]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONClusterFinderAZ.cxx
Radius of PHOS equal to 460 (Y.Schutz)
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterFinderAZ.cxx
CommitLineData
0df3ca52 1#include "AliMUONClusterFinderAZ.h"
2
1f9a65c4 3#include <stdlib.h>
0df3ca52 4#include <fcntl.h>
5#include <Riostream.h>
6#include <TROOT.h>
7#include <TCanvas.h>
8#include <TLine.h>
9#include <TTree.h>
10#include <TH2.h>
11#include <TView.h>
12#include <TStyle.h>
13#include <TMinuit.h>
14#include <TMatrixD.h>
15
16#include "AliHeader.h"
17#include "AliRun.h"
18#include "AliMUON.h"
19#include "AliMUONChamber.h"
20#include "AliMUONDigit.h"
21#include "AliMUONHit.h"
22#include "AliMUONChamber.h"
23#include "AliMUONRawCluster.h"
24#include "AliMUONClusterInput.h"
25#include "AliMUONPixel.h"
5d12ce38 26#include "AliMC.h"
0df3ca52 27
c1aed84f 28// Clusterizer class developped by Zitchenko (Dubna)
29//
30//
31//
0df3ca52 32// This function is used for fitting
33void fcn1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag);
34
35ClassImp(AliMUONClusterFinderAZ)
36
37AliMUONClusterFinderAZ* AliMUONClusterFinderAZ::fgClusterFinder = NULL;
38TMinuit* AliMUONClusterFinderAZ::fgMinuit = NULL;
39
40//_____________________________________________________________________________
41AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(Bool_t draw=0, Int_t iReco=0)
42{
43// Constructor
44 for (Int_t i=0; i<4; i++) {fHist[i] = 0;}
45 fMuonDigits = 0;
46 fSegmentation[1] = fSegmentation[0] = 0;
47 if (!fgClusterFinder) fgClusterFinder = this;
48 if (!fgMinuit) fgMinuit = new TMinuit(8);
49 fDraw = draw;
50 fReco = iReco;
51 fPixArray = new TObjArray(20);
52 /*
53 fPoints = 0;
54 fPhits = 0;
55 fRpoints = 0;
56 fCanvas = 0;
57 fNextCathode = kFALSE;
58 fColPad = 0;
59 */
60}
61
62//_____________________________________________________________________________
63AliMUONClusterFinderAZ::~AliMUONClusterFinderAZ()
64{
65 // Destructor
66 delete fgMinuit; fgMinuit = 0; delete fPixArray; fPixArray = 0;
67 /*
68 // Delete space point structure
69 if (fPoints) fPoints->Delete();
70 delete fPoints;
71 fPoints = 0;
72 //
73 if (fPhits) fPhits->Delete();
74 delete fPhits;
75 fPhits = 0;
76 //
77 if (fRpoints) fRpoints->Delete();
78 delete fRpoints;
79 fRpoints = 0;
80 */
81}
82
83//_____________________________________________________________________________
84void AliMUONClusterFinderAZ::FindRawClusters()
85{
86// To provide the same interface as in AliMUONClusterFinderVS
87
88 EventLoop (gAlice->GetHeader()->GetEvent(), AliMUONClusterInput::Instance()->Chamber());
89}
90
91//_____________________________________________________________________________
92void AliMUONClusterFinderAZ::EventLoop(Int_t nev=0, Int_t ch=0)
93{
94// Loop over events
95
96 FILE *lun = 0;
97 TCanvas *c1 = 0;
98 TView *view = 0;
99 TH2F *hist = 0;
100 Double_t p1[3]={0}, p2[3];
c1aed84f 101 TTree *treeR = 0;
0df3ca52 102 if (fDraw) {
103 // File
104 lun = fopen("pool.dat","w");
105 c1 = new TCanvas("c1","Clusters",0,0,600,700);
106 c1->Divide(1,2);
107 new TCanvas("c2","Mlem",700,0,600,350);
108 }
109
110newev:
111 Int_t nparticles = 0, nent;
88cb7938 112
113 //Loaders
114 AliRunLoader * rl = AliRunLoader::GetRunLoader();
115 AliLoader * gime = rl->GetLoader("MUONLoader");
116
117 if (!fReco) nparticles = rl->GetEvent(nev);
5d12ce38 118 else nparticles = gAlice->GetMCApp()->GetNtrack();
0df3ca52 119 cout << "nev " << nev <<endl;
120 cout << "nparticles " << nparticles <<endl;
121 if (nparticles <= 0) return;
122
