Elmination of overlaps detected with root v5-32 (Mario Sitta)
[u/mrichter/AliRoot.git] / ITS / AliITSv11GeometrySupport.cxx
CommitLineData
172b0d90 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
cee918ed 16// This class Defines the Geometry for the ITS services and support cones
17// outside of the ceneteral volume (except for the Ceneteral support
18// cylinders. Other classes define the rest of the ITS. Specificaly the ITS
19// The SSD support cone,SSD Support centeral cylinder, SDD support cone,
20// The SDD cupport centeral cylinder, the SPD Thermal Sheald, The supports
21// and cable trays on both the RB26 (muon dump) and RB24 sides, and all of
22// the cabling from the ladders/stave ends out past the TPC.
23
172b0d90 24/* $Id$ */
172b0d90 25// General Root includes
172b0d90 26#include <TMath.h>
172b0d90 27// Root Geometry includes
543b7370 28//#include <AliLog.h>
172b0d90 29#include <TGeoManager.h>
30#include <TGeoVolume.h>
31#include <TGeoPcon.h>
32#include <TGeoCone.h>
33#include <TGeoTube.h> // contaings TGeoTubeSeg
34#include <TGeoArb8.h>
db486a6e 35#include <TGeoXtru.h>
172b0d90 36#include <TGeoCompositeShape.h>
37#include <TGeoMatrix.h>
172b0d90 38#include "AliITSv11GeometrySupport.h"
39
40ClassImp(AliITSv11GeometrySupport)
41
42#define SQ(A) (A)*(A)
43
44//______________________________________________________________________
43aefea7 45void AliITSv11GeometrySupport::SPDCone(TGeoVolume *moth,const TGeoManager *mgr)
a275e8ba 46{
47//
48// Creates the SPD thermal shield as a volume assembly
49// and adds it to the mother volume
50// (this is actually a merge of the previous SPDThermalSheald method
51// of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06 and the
52// CreateSPDThermalShield method of AliITSv11Hybrid)
53//
54// Input:
55// moth : the TGeoVolume owing the volume structure
56// mgr : the GeoManager (default gGeoManager)
57// Output:
58//
59// Created: ??? ???
60// Updated: 11 Dec 2007 Mario Sitta
61//
62// Technical data are taken from: ALICE-Thermal Screen "Cone transition"
63// (thermal-screen1_a3.ps), "Cylinder" (thermal-screen2_a3.ps), "Half
64// assembly" (thermal-screen3_a3.ps), "Flange" (thermal-screen4_a3.ps)
65
66
67 // Dimensions of the Central shield
0801d201 68 const Double_t kHalfLengthCentral = 399.9*fgkmm;
a275e8ba 69 const Double_t kThicknessCentral = 0.4*fgkmm;
70 const Double_t kInnerRadiusCentral = 8.1475*fgkcm;
71 const Double_t kOuterRadiusCentral = 9.9255*fgkcm;
72 const Double_t kInnerACentral = 3.1674*fgkcm;
73 const Double_t kInnerBCentral = 2.023 *fgkcm;
74 const Double_t kOuterACentral = 2.4374*fgkcm;
75 const Double_t kOuterBCentral = 3.8162*fgkcm;
76 // Dimensions of the EndCap shield
77 const Double_t kHalfLengthEndCap = 25.*fgkmm;
78 const Double_t kThicknessEndCap = 2.0*fgkmm;
79 const Double_t kInnerRadiusEndCap = 8.0775*fgkcm;
80 const Double_t kOuterRadiusEndCap = 9.9955*fgkcm;
81 const Double_t kInnerAEndCap = 3.1453*fgkcm;
82 const Double_t kInnerBEndCap = 2.0009*fgkcm;
83 const Double_t kOuterAEndCap = 2.4596*fgkcm;
84 const Double_t kOuterBEndCap = 3.8384*fgkcm;
85 // Dimensions of the Cone shield
86 const Double_t kHalfLengthCone = 145.*fgkmm;
87 const Double_t kThicknessCone = 0.3*fgkmm;
88 const Double_t kInnerRadialCone = 37.3*fgkcm;
89 const Double_t kOuterRadialCone = 39.0*fgkcm;
90 const Double_t kInnerACone = 14.2344*fgkcm;
91 // const Double_t kInnerBCone = 9.0915*fgkcm;
92 const Double_t kOuterACone = 9.5058*fgkcm;
93 // const Double_t kOuterBCone = 14.8831*fgkcm;
94 // Dimensions of the Flange's Ring and Wing
95 const Double_t kHalfLengthRing = 7.5*fgkmm;
96 const Double_t kThicknessRing = 0.3*fgkmm;
97 const Double_t kInnerRadiusRing = 37.3*fgkcm;
98 const Double_t kOuterRadiusRing = 42.0*fgkcm;
99 const Double_t kOuterRadiusWing = 49.25*fgkcm;
ca86fdb4 100 const Double_t kWideWing = 6.0*fgkcm;
0b9c8a10 101 const Double_t kThetaWing = 45.0;
a275e8ba 102 // Common data
103 const Double_t kTheta = 36.0*TMath::DegToRad();
104 const Double_t kThicknessOmega = 0.3*fgkmm;
105
106 // Local variables
107 Double_t x, y;
0801d201 108 Double_t zpos;
a275e8ba 109 Double_t xshld[24], yshld[24];
110 Double_t xair[24] , yair[24];
111 Double_t xomega[48], yomega[48];
112 // Double_t *xyarb8;
113
114 // The entire shield is made up of two half central shields
115 // symmetric with respect to the XZ plane, four half end cap
116 // shields, again symmetric with respect to the XZ plane, and four
117 // half cones, symmetric with respect to the XZ plane too.
118
119 TGeoVolumeAssembly *vM = new TGeoVolumeAssembly("ITSspdThermalShield");
120
121 // The central half shield: a half tube of carbon fiber,
122 // a similar but proportionally smaller half tube of air inside it,
123 // and a Omega-shaped carbon fiber insert inside the air.
124 // They are all XTru shapes
125
126 TGeoXtru *centralshape = new TGeoXtru(2);
127
128 CreateSPDThermalShape(kInnerACentral,kInnerBCentral,kInnerRadiusCentral,
129 kOuterACentral,kOuterBCentral,kOuterRadiusCentral,
130 kTheta,xshld,yshld);
131
132 centralshape->DefinePolygon(24,xshld,yshld);
133 centralshape->DefineSection(0,-kHalfLengthCentral);
134 centralshape->DefineSection(1, kHalfLengthCentral);
135
136 // Now rescale to get the air volume dimensions
137 InsidePoint(xshld[23], yshld[23],
138 xshld[ 0], yshld[ 0],
139 xshld[ 1], yshld[ 1], kThicknessCentral,
140 xair[0], yair[0]);
141 for (Int_t i=1; i<23; i++) {
142 InsidePoint(xshld[i-1], yshld[i-1],
143 xshld[ i ], yshld[ i ],
144 xshld[i+1], yshld[i+1], kThicknessCentral,
145 xair[i], yair[i]);
146 }
147 InsidePoint(xshld[22], yshld[22],
148 xshld[23], yshld[23],
149 xshld[ 0], yshld[ 0], kThicknessCentral,
150 xair[23], yair[23]);
151
152 // Create the air shape
153 TGeoXtru *centralairshape = new TGeoXtru(2);
154
155 centralairshape->DefinePolygon(24,xair,yair);
156 centralairshape->DefineSection(0,-kHalfLengthCentral);
157 centralairshape->DefineSection(1, kHalfLengthCentral);
158
159 // Create the Omega insert
160 TGeoXtru *centralomegashape = new TGeoXtru(2);
161
3d2705b6 162 CreateSPDOmegaShape(xair,yair,kThicknessOmega,xomega,yomega);
5d9d4033 163 // Temporary fix for awkward extrusions seen only with Root v5.32
164 yomega[ 1] += 0.0001;
165 yomega[ 2] += 0.0001;
166 yomega[ 5] += 0.0001;
167 yomega[ 6] += 0.0001;
168 xomega[15] -= 0.0001;
169 xomega[16] -= 0.0001;
170 yomega[28] -= 0.0001;
171 yomega[29] -= 0.0001;
a275e8ba 172
173 centralomegashape->DefinePolygon(48,xomega,yomega);
174 centralomegashape->DefineSection(0,-kHalfLengthCentral);
175 centralomegashape->DefineSection(1, kHalfLengthCentral);
176
177 // The end cap half shield: a half tube of carbon fiber,
178 // a similar but proportionally smaller half tube of air inside it,
179 // and a Omega-shaped carbon fiber insert inside the air.
180 // They are all XTru shapes
181
182 TGeoXtru *endcapshape = new TGeoXtru(2);
183
184 CreateSPDThermalShape(kInnerAEndCap,kInnerBEndCap,kInnerRadiusEndCap,
185 kOuterAEndCap,kOuterBEndCap,kOuterRadiusEndCap,
186 kTheta,xshld,yshld);
187
188 endcapshape->DefinePolygon(24,xshld,yshld);
189 endcapshape->DefineSection(0,-kHalfLengthEndCap);
190 endcapshape->DefineSection(1, kHalfLengthEndCap);
191
192 // Now rescale to get the air volume dimensions
193 InsidePoint(xshld[23], yshld[23],
194 xshld[ 0], yshld[ 0],
195 xshld[ 1], yshld[ 1], kThicknessEndCap,
196 xair[0], yair[0]);
197 for (Int_t i=1; i<23; i++) {
198 InsidePoint(xshld[i-1], yshld[i-1],
199 xshld[ i ], yshld[ i ],
200 xshld[i+1], yshld[i+1], kThicknessEndCap,
201 xair[i], yair[i]);
202 }
203 InsidePoint(xshld[22], yshld[22],
204 xshld[23], yshld[23],
205 xshld[ 0], yshld[ 0], kThicknessEndCap,
206 xair[23], yair[23]);
207
208 // Create the air shape
209 TGeoXtru *endcapairshape = new TGeoXtru(2);
210
211 endcapairshape->DefinePolygon(24,xair,yair);
212 endcapairshape->DefineSection(0,-kHalfLengthEndCap);
213 endcapairshape->DefineSection(1, kHalfLengthEndCap);
214
215 // Create the Omega insert
216 TGeoXtru *endcapomegashape = new TGeoXtru(2);
217
3d2705b6 218 CreateSPDOmegaShape(xair,yair,kThicknessOmega,xomega,yomega);
5d9d4033 219 // Temporary fix for awkward extrusions seen only with Root v5.32
220 yomega[19] -= 0.0001;
221 yomega[20] -= 0.0001;
222 yomega[31] -= 0.0001;
223 yomega[42] += 0.0001;
224 yomega[43] += 0.0001;
225 yomega[46] += 0.0001;
226 yomega[47] += 0.0001;
a275e8ba 227
228 endcapomegashape->DefinePolygon(48,xomega,yomega);
229 endcapomegashape->DefineSection(0,-kHalfLengthEndCap);
230 endcapomegashape->DefineSection(1, kHalfLengthEndCap);
231
232 // The cone half shield is more complex since there is no basic
233 // TGeo shape to describe it correctly. So it is made of a series
234 // of TGeoArb8 shapes filled with air, which all together make up the
235 // the cone AND its internal insert. Part of the following code is
236 // adapted from SPDThermalSheald method.
237
238 // Filled portions
239 TGeoArb8 *sC1 = new TGeoArb8(kHalfLengthCone);
240 TGeoArb8 *sC2 = new TGeoArb8(kHalfLengthCone);
241
242 CreateSPDThermalShape(kInnerACentral,kInnerBCentral,kInnerRadiusCentral,
243 kOuterACentral,kOuterBCentral,kOuterRadiusCentral,
244 kTheta,xshld,yshld);
245
246 sC1->SetVertex(0,xshld[12],yshld[12]);
247 sC1->SetVertex(1,xshld[11],yshld[11]);
248 sC1->SetVertex(2,xshld[ 0],yshld[ 0]);
249 sC1->SetVertex(3,xshld[23],yshld[23]);
250
251 sC2->SetVertex(0,xshld[11],yshld[11]);
252 sC2->SetVertex(1,xshld[10],yshld[10]);
253 sC2->SetVertex(2,xshld[ 1],yshld[ 1]);
254 sC2->SetVertex(3,xshld[ 0],yshld[ 0]);
255
256 // Drawings give only the radius, convert it to the apothegm
257 Double_t kInnerRadiusCone = TMath::Sqrt(kInnerRadialCone*kInnerRadialCone
258 - 0.25*kInnerACone*kInnerACone);
259 Double_t kOuterRadiusCone = TMath::Sqrt(kOuterRadialCone*kOuterRadialCone
260 - 0.25*kOuterACone*kOuterACone);
261
262 Double_t xco[4], yco[4], xci[4], yci[4];
263
264 for (Int_t i=0; i<2; i++) {
265 Double_t th = i*kTheta*TMath::RadToDeg();
266 xco[2*i ] = kOuterRadiusCone*SinD(th) - 0.5*kOuterACone*CosD(th);
267 yco[2*i ] = kOuterRadiusCone*CosD(th) + 0.5*kOuterACone*SinD(th);
268 xci[2*i ] = kInnerRadiusCone*SinD(th) - 0.5*kInnerACone*CosD(th);
269 yci[2*i ] = kInnerRadiusCone*CosD(th) + 0.5*kInnerACone*SinD(th);
270 xco[2*i+1] = kOuterRadiusCone*SinD(th) + 0.5*kOuterACone*CosD(th);
271 yco[2*i+1] = kOuterRadiusCone*CosD(th) - 0.5*kOuterACone*SinD(th);
272 xci[2*i+1] = kInnerRadiusCone*SinD(th) + 0.5*kInnerACone*CosD(th);
273 yci[2*i+1] = kInnerRadiusCone*CosD(th) - 0.5*kInnerACone*SinD(th);
274 }
275
276 sC1->SetVertex(4,xco[0],yco[0]);
277 sC1->SetVertex(5,xco[1],yco[1]);
278 sC1->SetVertex(6,xci[1],yci[1]);
279 sC1->SetVertex(7,xci[0],yci[0]);
280
281 sC2->SetVertex(4,xco[1],yco[1]);
282 sC2->SetVertex(5,xco[2],yco[2]);
283 sC2->SetVertex(6,xci[2],yci[2]);
284 sC2->SetVertex(7,xci[1],yci[1]);
285
286 // Air holes
287 TGeoArb8 *sCh1 = new TGeoArb8(kHalfLengthCone);
288 TGeoArb8 *sCh2 = new TGeoArb8(kHalfLengthCone);
289
290 for(Int_t i=0; i<4; i++){
291 InsidePoint(sC1->GetVertices()[((i+3)%4)*2+0],
292 sC1->GetVertices()[((i+3)%4)*2+1],
293 sC1->GetVertices()[i*2+0],
294 sC1->GetVertices()[i*2+1],
295 sC1->GetVertices()[((i+1)%4)*2+0],
296 sC1->GetVertices()[((i+1)%4)*2+1],-kThicknessCone,x,y);
297 sCh1->SetVertex(i,x,y);
298
299 InsidePoint(sC1->GetVertices()[((i+3)%4 +4)*2+0],
300 sC1->GetVertices()[((i+3)%4 +4)*2+1],
301 sC1->GetVertices()[(i+4)*2+0],
302 sC1->GetVertices()[(i+4)*2+1],
303 sC1->GetVertices()[((i+1)%4 +4)*2+0],
304 sC1->GetVertices()[((i+1)%4 +4)*2+1],-kThicknessCone,x,y);
305 sCh1->SetVertex(i+4,x,y);
306
307 InsidePoint(sC2->GetVertices()[((i+3)%4)*2+0],
308 sC2->GetVertices()[((i+3)%4)*2+1],
309 sC2->GetVertices()[i*2+0],
310 sC2->GetVertices()[i*2+1],
311 sC2->GetVertices()[((i+1)%4)*2+0],
312 sC2->GetVertices()[((i+1)%4)*2+1],-kThicknessCone,x,y);
313 sCh2->SetVertex(i,x,y);
314
315 InsidePoint(sC2->GetVertices()[((i+3)%4 +4)*2+0],
316 sC2->GetVertices()[((i+3)%4 +4)*2+1],
317 sC2->GetVertices()[(i+4)*2+0],
318 sC2->GetVertices()[(i+4)*2+1],
319 sC2->GetVertices()[((i+1)%4 +4)*2+0],
320 sC2->GetVertices()[((i+1)%4 +4)*2+1],-kThicknessCone,x,y);
321 sCh2->SetVertex(i+4,x,y);
322 }
323
324 // Finally the carbon fiber Ring with its Wings and their
325 // stesalite inserts. They are Tube and TubeSeg shapes
326
327 TGeoTube *ringshape = new TGeoTube(kInnerRadiusRing,kOuterRadiusRing,
328 kHalfLengthRing);
329
330 TGeoTube *ringinsertshape = new TGeoTube(kInnerRadiusRing+kThicknessRing,
331 kOuterRadiusRing-kThicknessRing,
332 kHalfLengthRing-kThicknessRing);
333
334 Double_t angleWideWing, angleWideWingThickness;
335 angleWideWing = (kWideWing/kOuterRadiusWing)*TMath::RadToDeg();
336 angleWideWingThickness = (kThicknessRing/kOuterRadiusWing)*TMath::RadToDeg();
337
338 TGeoTubeSeg *wingshape = new TGeoTubeSeg(kOuterRadiusRing,kOuterRadiusWing,
339 kHalfLengthRing, 0, angleWideWing);
340
341 TGeoTubeSeg *winginsertshape = new TGeoTubeSeg(kOuterRadiusRing,
342 kOuterRadiusWing-kThicknessRing, kHalfLengthRing-kThicknessRing,
343 angleWideWingThickness, angleWideWing-angleWideWingThickness);
344
345
346 // We have the shapes: now create the real volumes
347
348 TGeoMedium *medSPDcf = mgr->GetMedium("ITS_SPD shield$");
349 TGeoMedium *medSPDair = mgr->GetMedium("ITS_SPD AIR$");
350 TGeoMedium *medSPDste = mgr->GetMedium("ITS_G10FR4$"); // stesalite
351
352 TGeoVolume *centralshield = new TGeoVolume("SPDcentralshield",
353 centralshape,medSPDcf);
354 centralshield->SetVisibility(kTRUE);
355 centralshield->SetLineColor(7);
356 centralshield->SetLineWidth(1);
357
358 TGeoVolume *centralairshield = new TGeoVolume("SPDcentralairshield",
359 centralairshape,medSPDair);
360 centralairshield->SetVisibility(kTRUE);
361 centralairshield->SetLineColor(5); // Yellow
362 centralairshield->SetLineWidth(1);
363 centralairshield->SetFillColor(centralairshield->GetLineColor());
364 centralairshield->SetFillStyle(4090); // 90% transparent
365
366 TGeoVolume *centralomega = new TGeoVolume("SPDcentralomega",
367 centralomegashape,medSPDcf);
368 centralomega->SetVisibility(kTRUE);
369 centralomega->SetLineColor(7);
370 centralomega->SetLineWidth(1);
371
372 centralairshield->AddNode(centralomega,1,0);
373 centralshield->AddNode(centralairshield,1,0);
374
375 TGeoVolume *endcapshield = new TGeoVolume("SPDendcapshield",
376 endcapshape,medSPDcf);
377 endcapshield->SetVisibility(kTRUE);
378 endcapshield->SetLineColor(7);
379 endcapshield->SetLineWidth(1);
380
381 TGeoVolume *endcapairshield = new TGeoVolume("SPDendcapairshield",
382 endcapairshape,medSPDair);
383 endcapairshield->SetVisibility(kTRUE);
384 endcapairshield->SetLineColor(5); // Yellow
385 endcapairshield->SetLineWidth(1);
386 endcapairshield->SetFillColor(endcapairshield->GetLineColor());
387 endcapairshield->SetFillStyle(4090); // 90% transparent
388
389 TGeoVolume *endcapomega = new TGeoVolume("SPDendcapomega",
390 endcapomegashape,medSPDcf);
391 endcapomega->SetVisibility(kTRUE);
392 endcapomega->SetLineColor(7);
393 endcapomega->SetLineWidth(1);
394
395 endcapairshield->AddNode(endcapomega,1,0);
396 endcapshield->AddNode(endcapairshield,1,0);
397
398 TGeoVolume *vC1 = new TGeoVolume("SPDconeshieldV1",sC1,medSPDcf);
399 vC1->SetVisibility(kTRUE);
400 vC1->SetLineColor(7);
401 vC1->SetLineWidth(1);
402
403 TGeoVolume *vCh1 = new TGeoVolume("SPDconeshieldH1",sCh1,medSPDair);
404
405 vCh1->SetVisibility(kTRUE);
406 vCh1->SetLineColor(5); // Yellow
407 vCh1->SetLineWidth(1);
408 vCh1->SetFillColor(vCh1->GetLineColor());
409 vCh1->SetFillStyle(4090); // 90% transparent
410
411 vC1->AddNode(vCh1,1,0);
412
413 TGeoVolume *vC2 = new TGeoVolume("SPDconeshieldV2",sC2,medSPDcf);
414
415 vC2->SetVisibility(kTRUE);
416 vC2->SetLineColor(7);
417 vC2->SetLineWidth(1);
418
419 TGeoVolume *vCh2 = new TGeoVolume("SPDconeshieldH2",sCh2,medSPDair);
420
421 vCh2->SetVisibility(kTRUE);
422 vCh2->SetLineColor(5); // Yellow
423 vCh2->SetLineWidth(1);
424 vCh2->SetFillColor(vCh2->GetLineColor());
425 vCh2->SetFillStyle(4090); // 90% transparent
426
427 vC2->AddNode(vCh2,1,0);
428
429 TGeoVolume *ring = new TGeoVolume("SPDshieldring",ringshape,medSPDcf);
430 ring->SetVisibility(kTRUE);
431 ring->SetLineColor(7);
432 ring->SetLineWidth(1);
433
434 TGeoVolume *ringinsert = new TGeoVolume("SPDshieldringinsert",
435 ringinsertshape,medSPDste);
436 ringinsert->SetVisibility(kTRUE);
437 ringinsert->SetLineColor(3); // Green
438// ringinsert->SetLineWidth(1);
439 ringinsert->SetFillColor(ringinsert->GetLineColor());
440 ringinsert->SetFillStyle(4010); // 10% transparent
441
442 ring->AddNode(ringinsert,1,0);
443
444 TGeoVolume *wing = new TGeoVolume("SPDshieldringwing",wingshape,medSPDcf);
445 wing->SetVisibility(kTRUE);
446 wing->SetLineColor(7);
447 wing->SetLineWidth(1);
448
449 TGeoVolume *winginsert = new TGeoVolume("SPDshieldringinsert",
450 winginsertshape,medSPDste);
451 winginsert->SetVisibility(kTRUE);
452 winginsert->SetLineColor(3); // Green
453// winginsert->SetLineWidth(1);
454 winginsert->SetFillColor(winginsert->GetLineColor());
455 winginsert->SetFillStyle(4010); // 10% transparent
456
457 wing->AddNode(winginsert,1,0);
458
459
460 // Add all volumes in the assembly
0801d201 461 const Double_t kLittleZTrans = 0.1*fgkmm;
462 vM->AddNode(centralshield,1,new TGeoTranslation(0,0,-kLittleZTrans));
463 vM->AddNode(centralshield,2,new TGeoCombiTrans( 0,0,-kLittleZTrans,
464 new TGeoRotation("",180,0,0)));
a275e8ba 465
0801d201 466 zpos = kHalfLengthCentral+kHalfLengthEndCap;
a275e8ba 467 vM->AddNode(endcapshield,1,
0801d201 468 new TGeoTranslation(0,0, zpos-kLittleZTrans));
a275e8ba 469 vM->AddNode(endcapshield,2,
0801d201 470 new TGeoTranslation(0,0,-zpos-kLittleZTrans));
a275e8ba 471 vM->AddNode(endcapshield,3,new TGeoCombiTrans(
0801d201 472 0, 0, zpos-kLittleZTrans, new TGeoRotation("",180,0,0) ) );
a275e8ba 473 vM->AddNode(endcapshield,4,new TGeoCombiTrans(
0801d201 474 0, 0,-zpos-kLittleZTrans, new TGeoRotation("",180,0,0) ) );
a275e8ba 475
0801d201 476 zpos = kHalfLengthCentral+2*kHalfLengthEndCap+kHalfLengthCone;
a275e8ba 477 for (Int_t i=0; i<10; i++) {
