeoIdentity());
2440 assembly->AddNode(pbExtender,0);
2441 assembly->AddNode(mcmExtender,0);
2442 // assembly->SetTransparency(50);
2443
2444 return assembly ;
592651e2 2445}
bc3498f4 2446//
2447//__________________________________________________________________________________________
2448TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateHalfStave
2449(Bool_t isRight,
2450 Int_t layer, Int_t idxCentral, Int_t idxSide,
2451 TArrayD &sizes, Bool_t addClips, TGeoManager *mgr)
2452{
2453 //
2454 // Implementation of an half-stave, which depends on the side where we are on the stave.
2455 // The convention for "left" and "right" is the same as for the MCM.
2456 // The return value is a TGeoAssembly which is structured in such a way that the origin
2457 // of its local reference frame coincides with the origin of the whole stave.
592651e2 2458 //
592651e2 2459
bc3498f4 2460 // ** CHECK **
592651e2 2461
bc3498f4 2462 // idxCentral and idxSide must be different
2463 if (idxCentral == idxSide) {
2464 AliInfo("Ladders must be inserted in half-stave with different indexes.");
2465 idxSide = idxCentral + 1;
2466 AliInfo(Form("Central ladder will be inserted with index %d", idxCentral));
2467 AliInfo(Form("Side ladder will be inserted with index %d", idxSide));
2468 }
2469
2470 // define the separations along Z direction between the objects
2471 Double_t sepLadderLadder = fgkmm * 0.2; // sep. btw the 2 ladders
2472 Double_t sepLadderCenter = fgkmm * 0.4; // sep. btw the "central" ladder and the Z=0 plane in stave ref.
2473 Double_t sepLadderMCM = fgkmm * 0.3; // sep. btw the "external" ladder and MCM
2474 Double_t sepBusCenter = fgkmm * 0.3; // sep. btw the bus central edge and the Z=0 plane in stave ref.
2475
2476 // ** VOLUMES **
2477
2478 // grounding foil
2479 TArrayD grndSize(3);
2480 // This one line repalces the 3 bellow, BNS.
2481 TGeoVolume *grndVol = CreateGroundingFoil(isRight,grndSize,mgr);
2482 //TGeoVolume *grndVol = 0;
2483 //if (isRight) grndVol = CreateGroundingFoil(kTRUE, grndSize, mgr);
2484 //else grndVol = CreateGroundingFoil(kFALSE, grndSize, mgr);
2485 Double_t &grndThickness = grndSize[0];
2486 Double_t &grndLength = grndSize[1];
2487
2488 // ladder
2489 TArrayD ladderSize(3);
2490 TGeoVolume *ladder = CreateLadder(layer, ladderSize, mgr);
2491 Double_t ladderThickness = ladderSize[0];
2492 Double_t ladderLength = ladderSize[1];
2493 Double_t ladderWidth = ladderSize[2];
2494
2495 // glue between ladders and pixel bus
2496 TGeoMedium *medLadGlue = GetMedium("EPOXY$", mgr); // ??? LadderBusGlue
2497 Double_t ladGlueThickness = fgkmm * 0.12 - fAlignmentGap;
2498 TGeoVolume *ladderGlue = mgr->MakeBox("LADDER_GLUE", medLadGlue, 0.5*ladGlueThickness, 0.5*ladderWidth, 0.5*ladderLength);
2499 ladderGlue->SetLineColor(kRed);
2500
2501 // MCM
2502 TArrayD mcmSize(3);
2503 TGeoVolumeAssembly *mcm = CreateMCM(!isRight,mcmSize,mgr);
2504 //TGeoVolumeAssembly *mcm = 0;
2505 //if (isRight) mcm = CreateMCM(kFALSE, mcmSize, mgr);
2506 //else mcm = CreateMCM(kTRUE, mcmSize, mgr);
2507 Double_t mcmThickness = mcmSize[0];
2508 Double_t mcmLength = mcmSize[1];
