]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/UPGRADE/AliITSUSeed.cxx
AliITSUSeed::GetClusterIndex will return cl. index in old format
[u/mrichter/AliRoot.git] / ITS / UPGRADE / AliITSUSeed.cxx
CommitLineData
f8832015 1#include <TString.h>
32d38de2 2#include <TMath.h>
3#include "AliITSUSeed.h"
716ccba7 4#include "AliLog.h"
3e4e3c23 5#include "AliESDtrack.h"
32d38de2 6using namespace TMath;
7
8ClassImp(AliITSUSeed)
9
10//_________________________________________________________________________
11AliITSUSeed::AliITSUSeed()
f8832015 12: fHitsPattern(0)
b8b59e05 13 ,fNChildren(0)
f8832015 14 ,fClID(0)
15 ,fChi2Glo(0)
16 ,fChi2Cl(0)
716ccba7 17 ,fChi2Penalty(0)
c61e50c3 18 ,fParent(0)
32d38de2 19{
20 // def c-tor
44785f3e 21 ResetFMatrix();
32d38de2 22}
23
24//_________________________________________________________________________
25AliITSUSeed::~AliITSUSeed()
26{
716ccba7 27 // d-tor
32d38de2 28}
29
30//_________________________________________________________________________
31AliITSUSeed::AliITSUSeed(const AliITSUSeed& src)
c61e50c3 32 :AliExternalTrackParam(src)
f8832015 33 ,fHitsPattern(src.fHitsPattern)
b8b59e05 34 ,fNChildren(src.fNChildren)
c61e50c3 35 ,fClID(src.fClID)
f8832015 36 ,fChi2Glo(src.fChi2Glo)
37 ,fChi2Cl(src.fChi2Cl)
716ccba7 38 ,fChi2Penalty(src.fChi2Penalty)
c61e50c3 39 ,fParent(src.fParent)
32d38de2 40{
41 // def c-tor
44785f3e 42 for (int i=kNFElem;i--;) fFMatrix[i] = src.fFMatrix[i];
716ccba7 43 for (int i=kNKElem;i--;) fKMatrix[i] = src.fKMatrix[i];
44 for (int i=kNRElem;i--;) fRMatrix[i] = src.fRMatrix[i];
943e1898 45 fResid[0]=src.fResid[0];
46 fResid[1]=src.fResid[1];
47 fCovIYZ[0]=src.fCovIYZ[0];
48 fCovIYZ[1]=src.fCovIYZ[1];
49 fCovIYZ[2]=src.fCovIYZ[2];
50 //
32d38de2 51}
52
53//_________________________________________________________________________
54AliITSUSeed &AliITSUSeed::operator=(const AliITSUSeed& src)
55{
56 // def c-tor
57 if (this == &src) return *this;
943e1898 58 this->~AliITSUSeed();
59 new(this) AliITSUSeed(src);
32d38de2 60 return *this;
61}
f8832015 62
63//_________________________________________________________________________
64void AliITSUSeed::Print(Option_t* opt) const
65{
66 // print seed info
67 int lr,cl = GetLrCluster(lr);
b8b59e05 68 printf("%cLr%d Nchild: %3d Cl:%4d Chi2Glo:%7.2f(%7.2f) Chi2Cl:%7.2f Penalty: %7.2f",IsKilled() ? '-':' ',
69 lr,GetNChildren(),cl,GetChi2Glo(),GetChi2GloNrm(),GetChi2Cl(), GetChi2Penalty());
f8832015 70 printf(" |");
716ccba7 71 int lrc=0;
72 const AliITSUSeed *sdc = this;
73 while(1) {
74 if (lrc<lr) printf(".");
75 else {
76 sdc = sdc->GetParent(lrc);
77 if (!sdc) break;
78 printf("%c",sdc->GetClusterID()<0 ? '.': (sdc->IsFake() ? '-':'+'));
79 }
80 lrc++;
81 }
82 printf("|\n");
f8832015 83 TString opts = opt; opts.ToLower();
84 if (opts.Contains("etp")) AliExternalTrackParam::Print();
85 if (opts.Contains("parent") && GetParent()) GetParent()->Print(opt);
86}
3dd9c283 87
3e4e3c23 88//______________________________________________________________________________
89void AliITSUSeed::InitFromESDTrack(const AliESDtrack* esdTr)
90{
91 // init seed from ESD track
92 TObject::Clear();
93 AliExternalTrackParam::operator=(*esdTr);
94 ResetFMatrix();
95 fHitsPattern = 0;
96 fClID = 0;
b8b59e05 97 fNChildren = 0;
3e4e3c23 98 fChi2Glo = fChi2Cl = fChi2Penalty = 0;
99 fParent = 0; //!!!