478 Double_t thetaC12 = kTheta*TMath::RadToDeg();
479 vM->AddNode(vC1,2*i+1, new TGeoCombiTrans(
0801d201 480 0, 0, zpos-kLittleZTrans,
a275e8ba 481 new TGeoRotation("",0, 0,i*thetaC12) ) );
482 vM->AddNode(vC1,2*i+2, new TGeoCombiTrans(
0801d201 483 0, 0, -zpos-kLittleZTrans,
a275e8ba 484 new TGeoRotation("",0,180,i*thetaC12) ) );
485 vM->AddNode(vC2,2*i+1, new TGeoCombiTrans(
0801d201 486 0, 0, zpos-kLittleZTrans,
a275e8ba 487 new TGeoRotation("",0, 0,i*thetaC12) ) );
488 vM->AddNode(vC2,2*i+2, new TGeoCombiTrans(
0801d201 489 0, 0, -zpos-kLittleZTrans,
a275e8ba 490 new TGeoRotation("",0,180,i*thetaC12) ) );
491 }
492
0801d201 493 zpos = kHalfLengthCentral+2*kHalfLengthEndCap+2*kHalfLengthCone
494 + kHalfLengthRing;
495 vM->AddNode(ring,1,new TGeoTranslation(0, 0, zpos-kLittleZTrans));
496 vM->AddNode(ring,2,new TGeoTranslation(0, 0,-zpos-kLittleZTrans));
a275e8ba 497
0b9c8a10 498 for (Int_t i=0; i<4; i++) {
499 Double_t thetaW = kThetaWing*(2*i+1) - angleWideWing/2.;
0801d201 500 vM->AddNode(wing,2*i+1,new TGeoCombiTrans(0, 0, zpos-kLittleZTrans,
501 new TGeoRotation("",thetaW,0,0) ) );
502 vM->AddNode(wing,2*i+2,new TGeoCombiTrans(0, 0,-zpos-kLittleZTrans,
503 new TGeoRotation("",thetaW,0,0) ) );
a275e8ba 504 }
505
506 // Some debugging if requested
507 if(GetDebug(1)){
508 vM->PrintNodes();
509 vM->InspectShape();
510 }
511
512 // Finally put the entire shield in the mother volume
513 moth->AddNode(vM,1,0);
514
515 return;
516}
517
518//______________________________________________________________________
519void AliITSv11GeometrySupport::CreateSPDThermalShape(
520 Double_t ina, Double_t inb, Double_t inr,
521 Double_t oua, Double_t oub, Double_t our,
43aefea7 522 Double_t t, Double_t *x , Double_t *y ) const
a275e8ba 523{
524//
525// Creates the proper sequence of X and Y coordinates to determine
526// the base XTru polygon for the SPD thermal shapes
527//
528// Input:
529// ina, inb : inner shape sides
530// inr : inner radius
531// oua, oub : outer shape sides
532// our : outer radius
533// t : theta angle
534//
535// Output:
536// x, y : coordinate vectors [24]
537//
538// Created: 14 Nov 2007 Mario Sitta
539// Updated: 11 Dec 2007 Mario Sitta
540//
541 Double_t xlocal[6],ylocal[6];
542
543 //Create the first inner quadrant (X > 0)
544 FillSPDXtruShape(ina,inb,inr,t,xlocal,ylocal);
545 for (Int_t i=0; i<6; i++) {
546 x[i] = xlocal[i];
547 y[i] = ylocal[i];
548 }
549
550 // Then reflex on the second quadrant (X < 0)
551 for (Int_t i=0; i<6; i++) {
552 x[23-i] = -x[i];
553 y[23-i] = y[i];
554 }
555
556 // Now create the first outer quadrant (X > 0)
557 FillSPDXtruShape(oua,oub,our,t,xlocal,ylocal);
558 for (Int_t i=0; i<6; i++) {
559 x[11-i] = xlocal[i];
560 y[11-i] = ylocal[i];
561 }
562
563 // Finally reflex on the second quadrant (X < 0)
564 for (Int_t i=0; i<6; i++) {
565 x[12+i] = -x[11-i];
566 y[12+i] = y[11-i];
567 }
568
569 return;
570}
571
572//______________________________________________________________________
573void AliITSv11GeometrySupport::CreateSPDOmegaShape(
21ea473f 574 const Double_t *xin, const Double_t *yin, Double_t d,
575 Double_t *x, Double_t *y)
a275e8ba 576{
577//
578// Creates the proper sequence of X and Y coordinates to determine
579// the SPD Omega XTru polygon
580//
581// Input:
582// xin, yin : coordinates of the air volume
583// d : Omega shape thickness
584// t : theta angle
585//
586// Output:
587// x, y : coordinate vectors [48]
588//
589// Created: 17 Nov 2007 Mario Sitta
590// Updated: 11 Dec 2007 Mario Sitta
3d2705b6 591// Updated: 20 Feb 2009 Mario Sitta New algorithm (the old one
592// gives erroneous vertexes)
a275e8ba 593//
a275e8ba 594
3d2705b6 595 // This vector contains the index of those points which coincide
596 // with the corresponding points in the air shape
597 Int_t indexAir2Omega[12] = {1, 2, 5, 6, 9, 10, 11, 15, 16, 19, 20, 23};
a275e8ba 598
3d2705b6 599 // First fill those vertexes corresponding to
600 // the edges aligned to the air shape edges
601 for (Int_t j=0; j<12; j++) {
602 x[*(indexAir2Omega+j)] = xin[j];
603 y[*(indexAir2Omega+j)] = yin[j];
604 }
a275e8ba 605
3d2705b6 606 // Now get the coordinates of the first inner point
607 PointFromParallelLines(x[23],y[23],x[1],y[1],d,x[0],y[0]);
a275e8ba 608
3d2705b6 609 // Knowing this, the second internal point can be determined
610 InsidePoint(x[0],y[0],x[1],y[1],x[2],y[2],d,x[22],y[22]);
a275e8ba 611
3d2705b6 612 // The third point is now computable
613 ReflectPoint(x[1],y[1],x[2],y[2],x[22],y[22],x[21],y[21]);
a275e8ba 614
3d2705b6 615 // Repeat this logic
616 InsidePoint(x[21],y[21],x[20],y[20],x[19],y[19],-d,x[3],y[3]);
a275e8ba 617
3d2705b6 618 ReflectPoint(x[20],y[20],x[19],y[19],x[3],y[3],x[4],y[4]);
a275e8ba 619
3d2705b6 620 InsidePoint(x[4],y[4],x[5],y[5],x[6],y[6],d,x[18],y[18]);
a275e8ba 621
3d2705b6 622 ReflectPoint(x[5],y[5],x[6],y[6],x[18],y[18],x[17],y[17]);
a275e8ba 623
3d2705b6 624 InsidePoint(x[17],y[17],x[16],y[16],x[15],y[15],-d,x[7],y[7]);
a275e8ba 625
3d2705b6 626 ReflectPoint(x[16],y[16],x[15],y[15],x[7],y[7],x[8],y[8]);
a275e8ba 627
3d2705b6 628 InsidePoint(x[8],y[8],x[9],y[9],x[10],y[10],d,x[14],y[14]);
a275e8ba 629
630 // These need to be fixed explicitly
a275e8ba 631 x[12] = x[11];
632 y[12] = y[11] + d;
633 x[13] = x[10] + d;
634 y[13] = y[12];
635
3d2705b6 636 // Finally reflect on the negative side
a275e8ba 637 for (Int_t i=0; i<24; i++) {
638 x[24+i] = -x[23-i];
639 y[24+i] = y[23-i];
640 }
641
642 // Wow ! We've finished
643 return;
172b0d90 644}
a275e8ba 645
172b0d90 646//______________________________________________________________________
a275e8ba 647void AliITSv11GeometrySupport::FillSPDXtruShape(Double_t a, Double_t b,
648 Double_t r, Double_t t,
21ea473f 649 Double_t *x, Double_t *y) const
a275e8ba 650{
651//
652// Creates the partial sequence of X and Y coordinates to determine
653// the lateral part of the SPD thermal shield
654//
655// Input:
656// a, b : shape sides
657// r : radius
658// t : theta angle
659//
660// Output:
661// x, y : coordinate vectors [6]
662//
663// Created: 14 Nov 2007 Mario Sitta
664//
665 x[0] = a/2;
666 y[0] = r;
667
668 x[1] = x[0] + b * TMath::Cos(t/2);
669 y[1] = y[0] - b * TMath::Sin(t/2);
670
671 x[2] = x[1] + a * TMath::Cos(t);
672 y[2] = y[1] - a * TMath::Sin(t);
673
674 x[3] = x[2] + b * TMath::Cos(3*t/2);
675 y[3] = y[2] - b * TMath::Sin(3*t/2);
676
677 x[4] = x[3] + a * TMath::Cos(2*t);
678 y[4] = y[3] - a * TMath::Sin(2*t);
679
680 x[5] = x[4];
681 y[5] = 0.;
682
683 return;
172b0d90 684}
a275e8ba 685
172b0d90 686//______________________________________________________________________
3d2705b6 687void AliITSv11GeometrySupport::PointFromParallelLines(Double_t x1, Double_t y1,
688 Double_t x2, Double_t y2, Double_t d,
21ea473f 689 Double_t &x, Double_t &y) const
3d2705b6 690{
691//
692// Determines the X and Y of the first internal point of the Omega shape
693// (i.e. the coordinates of a point given two parallel lines passing by
694// two points and placed at a known distance)
695//
696// Input:
697// x1, y1 : first point
698// x2, y2 : second point
699// d : distance between the two lines
700//
701// Output:
702// x, y : coordinate of the point
703//
704// Created: 22 Feb 2009 Mario Sitta
705//
706//Begin_Html
707/*
708<img src="ITS/doc/PointFromParallelLines.gif">
709*/
710//End_Html
711
712 // The slope of the paralles lines at a distance d
713 Double_t m;
714
715 // The parameters of the solving equation
716 // a x^2 - 2 b x + c = 0
717 Double_t a = (x1 - x2)*(x1 - x2) - d*d;
718 Double_t b = (x1 - x2)*(y1 - y2);
719 Double_t c = (y1 - y2)*(y1 - y2) - d*d;
720
21ea473f 721 // (delta4 is Delta/4 because we use the reduced formula)
722 Double_t delta4 = b*b - a*c;
3d2705b6 723
724 // Compute the slope of the two parallel lines
725 // (one of the two possible slopes, the one with the smaller
726 // absolute value is needed)
21ea473f 727 if (delta4 < 0) { // Should never happen with our data, but just to be sure
3d2705b6 728 x = -1; // x is expected positive, so this flags an error
729 return;
730 } else
21ea473f 731 m = (b + TMath::Sqrt(delta4))/a; // b is negative with our data
3d2705b6 732
733 // Finally compute the coordinates of the point
734 x = x2 + (y1 - y2 - d)/m;
735 y = y1 - d;
736
737 // Done
738 return;
739}
740
741//______________________________________________________________________
742void AliITSv11GeometrySupport::ReflectPoint(Double_t x1, Double_t y1,
743 Double_t x2, Double_t y2,
744 Double_t x3, Double_t y3,
21ea473f 745 Double_t &x, Double_t &y) const
3d2705b6 746{
747//
748// Given two points (x1,y1) and (x2,y2), determines the point (x,y)
749// lying on the line parallel to the line passing by these points,
750// at a distance d and passing by the point (x3,y3), which is symmetric to
751// the third point with respect to the axis of the segment delimited by
752// the two first points.
753//
754// Input:
755// x1, y1 : first point
756// x2, y2 : second point
757// x3, y3 : third point
758// d : distance between the two lines
759//
760// Output:
761// x, y : coordinate of the reflected point
762//
763// Created: 22 Feb 2009 Mario Sitta
764//
765//Begin_Html
766/*
767<img src="ITS/doc/ReflectPoint.gif">
768*/
769//End_Html
770
771 // The slope of the line passing by the first two points
772 Double_t k = (y2 - y1)/(x2 - x1);
773
774 // The middle point of the segment 1-2
775 Double_t xK = (x1 + x2)/2.;
776 Double_t yK = (y1 + y2)/2.;
777
778 // The intercept between the axis of the segment 1-2 and the line
779 // passing by 3 and parallel to the line passing by 1-2
780 Double_t xH = (k*k*x3 + k*(yK - y3) + xK)/(k*k + 1);
781 Double_t yH = k*(xH - x3) + y3;
782
783 // The point symmetric to 3 with respect to H
784 x = 2*xH - x3;
785 y = 2*yH - y3;
786
787 // Done
788 return;
789}
790
791//______________________________________________________________________
43aefea7 792void AliITSv11GeometrySupport::SDDCone(TGeoVolume *moth,const TGeoManager *mgr)
7d6c23de 793{
794//
795// Creates the SDD support cone and cylinder geometry as a
796// volume assembly and adds it to the mother volume
797// (part of this code is taken or anyway inspired to SDDCone method
798// of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06)
799//
800// Input:
801// moth : the TGeoVolume owing the volume structure
802// mgr : the GeoManager (default gGeoManager)
803// Output:
804//
805// Created: ??? Bjorn S. Nilsen
806// Updated: 18 Feb 2008 Mario Sitta
6b99a08f 807// Updated: 25 Jul 2008 Mario Sitta SDDCarbonFiberCone simpler
96eb8210 808// Updated: 10 Jun 2010 Mario Sitta Cables across cone holes added
7d6c23de 809//
810// Technical data are taken from: "Supporto Generale Settore SDD"
811// (technical drawings ALR-0816/1-B), "Supporto Globale Settore SDD"
812// (technical drawings ALR-0816/2A, ALR-0816/2B, ALR-0816/2C, ALR-0816/2D),
813// private communication with B. Giraudo
814
815 // Dimensions of the Central cylinder and flanges
816 const Double_t kCylinderHalfLength = (790.0/2)*fgkmm;
817 const Double_t kCylinderInnerR = (210.0/2)*fgkmm;
818 const Double_t kCylinderOuterR = (231.0/2)*fgkmm;
819 const Double_t kFlangeHalfLength = ( 15.0/2)*fgkmm;
820 const Double_t kFlangeInnerR = (210.5/2)*fgkmm;
821 const Double_t kFlangeOuterR = (230.5/2)*fgkmm;
822 const Double_t kInsertoHalfLength =
823 kCylinderHalfLength - 2*kFlangeHalfLength;
824// const Double_t kCFThickness = kFlangeInnerR - kCylinderInnerR;
825 const Double_t kBoltDiameter = 6.0*fgkmm; // M6 screw
826 const Double_t kBoltDepth = 6.0*fgkmm; // In the flange
827 const Double_t kBoltRadius = (220.0/2)*fgkmm; // Radius in flange
828 const Double_t kThetaBolt = 30.0*fgkDegree;
829 const Int_t kNBolts = (Int_t)(360.0/kThetaBolt);
830 // Dimensions of the Cone
831 const Double_t kConeROutMin = (540.0/2)*fgkmm;
832 const Double_t kConeROutMax = (560.0/2)*fgkmm;
3a299c65 833 const Double_t kConeRCurv = 10.0*fgkmm; // Radius of curvature
7d6c23de 834 const Double_t kConeRinMin = (210.0/2)*fgkmm;
6b99a08f 835// const Double_t kConeRinMax = (216.0/2)*fgkmm;
7d6c23de 836 const Double_t kConeRinCylinder = (231.0/2)*fgkmm;
3a299c65 837 const Double_t kConeZCylinder = 192.0*fgkmm;
7d6c23de 838 const Double_t kConeZOuterMilled = 23.0*fgkmm;
839 const Double_t kConeDZin = 15.0*fgkmm; // ???
3a299c65 840 const Double_t kConeThickness = 10.0*fgkmm; // Rohacell + Carb.Fib.
7d6c23de 841 const Double_t kConeTheta = 45.0*fgkDegree; // SDD cone angle
842 const Double_t kSinConeTheta =
843 TMath::Sin(kConeTheta*TMath::DegToRad());
844 const Double_t kCosConeTheta =
845 TMath::Cos(kConeTheta*TMath::DegToRad());
846 const Double_t kTanConeTheta =
847 TMath::Tan(kConeTheta*TMath::DegToRad());
848 // Dimensions of the Cone Inserts
96eb8210 849 const Double_t kConeCFThickness = 1.5*fgkmm;//Carbon fiber thickness
7d6c23de 850 // Dimensions of the Cone Holes
851 const Double_t kHole1RMin = (450.0/2)*fgkmm;
3a299c65 852 const Double_t kHole1RMax = (530.0/2)*fgkmm;
7d6c23de 853 const Double_t kHole2RMin = (280.0/2)*fgkmm;
854 const Double_t kHole2RMax = (375.0/2)*fgkmm;
855 const Double_t kHole1Phi = 25.0*fgkDegree;
856 const Double_t kHole2Phi = 50.0*fgkDegree;
857 const Double_t kHole3RMin = 205.0*fgkmm;
858 const Double_t kHole3DeltaR = 15*fgkmm;
859 const Double_t kHole3Width = 30*fgkmm;
860 const Int_t kNHole3 = 6 ;
861 const Double_t kHole4RMin = 116.0*fgkmm;
862 const Double_t kHole4DeltaR = 15*fgkmm;
3a299c65 863 const Double_t kHole4Width = 30*fgkmm;
864 // const Int_t kNHole4 = 3 ;
96eb8210 865 // Fraction of materials in holes
866 const Double_t kHolePlasticFrac = 0.55846;
867 const Double_t kHoleCuFrac = 0.06319;
868 const Double_t kHoleGlassFrac = 0.02652;
7d6c23de 869
870 // Local variables
871 Double_t x, y, z, t, dza, rmin, rmax;
872
873
7d6c23de 874 // Recover the needed materials
96eb8210 875 TGeoMedium *medSDDcf = mgr->GetMedium("ITS_SDD C (M55J)$");
876 TGeoMedium *medSDDair = mgr->GetMedium("ITS_SDD AIR$");
877 TGeoMedium *medSDDste = mgr->GetMedium("ITS_G10FR4$"); // stesalite
878 TGeoMedium *medSDDroh = mgr->GetMedium("ITS_ROHACELL$");
879 TGeoMedium *medSDDss = mgr->GetMedium("ITS_INOX$");
880 TGeoMedium *medSDDplast = mgr->GetMedium("ITS_SDDKAPTON (POLYCH2)$");
881 TGeoMedium *medSDDCu = mgr->GetMedium("ITS_COPPER$");
882 TGeoMedium *medSDDglass = mgr->GetMedium("ITS_SDD OPTICFIB$");
7d6c23de 883
884 // First define the geometrical shapes
885
886 // Central cylinder with its internal foam and the lateral flanges:
887 // a carbon fiber Tube which contains a rohacell Tube and two
888 // stesalite Tube's
889 TGeoTube *cylindershape = new TGeoTube(kCylinderInnerR,kCylinderOuterR,
890 kCylinderHalfLength);
891
892 TGeoTube *insertoshape = new TGeoTube(kFlangeInnerR,kFlangeOuterR,
893 kInsertoHalfLength);
894
895 TGeoTube *flangeshape = new TGeoTube(kFlangeInnerR,kFlangeOuterR,
896 kFlangeHalfLength);
897
898 // The flange bolt: it is a Tube
899 TGeoTube *boltshape = new TGeoTube(0.0, 0.5*kBoltDiameter, 0.5*kBoltDepth);
900
901 // Debug if requested
902 if (GetDebug(1)) {
903 cylindershape->InspectShape();
904 insertoshape->InspectShape();
905 flangeshape->InspectShape();
906 boltshape->InspectShape();
907 }
908
909
910 // We have the shapes: now create the real volumes
911
912 TGeoVolume *cfcylinder = new TGeoVolume("SDDCarbonFiberCylinder",
913 cylindershape,medSDDcf);
914 cfcylinder->SetVisibility(kTRUE);
915 cfcylinder->SetLineColor(4); // Blue
916 cfcylinder->SetLineWidth(1);
917 cfcylinder->SetFillColor(cfcylinder->GetLineColor());
918 cfcylinder->SetFillStyle(4000); // 0% transparent
919
920 TGeoVolume *foamcylinder = new TGeoVolume("SDDFoamCylinder",
921 insertoshape,medSDDroh);
922 foamcylinder->SetVisibility(kTRUE);
923 foamcylinder->SetLineColor(3); // Green
924 foamcylinder->SetLineWidth(1);
925 foamcylinder->SetFillColor(foamcylinder->GetLineColor());
926 foamcylinder->SetFillStyle(4050); // 50% transparent
927
928 TGeoVolume *flangecylinder = new TGeoVolume("SDDFlangeCylinder",
929 flangeshape,medSDDste);
930 flangecylinder->SetVisibility(kTRUE);
931 flangecylinder->SetLineColor(2); // Red
932 flangecylinder->SetLineWidth(1);
933 flangecylinder->SetFillColor(flangecylinder->GetLineColor());
934 flangecylinder->SetFillStyle(4050); // 50% transparent
935
936 TGeoVolume *bolt = new TGeoVolume("SDDFlangeBolt",boltshape,medSDDss);
937 bolt->SetVisibility(kTRUE);
938 bolt->SetLineColor(1); // Black
939 bolt->SetLineWidth(1);
940 bolt->SetFillColor(bolt->GetLineColor());
941 bolt->SetFillStyle(4050); // 50% transparent
942
943 // Mount up the cylinder
944 for(Int_t i=0; i<kNBolts; i++){
945 t = kThetaBolt*i;
aa177c73 946 x = kBoltRadius*CosD(t);
947 y = kBoltRadius*SinD(t);
7d6c23de 948 z = kFlangeHalfLength-kBoltDepth;
949 flangecylinder->AddNode(bolt, i+1, new TGeoTranslation("",x,y,z));
950 }
951
952 cfcylinder->AddNode(foamcylinder,1,0);
953 cfcylinder->AddNode(flangecylinder,1,
954 new TGeoTranslation(0, 0, kInsertoHalfLength+kFlangeHalfLength));
955 cfcylinder->AddNode(flangecylinder,2,new TGeoCombiTrans(
956 0, 0, -kInsertoHalfLength-kFlangeHalfLength,
957 new TGeoRotation("",0,180,0) ) );
958
959
960 // SDD Support Cone with its internal inserts: a carbon fiber Pcon
961 // with holes which contains a stesalite Pcon which on turn contains a
962 // rohacell Pcon
963
964 dza = kConeThickness/kSinConeTheta-(kConeROutMax-kConeROutMin)/kTanConeTheta;
965
6b99a08f 966 TGeoPcon *coneshape = new TGeoPcon(0.0, 360.0, 10);
7d6c23de 967
968 coneshape->Z(0) = 0.0;
969 coneshape->Rmin(0) = kConeROutMin;
970 coneshape->Rmax(0) = kConeROutMax;
971
972 coneshape->Z(1) = kConeZOuterMilled - dza;
973 coneshape->Rmin(1) = coneshape->GetRmin(0);
974 coneshape->Rmax(1) = coneshape->GetRmax(0);
975
976 coneshape->Z(2) = kConeZOuterMilled;
977 coneshape->Rmax(2) = coneshape->GetRmax(0);
978
979 RadiusOfCurvature(kConeRCurv,0.,coneshape->GetZ(1),
980 coneshape->GetRmin(1),kConeTheta,z,rmin);
981 coneshape->Z(3) = z;
982 coneshape->Rmin(3) = rmin;
983
984 coneshape->Rmin(2) = RminFrom2Points(coneshape,3,1,coneshape->GetZ(2));
985