c1aed84f 123 TTree *treeH = gime->TreeH();
124 Int_t ntracks = (Int_t) treeH->GetEntries();
0df3ca52 125 cout<<"ntracks "<<ntracks<<endl;
126
127 // Get pointers to Alice detectors and Digits containers
c1aed84f 128 AliMUON *muon = (AliMUON*) gAlice->GetModule("MUON");
129 if (!muon) return;
0df3ca52 130 // TClonesArray *Particles = gAlice->Particles();
131 if (!fReco) {
c1aed84f 132 treeR = gime->TreeR();
133 if (treeR) {
134 muon->ResetRawClusters();
135 nent = (Int_t) treeR->GetEntries();
0df3ca52 136 if (nent != 1) {
137 cout << "Error in MUONdrawClust" << endl;
138 cout << " nent = " << nent << " not equal to 1" << endl;
139 //exit(0);
140 }
c1aed84f 141 } // if (treeR)
0df3ca52 142 } // if (!fReco)
143
c1aed84f 144 TTree *treeD = gime->TreeD();
145 //muon->ResetDigits();
0df3ca52 146
c1aed84f 147 TClonesArray *listMUONrawclust ;
0df3ca52 148 AliMUONChamber* iChamber = 0;
149
150 // As default draw the first cluster of the chamber #0
151
152newchamber:
153 if (ch > 9) {if (fReco) return; nev++; ch = 0; goto newev;}
154 //gAlice->ResetDigits();
c1aed84f 155 fMuonDigits = muon->GetMUONData()->Digits(ch);
0df3ca52 156 if (fMuonDigits == 0) return;
c1aed84f 157 iChamber = &(muon->Chamber(ch));
0df3ca52 158 fSegmentation[0] = iChamber->SegmentationModel(1);
159 fSegmentation[1] = iChamber->SegmentationModel(2);
160 fResponse = iChamber->ResponseModel();
161
162 nent = 0;
163
c1aed84f 164 if (treeD) {
165 nent = (Int_t) treeD->GetEntries();
0df3ca52 166 //printf(" entries %d \n", nent);
167 }
168
169 Int_t ndigits[2]={9,9}, nShown[2]={0};
170 for (Int_t i=0; i<2; i++) {
171 for (Int_t j=0; j<kDim; j++) {fUsed[i][j]=kFALSE;}
172 }
173
174next:
175 if (ndigits[0] == nShown[0] && ndigits[1] == nShown[1]) {
176 // No more clusters
177 if (fReco) return;
178 ch++;
179 goto newchamber; // next chamber
180 }
181 Float_t xpad, ypad, zpad, zpad0;
182 TLine *line[99]={0};
183 Int_t nLine = 0;
184 Bool_t first = kTRUE;
185 cout << " *** Event # " << nev << " chamber: " << ch << endl;
186 fnPads[0] = fnPads[1] = 0;
187 for (Int_t i=0; i<kDim; i++) {fPadIJ[1][i] = 0;}
188 //for (Int_t iii = 0; iii<999; iii++) {
189 for (Int_t iii = 0; iii<2; iii++) {
190 Int_t cath = TMath::Odd(iii);
191 gAlice->ResetDigits();
c1aed84f 192 treeD->GetEvent(cath);
193 fMuonDigits = muon->GetMUONData()->Digits(ch);
0df3ca52 194
195 ndigits[cath] = fMuonDigits->GetEntriesFast();
196 if (!ndigits[0] && !ndigits[1]) {if (fReco) return; ch++; goto newchamber;}
197 if (ndigits[cath] == 0) continue;
198 cout << " ndigits: " << ndigits[cath] << " " << cath << endl;
199
200 AliMUONDigit *mdig;
201 Int_t digit;
202
c1aed84f 203 Bool_t eEOC = kTRUE; // end-of-cluster
0df3ca52 204 for (digit = 0; digit < ndigits[cath]; digit++) {
205 mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
206 if (mdig->Cathode() != cath) continue;
207 if (first) {
208 // Find first unused pad
209 if (fUsed[cath][digit]) continue;
210 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0);
211 } else {
212 if (fUsed[cath][digit]) continue;
213 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad);
214 if (TMath::Abs(zpad-zpad0)>0.1) continue; // different slats
215 // Find a pad overlapping with the cluster
216 if (!Overlap(cath,mdig)) continue;
217 }
218 // Add pad - recursive call
219 AddPad(cath,digit);
c1aed84f 220 eEOC = kFALSE;
0df3ca52 221 if (digit >= 0) break;
222 }
c1aed84f 223 if (first && eEOC) {
0df3ca52 224 // No more unused pads
225 if (cath == 0) continue; // on cathode #0 - check #1
226 else {
227 // No more clusters