100}
101
102
3dd9c283 103//______________________________________________________________________________
104Float_t AliITSUSeed::GetChi2GloNrm() const
105{
106 int ndf = 2*GetNLayersHit() - 5;
716ccba7 107 return (ndf>0 ? fChi2Glo/ndf : fChi2Glo) + fChi2Penalty;
3dd9c283 108}
109
110
111//______________________________________________________________________________
112Int_t AliITSUSeed::Compare(const TObject* obj) const
113{
114 // compare clusters accodring to specific mode
f9c7eb32 115 const AliITSUSeed* sd = (const AliITSUSeed*)obj;
3dd9c283 116 const Float_t kTol = 1e-5;
117 if (!IsKilled() && sd->IsKilled()) return -1;
118 if ( IsKilled() &&!sd->IsKilled()) return 1;
119 //
716ccba7 120 float chi2This = GetChi2GloNrm();
121 float chi2Other = sd->GetChi2GloNrm();
122
123 if (chi2This+kTol<chi2Other) return -1;
124 else if (chi2This-kTol>chi2Other) return 1;
3dd9c283 125 return 0;
126}
127
128//______________________________________________________________________________
129Bool_t AliITSUSeed::IsEqual(const TObject* obj) const
130{
131 // compare clusters accodring to specific mode
f9c7eb32 132 const AliITSUSeed* sd = (const AliITSUSeed*)obj;
3dd9c283 133 const Float_t kTol = 1e-5;
134 if (IsKilled() != sd->IsKilled()) return kFALSE;
716ccba7 135 return Abs(GetChi2GloNrm() - sd->GetChi2GloNrm())<kTol;
3dd9c283 136}
44785f3e 137
138//______________________________________________________________________________
139Bool_t AliITSUSeed::PropagateToX(Double_t xk, Double_t b)
140{
141 // Propagate this track to the plane X=xk (cm) in the field "b" (kG)
142 Double_t dx=xk-fX;
143 if (TMath::Abs(dx)<=kAlmost0) return kTRUE;
144
145 Double_t crv=GetC(b);
146 if (TMath::Abs(b) < kAlmost0Field) crv=0.;
147 Double_t x2r = crv*dx;
148 Double_t f1=fP[2], f2=f1 + x2r;
149 if (TMath::Abs(f1) >= kAlmost1) return kFALSE;
150 if (TMath::Abs(f2) >= kAlmost1) return kFALSE;
151 if (TMath::Abs(fP[4])< kAlmost0) return kFALSE;
152
153 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4];
154 Double_t
155 &fC00=fC[0],
156 &fC10=fC[1], &fC11=fC[2],
157 &fC20=fC[3], &fC21=fC[4], &fC22=fC[5],
158 &fC30=fC[6], &fC31=fC[7], &fC32=fC[8], &fC33=fC[9],
159 &fC40=fC[10], &fC41=fC[11], &fC42=fC[12], &fC43=fC[13], &fC44=fC[14];
160
161 Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));
162 if (TMath::Abs(r1)<kAlmost0) return kFALSE;
163 if (TMath::Abs(r2)<kAlmost0) return kFALSE;
164
165 fX=xk;
166 double dy2dx = (f1+f2)/(r1+r2);
167 fP0 += dx*dy2dx;
168 if (TMath::Abs(x2r)<0.05) {
169 fP1 += dx*(r2 + f2*dy2dx)*fP3; // Many thanks to P.Hristov !
170 fP2 += x2r;
171 }
172 else {
173 // for small dx/R the linear apporximation of the arc by the segment is OK,
174 // but at large dx/R the error is very large and leads to incorrect Z propagation
175 // angle traversed delta = 2*asin(dist_start_end / R / 2), hence the arc is: R*deltaPhi
176 // The dist_start_end is obtained from sqrt(dx^2+dy^2) = x/(r1+r2)*sqrt(2+f1*f2+r1*r2)
177 // Similarly, the rotation angle in linear in dx only for dx<<R
178 double chord = dx*TMath::Sqrt(1+dy2dx*dy2dx); // distance from old position to new one
179 double rot = 2*TMath::ASin(0.5*chord*crv); // angular difference seen from the circle center
180 fP1 += rot/crv*fP3;
181 fP2 = TMath::Sin(rot + TMath::ASin(fP2));
182 }
183
184 //f = F - 1
185 double r1i = 1./r1;
186 double r2i = 1./r2;
187 double tg1 = f1*r1i;
188 double tg2 = f2*r2i;
189 double v0 = 1. + dy2dx*tg2;
190 double v1 = (r1i+r2i)*(dy2dx*(tg1+tg2)+2);