986 RadiusOfCurvature(kConeRCurv,0.,coneshape->GetZ(2),
987 coneshape->GetRmax(2),kConeTheta,z,rmax);
988 coneshape->Z(4) = z;
989 coneshape->Rmax(4) = rmax;
990 coneshape->Rmin(4) = RminFromZpCone(coneshape,3,kConeTheta,
991 coneshape->GetZ(4),0.0);
992
993 coneshape->Rmax(3) = RmaxFrom2Points(coneshape,4,2,coneshape->GetZ(3));
994
6b99a08f 995 coneshape->Z(6) = kConeZCylinder - kConeDZin;
996
997 RadiusOfCurvature(kConeRCurv,90.0,coneshape->GetZ(6),0.0,
998 90.0-kConeTheta,z,rmin);
999 coneshape->Z(5) = z;
1000 coneshape->Rmin(5) = RminFromZpCone(coneshape,3,kConeTheta,z);
1001 coneshape->Rmax(5) = RmaxFromZpCone(coneshape,4,kConeTheta,z);
1002
1003 RadiusOfCurvature(kConeRCurv,90.-kConeTheta,
1004 0.0,coneshape->Rmin(5),90.0,z,rmin);
1005 coneshape->Rmin(6) = rmin;
1006 coneshape->Rmax(6) = RmaxFromZpCone(coneshape,4,kConeTheta,
1007 coneshape->GetZ(6));
1008
1009 coneshape->Z(7) = coneshape->GetZ(6);
7d6c23de 1010 coneshape->Rmin(7) = kConeRinMin;
6b99a08f 1011 coneshape->Rmax(7) = coneshape->GetRmax(6);
7d6c23de 1012
1013 coneshape->Rmin(8) = kConeRinMin;
1014
6b99a08f 1015 RadiusOfCurvature(kConeRCurv,90.0,kConeZCylinder,kConeRinCylinder,
1016 90.0-kConeTheta,z,rmax);
1017 coneshape->Z(8) = z;
7d6c23de 1018 coneshape->Rmax(8) = rmax;
7d6c23de 1019
1020 coneshape->Z(9) = kConeZCylinder;
1021 coneshape->Rmin(9) = kConeRinMin;
6b99a08f 1022 coneshape->Rmax(9) = kConeRinCylinder;
7d6c23de 1023
7d6c23de 1024
1025 // SDD Cone Insert: another Pcon
1026 Double_t x0, y0, x1, y1, x2, y2;
1027 TGeoPcon *coneinsertshape = new TGeoPcon(0.0, 360.0, 9);
1028
1029 coneinsertshape->Z(0) = coneshape->GetZ(0) + kConeCFThickness;
1030 coneinsertshape->Rmin(0) = coneshape->GetRmin(0) + kConeCFThickness;
1031 coneinsertshape->Rmax(0) = coneshape->GetRmax(0) - kConeCFThickness;
1032
1033 x0 = coneshape->GetZ(0); y0 = coneshape->GetRmin(0);
1034 x1 = coneshape->GetZ(1); y1 = coneshape->GetRmin(1);
1035 x2 = coneshape->GetZ(2); y2 = coneshape->GetRmin(2);
1036 InsidePoint(x0, y0, x1, y1, x2, y2, kConeCFThickness, z, rmin);
1037 coneinsertshape->Z(1) = z;
1038 coneinsertshape->Rmin(1) = rmin;
1039 coneinsertshape->Rmax(1) = coneinsertshape->GetRmax(0);
1040
1041 x0 = coneshape->GetZ(1); y0 = coneshape->GetRmax(1);
1042 x1 = coneshape->GetZ(2); y1 = coneshape->GetRmax(2);
1043 x2 = coneshape->GetZ(3); y2 = coneshape->GetRmax(3);
1044 InsidePoint(x0, y0, x1, y1, x2, y2, -kConeCFThickness, z, rmax);
1045 coneinsertshape->Z(2) = z;
1046 coneinsertshape->Rmax(2) = rmax;
1047
1048 x0 = coneshape->GetZ(2); y0 = coneshape->GetRmin(2);
1049 x1 = coneshape->GetZ(3); y1 = coneshape->GetRmin(3);
1050 x2 = coneshape->GetZ(4); y2 = coneshape->GetRmin(4);
1051 InsidePoint(x0, y0, x1, y1, x2, y2, kConeCFThickness, z, rmin);
1052 coneinsertshape->Z(3) = z;
1053 coneinsertshape->Rmin(3) = rmin;
1054
1055 x0 = coneinsertshape->GetZ(1); y0 = coneinsertshape->GetRmin(1);
1056 x1 = coneinsertshape->GetZ(3); y1 = coneinsertshape->GetRmin(3);
1057 coneinsertshape->Rmin(2) = Yfrom2Points(x0, y0, x1, y1,
1058 coneinsertshape->Z(2));
1059
1060 x0 = coneshape->GetZ(3); y0 = coneshape->GetRmax(3);
1061 x1 = coneshape->GetZ(4); y1 = coneshape->GetRmax(4);
1062 x2 = coneshape->GetZ(5); y2 = coneshape->GetRmax(5);
1063 InsidePoint(x0, y0, x1, y1, x2, y2, -kConeCFThickness, z, rmax);
1064 coneinsertshape->Z(4) = z;
1065 coneinsertshape->Rmax(4) = rmax;
1066
1067 x0 = coneinsertshape->GetZ(2); y0 = coneinsertshape->GetRmax(2);
1068 x1 = coneinsertshape->GetZ(4); y1 = coneinsertshape->GetRmax(4);
1069 coneinsertshape->Rmax(3) = Yfrom2Points(x0, y0, x1, y1,
1070 coneinsertshape->Z(3));
1071
1072 x0 = coneshape->GetZ(4); y0 = coneshape->GetRmin(4);
1073 x1 = coneshape->GetZ(5); y1 = coneshape->GetRmin(5);
1074 x2 = coneshape->GetZ(6); y2 = coneshape->GetRmin(6);
1075 InsidePoint(x0, y0, x1, y1, x2, y2, kConeCFThickness, z, rmin);
1076 coneinsertshape->Z(5) = z;
1077 coneinsertshape->Rmin(5) = rmin;
1078 coneinsertshape->Rmax(5) = coneinsertshape->GetRmax(4) -
1079 kTanConeTheta*(coneinsertshape->GetZ(5) - coneinsertshape->GetZ(4));
1080
1081 x0 = coneinsertshape->GetZ(3); y0 = coneinsertshape->GetRmin(3);
1082 x1 = coneinsertshape->GetZ(5); y1 = coneinsertshape->GetRmin(5);
1083 coneinsertshape->Rmin(4) = Yfrom2Points(x0, y0, x1, y1,
1084 coneinsertshape->Z(4));
1085
1086 x0 = coneshape->GetZ(5); y0 = coneshape->GetRmin(5);
1087 x1 = coneshape->GetZ(6); y1 = coneshape->GetRmin(6);
1088 x2 = coneshape->GetZ(7); y2 = coneshape->GetRmin(7);
1089 InsidePoint(x0, y0, x1, y1, x2, y2, kConeCFThickness, z, rmin);
1090 coneinsertshape->Z(6) = z;
1091 coneinsertshape->Rmin(6) = rmin;
1092 coneinsertshape->Rmax(6) = coneinsertshape->GetRmax(4) -
1093 kTanConeTheta*(coneinsertshape->GetZ(6) - coneinsertshape->GetZ(4));
1094
1095 coneinsertshape->Z(7) = coneinsertshape->GetZ(6);
1096 coneinsertshape->Rmin(7) = coneshape->GetRmin(7) + kConeCFThickness;
1097 coneinsertshape->Rmax(7) = coneinsertshape->GetRmax(6);
1098
1099 coneinsertshape->Z(8) = coneshape->GetZ(9) - kConeCFThickness;
1100 coneinsertshape->Rmin(8) = coneinsertshape->GetRmin(7);
1101 coneinsertshape->Rmax(8) = coneinsertshape->GetRmax(4) -
1102 kTanConeTheta*(coneinsertshape->GetZ(8) - coneinsertshape->GetZ(4));
1103
1104 // SDD Cone Foam: another Pcon
1105 TGeoPcon *conefoamshape = new TGeoPcon(0.0, 360.0, 4);
1106
1107 RadiusOfCurvature(kConeRCurv+kConeCFThickness,0.0,coneinsertshape->GetZ(1),
1108 coneinsertshape->GetRmin(1),kConeTheta,z,rmin);
1109
1110 conefoamshape->Z(0) = z;
1111 conefoamshape->Rmin(0) = rmin;
1112 conefoamshape->Rmax(0) = conefoamshape->GetRmin(0);
1113
1114 conefoamshape->Z(1) = conefoamshape->GetZ(0)+
1115 (kConeThickness-2.0*kConeCFThickness)/kSinConeTheta;
1116 conefoamshape->Rmin(1) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1117 conefoamshape->GetZ(1));
1118 conefoamshape->Rmax(1) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1119 conefoamshape->GetZ(1));
1120
1121 conefoamshape->Z(2) = coneshape->GetZ(5)-kConeCFThickness;
1122 conefoamshape->Rmin(2) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1123 conefoamshape->GetZ(2));
1124 conefoamshape->Rmax(2) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1125 conefoamshape->GetZ(2));
1126
1127 conefoamshape->Z(3) = coneinsertshape->GetZ(5)+
1128 (kConeThickness-2.0*kConeCFThickness)*kCosConeTheta;
1129 conefoamshape->Rmax(3) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1130 conefoamshape->GetZ(3));
1131 conefoamshape->Rmin(3) = conefoamshape->GetRmax(3);
1132
1133 // SDD Cone Holes: Pcon's
a30e33f0 1134 // A single hole volume gives an overlap with coneinsert, so
1135 // three contiguous volumes are created: one to be put in the cone foam
1136 // and two in the cone carbon fiber envelope
7d6c23de 1137 TGeoPcon *hole1shape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1138
1139 hole1shape->Rmin(0) = kHole1RMax;
1140 hole1shape->Rmax(0) = hole1shape->GetRmin(0);
a30e33f0 1141 hole1shape->Z(0) = ZFromRminpCone(conefoamshape,0,kConeTheta,
7d6c23de 1142 hole1shape->GetRmin(0));
1143
1144 hole1shape->Rmax(1) = hole1shape->GetRmax(0);
a30e33f0 1145 hole1shape->Z(1) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1146 hole1shape->GetRmax(1));
a30e33f0 1147 hole1shape->Rmin(1) = RminFromZpCone(conefoamshape,1,kConeTheta,
7d6c23de 1148 hole1shape->GetZ(1));
1149
1150 hole1shape->Rmin(2) = kHole1RMin;
a30e33f0 1151 hole1shape->Z(2) = ZFromRminpCone(conefoamshape,1,kConeTheta,
7d6c23de 1152 hole1shape->GetRmin(2));
a30e33f0 1153 hole1shape->Rmax(2) = RmaxFromZpCone(conefoamshape,3,kConeTheta,
7d6c23de 1154 hole1shape->GetZ(2));
1155
1156 hole1shape->Rmin(3) = hole1shape->GetRmin(2);
1157 hole1shape->Rmax(3) = hole1shape->GetRmin(3);
a30e33f0 1158 hole1shape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1159 hole1shape->GetRmax(3));
1160
a30e33f0 1161 TGeoPcon *hole11shape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1162
1163 hole11shape->Rmin(0) = kHole1RMax;
1164 hole11shape->Rmax(0) = hole11shape->GetRmin(0);
1165 hole11shape->Z(0) = ZFromRminpCone(coneshape,3,kConeTheta,
1166 hole11shape->GetRmin(0));
1167
1168 hole11shape->Rmax(1) = hole11shape->GetRmax(0);
1169 hole11shape->Z(1) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1170 hole11shape->GetRmax(1));
1171 hole11shape->Rmin(1) = RminFromZpCone(coneshape,3,kConeTheta,
1172 hole11shape->GetZ(1));
1173
1174 hole11shape->Rmin(2) = kHole1RMin;
1175 hole11shape->Z(2) = ZFromRminpCone(coneshape,3,kConeTheta,
1176 hole11shape->GetRmin(2));
1177 hole11shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1178 hole11shape->GetZ(2));
1179
1180 hole11shape->Rmin(3) = hole11shape->GetRmin(2);
1181 hole11shape->Rmax(3) = hole11shape->GetRmin(3);
1182 hole11shape->Z(3) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1183 hole11shape->GetRmax(3));
1184
1185 TGeoPcon *hole12shape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1186
1187 hole12shape->Rmin(0) = kHole1RMax;
1188 hole12shape->Rmax(0) = hole12shape->GetRmin(0);
1189 hole12shape->Z(0) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1190 hole12shape->GetRmin(0));
1191
1192 hole12shape->Rmax(1) = hole12shape->GetRmax(0);
1193 hole12shape->Z(1) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1194 hole12shape->GetRmax(1));
1195 hole12shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1196 hole12shape->GetZ(1));
1197
1198 hole12shape->Rmin(2) = kHole1RMin;
1199 hole12shape->Z(2) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1200 hole12shape->GetRmin(2));
1201 hole12shape->Rmax(2) = RmaxFromZpCone(coneshape,4,kConeTheta,
1202 hole12shape->GetZ(2));
1203
1204 hole12shape->Rmin(3) = hole12shape->GetRmin(2);
1205 hole12shape->Rmax(3) = hole12shape->GetRmin(3);
1206 hole12shape->Z(3) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1207 hole12shape->GetRmax(3));
1208
1209 //
7d6c23de 1210 TGeoPcon *hole2shape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1211
1212 hole2shape->Rmin(0) = kHole2RMax;
1213 hole2shape->Rmax(0) = hole2shape->GetRmin(0);
a30e33f0 1214 hole2shape->Z(0) = ZFromRminpCone(conefoamshape,0,kConeTheta,
7d6c23de 1215 hole2shape->GetRmin(0));
1216
1217 hole2shape->Rmax(1) = hole2shape->GetRmax(0);
a30e33f0 1218 hole2shape->Z(1) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1219 hole2shape->GetRmax(1));
a30e33f0 1220 hole2shape->Rmin(1) = RminFromZpCone(conefoamshape,1,kConeTheta,
7d6c23de 1221 hole2shape->GetZ(1));
1222
1223 hole2shape->Rmin(2) = kHole2RMin;
a30e33f0 1224 hole2shape->Z(2) = ZFromRminpCone(conefoamshape,1,kConeTheta,
7d6c23de 1225 hole2shape->GetRmin(2));
a30e33f0 1226 hole2shape->Rmax(2) = RmaxFromZpCone(conefoamshape,3,kConeTheta,
7d6c23de 1227 hole2shape->GetZ(2));
1228
1229 hole2shape->Rmin(3) = hole2shape->GetRmin(2);
1230 hole2shape->Rmax(3) = hole2shape->GetRmin(3);
a30e33f0 1231 hole2shape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1232 hole2shape->GetRmax(3));
1233
a30e33f0 1234 TGeoPcon *hole21shape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1235
1236 hole21shape->Rmin(0) = kHole2RMax;
1237 hole21shape->Rmax(0) = hole21shape->GetRmin(0);
1238 hole21shape->Z(0) = ZFromRminpCone(coneshape,3,kConeTheta,
1239 hole21shape->GetRmin(0));
1240
1241 hole21shape->Rmax(1) = hole21shape->GetRmax(0);
1242 hole21shape->Z(1) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1243 hole21shape->GetRmax(1));
1244 hole21shape->Rmin(1) = RminFromZpCone(coneshape,3,kConeTheta,
1245 hole21shape->GetZ(1));
1246
1247 hole21shape->Rmin(2) = kHole2RMin;
1248 hole21shape->Z(2) = ZFromRminpCone(coneshape,3,kConeTheta,
1249 hole21shape->GetRmin(2));
1250 hole21shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1251 hole21shape->GetZ(2));
1252
1253 hole21shape->Rmin(3) = hole21shape->GetRmin(2);
1254 hole21shape->Rmax(3) = hole21shape->GetRmin(3);
1255 hole21shape->Z(3) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1256 hole21shape->GetRmax(3));
1257
1258 TGeoPcon *hole22shape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1259
1260 hole22shape->Rmin(0) = kHole2RMax;
1261 hole22shape->Rmax(0) = hole22shape->GetRmin(0);
1262 hole22shape->Z(0) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1263 hole22shape->GetRmin(0));
1264
1265 hole22shape->Rmax(1) = hole22shape->GetRmax(0);
1266 hole22shape->Z(1) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1267 hole22shape->GetRmax(1));
1268 hole22shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1269 hole22shape->GetZ(1));
1270
1271 hole22shape->Rmin(2) = kHole2RMin;
1272 hole22shape->Z(2) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1273 hole22shape->GetRmin(2));
1274 hole22shape->Rmax(2) = RmaxFromZpCone(coneshape,4,kConeTheta,
1275 hole22shape->GetZ(2));
1276
1277 hole22shape->Rmin(3) = hole22shape->GetRmin(2);
1278 hole22shape->Rmax(3) = hole22shape->GetRmin(3);
1279 hole22shape->Z(3) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1280 hole22shape->GetRmax(3));
1281
1282 //
7d6c23de 1283 Double_t holePhi;
1284 holePhi = (kHole3Width/kHole3RMin)*TMath::RadToDeg();
1285
1286 TGeoPcon *hole3shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1287
1288 hole3shape->Rmin(0) = kHole3RMin + kHole3DeltaR;
1289 hole3shape->Rmax(0) = hole3shape->GetRmin(0);
a30e33f0 1290 hole3shape->Z(0) = ZFromRminpCone(conefoamshape,0,kConeTheta,
7d6c23de 1291 hole3shape->GetRmin(0));
1292
1293 hole3shape->Rmax(1) = hole3shape->GetRmax(0);
a30e33f0 1294 hole3shape->Z(1) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1295 hole3shape->GetRmax(1));
a30e33f0 1296 hole3shape->Rmin(1) = RminFromZpCone(conefoamshape,1,kConeTheta,
7d6c23de 1297 hole3shape->GetZ(1));
1298
1299 hole3shape->Rmin(2) = kHole3RMin;
a30e33f0 1300 hole3shape->Z(2) = ZFromRminpCone(conefoamshape,1,kConeTheta,
7d6c23de 1301 hole3shape->GetRmin(2));
a30e33f0 1302 hole3shape->Rmax(2) = RmaxFromZpCone(conefoamshape,3,kConeTheta,
7d6c23de 1303 hole3shape->GetZ(2));
1304
1305 hole3shape->Rmin(3) = hole3shape->GetRmin(2);
1306 hole3shape->Rmax(3) = hole3shape->GetRmin(3);
a30e33f0 1307 hole3shape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1308 hole3shape->GetRmax(3));
1309
a30e33f0 1310 TGeoPcon *hole31shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1311
1312 hole31shape->Rmin(0) = kHole3RMin + kHole3DeltaR;
1313 hole31shape->Rmax(0) = hole31shape->GetRmin(0);
1314 hole31shape->Z(0) = ZFromRminpCone(coneshape,3,kConeTheta,
1315 hole31shape->GetRmin(0));
1316
1317 hole31shape->Rmax(1) = hole31shape->GetRmax(0);
1318 hole31shape->Z(1) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1319 hole31shape->GetRmax(1));
1320 hole31shape->Rmin(1) = RminFromZpCone(coneshape,3,kConeTheta,
1321 hole31shape->GetZ(1));
1322
1323 hole31shape->Rmin(2) = kHole3RMin;
1324 hole31shape->Z(2) = ZFromRminpCone(coneshape,3,kConeTheta,
1325 hole31shape->GetRmin(2));
1326 hole31shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1327 hole31shape->GetZ(2));
1328
1329 hole31shape->Rmin(3) = hole31shape->GetRmin(2);
1330 hole31shape->Rmax(3) = hole31shape->GetRmin(3);
1331 hole31shape->Z(3) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1332 hole31shape->GetRmax(3));
1333
1334 TGeoPcon *hole32shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1335
1336 hole32shape->Rmin(0) = kHole3RMin + kHole3DeltaR;
1337 hole32shape->Rmax(0) = hole32shape->GetRmin(0);
1338 hole32shape->Z(0) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1339 hole32shape->GetRmin(0));
1340
1341 hole32shape->Rmax(1) = hole32shape->GetRmax(0);
1342 hole32shape->Z(1) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1343 hole32shape->GetRmax(1));
1344 hole32shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1345 hole32shape->GetZ(1));
1346
1347 hole32shape->Rmin(2) = kHole3RMin;
1348 hole32shape->Z(2) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1349 hole32shape->GetRmin(2));
1350 hole32shape->Rmax(2) = RmaxFromZpCone(coneshape,4,kConeTheta,
1351 hole32shape->GetZ(2));
1352
1353 hole32shape->Rmin(3) = hole32shape->GetRmin(2);
1354 hole32shape->Rmax(3) = hole32shape->GetRmin(3);
1355 hole32shape->Z(3) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1356 hole32shape->GetRmax(3));
1357
1358 //
3a299c65 1359 holePhi = (kHole4Width/kHole4RMin)*TMath::RadToDeg();
1360
7d6c23de 1361 TGeoPcon *hole4shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1362
1363 hole4shape->Rmin(0) = kHole4RMin + kHole4DeltaR;
1364 hole4shape->Rmax(0) = hole4shape->GetRmin(0);
1365 hole4shape->Z(0) = ZFromRminpCone(coneshape,3,kConeTheta,
1366 hole4shape->GetRmin(0));
1367
1368 hole4shape->Rmax(1) = hole4shape->GetRmax(0);
1369 hole4shape->Z(1) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1370 hole4shape->GetRmax(1));
1371 hole4shape->Rmin(1) = RminFromZpCone(coneshape,3,kConeTheta,
1372 hole4shape->GetZ(1));
1373
1374 hole4shape->Rmin(2) = kHole4RMin;
1375 hole4shape->Z(2) = ZFromRminpCone(coneshape,3,kConeTheta,
1376 hole4shape->GetRmin(2));
1377 hole4shape->Rmax(2) = RmaxFromZpCone(coneshape,4,kConeTheta,
1378 hole4shape->GetZ(2));
1379
1380 hole4shape->Rmin(3) = hole4shape->GetRmin(2);
1381 hole4shape->Rmax(3) = hole4shape->GetRmin(3);
1382 hole4shape->Z(3) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1383 hole4shape->GetRmax(3));
1384
96eb8210 1385 // Cables to be put inside the holes: Pcon's
1386 // (fractions are manually computed from AliITSv11GeometrySDD::SDDCables
1387 TGeoPcon *hole1plastshape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1388
1389 hole1plastshape->Rmin(0) = hole1shape->GetRmin(0);
1390 hole1plastshape->Rmax(0) = hole1shape->GetRmax(0);
1391 hole1plastshape->Z(0) = hole1shape->GetZ(0);
1392
1393 hole1plastshape->Rmin(1) = hole1shape->GetRmin(1);
1394 hole1plastshape->Rmax(1) = hole1shape->GetRmax(1);
1395 hole1plastshape->Z(1) = hole1shape->GetZ(1);
1396
1397 dza = hole1plastshape->GetRmax(0) - (kHole1RMax-kHole1RMin)*kHolePlasticFrac;
1398
1399 hole1plastshape->Rmin(2) = dza;
1400 hole1plastshape->Z(2) = ZFromRminpCone(conefoamshape,1,kConeTheta,
1401 hole1plastshape->GetRmin(2));
1402 hole1plastshape->Rmax(2) = RmaxFromZpCone(conefoamshape,3,kConeTheta,
1403 hole1plastshape->GetZ(2));
