9e4cc50d |
1 | |
7c679be0 |
2 | // ************************************************************************** |
3 | // * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
4 | // * * |
5 | // * Author: The ALICE Off-line Project. * |
6 | // * Contributors are mentioned in the code where appropriate. * |
7 | // * * |
8 | // * Permission to use, copy, modify and distribute this software and its * |
9 | // * documentation strictly for non-commercial purposes is hereby granted * |
10 | // * without fee, provided that the above copyright notice appears in all * |
11 | // * copies and that both the copyright notice and this permission notice * |
12 | // * appear in the supporting documentation. The authors make no claims * |
13 | // * about the suitability of this software for any purpose. It is * |
14 | // * provided "as is" without express or implied warranty. * |
15 | // ************************************************************************** |
16 | |
17 | //----------------------------------------------------------------------------------- |
18 | // Jet finder based on Deterministic Annealing |
19 | // For further informations about the DA working features see: |
20 | // Phys.Lett. B601 (2004) 56-63 (http://arxiv.org/abs/hep-ph/0407214) |
21 | // Author: Davide Perrino (davide.perrino@ba.infn.it, davide.perrino@cern.ch) |
22 | //----------------------------------------------------------------------------------- |
23 | |
24 | #include <TMath.h> |
25 | #include <TRandom.h> |
26 | #include <TClonesArray.h> |
27 | #include "AliJetReader.h" |
28 | #include "AliDAJetHeader.h" |
29 | #include "AliDAJetFinder.h" |
30 | |
31 | |
32 | ClassImp(AliDAJetFinder) |
33 | |
34 | |
35 | //----------------------------------------------------------------------------------- |
36 | AliDAJetFinder::AliDAJetFinder(): |
37 | fAlpha(1.01), |
38 | fDelta(1e-8), |
39 | fAvDist(1e-6), |
40 | fEps(1e-4), |
41 | fEpsMax(1e-2), |
42 | fNloopMax(100), |
43 | fBeta(0.1), |
44 | fNclustMax(0), |
45 | fPyx(0x0), |
46 | fY(0x0), |
47 | fPx(0x0), |
48 | fPy(0x0), |
49 | fXEta(0x0), |
50 | fXPhi(0x0), |
9e4cc50d |
51 | fNin(0) |
7c679be0 |
52 | { |
53 | // Constructor |
54 | } |
55 | |
56 | //----------------------------------------------------------------------------------- |
57 | AliDAJetFinder::~AliDAJetFinder() |
58 | { |
59 | // Destructor |
7c679be0 |
60 | delete fPyx; |
61 | delete fY; |
62 | delete fPx; |
63 | delete fPy; |
64 | delete [] fXEta; |
65 | delete [] fXPhi; |
66 | } |
67 | |
68 | //----------------------------------------------------------------------------------- |
69 | void AliDAJetFinder::FindJets() |