191 double v2 = (r1i+r2i)*v0;
192 //
193 double f24 = dx*crv/fP4;
194 double f02 = dx*v1;
195 double f04 = dx*v2*f24;
196 double f12 = dx*fP3* (f2*v1+dy2dx-tg2);
197 double f13 = dx*r2*v0;
198 double f14 = dx*f24*fP3*(f2*v2+dy2dx-tg2);
199 //
200 //b = C*ft
201 Double_t b00=f02*fC20 + f04*fC40, b01=f12*fC20 + f14*fC40 + f13*fC30;
202 Double_t b02=f24*fC40;
203 Double_t b10=f02*fC21 + f04*fC41, b11=f12*fC21 + f14*fC41 + f13*fC31;
204 Double_t b12=f24*fC41;
205 Double_t b20=f02*fC22 + f04*fC42, b21=f12*fC22 + f14*fC42 + f13*fC32;
206 Double_t b22=f24*fC42;
207 Double_t b40=f02*fC42 + f04*fC44, b41=f12*fC42 + f14*fC44 + f13*fC43;
208 Double_t b42=f24*fC44;
209 Double_t b30=f02*fC32 + f04*fC43, b31=f12*fC32 + f14*fC43 + f13*fC33;
210 Double_t b32=f24*fC43;
211
212 //a = f*b = f*C*ft
213 Double_t a00=f02*b20+f04*b40,a01=f02*b21+f04*b41,a02=f02*b22+f04*b42;
214 Double_t a11=f12*b21+f14*b41+f13*b31,a12=f12*b22+f14*b42+f13*b32;
215 Double_t a22=f24*b42;
216
217 //F*C*Ft = C + (b + bt + a)
218 fC00 += b00 + b00 + a00;
219 fC10 += b10 + b01 + a01;
220 fC20 += b20 + b02 + a02;
221 fC30 += b30;
222 fC40 += b40;
223 fC11 += b11 + b11 + a11;
224 fC21 += b21 + b12 + a12;
225 fC31 += b31;
226 fC41 += b41;
227 fC22 += b22 + b22 + a22;
228 fC32 += b32;
229 fC42 += b42;
230 //
231 // update stored transformation matrix F = Fnew*Fold
232 fFMatrix[kF04] += f04 + f24*fFMatrix[kF02];
233 fFMatrix[kF14] += f14 + f24*fFMatrix[kF12];
234 fFMatrix[kF02] += f02;
235 fFMatrix[kF12] += f12;
236 fFMatrix[kF13] += f13;
237 fFMatrix[kF24] += f24;
238 //
239 CheckCovariance();
240
241 return kTRUE;
242}
943e1898 243
e7d83d38 244//__________________________________________________________________
245Int_t AliITSUSeed::GetClusterIndex(Int_t ind) const
246{
247 // get ind-th cluster index
248 int ncl = 0;
249 const AliITSUSeed* seed = this;
250 while(seed) {
0bc46b99 251 if ( HasCluster() && (ncl++==ind) ) return seed->GetLrClusterID();//GetClusterID();
e7d83d38 252 seed = (AliITSUSeed*)seed->GetParent();
253 }
254 return -1;
255 //
256}
257
716ccba7 258//______________________________________________________________________________
259Bool_t AliITSUSeed::RotateToAlpha(Double_t alpha)
260{
261 // Transform this track to the local coord. system rotated
262 // by angle "alpha" (rad) with respect to the global coord. system.
263 //
264 if (TMath::Abs(fP[2]) >= kAlmost1) {
265 AliError(Form("Precondition is not satisfied: |sin(phi)|>1 ! %f",fP[2]));
266 return kFALSE;
267 }
268 //
269 if (alpha < -TMath::Pi()) alpha += 2*TMath::Pi();
270 else if (alpha >= TMath::Pi()) alpha -= 2*TMath::Pi();
271 //
272 Double_t &fP0=fP[0];
273 Double_t &fP2=fP[2];
274 Double_t &fC00=fC[0];
275 Double_t &fC10=fC[1];
276 Double_t &fC20=fC[3];
277 Double_t &fC21=fC[4];
278 Double_t &fC22=fC[5];
279 Double_t &fC30=fC[6];
280 Double_t &fC32=fC[8];
281 Double_t &fC40=fC[10];
282 Double_t &fC42=fC[12];
283 //
284 Double_t x=fX;
285 Double_t ca=TMath::Cos(alpha-fAlpha), sa=TMath::Sin(alpha-fAlpha);
286 Double_t sf=fP2, cf=TMath::Sqrt((1.- fP2)*(1.+fP2)); // Improve precision
287 // RS: check if rotation does no invalidate track model (cos(local_phi)>=0, i.e. particle
288 // direction in local frame is along the X axis
289 if ((cf*ca+sf*sa)<0) {
290 AliDebug(1,Form("Rotation failed: local cos(phi) would become %.2f",cf*ca+sf*sa));
291 return kFALSE;
292 }
293 //
294 Double_t tmp=sf*ca - cf*sa;
295
296 if (TMath::Abs(tmp) >= kAlmost1) {
297 if (TMath::Abs(tmp) > 1.+ Double_t(FLT_EPSILON))