2509 Double_t mcmWidth = mcmSize[2];
592651e2 2510
bc3498f4 2511 // bus
2512 TArrayD busSize(6);
2513 TGeoVolumeAssembly *bus = CreatePixelBus(isRight, busSize, mgr);
2514 //TGeoVolume *bus = 0;
2515 //if (isRight) bus = CreatePixelBus(kTRUE, busSize, mgr);
2516 //else bus = CreatePixelBus(kFALSE, busSize, mgr);
2517 Double_t busThickness = busSize[0];
2518 Double_t busLength = busSize[1];
2519 Double_t busWidth = busSize[2];
2520
2521 // create references for the whole object, as usual
2522 if (sizes.GetSize() != 3) sizes.Set(3);
2523 Double_t &fullThickness = sizes[0];
2524 Double_t &fullLength = sizes[1];
2525 Double_t &fullWidth = sizes[2];
2526
2527 // compute the full size of the container
2528 fullLength = sepLadderCenter + 2.0*ladderLength + sepLadderMCM + sepLadderLadder + mcmLength;
2529 fullWidth = ladderWidth;
2530 fullThickness = grndThickness + fAlignmentGap + mcmThickness + busThickness;
2531
2532 // ** MOVEMENTS **
592651e2 2533
bc3498f4 2534 // grounding foil (shifted only along thickness)
592651e2 2535 Double_t xGrnd = -0.5*fullThickness + 0.5*grndThickness;
bc3498f4 2536 Double_t zGrnd = -0.5*grndLength;
2537 if (!isRight) zGrnd = -zGrnd;
2538 TGeoTranslation *grndTrans = new TGeoTranslation(xGrnd, 0.0, zGrnd);
592651e2 2539
bc3498f4 2540 // ladders (translations along thickness and length)
2541 // layers must be sorted going from the one at largest Z to the one at smallest Z:
592651e2 2542 // -|Zmax| ------> |Zmax|
bc3498f4 2543 // 3 2 1 0
2544 // then, for layer 1 ladders they must be placed exactly this way, and in layer 2 at the opposite.
2545 // In order to remember the placements, we define as "inner" and "outer" ladder respectively
2546 // the one close to barrel center, and the one closer to MCM, respectively.
2547 Double_t xLad, zLadIn, zLadOut;
2548 xLad = xGrnd + 0.5*(grndThickness + ladderThickness) + 0.01175 - fAlignmentGap;
2549 zLadIn = -sepLadderCenter - 0.5*ladderLength;
2550 zLadOut = zLadIn - sepLadderLadder - ladderLength;
2551 if (!isRight) {
2552 zLadIn = -zLadIn;
2553 zLadOut = -zLadOut;
2554 }
2555 TGeoRotation *rotLad = new TGeoRotation(*gGeoIdentity);
2556 rotLad->RotateZ(90.0);
2557 rotLad->RotateY(180.0);
2558 Double_t sensWidth = fgkmm * 12.800;
2559 Double_t chipWidth = fgkmm * 15.950;
2560 Double_t guardRingWidth = fgkmm * 0.560;
2561 Double_t ladderShift = 0.5 * (chipWidth - sensWidth - 2.0*guardRingWidth);
2562 TGeoCombiTrans *trLadIn = new TGeoCombiTrans(xLad, ladderShift, zLadIn, rotLad);
2563 TGeoCombiTrans *trLadOut = new TGeoCombiTrans(xLad, ladderShift, zLadOut, rotLad);
2564
2565 // glue between ladders and pixel bus
2566 Double_t xLadGlue = xLad + 0.5*ladderThickness + fAlignmentGap - 0.5*ladGlueThickness;
2567 TGeoTranslation *trLadGlueIn = new TGeoTranslation(xLadGlue, 0.0, zLadIn);
2568 TGeoTranslation *trLadGlueOut = new TGeoTranslation(xLadGlue, 0.0, zLadOut);
2569
2570 // MCM (length and thickness direction, placing at same level as the ladder, which implies to
2571 // recompute the position of center, because ladder and MCM have NOT the same thickness)
