Fixes for Coverity warnings (M. van Leeuwen)
[u/mrichter/AliRoot.git] / ITS / AliITSv11GeometrySupport.cxx
CommitLineData
172b0d90 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
cee918ed 16// This class Defines the Geometry for the ITS services and support cones
17// outside of the ceneteral volume (except for the Ceneteral support
18// cylinders. Other classes define the rest of the ITS. Specificaly the ITS
19// The SSD support cone,SSD Support centeral cylinder, SDD support cone,
20// The SDD cupport centeral cylinder, the SPD Thermal Sheald, The supports
21// and cable trays on both the RB26 (muon dump) and RB24 sides, and all of
22// the cabling from the ladders/stave ends out past the TPC.
23
172b0d90 24/* $Id$ */
172b0d90 25// General Root includes
172b0d90 26#include <TMath.h>
172b0d90 27// Root Geometry includes
543b7370 28//#include <AliLog.h>
172b0d90 29#include <TGeoManager.h>
30#include <TGeoVolume.h>
31#include <TGeoPcon.h>
32#include <TGeoCone.h>
33#include <TGeoTube.h> // contaings TGeoTubeSeg
34#include <TGeoArb8.h>
db486a6e 35#include <TGeoXtru.h>
172b0d90 36#include <TGeoCompositeShape.h>
37#include <TGeoMatrix.h>
172b0d90 38#include "AliITSv11GeometrySupport.h"
39
40ClassImp(AliITSv11GeometrySupport)
41
42#define SQ(A) (A)*(A)
43
44//______________________________________________________________________
43aefea7 45void AliITSv11GeometrySupport::SPDCone(TGeoVolume *moth,const TGeoManager *mgr)
a275e8ba 46{
47//
48// Creates the SPD thermal shield as a volume assembly
49// and adds it to the mother volume
50// (this is actually a merge of the previous SPDThermalSheald method
51// of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06 and the
52// CreateSPDThermalShield method of AliITSv11Hybrid)
53//
54// Input:
55// moth : the TGeoVolume owing the volume structure
56// mgr : the GeoManager (default gGeoManager)
57// Output:
58//
59// Created: ??? ???
60// Updated: 11 Dec 2007 Mario Sitta
61//
62// Technical data are taken from: ALICE-Thermal Screen "Cone transition"
63// (thermal-screen1_a3.ps), "Cylinder" (thermal-screen2_a3.ps), "Half
64// assembly" (thermal-screen3_a3.ps), "Flange" (thermal-screen4_a3.ps)
65
66
67 // Dimensions of the Central shield
ddf00e3c 68 const Double_t kHalfLengthCentral = 400.*fgkmm;
a275e8ba 69 const Double_t kThicknessCentral = 0.4*fgkmm;
70 const Double_t kInnerRadiusCentral = 8.1475*fgkcm;
71 const Double_t kOuterRadiusCentral = 9.9255*fgkcm;
72 const Double_t kInnerACentral = 3.1674*fgkcm;
73 const Double_t kInnerBCentral = 2.023 *fgkcm;
74 const Double_t kOuterACentral = 2.4374*fgkcm;
75 const Double_t kOuterBCentral = 3.8162*fgkcm;
76 // Dimensions of the EndCap shield
77 const Double_t kHalfLengthEndCap = 25.*fgkmm;
78 const Double_t kThicknessEndCap = 2.0*fgkmm;
79 const Double_t kInnerRadiusEndCap = 8.0775*fgkcm;
80 const Double_t kOuterRadiusEndCap = 9.9955*fgkcm;
81 const Double_t kInnerAEndCap = 3.1453*fgkcm;
82 const Double_t kInnerBEndCap = 2.0009*fgkcm;
83 const Double_t kOuterAEndCap = 2.4596*fgkcm;
84 const Double_t kOuterBEndCap = 3.8384*fgkcm;
85 // Dimensions of the Cone shield
86 const Double_t kHalfLengthCone = 145.*fgkmm;
87 const Double_t kThicknessCone = 0.3*fgkmm;
88 const Double_t kInnerRadialCone = 37.3*fgkcm;
89 const Double_t kOuterRadialCone = 39.0*fgkcm;
90 const Double_t kInnerACone = 14.2344*fgkcm;
91 // const Double_t kInnerBCone = 9.0915*fgkcm;
92 const Double_t kOuterACone = 9.5058*fgkcm;
93 // const Double_t kOuterBCone = 14.8831*fgkcm;
94 // Dimensions of the Flange's Ring and Wing
95 const Double_t kHalfLengthRing = 7.5*fgkmm;
96 const Double_t kThicknessRing = 0.3*fgkmm;
97 const Double_t kInnerRadiusRing = 37.3*fgkcm;
98 const Double_t kOuterRadiusRing = 42.0*fgkcm;
99 const Double_t kOuterRadiusWing = 49.25*fgkcm;
ca86fdb4 100 const Double_t kWideWing = 6.0*fgkcm;
0b9c8a10 101 const Double_t kThetaWing = 45.0;
a275e8ba 102 // Common data
103 const Double_t kTheta = 36.0*TMath::DegToRad();
104 const Double_t kThicknessOmega = 0.3*fgkmm;
105
106 // Local variables
107 Double_t x, y;
108 Double_t xshld[24], yshld[24];
109 Double_t xair[24] , yair[24];
110 Double_t xomega[48], yomega[48];
111 // Double_t *xyarb8;
112
113 // The entire shield is made up of two half central shields
114 // symmetric with respect to the XZ plane, four half end cap
115 // shields, again symmetric with respect to the XZ plane, and four
116 // half cones, symmetric with respect to the XZ plane too.
117
118 TGeoVolumeAssembly *vM = new TGeoVolumeAssembly("ITSspdThermalShield");
119
120 // The central half shield: a half tube of carbon fiber,
121 // a similar but proportionally smaller half tube of air inside it,
122 // and a Omega-shaped carbon fiber insert inside the air.
123 // They are all XTru shapes
124
125 TGeoXtru *centralshape = new TGeoXtru(2);
126
127 CreateSPDThermalShape(kInnerACentral,kInnerBCentral,kInnerRadiusCentral,
128 kOuterACentral,kOuterBCentral,kOuterRadiusCentral,
129 kTheta,xshld,yshld);
130
131 centralshape->DefinePolygon(24,xshld,yshld);
132 centralshape->DefineSection(0,-kHalfLengthCentral);
133 centralshape->DefineSection(1, kHalfLengthCentral);
134
135 // Now rescale to get the air volume dimensions
136 InsidePoint(xshld[23], yshld[23],
137 xshld[ 0], yshld[ 0],
138 xshld[ 1], yshld[ 1], kThicknessCentral,
139 xair[0], yair[0]);
140 for (Int_t i=1; i<23; i++) {
141 InsidePoint(xshld[i-1], yshld[i-1],
142 xshld[ i ], yshld[ i ],
143 xshld[i+1], yshld[i+1], kThicknessCentral,
144 xair[i], yair[i]);
145 }
146 InsidePoint(xshld[22], yshld[22],
147 xshld[23], yshld[23],
148 xshld[ 0], yshld[ 0], kThicknessCentral,
149 xair[23], yair[23]);
150
151 // Create the air shape
152 TGeoXtru *centralairshape = new TGeoXtru(2);
153
154 centralairshape->DefinePolygon(24,xair,yair);
155 centralairshape->DefineSection(0,-kHalfLengthCentral);
156 centralairshape->DefineSection(1, kHalfLengthCentral);
157
158 // Create the Omega insert
159 TGeoXtru *centralomegashape = new TGeoXtru(2);
160
3d2705b6 161 CreateSPDOmegaShape(xair,yair,kThicknessOmega,xomega,yomega);
a275e8ba 162
163 centralomegashape->DefinePolygon(48,xomega,yomega);
164 centralomegashape->DefineSection(0,-kHalfLengthCentral);
165 centralomegashape->DefineSection(1, kHalfLengthCentral);
166
167 // The end cap half shield: a half tube of carbon fiber,
168 // a similar but proportionally smaller half tube of air inside it,
169 // and a Omega-shaped carbon fiber insert inside the air.
170 // They are all XTru shapes
171
172 TGeoXtru *endcapshape = new TGeoXtru(2);
173
174 CreateSPDThermalShape(kInnerAEndCap,kInnerBEndCap,kInnerRadiusEndCap,
175 kOuterAEndCap,kOuterBEndCap,kOuterRadiusEndCap,
176 kTheta,xshld,yshld);
177
178 endcapshape->DefinePolygon(24,xshld,yshld);
179 endcapshape->DefineSection(0,-kHalfLengthEndCap);
180 endcapshape->DefineSection(1, kHalfLengthEndCap);
181
182 // Now rescale to get the air volume dimensions
183 InsidePoint(xshld[23], yshld[23],
184 xshld[ 0], yshld[ 0],
185 xshld[ 1], yshld[ 1], kThicknessEndCap,
186 xair[0], yair[0]);
187 for (Int_t i=1; i<23; i++) {
188 InsidePoint(xshld[i-1], yshld[i-1],
189 xshld[ i ], yshld[ i ],
190 xshld[i+1], yshld[i+1], kThicknessEndCap,
191 xair[i], yair[i]);
192 }
193 InsidePoint(xshld[22], yshld[22],
194 xshld[23], yshld[23],
195 xshld[ 0], yshld[ 0], kThicknessEndCap,
196 xair[23], yair[23]);
197
198 // Create the air shape
199 TGeoXtru *endcapairshape = new TGeoXtru(2);
200
201 endcapairshape->DefinePolygon(24,xair,yair);
202 endcapairshape->DefineSection(0,-kHalfLengthEndCap);
203 endcapairshape->DefineSection(1, kHalfLengthEndCap);
204
205 // Create the Omega insert
206 TGeoXtru *endcapomegashape = new TGeoXtru(2);
207
3d2705b6 208 CreateSPDOmegaShape(xair,yair,kThicknessOmega,xomega,yomega);
a275e8ba 209
210 endcapomegashape->DefinePolygon(48,xomega,yomega);
211 endcapomegashape->DefineSection(0,-kHalfLengthEndCap);
212 endcapomegashape->DefineSection(1, kHalfLengthEndCap);
213
214 // The cone half shield is more complex since there is no basic
215 // TGeo shape to describe it correctly. So it is made of a series
216 // of TGeoArb8 shapes filled with air, which all together make up the
217 // the cone AND its internal insert. Part of the following code is
218 // adapted from SPDThermalSheald method.
219
220 // Filled portions
221 TGeoArb8 *sC1 = new TGeoArb8(kHalfLengthCone);
222 TGeoArb8 *sC2 = new TGeoArb8(kHalfLengthCone);
223
224 CreateSPDThermalShape(kInnerACentral,kInnerBCentral,kInnerRadiusCentral,
225 kOuterACentral,kOuterBCentral,kOuterRadiusCentral,
226 kTheta,xshld,yshld);
227
228 sC1->SetVertex(0,xshld[12],yshld[12]);
229 sC1->SetVertex(1,xshld[11],yshld[11]);
230 sC1->SetVertex(2,xshld[ 0],yshld[ 0]);
231 sC1->SetVertex(3,xshld[23],yshld[23]);
232
233 sC2->SetVertex(0,xshld[11],yshld[11]);
234 sC2->SetVertex(1,xshld[10],yshld[10]);
235 sC2->SetVertex(2,xshld[ 1],yshld[ 1]);
236 sC2->SetVertex(3,xshld[ 0],yshld[ 0]);
237
238 // Drawings give only the radius, convert it to the apothegm
239 Double_t kInnerRadiusCone = TMath::Sqrt(kInnerRadialCone*kInnerRadialCone
240 - 0.25*kInnerACone*kInnerACone);
241 Double_t kOuterRadiusCone = TMath::Sqrt(kOuterRadialCone*kOuterRadialCone
242 - 0.25*kOuterACone*kOuterACone);
243
244 Double_t xco[4], yco[4], xci[4], yci[4];
245
246 for (Int_t i=0; i<2; i++) {
247 Double_t th = i*kTheta*TMath::RadToDeg();
248 xco[2*i ] = kOuterRadiusCone*SinD(th) - 0.5*kOuterACone*CosD(th);
249 yco[2*i ] = kOuterRadiusCone*CosD(th) + 0.5*kOuterACone*SinD(th);
250 xci[2*i ] = kInnerRadiusCone*SinD(th) - 0.5*kInnerACone*CosD(th);
251 yci[2*i ] = kInnerRadiusCone*CosD(th) + 0.5*kInnerACone*SinD(th);
252 xco[2*i+1] = kOuterRadiusCone*SinD(th) + 0.5*kOuterACone*CosD(th);
253 yco[2*i+1] = kOuterRadiusCone*CosD(th) - 0.5*kOuterACone*SinD(th);
254 xci[2*i+1] = kInnerRadiusCone*SinD(th) + 0.5*kInnerACone*CosD(th);
255 yci[2*i+1] = kInnerRadiusCone*CosD(th) - 0.5*kInnerACone*SinD(th);
256 }
257
258 sC1->SetVertex(4,xco[0],yco[0]);
259 sC1->SetVertex(5,xco[1],yco[1]);
260 sC1->SetVertex(6,xci[1],yci[1]);
261 sC1->SetVertex(7,xci[0],yci[0]);
262
263 sC2->SetVertex(4,xco[1],yco[1]);
264 sC2->SetVertex(5,xco[2],yco[2]);
265 sC2->SetVertex(6,xci[2],yci[2]);
266 sC2->SetVertex(7,xci[1],yci[1]);
267
268 // Air holes
269 TGeoArb8 *sCh1 = new TGeoArb8(kHalfLengthCone);
270 TGeoArb8 *sCh2 = new TGeoArb8(kHalfLengthCone);
271
272 for(Int_t i=0; i<4; i++){
273 InsidePoint(sC1->GetVertices()[((i+3)%4)*2+0],
274 sC1->GetVertices()[((i+3)%4)*2+1],
275 sC1->GetVertices()[i*2+0],
276 sC1->GetVertices()[i*2+1],
277 sC1->GetVertices()[((i+1)%4)*2+0],
278 sC1->GetVertices()[((i+1)%4)*2+1],-kThicknessCone,x,y);
279 sCh1->SetVertex(i,x,y);
280
281 InsidePoint(sC1->GetVertices()[((i+3)%4 +4)*2+0],
282 sC1->GetVertices()[((i+3)%4 +4)*2+1],
283 sC1->GetVertices()[(i+4)*2+0],
284 sC1->GetVertices()[(i+4)*2+1],
285 sC1->GetVertices()[((i+1)%4 +4)*2+0],
286 sC1->GetVertices()[((i+1)%4 +4)*2+1],-kThicknessCone,x,y);
287 sCh1->SetVertex(i+4,x,y);
288
289 InsidePoint(sC2->GetVertices()[((i+3)%4)*2+0],
290 sC2->GetVertices()[((i+3)%4)*2+1],
291 sC2->GetVertices()[i*2+0],
292 sC2->GetVertices()[i*2+1],
293 sC2->GetVertices()[((i+1)%4)*2+0],
294 sC2->GetVertices()[((i+1)%4)*2+1],-kThicknessCone,x,y);
295 sCh2->SetVertex(i,x,y);
296
297 InsidePoint(sC2->GetVertices()[((i+3)%4 +4)*2+0],
298 sC2->GetVertices()[((i+3)%4 +4)*2+1],
299 sC2->GetVertices()[(i+4)*2+0],
300 sC2->GetVertices()[(i+4)*2+1],
301 sC2->GetVertices()[((i+1)%4 +4)*2+0],
302 sC2->GetVertices()[((i+1)%4 +4)*2+1],-kThicknessCone,x,y);
303 sCh2->SetVertex(i+4,x,y);
304 }
305
306 // Finally the carbon fiber Ring with its Wings and their
307 // stesalite inserts. They are Tube and TubeSeg shapes
308
309 TGeoTube *ringshape = new TGeoTube(kInnerRadiusRing,kOuterRadiusRing,
310 kHalfLengthRing);
311
312 TGeoTube *ringinsertshape = new TGeoTube(kInnerRadiusRing+kThicknessRing,
313 kOuterRadiusRing-kThicknessRing,
314 kHalfLengthRing-kThicknessRing);
315
316 Double_t angleWideWing, angleWideWingThickness;
317 angleWideWing = (kWideWing/kOuterRadiusWing)*TMath::RadToDeg();
318 angleWideWingThickness = (kThicknessRing/kOuterRadiusWing)*TMath::RadToDeg();
319
320 TGeoTubeSeg *wingshape = new TGeoTubeSeg(kOuterRadiusRing,kOuterRadiusWing,
321 kHalfLengthRing, 0, angleWideWing);
322
323 TGeoTubeSeg *winginsertshape = new TGeoTubeSeg(kOuterRadiusRing,
324 kOuterRadiusWing-kThicknessRing, kHalfLengthRing-kThicknessRing,
325 angleWideWingThickness, angleWideWing-angleWideWingThickness);
326
327
328 // We have the shapes: now create the real volumes
329
330 TGeoMedium *medSPDcf = mgr->GetMedium("ITS_SPD shield$");
331 TGeoMedium *medSPDair = mgr->GetMedium("ITS_SPD AIR$");
332 TGeoMedium *medSPDste = mgr->GetMedium("ITS_G10FR4$"); // stesalite
333
334 TGeoVolume *centralshield = new TGeoVolume("SPDcentralshield",
335 centralshape,medSPDcf);
336 centralshield->SetVisibility(kTRUE);
337 centralshield->SetLineColor(7);
338 centralshield->SetLineWidth(1);
339
340 TGeoVolume *centralairshield = new TGeoVolume("SPDcentralairshield",
341 centralairshape,medSPDair);
342 centralairshield->SetVisibility(kTRUE);
343 centralairshield->SetLineColor(5); // Yellow
344 centralairshield->SetLineWidth(1);
345 centralairshield->SetFillColor(centralairshield->GetLineColor());
346 centralairshield->SetFillStyle(4090); // 90% transparent
347
348 TGeoVolume *centralomega = new TGeoVolume("SPDcentralomega",
349 centralomegashape,medSPDcf);
350 centralomega->SetVisibility(kTRUE);
351 centralomega->SetLineColor(7);
352 centralomega->SetLineWidth(1);
353
354 centralairshield->AddNode(centralomega,1,0);
355 centralshield->AddNode(centralairshield,1,0);
356
357 TGeoVolume *endcapshield = new TGeoVolume("SPDendcapshield",
358 endcapshape,medSPDcf);
359 endcapshield->SetVisibility(kTRUE);
360 endcapshield->SetLineColor(7);
361 endcapshield->SetLineWidth(1);
362
363 TGeoVolume *endcapairshield = new TGeoVolume("SPDendcapairshield",
364 endcapairshape,medSPDair);
365 endcapairshield->SetVisibility(kTRUE);
366 endcapairshield->SetLineColor(5); // Yellow
367 endcapairshield->SetLineWidth(1);
368 endcapairshield->SetFillColor(endcapairshield->GetLineColor());
369 endcapairshield->SetFillStyle(4090); // 90% transparent
370
371 TGeoVolume *endcapomega = new TGeoVolume("SPDendcapomega",
372 endcapomegashape,medSPDcf);
373 endcapomega->SetVisibility(kTRUE);
374 endcapomega->SetLineColor(7);
375 endcapomega->SetLineWidth(1);
376
377 endcapairshield->AddNode(endcapomega,1,0);
378 endcapshield->AddNode(endcapairshield,1,0);
379
380 TGeoVolume *vC1 = new TGeoVolume("SPDconeshieldV1",sC1,medSPDcf);
381 vC1->SetVisibility(kTRUE);
382 vC1->SetLineColor(7);
383 vC1->SetLineWidth(1);
384
385 TGeoVolume *vCh1 = new TGeoVolume("SPDconeshieldH1",sCh1,medSPDair);
386
387 vCh1->SetVisibility(kTRUE);
388 vCh1->SetLineColor(5); // Yellow
389 vCh1->SetLineWidth(1);
390 vCh1->SetFillColor(vCh1->GetLineColor());
391 vCh1->SetFillStyle(4090); // 90% transparent
392
393 vC1->AddNode(vCh1,1,0);
394
395 TGeoVolume *vC2 = new TGeoVolume("SPDconeshieldV2",sC2,medSPDcf);
396
397 vC2->SetVisibility(kTRUE);
398 vC2->SetLineColor(7);
399 vC2->SetLineWidth(1);
400
401 TGeoVolume *vCh2 = new TGeoVolume("SPDconeshieldH2",sCh2,medSPDair);
402
403 vCh2->SetVisibility(kTRUE);
404 vCh2->SetLineColor(5); // Yellow
405 vCh2->SetLineWidth(1);
406 vCh2->SetFillColor(vCh2->GetLineColor());
407 vCh2->SetFillStyle(4090); // 90% transparent
408
409 vC2->AddNode(vCh2,1,0);
410
411 TGeoVolume *ring = new TGeoVolume("SPDshieldring",ringshape,medSPDcf);
412 ring->SetVisibility(kTRUE);
413 ring->SetLineColor(7);
414 ring->SetLineWidth(1);
415
416 TGeoVolume *ringinsert = new TGeoVolume("SPDshieldringinsert",
417 ringinsertshape,medSPDste);
418 ringinsert->SetVisibility(kTRUE);
419 ringinsert->SetLineColor(3); // Green
420// ringinsert->SetLineWidth(1);
421 ringinsert->SetFillColor(ringinsert->GetLineColor());
422 ringinsert->SetFillStyle(4010); // 10% transparent
423
424 ring->AddNode(ringinsert,1,0);
425
426 TGeoVolume *wing = new TGeoVolume("SPDshieldringwing",wingshape,medSPDcf);
427 wing->SetVisibility(kTRUE);
428 wing->SetLineColor(7);
429 wing->SetLineWidth(1);
430
431 TGeoVolume *winginsert = new TGeoVolume("SPDshieldringinsert",
432 winginsertshape,medSPDste);
433 winginsert->SetVisibility(kTRUE);
434 winginsert->SetLineColor(3); // Green
435// winginsert->SetLineWidth(1);
436 winginsert->SetFillColor(winginsert->GetLineColor());
437 winginsert->SetFillStyle(4010); // 10% transparent
438
439 wing->AddNode(winginsert,1,0);
440
441
442 // Add all volumes in the assembly
443 vM->AddNode(centralshield,1,0);
444 vM->AddNode(centralshield,2,new TGeoRotation("",180,0,0));
445
446 vM->AddNode(endcapshield,1,
447 new TGeoTranslation(0,0, kHalfLengthCentral+kHalfLengthEndCap));
448 vM->AddNode(endcapshield,2,
449 new TGeoTranslation(0,0,-kHalfLengthCentral-kHalfLengthEndCap));
450 vM->AddNode(endcapshield,3,new TGeoCombiTrans(
451 0, 0, kHalfLengthCentral+kHalfLengthEndCap,
452 new TGeoRotation("",180,0,0) ) );
453 vM->AddNode(endcapshield,4,new TGeoCombiTrans(
454 0, 0,-kHalfLengthCentral-kHalfLengthEndCap,
455 new TGeoRotation("",180,0,0) ) );
456
457 for (Int_t i=0; i<10; i++) {
458 Double_t thetaC12 = kTheta*TMath::RadToDeg();
459 vM->AddNode(vC1,2*i+1, new TGeoCombiTrans(
460 0, 0, kHalfLengthCentral+2*kHalfLengthEndCap+kHalfLengthCone,
461 new TGeoRotation("",0, 0,i*thetaC12) ) );
462 vM->AddNode(vC1,2*i+2, new TGeoCombiTrans(
463 0, 0, -kHalfLengthCentral-2*kHalfLengthEndCap-kHalfLengthCone,
464 new TGeoRotation("",0,180,i*thetaC12) ) );
465 vM->AddNode(vC2,2*i+1, new TGeoCombiTrans(
466 0, 0, kHalfLengthCentral+2*kHalfLengthEndCap+kHalfLengthCone,
467 new TGeoRotation("",0, 0,i*thetaC12) ) );
468 vM->AddNode(vC2,2*i+2, new TGeoCombiTrans(
469 0, 0, -kHalfLengthCentral-2*kHalfLengthEndCap-kHalfLengthCone,
470 new TGeoRotation("",0,180,i*thetaC12) ) );
471 }