228 if (fReco) return;
229 ch++;
230 goto newchamber; // next chamber
231 }
232 }
c1aed84f 233 if (eEOC) break; // cluster found
0df3ca52 234 first = kFALSE;
235 cout << " nPads: " << fnPads[cath] << " " << nShown[cath]+fnPads[cath] << " " << cath << endl;
236 } // for (Int_t iii = 0;
237
238
239 if (fReco) goto skip;
240 char hName[4];
241 for (Int_t cath = 0; cath<2; cath++) {
242 // Build histograms
243 if (fHist[cath*2]) {fHist[cath*2]->Delete(); fHist[cath*2] = 0;}
244 if (fHist[cath*2+1]) {fHist[cath*2+1]->Delete(); fHist[cath*2+1] = 0;}
245 if (fnPads[cath] == 0) continue; // cluster on one cathode only
246 Float_t wxMin=999, wxMax=0, wyMin=999, wyMax=0;
247 Int_t minDx=0, maxDx=0, minDy=0, maxDy=0;
248 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
249 if (fPadIJ[0][i] != cath) continue;
250 if (fXyq[3][i] < wxMin) {wxMin = fXyq[3][i]; minDx = i;}
251 if (fXyq[3][i] > wxMax) {wxMax = fXyq[3][i]; maxDx = i;}
252 if (fXyq[4][i] < wyMin) {wyMin = fXyq[4][i]; minDy = i;}
253 if (fXyq[4][i] > wyMax) {wyMax = fXyq[4][i]; maxDy = i;}
254 }
255 cout << minDx << maxDx << minDy << maxDy << endl;
256 Int_t nx, ny, padSize;
257 Float_t xmin=9999, xmax=-9999, ymin=9999, ymax=-9999;
258 if (TMath::Nint(fXyq[3][minDx]*1000) == TMath::Nint(fXyq[3][maxDx]*1000) &&
259 TMath::Nint(fXyq[4][minDy]*1000) == TMath::Nint(fXyq[4][maxDy]*1000)) {
260 // the same segmentation
261 cout << " Same" << endl;
262 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
263 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
264 if (fPadIJ[0][i] != cath) continue;
265 if (fXyq[0][i] < xmin) xmin = fXyq[0][i];
266 if (fXyq[0][i] > xmax) xmax = fXyq[0][i];
267 if (fXyq[1][i] < ymin) ymin = fXyq[1][i];
268 if (fXyq[1][i] > ymax) ymax = fXyq[1][i];
269 }
270 xmin -= fXyq[3][minDx]; xmax += fXyq[3][minDx];
271 ymin -= fXyq[4][minDy]; ymax += fXyq[4][minDy];
272 nx = TMath::Nint ((xmax-xmin)/wxMin/2);
273 ny = TMath::Nint ((ymax-ymin)/wyMin/2);
274 sprintf(hName,"h%d",cath*2);
275 fHist[cath*2] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
276 cout << fHist[cath*2] << " " << fnPads[cath] << endl;
277 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
278 if (fPadIJ[0][i] != cath) continue;
279 fHist[cath*2]->Fill(fXyq[0][i],fXyq[1][i],fXyq[2][i]);
280 //cout << fXyq[0][i] << fXyq[1][i] << fXyq[2][i] << endl;
281 }
282 } else {
283 // different segmentation in the cluster
284 cout << " Different" << endl;
285 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
286 Int_t nOK = 0;
287 Int_t indx, locMin, locMax;
288 if (TMath::Nint(fXyq[3][minDx]*1000) != TMath::Nint(fXyq[3][maxDx]*1000)) {
289 // different segmentation along x
290 indx = 0;
291 locMin = minDx;
292 locMax = maxDx;
293 } else {
294 // different segmentation along y
295 indx = 1;
296 locMin = minDy;
297 locMax = maxDy;
298 }
299 Int_t loc = locMin;
300 for (Int_t i=0; i<2; i++) {
301 // loop over different pad sizes
302 if (i>0) loc = locMax;
303 padSize = TMath::Nint(fXyq[indx+3][loc]*1000);
304 xmin = 9999; xmax = -9999; ymin = 9999; ymax = -9999;
305 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
306 if (fPadIJ[0][j] != cath) continue;
307 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
308 nOK++;
309 xmin = TMath::Min (xmin,fXyq[0][j]);
310 xmax = TMath::Max (xmax,fXyq[0][j]);
311 ymin = TMath::Min (ymin,fXyq[1][j]);
312 ymax = TMath::Max (ymax,fXyq[1][j]);
313 }
314 xmin -= fXyq[3][loc]; xmax += fXyq[3][loc];
315 ymin -= fXyq[4][loc]; ymax += fXyq[4][loc];
316 nx = TMath::Nint ((xmax-xmin)/fXyq[3][loc]/2);