70 | { |
71 | // Find the jets in current event |
72 | // |
73 | Float_t betaStop=100.; |
74 | |
75 | Double_t dEtSum=0; |
76 | InitDetAnn(dEtSum); |
77 | if (!fNin) return; |
78 | |
79 | Int_t nc=1,nk; |
80 | DoubleClusters(nc,nk); |
81 | do{ //loop over beta |
82 | fBeta*=fAlpha; |
83 | Annealing(nk); |
84 | NumCl(nc,nk); |
85 | }while((fBeta<betaStop || nc<4) && nc<fNclustMax); |
86 | |
87 | Int_t *xx=new Int_t[fNin]; |
88 | EndDetAnn(nk,xx,dEtSum); |
89 | StoreJets(nk,xx); |
90 | delete [] xx; |
91 | |
92 | } |
93 | |
94 | //----------------------------------------------------------------------------------- |
95 | void AliDAJetFinder::InitDetAnn(Double_t &dEtSum) |
96 | { |
97 | //Initialise the variables used by the algorithm |
98 | fBeta=0.1; |
99 | TClonesArray *lvArray = fReader->GetMomentumArray(); |
100 | fNin = lvArray->GetEntries(); |
9e4cc50d |
101 | fNclustMax= ((AliDAJetHeader*)fHeader)->GetFixedCl() ? |
102 | ((AliDAJetHeader*)fHeader)->GetNclustMax() |
103 | : |
104 | TMath::Max((Int_t)TMath::Sqrt(fNin),5); |
7c679be0 |
105 | fXEta=new Double_t[fNin]; fXPhi=new Double_t[fNin]; |
106 | fPx = new TVectorD(fNin); |
107 | for (Int_t iIn=0; iIn<fNin; iIn++){ |
108 | TLorentzVector *lv=(TLorentzVector*)lvArray->At(iIn); |
109 | fXEta[iIn] = lv->Eta(); |
110 | fXPhi[iIn] = lv->Phi()<0 ? lv->Phi() + 2*TMath::Pi() : lv->Phi(); |
111 | (*fPx)(iIn)=lv->Pt(); |
112 | dEtSum+=(*fPx)(iIn); |
113 | } |
114 | for (Int_t iIn=0; iIn<fNin; iIn++) (*fPx)(iIn)=(*fPx)(iIn)/dEtSum; |
115 | |
116 | Int_t njdim=2*fNclustMax+1; |
117 | fPyx = new TMatrixD(fNin,njdim); |
118 | fY = new TMatrixD(4,njdim); |
119 | fPy= new TVectorD(njdim); |
120 | fY->Zero();fPyx->Zero();fPy->Zero(); |
121 | (*fPy)(0)=1; |
122 | TMatrixDColumn(*fPyx,0)=1; |
123 | Double_t ypos=0,xpos=0; |
124 | for (Int_t iIn=0; iIn<fNin; iIn++){ |
125 | (*fY)(0,0)+=(*fPx)(iIn)*fXEta[iIn]; |
126 | ypos+=(*fPx)(iIn)*TMath::Sin(fXPhi[iIn]); |
127 | xpos+=(*fPx)(iIn)*TMath::Cos(fXPhi[iIn]); |
128 | } |
129 | (*fY)(1,0)=(atan2(ypos,xpos)>0) ? atan2(ypos,xpos) : atan2(ypos,xpos)+2*TMath::Pi(); |
130 | lvArray->Delete(); |
131 | } |
132 | |
133 | //----------------------------------------------------------------------------------- |
134 | void AliDAJetFinder::DoubleClusters(Int_t nc,Int_t &nk) |
135 | { |
136 | for(Int_t iClust=0; iClust<nc; iClust++){ |
137 | (*fPy)(iClust)=(*fPy)(iClust)/2; |
138 | (*fPy)(nc+iClust)=(*fPy)(iClust); |
139 | for(Int_t iComp=0; iComp<3; iComp++) (*fY)(iComp,nc+iClust)=(*fY)(iComp,iClust); |
140 | } |
141 | nk=2*nc; |
142 | } |
143 | |