2572 // the two copies of the MCM are placed at the same distance from the center, on both sides
2573 Double_t xMCM = xGrnd + 0.5*grndThickness + 0.5*mcmThickness + fAlignmentGap;
2574 Double_t yMCM = 0.5*(fullWidth - mcmWidth);
2575 Double_t zMCM = zLadOut - 0.5*ladderLength - 0.5*mcmLength - sepLadderMCM;
2576 if (!isRight) zMCM = zLadOut + 0.5*ladderLength + 0.5*mcmLength + sepLadderMCM;
2577
2578 // create the correction rotations
2579 TGeoRotation *rotMCM = new TGeoRotation(*gGeoIdentity);
2580 rotMCM->RotateY(90.0);
2581 TGeoCombiTrans *trMCM = new TGeoCombiTrans(xMCM, yMCM, zMCM, rotMCM);
2582
2583 // bus (length and thickness direction)
2584 Double_t xBus = xLad + 0.5*ladderThickness + 0.5*busThickness + fAlignmentGap + ladGlueThickness;
2585 Double_t yBus = 0.5*(fullWidth - busWidth);
2586 Double_t zBus = -0.5*busLength - sepBusCenter;
2587 if (!isRight) zBus = -zBus;
2588 TGeoTranslation *trBus = new TGeoTranslation(xBus, yBus, zBus);
2589
2590 // create the container
2591 TGeoVolumeAssembly *container = 0;
2592 if (idxCentral+idxSide==5) {
2593 container = new TGeoVolumeAssembly("HALF-STAVE1");
2594 } else {
2595 container = new TGeoVolumeAssembly("HALF-STAVE0");
2596 }
2597
2598 // add to container all objects
2599 container->AddNode(grndVol, 1, grndTrans);
2600 // ladders are inserted in different order to respect numbering scheme
2601 // which is inverted when going from outer to inner layer
2602 container->AddNode(ladder, idxCentral, trLadIn);
2603 container->AddNode(ladder, idxSide, trLadOut);
2604 container->AddNode(ladderGlue, 0, trLadGlueIn);
2605 container->AddNode(ladderGlue, 1, trLadGlueOut);
2606 container->AddNode(mcm, 0, trMCM);
2607 container->AddNode(bus, 0, trBus);
2608
2609 if (addClips) {
2610
2611 // ad clips if requested
2612 // create clip volume
2613 TArrayD clipSize(3);
2614 TGeoVolume *clip = CreateClip(clipSize, mgr);
2615
2616 // define clip movements (width direction)
2617 TGeoRotation *rotClip = new TGeoRotation(*gGeoIdentity);
2618 rotClip->RotateZ(-90.0);
2619 rotClip->RotateX(180.0);
2620 Double_t x = xBus + 0.5*busThickness;//clipSize[3] - clipSize[2];
2621 Double_t y = 0.5 * (fullWidth - busWidth) - clipSize[6] - fgkmm*0.48;
2622 Double_t z1 = zBus + busSize[4];
2623 Double_t z2 = zBus + busSize[5];
2624 cout << z1 << ' ' << z2 << endl;
2625 TGeoCombiTrans *trClip1 = new TGeoCombiTrans(x, y, z1, rotClip);
2626 TGeoCombiTrans *trClip2 = new TGeoCombiTrans(x, y, z2, rotClip);
2627 container->AddNode(clip, 0, trClip1);
2628 container->AddNode(clip, 1, trClip2);
2629 }
2630
2631
2632 return container;
2633}
2634//
2635//__________________________________________________________________________________________
2636TGeoVolumeAssembly* AliITSv11GeometrySPD::CreateStave
2637(Int_t layer,
2638 TArrayD &sizes, Bool_t addClips, TGeoManager *mgr) {
2639 // This method uses all other ones which create pieces of the stave
2640 // and assemblies everything together, in order to return the whole
2641 // stave implementation, which is returned as a TGeoVolumeAssembly,
2642 // due to the presence of some parts which could generate fake overlaps
2643 // when put on the sector.