472
473 vM->AddNode(ring,1,new TGeoTranslation(0, 0,
474 kHalfLengthCentral+2*kHalfLengthEndCap+2*kHalfLengthCone
475 +kHalfLengthRing));
476 vM->AddNode(ring,2,new TGeoTranslation(0, 0,
477 -kHalfLengthCentral-2*kHalfLengthEndCap-2*kHalfLengthCone
478 -kHalfLengthRing));
479
0b9c8a10 480 for (Int_t i=0; i<4; i++) {
481 Double_t thetaW = kThetaWing*(2*i+1) - angleWideWing/2.;
482 vM->AddNode(wing,2*i+1,new TGeoCombiTrans(0, 0,
a275e8ba 483 kHalfLengthCentral+2*kHalfLengthEndCap+2*kHalfLengthCone
484 +kHalfLengthRing, new TGeoRotation("",thetaW,0,0) ));
0b9c8a10 485 vM->AddNode(wing,2*i+2,new TGeoCombiTrans(0, 0,
a275e8ba 486 -kHalfLengthCentral-2*kHalfLengthEndCap-2*kHalfLengthCone
487 -kHalfLengthRing, new TGeoRotation("",thetaW,0,0) ));
488 }
489
490 // Some debugging if requested
491 if(GetDebug(1)){
492 vM->PrintNodes();
493 vM->InspectShape();
494 }
495
496 // Finally put the entire shield in the mother volume
497 moth->AddNode(vM,1,0);
498
499 return;
500}
501
502//______________________________________________________________________
503void AliITSv11GeometrySupport::CreateSPDThermalShape(
504 Double_t ina, Double_t inb, Double_t inr,
505 Double_t oua, Double_t oub, Double_t our,
43aefea7 506 Double_t t, Double_t *x , Double_t *y ) const
a275e8ba 507{
508//
509// Creates the proper sequence of X and Y coordinates to determine
510// the base XTru polygon for the SPD thermal shapes
511//
512// Input:
513// ina, inb : inner shape sides
514// inr : inner radius
515// oua, oub : outer shape sides
516// our : outer radius
517// t : theta angle
518//
519// Output:
520// x, y : coordinate vectors [24]
521//
522// Created: 14 Nov 2007 Mario Sitta
523// Updated: 11 Dec 2007 Mario Sitta
524//
525 Double_t xlocal[6],ylocal[6];
526
527 //Create the first inner quadrant (X > 0)
528 FillSPDXtruShape(ina,inb,inr,t,xlocal,ylocal);
529 for (Int_t i=0; i<6; i++) {
530 x[i] = xlocal[i];
531 y[i] = ylocal[i];
532 }
533
534 // Then reflex on the second quadrant (X < 0)
535 for (Int_t i=0; i<6; i++) {
536 x[23-i] = -x[i];
537 y[23-i] = y[i];
538 }
539
540 // Now create the first outer quadrant (X > 0)
541 FillSPDXtruShape(oua,oub,our,t,xlocal,ylocal);
542 for (Int_t i=0; i<6; i++) {
543 x[11-i] = xlocal[i];
544 y[11-i] = ylocal[i];
545 }
546
547 // Finally reflex on the second quadrant (X < 0)
548 for (Int_t i=0; i<6; i++) {
549 x[12+i] = -x[11-i];
550 y[12+i] = y[11-i];
551 }
552
553 return;
554}
555
556//______________________________________________________________________
557void AliITSv11GeometrySupport::CreateSPDOmegaShape(
21ea473f 558 const Double_t *xin, const Double_t *yin, Double_t d,
559 Double_t *x, Double_t *y)
a275e8ba 560{
561//
562// Creates the proper sequence of X and Y coordinates to determine
563// the SPD Omega XTru polygon
564//
565// Input:
566// xin, yin : coordinates of the air volume
567// d : Omega shape thickness
568// t : theta angle
569//
570// Output:
571// x, y : coordinate vectors [48]
572//
573// Created: 17 Nov 2007 Mario Sitta
574// Updated: 11 Dec 2007 Mario Sitta
3d2705b6 575// Updated: 20 Feb 2009 Mario Sitta New algorithm (the old one
576// gives erroneous vertexes)
a275e8ba 577//
a275e8ba 578
3d2705b6 579 // This vector contains the index of those points which coincide
580 // with the corresponding points in the air shape
581 Int_t indexAir2Omega[12] = {1, 2, 5, 6, 9, 10, 11, 15, 16, 19, 20, 23};
a275e8ba 582
3d2705b6 583 // First fill those vertexes corresponding to
584 // the edges aligned to the air shape edges
585 for (Int_t j=0; j<12; j++) {
586 x[*(indexAir2Omega+j)] = xin[j];
587 y[*(indexAir2Omega+j)] = yin[j];
588 }
a275e8ba 589
3d2705b6 590 // Now get the coordinates of the first inner point
591 PointFromParallelLines(x[23],y[23],x[1],y[1],d,x[0],y[0]);
a275e8ba 592
3d2705b6 593 // Knowing this, the second internal point can be determined
594 InsidePoint(x[0],y[0],x[1],y[1],x[2],y[2],d,x[22],y[22]);
a275e8ba 595
3d2705b6 596 // The third point is now computable
597 ReflectPoint(x[1],y[1],x[2],y[2],x[22],y[22],x[21],y[21]);
a275e8ba 598
3d2705b6 599 // Repeat this logic
600 InsidePoint(x[21],y[21],x[20],y[20],x[19],y[19],-d,x[3],y[3]);
a275e8ba 601
3d2705b6 602 ReflectPoint(x[20],y[20],x[19],y[19],x[3],y[3],x[4],y[4]);
a275e8ba 603
3d2705b6 604 InsidePoint(x[4],y[4],x[5],y[5],x[6],y[6],d,x[18],y[18]);
a275e8ba 605
3d2705b6 606 ReflectPoint(x[5],y[5],x[6],y[6],x[18],y[18],x[17],y[17]);
a275e8ba 607
3d2705b6 608 InsidePoint(x[17],y[17],x[16],y[16],x[15],y[15],-d,x[7],y[7]);
a275e8ba 609
3d2705b6 610 ReflectPoint(x[16],y[16],x[15],y[15],x[7],y[7],x[8],y[8]);
a275e8ba 611
3d2705b6 612 InsidePoint(x[8],y[8],x[9],y[9],x[10],y[10],d,x[14],y[14]);
a275e8ba 613
614 // These need to be fixed explicitly
a275e8ba 615 x[12] = x[11];
616 y[12] = y[11] + d;
617 x[13] = x[10] + d;
618 y[13] = y[12];
619
3d2705b6 620 // Finally reflect on the negative side
a275e8ba 621 for (Int_t i=0; i<24; i++) {
622 x[24+i] = -x[23-i];
623 y[24+i] = y[23-i];
624 }
625
626 // Wow ! We've finished
627 return;
172b0d90 628}
a275e8ba 629
172b0d90 630//______________________________________________________________________
a275e8ba 631void AliITSv11GeometrySupport::FillSPDXtruShape(Double_t a, Double_t b,
632 Double_t r, Double_t t,
21ea473f 633 Double_t *x, Double_t *y) const
a275e8ba 634{
635//
636// Creates the partial sequence of X and Y coordinates to determine
637// the lateral part of the SPD thermal shield
638//
639// Input:
640// a, b : shape sides
641// r : radius
642// t : theta angle
643//
644// Output:
645// x, y : coordinate vectors [6]
646//
647// Created: 14 Nov 2007 Mario Sitta
648//
649 x[0] = a/2;
650 y[0] = r;
651
652 x[1] = x[0] + b * TMath::Cos(t/2);
653 y[1] = y[0] - b * TMath::Sin(t/2);
654
655 x[2] = x[1] + a * TMath::Cos(t);
656 y[2] = y[1] - a * TMath::Sin(t);
657
658 x[3] = x[2] + b * TMath::Cos(3*t/2);
659 y[3] = y[2] - b * TMath::Sin(3*t/2);
660
661 x[4] = x[3] + a * TMath::Cos(2*t);
662 y[4] = y[3] - a * TMath::Sin(2*t);
663
664 x[5] = x[4];
665 y[5] = 0.;
666
667 return;
172b0d90 668}
a275e8ba 669
172b0d90 670//______________________________________________________________________
3d2705b6 671void AliITSv11GeometrySupport::PointFromParallelLines(Double_t x1, Double_t y1,
672 Double_t x2, Double_t y2, Double_t d,
21ea473f 673 Double_t &x, Double_t &y) const
3d2705b6 674{
675//
676// Determines the X and Y of the first internal point of the Omega shape
677// (i.e. the coordinates of a point given two parallel lines passing by
678// two points and placed at a known distance)
679//
680// Input:
681// x1, y1 : first point
682// x2, y2 : second point
683// d : distance between the two lines
684//
685// Output:
686// x, y : coordinate of the point
687//
688// Created: 22 Feb 2009 Mario Sitta
689//
690//Begin_Html
691/*
692<img src="ITS/doc/PointFromParallelLines.gif">
693*/
694//End_Html
695
696 // The slope of the paralles lines at a distance d
697 Double_t m;
698
699 // The parameters of the solving equation
700 // a x^2 - 2 b x + c = 0
701 Double_t a = (x1 - x2)*(x1 - x2) - d*d;
702 Double_t b = (x1 - x2)*(y1 - y2);
703 Double_t c = (y1 - y2)*(y1 - y2) - d*d;
704
21ea473f 705 // (delta4 is Delta/4 because we use the reduced formula)
706 Double_t delta4 = b*b - a*c;
3d2705b6 707
708 // Compute the slope of the two parallel lines
709 // (one of the two possible slopes, the one with the smaller
710 // absolute value is needed)
21ea473f 711 if (delta4 < 0) { // Should never happen with our data, but just to be sure
3d2705b6 712 x = -1; // x is expected positive, so this flags an error
713 return;
714 } else
21ea473f 715 m = (b + TMath::Sqrt(delta4))/a; // b is negative with our data
3d2705b6 716
717 // Finally compute the coordinates of the point
718 x = x2 + (y1 - y2 - d)/m;
719 y = y1 - d;
720
721 // Done
722 return;
723}
724
725//______________________________________________________________________
726void AliITSv11GeometrySupport::ReflectPoint(Double_t x1, Double_t y1,
727 Double_t x2, Double_t y2,
728 Double_t x3, Double_t y3,
21ea473f 729 Double_t &x, Double_t &y) const
3d2705b6 730{
731//
732// Given two points (x1,y1) and (x2,y2), determines the point (x,y)
733// lying on the line parallel to the line passing by these points,
734// at a distance d and passing by the point (x3,y3), which is symmetric to
735// the third point with respect to the axis of the segment delimited by
736// the two first points.
737//
738// Input:
739// x1, y1 : first point
740// x2, y2 : second point
741// x3, y3 : third point
742// d : distance between the two lines
743//
744// Output:
745// x, y : coordinate of the reflected point
746//
747// Created: 22 Feb 2009 Mario Sitta
748//
749//Begin_Html
750/*
751<img src="ITS/doc/ReflectPoint.gif">
752*/
753//End_Html
754
755 // The slope of the line passing by the first two points
756 Double_t k = (y2 - y1)/(x2 - x1);
757
758 // The middle point of the segment 1-2
759 Double_t xK = (x1 + x2)/2.;
760 Double_t yK = (y1 + y2)/2.;
761
762 // The intercept between the axis of the segment 1-2 and the line
763 // passing by 3 and parallel to the line passing by 1-2
764 Double_t xH = (k*k*x3 + k*(yK - y3) + xK)/(k*k + 1);
765 Double_t yH = k*(xH - x3) + y3;
766
767 // The point symmetric to 3 with respect to H
768 x = 2*xH - x3;
769 y = 2*yH - y3;
770
771 // Done
772 return;
773}
774
775//______________________________________________________________________
43aefea7 776void AliITSv11GeometrySupport::SDDCone(TGeoVolume *moth,const TGeoManager *mgr)
7d6c23de 777{
778//
779// Creates the SDD support cone and cylinder geometry as a
780// volume assembly and adds it to the mother volume
781// (part of this code is taken or anyway inspired to SDDCone method
782// of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06)
783//
784// Input:
785// moth : the TGeoVolume owing the volume structure
786// mgr : the GeoManager (default gGeoManager)
787// Output:
788//
789// Created: ??? Bjorn S. Nilsen
790// Updated: 18 Feb 2008 Mario Sitta
6b99a08f 791// Updated: 25 Jul 2008 Mario Sitta SDDCarbonFiberCone simpler
96eb8210 792// Updated: 10 Jun 2010 Mario Sitta Cables across cone holes added
7d6c23de 793//
794// Technical data are taken from: "Supporto Generale Settore SDD"
795// (technical drawings ALR-0816/1-B), "Supporto Globale Settore SDD"
796// (technical drawings ALR-0816/2A, ALR-0816/2B, ALR-0816/2C, ALR-0816/2D),
797// private communication with B. Giraudo
798
799 // Dimensions of the Central cylinder and flanges
800 const Double_t kCylinderHalfLength = (790.0/2)*fgkmm;
801 const Double_t kCylinderInnerR = (210.0/2)*fgkmm;
802 const Double_t kCylinderOuterR = (231.0/2)*fgkmm;
803 const Double_t kFlangeHalfLength = ( 15.0/2)*fgkmm;
804 const Double_t kFlangeInnerR = (210.5/2)*fgkmm;
805 const Double_t kFlangeOuterR = (230.5/2)*fgkmm;
806 const Double_t kInsertoHalfLength =
807 kCylinderHalfLength - 2*kFlangeHalfLength;
808// const Double_t kCFThickness = kFlangeInnerR - kCylinderInnerR;
809 const Double_t kBoltDiameter = 6.0*fgkmm; // M6 screw
810 const Double_t kBoltDepth = 6.0*fgkmm; // In the flange
811 const Double_t kBoltRadius = (220.0/2)*fgkmm; // Radius in flange
812 const Double_t kThetaBolt = 30.0*fgkDegree;
813 const Int_t kNBolts = (Int_t)(360.0/kThetaBolt);
814 // Dimensions of the Cone
815 const Double_t kConeROutMin = (540.0/2)*fgkmm;
816 const Double_t kConeROutMax = (560.0/2)*fgkmm;
3a299c65 817 const Double_t kConeRCurv = 10.0*fgkmm; // Radius of curvature
7d6c23de 818 const Double_t kConeRinMin = (210.0/2)*fgkmm;
6b99a08f 819// const Double_t kConeRinMax = (216.0/2)*fgkmm;
7d6c23de 820 const Double_t kConeRinCylinder = (231.0/2)*fgkmm;
3a299c65 821 const Double_t kConeZCylinder = 192.0*fgkmm;
7d6c23de 822 const Double_t kConeZOuterMilled = 23.0*fgkmm;
823 const Double_t kConeDZin = 15.0*fgkmm; // ???
3a299c65 824 const Double_t kConeThickness = 10.0*fgkmm; // Rohacell + Carb.Fib.
7d6c23de 825 const Double_t kConeTheta = 45.0*fgkDegree; // SDD cone angle
826 const Double_t kSinConeTheta =
827 TMath::Sin(kConeTheta*TMath::DegToRad());
828 const Double_t kCosConeTheta =
829 TMath::Cos(kConeTheta*TMath::DegToRad());
830 const Double_t kTanConeTheta =
831 TMath::Tan(kConeTheta*TMath::DegToRad());
832 // Dimensions of the Cone Inserts
96eb8210 833 const Double_t kConeCFThickness = 1.5*fgkmm;//Carbon fiber thickness
7d6c23de 834 // Dimensions of the Cone Holes
835 const Double_t kHole1RMin = (450.0/2)*fgkmm;
3a299c65 836 const Double_t kHole1RMax = (530.0/2)*fgkmm;
7d6c23de 837 const Double_t kHole2RMin = (280.0/2)*fgkmm;
838 const Double_t kHole2RMax = (375.0/2)*fgkmm;
839 const Double_t kHole1Phi = 25.0*fgkDegree;
840 const Double_t kHole2Phi = 50.0*fgkDegree;
841 const Double_t kHole3RMin = 205.0*fgkmm;
842 const Double_t kHole3DeltaR = 15*fgkmm;
843 const Double_t kHole3Width = 30*fgkmm;
844 const Int_t kNHole3 = 6 ;
845 const Double_t kHole4RMin = 116.0*fgkmm;
846 const Double_t kHole4DeltaR = 15*fgkmm;
3a299c65 847 const Double_t kHole4Width = 30*fgkmm;
848 // const Int_t kNHole4 = 3 ;
96eb8210 849 // Fraction of materials in holes
850 const Double_t kHolePlasticFrac = 0.55846;
851 const Double_t kHoleCuFrac = 0.06319;
852 const Double_t kHoleGlassFrac = 0.02652;
7d6c23de 853
854 // Local variables
855 Double_t x, y, z, t, dza, rmin, rmax;
856
857
7d6c23de 858 // Recover the needed materials
96eb8210 859 TGeoMedium *medSDDcf = mgr->GetMedium("ITS_SDD C (M55J)$");
860 TGeoMedium *medSDDair = mgr->GetMedium("ITS_SDD AIR$");
861 TGeoMedium *medSDDste = mgr->GetMedium("ITS_G10FR4$"); // stesalite
862 TGeoMedium *medSDDroh = mgr->GetMedium("ITS_ROHACELL$");
863 TGeoMedium *medSDDss = mgr->GetMedium("ITS_INOX$");
864 TGeoMedium *medSDDplast = mgr->GetMedium("ITS_SDDKAPTON (POLYCH2)$");
865 TGeoMedium *medSDDCu = mgr->GetMedium("ITS_COPPER$");
866 TGeoMedium *medSDDglass = mgr->GetMedium("ITS_SDD OPTICFIB$");
7d6c23de 867
868 // First define the geometrical shapes
869
870 // Central cylinder with its internal foam and the lateral flanges:
871 // a carbon fiber Tube which contains a rohacell Tube and two
872 // stesalite Tube's
873 TGeoTube *cylindershape = new TGeoTube(kCylinderInnerR,kCylinderOuterR,
874 kCylinderHalfLength);
875
876 TGeoTube *insertoshape = new TGeoTube(kFlangeInnerR,kFlangeOuterR,
877 kInsertoHalfLength);
878
879 TGeoTube *flangeshape = new TGeoTube(kFlangeInnerR,kFlangeOuterR,
880 kFlangeHalfLength);
881
882 // The flange bolt: it is a Tube
883 TGeoTube *boltshape = new TGeoTube(0.0, 0.5*kBoltDiameter, 0.5*kBoltDepth);
884
885 // Debug if requested
886 if (GetDebug(1)) {
887 cylindershape->InspectShape();
888 insertoshape->InspectShape();
889 flangeshape->InspectShape();
890 boltshape->InspectShape();
891 }
892
893
894 // We have the shapes: now create the real volumes
895
896 TGeoVolume *cfcylinder = new TGeoVolume("SDDCarbonFiberCylinder",
897 cylindershape,medSDDcf);
898 cfcylinder->SetVisibility(kTRUE);
899 cfcylinder->SetLineColor(4); // Blue
900 cfcylinder->SetLineWidth(1);
901 cfcylinder->SetFillColor(cfcylinder->GetLineColor());
902 cfcylinder->SetFillStyle(4000); // 0% transparent
903
904 TGeoVolume *foamcylinder = new TGeoVolume("SDDFoamCylinder",
905 insertoshape,medSDDroh);
906 foamcylinder->SetVisibility(kTRUE);
907 foamcylinder->SetLineColor(3); // Green
908 foamcylinder->SetLineWidth(1);
909 foamcylinder->SetFillColor(foamcylinder->GetLineColor());
910 foamcylinder->SetFillStyle(4050); // 50% transparent
911
912 TGeoVolume *flangecylinder = new TGeoVolume("SDDFlangeCylinder",
913 flangeshape,medSDDste);
914 flangecylinder->SetVisibility(kTRUE);
915 flangecylinder->SetLineColor(2); // Red
916 flangecylinder->SetLineWidth(1);
917 flangecylinder->SetFillColor(flangecylinder->GetLineColor());
918 flangecylinder->SetFillStyle(4050); // 50% transparent
919
920 TGeoVolume *bolt = new TGeoVolume("SDDFlangeBolt",boltshape,medSDDss);
921 bolt->SetVisibility(kTRUE);
922 bolt->SetLineColor(1); // Black
923 bolt->SetLineWidth(1);
924 bolt->SetFillColor(bolt->GetLineColor());
925 bolt->SetFillStyle(4050); // 50% transparent
926
927 // Mount up the cylinder
928 for(Int_t i=0; i<kNBolts; i++){
929 t = kThetaBolt*i;
aa177c73 930 x = kBoltRadius*CosD(t);
931 y = kBoltRadius*SinD(t);
7d6c23de 932 z = kFlangeHalfLength-kBoltDepth;
933 flangecylinder->AddNode(bolt, i+1, new TGeoTranslation("",x,y,z));
934 }
935
936 cfcylinder->AddNode(foamcylinder,1,0);
937 cfcylinder->AddNode(flangecylinder,1,
938 new TGeoTranslation(0, 0, kInsertoHalfLength+kFlangeHalfLength));
939 cfcylinder->AddNode(flangecylinder,2,new TGeoCombiTrans(
940 0, 0, -kInsertoHalfLength-kFlangeHalfLength,
941 new TGeoRotation("",0,180,0) ) );
942
943
944 // SDD Support Cone with its internal inserts: a carbon fiber Pcon
945 // with holes which contains a stesalite Pcon which on turn contains a
946 // rohacell Pcon
947
948 dza = kConeThickness/kSinConeTheta-(kConeROutMax-kConeROutMin)/kTanConeTheta;
949
6b99a08f 950 TGeoPcon *coneshape = new TGeoPcon(0.0, 360.0, 10);
7d6c23de 951
952 coneshape->Z(0) = 0.0;
953 coneshape->Rmin(0) = kConeROutMin;
954 coneshape->Rmax(0) = kConeROutMax;
955
956 coneshape->Z(1) = kConeZOuterMilled - dza;
957 coneshape->Rmin(1) = coneshape->GetRmin(0);
958 coneshape->Rmax(1) = coneshape->GetRmax(0);
959
960 coneshape->Z(2) = kConeZOuterMilled;
961 coneshape->Rmax(2) = coneshape->GetRmax(0);
962
963 RadiusOfCurvature(kConeRCurv,0.,coneshape->GetZ(1),
964 coneshape->GetRmin(1),kConeTheta,z,rmin);
965 coneshape->Z(3) = z;
966 coneshape->Rmin(3) = rmin;
967
968 coneshape->Rmin(2) = RminFrom2Points(coneshape,3,1,coneshape->GetZ(2));
969
970 RadiusOfCurvature(kConeRCurv,0.,coneshape->GetZ(2),
971 coneshape->GetRmax(2),kConeTheta,z,rmax);
972 coneshape->Z(4) = z;
973 coneshape->Rmax(4) = rmax;
974 coneshape->Rmin(4) = RminFromZpCone(coneshape,3,kConeTheta,
975 coneshape->GetZ(4),0.0);
976
977 coneshape->Rmax(3) = RmaxFrom2Points(coneshape,4,2,coneshape->GetZ(3));
978