144 | //----------------------------------------------------------------------------------- |
145 | void AliDAJetFinder::Annealing(Int_t nk) |
146 | { |
147 | // Main part of the algorithm |
148 | const Double_t pi=TMath::Pi(); |
149 | TVectorD *py = new TVectorD(nk); |
150 | TVectorD *p = new TVectorD(nk); |
151 | TMatrixD *y = new TMatrixD(4,nk); |
152 | TMatrixD *y1 = new TMatrixD(4,nk); |
153 | TMatrixD *ry = new TMatrixD(2,nk); |
154 | Double_t Dist(TVectorD,TVectorD); |
155 | |
9e4cc50d |
156 | Double_t df[2]={((AliDAJetHeader*)fHeader)->GetEtaCut(),pi}; |
7c679be0 |
157 | TVectorD vPart(2); |
158 | Double_t *m = new Double_t[nk]; |
159 | Double_t chi,chi1; |
160 | do{ |
161 | Int_t nloop=0; |
162 | for (Int_t iClust=0; iClust<nk; iClust++){ |
163 | for (Int_t i=0; i<3; i++)(*y1)(i,iClust)=(*fY)(i,iClust); |
164 | (*py)(iClust)=(*fPy)(iClust); |
165 | } |
166 | //perturbation of codevectors |
167 | Double_t seed=1000000*gRandom->Rndm(24); |
168 | ry->Randomize(-0.5,0.5,seed); |
169 | for (Int_t i=0; i<2; i++){ |
170 | for (Int_t iClust=0; iClust<nk/2; iClust++) |
171 | (*y1)(i,iClust)+=((*ry)(i,iClust)+TMath::Sign(0.5,(*ry)(i,iClust)))*fDelta*df[i]; |
172 | for (Int_t iClust=nk/2; iClust<nk; iClust++) |
173 | (*y1)(i,iClust)-=((*ry)(i,iClust-nk/2)+TMath::Sign(0.5,(*ry)(i,iClust-nk/2)))*fDelta*df[i]; |
174 | } |
175 | do{ |
176 | //recalculate conditional probabilities |
177 | nloop++; |
178 | for (Int_t iIn=0; iIn<fNin; iIn++){ |
179 | vPart(0)=fXEta[iIn]; vPart(1)=fXPhi[iIn]; |
180 | for(Int_t iClust=0; iClust<nk; iClust++){ |
181 | (*fPyx)(iIn,iClust)=-log((*py)(iClust))+fBeta*Dist(vPart,TMatrixDColumn(*y1,iClust)); |
182 | m[iClust]=(*fPyx)(iIn,iClust); |
183 | } |
184 | Double_t pyxNorm=0; |
185 | Double_t minPyx=TMath::MinElement(nk,m); |
186 | for (Int_t iClust=0; iClust<nk; iClust++){ |
187 | (*fPyx)(iIn,iClust)-=minPyx; |
188 | (*fPyx)(iIn,iClust)=exp(-(*fPyx)(iIn,iClust)); |
189 | pyxNorm+=(*fPyx)(iIn,iClust); |
190 | } |
191 | for (Int_t iClust=0; iClust<nk; iClust++) (*fPyx)(iIn,iClust)/=pyxNorm; |
192 | } |
193 | p->Zero(); |
194 | y->Zero(); |
195 | //recalculate codevectors |
196 | for (Int_t iClust=0; iClust<nk; iClust++){ |
197 | Double_t xpos=0,ypos=0,pxy; |
198 | for (Int_t iIn=0; iIn<fNin; iIn++) (*p)(iClust)+=(*fPx)(iIn)*(*fPyx)(iIn,iClust); |
199 | for (Int_t iIn=0; iIn<fNin; iIn++){ |
200 | pxy=(*fPx)(iIn)*(*fPyx)(iIn,iClust)/(*p)(iClust); |
201 | ypos+=pxy*TMath::Sin(fXPhi[iIn]); |
202 | xpos+=pxy*TMath::Cos(fXPhi[iIn]); |
203 | (*y)(0,iClust)+=pxy*fXEta[iIn]; |
204 | } |
205 | (*y)(1,iClust)=(atan2(ypos,xpos)>0) ? atan2(ypos,xpos) : atan2(ypos,xpos)+2*pi; |
206 | } |
207 | //verify codevectors' stability |