298 AliWarning(Form("Rotation failed ! %.10e",tmp));
299 return kFALSE;
300 }
301 fAlpha = alpha;
302 fX = x*ca + fP0*sa;
303 fP0= -x*sa + fP0*ca;
304 fP2= tmp;
305
306 if (TMath::Abs(cf)<kAlmost0) {
307 AliError(Form("Too small cosine value %f",cf));
308 cf = kAlmost0;
309 }
310
311 Double_t rr=(ca+sf/cf*sa);
312
313 fC00 *= (ca*ca);
314 fC10 *= ca;
315 fC20 *= ca*rr;
316 fC21 *= rr;
317 fC22 *= rr*rr;
318 fC30 *= ca;
319 fC32 *= rr;
320 fC40 *= ca;
321 fC42 *= rr;
322 //
323 fRMatrix[kR00] = ca;
324 fRMatrix[kR22] = rr;
325 //
326 CheckCovariance();
327
328 return kTRUE;
329}
330
943e1898 331//______________________________________________________________________________
332Bool_t AliITSUSeed::GetTrackingXAtXAlpha(double xOther, double alpOther, double bz, double &xdst)
333{
334 // calculate X and Y in the tracking frame of the track, corresponding to other X,Alpha tracking
335 double ca=TMath::Cos(alpOther-fAlpha), sa=TMath::Sin(alpOther-fAlpha);
336 double &y=fP[0], &sf=fP[2], cf=Sqrt((1.-sf)*(1.+sf));
337 double eta = xOther - fX*ca - y*sa;
338 double xi = sf*ca - cf*sa;
716ccba7 339 if (Abs(xi)>= kAlmost1) return kFALSE;
943e1898 340 double nu = xi + GetC(bz)*eta;
716ccba7 341 if (Abs(nu)>= kAlmost1) return kFALSE;
943e1898 342 xdst = xOther*ca - sa*( y*ca-fX*sa + eta*(xi+nu)/(Sqrt((1.-xi)*(1.+xi)) + Sqrt((1.-nu)*(1.+nu))) );
343 return kTRUE;
344}
345
346//____________________________________________________________________
347Double_t AliITSUSeed::GetPredictedChi2(Double_t p[2],Double_t cov[3])
348{
349 // Estimate the chi2 of the space point "p" with the cov. matrix "cov"
350 // Store info needed for update and smoothing
351 Double_t sdd = fC[0] + cov[0];
352 Double_t sdz = fC[1] + cov[1];
353 Double_t szz = fC[2] + cov[2];
354 Double_t det = sdd*szz - sdz*sdz;
355 if (TMath::Abs(det) < kAlmost0) return kVeryBig;
356 det = 1./det;
357 fCovIYZ[0] = szz*det;
358 fCovIYZ[1] = -sdz*det;
359 fCovIYZ[2] = sdd*det;
360 double &dy = fResid[0] = p[0] - fP[0];
361 double &dz = fResid[1] = p[1] - fP[1];
362 //
363 return dy*(dy*fCovIYZ[0]+dz*fCovIYZ[1]) + dz*(dy*fCovIYZ[1]+dz*(fCovIYZ[2]));
364 //
365}
366
367//____________________________________________________________________
368Bool_t AliITSUSeed::Update()
369{
370 // Update the track parameters with the measurement stored during GetPredictedChi2
371 //
716ccba7 372 Double_t &fP0=fP[0], &fP1=fP[1], &fP2=fP[2], &fP3=fP[3], &fP4=fP[4],
373 &fC00=fC[kS00],
374 &fC10=fC[kS10], &fC11=fC[kS11],
375 &fC20=fC[kS20], &fC21=fC[kS21], &fC22=fC[kS22],
376 &fC30=fC[kS30], &fC31=fC[kS31], &fC32=fC[kS32], &fC33=fC[kS33],
377 &fC40=fC[kS40], &fC41=fC[kS41], &fC42=fC[kS42], &fC43=fC[kS43], &fC44=fC[kS44];
943e1898 378 //
379 double &r00=fCovIYZ[0],&r01=fCovIYZ[1],&r11=fCovIYZ[2];
380 double &dy=fResid[0], &dz=fResid[1];
381 //
716ccba7 382 // store info needed for smoothing in the fKMatrix
383 double &k00 = fKMatrix[kK00] = fC00*r00+fC10*r01;
384 double &k01 = fKMatrix[kK01] = fC00*r01+fC10*r11;
385 double &k10 = fKMatrix[kK10] = fC10*r00+fC11*r01;
386 double &k11 = fKMatrix[kK11] = fC10*r01+fC11*r11;
387 double &k20 = fKMatrix[kK20] = fC20*r00+fC21*r01;
388 double &k21 = fKMatrix[kK21] = fC20*r01+fC21*r11;
389 double &k30 = fKMatrix[kK30] = fC30*r00+fC31*r01;
390 double &k31 = fKMatrix[kK31] = fC30*r01+fC31*r11;
391 double &k40 = fKMatrix[kK40] = fC40*r00+fC41*r01;
392 double &k41 = fKMatrix[kK41] = fC40*r01+fC41*r11;
943e1898 393 //
394 Double_t sf=fP2 + k20*dy + k21*dz;