1404
1405 hole1plastshape->Rmin(3) = hole1plastshape->GetRmin(2);
1406 hole1plastshape->Rmax(3) = hole1plastshape->GetRmin(3);
1407 hole1plastshape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
1408 hole1plastshape->GetRmax(3));
1409
1410 TGeoPcon *hole1Cushape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1411
1412 hole1Cushape->Rmin(0) = hole1plastshape->GetRmin(2);
1413 hole1Cushape->Rmax(0) = hole1Cushape->GetRmin(0);
1414 hole1Cushape->Z(0) = hole1plastshape->GetZ(2);
1415
1416 dza = hole1Cushape->GetRmax(0) - (kHole1RMax-kHole1RMin)*kHoleCuFrac;
1417
1418 hole1Cushape->Rmin(1) = dza;
1419 hole1Cushape->Rmax(1) = hole1Cushape->GetRmax(0);
1420 hole1Cushape->Z(1) = ZFromRminpCone(conefoamshape,1,kConeTheta,
1421 hole1Cushape->GetRmin(1));
1422
1423 hole1Cushape->Rmax(2) = hole1Cushape->GetRmax(0);
1424 hole1Cushape->Rmin(2) = hole1Cushape->GetRmin(1);
1425 hole1Cushape->Z(2) = hole1plastshape->GetZ(3);
1426
1427 hole1Cushape->Rmin(3) = hole1Cushape->GetRmin(1);
1428 hole1Cushape->Rmax(3) = hole1Cushape->GetRmin(3);
1429 hole1Cushape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
1430 hole1Cushape->GetRmax(3));
1431
1432 TGeoPcon *hole1glassshape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1433
1434 hole1glassshape->Rmin(0) = hole1Cushape->GetRmin(1);
1435 hole1glassshape->Rmax(0) = hole1glassshape->GetRmin(0);
1436 hole1glassshape->Z(0) = hole1Cushape->GetZ(1);
1437
1438 dza = hole1glassshape->GetRmax(0) - (kHole1RMax-kHole1RMin)*kHoleGlassFrac;
1439
1440 hole1glassshape->Rmin(1) = dza;
1441 hole1glassshape->Rmax(1) = hole1glassshape->GetRmax(0);
1442 hole1glassshape->Z(1) = ZFromRminpCone(conefoamshape,1,kConeTheta,
1443 hole1glassshape->GetRmin(1));
1444
1445 hole1glassshape->Rmax(2) = hole1glassshape->GetRmax(0);
1446 hole1glassshape->Rmin(2) = hole1glassshape->GetRmin(1);
1447 hole1glassshape->Z(2) = hole1Cushape->GetZ(3);
1448
1449 hole1glassshape->Rmin(3) = hole1glassshape->GetRmin(1);
1450 hole1glassshape->Rmax(3) = hole1glassshape->GetRmin(3);
1451 hole1glassshape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
1452 hole1glassshape->GetRmax(3));
1453 //
1454 TGeoPcon *hole2plastshape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1455
1456 hole2plastshape->Rmin(0) = hole2shape->GetRmin(0);
1457 hole2plastshape->Rmax(0) = hole2shape->GetRmax(0);
1458 hole2plastshape->Z(0) = hole2shape->GetZ(0);
1459
1460 hole2plastshape->Rmin(1) = hole2shape->GetRmin(1);
1461 hole2plastshape->Rmax(1) = hole2shape->GetRmax(1);
1462 hole2plastshape->Z(1) = hole2shape->GetZ(1);
1463
1464 dza = hole2plastshape->GetRmax(0) - (kHole2RMax-kHole2RMin)*kHolePlasticFrac;
1465
1466 hole2plastshape->Rmin(2) = dza;
1467 hole2plastshape->Z(2) = ZFromRminpCone(conefoamshape,1,kConeTheta,
1468 hole2plastshape->GetRmin(2));
1469 hole2plastshape->Rmax(2) = RmaxFromZpCone(conefoamshape,3,kConeTheta,
1470 hole2plastshape->GetZ(2));
1471
1472 hole2plastshape->Rmin(3) = hole2plastshape->GetRmin(2);
1473 hole2plastshape->Rmax(3) = hole2plastshape->GetRmin(3);
1474 hole2plastshape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
1475 hole2plastshape->GetRmax(3));
1476
1477 TGeoPcon *hole2Cushape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1478
1479 hole2Cushape->Rmin(0) = hole2plastshape->GetRmin(2);
1480 hole2Cushape->Rmax(0) = hole2Cushape->GetRmin(0);
1481 hole2Cushape->Z(0) = hole2plastshape->GetZ(2);
1482
1483 dza = hole2Cushape->GetRmax(0) - (kHole2RMax-kHole2RMin)*kHoleCuFrac;
1484
1485 hole2Cushape->Rmin(1) = dza;
1486 hole2Cushape->Rmax(1) = hole2Cushape->GetRmax(0);
1487 hole2Cushape->Z(1) = ZFromRminpCone(conefoamshape,1,kConeTheta,
1488 hole2Cushape->GetRmin(1));
1489
1490 hole2Cushape->Rmax(2) = hole2Cushape->GetRmax(0);
1491 hole2Cushape->Rmin(2) = hole2Cushape->GetRmin(1);
1492 hole2Cushape->Z(2) = hole2plastshape->GetZ(3);
1493
1494 hole2Cushape->Rmin(3) = hole2Cushape->GetRmin(1);
1495 hole2Cushape->Rmax(3) = hole2Cushape->GetRmin(3);
1496 hole2Cushape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
1497 hole2Cushape->GetRmax(3));
1498
1499 TGeoPcon *hole2glassshape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1500
1501 hole2glassshape->Rmin(0) = hole2Cushape->GetRmin(1);
1502 hole2glassshape->Rmax(0) = hole2glassshape->GetRmin(0);
1503 hole2glassshape->Z(0) = hole2Cushape->GetZ(1);
1504
1505 dza = hole2glassshape->GetRmax(0) - (kHole2RMax-kHole2RMin)*kHoleGlassFrac;
1506
1507 hole2glassshape->Rmin(1) = dza;
1508 hole2glassshape->Rmax(1) = hole2glassshape->GetRmax(0);
1509 hole2glassshape->Z(1) = ZFromRminpCone(conefoamshape,1,kConeTheta,
1510 hole2glassshape->GetRmin(1));
1511
1512 hole2glassshape->Rmax(2) = hole2glassshape->GetRmax(0);
1513 hole2glassshape->Rmin(2) = hole2glassshape->GetRmin(1);
1514 hole2glassshape->Z(2) = hole2Cushape->GetZ(3);
1515
1516 hole2glassshape->Rmin(3) = hole2glassshape->GetRmin(1);
1517 hole2glassshape->Rmax(3) = hole2glassshape->GetRmin(3);
1518 hole2glassshape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
1519 hole2glassshape->GetRmax(3));
1520
1521
7d6c23de 1522 // Debug if requested
1523 if (GetDebug(1)) {
1524 coneshape->InspectShape();
1525 coneinsertshape->InspectShape();
1526 conefoamshape->InspectShape();
1527 hole1shape->InspectShape();
1528 hole2shape->InspectShape();
a30e33f0 1529 hole3shape->InspectShape();
1530 hole4shape->InspectShape();
7d6c23de 1531 }
1532
1533
1534 // We have the shapes: now create the real volumes
1535
1536 TGeoVolume *cfcone = new TGeoVolume("SDDCarbonFiberCone",
1537 coneshape,medSDDcf);
1538 cfcone->SetVisibility(kTRUE);
1539 cfcone->SetLineColor(4); // Blue
1540 cfcone->SetLineWidth(1);
1541 cfcone->SetFillColor(cfcone->GetLineColor());
1542 cfcone->SetFillStyle(4000); // 0% transparent
1543
1544 TGeoVolume *cfconeinsert = new TGeoVolume("SDDCarbonFiberConeInsert",
1545 coneinsertshape,medSDDste);
1546 cfconeinsert->SetVisibility(kTRUE);
1547 cfconeinsert->SetLineColor(2); // Red
1548 cfconeinsert->SetLineWidth(1);
1549 cfconeinsert->SetFillColor(cfconeinsert->GetLineColor());
1550 cfconeinsert->SetFillStyle(4050); // 50% transparent
1551
1552 TGeoVolume *cfconefoam = new TGeoVolume("SDDCarbonFiberConeFoam",
1553 conefoamshape,medSDDroh);
1554 cfconefoam->SetVisibility(kTRUE);
1555 cfconefoam->SetLineColor(7); // Light blue
1556 cfconefoam->SetLineWidth(1);
1557 cfconefoam->SetFillColor(cfconefoam->GetLineColor());
1558 cfconefoam->SetFillStyle(4050); // 50% transparent
1559
1560 TGeoVolume *hole1 = new TGeoVolume("SDDCableHole1",
1561 hole1shape,medSDDair);
1562 hole1->SetVisibility(kTRUE);
1563 hole1->SetLineColor(5); // Yellow
1564 hole1->SetLineWidth(1);
1565 hole1->SetFillColor(hole1->GetLineColor());
1566 hole1->SetFillStyle(4090); // 90% transparent
1567
a30e33f0 1568 TGeoVolume *hole11 = new TGeoVolume("SDDCableHole11",
1569 hole11shape,medSDDair);
1570 hole11->SetVisibility(kTRUE);
1571 hole11->SetLineColor(5); // Yellow
1572 hole11->SetLineWidth(1);
1573 hole11->SetFillColor(hole11->GetLineColor());
1574 hole11->SetFillStyle(4090); // 90% transparent
1575
1576 TGeoVolume *hole12 = new TGeoVolume("SDDCableHole12",
1577 hole12shape,medSDDair);
1578 hole12->SetVisibility(kTRUE);
1579 hole12->SetLineColor(5); // Yellow
1580 hole12->SetLineWidth(1);
1581 hole12->SetFillColor(hole12->GetLineColor());
1582 hole12->SetFillStyle(4090); // 90% transparent
1583
96eb8210 1584 TGeoVolume *hole1plast = new TGeoVolume("SDDCableHole1Plast",
1585 hole1plastshape,medSDDplast);
1586 hole1plast->SetVisibility(kTRUE);
1587 hole1plast->SetLineColor(kBlue);
1588 hole1plast->SetLineWidth(1);
1589 hole1plast->SetFillColor(hole1plast->GetLineColor());
1590 hole1plast->SetFillStyle(4090); // 90% transparent
1591
1592 TGeoVolume *hole1Cu = new TGeoVolume("SDDCableHole1Cu",
1593 hole1Cushape,medSDDCu);
1594 hole1Cu->SetVisibility(kTRUE);
1595 hole1Cu->SetLineColor(kRed);
1596 hole1Cu->SetLineWidth(1);
1597 hole1Cu->SetFillColor(hole1Cu->GetLineColor());
1598 hole1Cu->SetFillStyle(4090); // 90% transparent
1599
1600 TGeoVolume *hole1glass = new TGeoVolume("SDDCableHole1glass",
1601 hole1glassshape,medSDDglass);
1602 hole1glass->SetVisibility(kTRUE);
1603 hole1glass->SetLineColor(kGreen);
1604 hole1glass->SetLineWidth(1);
1605 hole1glass->SetFillColor(hole1glass->GetLineColor());
1606 hole1glass->SetFillStyle(4090); // 90% transparent
1607
7d6c23de 1608 TGeoVolume *hole2 = new TGeoVolume("SDDCableHole2",
1609 hole2shape,medSDDair);
1610 hole2->SetVisibility(kTRUE);
1611 hole2->SetLineColor(5); // Yellow
1612 hole2->SetLineWidth(1);
1613 hole2->SetFillColor(hole2->GetLineColor());
1614 hole2->SetFillStyle(4090); // 90% transparent
1615
a30e33f0 1616 TGeoVolume *hole21 = new TGeoVolume("SDDCableHole21",
1617 hole21shape,medSDDair);
1618 hole21->SetVisibility(kTRUE);
1619 hole21->SetLineColor(5); // Yellow
1620 hole21->SetLineWidth(1);
1621 hole21->SetFillColor(hole21->GetLineColor());
1622 hole21->SetFillStyle(4090); // 90% transparent
1623
1624 TGeoVolume *hole22 = new TGeoVolume("SDDCableHole22",
1625 hole22shape,medSDDair);
1626 hole22->SetVisibility(kTRUE);
1627 hole22->SetLineColor(5); // Yellow
1628 hole22->SetLineWidth(1);
1629 hole22->SetFillColor(hole22->GetLineColor());
1630 hole22->SetFillStyle(4090); // 90% transparent
1631
96eb8210 1632 TGeoVolume *hole2plast = new TGeoVolume("SDDCableHole2Plast",
1633 hole2plastshape,medSDDplast);
1634 hole2plast->SetVisibility(kTRUE);
1635 hole2plast->SetLineColor(kBlue);
1636 hole2plast->SetLineWidth(1);
1637 hole2plast->SetFillColor(hole2plast->GetLineColor());
1638 hole2plast->SetFillStyle(4090); // 90% transparent
1639
1640 TGeoVolume *hole2Cu = new TGeoVolume("SDDCableHole2Cu",
1641 hole2Cushape,medSDDCu);
1642 hole2Cu->SetVisibility(kTRUE);
1643 hole2Cu->SetLineColor(kRed);
1644 hole2Cu->SetLineWidth(1);
1645 hole2Cu->SetFillColor(hole2Cu->GetLineColor());
1646 hole2Cu->SetFillStyle(4090); // 90% transparent
1647
1648 TGeoVolume *hole2glass = new TGeoVolume("SDDCableHole2glass",
1649 hole2glassshape,medSDDglass);
1650 hole2glass->SetVisibility(kTRUE);
1651 hole2glass->SetLineColor(kGreen);
1652 hole2glass->SetLineWidth(1);
1653 hole2glass->SetFillColor(hole2glass->GetLineColor());
1654 hole2glass->SetFillStyle(4090); // 90% transparent
1655
7d6c23de 1656 TGeoVolume *hole3 = new TGeoVolume("SDDCableHole3",
1657 hole3shape,medSDDair);
1658 hole3->SetVisibility(kTRUE);
1659 hole3->SetLineColor(5); // Yellow
1660 hole3->SetLineWidth(1);
1661 hole3->SetFillColor(hole3->GetLineColor());
1662 hole3->SetFillStyle(4090); // 90% transparent
1663
a30e33f0 1664 TGeoVolume *hole31 = new TGeoVolume("SDDCableHole31",
1665 hole31shape,medSDDair);
1666 hole31->SetVisibility(kTRUE);
1667 hole31->SetLineColor(5); // Yellow
1668 hole31->SetLineWidth(1);
1669 hole31->SetFillColor(hole31->GetLineColor());
1670 hole31->SetFillStyle(4090); // 90% transparent
1671
1672 TGeoVolume *hole32 = new TGeoVolume("SDDCableHole32",
1673 hole32shape,medSDDair);
1674 hole32->SetVisibility(kTRUE);
1675 hole32->SetLineColor(5); // Yellow
1676 hole32->SetLineWidth(1);
1677 hole32->SetFillColor(hole32->GetLineColor());
1678 hole32->SetFillStyle(4090); // 90% transparent
1679
7d6c23de 1680 TGeoVolume *hole4 = new TGeoVolume("SDDCableHole4",
1681 hole4shape,medSDDair);
1682 hole4->SetVisibility(kTRUE);
1683 hole4->SetLineColor(5); // Yellow
1684 hole4->SetLineWidth(1);
1685 hole4->SetFillColor(hole4->GetLineColor());
1686 hole4->SetFillStyle(4090); // 90% transparent
1687
1688 // Mount up a cone
1689 cfconeinsert->AddNode(cfconefoam,1,0);
1690
96eb8210 1691 hole1->AddNode(hole1plast, 1, 0);
1692 hole1->AddNode(hole1Cu, 1, 0);
1693 hole1->AddNode(hole1glass, 1, 0);
1694
1695 hole2->AddNode(hole2plast, 1, 0);
1696 hole2->AddNode(hole2Cu, 1, 0);
1697 hole2->AddNode(hole2glass, 1, 0);
1698
7d6c23de 1699 for (Int_t i=0; i<12; i++) {
1700 Double_t phiH = i*30.0;
a30e33f0 1701 cfconefoam->AddNode(hole1 , i+1, new TGeoRotation("", 0, 0, phiH));
1702 cfcone->AddNode(hole11, i+1, new TGeoRotation("", 0, 0, phiH));
1703 cfcone->AddNode(hole12, i+1, new TGeoRotation("", 0, 0, phiH));
7d6c23de 1704 }
1705
1706 for (Int_t i=0; i<6; i++) {
1707 Double_t phiH = i*60.0;
a30e33f0 1708 cfconefoam->AddNode(hole2 , i+1, new TGeoRotation("", 0, 0, phiH));
1709 cfcone->AddNode(hole21, i+1, new TGeoRotation("", 0, 0, phiH));
1710 cfcone->AddNode(hole22, i+1, new TGeoRotation("", 0, 0, phiH));
7d6c23de 1711 }
1712
1713 for (Int_t i=0; i<kNHole3; i++) {
1714 Double_t phiH0 = 360./(Double_t)kNHole3;
1715 Double_t phiH = i*phiH0 + 0.5*phiH0;
a30e33f0 1716 cfconefoam->AddNode(hole3 , i+1, new TGeoRotation("", phiH, 0, 0));
1717 cfcone->AddNode(hole31, i+1, new TGeoRotation("", phiH, 0, 0));
1718 cfcone->AddNode(hole32, i+1, new TGeoRotation("", phiH, 0, 0));
7d6c23de 1719 }
a30e33f0 1720
1721 cfcone->AddNode(cfconeinsert,1,0);
1722
7d6c23de 1723/*
1724 for (Int_t i=0; i<kNHole4; i++) {
1725 Double_t phiH0 = 360./(Double_t)kNHole4;
1726 Double_t phiH = i*phiH0 + 0.25*phiH0;
1727 cfcone->AddNode(hole4, i+1, new TGeoRotation("", phiH, 0, 0));
1728 }
1729*/
3a299c65 1730 // Finally put everything in the mother volume
1731 moth->AddNode(cfcylinder,1,0);
7d6c23de 1732
1733 z = coneshape->Z(9);
3a299c65 1734 moth->AddNode(cfcone,1,new TGeoTranslation(0, 0, -z - kCylinderHalfLength));
1735 moth->AddNode(cfcone,2,new TGeoCombiTrans (0, 0, z + kCylinderHalfLength,
1736 new TGeoRotation("", 0, 180, 0) ));
7d6c23de 1737
7d6c23de 1738
1739 return;
172b0d90 1740}
7d6c23de 1741
172b0d90 1742//______________________________________________________________________
43aefea7 1743void AliITSv11GeometrySupport::SSDCone(TGeoVolume *moth,const TGeoManager *mgr)
3a299c65 1744{
1745//
1746// Creates the SSD support cone and cylinder geometry. as a
1747// volume assembly and adds it to the mother volume
1748// (part of this code is taken or anyway inspired to SSDCone method
1749// of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06)
1750//
1751// Input:
1752// moth : the TGeoVolume owing the volume structure
1753// mgr : the GeoManager (default gGeoManager)
1754// Output:
1755//
1756// Created: ??? Bjorn S. Nilsen
1757// Updated: 08 Mar 2008 Mario Sitta
1758//
1759// Technical data are taken from: "ITS Supporto Generale" (technical
1760// drawings ALR3-0743/1, ALR3-0743/1A and ALR3-0743/1B), "Supporto Generale
1761// Settore SSD" (technical drawings ALR3-0743/2A and ALR3-0743/2E), private
1762// communication with B. Giraudo
5e15508a 1763//
1764// Updated: 11 Apr 2008 Mario Sitta
1765// Measures from drawings give overlaps with SPD thermal shield wings,
1766// so the terminal part of the SSD cone was reduced
573a206f 1767//
1768// Updated: 30 Mar 2010 Mario Sitta
1769// Following M. van Leeuwen's suggestion on material budget, the thickness
1770// of the carbon fiber cylinder was increased from 0.6 to 0.625mm
3a299c65 1771
1772 // Dimensions of the Central cylinder and flanges
0801d201 1773 const Double_t kCylinderHalfLength = (1143.6/2) *fgkmm;
3a299c65 1774 const Double_t kCylinderOuterRadius = ( 595.0/2) *fgkmm;
573a206f 1775 const Double_t kCylinderThickness = 0.625*fgkmm;
3a299c65 1776 const Double_t kFoamHalfLength = (1020.0/2) *fgkmm;
1777 const Double_t kFoamThickness = 5.0 *fgkmm;
1778 const Double_t kFlangeHalfLength =
1779 (kCylinderHalfLength-kFoamHalfLength)/2.;
1780 const Double_t kFlangeInnerRadius = ( 563.0/2) *fgkmm;
1781 // Dimensions of the Cone
fd5b6398 1782 const Double_t kConeROuterMin = ( 957.0/2) *fgkmm;
1783 const Double_t kConeROuterMax = ( 997.0/2) *fgkmm;
3a299c65 1784 const Double_t kConeRInnerMin = ( 564.0/2) *fgkmm;
1785 const Double_t kConeRCurv1 = 10.0 *fgkmm;
1786 const Double_t kConeRCurv2 = 25.0 *fgkmm;
1787 const Double_t kConeCent1RCurv2 = ( 578.0/2) *fgkmm;
6b42825b 1788 const Double_t kConeCent2RCurv2 = ( 592.0/2) *fgkmm;
5e15508a 1789// const Double_t kConeZOuterRing = 47.0 *fgkmm;
1790// const Double_t kConeZOuterRingInside = 30.25*fgkmm;
1791// const Double_t kConeZInnerRing = 161.5 *fgkmm;
1792// const Double_t kConeZLength = 176.5 *fgkmm;
1793 const Double_t kConeZOuterRing = 38.5 *fgkmm;
1794 const Double_t kConeZOuterRingInside = 22.2 *fgkmm;
1795 const Double_t kConeZInnerRing = 153.0 *fgkmm;
1796 const Double_t kConeZLength = 168.0 *fgkmm;
3a299c65 1797 const Double_t kConeZPosition = kConeZLength + kCylinderHalfLength;
1798 const Double_t kConeThickness = 13.0 *fgkmm; // Cone thickness
81adc4e0 1799 const Double_t kConeTheta = 39.1 *fgkDegree; // Cone angle
3a299c65 1800 const Double_t kSinConeTheta =
1801 TMath::Sin(kConeTheta*TMath::DegToRad());
1802 const Double_t kCosConeTheta =
1803 TMath::Cos(kConeTheta*TMath::DegToRad());
1804 // Dimensions of the Foam cores
1805 const Double_t kConeFoam1Length = 112.3 *fgkmm;
1806 const Double_t kConeFoam2Length = 58.4 *fgkmm;
1807 // Dimensions of the Cone Holes
1808 const Double_t kCoolingHoleWidth = 40.0 *fgkmm;
1809 const Double_t kCoolingHoleHight = 30.0 *fgkmm;
1810 const Double_t kCoolingHoleRmin = 350.0 *fgkmm;
1811 const Double_t kCoolingHolePhi = 45.0 *fgkDegree;
1812 const Double_t kMountingHoleWidth = 20.0 *fgkmm;
1813 const Double_t kMountingHoleHight = 20.0 *fgkmm;
1814 const Double_t kMountingHoleRmin = 317.5 *fgkmm;
1815 const Double_t kMountingHolePhi = 60.0 *fgkDegree;
1816 const Double_t kCableHoleRin = ( 800.0/2) *fgkmm;
1817 const Double_t kCableHoleRout = ( 920.0/2) *fgkmm;
1818 const Double_t kCableHoleWidth = 200.0 *fgkmm;
1819// const Double_t kCableHoleAngle = 42.0 *fgkDegree;
1820 // Dimensions of the Cone Wings
1821 const Double_t kWingRmax = 527.5 *fgkmm;
1822 const Double_t kWingWidth = 70.0 *fgkmm;
1823 const Double_t kWingHalfThick = ( 10.0/2) *fgkmm;
1824 const Double_t kThetaWing = 45.0 *fgkDegree;
1825 // Dimensions of the SSD-SDD Mounting Brackets
989ee428 1826 const Double_t kBracketRmin = ( 541.0/2) *fgkmm;// See SDD ROutMin
3a299c65 1827 const Double_t kBracketRmax = ( 585.0/2) *fgkmm;
1828 const Double_t kBracketHalfLength = ( 4.0/2) *fgkmm;
1829 const Double_t kBracketPhi = (70.*fgkmm/kBracketRmax)*fgkRadian;
1830 // Common data
1831 const Double_t kCFThickness = 0.75*fgkmm; //Carb. fib. thick.