6b99a08f 979 coneshape->Z(6) = kConeZCylinder - kConeDZin;
980
981 RadiusOfCurvature(kConeRCurv,90.0,coneshape->GetZ(6),0.0,
982 90.0-kConeTheta,z,rmin);
983 coneshape->Z(5) = z;
984 coneshape->Rmin(5) = RminFromZpCone(coneshape,3,kConeTheta,z);
985 coneshape->Rmax(5) = RmaxFromZpCone(coneshape,4,kConeTheta,z);
986
987 RadiusOfCurvature(kConeRCurv,90.-kConeTheta,
988 0.0,coneshape->Rmin(5),90.0,z,rmin);
989 coneshape->Rmin(6) = rmin;
990 coneshape->Rmax(6) = RmaxFromZpCone(coneshape,4,kConeTheta,
991 coneshape->GetZ(6));
992
993 coneshape->Z(7) = coneshape->GetZ(6);
7d6c23de 994 coneshape->Rmin(7) = kConeRinMin;
6b99a08f 995 coneshape->Rmax(7) = coneshape->GetRmax(6);
7d6c23de 996
997 coneshape->Rmin(8) = kConeRinMin;
998
6b99a08f 999 RadiusOfCurvature(kConeRCurv,90.0,kConeZCylinder,kConeRinCylinder,
1000 90.0-kConeTheta,z,rmax);
1001 coneshape->Z(8) = z;
7d6c23de 1002 coneshape->Rmax(8) = rmax;
7d6c23de 1003
1004 coneshape->Z(9) = kConeZCylinder;
1005 coneshape->Rmin(9) = kConeRinMin;
6b99a08f 1006 coneshape->Rmax(9) = kConeRinCylinder;
7d6c23de 1007
7d6c23de 1008
1009 // SDD Cone Insert: another Pcon
1010 Double_t x0, y0, x1, y1, x2, y2;
1011 TGeoPcon *coneinsertshape = new TGeoPcon(0.0, 360.0, 9);
1012
1013 coneinsertshape->Z(0) = coneshape->GetZ(0) + kConeCFThickness;
1014 coneinsertshape->Rmin(0) = coneshape->GetRmin(0) + kConeCFThickness;
1015 coneinsertshape->Rmax(0) = coneshape->GetRmax(0) - kConeCFThickness;
1016
1017 x0 = coneshape->GetZ(0); y0 = coneshape->GetRmin(0);
1018 x1 = coneshape->GetZ(1); y1 = coneshape->GetRmin(1);
1019 x2 = coneshape->GetZ(2); y2 = coneshape->GetRmin(2);
1020 InsidePoint(x0, y0, x1, y1, x2, y2, kConeCFThickness, z, rmin);
1021 coneinsertshape->Z(1) = z;
1022 coneinsertshape->Rmin(1) = rmin;
1023 coneinsertshape->Rmax(1) = coneinsertshape->GetRmax(0);
1024
1025 x0 = coneshape->GetZ(1); y0 = coneshape->GetRmax(1);
1026 x1 = coneshape->GetZ(2); y1 = coneshape->GetRmax(2);
1027 x2 = coneshape->GetZ(3); y2 = coneshape->GetRmax(3);
1028 InsidePoint(x0, y0, x1, y1, x2, y2, -kConeCFThickness, z, rmax);
1029 coneinsertshape->Z(2) = z;
1030 coneinsertshape->Rmax(2) = rmax;
1031
1032 x0 = coneshape->GetZ(2); y0 = coneshape->GetRmin(2);
1033 x1 = coneshape->GetZ(3); y1 = coneshape->GetRmin(3);
1034 x2 = coneshape->GetZ(4); y2 = coneshape->GetRmin(4);
1035 InsidePoint(x0, y0, x1, y1, x2, y2, kConeCFThickness, z, rmin);
1036 coneinsertshape->Z(3) = z;
1037 coneinsertshape->Rmin(3) = rmin;
1038
1039 x0 = coneinsertshape->GetZ(1); y0 = coneinsertshape->GetRmin(1);
1040 x1 = coneinsertshape->GetZ(3); y1 = coneinsertshape->GetRmin(3);
1041 coneinsertshape->Rmin(2) = Yfrom2Points(x0, y0, x1, y1,
1042 coneinsertshape->Z(2));
1043
1044 x0 = coneshape->GetZ(3); y0 = coneshape->GetRmax(3);
1045 x1 = coneshape->GetZ(4); y1 = coneshape->GetRmax(4);
1046 x2 = coneshape->GetZ(5); y2 = coneshape->GetRmax(5);
1047 InsidePoint(x0, y0, x1, y1, x2, y2, -kConeCFThickness, z, rmax);
1048 coneinsertshape->Z(4) = z;
1049 coneinsertshape->Rmax(4) = rmax;
1050
1051 x0 = coneinsertshape->GetZ(2); y0 = coneinsertshape->GetRmax(2);
1052 x1 = coneinsertshape->GetZ(4); y1 = coneinsertshape->GetRmax(4);
1053 coneinsertshape->Rmax(3) = Yfrom2Points(x0, y0, x1, y1,
1054 coneinsertshape->Z(3));
1055
1056 x0 = coneshape->GetZ(4); y0 = coneshape->GetRmin(4);
1057 x1 = coneshape->GetZ(5); y1 = coneshape->GetRmin(5);
1058 x2 = coneshape->GetZ(6); y2 = coneshape->GetRmin(6);
1059 InsidePoint(x0, y0, x1, y1, x2, y2, kConeCFThickness, z, rmin);
1060 coneinsertshape->Z(5) = z;
1061 coneinsertshape->Rmin(5) = rmin;
1062 coneinsertshape->Rmax(5) = coneinsertshape->GetRmax(4) -
1063 kTanConeTheta*(coneinsertshape->GetZ(5) - coneinsertshape->GetZ(4));
1064
1065 x0 = coneinsertshape->GetZ(3); y0 = coneinsertshape->GetRmin(3);
1066 x1 = coneinsertshape->GetZ(5); y1 = coneinsertshape->GetRmin(5);
1067 coneinsertshape->Rmin(4) = Yfrom2Points(x0, y0, x1, y1,
1068 coneinsertshape->Z(4));
1069
1070 x0 = coneshape->GetZ(5); y0 = coneshape->GetRmin(5);
1071 x1 = coneshape->GetZ(6); y1 = coneshape->GetRmin(6);
1072 x2 = coneshape->GetZ(7); y2 = coneshape->GetRmin(7);
1073 InsidePoint(x0, y0, x1, y1, x2, y2, kConeCFThickness, z, rmin);
1074 coneinsertshape->Z(6) = z;
1075 coneinsertshape->Rmin(6) = rmin;
1076 coneinsertshape->Rmax(6) = coneinsertshape->GetRmax(4) -
1077 kTanConeTheta*(coneinsertshape->GetZ(6) - coneinsertshape->GetZ(4));
1078
1079 coneinsertshape->Z(7) = coneinsertshape->GetZ(6);
1080 coneinsertshape->Rmin(7) = coneshape->GetRmin(7) + kConeCFThickness;
1081 coneinsertshape->Rmax(7) = coneinsertshape->GetRmax(6);
1082
1083 coneinsertshape->Z(8) = coneshape->GetZ(9) - kConeCFThickness;
1084 coneinsertshape->Rmin(8) = coneinsertshape->GetRmin(7);
1085 coneinsertshape->Rmax(8) = coneinsertshape->GetRmax(4) -
1086 kTanConeTheta*(coneinsertshape->GetZ(8) - coneinsertshape->GetZ(4));
1087
1088 // SDD Cone Foam: another Pcon
1089 TGeoPcon *conefoamshape = new TGeoPcon(0.0, 360.0, 4);
1090
1091 RadiusOfCurvature(kConeRCurv+kConeCFThickness,0.0,coneinsertshape->GetZ(1),
1092 coneinsertshape->GetRmin(1),kConeTheta,z,rmin);
1093
1094 conefoamshape->Z(0) = z;
1095 conefoamshape->Rmin(0) = rmin;
1096 conefoamshape->Rmax(0) = conefoamshape->GetRmin(0);
1097
1098 conefoamshape->Z(1) = conefoamshape->GetZ(0)+
1099 (kConeThickness-2.0*kConeCFThickness)/kSinConeTheta;
1100 conefoamshape->Rmin(1) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1101 conefoamshape->GetZ(1));
1102 conefoamshape->Rmax(1) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1103 conefoamshape->GetZ(1));
1104
1105 conefoamshape->Z(2) = coneshape->GetZ(5)-kConeCFThickness;
1106 conefoamshape->Rmin(2) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1107 conefoamshape->GetZ(2));
1108 conefoamshape->Rmax(2) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1109 conefoamshape->GetZ(2));
1110
1111 conefoamshape->Z(3) = coneinsertshape->GetZ(5)+
1112 (kConeThickness-2.0*kConeCFThickness)*kCosConeTheta;
1113 conefoamshape->Rmax(3) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1114 conefoamshape->GetZ(3));
1115 conefoamshape->Rmin(3) = conefoamshape->GetRmax(3);
1116
1117 // SDD Cone Holes: Pcon's
a30e33f0 1118 // A single hole volume gives an overlap with coneinsert, so
1119 // three contiguous volumes are created: one to be put in the cone foam
1120 // and two in the cone carbon fiber envelope
7d6c23de 1121 TGeoPcon *hole1shape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1122
1123 hole1shape->Rmin(0) = kHole1RMax;
1124 hole1shape->Rmax(0) = hole1shape->GetRmin(0);
a30e33f0 1125 hole1shape->Z(0) = ZFromRminpCone(conefoamshape,0,kConeTheta,
7d6c23de 1126 hole1shape->GetRmin(0));
1127
1128 hole1shape->Rmax(1) = hole1shape->GetRmax(0);
a30e33f0 1129 hole1shape->Z(1) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1130 hole1shape->GetRmax(1));
a30e33f0 1131 hole1shape->Rmin(1) = RminFromZpCone(conefoamshape,1,kConeTheta,
7d6c23de 1132 hole1shape->GetZ(1));
1133
1134 hole1shape->Rmin(2) = kHole1RMin;
a30e33f0 1135 hole1shape->Z(2) = ZFromRminpCone(conefoamshape,1,kConeTheta,
7d6c23de 1136 hole1shape->GetRmin(2));
a30e33f0 1137 hole1shape->Rmax(2) = RmaxFromZpCone(conefoamshape,3,kConeTheta,
7d6c23de 1138 hole1shape->GetZ(2));
1139
1140 hole1shape->Rmin(3) = hole1shape->GetRmin(2);
1141 hole1shape->Rmax(3) = hole1shape->GetRmin(3);
a30e33f0 1142 hole1shape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1143 hole1shape->GetRmax(3));
1144
a30e33f0 1145 TGeoPcon *hole11shape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1146
1147 hole11shape->Rmin(0) = kHole1RMax;
1148 hole11shape->Rmax(0) = hole11shape->GetRmin(0);
1149 hole11shape->Z(0) = ZFromRminpCone(coneshape,3,kConeTheta,
1150 hole11shape->GetRmin(0));
1151
1152 hole11shape->Rmax(1) = hole11shape->GetRmax(0);
1153 hole11shape->Z(1) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1154 hole11shape->GetRmax(1));
1155 hole11shape->Rmin(1) = RminFromZpCone(coneshape,3,kConeTheta,
1156 hole11shape->GetZ(1));
1157
1158 hole11shape->Rmin(2) = kHole1RMin;
1159 hole11shape->Z(2) = ZFromRminpCone(coneshape,3,kConeTheta,
1160 hole11shape->GetRmin(2));
1161 hole11shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1162 hole11shape->GetZ(2));
1163
1164 hole11shape->Rmin(3) = hole11shape->GetRmin(2);
1165 hole11shape->Rmax(3) = hole11shape->GetRmin(3);
1166 hole11shape->Z(3) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1167 hole11shape->GetRmax(3));
1168
1169 TGeoPcon *hole12shape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1170
1171 hole12shape->Rmin(0) = kHole1RMax;
1172 hole12shape->Rmax(0) = hole12shape->GetRmin(0);
1173 hole12shape->Z(0) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1174 hole12shape->GetRmin(0));
1175
1176 hole12shape->Rmax(1) = hole12shape->GetRmax(0);
1177 hole12shape->Z(1) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1178 hole12shape->GetRmax(1));
1179 hole12shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1180 hole12shape->GetZ(1));
1181
1182 hole12shape->Rmin(2) = kHole1RMin;
1183 hole12shape->Z(2) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1184 hole12shape->GetRmin(2));
1185 hole12shape->Rmax(2) = RmaxFromZpCone(coneshape,4,kConeTheta,
1186 hole12shape->GetZ(2));
1187
1188 hole12shape->Rmin(3) = hole12shape->GetRmin(2);
1189 hole12shape->Rmax(3) = hole12shape->GetRmin(3);
1190 hole12shape->Z(3) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1191 hole12shape->GetRmax(3));
1192
1193 //
7d6c23de 1194 TGeoPcon *hole2shape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1195
1196 hole2shape->Rmin(0) = kHole2RMax;
1197 hole2shape->Rmax(0) = hole2shape->GetRmin(0);
a30e33f0 1198 hole2shape->Z(0) = ZFromRminpCone(conefoamshape,0,kConeTheta,
7d6c23de 1199 hole2shape->GetRmin(0));
1200
1201 hole2shape->Rmax(1) = hole2shape->GetRmax(0);
a30e33f0 1202 hole2shape->Z(1) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1203 hole2shape->GetRmax(1));
a30e33f0 1204 hole2shape->Rmin(1) = RminFromZpCone(conefoamshape,1,kConeTheta,
7d6c23de 1205 hole2shape->GetZ(1));
1206
1207 hole2shape->Rmin(2) = kHole2RMin;
a30e33f0 1208 hole2shape->Z(2) = ZFromRminpCone(conefoamshape,1,kConeTheta,
7d6c23de 1209 hole2shape->GetRmin(2));
a30e33f0 1210 hole2shape->Rmax(2) = RmaxFromZpCone(conefoamshape,3,kConeTheta,
7d6c23de 1211 hole2shape->GetZ(2));
1212
1213 hole2shape->Rmin(3) = hole2shape->GetRmin(2);
1214 hole2shape->Rmax(3) = hole2shape->GetRmin(3);
a30e33f0 1215 hole2shape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1216 hole2shape->GetRmax(3));
1217
a30e33f0 1218 TGeoPcon *hole21shape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1219
1220 hole21shape->Rmin(0) = kHole2RMax;
1221 hole21shape->Rmax(0) = hole21shape->GetRmin(0);
1222 hole21shape->Z(0) = ZFromRminpCone(coneshape,3,kConeTheta,
1223 hole21shape->GetRmin(0));
1224
1225 hole21shape->Rmax(1) = hole21shape->GetRmax(0);
1226 hole21shape->Z(1) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1227 hole21shape->GetRmax(1));
1228 hole21shape->Rmin(1) = RminFromZpCone(coneshape,3,kConeTheta,
1229 hole21shape->GetZ(1));
1230
1231 hole21shape->Rmin(2) = kHole2RMin;
1232 hole21shape->Z(2) = ZFromRminpCone(coneshape,3,kConeTheta,
1233 hole21shape->GetRmin(2));
1234 hole21shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1235 hole21shape->GetZ(2));
1236
1237 hole21shape->Rmin(3) = hole21shape->GetRmin(2);
1238 hole21shape->Rmax(3) = hole21shape->GetRmin(3);
1239 hole21shape->Z(3) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1240 hole21shape->GetRmax(3));
1241
1242 TGeoPcon *hole22shape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1243
1244 hole22shape->Rmin(0) = kHole2RMax;
1245 hole22shape->Rmax(0) = hole22shape->GetRmin(0);
1246 hole22shape->Z(0) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1247 hole22shape->GetRmin(0));
1248
1249 hole22shape->Rmax(1) = hole22shape->GetRmax(0);
1250 hole22shape->Z(1) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1251 hole22shape->GetRmax(1));
1252 hole22shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1253 hole22shape->GetZ(1));
1254
1255 hole22shape->Rmin(2) = kHole2RMin;
1256 hole22shape->Z(2) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1257 hole22shape->GetRmin(2));
1258 hole22shape->Rmax(2) = RmaxFromZpCone(coneshape,4,kConeTheta,
1259 hole22shape->GetZ(2));
1260
1261 hole22shape->Rmin(3) = hole22shape->GetRmin(2);
1262 hole22shape->Rmax(3) = hole22shape->GetRmin(3);
1263 hole22shape->Z(3) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1264 hole22shape->GetRmax(3));
1265
1266 //
7d6c23de 1267 Double_t holePhi;
1268 holePhi = (kHole3Width/kHole3RMin)*TMath::RadToDeg();
1269
1270 TGeoPcon *hole3shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1271
1272 hole3shape->Rmin(0) = kHole3RMin + kHole3DeltaR;
1273 hole3shape->Rmax(0) = hole3shape->GetRmin(0);
a30e33f0 1274 hole3shape->Z(0) = ZFromRminpCone(conefoamshape,0,kConeTheta,
7d6c23de 1275 hole3shape->GetRmin(0));
1276
1277 hole3shape->Rmax(1) = hole3shape->GetRmax(0);
a30e33f0 1278 hole3shape->Z(1) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1279 hole3shape->GetRmax(1));
a30e33f0 1280 hole3shape->Rmin(1) = RminFromZpCone(conefoamshape,1,kConeTheta,
7d6c23de 1281 hole3shape->GetZ(1));
1282
1283 hole3shape->Rmin(2) = kHole3RMin;
a30e33f0 1284 hole3shape->Z(2) = ZFromRminpCone(conefoamshape,1,kConeTheta,
7d6c23de 1285 hole3shape->GetRmin(2));
a30e33f0 1286 hole3shape->Rmax(2) = RmaxFromZpCone(conefoamshape,3,kConeTheta,
7d6c23de 1287 hole3shape->GetZ(2));
1288
1289 hole3shape->Rmin(3) = hole3shape->GetRmin(2);
1290 hole3shape->Rmax(3) = hole3shape->GetRmin(3);
a30e33f0 1291 hole3shape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1292 hole3shape->GetRmax(3));
1293
a30e33f0 1294 TGeoPcon *hole31shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1295
1296 hole31shape->Rmin(0) = kHole3RMin + kHole3DeltaR;
1297 hole31shape->Rmax(0) = hole31shape->GetRmin(0);
1298 hole31shape->Z(0) = ZFromRminpCone(coneshape,3,kConeTheta,
1299 hole31shape->GetRmin(0));
1300
1301 hole31shape->Rmax(1) = hole31shape->GetRmax(0);
1302 hole31shape->Z(1) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1303 hole31shape->GetRmax(1));
1304 hole31shape->Rmin(1) = RminFromZpCone(coneshape,3,kConeTheta,
1305 hole31shape->GetZ(1));
1306
1307 hole31shape->Rmin(2) = kHole3RMin;
1308 hole31shape->Z(2) = ZFromRminpCone(coneshape,3,kConeTheta,
1309 hole31shape->GetRmin(2));
1310 hole31shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1311 hole31shape->GetZ(2));
1312
1313 hole31shape->Rmin(3) = hole31shape->GetRmin(2);
1314 hole31shape->Rmax(3) = hole31shape->GetRmin(3);
1315 hole31shape->Z(3) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1316 hole31shape->GetRmax(3));
1317
1318 TGeoPcon *hole32shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1319
1320 hole32shape->Rmin(0) = kHole3RMin + kHole3DeltaR;
1321 hole32shape->Rmax(0) = hole32shape->GetRmin(0);
1322 hole32shape->Z(0) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1323 hole32shape->GetRmin(0));
1324
1325 hole32shape->Rmax(1) = hole32shape->GetRmax(0);
1326 hole32shape->Z(1) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1327 hole32shape->GetRmax(1));
1328 hole32shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1329 hole32shape->GetZ(1));
1330
1331 hole32shape->Rmin(2) = kHole3RMin;
1332 hole32shape->Z(2) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1333 hole32shape->GetRmin(2));
1334 hole32shape->Rmax(2) = RmaxFromZpCone(coneshape,4,kConeTheta,
1335 hole32shape->GetZ(2));
1336
1337 hole32shape->Rmin(3) = hole32shape->GetRmin(2);
1338 hole32shape->Rmax(3) = hole32shape->GetRmin(3);
1339 hole32shape->Z(3) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1340 hole32shape->GetRmax(3));
1341
1342 //
3a299c65 1343 holePhi = (kHole4Width/kHole4RMin)*TMath::RadToDeg();
1344
7d6c23de 1345 TGeoPcon *hole4shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1346
1347 hole4shape->Rmin(0) = kHole4RMin + kHole4DeltaR;
1348 hole4shape->Rmax(0) = hole4shape->GetRmin(0);
1349 hole4shape->Z(0) = ZFromRminpCone(coneshape,3,kConeTheta,
1350 hole4shape->GetRmin(0));
1351
1352 hole4shape->Rmax(1) = hole4shape->GetRmax(0);
1353 hole4shape->Z(1) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1354 hole4shape->GetRmax(1));
1355 hole4shape->Rmin(1) = RminFromZpCone(coneshape,3,kConeTheta,
1356 hole4shape->GetZ(1));
1357
1358 hole4shape->Rmin(2) = kHole4RMin;
1359 hole4shape->Z(2) = ZFromRminpCone(coneshape,3,kConeTheta,
1360 hole4shape->GetRmin(2));
1361 hole4shape->Rmax(2) = RmaxFromZpCone(coneshape,4,kConeTheta,
1362 hole4shape->GetZ(2));
1363
1364 hole4shape->Rmin(3) = hole4shape->GetRmin(2);
1365 hole4shape->Rmax(3) = hole4shape->GetRmin(3);
1366 hole4shape->Z(3) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1367 hole4shape->GetRmax(3));
1368
96eb8210 1369 // Cables to be put inside the holes: Pcon's
1370 // (fractions are manually computed from AliITSv11GeometrySDD::SDDCables
1371 TGeoPcon *hole1plastshape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1372
1373 hole1plastshape->Rmin(0) = hole1shape->GetRmin(0);
1374 hole1plastshape->Rmax(0) = hole1shape->GetRmax(0);
1375 hole1plastshape->Z(0) = hole1shape->GetZ(0);
1376
1377 hole1plastshape->Rmin(1) = hole1shape->GetRmin(1);
1378 hole1plastshape->Rmax(1) = hole1shape->GetRmax(1);
1379 hole1plastshape->Z(1) = hole1shape->GetZ(1);
1380
1381 dza = hole1plastshape->GetRmax(0) - (kHole1RMax-kHole1RMin)*kHolePlasticFrac;
1382
1383 hole1plastshape->Rmin(2) = dza;
1384 hole1plastshape->Z(2) = ZFromRminpCone(conefoamshape,1,kConeTheta,
1385 hole1plastshape->GetRmin(2));
1386 hole1plastshape->Rmax(2) = RmaxFromZpCone(conefoamshape,3,kConeTheta,
1387 hole1plastshape->GetZ(2));
1388
1389 hole1plastshape->Rmin(3) = hole1plastshape->GetRmin(2);
1390 hole1plastshape->Rmax(3) = hole1plastshape->GetRmin(3);
