Integrating the Cooked Matrix tracker into the commom reconstruction framework
[u/mrichter/AliRoot.git] / ITS / UPGRADE / DetectorK.h
CommitLineData
84356182 1#ifndef DETECTORK_H
2#define DETECTORK_H
3
4#include <TNamed.h>
5#include <TList.h>
6#include <TGraph.h>
7#include <Riostream.h>
8
9/***********************************************************
10
11Fast Simulation tool for Inner Tracker Systems
12
13original code of using the billoir technique was developed
14for the HFT (STAR), James H. Thomas, jhthomas@lbl.gov
15http://rnc.lbl.gov/~jhthomas
16
17Changes by S. Rossegger
18
19July 2011 - Adding the possibility of "fake calculation" and "efficiency calculation"
20 with a number of "at least correct clusters on the track"
21 Done using the complete combinatorics table with 3^nLayer track outcomes.
22
23April 2011 - Now uses the Kalman method (aliroot implementation) instead of the Billoir
24 technique ... (changes by Ruben Shahoyan)
25
26March 2011 - Changes to comply with the Alice Offline coding conventions
27
28Feb. 2011 - Improvement in "lowest pt allowed" -> now uses helix param. for calc. of a,b
29
30 - Adding a more sophisticaed efficiency calculation which includes
31 the possibility to make chi2 cuts via Confidence Levels (method of Ruben Shahoyan)
32 plus adding 'basic' detection efficiencies per layer ...
33
34 - Adding "ITS Stand alone" tracking capabilities via
35 forward+backward tracking -> Kalman smoothing is then
36 used for the parameter estimates (important for efficiencies)
37
38Jan. 2011 - Inclusion of ImpactParameter Plots (with vtx estimates)
39 to allow comparison with ITS performances in pp data
40
41Dec. 2010 - Translation into C++ class format
42 - Adding various Setters and Getters to build the geometry
43 (based on cylinders) plus handling of the layer properties
44
45
46***********************************************************/
47
48class AliExternalTrackParam;
49#include <TMatrixD.h>
50
51class DetectorK : public TNamed {
52
53 public:
54
55 DetectorK();
56 DetectorK(char *name,char *title);
57 virtual ~DetectorK();
58
59 enum {kNptBins = 100}; // less then 400 !!
60
61 void AddLayer(char *name, Float_t radius, Float_t radL, Float_t phiRes=999999, Float_t zRes=999999, Float_t eff=0.95);
62
63 void KillLayer(char *name);
64 void SetRadius(char *name, Float_t radius);
65 void SetRadiationLength(char *name, Float_t radL);
66 void SetResolution(char *name, Float_t phiRes=999999, Float_t zRes=999999);
67 void SetLayerEfficiency(char *name, Float_t eff=0.95);
68 void RemoveLayer(char *name);
69
70 Float_t GetRadius(char *name);
71 Float_t GetRadiationLength(char *name);
72 Float_t GetResolution(char *name, Int_t axis=0);
73 Float_t GetLayerEfficiency(char *name);
74
75 void PrintLayout();
76 void PlotLayout(Int_t plotDead = kTRUE);
77
78 void MakeAliceAllNew(Bool_t flagTPC =1,Bool_t flagMon=1);
79 void MakeAliceCurrent(Int_t AlignResiduals = 0, Bool_t flagTPC =1);
80 void AddTPC(Float_t phiResMean, Float_t zResMean, Int_t skip=1);
81 void RemoveTPC();
82
83 void SetBField(Float_t bfield) {fBField = bfield; }
84 Float_t GetBField() const {return fBField; }
85 void SetLhcUPCscale(Float_t lhcUPCscale) {fLhcUPCscale = lhcUPCscale; }
86 Float_t GetLhcUPCscale() const { return fLhcUPCscale; }
87 void SetParticleMass(Float_t particleMass) {fParticleMass = particleMass; }
88 Float_t GetParticleMass() const { return fParticleMass; }
89 void SetIntegrationTime(Float_t integrationTime) {fIntegrationTime = integrationTime; }
90 Float_t GetIntegrationTime() const { return fIntegrationTime; }
91 void SetMaxRadiusOfSlowDetectors(Float_t maxRadiusSlowDet) {fMaxRadiusSlowDet = maxRadiusSlowDet; }
92 Float_t GetMaxRadiusOfSlowDetectors() const { return fMaxRadiusSlowDet; }
93 void SetAvgRapidity(Float_t avgRapidity) {fAvgRapidity = avgRapidity; }
94 Float_t GetAvgRapidity() const { return fAvgRapidity; }
95 void SetConfidenceLevel(Float_t confLevel) {fConfLevel = confLevel; }
96 Float_t GetConfidenceLevel() const { return fConfLevel; }
97 void SetAtLeastCorr(Int_t atLeastCorr ) {fAtLeastCorr = atLeastCorr; }
98 Int_t GetAtLeastCorr() const { return fAtLeastCorr; }
99 void SetAtLeastFake(Int_t atLeastFake ) {fAtLeastFake = atLeastFake; }
100 Int_t GetAtLeastFake() const { return fAtLeastFake; }
101
102 void SetMaxSeedRadius(Double_t maxSeedRadius ) {fMaxSeedRadius = maxSeedRadius; }
103 Int_t GetMaxSeedRadius() const { return fMaxSeedRadius; }
104
105 void SetptScale(Double_t ptScale ) {fptScale = ptScale; }
106 Int_t GetptScale() const { return fptScale; }
107
108
109
110 void SetdNdEtaCent(Int_t dNdEtaCent ) {fdNdEtaCent = dNdEtaCent; }