395 if (TMath::Abs(sf) > kAlmost1) return kFALSE;
396
397 fP0 += k00*dy + k01*dz;
398 fP1 += k10*dy + k11*dz;
399 fP2 = sf;
400 fP3 += k30*dy + k31*dz;
401 fP4 += k40*dy + k41*dz;
402 //
403 Double_t c01=fC10, c02=fC20, c03=fC30, c04=fC40;
404 Double_t c12=fC21, c13=fC31, c14=fC41;
405
406 fC00-=k00*fC00+k01*fC10; fC10-=k00*c01+k01*fC11;
407 fC20-=k00*c02+k01*c12; fC30-=k00*c03+k01*c13;
408 fC40-=k00*c04+k01*c14;
409
410 fC11-=k10*c01+k11*fC11;
411 fC21-=k10*c02+k11*c12; fC31-=k10*c03+k11*c13;
412 fC41-=k10*c04+k11*c14;
413
414 fC22-=k20*c02+k21*c12; fC32-=k20*c03+k21*c13;
415 fC42-=k20*c04+k21*c14;
416
417 fC33-=k30*c03+k31*c13;
418 fC43-=k30*c04+k31*c14;
419
420 fC44-=k40*c04+k41*c14;
421 //
943e1898 422 CheckCovariance();
716ccba7 423 //
424 return kTRUE;
425}
426
427
428//____________________________________________________________________
429Bool_t AliITSUSeed::Smooth(Double_t vecL[5],Double_t matL[15])
430{
431 // Prepare MBF smoothing auxiliary params for smoothing at prev. point:
432 // \hat{l_N} = 0
433 // \hat{L_N} = 0
434 // \tilde{l_j} = -H_j^T N_{j}^{-1} z_j + B_{j}^T \hat{l_j}
435 // \tilde{L_j} = H_j^T N_{j}^{-1} H_j + B_j^T \hat{L_j} B_j
436 // \hat{l_j} = F_j^T \tilde{l_{j+1}}
437 // \hat{L_j} = F_j^T \tilde{L_{j+1}} F_j
438 //
439 // P_{j/N} = P_{j/j} - P_{j/j} \hat{L_j} P_{j/j}
440 // \hat{x_{j/N}} = \hat{x_{j/j}} - P_{j/j} \hat{l_j}
441 //
442 // N^-1 = fCovIYZ
443 // z = fResid
444 // B = I - K H
445 // H = {{1,0,0,0,0},{0,1,0,0,0}}
446 //
447 // calc. \tilde{l_j}
448 //
449 if (GetClusterID()<0) return kTRUE;
450 //
451
452 double
453 &k00=fKMatrix[kK00],&k01=fKMatrix[kK01],
454 &k10=fKMatrix[kK10],&k11=fKMatrix[kK11],
455 &k20=fKMatrix[kK20],&k21=fKMatrix[kK21],
456 &k30=fKMatrix[kK30],&k31=fKMatrix[kK31],
457 &k40=fKMatrix[kK40],&k41=fKMatrix[kK41];
458 double
459 &l00=matL[kS00],
460 &l10=matL[kS10], &l11=matL[kS11],
461 &l20=matL[kS20], &l21=matL[kS21], &l22=matL[kS22],
462 &l30=matL[kS30], &l31=matL[kS31], &l32=matL[kS32], &l33=matL[kS33],
463 &l40=matL[kS40], &l41=matL[kS41], &l42=matL[kS42], &l43=matL[kS43], &l44=matL[kS44];
464 //
465 // calculate correction
466 double corrVec[5]={0},corrMat[15]={0};
467 corrVec[0] = fC[kS00]*vecL[0] + fC[kS10]*vecL[1] + fC[kS20]*vecL[2] + fC[kS30]*vecL[3] + fC[kS40]*vecL[4];
468 corrVec[1] = fC[kS10]*vecL[0] + fC[kS11]*vecL[1] + fC[kS21]*vecL[2] + fC[kS31]*vecL[3] + fC[kS41]*vecL[4];
469 corrVec[2] = fC[kS20]*vecL[0] + fC[kS21]*vecL[1] + fC[kS22]*vecL[2] + fC[kS32]*vecL[3] + fC[kS42]*vecL[4];
470 corrVec[3] = fC[kS30]*vecL[0] + fC[kS31]*vecL[1] + fC[kS32]*vecL[2] + fC[kS33]*vecL[3] + fC[kS43]*vecL[4];
471 corrVec[4] = fC[kS40]*vecL[0] + fC[kS41]*vecL[1] + fC[kS42]*vecL[2] + fC[kS43]*vecL[3] + fC[kS44]*vecL[4];
472 //
473 double *crm = ProdABA(fC,matL);
474 for (int i=0;i<15;i++) corrMat[i] = crm[i];
475
476 double vcL0 = vecL[0], vcL1 = vecL[1];
477 vecL[0] -= k00*vcL0+k10*vcL1+k20*vecL[2]+k30*vecL[3]+k40*vecL[4] + fCovIYZ[0]*fResid[0] + fCovIYZ[1]*fResid[1];
478 vecL[1] -= k01*vcL0+k11*vcL1+k21*vecL[2]+k31*vecL[3]+k41*vecL[4] + fCovIYZ[1]*fResid[0] + fCovIYZ[2]*fResid[1];
479
480 /*
481 double vcL0 = vecL[0], vcL1 = vecL[1];
482 vecL[0] -= k00*vcL0+k10*vcL1+fKMatrix[kK20]*vecL[2]+k30*vecL[3]+k40*vecL[4] + fCovIYZ[0]*fResid[0] + fCovIYZ[1]*fResid[1];
483 vecL[1] -= k01*vcL0+fKMatrix[kK11]*vcL1+k21*vecL[2]+k31*vecL[3]+k41*vecL[4] + fCovIYZ[1]*fResid[0] + fCovIYZ[2]*fResid[1];
484 vecL[3] += fFMatrix[kF13]*vecL[1];