1391 hole1plastshape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
1392 hole1plastshape->GetRmax(3));
1393
1394 TGeoPcon *hole1Cushape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1395
1396 hole1Cushape->Rmin(0) = hole1plastshape->GetRmin(2);
1397 hole1Cushape->Rmax(0) = hole1Cushape->GetRmin(0);
1398 hole1Cushape->Z(0) = hole1plastshape->GetZ(2);
1399
1400 dza = hole1Cushape->GetRmax(0) - (kHole1RMax-kHole1RMin)*kHoleCuFrac;
1401
1402 hole1Cushape->Rmin(1) = dza;
1403 hole1Cushape->Rmax(1) = hole1Cushape->GetRmax(0);
1404 hole1Cushape->Z(1) = ZFromRminpCone(conefoamshape,1,kConeTheta,
1405 hole1Cushape->GetRmin(1));
1406
1407 hole1Cushape->Rmax(2) = hole1Cushape->GetRmax(0);
1408 hole1Cushape->Rmin(2) = hole1Cushape->GetRmin(1);
1409 hole1Cushape->Z(2) = hole1plastshape->GetZ(3);
1410
1411 hole1Cushape->Rmin(3) = hole1Cushape->GetRmin(1);
1412 hole1Cushape->Rmax(3) = hole1Cushape->GetRmin(3);
1413 hole1Cushape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
1414 hole1Cushape->GetRmax(3));
1415
1416 TGeoPcon *hole1glassshape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1417
1418 hole1glassshape->Rmin(0) = hole1Cushape->GetRmin(1);
1419 hole1glassshape->Rmax(0) = hole1glassshape->GetRmin(0);
1420 hole1glassshape->Z(0) = hole1Cushape->GetZ(1);
1421
1422 dza = hole1glassshape->GetRmax(0) - (kHole1RMax-kHole1RMin)*kHoleGlassFrac;
1423
1424 hole1glassshape->Rmin(1) = dza;
1425 hole1glassshape->Rmax(1) = hole1glassshape->GetRmax(0);
1426 hole1glassshape->Z(1) = ZFromRminpCone(conefoamshape,1,kConeTheta,
1427 hole1glassshape->GetRmin(1));
1428
1429 hole1glassshape->Rmax(2) = hole1glassshape->GetRmax(0);
1430 hole1glassshape->Rmin(2) = hole1glassshape->GetRmin(1);
1431 hole1glassshape->Z(2) = hole1Cushape->GetZ(3);
1432
1433 hole1glassshape->Rmin(3) = hole1glassshape->GetRmin(1);
1434 hole1glassshape->Rmax(3) = hole1glassshape->GetRmin(3);
1435 hole1glassshape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
1436 hole1glassshape->GetRmax(3));
1437 //
1438 TGeoPcon *hole2plastshape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1439
1440 hole2plastshape->Rmin(0) = hole2shape->GetRmin(0);
1441 hole2plastshape->Rmax(0) = hole2shape->GetRmax(0);
1442 hole2plastshape->Z(0) = hole2shape->GetZ(0);
1443
1444 hole2plastshape->Rmin(1) = hole2shape->GetRmin(1);
1445 hole2plastshape->Rmax(1) = hole2shape->GetRmax(1);
1446 hole2plastshape->Z(1) = hole2shape->GetZ(1);
1447
1448 dza = hole2plastshape->GetRmax(0) - (kHole2RMax-kHole2RMin)*kHolePlasticFrac;
1449
1450 hole2plastshape->Rmin(2) = dza;
1451 hole2plastshape->Z(2) = ZFromRminpCone(conefoamshape,1,kConeTheta,
1452 hole2plastshape->GetRmin(2));
1453 hole2plastshape->Rmax(2) = RmaxFromZpCone(conefoamshape,3,kConeTheta,
1454 hole2plastshape->GetZ(2));
1455
1456 hole2plastshape->Rmin(3) = hole2plastshape->GetRmin(2);
1457 hole2plastshape->Rmax(3) = hole2plastshape->GetRmin(3);
1458 hole2plastshape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
1459 hole2plastshape->GetRmax(3));
1460
1461 TGeoPcon *hole2Cushape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1462
1463 hole2Cushape->Rmin(0) = hole2plastshape->GetRmin(2);
1464 hole2Cushape->Rmax(0) = hole2Cushape->GetRmin(0);
1465 hole2Cushape->Z(0) = hole2plastshape->GetZ(2);
1466
1467 dza = hole2Cushape->GetRmax(0) - (kHole2RMax-kHole2RMin)*kHoleCuFrac;
1468
1469 hole2Cushape->Rmin(1) = dza;
1470 hole2Cushape->Rmax(1) = hole2Cushape->GetRmax(0);
1471 hole2Cushape->Z(1) = ZFromRminpCone(conefoamshape,1,kConeTheta,
1472 hole2Cushape->GetRmin(1));
1473
1474 hole2Cushape->Rmax(2) = hole2Cushape->GetRmax(0);
1475 hole2Cushape->Rmin(2) = hole2Cushape->GetRmin(1);
1476 hole2Cushape->Z(2) = hole2plastshape->GetZ(3);
1477
1478 hole2Cushape->Rmin(3) = hole2Cushape->GetRmin(1);
1479 hole2Cushape->Rmax(3) = hole2Cushape->GetRmin(3);
1480 hole2Cushape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
1481 hole2Cushape->GetRmax(3));
1482
1483 TGeoPcon *hole2glassshape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1484
1485 hole2glassshape->Rmin(0) = hole2Cushape->GetRmin(1);
1486 hole2glassshape->Rmax(0) = hole2glassshape->GetRmin(0);
1487 hole2glassshape->Z(0) = hole2Cushape->GetZ(1);
1488
1489 dza = hole2glassshape->GetRmax(0) - (kHole2RMax-kHole2RMin)*kHoleGlassFrac;
1490
1491 hole2glassshape->Rmin(1) = dza;
1492 hole2glassshape->Rmax(1) = hole2glassshape->GetRmax(0);
1493 hole2glassshape->Z(1) = ZFromRminpCone(conefoamshape,1,kConeTheta,
1494 hole2glassshape->GetRmin(1));
1495
1496 hole2glassshape->Rmax(2) = hole2glassshape->GetRmax(0);
1497 hole2glassshape->Rmin(2) = hole2glassshape->GetRmin(1);
1498 hole2glassshape->Z(2) = hole2Cushape->GetZ(3);
1499
1500 hole2glassshape->Rmin(3) = hole2glassshape->GetRmin(1);
1501 hole2glassshape->Rmax(3) = hole2glassshape->GetRmin(3);
1502 hole2glassshape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
1503 hole2glassshape->GetRmax(3));
1504
1505
7d6c23de 1506 // Debug if requested
1507 if (GetDebug(1)) {
1508 coneshape->InspectShape();
1509 coneinsertshape->InspectShape();
1510 conefoamshape->InspectShape();
1511 hole1shape->InspectShape();
1512 hole2shape->InspectShape();
a30e33f0 1513 hole3shape->InspectShape();
1514 hole4shape->InspectShape();
7d6c23de 1515 }
1516
1517
1518 // We have the shapes: now create the real volumes
1519
1520 TGeoVolume *cfcone = new TGeoVolume("SDDCarbonFiberCone",
1521 coneshape,medSDDcf);
1522 cfcone->SetVisibility(kTRUE);
1523 cfcone->SetLineColor(4); // Blue
1524 cfcone->SetLineWidth(1);
1525 cfcone->SetFillColor(cfcone->GetLineColor());
1526 cfcone->SetFillStyle(4000); // 0% transparent
1527
1528 TGeoVolume *cfconeinsert = new TGeoVolume("SDDCarbonFiberConeInsert",
1529 coneinsertshape,medSDDste);
1530 cfconeinsert->SetVisibility(kTRUE);
1531 cfconeinsert->SetLineColor(2); // Red
1532 cfconeinsert->SetLineWidth(1);
1533 cfconeinsert->SetFillColor(cfconeinsert->GetLineColor());
1534 cfconeinsert->SetFillStyle(4050); // 50% transparent
1535
1536 TGeoVolume *cfconefoam = new TGeoVolume("SDDCarbonFiberConeFoam",
1537 conefoamshape,medSDDroh);
1538 cfconefoam->SetVisibility(kTRUE);
1539 cfconefoam->SetLineColor(7); // Light blue
1540 cfconefoam->SetLineWidth(1);
1541 cfconefoam->SetFillColor(cfconefoam->GetLineColor());
1542 cfconefoam->SetFillStyle(4050); // 50% transparent
1543
1544 TGeoVolume *hole1 = new TGeoVolume("SDDCableHole1",
1545 hole1shape,medSDDair);
1546 hole1->SetVisibility(kTRUE);
1547 hole1->SetLineColor(5); // Yellow
1548 hole1->SetLineWidth(1);
1549 hole1->SetFillColor(hole1->GetLineColor());
1550 hole1->SetFillStyle(4090); // 90% transparent
1551
a30e33f0 1552 TGeoVolume *hole11 = new TGeoVolume("SDDCableHole11",
1553 hole11shape,medSDDair);
1554 hole11->SetVisibility(kTRUE);
1555 hole11->SetLineColor(5); // Yellow
1556 hole11->SetLineWidth(1);
1557 hole11->SetFillColor(hole11->GetLineColor());
1558 hole11->SetFillStyle(4090); // 90% transparent
1559
1560 TGeoVolume *hole12 = new TGeoVolume("SDDCableHole12",
1561 hole12shape,medSDDair);
1562 hole12->SetVisibility(kTRUE);
1563 hole12->SetLineColor(5); // Yellow
1564 hole12->SetLineWidth(1);
1565 hole12->SetFillColor(hole12->GetLineColor());
1566 hole12->SetFillStyle(4090); // 90% transparent
1567
96eb8210 1568 TGeoVolume *hole1plast = new TGeoVolume("SDDCableHole1Plast",
1569 hole1plastshape,medSDDplast);
1570 hole1plast->SetVisibility(kTRUE);
1571 hole1plast->SetLineColor(kBlue);
1572 hole1plast->SetLineWidth(1);
1573 hole1plast->SetFillColor(hole1plast->GetLineColor());
1574 hole1plast->SetFillStyle(4090); // 90% transparent
1575
1576 TGeoVolume *hole1Cu = new TGeoVolume("SDDCableHole1Cu",
1577 hole1Cushape,medSDDCu);
1578 hole1Cu->SetVisibility(kTRUE);
1579 hole1Cu->SetLineColor(kRed);
1580 hole1Cu->SetLineWidth(1);
1581 hole1Cu->SetFillColor(hole1Cu->GetLineColor());
1582 hole1Cu->SetFillStyle(4090); // 90% transparent
1583
1584 TGeoVolume *hole1glass = new TGeoVolume("SDDCableHole1glass",
1585 hole1glassshape,medSDDglass);
1586 hole1glass->SetVisibility(kTRUE);
1587 hole1glass->SetLineColor(kGreen);
1588 hole1glass->SetLineWidth(1);
1589 hole1glass->SetFillColor(hole1glass->GetLineColor());
1590 hole1glass->SetFillStyle(4090); // 90% transparent
1591
7d6c23de 1592 TGeoVolume *hole2 = new TGeoVolume("SDDCableHole2",
1593 hole2shape,medSDDair);
1594 hole2->SetVisibility(kTRUE);
1595 hole2->SetLineColor(5); // Yellow
1596 hole2->SetLineWidth(1);
1597 hole2->SetFillColor(hole2->GetLineColor());
1598 hole2->SetFillStyle(4090); // 90% transparent
1599
a30e33f0 1600 TGeoVolume *hole21 = new TGeoVolume("SDDCableHole21",
1601 hole21shape,medSDDair);
1602 hole21->SetVisibility(kTRUE);
1603 hole21->SetLineColor(5); // Yellow
1604 hole21->SetLineWidth(1);
1605 hole21->SetFillColor(hole21->GetLineColor());
1606 hole21->SetFillStyle(4090); // 90% transparent
1607
1608 TGeoVolume *hole22 = new TGeoVolume("SDDCableHole22",
1609 hole22shape,medSDDair);
1610 hole22->SetVisibility(kTRUE);
1611 hole22->SetLineColor(5); // Yellow
1612 hole22->SetLineWidth(1);
1613 hole22->SetFillColor(hole22->GetLineColor());
1614 hole22->SetFillStyle(4090); // 90% transparent
1615
96eb8210 1616 TGeoVolume *hole2plast = new TGeoVolume("SDDCableHole2Plast",
1617 hole2plastshape,medSDDplast);
1618 hole2plast->SetVisibility(kTRUE);
1619 hole2plast->SetLineColor(kBlue);
1620 hole2plast->SetLineWidth(1);
1621 hole2plast->SetFillColor(hole2plast->GetLineColor());
1622 hole2plast->SetFillStyle(4090); // 90% transparent
1623
1624 TGeoVolume *hole2Cu = new TGeoVolume("SDDCableHole2Cu",
1625 hole2Cushape,medSDDCu);
1626 hole2Cu->SetVisibility(kTRUE);
1627 hole2Cu->SetLineColor(kRed);
1628 hole2Cu->SetLineWidth(1);
1629 hole2Cu->SetFillColor(hole2Cu->GetLineColor());
1630 hole2Cu->SetFillStyle(4090); // 90% transparent
1631
1632 TGeoVolume *hole2glass = new TGeoVolume("SDDCableHole2glass",
1633 hole2glassshape,medSDDglass);
1634 hole2glass->SetVisibility(kTRUE);
1635 hole2glass->SetLineColor(kGreen);
1636 hole2glass->SetLineWidth(1);
1637 hole2glass->SetFillColor(hole2glass->GetLineColor());
1638 hole2glass->SetFillStyle(4090); // 90% transparent
1639
7d6c23de 1640 TGeoVolume *hole3 = new TGeoVolume("SDDCableHole3",
1641 hole3shape,medSDDair);
1642 hole3->SetVisibility(kTRUE);
1643 hole3->SetLineColor(5); // Yellow
1644 hole3->SetLineWidth(1);
1645 hole3->SetFillColor(hole3->GetLineColor());
1646 hole3->SetFillStyle(4090); // 90% transparent
1647
a30e33f0 1648 TGeoVolume *hole31 = new TGeoVolume("SDDCableHole31",
1649 hole31shape,medSDDair);
1650 hole31->SetVisibility(kTRUE);
1651 hole31->SetLineColor(5); // Yellow
1652 hole31->SetLineWidth(1);
1653 hole31->SetFillColor(hole31->GetLineColor());
1654 hole31->SetFillStyle(4090); // 90% transparent
1655
1656 TGeoVolume *hole32 = new TGeoVolume("SDDCableHole32",
1657 hole32shape,medSDDair);
1658 hole32->SetVisibility(kTRUE);
1659 hole32->SetLineColor(5); // Yellow
1660 hole32->SetLineWidth(1);
1661 hole32->SetFillColor(hole32->GetLineColor());
1662 hole32->SetFillStyle(4090); // 90% transparent
1663
7d6c23de 1664 TGeoVolume *hole4 = new TGeoVolume("SDDCableHole4",
1665 hole4shape,medSDDair);
1666 hole4->SetVisibility(kTRUE);
1667 hole4->SetLineColor(5); // Yellow
1668 hole4->SetLineWidth(1);
1669 hole4->SetFillColor(hole4->GetLineColor());
1670 hole4->SetFillStyle(4090); // 90% transparent
1671
1672 // Mount up a cone
1673 cfconeinsert->AddNode(cfconefoam,1,0);
1674
96eb8210 1675 hole1->AddNode(hole1plast, 1, 0);
1676 hole1->AddNode(hole1Cu, 1, 0);
1677 hole1->AddNode(hole1glass, 1, 0);
1678
1679 hole2->AddNode(hole2plast, 1, 0);
1680 hole2->AddNode(hole2Cu, 1, 0);
1681 hole2->AddNode(hole2glass, 1, 0);
1682
7d6c23de 1683 for (Int_t i=0; i<12; i++) {
1684 Double_t phiH = i*30.0;
a30e33f0 1685 cfconefoam->AddNode(hole1 , i+1, new TGeoRotation("", 0, 0, phiH));
1686 cfcone->AddNode(hole11, i+1, new TGeoRotation("", 0, 0, phiH));
1687 cfcone->AddNode(hole12, i+1, new TGeoRotation("", 0, 0, phiH));
7d6c23de 1688 }
1689
1690 for (Int_t i=0; i<6; i++) {
1691 Double_t phiH = i*60.0;
a30e33f0 1692 cfconefoam->AddNode(hole2 , i+1, new TGeoRotation("", 0, 0, phiH));
1693 cfcone->AddNode(hole21, i+1, new TGeoRotation("", 0, 0, phiH));
1694 cfcone->AddNode(hole22, i+1, new TGeoRotation("", 0, 0, phiH));
7d6c23de 1695 }
1696
1697 for (Int_t i=0; i<kNHole3; i++) {
1698 Double_t phiH0 = 360./(Double_t)kNHole3;
1699 Double_t phiH = i*phiH0 + 0.5*phiH0;
a30e33f0 1700 cfconefoam->AddNode(hole3 , i+1, new TGeoRotation("", phiH, 0, 0));
1701 cfcone->AddNode(hole31, i+1, new TGeoRotation("", phiH, 0, 0));
1702 cfcone->AddNode(hole32, i+1, new TGeoRotation("", phiH, 0, 0));
7d6c23de 1703 }
a30e33f0 1704
1705 cfcone->AddNode(cfconeinsert,1,0);
1706
7d6c23de 1707/*
1708 for (Int_t i=0; i<kNHole4; i++) {
1709 Double_t phiH0 = 360./(Double_t)kNHole4;
1710 Double_t phiH = i*phiH0 + 0.25*phiH0;
1711 cfcone->AddNode(hole4, i+1, new TGeoRotation("", phiH, 0, 0));
1712 }
1713*/
3a299c65 1714 // Finally put everything in the mother volume
1715 moth->AddNode(cfcylinder,1,0);
7d6c23de 1716
1717 z = coneshape->Z(9);
3a299c65 1718 moth->AddNode(cfcone,1,new TGeoTranslation(0, 0, -z - kCylinderHalfLength));
1719 moth->AddNode(cfcone,2,new TGeoCombiTrans (0, 0, z + kCylinderHalfLength,
1720 new TGeoRotation("", 0, 180, 0) ));
7d6c23de 1721
7d6c23de 1722
1723 return;
172b0d90 1724}
7d6c23de 1725
172b0d90 1726//______________________________________________________________________
43aefea7 1727void AliITSv11GeometrySupport::SSDCone(TGeoVolume *moth,const TGeoManager *mgr)
3a299c65 1728{
1729//
1730// Creates the SSD support cone and cylinder geometry. as a
1731// volume assembly and adds it to the mother volume
1732// (part of this code is taken or anyway inspired to SSDCone method
1733// of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06)
1734//
1735// Input:
1736// moth : the TGeoVolume owing the volume structure
1737// mgr : the GeoManager (default gGeoManager)
1738// Output:
1739//
1740// Created: ??? Bjorn S. Nilsen
1741// Updated: 08 Mar 2008 Mario Sitta
1742//
1743// Technical data are taken from: "ITS Supporto Generale" (technical
1744// drawings ALR3-0743/1, ALR3-0743/1A and ALR3-0743/1B), "Supporto Generale
1745// Settore SSD" (technical drawings ALR3-0743/2A and ALR3-0743/2E), private
1746// communication with B. Giraudo
5e15508a 1747//
1748// Updated: 11 Apr 2008 Mario Sitta
1749// Measures from drawings give overlaps with SPD thermal shield wings,
1750// so the terminal part of the SSD cone was reduced
573a206f 1751//
1752// Updated: 30 Mar 2010 Mario Sitta
1753// Following M. van Leeuwen's suggestion on material budget, the thickness
1754// of the carbon fiber cylinder was increased from 0.6 to 0.625mm
3a299c65 1755
1756 // Dimensions of the Central cylinder and flanges
1757 const Double_t kCylinderHalfLength = (1144.0/2) *fgkmm;
1758 const Double_t kCylinderOuterRadius = ( 595.0/2) *fgkmm;
573a206f 1759 const Double_t kCylinderThickness = 0.625*fgkmm;
3a299c65 1760 const Double_t kFoamHalfLength = (1020.0/2) *fgkmm;
1761 const Double_t kFoamThickness = 5.0 *fgkmm;
1762 const Double_t kFlangeHalfLength =
1763 (kCylinderHalfLength-kFoamHalfLength)/2.;
1764 const Double_t kFlangeInnerRadius = ( 563.0/2) *fgkmm;
1765 // Dimensions of the Cone
fd5b6398 1766 const Double_t kConeROuterMin = ( 957.0/2) *fgkmm;
1767 const Double_t kConeROuterMax = ( 997.0/2) *fgkmm;
3a299c65 1768 const Double_t kConeRInnerMin = ( 564.0/2) *fgkmm;
1769 const Double_t kConeRCurv1 = 10.0 *fgkmm;
1770 const Double_t kConeRCurv2 = 25.0 *fgkmm;
1771 const Double_t kConeCent1RCurv2 = ( 578.0/2) *fgkmm;
6b42825b 1772 const Double_t kConeCent2RCurv2 = ( 592.0/2) *fgkmm;
5e15508a 1773// const Double_t kConeZOuterRing = 47.0 *fgkmm;
1774// const Double_t kConeZOuterRingInside = 30.25*fgkmm;
1775// const Double_t kConeZInnerRing = 161.5 *fgkmm;
1776// const Double_t kConeZLength = 176.5 *fgkmm;
1777 const Double_t kConeZOuterRing = 38.5 *fgkmm;
1778 const Double_t kConeZOuterRingInside = 22.2 *fgkmm;
1779 const Double_t kConeZInnerRing = 153.0 *fgkmm;
1780 const Double_t kConeZLength = 168.0 *fgkmm;
3a299c65 1781 const Double_t kConeZPosition = kConeZLength + kCylinderHalfLength;
1782 const Double_t kConeThickness = 13.0 *fgkmm; // Cone thickness
81adc4e0 1783 const Double_t kConeTheta = 39.1 *fgkDegree; // Cone angle
3a299c65 1784 const Double_t kSinConeTheta =
1785 TMath::Sin(kConeTheta*TMath::DegToRad());
1786 const Double_t kCosConeTheta =
1787 TMath::Cos(kConeTheta*TMath::DegToRad());
1788 // Dimensions of the Foam cores
1789 const Double_t kConeFoam1Length = 112.3 *fgkmm;
1790 const Double_t kConeFoam2Length = 58.4 *fgkmm;
1791 // Dimensions of the Cone Holes
1792 const Double_t kCoolingHoleWidth = 40.0 *fgkmm;
1793 const Double_t kCoolingHoleHight = 30.0 *fgkmm;
1794 const Double_t kCoolingHoleRmin = 350.0 *fgkmm;
1795 const Double_t kCoolingHolePhi = 45.0 *fgkDegree;
1796 const Double_t kMountingHoleWidth = 20.0 *fgkmm;
1797 const Double_t kMountingHoleHight = 20.0 *fgkmm;
1798 const Double_t kMountingHoleRmin = 317.5 *fgkmm;
1799 const Double_t kMountingHolePhi = 60.0 *fgkDegree;
1800 const Double_t kCableHoleRin = ( 800.0/2) *fgkmm;
1801 const Double_t kCableHoleRout = ( 920.0/2) *fgkmm;
1802 const Double_t kCableHoleWidth = 200.0 *fgkmm;
1803// const Double_t kCableHoleAngle = 42.0 *fgkDegree;
1804 // Dimensions of the Cone Wings
1805 const Double_t kWingRmax = 527.5 *fgkmm;
1806 const Double_t kWingWidth = 70.0 *fgkmm;
1807 const Double_t kWingHalfThick = ( 10.0/2) *fgkmm;
1808 const Double_t kThetaWing = 45.0 *fgkDegree;
1809 // Dimensions of the SSD-SDD Mounting Brackets
989ee428 1810 const Double_t kBracketRmin = ( 541.0/2) *fgkmm;// See SDD ROutMin
3a299c65 1811 const Double_t kBracketRmax = ( 585.0/2) *fgkmm;
1812 const Double_t kBracketHalfLength = ( 4.0/2) *fgkmm;
1813 const Double_t kBracketPhi = (70.*fgkmm/kBracketRmax)*fgkRadian;
1814 // Common data
1815 const Double_t kCFThickness = 0.75*fgkmm; //Carb. fib. thick.