317 ny = TMath::Nint ((ymax-ymin)/fXyq[4][loc]/2);
318 sprintf(hName,"h%d",cath*2+i);
319 fHist[cath*2+i] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
320 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
321 if (fPadIJ[0][j] != cath) continue;
322 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
323 fHist[cath*2+i]->Fill(fXyq[0][j],fXyq[1][j],fXyq[2][j]);
324 }
325 } // for (Int_t i=0;
326 if (nOK != fnPads[cath]) cout << " *** Too many segmentations: nPads, nOK " << fnPads[cath] << " " << nOK << endl;
327 } // if (TMath::Nint(fXyq[3][minDx]*1000)
328 } // for (Int_t cath = 0;
329
330 // Draw histograms and coordinates
331 for (Int_t cath=0; cath<2; cath++) {
332 if (cath == 0) ModifyHistos();
333 if (fnPads[cath] == 0) continue; // cluster on one cathode only
334 if (fDraw) {
335 c1->cd(cath+1);
336 gPad->SetTheta(55);
337 gPad->SetPhi(30);
cd747ddb 338 Double_t x, y, x0, y0, r1=999, r2=0;
0df3ca52 339 if (fHist[cath*2+1]) {
340 //
341 x0 = fHist[cath*2]->GetXaxis()->GetXmin() - 1000*TMath::Cos(30*TMath::Pi()/180);
342 y0 = fHist[cath*2]->GetYaxis()->GetXmin() - 1000*TMath::Sin(30*TMath::Pi()/180);
343 r1 = 0;
344 Int_t ihist=cath*2;
345 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
346 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
347 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
348 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
349 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
350 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
351 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
352 r1 = TMath::Max (r1,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
353 }
354 }
355 }
356 ihist = cath*2 + 1 ;
357 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
358 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
359 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
360 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
361 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
362 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
363 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
364 r2 = TMath::Max (r2,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
365 }
366 }
367 }
368 cout << r1 << " " << r2 << endl;
369 } // if (fHist[cath*2+1])
370 if (r1 > r2) {
371 //fHist[cath*2]->Draw("lego1");
372 fHist[cath*2]->Draw("lego1Fb");
373 //if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBb");
374 if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBbFb");
375 } else {
376 //fHist[cath*2+1]->Draw("lego1");
377 fHist[cath*2+1]->Draw("lego1Fb");
378 //fHist[cath*2]->Draw("lego1SameAxisBb");
379 fHist[cath*2]->Draw("lego1SameAxisFbBb");
380 }
381 c1->Update();
382 } // if (fDraw)
383 } // for (Int_t cath = 0;
384
385 // Draw generated hits
386 Double_t xNDC[6];
387 hist = fHist[0] ? fHist[0] : fHist[2];
388 p2[2] = hist->GetMaximum();
389 view = 0;
390 if (c1) view = c1->Pad()->GetView();
391 cout << " *** GEANT hits *** " << endl;
392 fnMu = 0;
393 Int_t ix, iy, iok;
394 for (Int_t i=0; i<ntracks; i++) {
c1aed84f 395 treeH->GetEvent(i);
396 for (AliMUONHit* mHit=(AliMUONHit*)muon->FirstHit(-1);
0df3ca52 397 mHit;
c1aed84f 398 mHit=(AliMUONHit*)muon->NextHit()) {
0df3ca52 399 if (mHit->Chamber() != ch+1) continue; // chamber number
400 if (TMath::Abs(mHit->Z()-zpad0) > 1) continue; // different slat
401 p2[0] = p1[0] = mHit->X(); // x-pos of hit
402 p2[1] = p1[1] = mHit->Y(); // y-pos
403 if (p1[0] < hist->GetXaxis()->GetXmin() ||
404 p1[0] > hist->GetXaxis()->GetXmax()) continue;