485 vecL[4] = fFMatrix[kF04]*vecL[0] + fFMatrix[kF14]*vecL[1] + fFMatrix[kF24]*vecL[2] + fFMatrix[kF44]*vecL[4];
486 vecL[2] += fFMatrix[kF02]*vecL[0] + fFMatrix[kF12]*vecL[1];
487 //
488 */
489 // and \hat{l_j} in one go
490
491 // L = H^T * sg * H + (I-KH)^T * L * (I - KH)
492 double v00 = k00*l00+k10*l10+k20*l20+k30*l30+k40*l40;
493 double v10 = k00*l10+k10*l11+k20*l21+k30*l31+k40*l41;
494 double v20 = k00*l20+k10*l21+k20*l22+k30*l32+k40*l42;
495 double v30 = k00*l30+k10*l31+k20*l32+k30*l33+k40*l43;
496 double v40 = k00*l40+k10*l41+k20*l42+k30*l43+k40*l44;
497 //
498 double v01 = k01*l00+k11*l10+k21*l20+k31*l30+k41*l40;
499 double v11 = k01*l10+k11*l11+k21*l21+k31*l31+k41*l41;
500 double v21 = k01*l20+k11*l21+k21*l22+k31*l32+k41*l42;
501 double v31 = k01*l30+k11*l31+k21*l32+k31*l33+k41*l43;
502 double v41 = k01*l40+k11*l41+k21*l42+k31*l43+k41*l44;
503 //
504 // (H^T * K^T * L * K * H) - (L * K * H) - (H^T * K^T * L) + (H^T*N^-1*H)
505 l00 += k00*v00 + k10*v10 + k20*v20 + k30*v30 + k40*v40 - v00 - v00 + fCovIYZ[0];
506 l10 += k01*v00 + k11*v10 + k21*v20 + k31*v30 + k41*v40 - v01 - v10 + fCovIYZ[1];
507 l11 += k01*v01 + k11*v11 + k21*v21 + k31*v31 + k41*v41 - v11 - v11 + fCovIYZ[2];
508 //
509 l20 -= v20;
510 l21 -= v21;
511 l30 -= v30;
512 l31 -= v31;
513 l40 -= v40;
514 l41 -= v41;
515 //
516 printf("CorrMt:\n");
517 printf("%+e\n%+e %+e\n%+e %+e %+e\n%+e %+e %+e %+e\n%+e %+e %+e %+e %+e\n",
518 corrMat[kS00],corrMat[kS10],corrMat[kS11],corrMat[kS20],corrMat[kS21],corrMat[kS22],
519 corrMat[kS30],corrMat[kS31],corrMat[kS32],corrMat[kS33],
520 corrMat[kS40],corrMat[kS41],corrMat[kS42],corrMat[kS43],corrMat[kS44]);
521
522 printf("SMcorr: %+e %+e %+e %+e %+e\n",corrVec[0],corrVec[1],corrVec[2],corrVec[3],corrVec[4]);
523
524 printf("State : "); this->AliExternalTrackParam::Print("");
525 //
526 printf("\nBefore transport back (RotElems: %+e %+e)\n",fRMatrix[kR00],fRMatrix[kR22]);
527 printf("Res: %+e %+e | Err: %+e %+e %+e\n",fResid[0],fResid[1],fCovIYZ[0],fCovIYZ[1],fCovIYZ[2]);
528 printf("Lr%d VecL: ",GetLayerID()); for (int i=0;i<5;i++) printf("%+e ",vecL[i]); printf("\n");
529 //
530 printf("%+e\n%+e %+e\n%+e %+e %+e\n%+e %+e %+e %+e\n%+e %+e %+e %+e %+e\n",
531 matL[kS00],matL[kS10],matL[kS11],matL[kS20],matL[kS21],matL[kS22],
532 matL[kS30],matL[kS31],matL[kS32],matL[kS33],matL[kS40],matL[kS41],matL[kS42],matL[kS43],matL[kS44]);
533 //
534 printf("F: "); for (int i=0;i<kNFElem;i++) printf("%+e ",fFMatrix[i]); printf("\n");
535 printf("K: "); for (int i=0;i<kNKElem;i++) printf("%+e ",fKMatrix[i]); printf("\n");
536 //
537 // apply rotation matrix (diagonal)
538 vecL[0] *= fRMatrix[kR00];
539 vecL[2] *= fRMatrix[kR22];
540 //
541 l00 *= fRMatrix[kR00]*fRMatrix[kR00];
542 l10 *= fRMatrix[kR00];
543 l20 *= fRMatrix[kR22]*fRMatrix[kR00];
544 l21 *= fRMatrix[kR22];
545 l22 *= fRMatrix[kR22]*fRMatrix[kR22];
546 l30 *= fRMatrix[kR00];
547 l32 *= fRMatrix[kR22];
548 l40 *= fRMatrix[kR00];
549 l42 *= fRMatrix[kR22];
550 //
551 // Apply translation matrix F^T. Note, that fFMatrix keeps non-trivial elems of F-1 = f, except the e-loss coeff f44
552 // We need F^T*L* F = L + (L*f) + (L*f)^T + f^T * (L*f)
553 //
554 double
555 &f02=fFMatrix[kF02],&f04=fFMatrix[kF04],
556 &f12=fFMatrix[kF12],&f13=fFMatrix[kF13],&f14=fFMatrix[kF14],
557 &f24=fFMatrix[kF24],
558 f44 =fFMatrix[kF44];
559 //
560 vecL[4] = f04*vecL[0]+f14*vecL[1]+f24*vecL[2]+f44*vecL[4];
561 vecL[3] += f13*vecL[1];
562 vecL[2] += f02*vecL[0]+f12*vecL[1];
563 //
564 f44 -= 1.0; // !!!!!