1816
1817
1818 // Local variables
1819 Double_t rmin1, rmin2, rmax, z;
1820
1821 //
1822 //Begin_Html
1823 /*
1824 <img src="picts/ITS/file_name.gif">
1825 <P>
1826 <FONT FACE'"TIMES">
1827 ITS SSD central support and thermal shield cylinder.
1828 </FONT>
1829 </P>
1830 */
1831 //End_Html
1832 //
1833
1834 // Central cylinder with its internal foam and the lateral flanges:
1835 // a carbon fiber Pcon which contains a rohacell Tube and two
1836 // stesalite Cone's
1837 TGeoPcon *externalcylshape = new TGeoPcon(0,360,4);
1838
1839 rmax = kCylinderOuterRadius;
1840 rmin1 = kFlangeInnerRadius - kCylinderThickness;
1841 rmin2 = rmax - 2*kCylinderThickness - kFoamThickness;
1842 externalcylshape->DefineSection(0,-kCylinderHalfLength,rmin1,rmax);
1843 externalcylshape->DefineSection(1,-kFoamHalfLength ,rmin2,rmax);
1844 externalcylshape->DefineSection(2, kFoamHalfLength ,rmin2,rmax);
1845 externalcylshape->DefineSection(3, kCylinderHalfLength,rmin1,rmax);
1846
1847 rmax = kCylinderOuterRadius - kCylinderThickness;
1848 rmin1 = rmax - kFoamThickness;
1849 TGeoTube *foamshape = new TGeoTube(rmin1,rmax,kFoamHalfLength);
1850
1851 rmax = kCylinderOuterRadius - kCylinderThickness;
1852 rmin1 = rmax - kFoamThickness;
1853 rmin2 = kFlangeInnerRadius;
1854 TGeoCone *flangeshape = new TGeoCone(kFlangeHalfLength,
1855 rmin1,rmax,rmin2,rmax);
1856
1857
1858 // We have the shapes: now create the real volumes
1859
1860 TGeoMedium *medSSDcf = mgr->GetMedium("ITS_SSD C (M55J)$");
1861 TGeoMedium *medSSDair = mgr->GetMedium("ITS_SSD AIR$");
1862 TGeoMedium *medSSDste = mgr->GetMedium("ITS_G10FR4$"); // stesalite
1863 TGeoMedium *medSSDroh = mgr->GetMedium("ITS_ROHACELL$");
1864 TGeoMedium *medSSDal = mgr->GetMedium("ITS_ALUMINUM$");
1865
1866 TGeoVolume *cfcylinder = new TGeoVolume("SSDexternalcylinder",
1867 externalcylshape,medSSDcf);
1868 cfcylinder->SetVisibility(kTRUE);
1869 cfcylinder->SetLineColor(4); // blue
1870 cfcylinder->SetLineWidth(1);
1871 cfcylinder->SetFillColor(cfcylinder->GetLineColor());
1872 cfcylinder->SetFillStyle(4000); // 0% transparent
1873
1874 TGeoVolume *foamcylinder = new TGeoVolume("SSDfoamcylinder",
1875 foamshape,medSSDroh);
1876 foamcylinder->SetVisibility(kTRUE);
1877 foamcylinder->SetLineColor(3); // green
1878 foamcylinder->SetLineWidth(1);
1879 foamcylinder->SetFillColor(foamcylinder->GetLineColor());
1880 foamcylinder->SetFillStyle(4050); // 50% transparent
1881
1882 TGeoVolume *flangecylinder = new TGeoVolume("SSDflangecylinder",
1883 flangeshape,medSSDste);
1884 flangecylinder->SetVisibility(kTRUE);
1885 flangecylinder->SetLineColor(2); // red
1886 flangecylinder->SetLineWidth(1);
1887 flangecylinder->SetFillColor(flangecylinder->GetLineColor());
1888 flangecylinder->SetFillStyle(4050); // 50% transparent
1889
1890 // Mount up the cylinder
1891 cfcylinder->AddNode(foamcylinder,1,0);
1892 cfcylinder->AddNode(flangecylinder,1,
1893 new TGeoTranslation(0, 0, kFoamHalfLength+kFlangeHalfLength));
1894 cfcylinder->AddNode(flangecylinder,2,new TGeoCombiTrans(
1895 0, 0, -kFoamHalfLength-kFlangeHalfLength,
1896 new TGeoRotation("",0,180,0) ) );
1897
1898
1899 // The whole Cone as an assembly
1900 TGeoVolumeAssembly *vC = new TGeoVolumeAssembly("ITSssdCone");
1901
1902
1903 // SSD Support Cone with its internal inserts: a carbon fiber Pcon
1904 // with holes which contains a stesalite Pcon which on turn contains a
1905 // rohacell Pcon
1906 TGeoPcon *coneshape = new TGeoPcon(0.0, 360.0, 12);
1907
1908 coneshape->Z(0) = 0.0;
1909 coneshape->Rmin(0) = kConeROuterMin;
1910 coneshape->Rmax(0) = kConeROuterMax;
1911
1912 coneshape->Z(1) = kConeZOuterRingInside - kConeRCurv1;
1913 coneshape->Rmin(1) = coneshape->GetRmin(0);
1914 coneshape->Rmax(1) = coneshape->GetRmax(0);
1915
1916 coneshape->Z(2) = kConeZOuterRingInside;
1917 coneshape->Rmin(2) = coneshape->GetRmin(1) - kConeRCurv1;
1918 coneshape->Rmax(2) = coneshape->GetRmax(0);
1919
1920 coneshape->Z(3) = coneshape->GetZ(2);
1921 coneshape->Rmax(3) = coneshape->GetRmax(0);
1922
1923 coneshape->Z(4) = kConeZOuterRing - kConeRCurv1;
1924 coneshape->Rmax(4) = coneshape->GetRmax(0);
1925
1926 coneshape->Z(5) = kConeZOuterRing;
1927 coneshape->Rmax(5) = coneshape->GetRmax(4) - kConeRCurv1;
1928
1929 coneshape->Z(6) = coneshape->GetZ(5);
1930
1931 RadiusOfCurvature(kConeRCurv2,90.0,kConeZInnerRing,kConeCent1RCurv2,
1932 90.0-kConeTheta,z,rmin1);
1933 coneshape->Z(7) = z;
1934 coneshape->Rmin(7) = rmin1;
1935
1936 coneshape->Rmin(3) = RminFromZpCone(coneshape,7,90.-kConeTheta,
1937 coneshape->GetZ(3));
1938
1939 coneshape->Rmin(4) = RminFrom2Points(coneshape,3,7,coneshape->GetZ(4));
1940
1941 coneshape->Rmin(5) = RminFrom2Points(coneshape,3,7,coneshape->GetZ(5));
1942
1943 coneshape->Rmin(6) = coneshape->GetRmin(5);
1944
1945 coneshape->Z(8) = kConeZInnerRing;
1946 coneshape->Rmin(8) = kConeCent1RCurv2;
1947
1948 coneshape->Z(9) = coneshape->GetZ(8);
1949 coneshape->Rmin(9) = kConeRInnerMin;
1950
1951 RadiusOfCurvature(kConeRCurv2,90.0,kConeZLength,kConeCent2RCurv2,
1952 90.0-kConeTheta,z,rmax);
1953
1954 coneshape->Z(10) = z;
1955 coneshape->Rmin(10) = coneshape->GetRmin(9);
1956 coneshape->Rmax(10) = rmax;
1957
1958 coneshape->Rmax(6) = RmaxFromZpCone(coneshape,10,90.-kConeTheta,
1959 coneshape->GetZ(6));
1960
1961 coneshape->Rmax(7) = RmaxFrom2Points(coneshape,6,10,coneshape->GetZ(7));
1962
1963 coneshape->Rmax(8) = RmaxFrom2Points(coneshape,6,10,coneshape->GetZ(8));
1964
1965 coneshape->Rmax(9) = coneshape->GetRmax(8);
1966
1967 coneshape->Z(11) = kConeZLength;
1968 coneshape->Rmin(11) = coneshape->GetRmin(10);
1969 coneshape->Rmax(11) = kConeCent2RCurv2;
1970
1971 // SSD Cone Insert: another Pcon
1972 Double_t x0, y0, x1, y1, x2, y2;
1973 TGeoPcon *coneinsertshape = new TGeoPcon(0.0,360.0,12);
1974
1975 coneinsertshape->Z(0) = coneshape->GetZ(0) + kCFThickness;
1976 coneinsertshape->Rmin(0) = coneshape->GetRmin(0) + kCFThickness;
1977 coneinsertshape->Rmax(0) = coneshape->GetRmax(0) - kCFThickness;
1978
1979 x0 = coneshape->GetZ(0); y0 = coneshape->GetRmin(0);
1980 x1 = coneshape->GetZ(1); y1 = coneshape->GetRmin(1);
1981 x2 = coneshape->GetZ(2); y2 = coneshape->GetRmin(2);
1982 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
1983 coneinsertshape->Z(1) = z;
1984 coneinsertshape->Rmin(1) = rmin1;
1985 coneinsertshape->Rmax(1) = coneinsertshape->GetRmax(0);
1986
1987 x0 = coneshape->GetZ(1); y0 = coneshape->GetRmin(1);
1988 x1 = coneshape->GetZ(2); y1 = coneshape->GetRmin(2);
1989 x2 = coneshape->GetZ(3); y2 = coneshape->GetRmin(3);
1990 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
1991 coneinsertshape->Z(2) = z;
1992 coneinsertshape->Rmin(2) = rmin1;
1993 coneinsertshape->Rmax(2) = coneinsertshape->GetRmax(1);
1994
1995 x0 = coneshape->GetZ(2); y0 = coneshape->GetRmin(2);
1996 x1 = coneshape->GetZ(3); y1 = coneshape->GetRmin(3);
1997 x2 = coneshape->GetZ(4); y2 = coneshape->GetRmin(4);
1998 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
1999 coneinsertshape->Z(3) = z;
2000 coneinsertshape->Rmin(3) = rmin1;
2001 coneinsertshape->Rmax(3) = coneinsertshape->GetRmax(2);
2002
2003 x0 = coneshape->GetZ(3); y0 = coneshape->GetRmax(3);
2004 x1 = coneshape->GetZ(4); y1 = coneshape->GetRmax(4);
2005 x2 = coneshape->GetZ(5); y2 = coneshape->GetRmax(5);
2006 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
2007 coneinsertshape->Z(4) = z;
2008 coneinsertshape->Rmax(4) = rmax;
2009
2010 x0 = coneshape->GetZ(4); y0 = coneshape->GetRmax(4);
2011 x1 = coneshape->GetZ(5); y1 = coneshape->GetRmax(5);
2012 x2 = coneshape->GetZ(6); y2 = coneshape->GetRmax(6);
2013 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
2014 coneinsertshape->Z(5) = z;
2015 coneinsertshape->Rmax(5) = rmax;
2016
2017 x0 = coneshape->GetZ(5); y0 = coneshape->GetRmax(5);
2018 x1 = coneshape->GetZ(6); y1 = coneshape->GetRmax(6);
2019 x2 = coneshape->GetZ(7); y2 = coneshape->GetRmax(7);
2020 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
2021 coneinsertshape->Z(6) = z;
2022 coneinsertshape->Rmax(6) = rmax;
2023
2024 x0 = coneshape->GetZ(6); y0 = coneshape->GetRmin(6);
2025 x1 = coneshape->GetZ(7); y1 = coneshape->GetRmin(7);
2026 x2 = coneshape->GetZ(8); y2 = coneshape->GetRmin(8);
2027 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
2028 coneinsertshape->Z(7) = z;
2029 coneinsertshape->Rmin(7) = rmin1;
2030
2031 coneinsertshape->Rmin(4) = RminFrom2Points(coneinsertshape,3,7,
2032 coneinsertshape->GetZ(4));
2033
2034 coneinsertshape->Rmin(5) = RminFrom2Points(coneinsertshape,3,7,
2035 coneinsertshape->GetZ(5));
2036
2037 coneinsertshape->Rmin(6) = coneinsertshape->GetRmin(5);
2038
2039 x0 = coneshape->GetZ(7); y0 = coneshape->GetRmin(7);
2040 x1 = coneshape->GetZ(8); y1 = coneshape->GetRmin(8);
2041 x2 = coneshape->GetZ(9); y2 = coneshape->GetRmin(9);
2042 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
2043 coneinsertshape->Z(8) = z;
2044 coneinsertshape->Rmin(8) = rmin1;
2045
2046 x0 = coneshape->GetZ( 8); y0 = coneshape->GetRmin( 8);
2047 x1 = coneshape->GetZ( 9); y1 = coneshape->GetRmin( 9);
2048 x2 = coneshape->GetZ(10); y2 = coneshape->GetRmin(10);
2049 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
2050 coneinsertshape->Z(9) = z;
2051 coneinsertshape->Rmin(9) = rmin1;
2052
2053 x0 = coneshape->GetZ( 9); y0 = coneshape->GetRmax( 9);
2054 x1 = coneshape->GetZ(10); y1 = coneshape->GetRmax(10);
2055 x2 = coneshape->GetZ(11); y2 = coneshape->GetRmax(11);
2056 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
2057 coneinsertshape->Z(10) = z;
2058 coneinsertshape->Rmax(10) = rmax;
2059 coneinsertshape->Rmin(10) = coneinsertshape->GetRmin(9);
2060
2061 coneinsertshape->Rmax(7) = RmaxFrom2Points(coneinsertshape,6,10,
2062 coneinsertshape->GetZ(7));
2063
2064 coneinsertshape->Rmax(8) = RmaxFrom2Points(coneinsertshape,6,10,
2065 coneinsertshape->GetZ(8));
2066
2067 coneinsertshape->Rmax(9) = coneinsertshape->GetRmax(8);
2068
2069 x0 = coneshape->GetZ(10); y0 = coneshape->GetRmax(10);
2070 x1 = coneshape->GetZ(11); y1 = coneshape->GetRmax(11);
2071 x2 = coneshape->GetZ(11); y2 = coneshape->GetRmin(11);
2072 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
2073 coneinsertshape->Z(11) = z;
2074 coneinsertshape->Rmax(11) = rmax;
2075 coneinsertshape->Rmin(11) = coneinsertshape->GetRmin(10);
2076
2077 // SSD Cone Foams: two other Pcon's
2078 TGeoPcon *conefoam1shape = new TGeoPcon(0.0, 360.0, 4);
2079
2080 conefoam1shape->Z(0) = coneinsertshape->GetZ(3);
2081 conefoam1shape->Rmin(0) = coneinsertshape->GetRmin(3);
2082 conefoam1shape->Rmax(0) = conefoam1shape->GetRmin(0);
2083
2084 conefoam1shape->Rmax(1) = conefoam1shape->GetRmax(0);
2085 conefoam1shape->Z(1) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
2086 conefoam1shape->GetRmax(1));
2087 conefoam1shape->Rmin(1) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
2088 conefoam1shape->GetZ(1));
2089
2090 Double_t t = kConeThickness - 2*kCFThickness;
2091 conefoam1shape->Rmin(2) = conefoam1shape->GetRmax(0) -
2092 (kConeFoam1Length*kCosConeTheta - t*kSinConeTheta);
2093 conefoam1shape->Z(2) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
2094 conefoam1shape->GetRmin(2));
2095 conefoam1shape->Rmax(2) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
2096 conefoam1shape->GetZ(2));
2097
2098 conefoam1shape->Rmin(3) = conefoam1shape->GetRmin(2);
2099 conefoam1shape->Rmax(3) = conefoam1shape->GetRmin(3);
2100 conefoam1shape->Z(3) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
2101 conefoam1shape->GetRmax(3));
2102
2103 TGeoPcon *conefoam2shape = new TGeoPcon(0.0, 360.0, 4);
2104
2105 conefoam2shape->Z(3) = coneinsertshape->GetZ(10);
2106 conefoam2shape->Rmin(3) = coneinsertshape->GetRmax(10);
2107 conefoam2shape->Rmax(3) = conefoam2shape->GetRmin(3);
2108
2109 conefoam2shape->Rmin(2) = conefoam2shape->GetRmin(3);
2110 conefoam2shape->Z(2) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
2111 conefoam2shape->GetRmin(2));
2112 conefoam2shape->Rmax(2) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
2113 conefoam2shape->GetZ(2));
2114
2115 conefoam2shape->Rmin(0) = conefoam2shape->GetRmax(2) +
2116 (kConeFoam2Length*kCosConeTheta - t*kSinConeTheta);
2117 conefoam2shape->Rmax(0) = conefoam2shape->GetRmin(0);
2118 conefoam2shape->Z(0) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
2119 conefoam2shape->GetRmin(0));
2120
2121 conefoam2shape->Rmax(1) = conefoam2shape->GetRmax(0);
2122 conefoam2shape->Z(1) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
2123 conefoam2shape->GetRmax(1));
2124 conefoam2shape->Rmin(1) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
2125 conefoam2shape->GetZ(1));
2126
2127 // SSD Cone Holes: Pcon's
a30e33f0 2128 // A single hole volume gives an overlap with coneinsert, so
2129 // three contiguous volumes are created: one to be put in coneinsert
2130 // and two in the cone carbon fiber envelope
3a299c65 2131 Double_t holePhi;
2132 holePhi = (kCoolingHoleWidth/kCoolingHoleRmin)*TMath::RadToDeg();
2133
2134 TGeoPcon *coolingholeshape = new TGeoPcon(-holePhi/2., holePhi, 4);
2135
2136 coolingholeshape->Rmin(0) = kCoolingHoleRmin + kCoolingHoleHight;
2137 coolingholeshape->Rmax(0) = coolingholeshape->GetRmin(0);
a30e33f0 2138 coolingholeshape->Z(0) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
3a299c65 2139 coolingholeshape->GetRmin(0));
2140
2141 coolingholeshape->Rmax(1) = coolingholeshape->GetRmax(0);
a30e33f0 2142 coolingholeshape->Z(1) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
3a299c65 2143 coolingholeshape->GetRmax(1));
a30e33f0 2144 coolingholeshape->Rmin(1) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
3a299c65 2145 coolingholeshape->GetZ(1));
2146
2147 coolingholeshape->Rmin(2) = kCoolingHoleRmin;
a30e33f0 2148 coolingholeshape->Z(2) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
3a299c65 2149 coolingholeshape->GetRmin(2));
a30e33f0 2150 coolingholeshape->Rmax(2) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
3a299c65 2151 coolingholeshape->GetZ(2));
2152
2153 coolingholeshape->Rmin(3) = coolingholeshape->GetRmin(2);
2154 coolingholeshape->Rmax(3) = coolingholeshape->GetRmin(3);
a30e33f0 2155 coolingholeshape->Z(3) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
3a299c65 2156 coolingholeshape->GetRmax(3));
2157
a30e33f0 2158 TGeoPcon *coolinghole2shape = new TGeoPcon(-holePhi/2., holePhi, 4);
2159
2160 coolinghole2shape->Rmin(0) = kCoolingHoleRmin + kCoolingHoleHight;
2161 coolinghole2shape->Rmax(0) = coolinghole2shape->GetRmin(0);
2162 coolinghole2shape->Z(0) = ZFromRminpCone(coneshape,3,90.-kConeTheta,
2163 coolinghole2shape->GetRmin(0));
2164
2165 coolinghole2shape->Rmax(1) = coolinghole2shape->GetRmax(0);
2166 coolinghole2shape->Z(1) = coolingholeshape->GetZ(0);
2167 coolinghole2shape->Rmin(1) = RminFromZpCone(coneshape,3,90.-kConeTheta,
2168 coolinghole2shape->GetZ(1));
2169
2170 coolinghole2shape->Rmin(2) = kCoolingHoleRmin;
2171 coolinghole2shape->Z(2) = ZFromRminpCone(coneshape,3,90.-kConeTheta,
2172 coolinghole2shape->GetRmin(2));
2173 coolinghole2shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
2174 coolinghole2shape->GetZ(2));
2175
2176 coolinghole2shape->Rmin(3) = coolinghole2shape->GetRmin(2);
2177 coolinghole2shape->Rmax(3) = coolinghole2shape->GetRmin(3);
2178 coolinghole2shape->Z(3) = coolingholeshape->GetZ(2);
2179
2180 TGeoPcon *coolinghole3shape = new TGeoPcon(-holePhi/2., holePhi, 4);
2181
2182 coolinghole3shape->Rmin(0) = kCoolingHoleRmin + kCoolingHoleHight;
2183 coolinghole3shape->Rmax(0) = coolinghole3shape->GetRmin(0);
2184 coolinghole3shape->Z(0) = coolingholeshape->GetZ(1);
2185
2186 coolinghole3shape->Rmax(1) = coolinghole3shape->GetRmax(0);
2187 coolinghole3shape->Z(1) = ZFromRmaxpCone(coneshape,7,90.-kConeTheta,
2188 coolinghole3shape->GetRmax(1));
2189 coolinghole3shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
2190 coolinghole3shape->GetZ(1));
2191
2192 coolinghole3shape->Rmin(2) = kCoolingHoleRmin;
2193 coolinghole3shape->Z(2) = coolingholeshape->GetZ(3);
2194 coolinghole3shape->Rmax(2) = RmaxFromZpCone(coneshape,7,90.-kConeTheta,
2195 coolinghole3shape->GetZ(2));
2196
2197 coolinghole3shape->Rmin(3) = coolinghole3shape->GetRmin(2);
2198 coolinghole3shape->Rmax(3) = coolinghole3shape->GetRmin(3);
2199 coolinghole3shape->Z(3) = ZFromRmaxpCone(coneshape,7,90.-kConeTheta,
2200 coolinghole3shape->GetRmax(3));
2201
2202 //
3a299c65 2203 holePhi = (kMountingHoleWidth/kMountingHoleRmin)*TMath::RadToDeg();
2204
2205 TGeoPcon *mountingholeshape = new TGeoPcon(-holePhi/2., holePhi, 4);
2206
2207 mountingholeshape->Rmin(0) = kMountingHoleRmin + kMountingHoleHight;
2208 mountingholeshape->Rmax(0) = mountingholeshape->GetRmin(0);
2209 mountingholeshape->Z(0) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
2210 mountingholeshape->GetRmin(0));
2211
2212 mountingholeshape->Rmin(1) = kMountingHoleRmin;
2213 mountingholeshape->Rmax(1) = mountingholeshape->GetRmax(0);
2214 mountingholeshape->Z(1) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
2215 mountingholeshape->GetRmin(1));
2216
2217 mountingholeshape->Rmin(2) = mountingholeshape->GetRmin(1);
2218 mountingholeshape->Rmax(2) = mountingholeshape->GetRmax(1);
2219 mountingholeshape->Z(2) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
2220 mountingholeshape->GetRmax(2));
2221
2222 mountingholeshape->Rmin(3) = mountingholeshape->GetRmin(2);
2223 mountingholeshape->Rmax(3) = mountingholeshape->GetRmin(3);
2224 mountingholeshape->Z(3) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
2225 mountingholeshape->GetRmax(3));
2226
2227 TGeoPcon *mountinghole2shape = new TGeoPcon(-holePhi/2., holePhi, 4);
2228
2229 mountinghole2shape->Rmin(0) = kMountingHoleRmin + kMountingHoleHight;
2230 mountinghole2shape->Rmax(0) = mountingholeshape->GetRmin(0);
2231 mountinghole2shape->Z(0) = ZFromRminpCone(coneshape,3,90.-kConeTheta,
2232 mountinghole2shape->GetRmin(0));
2233
2234 mountinghole2shape->Rmax(1) = mountinghole2shape->GetRmax(0);
2235 mountinghole2shape->Z(1) = mountingholeshape->Z(0);
2236 mountinghole2shape->Rmin(1) = RminFromZpCone(coneshape,3,90.-kConeTheta,
2237 mountinghole2shape->GetZ(1));
2238
2239 mountinghole2shape->Rmin(2) = kMountingHoleRmin;
2240 mountinghole2shape->Z(2) = ZFromRminpCone(coneshape,3,90.-kConeTheta,
2241 mountinghole2shape->GetRmin(2));
2242 mountinghole2shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
2243 mountinghole2shape->GetZ(2));
2244
2245 mountinghole2shape->Rmin(3) = mountinghole2shape->Rmin(2);
2246 mountinghole2shape->Rmax(3) = mountinghole2shape->Rmin(3);
2247 mountinghole2shape->Z(3) = mountingholeshape->Z(1);
2248
2249 TGeoPcon *mountinghole3shape = new TGeoPcon(-holePhi/2., holePhi, 4);
2250
2251 mountinghole3shape->Rmin(0) = kMountingHoleRmin + kMountingHoleHight;
2252 mountinghole3shape->Rmax(0) = mountingholeshape->GetRmin(0);
2253 mountinghole3shape->Z(0) = mountingholeshape->GetZ(2);
2254
2255 mountinghole3shape->Rmax(1) = mountinghole3shape->GetRmax(0);
2256 mountinghole3shape->Z(1) = ZFromRmaxpCone(coneshape,7,90.-kConeTheta,
2257 mountinghole3shape->GetRmax(1));
2258 mountinghole3shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
2259 mountinghole3shape->GetZ(1));
2260
2261 mountinghole3shape->Rmin(2) = kMountingHoleRmin;
2262 mountinghole3shape->Z(2) = mountingholeshape->Z(3);
2263 mountinghole3shape->Rmax(2) = RmaxFromZpCone(coneshape,7,90.-kConeTheta,
2264 mountinghole3shape->GetZ(2));
2265
2266 mountinghole3shape->Rmin(3) = mountinghole3shape->Rmin(2);
2267 mountinghole3shape->Rmax(3) = mountinghole3shape->Rmin(3);
2268 mountinghole3shape->Z(3) = ZFromRmaxpCone(coneshape,7,90.-kConeTheta,
2269 mountinghole3shape->GetRmax(3));
2270
2271 // The Cable Hole is even more complicated, a Composite Shape
2272 // is unavoidable here (gosh!)