208 | chi=0; |
209 | for (Int_t iClust=0; iClust<nk; iClust++){ |
210 | chi1=TMath::CosH((*y1)(0,iClust)-(*y)(0,iClust))-TMath::Cos((*y1)(1,iClust)-(*y)(1,iClust)); |
211 | chi1/=(2*TMath::CosH((*y1)(0,iClust))*TMath::CosH((*y)(0,iClust))); |
212 | chi1*=chi1; |
213 | if (chi1>chi) chi=chi1; |
214 | } |
215 | chi=TMath::Sqrt(chi); |
216 | for (Int_t iClust=0; iClust<nk; iClust++){ |
217 | for (Int_t i=0; i<2; i++) (*y1)(i,iClust)=(*y)(i,iClust); |
218 | (*py)(iClust)=(*p)(iClust); |
219 | } |
220 | if (nloop>fNloopMax){ |
221 | if (chi<fEpsMax || nloop>500) break; |
222 | } |
223 | }while (chi>fEps); |
224 | }while (chi>fEpsMax); |
225 | for (Int_t iClust=0; iClust<nk; iClust++){ //set codevectors and probability equal to those calculated |
226 | for (Int_t i=0; i<2; i++) (*fY)(i,iClust)=(*y)(i,iClust); |
227 | (*fPy)(iClust)=(*p)(iClust); |
228 | } |
229 | delete py; |
230 | delete p; |
231 | delete y; |
232 | delete y1; |
233 | delete ry; |
234 | delete [] m; |
235 | } |
236 | |
237 | //----------------------------------------------------------------------------------- |
238 | void AliDAJetFinder::NumCl(Int_t &nc,Int_t &nk) |
239 | { |
240 | static Bool_t growcl=true; |
241 | |
242 | if (nk==2) growcl=true; |
243 | if (growcl){ |
244 | //verify if two codevectors are equal within fAvDist |
245 | Int_t *nSame = new Int_t[nk]; |
246 | Int_t **iSame = new Int_t*[nk]; |
247 | Int_t **cont = new Int_t*[nk]; |
248 | for (Int_t iClust=0; iClust<nk; iClust++) cont[iClust]=new Int_t[nk],iSame[iClust]=new Int_t[nk]; |
249 | for (Int_t iClust=0; iClust<nk; iClust++){ |
250 | iSame[iClust][iClust]=1; |
251 | for (Int_t iClust1=iClust+1; iClust1<nk; iClust1++){ |
252 | Double_t eta = (*fY)(0,iClust) ; Double_t phi = (*fY)(1,iClust); |
253 | Double_t eta1 = (*fY)(0,iClust1); Double_t phi1 = (*fY)(1,iClust1); |
254 | Double_t distCl=(TMath::CosH(eta-eta1)-TMath::Cos(phi-phi1))/(2*TMath::CosH(eta)*TMath::CosH(eta1)); |
255 | if (distCl < fAvDist) iSame[iClust][iClust1]=iSame[iClust1][iClust]=1; |
852db00e |
256 | else iSame[iClust][iClust1]=iSame[iClust1][iClust]=0; |
7c679be0 |
257 | } |
258 | } |
259 | ReduceClusters(iSame,nk,nc,cont,nSame); |
260 | if (nc >= fNclustMax) growcl=false; |
261 | //recalculate the nc distinct codevectors |
262 | TMatrixD *pyx = new TMatrixD(fNin,2*nc); |
263 | TVectorD *py = new TVectorD(nk); |
264 | TMatrixD *y1 = new TMatrixD(3,nk); |
265 | for (Int_t iClust=0; iClust<nc; iClust++){ |
266 | for(Int_t j=0; j<nSame[iClust]; j++){ |
267 | Int_t iClust1 = cont[iClust][j]; |
268 | for (Int_t iIn=0; iIn<fNin; iIn++) (*pyx)(iIn,iClust)+=(*fPyx)(iIn,iClust1); |