1832
1833
1834 // Local variables
1835 Double_t rmin1, rmin2, rmax, z;
1836
1837 //
1838 //Begin_Html
1839 /*
1840 <img src="picts/ITS/file_name.gif">
1841 <P>
1842 <FONT FACE'"TIMES">
1843 ITS SSD central support and thermal shield cylinder.
1844 </FONT>
1845 </P>
1846 */
1847 //End_Html
1848 //
1849
1850 // Central cylinder with its internal foam and the lateral flanges:
1851 // a carbon fiber Pcon which contains a rohacell Tube and two
1852 // stesalite Cone's
1853 TGeoPcon *externalcylshape = new TGeoPcon(0,360,4);
1854
1855 rmax = kCylinderOuterRadius;
1856 rmin1 = kFlangeInnerRadius - kCylinderThickness;
1857 rmin2 = rmax - 2*kCylinderThickness - kFoamThickness;
1858 externalcylshape->DefineSection(0,-kCylinderHalfLength,rmin1,rmax);
1859 externalcylshape->DefineSection(1,-kFoamHalfLength ,rmin2,rmax);
1860 externalcylshape->DefineSection(2, kFoamHalfLength ,rmin2,rmax);
1861 externalcylshape->DefineSection(3, kCylinderHalfLength,rmin1,rmax);
1862
1863 rmax = kCylinderOuterRadius - kCylinderThickness;
1864 rmin1 = rmax - kFoamThickness;
1865 TGeoTube *foamshape = new TGeoTube(rmin1,rmax,kFoamHalfLength);
1866
1867 rmax = kCylinderOuterRadius - kCylinderThickness;
1868 rmin1 = rmax - kFoamThickness;
1869 rmin2 = kFlangeInnerRadius;
1870 TGeoCone *flangeshape = new TGeoCone(kFlangeHalfLength,
1871 rmin1,rmax,rmin2,rmax);
1872
1873
1874 // We have the shapes: now create the real volumes
1875
1876 TGeoMedium *medSSDcf = mgr->GetMedium("ITS_SSD C (M55J)$");
1877 TGeoMedium *medSSDair = mgr->GetMedium("ITS_SSD AIR$");
1878 TGeoMedium *medSSDste = mgr->GetMedium("ITS_G10FR4$"); // stesalite
1879 TGeoMedium *medSSDroh = mgr->GetMedium("ITS_ROHACELL$");
1880 TGeoMedium *medSSDal = mgr->GetMedium("ITS_ALUMINUM$");
1881
1882 TGeoVolume *cfcylinder = new TGeoVolume("SSDexternalcylinder",
1883 externalcylshape,medSSDcf);
1884 cfcylinder->SetVisibility(kTRUE);
1885 cfcylinder->SetLineColor(4); // blue
1886 cfcylinder->SetLineWidth(1);
1887 cfcylinder->SetFillColor(cfcylinder->GetLineColor());
1888 cfcylinder->SetFillStyle(4000); // 0% transparent
1889
1890 TGeoVolume *foamcylinder = new TGeoVolume("SSDfoamcylinder",
1891 foamshape,medSSDroh);
1892 foamcylinder->SetVisibility(kTRUE);
1893 foamcylinder->SetLineColor(3); // green
1894 foamcylinder->SetLineWidth(1);
1895 foamcylinder->SetFillColor(foamcylinder->GetLineColor());
1896 foamcylinder->SetFillStyle(4050); // 50% transparent
1897
1898 TGeoVolume *flangecylinder = new TGeoVolume("SSDflangecylinder",
1899 flangeshape,medSSDste);
1900 flangecylinder->SetVisibility(kTRUE);
1901 flangecylinder->SetLineColor(2); // red
1902 flangecylinder->SetLineWidth(1);
1903 flangecylinder->SetFillColor(flangecylinder->GetLineColor());
1904 flangecylinder->SetFillStyle(4050); // 50% transparent
1905
1906 // Mount up the cylinder
1907 cfcylinder->AddNode(foamcylinder,1,0);
1908 cfcylinder->AddNode(flangecylinder,1,
1909 new TGeoTranslation(0, 0, kFoamHalfLength+kFlangeHalfLength));
1910 cfcylinder->AddNode(flangecylinder,2,new TGeoCombiTrans(
1911 0, 0, -kFoamHalfLength-kFlangeHalfLength,
1912 new TGeoRotation("",0,180,0) ) );
1913
1914
1915 // The whole Cone as an assembly
1916 TGeoVolumeAssembly *vC = new TGeoVolumeAssembly("ITSssdCone");
1917
1918
1919 // SSD Support Cone with its internal inserts: a carbon fiber Pcon
1920 // with holes which contains a stesalite Pcon which on turn contains a
1921 // rohacell Pcon
1922 TGeoPcon *coneshape = new TGeoPcon(0.0, 360.0, 12);
1923
1924 coneshape->Z(0) = 0.0;
1925 coneshape->Rmin(0) = kConeROuterMin;
1926 coneshape->Rmax(0) = kConeROuterMax;
1927
1928 coneshape->Z(1) = kConeZOuterRingInside - kConeRCurv1;
1929 coneshape->Rmin(1) = coneshape->GetRmin(0);
1930 coneshape->Rmax(1) = coneshape->GetRmax(0);
1931
1932 coneshape->Z(2) = kConeZOuterRingInside;
1933 coneshape->Rmin(2) = coneshape->GetRmin(1) - kConeRCurv1;
1934 coneshape->Rmax(2) = coneshape->GetRmax(0);
1935
1936 coneshape->Z(3) = coneshape->GetZ(2);
1937 coneshape->Rmax(3) = coneshape->GetRmax(0);
1938
1939 coneshape->Z(4) = kConeZOuterRing - kConeRCurv1;
1940 coneshape->Rmax(4) = coneshape->GetRmax(0);
1941
1942 coneshape->Z(5) = kConeZOuterRing;
1943 coneshape->Rmax(5) = coneshape->GetRmax(4) - kConeRCurv1;
1944
1945 coneshape->Z(6) = coneshape->GetZ(5);
1946
1947 RadiusOfCurvature(kConeRCurv2,90.0,kConeZInnerRing,kConeCent1RCurv2,
1948 90.0-kConeTheta,z,rmin1);
1949 coneshape->Z(7) = z;
1950 coneshape->Rmin(7) = rmin1;
1951
1952 coneshape->Rmin(3) = RminFromZpCone(coneshape,7,90.-kConeTheta,
1953 coneshape->GetZ(3));
1954
1955 coneshape->Rmin(4) = RminFrom2Points(coneshape,3,7,coneshape->GetZ(4));
1956
1957 coneshape->Rmin(5) = RminFrom2Points(coneshape,3,7,coneshape->GetZ(5));
1958
1959 coneshape->Rmin(6) = coneshape->GetRmin(5);
1960
1961 coneshape->Z(8) = kConeZInnerRing;
1962 coneshape->Rmin(8) = kConeCent1RCurv2;
1963
1964 coneshape->Z(9) = coneshape->GetZ(8);
1965 coneshape->Rmin(9) = kConeRInnerMin;
1966
1967 RadiusOfCurvature(kConeRCurv2,90.0,kConeZLength,kConeCent2RCurv2,
1968 90.0-kConeTheta,z,rmax);
1969
1970 coneshape->Z(10) = z;
1971 coneshape->Rmin(10) = coneshape->GetRmin(9);
1972 coneshape->Rmax(10) = rmax;
1973
1974 coneshape->Rmax(6) = RmaxFromZpCone(coneshape,10,90.-kConeTheta,
1975 coneshape->GetZ(6));
1976
1977 coneshape->Rmax(7) = RmaxFrom2Points(coneshape,6,10,coneshape->GetZ(7));
1978
1979 coneshape->Rmax(8) = RmaxFrom2Points(coneshape,6,10,coneshape->GetZ(8));
1980
1981 coneshape->Rmax(9) = coneshape->GetRmax(8);
1982
1983 coneshape->Z(11) = kConeZLength;
1984 coneshape->Rmin(11) = coneshape->GetRmin(10);
1985 coneshape->Rmax(11) = kConeCent2RCurv2;
1986
1987 // SSD Cone Insert: another Pcon
1988 Double_t x0, y0, x1, y1, x2, y2;
1989 TGeoPcon *coneinsertshape = new TGeoPcon(0.0,360.0,12);
1990
1991 coneinsertshape->Z(0) = coneshape->GetZ(0) + kCFThickness;
1992 coneinsertshape->Rmin(0) = coneshape->GetRmin(0) + kCFThickness;
1993 coneinsertshape->Rmax(0) = coneshape->GetRmax(0) - kCFThickness;
1994
1995 x0 = coneshape->GetZ(0); y0 = coneshape->GetRmin(0);
1996 x1 = coneshape->GetZ(1); y1 = coneshape->GetRmin(1);
1997 x2 = coneshape->GetZ(2); y2 = coneshape->GetRmin(2);
1998 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
1999 coneinsertshape->Z(1) = z;
2000 coneinsertshape->Rmin(1) = rmin1;
2001 coneinsertshape->Rmax(1) = coneinsertshape->GetRmax(0);
2002
2003 x0 = coneshape->GetZ(1); y0 = coneshape->GetRmin(1);
2004 x1 = coneshape->GetZ(2); y1 = coneshape->GetRmin(2);
2005 x2 = coneshape->GetZ(3); y2 = coneshape->GetRmin(3);
2006 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
2007 coneinsertshape->Z(2) = z;
2008 coneinsertshape->Rmin(2) = rmin1;
2009 coneinsertshape->Rmax(2) = coneinsertshape->GetRmax(1);
2010
2011 x0 = coneshape->GetZ(2); y0 = coneshape->GetRmin(2);
2012 x1 = coneshape->GetZ(3); y1 = coneshape->GetRmin(3);
2013 x2 = coneshape->GetZ(4); y2 = coneshape->GetRmin(4);
2014 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
2015 coneinsertshape->Z(3) = z;
2016 coneinsertshape->Rmin(3) = rmin1;
2017 coneinsertshape->Rmax(3) = coneinsertshape->GetRmax(2);
2018
2019 x0 = coneshape->GetZ(3); y0 = coneshape->GetRmax(3);
2020 x1 = coneshape->GetZ(4); y1 = coneshape->GetRmax(4);
2021 x2 = coneshape->GetZ(5); y2 = coneshape->GetRmax(5);
2022 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
2023 coneinsertshape->Z(4) = z;
2024 coneinsertshape->Rmax(4) = rmax;
2025
2026 x0 = coneshape->GetZ(4); y0 = coneshape->GetRmax(4);
2027 x1 = coneshape->GetZ(5); y1 = coneshape->GetRmax(5);
2028 x2 = coneshape->GetZ(6); y2 = coneshape->GetRmax(6);
2029 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
2030 coneinsertshape->Z(5) = z;
2031 coneinsertshape->Rmax(5) = rmax;
2032
2033 x0 = coneshape->GetZ(5); y0 = coneshape->GetRmax(5);
2034 x1 = coneshape->GetZ(6); y1 = coneshape->GetRmax(6);
2035 x2 = coneshape->GetZ(7); y2 = coneshape->GetRmax(7);
2036 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
2037 coneinsertshape->Z(6) = z;
2038 coneinsertshape->Rmax(6) = rmax;
2039
2040 x0 = coneshape->GetZ(6); y0 = coneshape->GetRmin(6);
2041 x1 = coneshape->GetZ(7); y1 = coneshape->GetRmin(7);
2042 x2 = coneshape->GetZ(8); y2 = coneshape->GetRmin(8);
2043 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
2044 coneinsertshape->Z(7) = z;
2045 coneinsertshape->Rmin(7) = rmin1;
2046
2047 coneinsertshape->Rmin(4) = RminFrom2Points(coneinsertshape,3,7,
2048 coneinsertshape->GetZ(4));
2049
2050 coneinsertshape->Rmin(5) = RminFrom2Points(coneinsertshape,3,7,
2051 coneinsertshape->GetZ(5));
2052
2053 coneinsertshape->Rmin(6) = coneinsertshape->GetRmin(5);
2054
2055 x0 = coneshape->GetZ(7); y0 = coneshape->GetRmin(7);
2056 x1 = coneshape->GetZ(8); y1 = coneshape->GetRmin(8);
2057 x2 = coneshape->GetZ(9); y2 = coneshape->GetRmin(9);
2058 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
2059 coneinsertshape->Z(8) = z;
2060 coneinsertshape->Rmin(8) = rmin1;
2061
2062 x0 = coneshape->GetZ( 8); y0 = coneshape->GetRmin( 8);
2063 x1 = coneshape->GetZ( 9); y1 = coneshape->GetRmin( 9);
2064 x2 = coneshape->GetZ(10); y2 = coneshape->GetRmin(10);
2065 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
2066 coneinsertshape->Z(9) = z;
2067 coneinsertshape->Rmin(9) = rmin1;
2068
2069 x0 = coneshape->GetZ( 9); y0 = coneshape->GetRmax( 9);
2070 x1 = coneshape->GetZ(10); y1 = coneshape->GetRmax(10);
2071 x2 = coneshape->GetZ(11); y2 = coneshape->GetRmax(11);
2072 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
2073 coneinsertshape->Z(10) = z;
2074 coneinsertshape->Rmax(10) = rmax;
2075 coneinsertshape->Rmin(10) = coneinsertshape->GetRmin(9);
2076
2077 coneinsertshape->Rmax(7) = RmaxFrom2Points(coneinsertshape,6,10,
2078 coneinsertshape->GetZ(7));
2079
2080 coneinsertshape->Rmax(8) = RmaxFrom2Points(coneinsertshape,6,10,
2081 coneinsertshape->GetZ(8));
2082
2083 coneinsertshape->Rmax(9) = coneinsertshape->GetRmax(8);
2084
2085 x0 = coneshape->GetZ(10); y0 = coneshape->GetRmax(10);
2086 x1 = coneshape->GetZ(11); y1 = coneshape->GetRmax(11);
2087 x2 = coneshape->GetZ(11); y2 = coneshape->GetRmin(11);
2088 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
2089 coneinsertshape->Z(11) = z;
2090 coneinsertshape->Rmax(11) = rmax;
2091 coneinsertshape->Rmin(11) = coneinsertshape->GetRmin(10);
2092
2093 // SSD Cone Foams: two other Pcon's
2094 TGeoPcon *conefoam1shape = new TGeoPcon(0.0, 360.0, 4);
2095
2096 conefoam1shape->Z(0) = coneinsertshape->GetZ(3);
2097 conefoam1shape->Rmin(0) = coneinsertshape->GetRmin(3);
2098 conefoam1shape->Rmax(0) = conefoam1shape->GetRmin(0);
2099
2100 conefoam1shape->Rmax(1) = conefoam1shape->GetRmax(0);
2101 conefoam1shape->Z(1) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
2102 conefoam1shape->GetRmax(1));
2103 conefoam1shape->Rmin(1) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
2104 conefoam1shape->GetZ(1));
2105
2106 Double_t t = kConeThickness - 2*kCFThickness;
2107 conefoam1shape->Rmin(2) = conefoam1shape->GetRmax(0) -
2108 (kConeFoam1Length*kCosConeTheta - t*kSinConeTheta);
2109 conefoam1shape->Z(2) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
2110 conefoam1shape->GetRmin(2));
2111 conefoam1shape->Rmax(2) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
2112 conefoam1shape->GetZ(2));
2113
2114 conefoam1shape->Rmin(3) = conefoam1shape->GetRmin(2);
2115 conefoam1shape->Rmax(3) = conefoam1shape->GetRmin(3);
2116 conefoam1shape->Z(3) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
2117 conefoam1shape->GetRmax(3));
2118
2119 TGeoPcon *conefoam2shape = new TGeoPcon(0.0, 360.0, 4);
2120
2121 conefoam2shape->Z(3) = coneinsertshape->GetZ(10);
2122 conefoam2shape->Rmin(3) = coneinsertshape->GetRmax(10);
2123 conefoam2shape->Rmax(3) = conefoam2shape->GetRmin(3);
2124
2125 conefoam2shape->Rmin(2) = conefoam2shape->GetRmin(3);
2126 conefoam2shape->Z(2) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
2127 conefoam2shape->GetRmin(2));
2128 conefoam2shape->Rmax(2) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
2129 conefoam2shape->GetZ(2));
2130
2131 conefoam2shape->Rmin(0) = conefoam2shape->GetRmax(2) +
2132 (kConeFoam2Length*kCosConeTheta - t*kSinConeTheta);
2133 conefoam2shape->Rmax(0) = conefoam2shape->GetRmin(0);
2134 conefoam2shape->Z(0) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
2135 conefoam2shape->GetRmin(0));
2136
2137 conefoam2shape->Rmax(1) = conefoam2shape->GetRmax(0);
2138 conefoam2shape->Z(1) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
2139 conefoam2shape->GetRmax(1));
2140 conefoam2shape->Rmin(1) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
2141 conefoam2shape->GetZ(1));
2142
2143 // SSD Cone Holes: Pcon's
a30e33f0 2144 // A single hole volume gives an overlap with coneinsert, so
2145 // three contiguous volumes are created: one to be put in coneinsert
2146 // and two in the cone carbon fiber envelope
3a299c65 2147 Double_t holePhi;
2148 holePhi = (kCoolingHoleWidth/kCoolingHoleRmin)*TMath::RadToDeg();
2149
2150 TGeoPcon *coolingholeshape = new TGeoPcon(-holePhi/2., holePhi, 4);
2151
2152 coolingholeshape->Rmin(0) = kCoolingHoleRmin + kCoolingHoleHight;
2153 coolingholeshape->Rmax(0) = coolingholeshape->GetRmin(0);
a30e33f0 2154 coolingholeshape->Z(0) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
3a299c65 2155 coolingholeshape->GetRmin(0));
2156
2157 coolingholeshape->Rmax(1) = coolingholeshape->GetRmax(0);
a30e33f0 2158 coolingholeshape->Z(1) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
3a299c65 2159 coolingholeshape->GetRmax(1));
a30e33f0 2160 coolingholeshape->Rmin(1) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
3a299c65 2161 coolingholeshape->GetZ(1));
2162
2163 coolingholeshape->Rmin(2) = kCoolingHoleRmin;
a30e33f0 2164 coolingholeshape->Z(2) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
3a299c65 2165 coolingholeshape->GetRmin(2));
a30e33f0 2166 coolingholeshape->Rmax(2) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
3a299c65 2167 coolingholeshape->GetZ(2));
2168
2169 coolingholeshape->Rmin(3) = coolingholeshape->GetRmin(2);
2170 coolingholeshape->Rmax(3) = coolingholeshape->GetRmin(3);
a30e33f0 2171 coolingholeshape->Z(3) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
3a299c65 2172 coolingholeshape->GetRmax(3));
2173
a30e33f0 2174 TGeoPcon *coolinghole2shape = new TGeoPcon(-holePhi/2., holePhi, 4);
2175
2176 coolinghole2shape->Rmin(0) = kCoolingHoleRmin + kCoolingHoleHight;
2177 coolinghole2shape->Rmax(0) = coolinghole2shape->GetRmin(0);
2178 coolinghole2shape->Z(0) = ZFromRminpCone(coneshape,3,90.-kConeTheta,
2179 coolinghole2shape->GetRmin(0));
2180
2181 coolinghole2shape->Rmax(1) = coolinghole2shape->GetRmax(0);
2182 coolinghole2shape->Z(1) = coolingholeshape->GetZ(0);
2183 coolinghole2shape->Rmin(1) = RminFromZpCone(coneshape,3,90.-kConeTheta,
2184 coolinghole2shape->GetZ(1));
2185
2186 coolinghole2shape->Rmin(2) = kCoolingHoleRmin;
2187 coolinghole2shape->Z(2) = ZFromRminpCone(coneshape,3,90.-kConeTheta,
2188 coolinghole2shape->GetRmin(2));
2189 coolinghole2shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
2190 coolinghole2shape->GetZ(2));
2191
2192 coolinghole2shape->Rmin(3) = coolinghole2shape->GetRmin(2);
2193 coolinghole2shape->Rmax(3) = coolinghole2shape->GetRmin(3);
2194 coolinghole2shape->Z(3) = coolingholeshape->GetZ(2);
2195
2196 TGeoPcon *coolinghole3shape = new TGeoPcon(-holePhi/2., holePhi, 4);
2197
2198 coolinghole3shape->Rmin(0) = kCoolingHoleRmin + kCoolingHoleHight;
2199 coolinghole3shape->Rmax(0) = coolinghole3shape->GetRmin(0);
2200 coolinghole3shape->Z(0) = coolingholeshape->GetZ(1);
2201
2202 coolinghole3shape->Rmax(1) = coolinghole3shape->GetRmax(0);
2203 coolinghole3shape->Z(1) = ZFromRmaxpCone(coneshape,7,90.-kConeTheta,
2204 coolinghole3shape->GetRmax(1));
2205 coolinghole3shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
2206 coolinghole3shape->GetZ(1));
2207
2208 coolinghole3shape->Rmin(2) = kCoolingHoleRmin;
2209 coolinghole3shape->Z(2) = coolingholeshape->GetZ(3);
2210 coolinghole3shape->Rmax(2) = RmaxFromZpCone(coneshape,7,90.-kConeTheta,
2211 coolinghole3shape->GetZ(2));
2212
2213 coolinghole3shape->Rmin(3) = coolinghole3shape->GetRmin(2);
2214 coolinghole3shape->Rmax(3) = coolinghole3shape->GetRmin(3);
2215 coolinghole3shape->Z(3) = ZFromRmaxpCone(coneshape,7,90.-kConeTheta,
2216 coolinghole3shape->GetRmax(3));
2217
2218 //
3a299c65 2219 holePhi = (kMountingHoleWidth/kMountingHoleRmin)*TMath::RadToDeg();
2220
2221 TGeoPcon *mountingholeshape = new TGeoPcon(-holePhi/2., holePhi, 4);
2222
2223 mountingholeshape->Rmin(0) = kMountingHoleRmin + kMountingHoleHight;
2224 mountingholeshape->Rmax(0) = mountingholeshape->GetRmin(0);
2225 mountingholeshape->Z(0) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
2226 mountingholeshape->GetRmin(0));
2227
2228 mountingholeshape->Rmin(1) = kMountingHoleRmin;
2229 mountingholeshape->Rmax(1) = mountingholeshape->GetRmax(0);
2230 mountingholeshape->Z(1) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
2231 mountingholeshape->GetRmin(1));
2232
2233 mountingholeshape->Rmin(2) = mountingholeshape->GetRmin(1);
2234 mountingholeshape->Rmax(2) = mountingholeshape->GetRmax(1);
2235 mountingholeshape->Z(2) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
2236 mountingholeshape->GetRmax(2));
2237
2238 mountingholeshape->Rmin(3) = mountingholeshape->GetRmin(2);
2239 mountingholeshape->Rmax(3) = mountingholeshape->GetRmin(3);
2240 mountingholeshape->Z(3) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
2241 mountingholeshape->GetRmax(3));
2242
2243 TGeoPcon *mountinghole2shape = new TGeoPcon(-holePhi/2., holePhi, 4);
2244
2245 mountinghole2shape->Rmin(0) = kMountingHoleRmin + kMountingHoleHight;
2246 mountinghole2shape->Rmax(0) = mountingholeshape->GetRmin(0);
2247 mountinghole2shape->Z(0) = ZFromRminpCone(coneshape,3,90.-kConeTheta,
2248 mountinghole2shape->GetRmin(0));
2249
2250 mountinghole2shape->Rmax(1) = mountinghole2shape->GetRmax(0);
2251 mountinghole2shape->Z(1) = mountingholeshape->Z(0);
2252 mountinghole2shape->Rmin(1) = RminFromZpCone(coneshape,3,90.-kConeTheta,
2253 mountinghole2shape->GetZ(1));
2254
2255 mountinghole2shape->Rmin(2) = kMountingHoleRmin;
2256 mountinghole2shape->Z(2) = ZFromRminpCone(coneshape,3,90.-kConeTheta,
2257 mountinghole2shape->GetRmin(2));
2258 mountinghole2shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
2259 mountinghole2shape->GetZ(2));
2260
2261 mountinghole2shape->Rmin(3) = mountinghole2shape->Rmin(2);
2262 mountinghole2shape->Rmax(3) = mountinghole2shape->Rmin(3);
2263 mountinghole2shape->Z(3) = mountingholeshape->Z(1);
2264
2265 TGeoPcon *mountinghole3shape = new TGeoPcon(-holePhi/2., holePhi, 4);
2266
2267 mountinghole3shape->Rmin(0) = kMountingHoleRmin + kMountingHoleHight;
2268 mountinghole3shape->Rmax(0) = mountingholeshape->GetRmin(0);
2269 mountinghole3shape->Z(0) = mountingholeshape->GetZ(2);
2270
2271 mountinghole3shape->Rmax(1) = mountinghole3shape->GetRmax(0);
2272 mountinghole3shape->Z(1) = ZFromRmaxpCone(coneshape,7,90.-kConeTheta,
2273 mountinghole3shape->GetRmax(1));
2274 mountinghole3shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
2275 mountinghole3shape->GetZ(1));
2276
2277 mountinghole3shape->Rmin(2) = kMountingHoleRmin;
2278 mountinghole3shape->Z(2) = mountingholeshape->Z(3);
2279 mountinghole3shape->Rmax(2) = RmaxFromZpCone(coneshape,7,90.-kConeTheta,
2280 mountinghole3shape->GetZ(2));
2281
2282 mountinghole3shape->Rmin(3) = mountinghole3shape->Rmin(2);
2283 mountinghole3shape->Rmax(3) = mountinghole3shape->Rmin(3);
2284 mountinghole3shape->Z(3) = ZFromRmaxpCone(coneshape,7,90.-kConeTheta,
2285 mountinghole3shape->GetRmax(3));
2286
2287 // The Cable Hole is even more complicated, a Composite Shape
2288 // is unavoidable here (gosh!)