2273 TGeoPcon *coneshapecopy = new TGeoPcon("conecopy",0.0, 360.0, 12);
2274
2275 for (Int_t i=0; i<12; i++) {
2276 coneshapecopy->Rmin(i) = coneshape->GetRmin(i);
2277 coneshapecopy->Rmax(i) = coneshape->GetRmax(i);
2278 coneshapecopy->Z(i) = coneshape->GetZ(i);
2279 }
2280
2281 holePhi = (kCableHoleWidth/kCableHoleRout)*TMath::RadToDeg();
2282 TGeoConeSeg *chCS = new TGeoConeSeg("chCS", 0.5*kConeZLength,
2283 kCableHoleRin, kCableHoleRout,
2284 kCableHoleRin, kCableHoleRout,
2285 -0.5*holePhi, 0.5*holePhi);
2286
2287 TGeoCompositeShape *cableholeshape = new TGeoCompositeShape(
2288 "SSDCableHoleShape",
2289 "conecopy*chCS");
2290
2291 if(GetDebug(1)){
2292 chCS->InspectShape();
2293 cableholeshape->InspectShape();
2294 }
2295
2296 // SSD Cone Wings: Tube and TubeSeg shapes
2297 Double_t angleWideWing, angleWideWingThickness;
2298 angleWideWing = (kWingWidth/kWingRmax)*TMath::RadToDeg();
2299 angleWideWingThickness = (kCFThickness/kWingRmax)*TMath::RadToDeg();
2300
2301 TGeoTubeSeg *wingshape = new TGeoTubeSeg(kConeROuterMax, kWingRmax,
2302 kWingHalfThick,
2303 0, angleWideWing);
2304
2305 TGeoTubeSeg *winginsertshape = new TGeoTubeSeg(kConeROuterMax,
2306 kWingRmax-kCFThickness,
2307 kWingHalfThick-kCFThickness,
2308 angleWideWingThickness,
2309 angleWideWing-angleWideWingThickness);
2310
2311 // SDD support plate, SSD side (Mounting Bracket): a TubeSeg
2312 TGeoTubeSeg *bracketshape = new TGeoTubeSeg(kBracketRmin, kBracketRmax,
2313 kBracketHalfLength, -kBracketPhi/2, kBracketPhi/2);
2314
2315
2316 // We have the shapes: now create the real volumes
2317
2318 TGeoVolume *cfcone = new TGeoVolume("SSDCarbonFiberCone",
2319 coneshape,medSSDcf);
2320 cfcone->SetVisibility(kTRUE);
2321 cfcone->SetLineColor(4); // Blue
2322 cfcone->SetLineWidth(1);
2323 cfcone->SetFillColor(cfcone->GetLineColor());
2324 cfcone->SetFillStyle(4000); // 0% transparent
2325
2326 TGeoVolume *cfconeinsert = new TGeoVolume("SSDCarbonFiberConeInsert",
2327 coneinsertshape,medSSDste);
2328 cfconeinsert->SetVisibility(kTRUE);
2329 cfconeinsert->SetLineColor(2); // Red
2330 cfconeinsert->SetLineWidth(1);
2331 cfconeinsert->SetFillColor(cfconeinsert->GetLineColor());
2332 cfconeinsert->SetFillStyle(4050); // 50% transparent
2333
2334 TGeoVolume *cfconefoam1 = new TGeoVolume("SSDCarbonFiberConeFoam1",
2335 conefoam1shape,medSSDroh);
2336 cfconefoam1->SetVisibility(kTRUE);
2337 cfconefoam1->SetLineColor(3); // Green
2338 cfconefoam1->SetLineWidth(1);
2339 cfconefoam1->SetFillColor(cfconefoam1->GetLineColor());
2340 cfconefoam1->SetFillStyle(4050); // 50% transparent
2341
2342 TGeoVolume *cfconefoam2 = new TGeoVolume("SSDCarbonFiberConeFoam2",
2343 conefoam2shape,medSSDroh);
2344 cfconefoam2->SetVisibility(kTRUE);
2345 cfconefoam2->SetLineColor(3); // Green
2346 cfconefoam2->SetLineWidth(1);
2347 cfconefoam2->SetFillColor(cfconefoam2->GetLineColor());
2348 cfconefoam2->SetFillStyle(4050); // 50% transparent
2349
2350 TGeoVolume *coolinghole = new TGeoVolume("SSDCoolingHole",
2351 coolingholeshape,medSSDair);
2352 coolinghole->SetVisibility(kTRUE);
2353 coolinghole->SetLineColor(5); // Yellow
2354 coolinghole->SetLineWidth(1);
2355 coolinghole->SetFillColor(coolinghole->GetLineColor());
2356 coolinghole->SetFillStyle(4090); // 90% transparent
2357
a30e33f0 2358 TGeoVolume *coolinghole2 = new TGeoVolume("SSDCoolingHole2",
2359 coolinghole2shape,medSSDair);
2360 coolinghole2->SetVisibility(kTRUE);
2361 coolinghole2->SetLineColor(5); // Yellow
2362 coolinghole2->SetLineWidth(1);
2363 coolinghole2->SetFillColor(coolinghole2->GetLineColor());
2364 coolinghole2->SetFillStyle(4090); // 90% transparent
2365
2366 TGeoVolume *coolinghole3 = new TGeoVolume("SSDCoolingHole3",
2367 coolinghole3shape,medSSDair);
2368 coolinghole3->SetVisibility(kTRUE);
2369 coolinghole3->SetLineColor(5); // Yellow
2370 coolinghole3->SetLineWidth(1);
2371 coolinghole3->SetFillColor(coolinghole3->GetLineColor());
2372 coolinghole3->SetFillStyle(4090); // 90% transparent
2373
3a299c65 2374 TGeoVolume *mountinghole = new TGeoVolume("SSDMountingHole",
2375 mountingholeshape,medSSDair);
2376 mountinghole->SetVisibility(kTRUE);
2377 mountinghole->SetLineColor(5); // Yellow
2378 mountinghole->SetLineWidth(1);
2379 mountinghole->SetFillColor(mountinghole->GetLineColor());
2380 mountinghole->SetFillStyle(4090); // 90% transparent
2381
2382 TGeoVolume *mountinghole2 = new TGeoVolume("SSDMountingHole2",
2383 mountinghole2shape,medSSDair);
2384 mountinghole2->SetVisibility(kTRUE);
2385 mountinghole2->SetLineColor(5); // Yellow
2386 mountinghole2->SetLineWidth(1);
2387 mountinghole2->SetFillColor(mountinghole2->GetLineColor());
2388 mountinghole2->SetFillStyle(4090); // 90% transparent
2389
2390 TGeoVolume *mountinghole3 = new TGeoVolume("SSDMountingHole3",
2391 mountinghole3shape,medSSDair);
2392 mountinghole3->SetVisibility(kTRUE);
2393 mountinghole3->SetLineColor(5); // Yellow
2394 mountinghole3->SetLineWidth(1);
2395 mountinghole3->SetFillColor(mountinghole3->GetLineColor());
2396 mountinghole3->SetFillStyle(4090); // 90% transparent
2397
2398 TGeoVolume *wing = new TGeoVolume("SSDWing",wingshape,medSSDcf);
2399 wing->SetVisibility(kTRUE);
2400 wing->SetLineColor(4); // Blue
2401 wing->SetLineWidth(1);
2402 wing->SetFillColor(wing->GetLineColor());
2403 wing->SetFillStyle(4000); // 0% transparent
2404
2405 TGeoVolume *cablehole = new TGeoVolume("SSDCableHole",
2406 cableholeshape,medSSDair);
2407 cablehole->SetVisibility(kTRUE);
2408 cablehole->SetLineColor(5); // Yellow
2409 cablehole->SetLineWidth(1);
2410 cablehole->SetFillColor(cablehole->GetLineColor());
2411 cablehole->SetFillStyle(4090); // 90% transparent
2412
2413 TGeoVolume *winginsert = new TGeoVolume("SSDWingInsert",
2414 winginsertshape,medSSDste);
2415 winginsert->SetVisibility(kTRUE);
2416 winginsert->SetLineColor(2); // Red
2417 winginsert->SetLineWidth(1);
2418 winginsert->SetFillColor(winginsert->GetLineColor());
2419 winginsert->SetFillStyle(4050); // 50% transparent
2420
2421 TGeoVolume *bracket = new TGeoVolume("SSDMountingBracket",
2422 bracketshape,medSSDal);
2423 bracket->SetVisibility(kTRUE);
2424 bracket->SetLineColor(6); // Purple
2425 bracket->SetLineWidth(1);
2426 bracket->SetFillColor(bracket->GetLineColor());
2427 bracket->SetFillStyle(4000); // 0% transparent
2428
2429 // Mount up a cone
2430 for (Int_t i=0; i<(Int_t)(360./kMountingHolePhi); i++) {
2431 Double_t phiH = i*kMountingHolePhi + 0.5*kMountingHolePhi;
2432 cfconefoam2->AddNode(mountinghole,i+1, new TGeoRotation("", phiH, 0, 0));
2433 }
2434
a30e33f0 2435 for (Int_t i=0; i<(Int_t)(360./kCoolingHolePhi); i++) {
2436 Double_t phiH = i*kCoolingHolePhi + 0.5*kCoolingHolePhi;
2437 cfconeinsert->AddNodeOverlap(coolinghole,i+1, new TGeoRotation("", phiH, 0, 0));
2438 }
2439
3a299c65 2440 cfconeinsert->AddNode(cfconefoam1,1,0);
2441 cfconeinsert->AddNode(cfconefoam2,1,0);
2442
2443 cfcone->AddNode(cfconeinsert,1,0);
2444
2445 for (Int_t i=0; i<(Int_t)(360./kCoolingHolePhi); i++) {
2446 Double_t phiH = i*kCoolingHolePhi + 0.5*kCoolingHolePhi;
a30e33f0 2447 cfcone->AddNode(coolinghole2,i+1, new TGeoRotation("", phiH, 0, 0));
2448 cfcone->AddNode(coolinghole3,i+1, new TGeoRotation("", phiH, 0, 0));
3a299c65 2449 cfcone->AddNodeOverlap(cablehole,i+1, new TGeoRotation("", phiH, 0, 0));
2450 }
2451
2452 for (Int_t i=0; i<(Int_t)(360./kMountingHolePhi); i++) {
2453 Double_t phiH = i*kMountingHolePhi + 0.5*kMountingHolePhi;
2454 cfcone->AddNode(mountinghole2,i+1, new TGeoRotation("", phiH, 0, 0));
2455 cfcone->AddNode(mountinghole3,i+1, new TGeoRotation("", phiH, 0, 0));
2456 }
2457
2458 wing->AddNode(winginsert,1,0);
2459
2460 // Add all volumes in the Cone assembly
2461 vC->AddNode(cfcone,1,new TGeoTranslation(0,0,-kConeZPosition));
2462
2463 for (Int_t i=0; i<4; i++) {
85234543 2464 Double_t thetaW = kThetaWing + 90.*i + angleWideWing/2.;
2465 vC->AddNode(wing, i+1, new TGeoCombiTrans(0, 0, -kConeZPosition+kWingHalfThick,
3a299c65 2466 new TGeoRotation("",thetaW,180,0)));
2467 }
2468
2469 Double_t zBracket = kConeZPosition - coneshape->GetZ(9) +
a30e33f0 2470 2*bracketshape->GetDz();
3a299c65 2471 for (Int_t i=0; i<3; i++) {
2472 Double_t thetaB = 60 + 120.*i;
2473 vC->AddNode(bracket, i+1, new TGeoCombiTrans(0, 0, -zBracket,
2474 new TGeoRotation("",thetaB,0,0)));
2475 }
2476
2477 // Finally put everything in the mother volume
2478 moth->AddNode(cfcylinder,1,0);
2479
2480 moth->AddNode(vC, 1, 0 );
2481 moth->AddNode(vC, 2, new TGeoRotation("",180, 180, 0) );
2482
2483 // Some debugging if requested
2484 if(GetDebug(1)){
2485 vC->PrintNodes();
2486 vC->InspectShape();
2487 }
2488
2489 return;
172b0d90 2490}
2491
2492//______________________________________________________________________
543b7370 2493void AliITSv11GeometrySupport::ServicesCableSupport(TGeoVolume *moth,
2494 TGeoManager *mgr){
798b4e0c 2495//
2496// Creates the cable trays which are outside the ITS support cones
2497// but still inside the TPC
2498// This is now a stearing routine, the actual work is done by three
2499// specialized methods to avoid a really huge unique method
2500//
2501// Input:
2502// moth : the TGeoVolume owing the volume structure
2503// mgr : the GeoManager (default gGeoManager)
2504// Output:
2505//
2506// Created: 15 Nov 2009 Mario Sitta
2507//
2508
2509 TraySupportsSideA(moth, mgr);
2510
2511 ServicesCableSupportSPD(moth, mgr);
2512 ServicesCableSupportSDD(moth, mgr);
2513 ServicesCableSupportSSD(moth, mgr);
2514
2515 return;
2516}
2517
2518//______________________________________________________________________
2519void AliITSv11GeometrySupport::TraySupportsSideA(TGeoVolume *moth,
43aefea7 2520 const TGeoManager *mgr){
798b4e0c 2521//
2522// Creates the structure supporting the ITS cable trays on Side A
2523//
2524// Input:
2525// moth : the TGeoVolume owing the volume structure
2526// mgr : the GeoManager (default gGeoManager)
2527// Output:
2528//
2529// Created: 14 Dec 2009 Mario Sitta
2530// Updated: 26 Feb 2010 Mario Sitta
2531//
2532// Technical data are taken from AutoCAD drawings, L.Simonetti technical
2533// drawings and other (oral) information given by F.Tosello
2534//
2535
2536 // Dimensions and positions of the A-Side Cable Tray Support Ring
2537 // (0872/G/A/01)
2538 const Double_t kSuppRingYTrans = 110.00 *fgkmm;
2539 const Double_t kSuppRingZTrans =(1011.00+435.00) *fgkmm;
2540 const Double_t kSuppForwYTrans = 185.00 *fgkmm;
2541
2542 const Double_t kExtSuppRingSpace1 = 33.00 *fgkmm;
2543 const Double_t kExtSuppRingSpace2 = 45.00 *fgkmm;
2544 const Double_t kExtSuppRingSpcAbov = 30.00 *fgkmm;
2545 const Double_t kExtSuppRingBase = 491.50 *fgkmm;
2546 const Double_t kExtSuppRingInward = 35.00 *fgkmm;
2547 const Double_t kExtSuppRingRmax = 540.00 *fgkmm;
2548 const Double_t kExtSuppRingRint1 = 465.00 *fgkmm;
2549 const Double_t kExtSuppRingRint2 = 467.00 *fgkmm;
2550 const Double_t kExtSuppRingInnerHi = 450.00 *fgkmm;
2551 const Double_t kExtSuppRingInWide = 100.00 *fgkmm;
2552 const Double_t kExtSuppRingR7 = 7.00 *fgkmm;
2553 const Double_t kExtSuppRingR5 = 5.00 *fgkmm;
2554 const Double_t kExtSuppRingThick = 20.00 *fgkmm;
2555
2556 const Double_t kExtSuppRingSpcAng = 10.50 *TMath::DegToRad();
2557 const Double_t kExtSuppRingPartPhi = 15.00 *TMath::DegToRad();
2558 const Double_t kExtSuppRingIntAng = 7.00 *TMath::DegToRad();
2559 const Double_t kExtSuppRingBaseAng = 75.00 *TMath::DegToRad();
2560 const Double_t kExtSuppRingR7Ang = 100.00 *TMath::DegToRad(); // Guessed
2561
2562 const Int_t kExtSuppRingNPtsArc = 10; // N.points to approximate arc
2563
2564 const Double_t kIntSuppRingThick1 = 15.00 *fgkmm;
2565 const Double_t kIntSuppRingThick2 = 13.00 *fgkmm;
2566 const Double_t kIntSuppRingInward = 24.00 *fgkmm;
2567 const Double_t kIntSuppRingThick = 20.00 *fgkmm;
2568
2569 const Double_t kSuppCylHeight = 340.00 *fgkmm;
2570 const Double_t kSuppCylRint = 475.00 *fgkmm;
2571 const Double_t kSuppCylRext = 478.00 *fgkmm;
2572 const Double_t kSuppCylDispl = 137.70 *fgkmm;
2573
2574 const Double_t kSuppSpacerHeight = 30.00 *fgkmm;
2575 const Double_t kSuppSpacerThick = 10.00 *fgkmm;
2576
2577 const Double_t kSuppSpacerAngle = 15.00; // Degrees
2578
2579 const Double_t kSuppForwRingRint1 = 500.00 *fgkmm;
2580 const Double_t kSuppForwRingRint2 = 540.00 *fgkmm;
2581 const Double_t kSuppForwRingRext = 560.00 *fgkmm;
2582 const Double_t kSuppForwRingThikAll = 50.00 *fgkmm;
2583 const Double_t kSuppForwRingThikInt = 20.00 *fgkmm;
2584
2585 // (0872/G/B/01)
2586 const Double_t kSuppForwConeRmin = 558.00 *fgkmm;
2587 const Double_t kSuppForwConeRmax = 681.00 *fgkmm;
2588 const Double_t kSuppForwConeLen1 = 318.00 *fgkmm;
2589 const Double_t kSuppForwConeLen2 = 662.00 *fgkmm;
2590 const Double_t kSuppForwConeThick = 3.00 *fgkmm;
2591
2592 const Double_t kSuppBackRingPlacTop = 90.00 *fgkmm;
2593 const Double_t kSuppBackRingPlacSid = 50.00 *fgkmm;
2594 const Double_t kSuppBackRingHeight = 760.00 *fgkmm;
2595 const Double_t kSuppBackRingRext = 760.00 *fgkmm;
2596 const Double_t kSuppBackRingRint = 685.00 *fgkmm;
2597// const Double_t kSuppBackRingRint2 = 675.00 *fgkmm;
2598 const Double_t kSuppBackRingR10 = 10.00 *fgkmm;
2599 const Double_t kSuppBackRingBase = 739.00 *fgkmm;
2600 const Double_t kSuppBackRingThikAll = 50.00 *fgkmm;
2601 const Double_t kSuppBackRingThick1 = 20.00 *fgkmm;
2602 const Double_t kSuppBackRingThick2 = 20.00 *fgkmm;
2603
2604// const Double_t kSuppBackRingPlacAng = 10.00 *TMath::DegToRad();
2605 const Double_t kSuppBackRingPlacAng = 10.25 *TMath::DegToRad();//Fix ovlp.
2606 const Double_t kSuppBackRing2ndAng1 = 78.40 *TMath::DegToRad();
2607 const Double_t kSuppBackRing2ndAng2 = 45.00 *TMath::DegToRad();
2608
2609 const Int_t kSuppBackRingNPtsArc = 10; // N.points to approximate arc
2610
2611 // (0872/G/C/01)
2612 const Double_t kRearSuppZTransGlob =(1011.00+9315.00-6040.00) *fgkmm;
2613 const Double_t kBackRodZTrans = 2420.00 *fgkmm;
2614
2615 const Double_t kBackRodLength = 1160.00 *fgkmm;
2616 const Double_t kBackRodThickLen = 20.00 *fgkmm;
2617 const Double_t kBackRodDiameter = 20.00 *fgkmm;
2618
2619 const Double_t kSuppRearRingRint = 360.00 *fgkmm;
2620 const Double_t kSuppRearRingRext1 = 410.00 *fgkmm;
2621 const Double_t kSuppRearRingRext2 = 414.00 *fgkmm;
2622 const Double_t kSuppRearRingHeight = 397.00 *fgkmm;
2623 const Double_t kSuppRearRingTopWide = 111.87 *fgkmm;
2624 const Double_t kSuppRearRingBase = 451.50 *fgkmm;
2625 const Double_t kSuppRearRingBaseHi = 58.00 *fgkmm;
2626 const Double_t kSuppRearRingSideHi = 52.00 *fgkmm;
2627 const Double_t kSuppRearRingInside = 40.00 *fgkmm;
2628 const Double_t kSuppRearRingInsideHi= 12.00 *fgkmm;
2629 const Double_t kSuppRearRingThick = 20.00 *fgkmm;
2630 const Double_t kSuppRearRingXRodHole= 441.50 *fgkmm;
2631 const Double_t kSuppRearRingYRodHole= 42.00 *fgkmm;
2632
2633 const Double_t kSuppRearRing1stAng = 22.00 *TMath::DegToRad();
2634 const Double_t kSuppRearRingStepAng = 15.00 *TMath::DegToRad();
2635
2636 const Int_t kSuppRearRingNPtsArc = 10; // N.points to approximate arc
2637
2638
2639 // Local variables
2640 Double_t xprof[2*(15+kExtSuppRingNPtsArc)],yprof[2*(15+kExtSuppRingNPtsArc)];
2641 Double_t slp1, slp2, phi, xm, ym;
2642 Double_t xloc, yloc, zloc, rmin, rmax, deltaR;
2643 Int_t npoints;
2644
2645
2646 // The whole support as an assembly
2647 TGeoVolumeAssembly *trayASuppStruct = new TGeoVolumeAssembly("ITSsuppSideAStructure");
2648
2649
2650 // First create all needed shapes
2651
2652 // The External Ring (part of 0872/G/A/01): a really complex Xtru
2653 TGeoXtru *extSuppRing = new TGeoXtru(2);
2654
2655 // First the upper notch...
2656 xprof[ 0] = kExtSuppRingSpace1;
2657 yprof[ 0] = kExtSuppRingInnerHi + kExtSuppRingSpcAbov;
2658
2659 slp1 = TMath::Tan(TMath::Pi()/2 - kExtSuppRingSpcAng);
2660 IntersectCircle(slp1, xprof[0], yprof[0], kExtSuppRingRmax, 0., 0.,
2661 xprof[5], yprof[5], xm, ym); // Ignore dummy xm,ym
2662
2663 xprof[ 4] = xprof[5];
2664 yprof[ 4] = yprof[5] - kExtSuppRingR5/TMath::Tan(kExtSuppRingSpcAng);
2665 xprof[ 3] = xprof[4] - kExtSuppRingR5*(1 - TMath::Cos(TMath::Pi()/6));
2666 yprof[ 3] = yprof[4] - kExtSuppRingR5*( TMath::Sin(TMath::Pi()/6));
2667 xprof[ 2] = xprof[4] - kExtSuppRingR5*(1 - TMath::Cos(TMath::Pi()/3));
2668 yprof[ 2] = yprof[4] - kExtSuppRingR5*( TMath::Sin(TMath::Pi()/3));
2669 xprof[ 1] = xprof[4] - kExtSuppRingR5;
2670 yprof[ 1] = yprof[4] - kExtSuppRingR5;
2671
2672 Int_t indx = 5+kExtSuppRingNPtsArc;
2673 // ...then the external arc, approximated with segments,...