565 //
566 //b = L*f
567 Double_t b02=l00*f02+l10*f12, b03=l10*f13, b04=l00*f04+l10*f14+l20*f24+l40*f44;
568 Double_t b12=l10*f02+l11*f12, b13=l11*f13, b14=l10*f04+l11*f14+l21*f24+l41*f44;
569 Double_t b22=l20*f02+l21*f12, b23=l21*f13, b24=l20*f04+l21*f14+l22*f24+l42*f44;
570 Double_t b32=l30*f02+l31*f12, b33=l31*f13, b34=l30*f04+l31*f14+l32*f24+l43*f44;
571 Double_t b42=l40*f02+l41*f12, b43=l41*f13, b44=l40*f04+l41*f14+l42*f24+l44*f44;
572 //
573 //a = f^T * b = f^T * L * f, profit from symmetry
574 Double_t a22=f02*b02+f12*b12, a33=f13*b13, a44=f04*b04+f14*b14+f24*b24+f44*b44,
575 a32=f13*b12, //= a23=f02*b03+f12*b13,
576 a42=f02*b04+f12*b14, //f04*b02+f14*b12+f24*b22+f44*b42 = a24
577 a43=f13*b14; //f04*b03+f14*b13+f24*b23+f44*b43 = a34
578 //
579 // F^T*L* F = L + (b + b^T + a)
580 l44 += b44 + b44 + a44;
581 l43 += b43 + b34 + a43;
582 l42 += b42 + b24 + a42;
583 l41 += b14;
584 l40 += b04;
585 l33 += b33 + b33 + a33;
586 l32 += b32 + b23 + a32;
587 l31 += b13;
588 l30 += b03;
589 l22 += b22 + b23 + a22;
590 l21 += b12;
591 l20 += b02;
592 //
593 printf("After transport back\n");
594 printf("Lr%d VecL: ",GetLayerID()); for (int i=0;i<5;i++) printf("%+e ",vecL[i]); printf("\n");
595 //
596 printf("%+e\n%+e %+e\n%+e %+e %+e\n%+e %+e %+e %+e\n%+e %+e %+e %+e %+e\n",
597 matL[kS00],matL[kS10],matL[kS11],matL[kS20],matL[kS21],matL[kS22],
598 matL[kS30],matL[kS31],matL[kS32],matL[kS33],matL[kS40],matL[kS41],matL[kS42],matL[kS43],matL[kS44]);
599
600 return kTRUE;
601}
602
603//____________________________________________________________________
604Double_t* AliITSUSeed::ProdABA(const double a[15],const double b[15]) const
605{
606 // product of symmetric matrices A*B*A
607 //
608 const Short_t knd[5][5] = {
609 {kS00,kS10,kS20,kS30,kS40},
610 {kS10,kS11,kS21,kS31,kS41},
611 {kS20,kS21,kS22,kS32,kS42},
612 {kS30,kS31,kS32,kS33,kS43},
613 {kS40,kS41,kS42,kS43,kS44}
614 };
615 //
616 static double aba[15];
617 // 1) ba = B*A
618 double ba[5][5];
619 for (int i=5;i--;) for (int j=5;j--;) {
620 ba[i][j] = 0;
621 for (int k=5;k--;) ba[i][j] += b[knd[i][k]]*a[knd[k][j]];
622 }
623 //
624 // 2) A * ba, lower triangle only
625 for (int i=5;i--;) for (int j=i+1;j--;) {
626 aba[knd[i][j]] = 0;
627 for (int k=5;k--;) aba[knd[i][j]] += a[knd[i][k]]*ba[k][j];
628 }
629 //
630 return &aba[0];
631}
943e1898 632
716ccba7 633/*
634//____________________________________________________________________
635Bool_t AliITSUSeed::Smooth(Double_t vecL[5],Double_t matL[15])
636{
637 // Prepare MBF smoothing auxiliary params for smoothing at prev. point:
638 // \hat{l_N} = 0
639 // \hat{L_N} = 0
640 // \tilde{l_j} = -H_j^T N_{j}^{-1} z_j + B_{j}^T \hat{l_j}
641 // \tilde{L_j} = H_j^T N_{j}^{-1} H_j + B_j^T \hat{L_j} B_j
642 // \hat{l_j} = F_j^T \tilde{l_{j+1}}
643 // \hat{L_j} = F_j^T \tilde{L_{j+1}} F_j
644 //
645 // P_{j/N} = P_{j/j} - P_{j/j} \hat{L_j} P_{j/j}
646 // \hat{x_{j/N}} = \hat{x_{j/j}} - P_{j/j} \hat{l_j}
647 //
648 // N^-1 = fCovIYZ
649 // z = fResid
650 // B = I - K H
651 // H = {{1,0,0,0,0},{0,1,0,0,0}}
652 //
653 // calc. \tilde{l_j} and \hat{l_j} in one go
654 //
655 if (GetClusterID()<0) return kTRUE;
656 //
657 double
658 &k00=fKMatrix[kK00],&k01=fKMatrix[kK01],
659 &k10=fKMatrix[kK10],&k11=fKMatrix[kK11],
660 &k20=fKMatrix[kK20],&k21=fKMatrix[kK21],
661 &k30=fKMatrix[kK30],&k31=fKMatrix[kK31],
662 &k40=fKMatrix[kK40],&k41=fKMatrix[kK41];
663 double
664 &matL00=matL[kS00],