269 | (*py)(iClust)+=(*fPy)(iClust1); |
270 | for (Int_t i=0; i<2; i++) (*y1)(i,iClust)+=(*fY)(i,iClust1); |
271 | } |
272 | for (Int_t i=0; i<2; i++) (*y1)(i,iClust)/=nSame[iClust]; |
273 | } |
852db00e |
274 | for (Int_t iClust=0; iClust<nk; iClust++) delete [] cont[iClust], delete [] iSame[iClust]; |
275 | delete [] iSame; |
276 | delete [] cont; |
277 | delete [] nSame; |
7c679be0 |
278 | if (nc > nk/2){ |
279 | for (Int_t iClust=0; iClust<nc; iClust++){ |
280 | for (Int_t iIn=0; iIn<fNin; iIn++) (*fPyx)(iIn,iClust)=(*pyx)(iIn,iClust); |
281 | for (Int_t iComp=0; iComp<2; iComp++) (*fY)(iComp,iClust)=(*y1)(iComp,iClust); |
282 | (*fPy)(iClust)=(*py)(iClust); |
283 | } |
284 | nk=nc; |
285 | if (growcl) DoubleClusters(nc,nk); |
286 | } |
7c679be0 |
287 | delete pyx; |
288 | delete py; |
289 | delete y1; |
290 | } |
291 | |
292 | } |
293 | |
294 | //----------------------------------------------------------------------------------- |
295 | void AliDAJetFinder::ReduceClusters(Int_t **iSame,Int_t nc,Int_t &ncout,Int_t **cont,Int_t *nSameOut) |
296 | { |
297 | Int_t *nSame = new Int_t[nc]; |
298 | Int_t *iperm = new Int_t[nc]; |
299 | Int_t *go = new Int_t[nc]; |
300 | for (Int_t iCl=0; iCl<nc; iCl++){ |
301 | nSame[iCl]=0; |
852db00e |
302 | for (Int_t jCl=0; jCl<nc; jCl++) nSame[iCl]+=iSame[iCl][jCl], cont[iCl][jCl]=0; |
7c679be0 |
303 | iperm[iCl]=iCl; |
304 | go[iCl]=1; |
305 | } |
306 | TMath::Sort(nc,nSame,iperm,true); |
307 | Int_t l=0; |
308 | for (Int_t iCl=0; iCl<nc; iCl++){ |
309 | Int_t k=iperm[iCl]; |
310 | if (go[k] == 1){ |
311 | Int_t m=0; |
312 | for (Int_t jCl=0; jCl<nc; jCl++){ |
313 | if (iSame[k][jCl] == 1){ |
314 | cont[l][m]=jCl; |
315 | go[jCl]=0; |
316 | m++; |
317 | } |
318 | } |
319 | nSameOut[l]=m; |
320 | l++; |
321 | } |
322 | } |
323 | ncout=l; |
324 | delete [] nSame; |
325 | delete [] iperm; |
326 | delete [] go; |
327 | } |
328 | |
329 | //----------------------------------------------------------------------------------- |
330 | void AliDAJetFinder::EndDetAnn(Int_t &nk,Int_t *xx,Double_t etx) |
331 | { |
332 | //now assign each particle to only one cluster |
333 | Double_t *clusters=new Double_t[nk]; |
334 | for (Int_t iIn=0; iIn<fNin; iIn++){ |
335 | for (Int_t iClust=0; iClust<nk; iClust++) clusters[iClust]=(*fPyx)(iIn,iClust); |
336 | xx[iIn]=TMath::LocMax(nk,clusters); |
337 | } |
338 | delete [] clusters; |
339 | |
340 | //recalculate codevectors, having all p(y|x)=0 or 1 |
341 | fY->Zero(); |
342 | fPyx->Zero(); |
343 | fPy->Zero(); |
344 | for (Int_t iIn=0; iIn<fNin; iIn++){ |
345 | Int_t iClust=xx[iIn]; |