2674 xprof[indx] = kExtSuppRingBase;
2675 yprof[indx] = TMath::Sqrt(kExtSuppRingRmax*kExtSuppRingRmax -
2676 kExtSuppRingBase*kExtSuppRingBase);
2677 Double_t alphamin = TMath::ASin(kExtSuppRingSpace2/kExtSuppRingRmax);
2678 Double_t alphamax = TMath::Pi()/2 -
2679 TMath::ASin(yprof[5+kExtSuppRingNPtsArc]/kExtSuppRingRmax);
2680
2681 for (Int_t jp = 1; jp < kExtSuppRingNPtsArc; jp++) {
2682 Double_t alpha = jp*(alphamax-alphamin)/kExtSuppRingNPtsArc;
2683 xprof[5+jp] = kExtSuppRingRmax*TMath::Sin(alpha);
2684 yprof[5+jp] = kExtSuppRingRmax*TMath::Cos(alpha);
2685 }
2686 // ...and finally the interior profile
2687 xprof[indx+1] = kExtSuppRingBase;
2688 yprof[indx+1] = kSuppRingYTrans;
2689 xprof[indx+2] = xprof[indx+1] - kExtSuppRingInward;
2690 yprof[indx+2] = yprof[indx+1];
2691
2692 phi = TMath::Pi()/2 - 4*kExtSuppRingPartPhi - kExtSuppRingIntAng;
2693 slp1 = TMath::Tan(TMath::Pi() - kExtSuppRingBaseAng);
2694 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2695 xm = kExtSuppRingRint2*TMath::Cos(phi);
2696 ym = kExtSuppRingRint2*TMath::Sin(phi);
2697 IntersectLines(slp1, xprof[indx+2], yprof[indx+2], slp2, xm, ym,
2698 xprof[indx+3], yprof[indx+3]);
2699
2700 slp1 = slp2;
2701 phi += kExtSuppRingPartPhi;
2702 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2703 xm = kExtSuppRingRint1*TMath::Cos(phi);
2704 ym = kExtSuppRingRint1*TMath::Sin(phi);
2705 IntersectLines(slp1, xprof[indx+3], yprof[indx+3], slp2, xm, ym,
2706 xprof[indx+4], yprof[indx+4]);
2707
2708 slp1 = slp2;
2709 phi += kExtSuppRingPartPhi;
2710 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2711 xm = kExtSuppRingRint2*TMath::Cos(phi);
2712 ym = kExtSuppRingRint2*TMath::Sin(phi);
2713 IntersectLines(slp1, xprof[indx+4], yprof[indx+4], slp2, xm, ym,
2714 xprof[indx+5], yprof[indx+5]);
2715
2716 slp1 = slp2;
2717 phi += kExtSuppRingPartPhi;
2718 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2719 xm = kExtSuppRingRint1*TMath::Cos(phi);
2720 ym = kExtSuppRingRint1*TMath::Sin(phi);
2721 IntersectLines(slp1, xprof[indx+5], yprof[indx+5], slp2, xm, ym,
2722 xprof[indx+6], yprof[indx+6]);
2723
2724 xprof[indx+9] = kExtSuppRingInWide;
2725 yprof[indx+9] = kExtSuppRingInnerHi;
2726 xprof[indx+8] = xprof[indx+9] +
2727 (1 - TMath::Cos(kExtSuppRingR7Ang/2))*kExtSuppRingR7;
2728 yprof[indx+8] = yprof[indx+9] +
2729 ( TMath::Sin(kExtSuppRingR7Ang/2))*kExtSuppRingR7;
2730 xprof[indx+7] = xprof[indx+9] +
2731 (1 + TMath::Cos(kExtSuppRingR7Ang ))*kExtSuppRingR7;
2732 yprof[indx+7] = yprof[indx+9] +
2733 ( TMath::Sin(kExtSuppRingR7Ang ))*kExtSuppRingR7;
2734 // Gosh, we did the right side! now reflex on the left side
2735 npoints = (sizeof(xprof)/sizeof(Double_t))/2;
2736 for (Int_t jp = 0; jp < npoints; jp++) {
2737 xprof[npoints+jp] = -xprof[npoints-1-jp];
2738 yprof[npoints+jp] = yprof[npoints-1-jp];
2739 }
2740 // wow! now the actual Xtru
2741 extSuppRing->DefinePolygon(2*npoints, xprof, yprof);
2742 extSuppRing->DefineSection(0,0);
2743 extSuppRing->DefineSection(1,kExtSuppRingThick);
2744
2745 // The Internal Ring (part of 0872/G/A/01): another complex Xtru
2746 TGeoXtru *intSuppRing = new TGeoXtru(2);
2747
2748 // First the external profile...
2749 npoints = 0;
2750
2751 slp1 = 0;
2752 phi = TMath::Pi()/2 - kExtSuppRingPartPhi - kExtSuppRingIntAng;
2753 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2754 xm = (kExtSuppRingRint1+kIntSuppRingThick1)*TMath::Cos(phi);
2755 ym = (kExtSuppRingRint1+kIntSuppRingThick1)*TMath::Sin(phi);
2756 IntersectLines(slp1, 0, kExtSuppRingInnerHi+kExtSuppRingSpcAbov,
2757 slp2, xm, ym,
2758 xprof[npoints], yprof[npoints]);
2759 npoints++;
2760
2761 slp1 = slp2;
2762 phi -= kExtSuppRingPartPhi;
2763 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2764 xm = (kExtSuppRingRint2+kIntSuppRingThick2)*TMath::Cos(phi);
2765 ym = (kExtSuppRingRint2+kIntSuppRingThick2)*TMath::Sin(phi);
2766 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
2767 slp2, xm, ym,
2768 xprof[npoints], yprof[npoints]);
2769 npoints++;
2770
2771 slp1 = slp2;
2772 phi -= kExtSuppRingPartPhi;
2773 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2774 xm = (kExtSuppRingRint1+kIntSuppRingThick1)*TMath::Cos(phi);
2775 ym = (kExtSuppRingRint1+kIntSuppRingThick1)*TMath::Sin(phi);
2776 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
2777 slp2, xm, ym,
2778 xprof[npoints], yprof[npoints]);
2779 npoints++;
2780
2781 slp1 = slp2;
2782 phi -= kExtSuppRingPartPhi;
2783 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2784 xm = (kExtSuppRingRint2+kIntSuppRingThick2)*TMath::Cos(phi);
2785 ym = (kExtSuppRingRint2+kIntSuppRingThick2)*TMath::Sin(phi);
2786 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
2787 slp2, xm, ym,
2788 xprof[npoints], yprof[npoints]);
2789 npoints++;
2790
2791 xprof[npoints] = kExtSuppRingBase-kIntSuppRingInward;
2792 yprof[npoints] = Yfrom2Points(xprof[npoints-1], yprof[npoints-1], xm, ym,
2793 xprof[npoints]);
2794 npoints++;
2795
2796 xprof[npoints] = xprof[npoints-1];
2797 yprof[npoints] = kSuppRingYTrans;
2798 npoints++;
2799 // ...and then the interior profile, which is identical to extSuppRing one
2800 for (Int_t jp=0; jp < 8; jp++) {
2801 xprof[npoints] = extSuppRing->GetX(17+jp);
2802 yprof[npoints] = extSuppRing->GetY(17+jp);
2803 npoints++;
2804 }
2805 // We did the right side! now reflex on the left side
2806 for (Int_t jp = 0; jp < npoints; jp++) {
2807 xprof[npoints+jp] = -xprof[npoints-1-jp];
2808 yprof[npoints+jp] = yprof[npoints-1-jp];
2809 }
2810 // And now the actual Xtru
2811 intSuppRing->DefinePolygon(2*npoints, xprof, yprof);
2812 intSuppRing->DefineSection(0,0);
2813 intSuppRing->DefineSection(1,kIntSuppRingThick);
2814
2815 // The intermediate cylinder (0872/G/A/03): a TubeSeg
2816 alphamin = TMath::ASin(kSuppCylDispl/kSuppCylRint)*TMath::RadToDeg();
2817 alphamax = 180 - alphamin;
2818 TGeoTubeSeg *interCylind = new TGeoTubeSeg(kSuppCylRint, kSuppCylRext,
2819 kSuppCylHeight/2, alphamin, alphamax);
2820
2821 // The spacer (0872/G/A/03): a simple Xtru
2822 TGeoXtru *suppSpacer = new TGeoXtru(2);
2823
2824 xprof[0] = kSuppSpacerHeight;
2825 yprof[0] = kSuppSpacerThick;
2826 xprof[1] = xprof[0];
2827 yprof[1] = 0;
2828 xprof[2] = 0;
2829 yprof[2] = 0;
2830 xprof[3] = kSuppSpacerThick*SinD(kSuppSpacerAngle);
2831 yprof[3] = yprof[0];
2832
2833 suppSpacer->DefinePolygon(4, xprof, yprof);
2834 suppSpacer->DefineSection(0,-kSuppCylHeight/2);
2835 suppSpacer->DefineSection(1, kSuppCylHeight/2);
2836
2837 // The forward ring (0872/G/B/02): a Pcon (slight oversimplification)
2838 Double_t rmean = (kSuppForwRingRint1+kSuppForwRingRext)/2;
2839 alphamin = TMath::ASin(kSuppForwYTrans/rmean)*TMath::RadToDeg();
2840 alphamax = 180 - alphamin;
2841
2842 TGeoPcon *forwardRing = new TGeoPcon(alphamin,alphamax-alphamin,4);
2843
2844 forwardRing->DefineSection(0,0,
2845 kSuppForwRingRint1,kSuppForwRingRext);
2846 forwardRing->DefineSection(1,kSuppForwRingThikInt,
2847 kSuppForwRingRint1,kSuppForwRingRext);
2848 forwardRing->DefineSection(2,kSuppForwRingThikInt,
2849 kSuppForwRingRint2,kSuppForwRingRext);
2850 forwardRing->DefineSection(3,kSuppForwRingThikAll,
2851 kSuppForwRingRint2,kSuppForwRingRext);
2852
2853 // The forward cone (0872/G/B/03): a TGeoPcon
2854 TGeoPcon *forwardCone = new TGeoPcon(alphamin,alphamax-alphamin,3);
2855
2856 forwardCone->DefineSection(0,0,
2857 kSuppForwConeRmin-kSuppForwConeThick,
2858 kSuppForwConeRmin);
2859 forwardCone->DefineSection(1,kSuppForwConeLen1,
2860 kSuppForwConeRmin-kSuppForwConeThick,
2861 kSuppForwConeRmin);
2862 forwardCone->DefineSection(2,kSuppForwConeLen1+kSuppForwConeLen2,
2863 kSuppForwConeRmax-kSuppForwConeThick,
2864 kSuppForwConeRmax);
2865
2866 // The first part of the Back Ring (part of 0872/G/B/01): a complex Xtru
2867 TGeoXtru *firstSuppBackRing = new TGeoXtru(2);
2868
2869 // First the external profile... (the arc is approximated with segments)
2870 npoints = 0;
2871
2872 xprof[npoints] = kSuppBackRingPlacTop;
2873 yprof[npoints] = kSuppBackRingHeight;
2874 npoints++;
2875
2876 alphamax = TMath::Pi()/2 - TMath::ASin(kSuppBackRingPlacTop/kSuppBackRingRext);
2877 alphamin = TMath::ASin((kSuppForwYTrans+kSuppBackRingPlacSid)/kSuppBackRingRext);
2878
2879 xprof[npoints] = xprof[npoints-1];
2880 yprof[npoints] = kSuppBackRingRext*TMath::Sin(alphamax);
2881 npoints++;
2882
2883 for (Int_t jp = 1; jp <= kSuppBackRingNPtsArc; jp++) {
2884 Double_t alpha = alphamax - jp*(alphamax-alphamin)/kSuppBackRingNPtsArc;
2885 xprof[npoints] = kSuppBackRingRext*TMath::Cos(alpha);
2886 yprof[npoints] = kSuppBackRingRext*TMath::Sin(alpha);
2887 npoints++;
2888 }
2889
2890 xprof[npoints] = kSuppBackRingBase -
2891 kSuppBackRingPlacSid*TMath::Tan(kSuppBackRingPlacAng);
2892 yprof[npoints] = yprof[npoints-1];
2893 npoints++;
2894
2895 xprof[npoints] = kSuppBackRingBase;
2896 yprof[npoints] = kSuppForwYTrans;
2897 npoints++;
2898 // ...then the internal profile (the arc is approximated with segments)
2899 alphamin = TMath::ASin(kSuppForwYTrans/kSuppBackRingRint);
2900 alphamax = TMath::Pi()/2;
2901
2902 for (Int_t jp = 0; jp < kSuppBackRingNPtsArc; jp++) {
2903 Double_t alpha = alphamin + jp*(alphamax-alphamin)/kSuppBackRingNPtsArc;
2904 xprof[npoints] = kSuppBackRingRint*TMath::Cos(alpha);
2905 yprof[npoints] = kSuppBackRingRint*TMath::Sin(alpha);
2906 npoints++;
2907 }
2908
2909 xprof[npoints] = 0;
2910 yprof[npoints] = kSuppBackRingRint;
2911 npoints++;
2912 // We did the right side! now reflex on the left side (except last point)
2913 for (Int_t jp = 0; jp < npoints-1; jp++) {
2914 xprof[npoints+jp] = -xprof[npoints-jp-2];
2915 yprof[npoints+jp] = yprof[npoints-jp-2];
2916 }
2917 // And now the actual Xtru
2918 firstSuppBackRing->DefinePolygon(2*npoints-1, xprof, yprof);
2919 firstSuppBackRing->DefineSection(0,0);
2920 firstSuppBackRing->DefineSection(1,kSuppBackRingThick1);
2921
2922 // The second part of the Back Ring (part of 0872/G/B/01): a Pcon
2923 // (slight oversimplification)
2924 alphamin = TMath::ASin(kSuppForwYTrans/kSuppBackRingRint)*TMath::RadToDeg();
2925 alphamax = 180 - alphamin;
2926
2927 TGeoPcon *secondSuppBackRing = new TGeoPcon(alphamin,alphamax-alphamin,6);
2928
2929 deltaR = kSuppBackRingThick2/TMath::Sin(kSuppBackRing2ndAng1);
2930 rmin = kSuppBackRingRint - kSuppBackRingThick1/TMath::Tan(kSuppBackRing2ndAng1);
2931 rmax = rmin + deltaR + kSuppBackRingR10*TMath::Sin(kSuppBackRing2ndAng1);
2932 secondSuppBackRing->DefineSection(0, 0, rmin, rmax);
2933
2934 zloc = kSuppBackRingR10*(1 - TMath::Cos(kSuppBackRing2ndAng1/3));
2935 rmax -= kSuppBackRingR10*TMath::Sin(kSuppBackRing2ndAng1/3);
2936 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2937 secondSuppBackRing->DefineSection(1, zloc, rmin, rmax);
2938
2939 zloc = kSuppBackRingR10*(1 - TMath::Cos(kSuppBackRing2ndAng1*2/3));
2940 rmax = secondSuppBackRing->GetRmax(0) - kSuppBackRingR10*TMath::Sin(kSuppBackRing2ndAng1*2/3);
2941 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2942 secondSuppBackRing->DefineSection(2, zloc, rmin, rmax);
2943
2944 zloc = kSuppBackRingR10*(1 - TMath::Cos(kSuppBackRing2ndAng1));
2945 rmax = secondSuppBackRing->GetRmax(0) - kSuppBackRingR10*TMath::Sin(kSuppBackRing2ndAng1);
2946 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2947 secondSuppBackRing->DefineSection(3, zloc, rmin, rmax);
2948
2949 slp1 = TMath::Tan(kSuppBackRing2ndAng2);
2950 slp2 = TMath::Tan(TMath::Pi()/2 + kSuppBackRing2ndAng1);
2951 IntersectLines(-slp1,kSuppBackRingThikAll,deltaR/2,
2952 slp2,kSuppBackRingThikAll,deltaR,
2953 xm, ym);
2954
2955 zloc = xm - kSuppBackRingThick1;
2956 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2957 rmax = rmin + deltaR;
2958 secondSuppBackRing->DefineSection(4, zloc, rmin, rmax);
2959
2960 zloc = kSuppBackRingThikAll - kSuppBackRingThick1;
2961 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2962 rmax = rmin + deltaR/2;
2963 secondSuppBackRing->DefineSection(5, zloc, rmin, rmax);
2964
2965 // The supporting rod: a Tube
2966 TGeoTube *suppRod = new TGeoTube(0, kBackRodDiameter/2,
2967 (kBackRodLength - kBackRodThickLen)/2);
2968
2969 // The Back Ring (0872/G/C/01): another complex Xtru
2970 TGeoXtru *suppRearRing = new TGeoXtru(2);
2971
2972 // First the external profile...
2973 npoints = 0;
2974
2975 xprof[npoints] = kSuppRearRingTopWide;
2976 yprof[npoints] = kSuppRearRingHeight;
2977 npoints++;
2978
2979 phi = kSuppRearRing1stAng;
2980 slp1 = TMath::Tan(TMath::Pi() - phi);
2981 phi += kSuppRearRingStepAng;
2982 slp2 = TMath::Tan(TMath::Pi() - phi);
2983 xm = kSuppRearRingRext2*TMath::Sin(phi);
2984 ym = kSuppRearRingRext2*TMath::Cos(phi);
2985 IntersectLines(slp1, kSuppRearRingTopWide, kSuppRearRingHeight,
2986 slp2, xm, ym,
2987 xprof[npoints], yprof[npoints]);
2988 npoints++;
2989
2990 slp1 = slp2;
2991 phi += kSuppRearRingStepAng;
2992 slp2 = TMath::Tan(TMath::Pi() - phi);
2993 xm = kSuppRearRingRext1*TMath::Sin(phi);
2994 ym = kSuppRearRingRext1*TMath::Cos(phi);
2995 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
2996 slp2, xm, ym,
2997 xprof[npoints], yprof[npoints]);
2998 npoints++;
2999
3000 slp1 = slp2;
3001 phi += kSuppRearRingStepAng;
3002 slp2 = TMath::Tan(TMath::Pi() - phi);
3003 xm = kSuppRearRingRext2*TMath::Sin(phi);
3004 ym = kSuppRearRingRext2*TMath::Cos(phi);
3005 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
3006 slp2, xm, ym,
3007 xprof[npoints], yprof[npoints]);
3008 npoints++;
3009
3010 slp1 = slp2;
3011 slp2 = 0;
3012 xm = kSuppRearRingBase;
3013 ym = kSuppRearRingBaseHi + kSuppRearRingSideHi;
3014 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
3015 slp2, xm, ym,
3016 xprof[npoints], yprof[npoints]);
3017 npoints++;
3018
3019 xprof[npoints] = kSuppRearRingBase;
3020 yprof[npoints] = kSuppRearRingBaseHi + kSuppRearRingSideHi;
3021 npoints++;
3022 xprof[npoints] = xprof[npoints - 1];
3023 yprof[npoints] = kSuppRearRingBaseHi;
3024 npoints++;
3025 xprof[npoints] = xprof[npoints - 1] - kSuppRearRingInside;
3026 yprof[npoints] = yprof[npoints - 1];
3027 npoints++;
3028 xprof[npoints] = xprof[npoints - 1];
3029 yprof[npoints] = yprof[npoints - 1] + kSuppRearRingInsideHi;
3030 npoints++;
3031 // ...then the internal arc, approximated with segments,...