665 &matL10=matL[kS01], &matL11=matL[kS11],
666 &matL20=matL[kS20], &matL21=matL[kS21], &matL22=matL[kS22],
667 &matL30=matL[kS30], &matL31=matL[kS31], &matL32=matL[kS32], &matL33=matL[kS33],
668 &matL40=matL[kS40], &matL41=matL[kS41], &matL42=matL[kS42], &matL43=matL[kS43], &matL44=matL[kS44];
669 //
670 double vcL0 = vecL[0], vcL1 = vecL[1];
671 vecL[0] -= k00*vcL0+k10*vcL1+fKMatrix[kK20]*vecL[2]+k30*vecL[3]+k40*vecL[4] + fCovIYZ[0]*fResid[0] + fCovIYZ[1]*fResid[1];
672 vecL[1] -= k01*vcL0+fKMatrix[kK11]*vcL1+k21*vecL[2]+k31*vecL[3]+k41*vecL[4] + fCovIYZ[1]*fResid[0] + fCovIYZ[2]*fResid[1];
673 vecL[3] += fFMatrix[kF13]*vecL[1];
674 vecL[4] = fFMatrix[kF04]*vecL[0] + fFMatrix[kF14]*vecL[1] + fFMatrix[kF24]*vecL[2] + fFMatrix[kF44]*vecL[4];
675 vecL[2] += fFMatrix[kF02]*vecL[0] + fFMatrix[kF12]*vecL[1];
676 //
677
678 // L = H^T * sg * H + (I-KH)^T * L * (I - KH)
679 double v00 = k00*matL00+k10*matL10+k20*matL20+k30*matL30+k40*matL40;
680 double v10 = k00*matL10+k10*matL11+k20*matL21+k30*matL31+k40*matL41;
681 double v20 = k00*matL20+k10*matL12+k20*matL22+k30*matL32+k40*matL42;
682 double v30 = k00*matL30+k10*matL13+k20*matL23+k30*matL33+k40*matL43;
683 double v40 = k00*matL40+k10*matL14+k20*matL24+k30*matL34+k40*matL44;
684 //
685 double v01 = k01*matL00+k11*matL10+k21*matL20+k31*matL30+k41*matL40;
686 double v11 = k01*matL01+k11*matL11+k21*matL21+k31*matL31+k41*matL41;
687 double v21 = k01*matL02+k11*matL12+k21*matL22+k31*matL32+k41*matL42;
688 double v31 = k01*matL03+k11*matL13+k21*matL23+k31*matL33+k41*matL43;
689 double v41 = k01*matL04+k11*matL14+k21*matL24+k31*matL34+k41*matL44;
690 //
691 double t00 = k00*matL00+k10*matL01+k20*matL02+k30*matL03+k40*matL04;
692 double t10 = k00*matL10+k10*matL11+k20*matL12+k30*matL13+k40*matL14;
693 double t20 = k00*matL20+k10*matL21+k20*matL22+k30*matL23+k40*matL24;
694 double t30 = k00*matL30+k10*matL31+k20*matL32+k30*matL33+k40*matL34;
695 double t40 = k00*matL40+k10*matL41+k20*matL42+k30*matL43+k40*matL44;
696 //
697 double t01 = k01*matL00+k11*matL01+k21*matL02+k31*matL03+k41*matL04;
698 double t11 = k01*matL10+k11*matL11+k21*matL12+k31*matL13+k41*matL14;
699 double t21 = k01*matL20+k11*matL21+k21*matL22+k31*matL23+k41*matL24;
700 double t31 = k01*matL30+k11*matL31+k21*matL32+k31*matL33+k41*matL34;
701 double t41 = k01*matL40+k11*matL41+k21*matL42+k31*matL43+k41*matL44;
702 //
703 // (H^T * K^T * L * K * H) - (L * K * H) - (H^T * K^T * L) + (H^T*N^-1*H)
704 matL00 += k00*v00+k10*v10+k20*v20*k30*v30+k40*v40 - t00 - v00 + fCovIYZ[0];
705 matL01 += k01*v00+k11*v10+k21*v20*k31*v30+k41*v40 - t01 - v10 + fCovIYZ[1];
706 matL10 += k00*v01+k10*v11+k20*v21*k30*v31+k40*v41 - t10 - v01 + fCovIYZ[1];
707 matL11 += k01*v01+k11*v11+k21*v21*k31*v31+k41*v41 - t11 - v11 + fCovIYZ[2];
708 //
709 matL20 -= t20;
710 matL21 -= t21;
711 matL30 -= t30;
712 matL31 -= t31;
713 matL40 -= t40;
714 matL41 -= t41;
715 //
716 matL02 -= v20;
717 matL03 -= v30;
718 matL04 -= v40;
719 matL12 -= v21;
720 matL13 -= v31;
721 matL14 -= v41;
722 //
723 printf("Lr%d VecL: ",GetLayerID()); for (int i=0;i<5;i++) printf("%+e ",vecL[i]); printf("\n");
724 printf("F: "); for (int i=0;i<kNFElem;i++) printf("%+e ",fFMatrix[i]); printf("\n");
725 printf("K: "); for (int i=0;i<kNKElem;i++) printf("%+e ",fKMatrix[i]); printf("\n");
726 //
727 for (int j=0;j<5;j++) {
728 for (int i=0;i<5;i++) printf("%+e ",matL[j][i]); printf("\n");
729 }
730 //
943e1898 731 return kTRUE;
732}
716ccba7 733
734 */
e7d83d38 735