2644 // This assembly contains, going from bottom to top in the thickness direction:
2645 // - the complete grounding foil, defined by the "CreateGroundingFoil" method which
2646 // already joins some glue and real groudning foil layers for the whole stave (left + right);
2647 // - 4 ladders, which are sorted according to the ALICE numbering scheme, which depends
2648 // on the layer we are building this stave for;
2649 // - 2 MCMs (a left and a right one);
2650 // - 2 pixel buses (a left and a right one);
2651 // ---
2652 // Arguments:
2653 // - the layer number, which determines the displacement and naming of sensitive volumes
2654 // - a TArrayD passed by reference which will contain the size of virtual box containing the stave
2655 // - the TGeoManager
2656 //
2657
2658 // create the container
2659 TGeoVolumeAssembly *container = new TGeoVolumeAssembly(Form("LAY%d_STAVE", layer));
2660
2661 // define the indexes of the ladders in order to have the correct order
2662 // keeping in mind that the staves will be inserted as they are on layer 2, while
2663 // they are rotated around their local Y axis when inserted on layer 1, so in this case
2664 // they must be put in the "wrong" order to turn out to be right at the end
2665 // The convention is:
2666 // -|Zmax| ------> |Zmax|
2667 // 3 2 1 0
2668 // with respect to the "native" stave reference frame, "left" is in the positive Z
2669 // this leads the definition of these indexes:
2670
2671 Int_t idxCentralL, idxSideL, idxCentralR, idxSideR;
2672 if (layer == 1) {
2673 idxSideL = 3;
2674 idxCentralL = 2;
2675 idxCentralR = 1;
2676 idxSideR = 0;
2677 }
2678 else {
2679 idxSideL = 0;
2680 idxCentralL = 1;
2681 idxCentralR = 2;
2682 idxSideR = 3;
2683 }
592651e2 2684
bc3498f4 2685 // create the two half-staves
2686 TArrayD sizeL(3), sizeR(3);
2687 TGeoVolumeAssembly *hstaveL = CreateHalfStave(kFALSE, layer, idxCentralL, idxSideL, sizeL, addClips, mgr);
2688 TGeoVolumeAssembly *hstaveR = CreateHalfStave(kTRUE, layer, idxCentralR, idxSideR, sizeR, addClips, mgr);
2689
2690 // copy the size to the stave's one
2691 sizes[0] = sizeL[0];
2692 sizes[1] = sizeR[1] + sizeL[1];
2693 sizes[2] = sizeL[2];
2694
2695 // add to container all objects
2696 container->AddNode(hstaveL, 1);
2697 container->AddNode(hstaveR, 1);
2698
592651e2 2699 return container;
2700}
bc3498f4 2701//
2702//__________________________________________________________________________________________
2703void AliITSv11GeometrySPD::SetAddStave(Bool_t *mask)
2704{
2705 //
2706 // Define a mask which states qhich staves must be placed.
2707 // It is a string which must contain '0' or '1' depending if
2708 // a stave must be placed or not.
2709 // Each place is referred to one of the staves, so the first
2710 // six characters of the string will be checked.
2711 //
2712
2713 Int_t i;
2714 for (i = 0; i < 6; i++) fAddStave[i] = mask[i];
2715}
2716//
2717//__________________________________________________________________________________________
2718void AliITSv11GeometrySPD::StavesInSector(TGeoVolume *moth, TGeoManager *mgr) {
2719 //
592651e2 2720 // Unification of essentially two methods:
2721 // - the one which creates the sector structure
2722 // - the one which returns the complete stave
2723 // ---
2724 // For compatibility, this method requires the same arguments
2725 // asked by "CarbonFiberSector" method, which is recalled here.
2726 // Like this cited method, this one does not return any value,
2727 // but it inserts in the mother volume (argument 'moth') all the stuff
2728 // which composes the complete SPD sector.
2729 // ---
bc3498f4 2730 // In the following, the stave numbering order used for arrays is the same as
2731 // defined in the GetSectorMountingPoints():
2732 // /5
2733 // /\/4
2734 // 1\ \/3
2735 // 0|___\/2
2736 // ---
592651e2 2737 // Arguments: see description of "CarbonFiberSector" method.