3032 xprof[npoints] = kSuppRearRingRint;
3033 yprof[npoints] = yprof[npoints - 1];
3034
3035 alphamin = TMath::ASin(kSuppRearRingBaseHi/kSuppRearRingRint);
3036 alphamax = TMath::Pi()/2;
3037
3038 for (Int_t jp = 1; jp < kSuppRearRingNPtsArc; jp++) {
3039 Double_t alpha = alphamin + jp*(alphamax-alphamin)/kSuppRearRingNPtsArc;
3040 xprof[npoints+jp] = kSuppRearRingRint*TMath::Cos(alpha);
3041 yprof[npoints+jp] = kSuppRearRingRint*TMath::Sin(alpha);
3042 }
3043
3044 xprof[npoints+kSuppRearRingNPtsArc] = 0;
3045 yprof[npoints+kSuppRearRingNPtsArc] = kSuppRearRingRint;
3046 // We did the right side! now reflex on the left side
3047 Int_t nTotalPoints = npoints+kSuppRearRingNPtsArc;
3048 for (Int_t jp = 0; jp < nTotalPoints; jp++) {
3049 xprof[nTotalPoints+1+jp] = -xprof[nTotalPoints-1-jp];
3050 yprof[nTotalPoints+1+jp] = yprof[nTotalPoints-1-jp];
3051 }
3052
3053 // And now the actual Xtru
3054 suppRearRing->DefinePolygon(2*nTotalPoints+1, xprof, yprof);
3055 suppRearRing->DefineSection(0,0);
3056 suppRearRing->DefineSection(1,kSuppRearRingThick);
3057
3058
3059 // We have all shapes: now create the real volumes
3060 TGeoMedium *medAl = mgr->GetMedium("ITS_ANTICORODAL$");
3061
3062 TGeoVolume *sideAExtSuppRing = new TGeoVolume("ITSsuppSideAExtSuppRing",
3063 extSuppRing, medAl);
3064
3065 sideAExtSuppRing->SetVisibility(kTRUE);
3066 sideAExtSuppRing->SetLineColor(kMagenta+1);
3067 sideAExtSuppRing->SetLineWidth(1);
3068 sideAExtSuppRing->SetFillColor(sideAExtSuppRing->GetLineColor());
3069 sideAExtSuppRing->SetFillStyle(4000); // 0% transparent
3070
3071 TGeoVolume *sideAIntSuppRing = new TGeoVolume("ITSsuppSideAIntSuppRing",
3072 intSuppRing, medAl);
3073
3074 sideAIntSuppRing->SetVisibility(kTRUE);
3075 sideAIntSuppRing->SetLineColor(kMagenta+1);
3076 sideAIntSuppRing->SetLineWidth(1);
3077 sideAIntSuppRing->SetFillColor(sideAIntSuppRing->GetLineColor());
3078 sideAIntSuppRing->SetFillStyle(4000); // 0% transparent
3079
3080 TGeoVolume *sideASuppCyl = new TGeoVolume("ITSsuppSideASuppCyl",
3081 interCylind, medAl);
3082
3083 sideASuppCyl->SetVisibility(kTRUE);
3084 sideASuppCyl->SetLineColor(kMagenta+1);
3085 sideASuppCyl->SetLineWidth(1);
3086 sideASuppCyl->SetFillColor(sideASuppCyl->GetLineColor());
3087 sideASuppCyl->SetFillStyle(4000); // 0% transparent
3088
3089 TGeoVolume *sideASuppSpacer = new TGeoVolume("ITSsuppSideASuppSpacer",
3090 suppSpacer, medAl);
3091
3092 sideASuppSpacer->SetVisibility(kTRUE);
3093 sideASuppSpacer->SetLineColor(kMagenta+1);
3094 sideASuppSpacer->SetLineWidth(1);
3095 sideASuppSpacer->SetFillColor(sideASuppSpacer->GetLineColor());
3096 sideASuppSpacer->SetFillStyle(4000); // 0% transparent
3097
3098 TGeoVolume *sideASuppForwRing = new TGeoVolume("ITSsuppSideASuppForwRing",
3099 forwardRing, medAl);
3100
3101 sideASuppForwRing->SetVisibility(kTRUE);
3102 sideASuppForwRing->SetLineColor(kMagenta+1);
3103 sideASuppForwRing->SetLineWidth(1);
3104 sideASuppForwRing->SetFillColor(sideASuppForwRing->GetLineColor());
3105 sideASuppForwRing->SetFillStyle(4000); // 0% transparent
3106
3107 TGeoVolume *sideASuppForwCone = new TGeoVolume("ITSsuppSideASuppForwCone",
3108 forwardCone, medAl);
3109
3110 sideASuppForwCone->SetVisibility(kTRUE);
3111 sideASuppForwCone->SetLineColor(kMagenta+1);
3112 sideASuppForwCone->SetLineWidth(1);
3113 sideASuppForwCone->SetFillColor(sideASuppForwCone->GetLineColor());
3114 sideASuppForwCone->SetFillStyle(4000); // 0% transparent
3115
3116 TGeoVolume *sideAFirstSuppBackRing = new TGeoVolume("ITSsuppSideAFirstSuppBackRing",
3117 firstSuppBackRing, medAl);
3118
3119 sideAFirstSuppBackRing->SetVisibility(kTRUE);
3120 sideAFirstSuppBackRing->SetLineColor(kMagenta+1);
3121 sideAFirstSuppBackRing->SetLineWidth(1);
3122 sideAFirstSuppBackRing->SetFillColor(sideAFirstSuppBackRing->GetLineColor());
3123 sideAFirstSuppBackRing->SetFillStyle(4000); // 0% transparent
3124
3125 TGeoVolume *sideASecondSuppBackRing = new TGeoVolume("ITSsuppSideASecondSuppBackRing",
3126 secondSuppBackRing, medAl);
3127
3128 sideASecondSuppBackRing->SetVisibility(kTRUE);
3129 sideASecondSuppBackRing->SetLineColor(kMagenta+1);
3130 sideASecondSuppBackRing->SetLineWidth(1);
3131 sideASecondSuppBackRing->SetFillColor(sideASecondSuppBackRing->GetLineColor());
3132 sideASecondSuppBackRing->SetFillStyle(4000); // 0% transparent
3133
3134 TGeoVolume *sideASuppRod = new TGeoVolume("ITSsuppSideASuppRod",
3135 suppRod, medAl);
3136
3137 sideASuppRod->SetVisibility(kTRUE);
3138 sideASuppRod->SetLineColor(kMagenta+1);
3139 sideASuppRod->SetLineWidth(1);
3140 sideASuppRod->SetFillColor(sideASuppRod->GetLineColor());
3141 sideASuppRod->SetFillStyle(4000); // 0% transparent
3142
3143 TGeoVolume *sideASuppRearRing = new TGeoVolume("ITSsuppSideASuppRearRing",
3144 suppRearRing, medAl);
3145
3146 sideASuppRearRing->SetVisibility(kTRUE);
3147 sideASuppRearRing->SetLineColor(kMagenta+1);
3148 sideASuppRearRing->SetLineWidth(1);
3149 sideASuppRearRing->SetFillColor(sideASuppRearRing->GetLineColor());
3150 sideASuppRearRing->SetFillStyle(4000); // 0% transparent
3151
3152
3153 // Now build up the support structure
3154 zloc = kSuppRingZTrans;
3155 trayASuppStruct->AddNode(sideAExtSuppRing, 1,
3156 new TGeoTranslation(0, 0, zloc) );
3157 trayASuppStruct->AddNode(sideAExtSuppRing, 2,
3158 new TGeoCombiTrans( 0, 0, zloc,
3159 new TGeoRotation("",180,0,0)));
3160
3161 zloc += kExtSuppRingThick;
3162 trayASuppStruct->AddNode(sideAIntSuppRing, 1,
3163 new TGeoTranslation(0, 0, zloc) );
3164 trayASuppStruct->AddNode(sideAIntSuppRing, 2,
3165 new TGeoCombiTrans( 0, 0, zloc,
3166 new TGeoRotation("",180,0,0)));
3167
3168 xloc = kExtSuppRingBase - kIntSuppRingInward;
3169 yloc = kSuppRingYTrans;
3170 zloc += (kIntSuppRingThick + kSuppCylHeight/2);
3171 trayASuppStruct->AddNode(sideASuppCyl, 1,
3172 new TGeoTranslation(0, 0, zloc) );
3173 trayASuppStruct->AddNode(sideASuppCyl, 2,
3174 new TGeoCombiTrans( 0, 0, zloc,
3175 new TGeoRotation("",180,0,0)));
3176 trayASuppStruct->AddNode(sideASuppSpacer, 1,
3177 new TGeoCombiTrans( xloc, yloc, zloc,
3178 new TGeoRotation("",90+kSuppSpacerAngle,0,0)));
3179 trayASuppStruct->AddNode(sideASuppSpacer, 2,
3180 new TGeoCombiTrans(-xloc, yloc, zloc,
3181 new TGeoRotation("",0,180,kSuppSpacerAngle-90)));
3182 trayASuppStruct->AddNode(sideASuppSpacer, 3,
3183 new TGeoCombiTrans( xloc,-yloc, zloc,
3184 new TGeoRotation("",180,180,kSuppSpacerAngle-90)));
3185 trayASuppStruct->AddNode(sideASuppSpacer, 4,
3186 new TGeoCombiTrans(-xloc,-yloc, zloc,
3187 new TGeoRotation("",270+kSuppSpacerAngle,0,0)));
3188
3189
3190 zloc += kSuppCylHeight/2;
3191 trayASuppStruct->AddNode(sideAIntSuppRing, 3,
3192 new TGeoTranslation(0, 0, zloc) );
3193 trayASuppStruct->AddNode(sideAIntSuppRing, 4,
3194 new TGeoCombiTrans( 0, 0, zloc,
3195 new TGeoRotation("",180,0,0)));
3196
3197 zloc += kIntSuppRingThick;
3198 trayASuppStruct->AddNode(sideAExtSuppRing, 3,
3199 new TGeoTranslation(0, 0, zloc) );
3200 trayASuppStruct->AddNode(sideAExtSuppRing, 4,
3201 new TGeoCombiTrans( 0, 0, zloc,
3202 new TGeoRotation("",180,0,0)));
3203
3204 zloc += kExtSuppRingThick;
3205 trayASuppStruct->AddNode(sideASuppForwRing, 1,
3206 new TGeoTranslation(0, 0, zloc) );
3207 trayASuppStruct->AddNode(sideASuppForwRing, 2,
3208 new TGeoCombiTrans( 0, 0, zloc,
3209 new TGeoRotation("",180,0,0)));
3210
3211 zloc += kSuppForwRingThikAll;
3212 trayASuppStruct->AddNode(sideASuppForwCone, 1,
3213 new TGeoTranslation(0, 0, zloc) );
3214 trayASuppStruct->AddNode(sideASuppForwCone, 2,
3215 new TGeoCombiTrans( 0, 0, zloc,
3216 new TGeoRotation("",180,0,0)));
3217
3218 zloc += (kSuppForwConeLen1+kSuppForwConeLen2);
3219 trayASuppStruct->AddNode(sideAFirstSuppBackRing, 1,
3220 new TGeoTranslation(0, 0, zloc) );
3221 trayASuppStruct->AddNode(sideAFirstSuppBackRing, 2,
3222 new TGeoCombiTrans( 0, 0, zloc,
3223 new TGeoRotation("",180,0,0)));
3224
3225 zloc += kSuppBackRingThick1;
3226 trayASuppStruct->AddNode(sideASecondSuppBackRing, 1,
3227 new TGeoTranslation(0, 0, zloc) );
3228 trayASuppStruct->AddNode(sideASecondSuppBackRing, 2,
3229 new TGeoCombiTrans( 0, 0, zloc,
3230 new TGeoRotation("",180,0,0)));
3231
3232 xloc = kSuppRearRingXRodHole;
3233 yloc = kSuppRearRingBaseHi + kSuppRearRingYRodHole;
3234 zloc = kRearSuppZTransGlob - kBackRodZTrans + suppRod->GetDz();
3235 trayASuppStruct->AddNode(sideASuppRod, 1,
3236 new TGeoTranslation( xloc, yloc, zloc) );
3237 trayASuppStruct->AddNode(sideASuppRod, 2,
3238 new TGeoTranslation(-xloc, yloc, zloc) );
3239 trayASuppStruct->AddNode(sideASuppRod, 3,
3240 new TGeoTranslation( xloc,-yloc, zloc) );
3241 trayASuppStruct->AddNode(sideASuppRod, 4,
3242 new TGeoTranslation(-xloc,-yloc, zloc) );
3243
3244 zloc += suppRod->GetDz();
3245 trayASuppStruct->AddNode(sideASuppRearRing, 1,
3246 new TGeoTranslation( 0, 0, zloc) );
3247 trayASuppStruct->AddNode(sideASuppRearRing, 2,
3248 new TGeoCombiTrans( 0, 0, zloc,
3249 new TGeoRotation("",180,0,0)));
3250
3251
3252 // Finally put everything in the mother volume
3253 moth->AddNode(trayASuppStruct,1,0);
3254
3255 return;
3256}
3257
3258//______________________________________________________________________
3259void AliITSv11GeometrySupport::ServicesCableSupportSPD(TGeoVolume *moth,
3260 TGeoManager *mgr){
3261//
3262// Creates the all SPD cable trays which are outside the ITS support cones
3263// but still inside the TPC
3264// In order to avoid a huge monolithic routine, this method actually
3265// calls inner methods to create and assemble the various (macro)pieces
3266//
3267// Input:
3268// moth : the TGeoVolume owing the volume structure
3269// mgr : the GeoManager (default gGeoManager)
3270// Output:
3271//
3272// Created: ??? Bjorn S. Nilsen
3273// Updated: 15 Nov 2009 Mario Sitta
3274//
3275// Technical data are taken from AutoCAD drawings and other (oral)
3276// information given by F.Tosello
3277//
3278
3279 SPDCableTraysSideA(moth, mgr);
aa177c73 3280 SPDCableTraysSideC(moth, mgr);
798b4e0c 3281
3282}
3283
3284//______________________________________________________________________
3285void AliITSv11GeometrySupport::ServicesCableSupportSDD(TGeoVolume *moth,
3286 TGeoManager *mgr){
3287//
3288// Creates the all SDD cable trays which are outside the ITS support cones
3289// but still inside the TPC
3290// In order to avoid a huge monolithic routine, this method actually
3291// calls inner methods to create and assemble the various (macro)pieces
3292//
3293// Input:
3294// moth : the TGeoVolume owing the volume structure
3295// mgr : the GeoManager (default gGeoManager)
3296// Output:
3297//
3298// Created: 14 Dec 2009 Mario Sitta
3299//
3300
3301 SDDCableTraysSideA(moth, mgr);
aa177c73 3302 SDDCableTraysSideC(moth, mgr);
798b4e0c 3303
3304 return;
3305}
3306
3307//______________________________________________________________________
3308void AliITSv11GeometrySupport::ServicesCableSupportSSD(TGeoVolume *moth,
3309 TGeoManager *mgr){
3310//
3311// Creates the SSD cable trays which are outside the ITS support cones
3312// but still inside the TPC
3313// In order to avoid a huge monolithic routine, this method actually
3314// calls inner methods to create and assemble the various (macro)pieces
3315//
3316// Input:
3317// moth : the TGeoVolume owing the volume structure
3318// mgr : the GeoManager (default gGeoManager)
3319// Output:
3320//
3321// Created: 15 Nov 2009 Mario Sitta
3322//
3323
3324 SSDCableTraysSideA(moth, mgr);
aa177c73 3325 SSDCableTraysSideC(moth, mgr);
798b4e0c 3326
3327 return;
3328}
3329
3330//______________________________________________________________________
3331void AliITSv11GeometrySupport::SPDCableTraysSideA(TGeoVolume *moth,
43aefea7 3332 const TGeoManager *mgr){
798b4e0c 3333//
3334// Creates the SPD cable trays which are outside the ITS support cones
3335// but still inside the TPC on Side A
3336// (part of this code is taken or anyway inspired to ServicesCableSupport
3337// method of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06)
3338//
3339// Input:
3340// moth : the TGeoVolume owing the volume structure
3341// mgr : the GeoManager (default gGeoManager)
3342// Output:
3343//
3344// Created: 15 Feb 2010 Mario Sitta
96eb8210 3345// Updated: 10 Jun 2010 Mario Sitta Freon inside cooling pipes
57126ea1 3346// Updated: 08 Sep 2010 Mario Sitta
1c5895a3 3347// Updated: 14 Sep 2010 Mario Sitta Cables prolonged till cone
798b4e0c 3348//
3349// Technical data are taken from AutoCAD drawings, L.Simonetti technical
3350// drawings and other (oral) information given by F.Tosello and D.Elia
3351// (small differences with blueprints - e.g. -0.07mm in R1Trans and
3352// R2Trans - fix small overlaps; they are then compensated in positioning
3353// the Rear Tray to avoid its own overlaps with the rear supporting ring)
57126ea1 3354// Optical fibers and voltage cables are approximated with mean materials
3355// and square cross sections, but preserving the total material budget.
798b4e0c 3356//
3357
3358 // Overall position and rotation of the A-Side Cable Trays
3359 // (parts of 0872/G/D)
3360 const Double_t kTrayAR1Trans = 396.93 *fgkmm;
3361 const Double_t kTrayAR2Trans = 413.93 *fgkmm;
3362 const Double_t kTrayAZTrans = 1011.00 *fgkmm;
3363 const Double_t kTrayAZRot = (180-169.5);// Degrees
3364 const Double_t kTrayAFirstRotAng = 22.00; // Degrees
3365 const Double_t kTrayASecondRotAng = 15.00; // Degrees
3366
3367 const Double_t kForwardTrayWide = 94.00 *fgkmm;//!!!TO BE CHECKED!!!
3368 const Double_t kForwardTrayFirstHigh = 83.00 *fgkmm;//!!!TO BE CHECKED!!!
3369 const Double_t kForwardTraySecondHigh = 52.70 *fgkmm;//!!!TO BE CHECKED!!!
3370 const Double_t kForwardTrayTotalLen = 853.00 *fgkmm;
3371 const Double_t kForwardTrayFirstLen = 435.00 *fgkmm;
3372 const Double_t kForwardTrayWingWide = 16.00 *fgkmm;//!!!TO BE CHECKED!!!
3373 const Double_t kForwardTrayInterSpace = 18.00 *fgkmm;//!!!TO BE CHECKED!!!
3374 const Double_t kForwardTrayThick = 2.00 *fgkmm;
3375
1c5895a3 3376 const Int_t kForwardSideNpoints = 6;
798b4e0c 3377
3378 const Double_t kExternalTrayLen = 1200.00 *fgkmm;
3379 const Double_t kExternalTrayWide = kForwardTrayWide;
3380 const Double_t kExternalTrayHigh = kForwardTraySecondHigh;
3381 const Double_t kExternalTrayThick = kForwardTrayThick;
3382
57126ea1 3383 const Double_t kCoolingTubeRmin = 2.00 *fgkmm;
3384 const Double_t kCoolingTubeRmax = 3.00 *fgkmm;
798b4e0c 3385
3386 const Double_t kOpticalFibersSect = 8.696*fgkmm;//!!!ESTIMATED!!!
57126ea1 3387 const Double_t kLowVoltageCableSectCu = 7.675*fgkmm;// Computed
3388 const Double_t kLowVoltageCableHighPUR = 1.000*fgkmm;// Computed
3389 const Double_t kHiVoltageCableSectCu = 1.535*fgkmm;// Computed
3390 const Double_t kHiVoltageCableHighPUR = 0.500*fgkmm;// Computed
d8826f33 3391 const Double_t kCoaxCableSectCu = 6.024*fgkmm;// Computed
3392 const Double_t kCoaxCableHighMeg = 5.695*fgkmm;// Computed
96eb8210 3393
1c5895a3 3394 const Double_t kTrayCCablesRot = 75.000*fgkDegree;// Computed
3395 const Double_t kTrayCCablesZLenOut = 227.000*fgkmm;// Computed
3396
798b4e0c 3397
3398 // Local variables
3399 Double_t xprof[kForwardSideNpoints], yprof[kForwardSideNpoints];
3400 Double_t xloc, yloc, zloc, alpharot;
3401
3402
3403 // The two tray components as assemblies
3404 TGeoVolumeAssembly *cableTrayAForw =
3405 new TGeoVolumeAssembly("ITSsupportSPDTrayAForwRear");
3406 TGeoVolumeAssembly *cableTrayAExt =
3407 new TGeoVolumeAssembly("ITSsupportSPDTrayAExt");
3408
3409
3410 // First create all needed shapes
3411
3412 // The lower face of the forward tray: a BBox
3413 TGeoBBox *forwTrayLowerFace = new TGeoBBox(kForwardTrayWide/2,
3414 kForwardTrayThick/2,
3415 kForwardTrayTotalLen/2);
3416
3417 // The side face of the forward tray: a Xtru
3418 TGeoXtru *forwTraySideFace = new TGeoXtru(2);
3419 forwTraySideFace->SetName("ITSsuppSPDForwTraySide");
3420
3421 xprof[0] = 0;
3422 yprof[0] = kForwardTrayThick;
3423 xprof[1] = kForwardTrayTotalLen;
3424 yprof[1] = yprof[0];
3425 xprof[2] = xprof[1];
3426 yprof[2] = kForwardTraySecondHigh - kForwardTrayThick;
3427 xprof[3] = kForwardTrayFirstLen;
3428 yprof[3] = yprof[2];
3429 xprof[4] = xprof[3];
3430 yprof[4] = kForwardTrayFirstHigh - kForwardTrayThick;
3431 xprof[5] = xprof[0];
3432 yprof[5] = yprof[4];
3433
3434 forwTraySideFace->DefinePolygon(6, xprof, yprof);
3435 forwTraySideFace->DefineSection(0, 0);
3436 forwTraySideFace->DefineSection(1, kForwardTrayThick);
3437
3438 // The covers of the forward tray: two BBox's
3439 TGeoBBox *forwTrayShortCover = new TGeoBBox(kForwardTrayWide/2,
3440 kForwardTrayThick/2,
3441 kForwardTrayFirstLen/2);
3442
3443 TGeoBBox *forwTrayLongCover = new TGeoBBox(kForwardTrayWide/2,
3444 kForwardTrayThick/2,
3445 (kForwardTrayTotalLen - kForwardTrayFirstLen)/2);
3446
3447 // Each small wing of the forward tray: a BBox
3448 TGeoBBox *forwTrayWing = new TGeoBBox(kForwardTrayWingWide/2,
3449 (kForwardTrayFirstHigh-kForwardTraySecondHigh)/2,
3450 kForwardTrayThick/2);
3451
3452 // The internal plane of the forward tray: a BBox
3453 TGeoBBox *forwTrayPlane = new TGeoBBox(kForwardTrayWide/2-kForwardTrayThick,
3454 kForwardTrayThick/2,
3455 kForwardTrayTotalLen/2);
3456
3457 // The internal wall of the forward tray: a BBox
3458 TGeoBBox *forwTrayWall = new TGeoBBox(kForwardTrayThick/2,
3459 (kForwardTrayInterSpace-kForwardTrayThick)/2,
3460 kForwardTrayTotalLen/2);
3461
3462 // Each horizontal face of the external tray: a BBox
3463 TGeoBBox *extTrayHorFace = new TGeoBBox(kExternalTrayWide/2-kExternalTrayThick,
3464 kExternalTrayThick/2,
3465 kExternalTrayLen/2);
3466
3467 // Each vertical face of the external tray: a BBox
3468 TGeoBBox *extTrayVerFace = new TGeoBBox(kExternalTrayThick/2,
3469 kExternalTrayHigh/2,
3470 kExternalTrayLen/2);
3471
3472 // The internal wall of the external tray: a BBox
3473 TGeoBBox *extTrayWall = new TGeoBBox(kExternalTrayThick/2,
3474 (kForwardTrayInterSpace-kExternalTrayThick)/2,
3475 kExternalTrayLen/2);
3476
96eb8210 3477 // The cooling tube inside the forward tray: a Tube
798b4e0c 3478 Double_t zelong = (kForwardTraySecondHigh - 2*kForwardTrayThick
3479 - 2*forwTrayWall->GetDY() - kCoolingTubeRmax)*SinD(kTrayAZRot);
3480 Double_t zlen = (zelong + kForwardTrayTotalLen)/2;
96eb8210 3481 TGeoTube *coolTubeForw = new TGeoTube(0, kCoolingTubeRmax, zlen);
3482
3483 // The freon inside the forward tray tubes: a Tube
3484 TGeoTube *freonTubeForw = new TGeoTube(0, kCoolingTubeRmin, zlen);
798b4e0c 3485
3486 // The cooling tube inside the external tray: a Ctub
96eb8210 3487 TGeoCtub *coolTubeExt = new TGeoCtub(0, kCoolingTubeRmax,
798b4e0c 3488 kExternalTrayLen/2, 0, 360,
3489 0, SinD(kTrayAZRot),-CosD(kTrayAZRot),
3490 0, 0, 1);
3491
96eb8210 3492 // The freon inside the forward tray tubes: a Tube
3493 TGeoCtub *freonTubeExt = new TGeoCtub(0, kCoolingTubeRmin,
3494 kExternalTrayLen/2, 0, 360,
3495 0, SinD(kTrayAZRot),-CosD(kTrayAZRot),
3496 0, 0, 1);
3497
1c5895a3 3498 // The optical fibers inside the forward tray: a Xtru
3499 TGeoXtru *optFibsForw = new TGeoXtru(2);
3500
3501 xprof[0] = -kTrayCCablesZLenOut;
3502 yprof[0] = xprof[0]/TanD(kTrayCCablesRot);
3503 xprof[1] = 0;
3504 yprof[1] = 0;
3505 xprof[2] = kForwardTrayTotalLen;
3506 yprof[2] = yprof[1];
3507 xprof[3] = xprof[2];
3508 yprof[3] = yprof[2] + kOpticalFibersSect;
3509 xprof[4] = xprof[1];
3510 yprof[4] = yprof[3];
3511 xprof[5] = xprof[0];
3512 yprof[5] = yprof[0] + kOpticalFibersSect;
3513
3514 optFibsForw->DefinePolygon(6, xprof, yprof);
3515 optFibsForw->DefineSection(0,-kOpticalFibersSect/2);
3516 optFibsForw->DefineSection(1, kOpticalFibersSect/2);
798b4e0c 3517
3518 // The optical fibers inside the external tray: a Xtru
3519 TGeoXtru *optFibsExt = new TGeoXtru(2);
1c5895a3 3520 optFibsExt->SetName("ITSsuppSPDExtTrayOptFibs");
798b4e0c 3521
3522 yprof[0] = -kExternalTrayHigh + 2*kExternalTrayThick
3523 + 2*forwTrayWall->GetDY();
3524 xprof[0] = yprof[0]*TanD(kTrayAZRot);
3525 xprof[1] = kExternalTrayLen;
3526 yprof[1] = yprof[0];
3527 xprof[2] = xprof[1];
3528 yprof[2] = yprof[1] + kOpticalFibersSect;
3529 yprof[3] = yprof[2];
3530 xprof[3] = yprof[2]*TanD(kTrayAZRot);
3531
3532 optFibsExt->DefinePolygon(4, xprof, yprof);
3533 optFibsExt->DefineSection(0, 0);
3534 optFibsExt->DefineSection(1, kOpticalFibersSect);
3535
1c5895a3 3536 // The Low Voltage cables inside the forward tray: two Xtru
3537 TGeoXtru *lowCablesForwCu = new TGeoXtru(2);
3538
3539 xprof[0] = -kTrayCCablesZLenOut;
3540 yprof[0] = xprof[0]/TanD(kTrayCCablesRot);
3541 xprof[1] = 0;
3542 yprof[1] = 0;
3543 xprof[2] = kForwardTrayTotalLen;
3544 yprof[2] = yprof[1];
3545 xprof[3] = xprof[2];
3546 yprof[3] = yprof[2] + kLowVoltageCableSectCu/2;
3547 xprof[4] = xprof[1];
3548 yprof[4] = yprof[3];
3549 xprof[5] = xprof[0];
3550 yprof[5] = yprof[0] + kLowVoltageCableSectCu/2;
3551
3552 lowCablesForwCu->DefinePolygon(6, xprof, yprof);
3553 lowCablesForwCu->DefineSection(0,-kLowVoltageCableSectCu);
3554 lowCablesForwCu->DefineSection(1, kLowVoltageCableSectCu);
57126ea1 3555
1c5895a3 3556 TGeoXtru *lowCablesForwPUR = new TGeoXtru(2);
3557
3558 xprof[0] = lowCablesForwCu->GetX(5);