2289 TGeoPcon *coneshapecopy = new TGeoPcon("conecopy",0.0, 360.0, 12);
2290
2291 for (Int_t i=0; i<12; i++) {
2292 coneshapecopy->Rmin(i) = coneshape->GetRmin(i);
2293 coneshapecopy->Rmax(i) = coneshape->GetRmax(i);
2294 coneshapecopy->Z(i) = coneshape->GetZ(i);
2295 }
2296
2297 holePhi = (kCableHoleWidth/kCableHoleRout)*TMath::RadToDeg();
2298 TGeoConeSeg *chCS = new TGeoConeSeg("chCS", 0.5*kConeZLength,
2299 kCableHoleRin, kCableHoleRout,
2300 kCableHoleRin, kCableHoleRout,
2301 -0.5*holePhi, 0.5*holePhi);
2302
2303 TGeoCompositeShape *cableholeshape = new TGeoCompositeShape(
2304 "SSDCableHoleShape",
2305 "conecopy*chCS");
2306
2307 if(GetDebug(1)){
2308 chCS->InspectShape();
2309 cableholeshape->InspectShape();
2310 }
2311
2312 // SSD Cone Wings: Tube and TubeSeg shapes
2313 Double_t angleWideWing, angleWideWingThickness;
2314 angleWideWing = (kWingWidth/kWingRmax)*TMath::RadToDeg();
2315 angleWideWingThickness = (kCFThickness/kWingRmax)*TMath::RadToDeg();
2316
2317 TGeoTubeSeg *wingshape = new TGeoTubeSeg(kConeROuterMax, kWingRmax,
2318 kWingHalfThick,
2319 0, angleWideWing);
2320
2321 TGeoTubeSeg *winginsertshape = new TGeoTubeSeg(kConeROuterMax,
2322 kWingRmax-kCFThickness,
2323 kWingHalfThick-kCFThickness,
2324 angleWideWingThickness,
2325 angleWideWing-angleWideWingThickness);
2326
2327 // SDD support plate, SSD side (Mounting Bracket): a TubeSeg
2328 TGeoTubeSeg *bracketshape = new TGeoTubeSeg(kBracketRmin, kBracketRmax,
2329 kBracketHalfLength, -kBracketPhi/2, kBracketPhi/2);
2330
2331
2332 // We have the shapes: now create the real volumes
2333
2334 TGeoVolume *cfcone = new TGeoVolume("SSDCarbonFiberCone",
2335 coneshape,medSSDcf);
2336 cfcone->SetVisibility(kTRUE);
2337 cfcone->SetLineColor(4); // Blue
2338 cfcone->SetLineWidth(1);
2339 cfcone->SetFillColor(cfcone->GetLineColor());
2340 cfcone->SetFillStyle(4000); // 0% transparent
2341
2342 TGeoVolume *cfconeinsert = new TGeoVolume("SSDCarbonFiberConeInsert",
2343 coneinsertshape,medSSDste);
2344 cfconeinsert->SetVisibility(kTRUE);
2345 cfconeinsert->SetLineColor(2); // Red
2346 cfconeinsert->SetLineWidth(1);
2347 cfconeinsert->SetFillColor(cfconeinsert->GetLineColor());
2348 cfconeinsert->SetFillStyle(4050); // 50% transparent
2349
2350 TGeoVolume *cfconefoam1 = new TGeoVolume("SSDCarbonFiberConeFoam1",
2351 conefoam1shape,medSSDroh);
2352 cfconefoam1->SetVisibility(kTRUE);
2353 cfconefoam1->SetLineColor(3); // Green
2354 cfconefoam1->SetLineWidth(1);
2355 cfconefoam1->SetFillColor(cfconefoam1->GetLineColor());
2356 cfconefoam1->SetFillStyle(4050); // 50% transparent
2357
2358 TGeoVolume *cfconefoam2 = new TGeoVolume("SSDCarbonFiberConeFoam2",
2359 conefoam2shape,medSSDroh);
2360 cfconefoam2->SetVisibility(kTRUE);
2361 cfconefoam2->SetLineColor(3); // Green
2362 cfconefoam2->SetLineWidth(1);
2363 cfconefoam2->SetFillColor(cfconefoam2->GetLineColor());
2364 cfconefoam2->SetFillStyle(4050); // 50% transparent
2365
2366 TGeoVolume *coolinghole = new TGeoVolume("SSDCoolingHole",
2367 coolingholeshape,medSSDair);
2368 coolinghole->SetVisibility(kTRUE);
2369 coolinghole->SetLineColor(5); // Yellow
2370 coolinghole->SetLineWidth(1);
2371 coolinghole->SetFillColor(coolinghole->GetLineColor());
2372 coolinghole->SetFillStyle(4090); // 90% transparent
2373
a30e33f0 2374 TGeoVolume *coolinghole2 = new TGeoVolume("SSDCoolingHole2",
2375 coolinghole2shape,medSSDair);
2376 coolinghole2->SetVisibility(kTRUE);
2377 coolinghole2->SetLineColor(5); // Yellow
2378 coolinghole2->SetLineWidth(1);
2379 coolinghole2->SetFillColor(coolinghole2->GetLineColor());
2380 coolinghole2->SetFillStyle(4090); // 90% transparent
2381
2382 TGeoVolume *coolinghole3 = new TGeoVolume("SSDCoolingHole3",
2383 coolinghole3shape,medSSDair);
2384 coolinghole3->SetVisibility(kTRUE);
2385 coolinghole3->SetLineColor(5); // Yellow
2386 coolinghole3->SetLineWidth(1);
2387 coolinghole3->SetFillColor(coolinghole3->GetLineColor());
2388 coolinghole3->SetFillStyle(4090); // 90% transparent
2389
3a299c65 2390 TGeoVolume *mountinghole = new TGeoVolume("SSDMountingHole",
2391 mountingholeshape,medSSDair);
2392 mountinghole->SetVisibility(kTRUE);
2393 mountinghole->SetLineColor(5); // Yellow
2394 mountinghole->SetLineWidth(1);
2395 mountinghole->SetFillColor(mountinghole->GetLineColor());
2396 mountinghole->SetFillStyle(4090); // 90% transparent
2397
2398 TGeoVolume *mountinghole2 = new TGeoVolume("SSDMountingHole2",
2399 mountinghole2shape,medSSDair);
2400 mountinghole2->SetVisibility(kTRUE);
2401 mountinghole2->SetLineColor(5); // Yellow
2402 mountinghole2->SetLineWidth(1);
2403 mountinghole2->SetFillColor(mountinghole2->GetLineColor());
2404 mountinghole2->SetFillStyle(4090); // 90% transparent
2405
2406 TGeoVolume *mountinghole3 = new TGeoVolume("SSDMountingHole3",
2407 mountinghole3shape,medSSDair);
2408 mountinghole3->SetVisibility(kTRUE);
2409 mountinghole3->SetLineColor(5); // Yellow
2410 mountinghole3->SetLineWidth(1);
2411 mountinghole3->SetFillColor(mountinghole3->GetLineColor());
2412 mountinghole3->SetFillStyle(4090); // 90% transparent
2413
2414 TGeoVolume *wing = new TGeoVolume("SSDWing",wingshape,medSSDcf);
2415 wing->SetVisibility(kTRUE);
2416 wing->SetLineColor(4); // Blue
2417 wing->SetLineWidth(1);
2418 wing->SetFillColor(wing->GetLineColor());
2419 wing->SetFillStyle(4000); // 0% transparent
2420
2421 TGeoVolume *cablehole = new TGeoVolume("SSDCableHole",
2422 cableholeshape,medSSDair);
2423 cablehole->SetVisibility(kTRUE);
2424 cablehole->SetLineColor(5); // Yellow
2425 cablehole->SetLineWidth(1);
2426 cablehole->SetFillColor(cablehole->GetLineColor());
2427 cablehole->SetFillStyle(4090); // 90% transparent
2428
2429 TGeoVolume *winginsert = new TGeoVolume("SSDWingInsert",
2430 winginsertshape,medSSDste);
2431 winginsert->SetVisibility(kTRUE);
2432 winginsert->SetLineColor(2); // Red
2433 winginsert->SetLineWidth(1);
2434 winginsert->SetFillColor(winginsert->GetLineColor());
2435 winginsert->SetFillStyle(4050); // 50% transparent
2436
2437 TGeoVolume *bracket = new TGeoVolume("SSDMountingBracket",
2438 bracketshape,medSSDal);
2439 bracket->SetVisibility(kTRUE);
2440 bracket->SetLineColor(6); // Purple
2441 bracket->SetLineWidth(1);
2442 bracket->SetFillColor(bracket->GetLineColor());
2443 bracket->SetFillStyle(4000); // 0% transparent
2444
2445 // Mount up a cone
2446 for (Int_t i=0; i<(Int_t)(360./kMountingHolePhi); i++) {
2447 Double_t phiH = i*kMountingHolePhi + 0.5*kMountingHolePhi;
2448 cfconefoam2->AddNode(mountinghole,i+1, new TGeoRotation("", phiH, 0, 0));
2449 }
2450
a30e33f0 2451 for (Int_t i=0; i<(Int_t)(360./kCoolingHolePhi); i++) {
2452 Double_t phiH = i*kCoolingHolePhi + 0.5*kCoolingHolePhi;
2453 cfconeinsert->AddNodeOverlap(coolinghole,i+1, new TGeoRotation("", phiH, 0, 0));
2454 }
2455
3a299c65 2456 cfconeinsert->AddNode(cfconefoam1,1,0);
2457 cfconeinsert->AddNode(cfconefoam2,1,0);
2458
2459 cfcone->AddNode(cfconeinsert,1,0);
2460
2461 for (Int_t i=0; i<(Int_t)(360./kCoolingHolePhi); i++) {
2462 Double_t phiH = i*kCoolingHolePhi + 0.5*kCoolingHolePhi;
a30e33f0 2463 cfcone->AddNode(coolinghole2,i+1, new TGeoRotation("", phiH, 0, 0));
2464 cfcone->AddNode(coolinghole3,i+1, new TGeoRotation("", phiH, 0, 0));
3a299c65 2465 cfcone->AddNodeOverlap(cablehole,i+1, new TGeoRotation("", phiH, 0, 0));
2466 }
2467
2468 for (Int_t i=0; i<(Int_t)(360./kMountingHolePhi); i++) {
2469 Double_t phiH = i*kMountingHolePhi + 0.5*kMountingHolePhi;
2470 cfcone->AddNode(mountinghole2,i+1, new TGeoRotation("", phiH, 0, 0));
2471 cfcone->AddNode(mountinghole3,i+1, new TGeoRotation("", phiH, 0, 0));
2472 }
2473
2474 wing->AddNode(winginsert,1,0);
2475
2476 // Add all volumes in the Cone assembly
2477 vC->AddNode(cfcone,1,new TGeoTranslation(0,0,-kConeZPosition));
2478
2479 for (Int_t i=0; i<4; i++) {
85234543 2480 Double_t thetaW = kThetaWing + 90.*i + angleWideWing/2.;
2481 vC->AddNode(wing, i+1, new TGeoCombiTrans(0, 0, -kConeZPosition+kWingHalfThick,
3a299c65 2482 new TGeoRotation("",thetaW,180,0)));
2483 }
2484
2485 Double_t zBracket = kConeZPosition - coneshape->GetZ(9) +
a30e33f0 2486 2*bracketshape->GetDz();
3a299c65 2487 for (Int_t i=0; i<3; i++) {
2488 Double_t thetaB = 60 + 120.*i;
2489 vC->AddNode(bracket, i+1, new TGeoCombiTrans(0, 0, -zBracket,
2490 new TGeoRotation("",thetaB,0,0)));
2491 }
2492
2493 // Finally put everything in the mother volume
2494 moth->AddNode(cfcylinder,1,0);
2495
2496 moth->AddNode(vC, 1, 0 );
2497 moth->AddNode(vC, 2, new TGeoRotation("",180, 180, 0) );
2498
2499 // Some debugging if requested
2500 if(GetDebug(1)){
2501 vC->PrintNodes();
2502 vC->InspectShape();
2503 }
2504
2505 return;
172b0d90 2506}
2507
2508//______________________________________________________________________
543b7370 2509void AliITSv11GeometrySupport::ServicesCableSupport(TGeoVolume *moth,
2510 TGeoManager *mgr){
798b4e0c 2511//
2512// Creates the cable trays which are outside the ITS support cones
2513// but still inside the TPC
2514// This is now a stearing routine, the actual work is done by three
2515// specialized methods to avoid a really huge unique method
2516//
2517// Input:
2518// moth : the TGeoVolume owing the volume structure
2519// mgr : the GeoManager (default gGeoManager)
2520// Output:
2521//
2522// Created: 15 Nov 2009 Mario Sitta
2523//
2524
2525 TraySupportsSideA(moth, mgr);
2526
2527 ServicesCableSupportSPD(moth, mgr);
2528 ServicesCableSupportSDD(moth, mgr);
2529 ServicesCableSupportSSD(moth, mgr);
2530
2531 return;
2532}
2533
2534//______________________________________________________________________
2535void AliITSv11GeometrySupport::TraySupportsSideA(TGeoVolume *moth,
43aefea7 2536 const TGeoManager *mgr){
798b4e0c 2537//
2538// Creates the structure supporting the ITS cable trays on Side A
2539//
2540// Input:
2541// moth : the TGeoVolume owing the volume structure
2542// mgr : the GeoManager (default gGeoManager)
2543// Output:
2544//
2545// Created: 14 Dec 2009 Mario Sitta
2546// Updated: 26 Feb 2010 Mario Sitta
2547//
2548// Technical data are taken from AutoCAD drawings, L.Simonetti technical
2549// drawings and other (oral) information given by F.Tosello
2550//
2551
2552 // Dimensions and positions of the A-Side Cable Tray Support Ring
2553 // (0872/G/A/01)
2554 const Double_t kSuppRingYTrans = 110.00 *fgkmm;
2555 const Double_t kSuppRingZTrans =(1011.00+435.00) *fgkmm;
2556 const Double_t kSuppForwYTrans = 185.00 *fgkmm;
2557
2558 const Double_t kExtSuppRingSpace1 = 33.00 *fgkmm;
2559 const Double_t kExtSuppRingSpace2 = 45.00 *fgkmm;
2560 const Double_t kExtSuppRingSpcAbov = 30.00 *fgkmm;
2561 const Double_t kExtSuppRingBase = 491.50 *fgkmm;
2562 const Double_t kExtSuppRingInward = 35.00 *fgkmm;
2563 const Double_t kExtSuppRingRmax = 540.00 *fgkmm;
2564 const Double_t kExtSuppRingRint1 = 465.00 *fgkmm;
2565 const Double_t kExtSuppRingRint2 = 467.00 *fgkmm;
2566 const Double_t kExtSuppRingInnerHi = 450.00 *fgkmm;
2567 const Double_t kExtSuppRingInWide = 100.00 *fgkmm;
2568 const Double_t kExtSuppRingR7 = 7.00 *fgkmm;
2569 const Double_t kExtSuppRingR5 = 5.00 *fgkmm;
2570 const Double_t kExtSuppRingThick = 20.00 *fgkmm;
2571
2572 const Double_t kExtSuppRingSpcAng = 10.50 *TMath::DegToRad();
2573 const Double_t kExtSuppRingPartPhi = 15.00 *TMath::DegToRad();
2574 const Double_t kExtSuppRingIntAng = 7.00 *TMath::DegToRad();
2575 const Double_t kExtSuppRingBaseAng = 75.00 *TMath::DegToRad();
2576 const Double_t kExtSuppRingR7Ang = 100.00 *TMath::DegToRad(); // Guessed
2577
2578 const Int_t kExtSuppRingNPtsArc = 10; // N.points to approximate arc
2579
2580 const Double_t kIntSuppRingThick1 = 15.00 *fgkmm;
2581 const Double_t kIntSuppRingThick2 = 13.00 *fgkmm;
2582 const Double_t kIntSuppRingInward = 24.00 *fgkmm;
2583 const Double_t kIntSuppRingThick = 20.00 *fgkmm;
2584
2585 const Double_t kSuppCylHeight = 340.00 *fgkmm;
2586 const Double_t kSuppCylRint = 475.00 *fgkmm;
2587 const Double_t kSuppCylRext = 478.00 *fgkmm;
2588 const Double_t kSuppCylDispl = 137.70 *fgkmm;
2589
2590 const Double_t kSuppSpacerHeight = 30.00 *fgkmm;
2591 const Double_t kSuppSpacerThick = 10.00 *fgkmm;
2592
2593 const Double_t kSuppSpacerAngle = 15.00; // Degrees
2594
2595 const Double_t kSuppForwRingRint1 = 500.00 *fgkmm;
2596 const Double_t kSuppForwRingRint2 = 540.00 *fgkmm;
2597 const Double_t kSuppForwRingRext = 560.00 *fgkmm;
2598 const Double_t kSuppForwRingThikAll = 50.00 *fgkmm;
2599 const Double_t kSuppForwRingThikInt = 20.00 *fgkmm;
2600
2601 // (0872/G/B/01)
2602 const Double_t kSuppForwConeRmin = 558.00 *fgkmm;
2603 const Double_t kSuppForwConeRmax = 681.00 *fgkmm;
2604 const Double_t kSuppForwConeLen1 = 318.00 *fgkmm;
2605 const Double_t kSuppForwConeLen2 = 662.00 *fgkmm;
2606 const Double_t kSuppForwConeThick = 3.00 *fgkmm;
2607
2608 const Double_t kSuppBackRingPlacTop = 90.00 *fgkmm;
2609 const Double_t kSuppBackRingPlacSid = 50.00 *fgkmm;
2610 const Double_t kSuppBackRingHeight = 760.00 *fgkmm;
2611 const Double_t kSuppBackRingRext = 760.00 *fgkmm;
2612 const Double_t kSuppBackRingRint = 685.00 *fgkmm;
2613// const Double_t kSuppBackRingRint2 = 675.00 *fgkmm;
2614 const Double_t kSuppBackRingR10 = 10.00 *fgkmm;
2615 const Double_t kSuppBackRingBase = 739.00 *fgkmm;
2616 const Double_t kSuppBackRingThikAll = 50.00 *fgkmm;
2617 const Double_t kSuppBackRingThick1 = 20.00 *fgkmm;
2618 const Double_t kSuppBackRingThick2 = 20.00 *fgkmm;
2619
2620// const Double_t kSuppBackRingPlacAng = 10.00 *TMath::DegToRad();
2621 const Double_t kSuppBackRingPlacAng = 10.25 *TMath::DegToRad();//Fix ovlp.
2622 const Double_t kSuppBackRing2ndAng1 = 78.40 *TMath::DegToRad();
2623 const Double_t kSuppBackRing2ndAng2 = 45.00 *TMath::DegToRad();
2624
2625 const Int_t kSuppBackRingNPtsArc = 10; // N.points to approximate arc
2626
2627 // (0872/G/C/01)
2628 const Double_t kRearSuppZTransGlob =(1011.00+9315.00-6040.00) *fgkmm;
2629 const Double_t kBackRodZTrans = 2420.00 *fgkmm;
2630
2631 const Double_t kBackRodLength = 1160.00 *fgkmm;
2632 const Double_t kBackRodThickLen = 20.00 *fgkmm;
2633 const Double_t kBackRodDiameter = 20.00 *fgkmm;
2634
2635 const Double_t kSuppRearRingRint = 360.00 *fgkmm;
2636 const Double_t kSuppRearRingRext1 = 410.00 *fgkmm;
2637 const Double_t kSuppRearRingRext2 = 414.00 *fgkmm;
2638 const Double_t kSuppRearRingHeight = 397.00 *fgkmm;
2639 const Double_t kSuppRearRingTopWide = 111.87 *fgkmm;
2640 const Double_t kSuppRearRingBase = 451.50 *fgkmm;
2641 const Double_t kSuppRearRingBaseHi = 58.00 *fgkmm;
2642 const Double_t kSuppRearRingSideHi = 52.00 *fgkmm;
2643 const Double_t kSuppRearRingInside = 40.00 *fgkmm;
2644 const Double_t kSuppRearRingInsideHi= 12.00 *fgkmm;
2645 const Double_t kSuppRearRingThick = 20.00 *fgkmm;
2646 const Double_t kSuppRearRingXRodHole= 441.50 *fgkmm;
2647 const Double_t kSuppRearRingYRodHole= 42.00 *fgkmm;
2648
2649 const Double_t kSuppRearRing1stAng = 22.00 *TMath::DegToRad();
2650 const Double_t kSuppRearRingStepAng = 15.00 *TMath::DegToRad();
2651
2652 const Int_t kSuppRearRingNPtsArc = 10; // N.points to approximate arc
2653
2654
2655 // Local variables
2656 Double_t xprof[2*(15+kExtSuppRingNPtsArc)],yprof[2*(15+kExtSuppRingNPtsArc)];
2657 Double_t slp1, slp2, phi, xm, ym;
2658 Double_t xloc, yloc, zloc, rmin, rmax, deltaR;
2659 Int_t npoints;
2660
2661
2662 // The whole support as an assembly
2663 TGeoVolumeAssembly *trayASuppStruct = new TGeoVolumeAssembly("ITSsuppSideAStructure");
2664
2665
2666 // First create all needed shapes
2667
2668 // The External Ring (part of 0872/G/A/01): a really complex Xtru
2669 TGeoXtru *extSuppRing = new TGeoXtru(2);
2670
2671 // First the upper notch...