2738 //
2739
bc3498f4 2740 Double_t shift[6]; // shift from the innermost position in the sector placement plane
2741 // (where the stave edge is in the point where the rounded corner begins)
2742
2743 shift[0] = fgkmm * -0.691;
2744 shift[1] = fgkmm * 1.300;
2745 shift[2] = fgkmm * 1.816;
2746 shift[3] = fgkmm * -0.610;
2747 shift[4] = fgkmm * -0.610;
2748 shift[5] = fgkmm * -0.610;
2749
2750 // create stave volumes (different for layer 1 and 2)
2751 TArrayD staveSizes1(3), staveSizes2(3);
2752 Double_t &staveHeight = staveSizes1[2], &staveThickness = staveSizes1[0];
2753 TGeoVolume *stave1 = CreateStave(1, staveSizes1, kFALSE, mgr);
1b2b32e7 2754 //TGeoVolume *stave2clips = CreateStave(2, staveSizes2, kTRUE, mgr);
bc3498f4 2755 TGeoVolume *stave2noclips = CreateStave(2, staveSizes2, kFALSE, mgr);
2756
2757 Double_t xL, yL; // leftmost edge of mounting point (XY projection)
2758 Double_t xR, yR; // rightmost edge of mounting point (XY projection)
2759 Double_t xM, yM; // middle point of the segment L-R
2760 Double_t dx, dy; // (xL - xR) and (yL - yR)
2761 Double_t widthLR; // width of the segment L-R
2762 Double_t angle; // stave rotation angle in degrees
2763 Double_t diffWidth; // difference between mounting plane width and stave width (smaller)
2764 Double_t xPos, yPos; // final translation of the stave
2765 Double_t parMovement; // translation in the LR plane direction
2766
2767 // loop on staves
592651e2 2768 for (Int_t i = 0; i < 6; i++) {
bc3498f4 2769 // in debug mode, if this stave is not required, it is skipped
2770 if (!fAddStave[i]) continue;
2771 // retrieve reference points
2772 GetSectorMountingPoints(i, xL, yL, xR, yR);
2773 xM = 0.5 * (xL + xR);
2774 yM = 0.5 * (yL + yR);
2775 dx = xL - xR;
2776 dy = yL - yR;
2777 angle = TMath::ATan2(dy, dx);
2778 widthLR = TMath::Sqrt(dx*dx + dy*dy);
2779 diffWidth = 0.5*(widthLR - staveHeight);
2780 // first, a movement along this plane must be done
2781 // by an amount equal to the width difference
2782 // and then the fixed shift must also be added
2783 parMovement = diffWidth + shift[i];
2784 // due to stave thickness, another movement must be done
2785 // in the direction normal to the mounting plane
2786 // which is computed using an internal method, in a reference frame where the LR segment
2787 // has its middle point in the origin and axes parallel to the master reference frame
2788 if (i == 0) {
2789 ParallelPosition(-0.5*staveThickness, -parMovement, angle, xPos, yPos);
2790 }
2791 if (i == 1) {
2792 ParallelPosition( 0.5*staveThickness, -parMovement, angle, xPos, yPos);
2793 }
2794 else {
2795 ParallelPosition( 0.5*staveThickness, parMovement, angle, xPos, yPos);
592651e2 2796 }
2797 // then we go into the true reference frame
bc3498f4 2798 xPos += xM;
2799 yPos += yM;
592651e2 2800 // using the parameters found here, compute the
2801 // translation and rotation of this stave:
2802 TGeoRotation *rot = new TGeoRotation(*gGeoIdentity);
bc3498f4 2803 if (i == 0 || i == 1) rot->RotateX(180.0);
2804 rot->RotateZ(90.0 + angle * TMath::RadToDeg());
2805 TGeoCombiTrans *trans = new TGeoCombiTrans(xPos, yPos, 0.0, rot);
2806 if (i == 0 || i == 1) {
2807 moth->AddNode(stave1, i, trans);
2808 }
2809 else {
2810 if (i == 2) {
1b2b32e7 2811 moth->AddNode(stave2noclips, i - 2, trans);
bc3498f4 2812 }
2813 else {
1b2b32e7 2814 moth->AddNode(stave2noclips, i - 2, trans);
bc3498f4 2815 }
2816 }
2817 }
592651e2 2818}
bc3498f4 2819//
2820//__________________________________________________________________________________________
2821void AliITSv11GeometrySPD::ParallelPosition(Double_t dist1, Double_t dist2,
2822 Double_t phi, Double_t &x, Double_t &y) const {
592651e2 2823 // Performs the following steps:
bc3498f4 2824 // 1 - finds a straight line parallel to the one passing through the origin and with angle 'phi' with X axis
2825 // (phi in RADIANS);
2826 // 2 - finds another line parallel to the previous one, with a distance 'dist1' from it
2827 // 3 - takes a reference point in the second line in the intersection between the normal to both lines
2828 // passing through the origin
2829 // 4 - finds a point whith has distance 'dist2' from this reference, in the second line (point 2)
592651e2 2830 // ----
bc3498f4 2831 // According to the signs given to dist1 and dist2, the point is found in different position w.r. to the origin
2832 //
2833
592651e2 2834 // compute the point
2835 Double_t cs = TMath::Cos(phi);
2836 Double_t sn = TMath::Sin(phi);
2837
2838 x = dist2*cs - dist1*sn;
2839 y = dist1*cs + dist2*sn;
2840}
bc3498f4 2841//
2842//__________________________________________________________________________________________
2843void AliITSv11GeometrySPD::CreateFigure0(const Char_t *filepath,
2844 const Char_t *type,
2845 TGeoManager *mgr) const {
2846 // Creates Figure 0 for the documentation of this class. In this
2847 // specific case, it creates the X,Y cross section of the SPD suport
2848 // section, center and ends. The output is written to a standard
2849 // file name to the path specificed.