346 | (*fPyx)(iIn,iClust)=1; |
347 | (*fPy)(iClust)+=(*fPx)(iIn); |
348 | (*fY)(0,iClust)+=(*fPx)(iIn)*fXEta[iIn]; |
349 | (*fY)(3,iClust)+=(*fPx)(iIn)*etx; |
350 | } |
351 | Int_t k=0; |
352 | for (Int_t iClust=0; iClust<nk; iClust++){ |
353 | if ((*fPy)(iClust)>0){ |
354 | Double_t xpos=0,ypos=0,pxy; |
355 | for (Int_t iIn=0; iIn<fNin; iIn++){ |
356 | pxy=(*fPx)(iIn)*(*fPyx)(iIn,iClust)/(*fPy)(iClust); |
357 | ypos+=pxy*TMath::Sin(fXPhi[iIn]); |
358 | xpos+=pxy*TMath::Cos(fXPhi[iIn]); |
359 | if (xx[iIn]==iClust) xx[iIn]=k; |
360 | } |
361 | (*fY)(0,k)=(*fY)(0,iClust)/(*fPy)(iClust); |
362 | (*fY)(1,k)=(atan2(ypos,xpos)>0) ? atan2(ypos,xpos) : atan2(ypos,xpos)+2*TMath::Pi(); |
363 | (*fY)(3,k)=(*fY)(3,iClust); |
364 | k++; |
365 | } |
366 | } |
367 | nk=k; |
368 | } |
369 | |
370 | //----------------------------------------------------------------------------------- |
371 | void AliDAJetFinder::StoreJets(Int_t nk,Int_t *xx) |
372 | { |
373 | //evaluate significant clusters properties |
374 | const Double_t pi=TMath::Pi(); |
9e4cc50d |
375 | Double_t dMeanDist=TMath::Sqrt(4*((AliDAJetHeader*)fHeader)->GetEtaCut()*pi/fNin); |
7c679be0 |
376 | Bool_t *isJet = new Bool_t[nk]; |
377 | Double_t *etNoBg= new Double_t[nk]; |
378 | Double_t *dDeltaEta=new Double_t[nk]; |
379 | Double_t *dDeltaPhi=new Double_t[nk]; |
380 | Double_t *surf = new Double_t[nk]; |
381 | Double_t *etDens= new Double_t[nk]; |
382 | for (Int_t iClust=0; iClust<nk; iClust++){ //clusters loop |
383 | isJet[iClust]=false; |
384 | Double_t dEtaMin=10.,dEtaMax=-10.,dPhiMin=10.,dPhiMax=0.; |
385 | for (Int_t iIn=0; iIn<fNin; iIn++){ |
386 | if (xx[iIn]!=iClust) continue; |
387 | if (fXEta[iIn] < dEtaMin) dEtaMin=fXEta[iIn]; |
388 | if (fXEta[iIn] > dEtaMax) dEtaMax=fXEta[iIn]; |
389 | Double_t dPhi=fXPhi[iIn]-(*fY)(1,iClust); |
390 | if (dPhi > pi ) dPhi-=2*pi; |
391 | else if (dPhi < (-1)*pi) dPhi+=2*pi; |
392 | if (dPhi < dPhiMin) dPhiMin=dPhi; |
393 | else if (dPhi > dPhiMax) dPhiMax=dPhi; |
394 | } |
395 | dDeltaEta[iClust]=dEtaMax-dEtaMin+dMeanDist; |
396 | dDeltaPhi[iClust]=dPhiMax-dPhiMin+dMeanDist; |
397 | surf[iClust]=0.25*pi*dDeltaEta[iClust]*dDeltaPhi[iClust]; |
398 | etDens[iClust]=(*fY)(3,iClust)/surf[iClust]; |
399 | } |
400 | |
9e4cc50d |
401 | if (((AliDAJetHeader*)fHeader)->GetSelJets()){ |
7c679be0 |
402 | for (Int_t iClust=0; iClust<nk; iClust++){ |
403 | if (!isJet[iClust]){ |
404 | Double_t etDensMed=0.; |
405 | Double_t etDensSqr=0.; |
406 | Int_t norm=0; |
407 | for (Int_t iClust1=0; iClust1<nk; iClust1++){ |
408 | if(iClust1!=iClust){ |
409 | etDensMed+=etDens[iClust1]; |