2672 xprof[ 0] = kExtSuppRingSpace1;
2673 yprof[ 0] = kExtSuppRingInnerHi + kExtSuppRingSpcAbov;
2674
2675 slp1 = TMath::Tan(TMath::Pi()/2 - kExtSuppRingSpcAng);
2676 IntersectCircle(slp1, xprof[0], yprof[0], kExtSuppRingRmax, 0., 0.,
2677 xprof[5], yprof[5], xm, ym); // Ignore dummy xm,ym
2678
2679 xprof[ 4] = xprof[5];
2680 yprof[ 4] = yprof[5] - kExtSuppRingR5/TMath::Tan(kExtSuppRingSpcAng);
2681 xprof[ 3] = xprof[4] - kExtSuppRingR5*(1 - TMath::Cos(TMath::Pi()/6));
2682 yprof[ 3] = yprof[4] - kExtSuppRingR5*( TMath::Sin(TMath::Pi()/6));
2683 xprof[ 2] = xprof[4] - kExtSuppRingR5*(1 - TMath::Cos(TMath::Pi()/3));
2684 yprof[ 2] = yprof[4] - kExtSuppRingR5*( TMath::Sin(TMath::Pi()/3));
2685 xprof[ 1] = xprof[4] - kExtSuppRingR5;
2686 yprof[ 1] = yprof[4] - kExtSuppRingR5;
2687
2688 Int_t indx = 5+kExtSuppRingNPtsArc;
2689 // ...then the external arc, approximated with segments,...
2690 xprof[indx] = kExtSuppRingBase;
2691 yprof[indx] = TMath::Sqrt(kExtSuppRingRmax*kExtSuppRingRmax -
2692 kExtSuppRingBase*kExtSuppRingBase);
2693 Double_t alphamin = TMath::ASin(kExtSuppRingSpace2/kExtSuppRingRmax);
2694 Double_t alphamax = TMath::Pi()/2 -
2695 TMath::ASin(yprof[5+kExtSuppRingNPtsArc]/kExtSuppRingRmax);
2696
2697 for (Int_t jp = 1; jp < kExtSuppRingNPtsArc; jp++) {
2698 Double_t alpha = jp*(alphamax-alphamin)/kExtSuppRingNPtsArc;
2699 xprof[5+jp] = kExtSuppRingRmax*TMath::Sin(alpha);
2700 yprof[5+jp] = kExtSuppRingRmax*TMath::Cos(alpha);
2701 }
2702 // ...and finally the interior profile
2703 xprof[indx+1] = kExtSuppRingBase;
2704 yprof[indx+1] = kSuppRingYTrans;
2705 xprof[indx+2] = xprof[indx+1] - kExtSuppRingInward;
2706 yprof[indx+2] = yprof[indx+1];
2707
2708 phi = TMath::Pi()/2 - 4*kExtSuppRingPartPhi - kExtSuppRingIntAng;
2709 slp1 = TMath::Tan(TMath::Pi() - kExtSuppRingBaseAng);
2710 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2711 xm = kExtSuppRingRint2*TMath::Cos(phi);
2712 ym = kExtSuppRingRint2*TMath::Sin(phi);
2713 IntersectLines(slp1, xprof[indx+2], yprof[indx+2], slp2, xm, ym,
2714 xprof[indx+3], yprof[indx+3]);
2715
2716 slp1 = slp2;
2717 phi += kExtSuppRingPartPhi;
2718 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2719 xm = kExtSuppRingRint1*TMath::Cos(phi);
2720 ym = kExtSuppRingRint1*TMath::Sin(phi);
2721 IntersectLines(slp1, xprof[indx+3], yprof[indx+3], slp2, xm, ym,
2722 xprof[indx+4], yprof[indx+4]);
2723
2724 slp1 = slp2;
2725 phi += kExtSuppRingPartPhi;
2726 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2727 xm = kExtSuppRingRint2*TMath::Cos(phi);
2728 ym = kExtSuppRingRint2*TMath::Sin(phi);
2729 IntersectLines(slp1, xprof[indx+4], yprof[indx+4], slp2, xm, ym,
2730 xprof[indx+5], yprof[indx+5]);
2731
2732 slp1 = slp2;
2733 phi += kExtSuppRingPartPhi;
2734 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2735 xm = kExtSuppRingRint1*TMath::Cos(phi);
2736 ym = kExtSuppRingRint1*TMath::Sin(phi);
2737 IntersectLines(slp1, xprof[indx+5], yprof[indx+5], slp2, xm, ym,
2738 xprof[indx+6], yprof[indx+6]);
2739
2740 xprof[indx+9] = kExtSuppRingInWide;
2741 yprof[indx+9] = kExtSuppRingInnerHi;
2742 xprof[indx+8] = xprof[indx+9] +
2743 (1 - TMath::Cos(kExtSuppRingR7Ang/2))*kExtSuppRingR7;
2744 yprof[indx+8] = yprof[indx+9] +
2745 ( TMath::Sin(kExtSuppRingR7Ang/2))*kExtSuppRingR7;
2746 xprof[indx+7] = xprof[indx+9] +
2747 (1 + TMath::Cos(kExtSuppRingR7Ang ))*kExtSuppRingR7;
2748 yprof[indx+7] = yprof[indx+9] +
2749 ( TMath::Sin(kExtSuppRingR7Ang ))*kExtSuppRingR7;
2750 // Gosh, we did the right side! now reflex on the left side
2751 npoints = (sizeof(xprof)/sizeof(Double_t))/2;
2752 for (Int_t jp = 0; jp < npoints; jp++) {
2753 xprof[npoints+jp] = -xprof[npoints-1-jp];
2754 yprof[npoints+jp] = yprof[npoints-1-jp];
2755 }
2756 // wow! now the actual Xtru
2757 extSuppRing->DefinePolygon(2*npoints, xprof, yprof);
2758 extSuppRing->DefineSection(0,0);
2759 extSuppRing->DefineSection(1,kExtSuppRingThick);
2760
2761 // The Internal Ring (part of 0872/G/A/01): another complex Xtru
2762 TGeoXtru *intSuppRing = new TGeoXtru(2);
2763
2764 // First the external profile...
2765 npoints = 0;
2766
2767 slp1 = 0;
2768 phi = TMath::Pi()/2 - kExtSuppRingPartPhi - kExtSuppRingIntAng;
2769 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2770 xm = (kExtSuppRingRint1+kIntSuppRingThick1)*TMath::Cos(phi);
2771 ym = (kExtSuppRingRint1+kIntSuppRingThick1)*TMath::Sin(phi);
2772 IntersectLines(slp1, 0, kExtSuppRingInnerHi+kExtSuppRingSpcAbov,
2773 slp2, xm, ym,
2774 xprof[npoints], yprof[npoints]);
2775 npoints++;
2776
2777 slp1 = slp2;
2778 phi -= kExtSuppRingPartPhi;
2779 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2780 xm = (kExtSuppRingRint2+kIntSuppRingThick2)*TMath::Cos(phi);
2781 ym = (kExtSuppRingRint2+kIntSuppRingThick2)*TMath::Sin(phi);
2782 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
2783 slp2, xm, ym,
2784 xprof[npoints], yprof[npoints]);
2785 npoints++;
2786
2787 slp1 = slp2;
2788 phi -= kExtSuppRingPartPhi;
2789 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2790 xm = (kExtSuppRingRint1+kIntSuppRingThick1)*TMath::Cos(phi);
2791 ym = (kExtSuppRingRint1+kIntSuppRingThick1)*TMath::Sin(phi);
2792 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
2793 slp2, xm, ym,
2794 xprof[npoints], yprof[npoints]);
2795 npoints++;
2796
2797 slp1 = slp2;
2798 phi -= kExtSuppRingPartPhi;
2799 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2800 xm = (kExtSuppRingRint2+kIntSuppRingThick2)*TMath::Cos(phi);
2801 ym = (kExtSuppRingRint2+kIntSuppRingThick2)*TMath::Sin(phi);
2802 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
2803 slp2, xm, ym,
2804 xprof[npoints], yprof[npoints]);
2805 npoints++;
2806
2807 xprof[npoints] = kExtSuppRingBase-kIntSuppRingInward;
2808 yprof[npoints] = Yfrom2Points(xprof[npoints-1], yprof[npoints-1], xm, ym,
2809 xprof[npoints]);
2810 npoints++;
2811
2812 xprof[npoints] = xprof[npoints-1];
2813 yprof[npoints] = kSuppRingYTrans;
2814 npoints++;
2815 // ...and then the interior profile, which is identical to extSuppRing one
2816 for (Int_t jp=0; jp < 8; jp++) {
2817 xprof[npoints] = extSuppRing->GetX(17+jp);
2818 yprof[npoints] = extSuppRing->GetY(17+jp);
2819 npoints++;
2820 }
2821 // We did the right side! now reflex on the left side
2822 for (Int_t jp = 0; jp < npoints; jp++) {
2823 xprof[npoints+jp] = -xprof[npoints-1-jp];
2824 yprof[npoints+jp] = yprof[npoints-1-jp];
2825 }
2826 // And now the actual Xtru
2827 intSuppRing->DefinePolygon(2*npoints, xprof, yprof);
2828 intSuppRing->DefineSection(0,0);
2829 intSuppRing->DefineSection(1,kIntSuppRingThick);
2830
2831 // The intermediate cylinder (0872/G/A/03): a TubeSeg
2832 alphamin = TMath::ASin(kSuppCylDispl/kSuppCylRint)*TMath::RadToDeg();
2833 alphamax = 180 - alphamin;
2834 TGeoTubeSeg *interCylind = new TGeoTubeSeg(kSuppCylRint, kSuppCylRext,
2835 kSuppCylHeight/2, alphamin, alphamax);
2836
2837 // The spacer (0872/G/A/03): a simple Xtru
2838 TGeoXtru *suppSpacer = new TGeoXtru(2);
2839
2840 xprof[0] = kSuppSpacerHeight;
2841 yprof[0] = kSuppSpacerThick;
2842 xprof[1] = xprof[0];
2843 yprof[1] = 0;
2844 xprof[2] = 0;
2845 yprof[2] = 0;
2846 xprof[3] = kSuppSpacerThick*SinD(kSuppSpacerAngle);
2847 yprof[3] = yprof[0];
2848
2849 suppSpacer->DefinePolygon(4, xprof, yprof);
2850 suppSpacer->DefineSection(0,-kSuppCylHeight/2);
2851 suppSpacer->DefineSection(1, kSuppCylHeight/2);
2852
2853 // The forward ring (0872/G/B/02): a Pcon (slight oversimplification)
2854 Double_t rmean = (kSuppForwRingRint1+kSuppForwRingRext)/2;
2855 alphamin = TMath::ASin(kSuppForwYTrans/rmean)*TMath::RadToDeg();
2856 alphamax = 180 - alphamin;
2857
2858 TGeoPcon *forwardRing = new TGeoPcon(alphamin,alphamax-alphamin,4);
2859
2860 forwardRing->DefineSection(0,0,
2861 kSuppForwRingRint1,kSuppForwRingRext);
2862 forwardRing->DefineSection(1,kSuppForwRingThikInt,
2863 kSuppForwRingRint1,kSuppForwRingRext);
2864 forwardRing->DefineSection(2,kSuppForwRingThikInt,
2865 kSuppForwRingRint2,kSuppForwRingRext);
2866 forwardRing->DefineSection(3,kSuppForwRingThikAll,
2867 kSuppForwRingRint2,kSuppForwRingRext);
2868
2869 // The forward cone (0872/G/B/03): a TGeoPcon
2870 TGeoPcon *forwardCone = new TGeoPcon(alphamin,alphamax-alphamin,3);
2871
2872 forwardCone->DefineSection(0,0,
2873 kSuppForwConeRmin-kSuppForwConeThick,
2874 kSuppForwConeRmin);
2875 forwardCone->DefineSection(1,kSuppForwConeLen1,
2876 kSuppForwConeRmin-kSuppForwConeThick,
2877 kSuppForwConeRmin);
2878 forwardCone->DefineSection(2,kSuppForwConeLen1+kSuppForwConeLen2,
2879 kSuppForwConeRmax-kSuppForwConeThick,
2880 kSuppForwConeRmax);
2881
2882 // The first part of the Back Ring (part of 0872/G/B/01): a complex Xtru
2883 TGeoXtru *firstSuppBackRing = new TGeoXtru(2);
2884
2885 // First the external profile... (the arc is approximated with segments)
2886 npoints = 0;
2887
2888 xprof[npoints] = kSuppBackRingPlacTop;
2889 yprof[npoints] = kSuppBackRingHeight;
2890 npoints++;
2891
2892 alphamax = TMath::Pi()/2 - TMath::ASin(kSuppBackRingPlacTop/kSuppBackRingRext);
2893 alphamin = TMath::ASin((kSuppForwYTrans+kSuppBackRingPlacSid)/kSuppBackRingRext);
2894
2895 xprof[npoints] = xprof[npoints-1];
2896 yprof[npoints] = kSuppBackRingRext*TMath::Sin(alphamax);
2897 npoints++;
2898
2899 for (Int_t jp = 1; jp <= kSuppBackRingNPtsArc; jp++) {
2900 Double_t alpha = alphamax - jp*(alphamax-alphamin)/kSuppBackRingNPtsArc;
2901 xprof[npoints] = kSuppBackRingRext*TMath::Cos(alpha);
2902 yprof[npoints] = kSuppBackRingRext*TMath::Sin(alpha);
2903 npoints++;
2904 }
2905
2906 xprof[npoints] = kSuppBackRingBase -
2907 kSuppBackRingPlacSid*TMath::Tan(kSuppBackRingPlacAng);
2908 yprof[npoints] = yprof[npoints-1];
2909 npoints++;
2910
2911 xprof[npoints] = kSuppBackRingBase;
2912 yprof[npoints] = kSuppForwYTrans;
2913 npoints++;
2914 // ...then the internal profile (the arc is approximated with segments)
2915 alphamin = TMath::ASin(kSuppForwYTrans/kSuppBackRingRint);
2916 alphamax = TMath::Pi()/2;
2917
2918 for (Int_t jp = 0; jp < kSuppBackRingNPtsArc; jp++) {
2919 Double_t alpha = alphamin + jp*(alphamax-alphamin)/kSuppBackRingNPtsArc;
2920 xprof[npoints] = kSuppBackRingRint*TMath::Cos(alpha);
2921 yprof[npoints] = kSuppBackRingRint*TMath::Sin(alpha);
2922 npoints++;
2923 }
2924
2925 xprof[npoints] = 0;
2926 yprof[npoints] = kSuppBackRingRint;
2927 npoints++;
2928 // We did the right side! now reflex on the left side (except last point)
2929 for (Int_t jp = 0; jp < npoints-1; jp++) {
2930 xprof[npoints+jp] = -xprof[npoints-jp-2];
2931 yprof[npoints+jp] = yprof[npoints-jp-2];
2932 }
2933 // And now the actual Xtru
2934 firstSuppBackRing->DefinePolygon(2*npoints-1, xprof, yprof);
2935 firstSuppBackRing->DefineSection(0,0);
2936 firstSuppBackRing->DefineSection(1,kSuppBackRingThick1);
2937
2938 // The second part of the Back Ring (part of 0872/G/B/01): a Pcon
2939 // (slight oversimplification)
2940 alphamin = TMath::ASin(kSuppForwYTrans/kSuppBackRingRint)*TMath::RadToDeg();
2941 alphamax = 180 - alphamin;
2942
2943 TGeoPcon *secondSuppBackRing = new TGeoPcon(alphamin,alphamax-alphamin,6);
2944
2945 deltaR = kSuppBackRingThick2/TMath::Sin(kSuppBackRing2ndAng1);
2946 rmin = kSuppBackRingRint - kSuppBackRingThick1/TMath::Tan(kSuppBackRing2ndAng1);
2947 rmax = rmin + deltaR + kSuppBackRingR10*TMath::Sin(kSuppBackRing2ndAng1);
2948 secondSuppBackRing->DefineSection(0, 0, rmin, rmax);
2949
2950 zloc = kSuppBackRingR10*(1 - TMath::Cos(kSuppBackRing2ndAng1/3));
2951 rmax -= kSuppBackRingR10*TMath::Sin(kSuppBackRing2ndAng1/3);
2952 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2953 secondSuppBackRing->DefineSection(1, zloc, rmin, rmax);
2954
2955 zloc = kSuppBackRingR10*(1 - TMath::Cos(kSuppBackRing2ndAng1*2/3));
2956 rmax = secondSuppBackRing->GetRmax(0) - kSuppBackRingR10*TMath::Sin(kSuppBackRing2ndAng1*2/3);
2957 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2958 secondSuppBackRing->DefineSection(2, zloc, rmin, rmax);
2959
2960 zloc = kSuppBackRingR10*(1 - TMath::Cos(kSuppBackRing2ndAng1));
2961 rmax = secondSuppBackRing->GetRmax(0) - kSuppBackRingR10*TMath::Sin(kSuppBackRing2ndAng1);
2962 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2963 secondSuppBackRing->DefineSection(3, zloc, rmin, rmax);
2964
2965 slp1 = TMath::Tan(kSuppBackRing2ndAng2);
2966 slp2 = TMath::Tan(TMath::Pi()/2 + kSuppBackRing2ndAng1);
2967 IntersectLines(-slp1,kSuppBackRingThikAll,deltaR/2,
2968 slp2,kSuppBackRingThikAll,deltaR,
2969 xm, ym);
2970
2971 zloc = xm - kSuppBackRingThick1;
2972 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2973 rmax = rmin + deltaR;
2974 secondSuppBackRing->DefineSection(4, zloc, rmin, rmax);
2975
2976 zloc = kSuppBackRingThikAll - kSuppBackRingThick1;
2977 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2978 rmax = rmin + deltaR/2;
2979 secondSuppBackRing->DefineSection(5, zloc, rmin, rmax);
2980
2981 // The supporting rod: a Tube
2982 TGeoTube *suppRod = new TGeoTube(0, kBackRodDiameter/2,
2983 (kBackRodLength - kBackRodThickLen)/2);
2984
2985 // The Back Ring (0872/G/C/01): another complex Xtru
2986 TGeoXtru *suppRearRing = new TGeoXtru(2);
2987
2988 // First the external profile...
2989 npoints = 0;
2990
2991 xprof[npoints] = kSuppRearRingTopWide;
2992 yprof[npoints] = kSuppRearRingHeight;
2993 npoints++;
2994
2995 phi = kSuppRearRing1stAng;
2996 slp1 = TMath::Tan(TMath::Pi() - phi);
2997 phi += kSuppRearRingStepAng;
2998 slp2 = TMath::Tan(TMath::Pi() - phi);
2999 xm = kSuppRearRingRext2*TMath::Sin(phi);
3000 ym = kSuppRearRingRext2*TMath::Cos(phi);
3001 IntersectLines(slp1, kSuppRearRingTopWide, kSuppRearRingHeight,
3002 slp2, xm, ym,
3003 xprof[npoints], yprof[npoints]);
3004 npoints++;
3005
3006 slp1 = slp2;
3007 phi += kSuppRearRingStepAng;
3008 slp2 = TMath::Tan(TMath::Pi() - phi);
3009 xm = kSuppRearRingRext1*TMath::Sin(phi);
3010 ym = kSuppRearRingRext1*TMath::Cos(phi);
3011 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
3012 slp2, xm, ym,
3013 xprof[npoints], yprof[npoints]);
3014 npoints++;
3015
3016 slp1 = slp2;
3017 phi += kSuppRearRingStepAng;
3018 slp2 = TMath::Tan(TMath::Pi() - phi);
3019 xm = kSuppRearRingRext2*TMath::Sin(phi);
3020 ym = kSuppRearRingRext2*TMath::Cos(phi);
3021 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
3022 slp2, xm, ym,
3023 xprof[npoints], yprof[npoints]);
3024 npoints++;
3025
3026 slp1 = slp2;
3027 slp2 = 0;
3028 xm = kSuppRearRingBase;
3029 ym = kSuppRearRingBaseHi + kSuppRearRingSideHi;
3030 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
3031 slp2, xm, ym,
3032 xprof[npoints], yprof[npoints]);
3033 npoints++;
3034
3035 xprof[npoints] = kSuppRearRingBase;
3036 yprof[npoints] = kSuppRearRingBaseHi + kSuppRearRingSideHi;
3037 npoints++;
3038 xprof[npoints] = xprof[npoints - 1];
3039 yprof[npoints] = kSuppRearRingBaseHi;
3040 npoints++;
3041 xprof[npoints] = xprof[npoints - 1] - kSuppRearRingInside;
3042 yprof[npoints] = yprof[npoints - 1];
3043 npoints++;
3044 xprof[npoints] = xprof[npoints - 1];
3045 yprof[npoints] = yprof[npoints - 1] + kSuppRearRingInsideHi;
3046 npoints++;
3047 // ...then the internal arc, approximated with segments,...