111 Float_t GetdNdEtaCent() const { return fdNdEtaCent; }
112
113
114
115 Float_t GetNumberOfActiveLayers() const {return fNumberOfActiveLayers; }
116 Float_t GetNumberOfActiveITSLayers() const {return fNumberOfActiveITSLayers; }
117
118 void SolveViaBilloir(Int_t flagD0=1,Int_t print=1, Bool_t allPt=1, Double_t meanPt =0.250, char* detLayer=((char*)""));
119
120 // Helper functions
121 Double_t ThetaMCS ( Double_t mass, Double_t RadLength, Double_t momentum ) const;
122 Double_t ProbGoodHit ( Double_t radius, Double_t searchRadiusRPhi, Double_t searchRadiusZ ) ;
123 Double_t ProbGoodChiSqHit ( Double_t radius, Double_t searchRadiusRPhi, Double_t searchRadiusZ ) ;
124 Double_t ProbGoodChiSqPlusConfHit ( Double_t radius, Double_t leff, Double_t searchRadiusRPhi, Double_t searchRadiusZ ) ;
125 Double_t ProbNullChiSqPlusConfHit ( Double_t radius, Double_t leff, Double_t searchRadiusRPhi, Double_t searchRadiusZ ) ;
126
127 // Howard W. hit distribution and convolution integral
128 Double_t Dist ( Double_t Z, Double_t radius ) ;
129 Double_t HitDensity ( Double_t radius ) ;
130 Double_t UpcHitDensity ( Double_t radius ) ;
131 Double_t IntegratedHitDensity ( Double_t multiplicity, Double_t radius ) ;
132 Double_t OneEventHitDensity ( Double_t multiplicity, Double_t radius ) const ;
133 Double_t D0IntegratedEfficiency( Double_t pt, Double_t corrEfficiency[][400] ) const ;
134
135 TGraph* GetGraphMomentumResolution(Int_t color, Int_t linewidth=1);
136 TGraph* GetGraphPointingResolution(Int_t axis,Int_t color, Int_t linewidth=1);
137 TGraph* GetGraphPointingResolutionTeleEqu(Int_t axis,Int_t color, Int_t linewidth=1);
138 TGraph* GetGraphLayerInfo(Int_t plot, Int_t color, Int_t linewidth=1);
139
140 TGraph* GetGraphImpactParam(Int_t mode, Int_t axis, Int_t color, Int_t linewidth=1);
141
142 TGraph* GetGraphRecoEfficiency(Int_t particle, Int_t color, Int_t linewidth=1);
143 TGraph* GetGraphRecoFakes(Int_t particle,Int_t color, Int_t linewidth);
144 TGraph* GetGraphRecoPurity(Int_t particle,Int_t color, Int_t linewidth);
145
146 TGraph* GetGraph(Int_t number, Int_t color, Int_t linewidth=1);
147
148 void MakeStandardPlots(Bool_t add =0, Int_t color=1, Int_t linewidth=1,Bool_t onlyPionEff=0);
149
150 // method to extend AliExternalTrackParam functionality
151 static Bool_t GetXatLabR(AliExternalTrackParam* tr,Double_t r,Double_t &x, Double_t bz, Int_t dir=0);
152 static Bool_t PropagateToR(AliExternalTrackParam* trc, double r, double b, int dir=0);
153 Double_t* PrepareEffFakeKombinations(TMatrixD *probKomb, TMatrixD *probLay);
154
155 protected:
156
157 Int_t fNumberOfLayers; // total number of layers in the model
158 Int_t fNumberOfActiveLayers; // number of active layers in the model
159 Int_t fNumberOfActiveITSLayers; // number of active ITS layers in the model
160 TList fLayers; // List of layer pointers
161 Float_t fBField; // Magnetic Field in Tesla
162 Float_t fLhcUPCscale; // UltraPeripheralElectrons: scale from RHIC to LHC
163 Float_t fIntegrationTime; // electronics integration time
164 Float_t fConfLevel; // Confidence Level for the tracking
165 Float_t fAvgRapidity; // rapidity of the track (= mean)
166 Float_t fParticleMass; // Particle used for tracking. Standard: mass of pion
167 Double_t fMaxRadiusSlowDet; // Maximum radius for slow detectors. Fast detectors
168 // and only fast detectors reside outside this radius.
169 Int_t fAtLeastCorr; // min. number of correct hits for the track to be "good"
170 Int_t fAtLeastFake; // min. number of fake hits for the track to be "fake"
171
172 Double_t fMaxSeedRadius; // max seeding radius, e.g. to exclude TRD
173 Double_t fptScale; // used for maxPt
174
175 Int_t fdNdEtaCent; // Multiplicity
176
177 enum {kMaxNumberOfDetectors = 200};
178
179 Double_t fTransMomenta[kNptBins]; // array of transverse momenta
180 Double_t fMomentumRes[kNptBins]; // array of momentum resolution
181 Double_t fResolutionRPhi[kNptBins]; // array of rphi resolution
182 Double_t fResolutionZ[kNptBins]; // array of z resolution
183 Double_t fDetPointRes[kMaxNumberOfDetectors][kNptBins]; // array of rphi resolution per layer
184 Double_t fDetPointZRes[kMaxNumberOfDetectors][kNptBins]; // array of z resolution per layer
185 Double_t fEfficiency[3][kNptBins]; // efficiency for different particles
186 Double_t fFake[3][kNptBins]; // fake prob for different particles
187
188 Int_t kDetLayer; // layer for which a few more details are extracted
189 Double_t fResolutionRPhiLay[kNptBins]; // array of rphi resolution
190 Double_t fResolutionZLay[kNptBins]; // array of z resolution
191 Double_t fEfficProlongLay[kNptBins]; // array of z resolution
192
193 ClassDef(DetectorK,1);
194};
195
196#endif
197