2850 // Inputs:
2851 // const Char_t *filepath Path where the figure is to be drawn
2852 // const Char_t *type The type of file, default is gif.
2853 // TGeoManager *mgr The TGeoManager default gGeoManager
2854 // Output:
2855 // none.
2856 // Return:
2857 // none.
2858 TGeoXtru *sA0,*sA1,*sB0,*sB1;
2859 //TPolyMarker *pmA,*pmB;
2860 TPolyLine plA0,plA1,plB0,plB1;
2861 TCanvas *canvas;
2862 TLatex txt;
2863 Double_t x=0.0,y=0.0;
2864 Int_t i,kNRadii=6;
2865
2866 if(strcmp(filepath,"")){
2867 Error("CreateFigure0","filepath=%s type=%s",filepath,type);
2868 } // end if
2869 //
2870 sA0 = (TGeoXtru*) mgr->GetVolume(
2871 "ITSSPDCarbonFiberSupportSectorA0_1")->GetShape();
2872 sA1 = (TGeoXtru*) mgr->GetVolume(
2873 "ITSSPDCarbonFiberSupportSectorAirA1_1")->GetShape();
2874 sB0 = (TGeoXtru*) mgr->GetVolume(
2875 "ITSSPDCarbonFiberSupportSectorEndB0_1")->GetShape();
2876 sB1 = (TGeoXtru*) mgr->GetVolume(
2877 "ITSSPDCarbonFiberSupportSectorEndAirB1_1")->GetShape();
2878 //pmA = new TPolyMarker();
2879 //pmA.SetMarkerStyle(2); // +
2880 //pmA.SetMarkerColor(7); // light blue
2881 //pmB = new TPolyMarker();
2882 //pmB.SetMarkerStyle(5); // X
2883 //pmB.SetMarkerColor(6); // purple
2884 plA0.SetPolyLine(sA0->GetNvert());
2885 plA0.SetLineColor(1); // black
2886 plA0.SetLineStyle(1);
2887 plA1.SetPolyLine(sA1->GetNvert());
2888 plA1.SetLineColor(2); // red
2889 plA1.SetLineStyle(1);
2890 plB0.SetPolyLine(sB0->GetNvert());
2891 plB0.SetLineColor(3); // Green
2892 plB0.SetLineStyle(2);
2893 plB1.SetPolyLine(sB1->GetNvert());
2894 plB1.SetLineColor(4); // Blue
2895 plB1.SetLineStyle(2);
2896 //for(i=0;i<kNRadii;i++) pmA.SetPoint(i,xyB1p[i][0],xyB1p[i][1]);
2897 //for(i=0;i<kNRadii;i++) pmB.SetPoint(i,xyB1p[i][0],xyB1p[i][1]);
2898 for(i=0;i<sA0->GetNvert();i++) plA0.SetPoint(i,sA0->GetX(i),sA0->GetY(i));
2899 for(i=0;i<sA1->GetNvert();i++) plA1.SetPoint(i,sA1->GetX(i),sA1->GetY(i));
2900 for(i=0;i<sB0->GetNvert();i++) plB0.SetPoint(i,sB0->GetX(i),sB0->GetY(i));
2901 for(i=0;i<sB1->GetNvert();i++) plB1.SetPoint(i,sB1->GetX(i),sB1->GetY(i));
2902 canvas = new TCanvas("AliITSv11GeometrySPDFig0","",1000,1000);
2903 canvas->Range(-3.,-3.,3.,3.);
2904 txt.SetTextSize(0.05);
2905 txt.SetTextAlign(33);
2906 txt.SetTextColor(1);
2907 txt.DrawLatex(2.9,2.9,"Section A-A outer Carbon Fiber surface");
2908 txt.SetTextColor(2);
2909 txt.DrawLatex(2.9,2.5,"Section A-A Inner Carbon Fiber surface");
2910 txt.SetTextColor(3);
2911 txt.DrawLatex(2.9,2.1,"Section E-E outer Carbon Fiber surface");
2912 txt.SetTextColor(4);
2913 txt.DrawLatex(2.9,1.7,"Section E-E Inner Carbon Fiber surface");
2914 plA0.Draw();
2915 plA1.Draw();
2916 plB0.Draw();
2917 plB1.Draw();
2918 //pmA.Draw();
2919 //pmB.Draw();
2920 //
2921 x = 1.0;