3048 xprof[npoints] = kSuppRearRingRint;
3049 yprof[npoints] = yprof[npoints - 1];
3050
3051 alphamin = TMath::ASin(kSuppRearRingBaseHi/kSuppRearRingRint);
3052 alphamax = TMath::Pi()/2;
3053
3054 for (Int_t jp = 1; jp < kSuppRearRingNPtsArc; jp++) {
3055 Double_t alpha = alphamin + jp*(alphamax-alphamin)/kSuppRearRingNPtsArc;
3056 xprof[npoints+jp] = kSuppRearRingRint*TMath::Cos(alpha);
3057 yprof[npoints+jp] = kSuppRearRingRint*TMath::Sin(alpha);
3058 }
3059
3060 xprof[npoints+kSuppRearRingNPtsArc] = 0;
3061 yprof[npoints+kSuppRearRingNPtsArc] = kSuppRearRingRint;
3062 // We did the right side! now reflex on the left side
3063 Int_t nTotalPoints = npoints+kSuppRearRingNPtsArc;
3064 for (Int_t jp = 0; jp < nTotalPoints; jp++) {
3065 xprof[nTotalPoints+1+jp] = -xprof[nTotalPoints-1-jp];
3066 yprof[nTotalPoints+1+jp] = yprof[nTotalPoints-1-jp];
3067 }
3068
3069 // And now the actual Xtru
3070 suppRearRing->DefinePolygon(2*nTotalPoints+1, xprof, yprof);
3071 suppRearRing->DefineSection(0,0);
3072 suppRearRing->DefineSection(1,kSuppRearRingThick);
3073
3074
3075 // We have all shapes: now create the real volumes
3076 TGeoMedium *medAl = mgr->GetMedium("ITS_ANTICORODAL$");
3077
3078 TGeoVolume *sideAExtSuppRing = new TGeoVolume("ITSsuppSideAExtSuppRing",
3079 extSuppRing, medAl);
3080
3081 sideAExtSuppRing->SetVisibility(kTRUE);
3082 sideAExtSuppRing->SetLineColor(kMagenta+1);
3083 sideAExtSuppRing->SetLineWidth(1);
3084 sideAExtSuppRing->SetFillColor(sideAExtSuppRing->GetLineColor());
3085 sideAExtSuppRing->SetFillStyle(4000); // 0% transparent
3086
3087 TGeoVolume *sideAIntSuppRing = new TGeoVolume("ITSsuppSideAIntSuppRing",
3088 intSuppRing, medAl);
3089
3090 sideAIntSuppRing->SetVisibility(kTRUE);
3091 sideAIntSuppRing->SetLineColor(kMagenta+1);
3092 sideAIntSuppRing->SetLineWidth(1);
3093 sideAIntSuppRing->SetFillColor(sideAIntSuppRing->GetLineColor());
3094 sideAIntSuppRing->SetFillStyle(4000); // 0% transparent
3095
3096 TGeoVolume *sideASuppCyl = new TGeoVolume("ITSsuppSideASuppCyl",
3097 interCylind, medAl);
3098
3099 sideASuppCyl->SetVisibility(kTRUE);
3100 sideASuppCyl->SetLineColor(kMagenta+1);
3101 sideASuppCyl->SetLineWidth(1);
3102 sideASuppCyl->SetFillColor(sideASuppCyl->GetLineColor());
3103 sideASuppCyl->SetFillStyle(4000); // 0% transparent
3104
3105 TGeoVolume *sideASuppSpacer = new TGeoVolume("ITSsuppSideASuppSpacer",
3106 suppSpacer, medAl);
3107
3108 sideASuppSpacer->SetVisibility(kTRUE);
3109 sideASuppSpacer->SetLineColor(kMagenta+1);
3110 sideASuppSpacer->SetLineWidth(1);
3111 sideASuppSpacer->SetFillColor(sideASuppSpacer->GetLineColor());
3112 sideASuppSpacer->SetFillStyle(4000); // 0% transparent
3113
3114 TGeoVolume *sideASuppForwRing = new TGeoVolume("ITSsuppSideASuppForwRing",
3115 forwardRing, medAl);
3116
3117 sideASuppForwRing->SetVisibility(kTRUE);
3118 sideASuppForwRing->SetLineColor(kMagenta+1);
3119 sideASuppForwRing->SetLineWidth(1);
3120 sideASuppForwRing->SetFillColor(sideASuppForwRing->GetLineColor());
3121 sideASuppForwRing->SetFillStyle(4000); // 0% transparent
3122
3123 TGeoVolume *sideASuppForwCone = new TGeoVolume("ITSsuppSideASuppForwCone",
3124 forwardCone, medAl);
3125
3126 sideASuppForwCone->SetVisibility(kTRUE);
3127 sideASuppForwCone->SetLineColor(kMagenta+1);
3128 sideASuppForwCone->SetLineWidth(1);
3129 sideASuppForwCone->SetFillColor(sideASuppForwCone->GetLineColor());
3130 sideASuppForwCone->SetFillStyle(4000); // 0% transparent
3131
3132 TGeoVolume *sideAFirstSuppBackRing = new TGeoVolume("ITSsuppSideAFirstSuppBackRing",
3133 firstSuppBackRing, medAl);
3134
3135 sideAFirstSuppBackRing->SetVisibility(kTRUE);
3136 sideAFirstSuppBackRing->SetLineColor(kMagenta+1);
3137 sideAFirstSuppBackRing->SetLineWidth(1);
3138 sideAFirstSuppBackRing->SetFillColor(sideAFirstSuppBackRing->GetLineColor());
3139 sideAFirstSuppBackRing->SetFillStyle(4000); // 0% transparent
3140
3141 TGeoVolume *sideASecondSuppBackRing = new TGeoVolume("ITSsuppSideASecondSuppBackRing",
3142 secondSuppBackRing, medAl);
3143
3144 sideASecondSuppBackRing->SetVisibility(kTRUE);
3145 sideASecondSuppBackRing->SetLineColor(kMagenta+1);
3146 sideASecondSuppBackRing->SetLineWidth(1);
3147 sideASecondSuppBackRing->SetFillColor(sideASecondSuppBackRing->GetLineColor());
3148 sideASecondSuppBackRing->SetFillStyle(4000); // 0% transparent
3149
3150 TGeoVolume *sideASuppRod = new TGeoVolume("ITSsuppSideASuppRod",
3151 suppRod, medAl);
3152
3153 sideASuppRod->SetVisibility(kTRUE);
3154 sideASuppRod->SetLineColor(kMagenta+1);
3155 sideASuppRod->SetLineWidth(1);
3156 sideASuppRod->SetFillColor(sideASuppRod->GetLineColor());
3157 sideASuppRod->SetFillStyle(4000); // 0% transparent
3158
3159 TGeoVolume *sideASuppRearRing = new TGeoVolume("ITSsuppSideASuppRearRing",
3160 suppRearRing, medAl);
3161
3162 sideASuppRearRing->SetVisibility(kTRUE);
3163 sideASuppRearRing->SetLineColor(kMagenta+1);
3164 sideASuppRearRing->SetLineWidth(1);
3165 sideASuppRearRing->SetFillColor(sideASuppRearRing->GetLineColor());
3166 sideASuppRearRing->SetFillStyle(4000); // 0% transparent
3167
3168
3169 // Now build up the support structure
3170 zloc = kSuppRingZTrans;
3171 trayASuppStruct->AddNode(sideAExtSuppRing, 1,
3172 new TGeoTranslation(0, 0, zloc) );
3173 trayASuppStruct->AddNode(sideAExtSuppRing, 2,
3174 new TGeoCombiTrans( 0, 0, zloc,
3175 new TGeoRotation("",180,0,0)));
3176
3177 zloc += kExtSuppRingThick;
3178 trayASuppStruct->AddNode(sideAIntSuppRing, 1,
3179 new TGeoTranslation(0, 0, zloc) );
3180 trayASuppStruct->AddNode(sideAIntSuppRing, 2,
3181 new TGeoCombiTrans( 0, 0, zloc,
3182 new TGeoRotation("",180,0,0)));
3183
3184 xloc = kExtSuppRingBase - kIntSuppRingInward;
3185 yloc = kSuppRingYTrans;
3186 zloc += (kIntSuppRingThick + kSuppCylHeight/2);
3187 trayASuppStruct->AddNode(sideASuppCyl, 1,
3188 new TGeoTranslation(0, 0, zloc) );
3189 trayASuppStruct->AddNode(sideASuppCyl, 2,
3190 new TGeoCombiTrans( 0, 0, zloc,
3191 new TGeoRotation("",180,0,0)));
3192 trayASuppStruct->AddNode(sideASuppSpacer, 1,
3193 new TGeoCombiTrans( xloc, yloc, zloc,
3194 new TGeoRotation("",90+kSuppSpacerAngle,0,0)));
3195 trayASuppStruct->AddNode(sideASuppSpacer, 2,
3196 new TGeoCombiTrans(-xloc, yloc, zloc,
3197 new TGeoRotation("",0,180,kSuppSpacerAngle-90)));
3198 trayASuppStruct->AddNode(sideASuppSpacer, 3,
3199 new TGeoCombiTrans( xloc,-yloc, zloc,
3200 new TGeoRotation("",180,180,kSuppSpacerAngle-90)));
3201 trayASuppStruct->AddNode(sideASuppSpacer, 4,
3202 new TGeoCombiTrans(-xloc,-yloc, zloc,
3203 new TGeoRotation("",270+kSuppSpacerAngle,0,0)));
3204
3205
3206 zloc += kSuppCylHeight/2;
3207 trayASuppStruct->AddNode(sideAIntSuppRing, 3,
3208 new TGeoTranslation(0, 0, zloc) );
3209 trayASuppStruct->AddNode(sideAIntSuppRing, 4,
3210 new TGeoCombiTrans( 0, 0, zloc,
3211 new TGeoRotation("",180,0,0)));
3212
3213 zloc += kIntSuppRingThick;
3214 trayASuppStruct->AddNode(sideAExtSuppRing, 3,
3215 new TGeoTranslation(0, 0, zloc) );
3216 trayASuppStruct->AddNode(sideAExtSuppRing, 4,
3217 new TGeoCombiTrans( 0, 0, zloc,
3218 new TGeoRotation("",180,0,0)));
3219
3220 zloc += kExtSuppRingThick;
3221 trayASuppStruct->AddNode(sideASuppForwRing, 1,
3222 new TGeoTranslation(0, 0, zloc) );
3223 trayASuppStruct->AddNode(sideASuppForwRing, 2,
3224 new TGeoCombiTrans( 0, 0, zloc,
3225 new TGeoRotation("",180,0,0)));
3226
3227 zloc += kSuppForwRingThikAll;
3228 trayASuppStruct->AddNode(sideASuppForwCone, 1,
3229 new TGeoTranslation(0, 0, zloc) );
3230 trayASuppStruct->AddNode(sideASuppForwCone, 2,
3231 new TGeoCombiTrans( 0, 0, zloc,
3232 new TGeoRotation("",180,0,0)));
3233
3234 zloc += (kSuppForwConeLen1+kSuppForwConeLen2);
3235 trayASuppStruct->AddNode(sideAFirstSuppBackRing, 1,
3236 new TGeoTranslation(0, 0, zloc) );
3237 trayASuppStruct->AddNode(sideAFirstSuppBackRing, 2,
3238 new TGeoCombiTrans( 0, 0, zloc,
3239 new TGeoRotation("",180,0,0)));
3240
3241 zloc += kSuppBackRingThick1;
3242 trayASuppStruct->AddNode(sideASecondSuppBackRing, 1,
3243 new TGeoTranslation(0, 0, zloc) );
3244 trayASuppStruct->AddNode(sideASecondSuppBackRing, 2,
3245 new TGeoCombiTrans( 0, 0, zloc,
3246 new TGeoRotation("",180,0,0)));
3247
3248 xloc = kSuppRearRingXRodHole;
3249 yloc = kSuppRearRingBaseHi + kSuppRearRingYRodHole;
3250 zloc = kRearSuppZTransGlob - kBackRodZTrans + suppRod->GetDz();
3251 trayASuppStruct->AddNode(sideASuppRod, 1,
3252 new TGeoTranslation( xloc, yloc, zloc) );
3253 trayASuppStruct->AddNode(sideASuppRod, 2,
3254 new TGeoTranslation(-xloc, yloc, zloc) );
3255 trayASuppStruct->AddNode(sideASuppRod, 3,
3256 new TGeoTranslation( xloc,-yloc, zloc) );
3257 trayASuppStruct->AddNode(sideASuppRod, 4,
3258 new TGeoTranslation(-xloc,-yloc, zloc) );
3259
3260 zloc += suppRod->GetDz();
3261 trayASuppStruct->AddNode(sideASuppRearRing, 1,
3262 new TGeoTranslation( 0, 0, zloc) );
3263 trayASuppStruct->AddNode(sideASuppRearRing, 2,
3264 new TGeoCombiTrans( 0, 0, zloc,
3265 new TGeoRotation("",180,0,0)));
3266
3267
3268 // Finally put everything in the mother volume
3269 moth->AddNode(trayASuppStruct,1,0);
3270
3271 return;
3272}
3273
3274//______________________________________________________________________
3275void AliITSv11GeometrySupport::ServicesCableSupportSPD(TGeoVolume *moth,
3276 TGeoManager *mgr){
3277//
3278// Creates the all SPD cable trays which are outside the ITS support cones
3279// but still inside the TPC
3280// In order to avoid a huge monolithic routine, this method actually
3281// calls inner methods to create and assemble the various (macro)pieces
3282//
3283// Input:
3284// moth : the TGeoVolume owing the volume structure
3285// mgr : the GeoManager (default gGeoManager)
3286// Output:
3287//
3288// Created: ??? Bjorn S. Nilsen
3289// Updated: 15 Nov 2009 Mario Sitta
3290//
3291// Technical data are taken from AutoCAD drawings and other (oral)
3292// information given by F.Tosello
3293//
3294
3295 SPDCableTraysSideA(moth, mgr);
aa177c73 3296 SPDCableTraysSideC(moth, mgr);
798b4e0c 3297
3298}
3299
3300//______________________________________________________________________
3301void AliITSv11GeometrySupport::ServicesCableSupportSDD(TGeoVolume *moth,
3302 TGeoManager *mgr){
3303//
3304// Creates the all SDD cable trays which are outside the ITS support cones
3305// but still inside the TPC
3306// In order to avoid a huge monolithic routine, this method actually
3307// calls inner methods to create and assemble the various (macro)pieces
3308//
3309// Input:
3310// moth : the TGeoVolume owing the volume structure
3311// mgr : the GeoManager (default gGeoManager)
3312// Output:
3313//
3314// Created: 14 Dec 2009 Mario Sitta
3315//
3316
3317 SDDCableTraysSideA(moth, mgr);
aa177c73 3318 SDDCableTraysSideC(moth, mgr);
798b4e0c 3319
3320 return;
3321}
3322
3323//______________________________________________________________________
3324void AliITSv11GeometrySupport::ServicesCableSupportSSD(TGeoVolume *moth,
3325 TGeoManager *mgr){
3326//
3327// Creates the SSD cable trays which are outside the ITS support cones
3328// but still inside the TPC
3329// In order to avoid a huge monolithic routine, this method actually
3330// calls inner methods to create and assemble the various (macro)pieces
3331//
3332// Input:
3333// moth : the TGeoVolume owing the volume structure
3334// mgr : the GeoManager (default gGeoManager)
3335// Output:
3336//
3337// Created: 15 Nov 2009 Mario Sitta
3338//
3339
3340 SSDCableTraysSideA(moth, mgr);
aa177c73 3341 SSDCableTraysSideC(moth, mgr);
798b4e0c 3342
3343 return;
3344}
3345
3346//______________________________________________________________________
3347void AliITSv11GeometrySupport::SPDCableTraysSideA(TGeoVolume *moth,
43aefea7 3348 const TGeoManager *mgr){
798b4e0c 3349//
3350// Creates the SPD cable trays which are outside the ITS support cones
3351// but still inside the TPC on Side A
3352// (part of this code is taken or anyway inspired to ServicesCableSupport
3353// method of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06)
3354//
3355// Input:
3356// moth : the TGeoVolume owing the volume structure
3357// mgr : the GeoManager (default gGeoManager)
3358// Output:
3359//
3360// Created: 15 Feb 2010 Mario Sitta
96eb8210 3361// Updated: 10 Jun 2010 Mario Sitta Freon inside cooling pipes
57126ea1 3362// Updated: 08 Sep 2010 Mario Sitta
1c5895a3 3363// Updated: 14 Sep 2010 Mario Sitta Cables prolonged till cone
798b4e0c 3364//
3365// Technical data are taken from AutoCAD drawings, L.Simonetti technical
3366// drawings and other (oral) information given by F.Tosello and D.Elia
3367// (small differences with blueprints - e.g. -0.07mm in R1Trans and
3368// R2Trans - fix small overlaps; they are then compensated in positioning
3369// the Rear Tray to avoid its own overlaps with the rear supporting ring)
57126ea1 3370// Optical fibers and voltage cables are approximated with mean materials
3371// and square cross sections, but preserving the total material budget.
798b4e0c 3372//
3373
3374 // Overall position and rotation of the A-Side Cable Trays
3375 // (parts of 0872/G/D)
3376 const Double_t kTrayAR1Trans = 396.93 *fgkmm;
3377 const Double_t kTrayAR2Trans = 413.93 *fgkmm;
3378 const Double_t kTrayAZTrans = 1011.00 *fgkmm;
3379 const Double_t kTrayAZRot = (180-169.5);// Degrees
3380 const Double_t kTrayAFirstRotAng = 22.00; // Degrees
3381 const Double_t kTrayASecondRotAng = 15.00; // Degrees
3382
3383 const Double_t kForwardTrayWide = 94.00 *fgkmm;//!!!TO BE CHECKED!!!
3384 const Double_t kForwardTrayFirstHigh = 83.00 *fgkmm;//!!!TO BE CHECKED!!!
3385 const Double_t kForwardTraySecondHigh = 52.70 *fgkmm;//!!!TO BE CHECKED!!!
3386 const Double_t kForwardTrayTotalLen = 853.00 *fgkmm;
3387 const Double_t kForwardTrayFirstLen = 435.00 *fgkmm;
3388 const Double_t kForwardTrayWingWide = 16.00 *fgkmm;//!!!TO BE CHECKED!!!
3389 const Double_t kForwardTrayInterSpace = 18.00 *fgkmm;//!!!TO BE CHECKED!!!
3390 const Double_t kForwardTrayThick = 2.00 *fgkmm;
3391
1c5895a3 3392 const Int_t kForwardSideNpoints = 6;
798b4e0c 3393
3394 const Double_t kExternalTrayLen = 1200.00 *fgkmm;
3395 const Double_t kExternalTrayWide = kForwardTrayWide;
3396 const Double_t kExternalTrayHigh = kForwardTraySecondHigh;
3397 const Double_t kExternalTrayThick = kForwardTrayThick;
3398
57126ea1 3399 const Double_t kCoolingTubeRmin = 2.00 *fgkmm;
3400 const Double_t kCoolingTubeRmax = 3.00 *fgkmm;
798b4e0c 3401
3402 const Double_t kOpticalFibersSect = 8.696*fgkmm;//!!!ESTIMATED!!!
57126ea1 3403 const Double_t kLowVoltageCableSectCu = 7.675*fgkmm;// Computed
3404 const Double_t kLowVoltageCableHighPUR = 1.000*fgkmm;// Computed
3405 const Double_t kHiVoltageCableSectCu = 1.535*fgkmm;// Computed
3406 const Double_t kHiVoltageCableHighPUR = 0.500*fgkmm;// Computed
d8826f33 3407 const Double_t kCoaxCableSectCu = 6.024*fgkmm;// Computed
3408 const Double_t kCoaxCableHighMeg = 5.695*fgkmm;// Computed
96eb8210 3409
1c5895a3 3410 const Double_t kTrayCCablesRot = 75.000*fgkDegree;// Computed
3411 const Double_t kTrayCCablesZLenOut = 227.000*fgkmm;// Computed
3412
798b4e0c 3413
3414 // Local variables
3415 Double_t xprof[kForwardSideNpoints], yprof[kForwardSideNpoints];
3416 Double_t xloc, yloc, zloc, alpharot;
3417
3418
3419 // The two tray components as assemblies
3420 TGeoVolumeAssembly *cableTrayAForw =
3421 new TGeoVolumeAssembly("ITSsupportSPDTrayAForwRear");
3422 TGeoVolumeAssembly *cableTrayAExt =
3423 new TGeoVolumeAssembly("ITSsupportSPDTrayAExt");
3424
3425
3426 // First create all needed shapes
3427
3428 // The lower face of the forward tray: a BBox
3429 TGeoBBox *forwTrayLowerFace = new TGeoBBox(kForwardTrayWide/2,
3430 kForwardTrayThick/2,
3431 kForwardTrayTotalLen/2);
3432
3433 // The side face of the forward tray: a Xtru
3434 TGeoXtru *forwTraySideFace = new TGeoXtru(2);
3435 forwTraySideFace->SetName("ITSsuppSPDForwTraySide");
3436
3437 xprof[0] = 0;
3438 yprof[0] = kForwardTrayThick;
3439 xprof[1] = kForwardTrayTotalLen;
3440 yprof[1] = yprof[0];
3441 xprof[2] = xprof[1];
3442 yprof[2] = kForwardTraySecondHigh - kForwardTrayThick;
3443 xprof[3] = kForwardTrayFirstLen;
3444 yprof[3] = yprof[2];
3445 xprof[4] = xprof[3];
3446 yprof[4] = kForwardTrayFirstHigh - kForwardTrayThick;
3447 xprof[5] = xprof[0];
3448 yprof[5] = yprof[4];
3449
3450 forwTraySideFace->DefinePolygon(6, xprof, yprof);
3451 forwTraySideFace->DefineSection(0, 0);
3452 forwTraySideFace->DefineSection(1, kForwardTrayThick);
3453
3454 // The covers of the forward tray: two BBox's
3455 TGeoBBox *forwTrayShortCover = new TGeoBBox(kForwardTrayWide/2,
3456 kForwardTrayThick/2,
3457 kForwardTrayFirstLen/2);
3458
3459 TGeoBBox *forwTrayLongCover = new TGeoBBox(kForwardTrayWide/2,
3460 kForwardTrayThick/2,
3461 (kForwardTrayTotalLen - kForwardTrayFirstLen)/2);
3462
3463 // Each small wing of the forward tray: a BBox
3464 TGeoBBox *forwTrayWing = new TGeoBBox(kForwardTrayWingWide/2,
3465 (kForwardTrayFirstHigh-kForwardTraySecondHigh)/2,
3466 kForwardTrayThick/2);
3467
3468 // The internal plane of the forward tray: a BBox
3469 TGeoBBox *forwTrayPlane = new TGeoBBox(kForwardTrayWide/2-kForwardTrayThick,
3470 kForwardTrayThick/2,
3471 kForwardTrayTotalLen/2);
3472
3473 // The internal wall of the forward tray: a BBox
3474 TGeoBBox *forwTrayWall = new TGeoBBox(kForwardTrayThick/2,
3475 (kForwardTrayInterSpace-kForwardTrayThick)/2,
3476 kForwardTrayTotalLen/2);
3477
3478 // Each horizontal face of the external tray: a BBox
3479 TGeoBBox *extTrayHorFace = new TGeoBBox(kExternalTrayWide/2-kExternalTrayThick,
3480 kExternalTrayThick/2,
3481 kExternalTrayLen/2);
3482
3483 // Each vertical face of the external tray: a BBox
3484 TGeoBBox *extTrayVerFace = new TGeoBBox(kExternalTrayThick/2,
3485 kExternalTrayHigh/2,
3486 kExternalTrayLen/2);
3487
3488 // The internal wall of the external tray: a BBox
3489 TGeoBBox *extTrayWall = new TGeoBBox(kExternalTrayThick/2,
3490 (kForwardTrayInterSpace-kExternalTrayThick)/2,
3491 kExternalTrayLen/2);
3492
96eb8210 3493 // The cooling tube inside the forward tray: a Tube
798b4e0c 3494 Double_t zelong = (kForwardTraySecondHigh - 2*kForwardTrayThick
3495 - 2*forwTrayWall->GetDY() - kCoolingTubeRmax)*SinD(kTrayAZRot);
3496 Double_t zlen = (zelong + kForwardTrayTotalLen)/2;
96eb8210 3497 TGeoTube *coolTubeForw = new TGeoTube(0, kCoolingTubeRmax, zlen);
3498
3499 // The freon inside the forward tray tubes: a Tube
3500 TGeoTube *freonTubeForw = new TGeoTube(0, kCoolingTubeRmin, zlen);
798b4e0c 3501
3502 // The cooling tube inside the external tray: a Ctub
96eb8210 3503 TGeoCtub *coolTubeExt = new TGeoCtub(0, kCoolingTubeRmax,
798b4e0c 3504 kExternalTrayLen/2, 0, 360,
3505 0, SinD(kTrayAZRot),-CosD(kTrayAZRot),
3506 0, 0, 1);
3507
96eb8210 3508 // The freon inside the forward tray tubes: a Tube
3509 TGeoCtub *freonTubeExt = new TGeoCtub(0, kCoolingTubeRmin,
3510 kExternalTrayLen/2, 0, 360,
3511 0, SinD(kTrayAZRot),-CosD(kTrayAZRot),
3512 0, 0, 1);
3513
1c5895a3 3514 // The optical fibers inside the forward tray: a Xtru
3515 TGeoXtru *optFibsForw = new TGeoXtru(2);
3516
3517 xprof[0] = -kTrayCCablesZLenOut;
3518 yprof[0] = xprof[0]/TanD(kTrayCCablesRot);
3519 xprof[1] = 0;
3520 yprof[1] = 0;
3521 xprof[2] = kForwardTrayTotalLen;
3522 yprof[2] = yprof[1];
3523 xprof[3] = xprof[2];
3524 yprof[3] = yprof[2] + kOpticalFibersSect;
3525 xprof[4] = xprof[1];
3526 yprof[4] = yprof[3];
3527 xprof[5] = xprof[0];
3528 yprof[5] = yprof[0] + kOpticalFibersSect;
3529
3530 optFibsForw->DefinePolygon(6, xprof, yprof);
3531 optFibsForw->DefineSection(0,-kOpticalFibersSect/2);
3532 optFibsForw->DefineSection(1, kOpticalFibersSect/2);
798b4e0c 3533
3534 // The optical fibers inside the external tray: a Xtru
3535 TGeoXtru *optFibsExt = new TGeoXtru(2);
1c5895a3 3536 optFibsExt->SetName("ITSsuppSPDExtTrayOptFibs");
798b4e0c 3537
3538 yprof[0] = -kExternalTrayHigh + 2*kExternalTrayThick
3539 + 2*forwTrayWall->GetDY();