410 | etDensSqr+=TMath::Power(etDens[iClust1],2); |
411 | norm++; |
412 | } |
413 | } |
414 | etDensMed/=TMath::Max(norm,1); |
415 | etDensSqr/=TMath::Max(norm,1); |
416 | Double_t deltaEtDens=TMath::Sqrt(etDensSqr-TMath::Power(etDensMed,2)); |
417 | if ((*fY)(3,iClust) > (etDensMed+deltaEtDens)*surf[iClust]) isJet[iClust]=kTRUE; |
418 | etNoBg[iClust]=(*fY)(3,iClust)-etDensMed*surf[iClust]; |
419 | } |
420 | } |
421 | for (Int_t iClust=0; iClust<nk; iClust++){ |
422 | if (isJet[iClust]){ |
423 | Double_t etDensMed=0; |
9e4cc50d |
424 | Double_t extSurf=4*((AliDAJetHeader*)fHeader)->GetEtaCut()*pi; |
7c679be0 |
425 | for (Int_t iClust1=0; iClust1<nk; iClust1++){ |
426 | if (!isJet[iClust1]) etDensMed+=(*fY)(3,iClust1); |
427 | else extSurf-=surf[iClust1]; |
428 | } |
429 | etDensMed/=extSurf; |
430 | etNoBg[iClust]=(*fY)(3,iClust)-etDensMed*surf[iClust]; |
10bd125d |
431 | if (etNoBg[iClust]<((AliDAJetHeader*)fHeader)->GetEtMin()){ |
432 | isJet[iClust]=kFALSE; |
433 | iClust=-1; |
434 | } |
7c679be0 |
435 | } |
436 | } |
437 | } else { |
438 | for (Int_t iClust=0; iClust<nk; iClust++) isJet[iClust]=true; |
439 | } |
440 | delete [] etDens; |
441 | delete [] surf; |
442 | |
443 | //now add selected jets to the list |
444 | Int_t *inJet = new Int_t[fNin]; |
445 | TRefArray *refs = 0; |
446 | Bool_t fromAod = !strcmp(fReader->ClassName(),"AliJetAODReader"); |
447 | if (fromAod) refs = fReader->GetReferences(); |
448 | for (Int_t iClust=0; iClust<nk; iClust++){ //clusters loop |
449 | if (isJet[iClust]){ //choose cluster |
450 | Float_t px,py,pz,en; |
451 | px = (*fY)(3,iClust)*TMath::Cos((*fY)(1,iClust)); |
452 | py = (*fY)(3,iClust)*TMath::Sin((*fY)(1,iClust)); |
453 | pz = (*fY)(3,iClust)/TMath::Tan(2.0 * TMath::ATan(TMath::Exp(-(*fY)(0,iClust)))); |
454 | en = TMath::Sqrt(px * px + py * py + pz * pz); |
455 | AliAODJet jet(px, py, pz, en); |
456 | if (fromAod) |
457 | for (Int_t iIn=0; iIn<fNin; iIn++) if (xx[iIn]==iClust) jet.AddTrack(refs->At(iIn)); |
458 | AddJet(jet); |
459 | printf("jet %d, Eta: %f, Phi: %f, Et: %f\n",iClust,jet.Eta(),jet.Phi(),jet.Pt()); |
460 | } |
461 | } |
462 | delete [] dDeltaEta; delete [] dDeltaPhi; |
463 | delete [] etNoBg; |
464 | delete [] isJet; |
465 | delete [] inJet; |
466 | } |
467 | |
468 | //----------------------------------------------------------------------------------- |
469 | Double_t Dist(TVectorD x,TVectorD y) |
470 | { |
471 | // Squared distance |
472 | const Double_t pi=TMath::Pi(); |
473 | Double_t dphi=TMath::Abs(x(1)-y(1)); |
474 | if (dphi > pi) dphi=2*pi-dphi; |
475 | Double_t dist=pow(x(0)-y(0),2)+pow(dphi,2); |
476 | return dist; |
477 | } |