2922 y = -2.5;
2923 Char_t chr[3];
2924 for(i=0;i<kNRadii;i++){
2925 sprintf(chr,"%2d",i);txt.DrawLatex(x-0.1,y,chr);
2926 sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x,y,chr);
2927 sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x+0.5,y,chr);
2928 sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x+1.0,y,chr);
2929 sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x+1.5,y,chr);
2930 sprintf(chr,"%8.4f",5.000);txt.DrawLatex(x+2.0,y,chr);
2931 if(kTRUE) txt.DrawLatex(x+2.5,y,"A-A/E-E");
2932 else txt.DrawLatex(x+2.5,y,"E-E");
2933 } // end for i
2934 txt.DrawLatex(x,y,"x_{c} mm");
2935 txt.DrawLatex(x+0.5,y,"y_{c} mm");
2936 txt.DrawLatex(x+1.0,y,"R mm");
2937 txt.DrawLatex(x+1.5,y,"#theta_{start}^{#circle}");
2938 txt.DrawLatex(x+2.0,y,"#theta_{end}^{#circle}");
2939 txt.DrawLatex(x+2.5,y,"Section");
2940 //
2941}
2942//
2943//__________________________________________________________________________________________
2944void AliITSv11GeometrySPD::PrintAscii(ostream *os)const{
2945 // Print out class data values in Ascii Form to output stream
2946 // Inputs:
2947 // ostream *os Output stream where Ascii data is to be writen
2948 // Outputs:
2949 // none.
2950 // Return:
2951 // none.
2952#if defined __GNUC__
2953#if __GNUC__ > 2
2954 ios::fmtflags fmt = cout.flags();
2955#else
2956 Int_t fmt;
2957#endif
2958#else
2959#if defined __ICC || defined __ECC || defined __xlC__
2960 ios::fmtflags fmt;
2961#else
2962 Int_t fmt;
2963#endif
2964#endif
2965 os->flags(fmt); // reset back to old Formating.
2966 return;
2967}
2968//
2969//__________________________________________________________________________________________
2970void AliITSv11GeometrySPD::ReadAscii(istream* /* is */){
2971 // Read in class data values in Ascii Form to output stream
2972 // Inputs:
2973 // istream *is Input stream where Ascii data is to be read in from
2974 // Outputs:
2975 // none.
2976 // Return:
2977 // none.
2978}
2979//
2980//__________________________________________________________________________________________
2981ostream &operator<<(ostream &os,const AliITSv11GeometrySPD &s){
2982 // Standard output streaming function
2983 // Inputs:
2984 // ostream &os output steam
2985 // AliITSvPPRasymmFMD &s class to be streamed.
2986 // Output:
2987 // none.
2988 // Return:
2989 // ostream &os The stream pointer
2990
2991 s.PrintAscii(&os);
2992 return os;
2993}
2994//
2995//__________________________________________________________________________________________
2996istream &operator>>(istream &is,AliITSv11GeometrySPD &s){
2997 // Standard inputput streaming function
2998 // Inputs:
2999 // istream &is input steam
3000 // AliITSvPPRasymmFMD &s class to be streamed.
3001 // Output:
3002 // none.
3003 // Return:
3004 // ostream &os The stream pointer
3005
3006 s.ReadAscii(&is);
3007 return is;
3008}
3009//
3010//__________________________________________________________________________________________
3011Bool_t AliITSv11GeometrySPD::Make2DCrossSections(TPolyLine &a0,TPolyLine &a1,
3012 TPolyLine &b0,TPolyLine &b1,TPolyMarker &p)const{
297369a1 3013 // Fill the objects with the points representing
3014 // a0 the outer carbon fiber SPD sector shape Cross Section A
3015 // a1 the inner carbon fiber SPD sector shape Cross Section A
3016 // b0 the outer carbon fiber SPD sector shape Cross Section B
3017 // b1 the inner carbon fiber SPD sector shape Cross Section B
3018 //
3019 // Inputs:
3020 // TPolyLine &a0 The outer carbon fiber SPD sector shape
3021 // TPolyLine &a1 The Inner carbon fiber SPD sector shape
3022 // TPolyLine &b0 The outer carbon fiber SPD sector shape
3023 // TPolyLine &b1 The Inner carbon fiber SPD sector shape
3024 // TPolyMarker &p The points where the ladders are to be placed
3025 // Outputs:
3026 // TPolyLine &a0 The shape filled with the points
3027 // TPolyLine &a1 The shape filled with the points
3028 // TPolyLine &b0 The shape filled with the points
3029 // TPolyLine &b1 The shape filled with the points
3030 // TPolyMarker &p The filled array of points
3031 // Return:
3032 // An error flag.
3033 Int_t n0,n1,i;
3034 Double_t x,y;
3035 TGeoVolume *a0V,*a1V,*b0V,*b1V;
3036 TGeoXtru *a0S,*a1S,*b0S,*b1S;
3037 TGeoManager *mgr = gGeoManager;
3038
bc3498f4 3039 a0V = mgr->GetVolume("ITS SPD Carbon fiber support Sector A0");
297369a1 3040 a0S = dynamic_cast<TGeoXtru*>(a0V->GetShape());
3041 n0 = a0S->GetNvert();
3042 a0.SetPolyLine(n0+1);
3043 //for(i=0;i<fSPDsectorPoints0.GetSize();i++)
3044 // printf("%d %d %d\n",i,fSPDsectorPoints0[i],fSPDsectorPoints1[i]);
3045 for(i=0;i<n0;i++){
3046 x = a0S->GetX(i);
bc3498f4 3047 y = a0S->GetY(i);
3048 //printf("%d %g %g\n",i,x,y);
297369a1 3049 a0.SetPoint(i,x,y);
bc3498f4 3050 if(i==0) a0.SetPoint(n0,x,y);
297369a1 3051 } // end for i
3052 a1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorAirA1");
3053 a1S = dynamic_cast<TGeoXtru*>(a1V->GetShape());
3054 n1 = a1S->GetNvert();
3055 a1.SetPolyLine(n1+1);
3056 for(i=0;i<n1;i++){
3057 x = a1S->GetX(i);
bc3498f4 3058 y = a1S->GetY(i);
297369a1 3059 a1.SetPoint(i,x,y);
bc3498f4 3060 if(i==0) a1.SetPoint(n1,x,y);
297369a1 3061 } // end for i
3062 // Cross Section B
3063 b0V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndB0");
3064 b0S = dynamic_cast<TGeoXtru*>(b0V->GetShape());
3065 n0 = b0S->GetNvert();
3066 b0.SetPolyLine(n0+1);
3067 for(i=0;i<n0;i++){
3068 x = b0S->GetX(i);
bc3498f4 3069 y = b0S->GetY(i);
297369a1 3070 b0.SetPoint(i,x,y);
bc3498f4 3071 if(i==0) b0.SetPoint(n0,x,y);
297369a1 3072 } // end for i
3073 b1V = mgr->GetVolume("ITSSPDCarbonFiberSupportSectorEndAirB1");
3074 b1S = dynamic_cast<TGeoXtru*>(b1V->GetShape());
3075 n1 = b1S->GetNvert();
3076 b1.SetPolyLine(n1+1);
3077 for(i=0;i<n1;i++){
3078 x = b1S->GetX(i);
bc3498f4 3079 y = b1S->GetY(i);
297369a1 3080 b1.SetPoint(i,x,y);
bc3498f4 3081 if(i==0) b1.SetPoint(n1,x,y);
297369a1 3082 } // end for i
3083 //
3084 Double_t x0,y0,x1,y1;
bc3498f4 3085 p.SetPolyMarker(2*fSPDsectorX0.GetSize());
3086 for(i=0;i<fSPDsectorX0.GetSize();i++){
3087 GetSectorMountingPoints(i,x0,y0,x1,y1);
3088 p.SetPoint(2*i,x0,y0);
3089 p.SetPoint(2*i+1,x1,y1);
297369a1 3090 } // end for i
3091 return kTRUE;
3092}