405 if (p1[1] < hist->GetYaxis()->GetXmin() ||
406 p1[1] > hist->GetYaxis()->GetXmax()) continue;
407 // Check if track comes thru pads with signal
408 iok = 0;
409 for (Int_t ihist=0; ihist<4; ihist++) {
410 if (!fHist[ihist]) continue;
411 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
412 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
413 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
414 }
415 if (!iok) continue;
416 gStyle->SetLineColor(1);
417 if (TMath::Abs((Int_t)mHit->Particle()) == 13) {
418 gStyle->SetLineColor(4);
419 fnMu++;
420 if (fnMu <= 2) {
421 fxyMu[fnMu-1][0] = p1[0];
422 fxyMu[fnMu-1][1] = p1[1];
423 }
424 }
425 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mHit->Z());
426 if (view) {
427 view->WCtoNDC(p1, &xNDC[0]);
428 view->WCtoNDC(p2, &xNDC[3]);
429 for (Int_t ipad=1; ipad<3; ipad++) {
430 c1->cd(ipad);
431 //c1->DrawLine(xpad[0],xpad[1],xpad[3],xpad[4]);
432 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
433 line[nLine++]->Draw();
434 }
435 }
436 } // for (AliMUONHit* mHit=
437 } // for (Int_t i=0; i<ntracks;
438
439 // Draw reconstructed coordinates
c1aed84f 440 listMUONrawclust = muon->GetMUONData()->RawClusters(ch);
441 treeR->GetEvent(ch);
442 //cout << listMUONrawclust << " " << listMUONrawclust ->GetEntries() << endl;
0df3ca52 443 AliMUONRawCluster *mRaw;
444 gStyle->SetLineColor(3);
445 cout << " *** Reconstructed hits *** " << endl;
c1aed84f 446 for (Int_t i=0; i<listMUONrawclust ->GetEntries(); i++) {
447 mRaw = (AliMUONRawCluster*)listMUONrawclust ->UncheckedAt(i);
0df3ca52 448 if (TMath::Abs(mRaw->fZ[0]-zpad0) > 1) continue; // different slat
449 p2[0] = p1[0] = mRaw->fX[0]; // x-pos of hit
450 p2[1] = p1[1] = mRaw->fY[0]; // y-pos
451 if (p1[0] < hist->GetXaxis()->GetXmin() ||
452 p1[0] > hist->GetXaxis()->GetXmax()) continue;
453 if (p1[1] < hist->GetYaxis()->GetXmin() ||
454 p1[1] > hist->GetYaxis()->GetXmax()) continue;
455 /*
c1aed84f 456 treeD->GetEvent(cath);
0df3ca52 457 cout << mRaw->fMultiplicity[0] << mRaw->fMultiplicity[1] << endl;
458 for (Int_t j=0; j<mRaw->fMultiplicity[cath]; j++) {
459 Int_t digit = mRaw->fIndexMap[j][cath];
460 cout << ((AliMUONDigit*)fMuonDigits->UncheckedAt(digit))->Signal() << endl;
461 }
462 */
463 // Check if track comes thru pads with signal
464 iok = 0;
465 for (Int_t ihist=0; ihist<4; ihist++) {
466 if (!fHist[ihist]) continue;
467 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
468 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
469 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
470 }
471 if (!iok) continue;
472 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mRaw->fZ[0]);
473 if (view) {
474 view->WCtoNDC(p1, &xNDC[0]);
475 view->WCtoNDC(p2, &xNDC[3]);
476 for (Int_t ipad=1; ipad<3; ipad++) {
477 c1->cd(ipad);
478 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
479 line[nLine++]->Draw();
480 }
481 }
c1aed84f 482 } // for (Int_t i=0; i<listMUONrawclust ->GetEntries();
0df3ca52 483 if (fDraw) c1->Update();
484
485skip:
486 // Use MLEM for cluster finder
487 fZpad = zpad0;
488 Int_t nMax = 1, localMax[100], maxPos[100];
489 Double_t maxVal[100];
490
491 if (CheckPrecluster(nShown)) {
492 BuildPixArray();
493 if (fnPads[0]+fnPads[1] > 50) nMax = FindLocalMaxima(localMax, maxVal);
494 if (nMax > 1) TMath::Sort(nMax, maxVal, maxPos, kTRUE); // in decreasing order
495 for (Int_t i=0; i<nMax; i++) {
496 if (nMax > 1) FindCluster(localMax, maxPos[i]);
497 if (!MainLoop()) cout << " MainLoop failed " << endl;
498 if (i < nMax-1) {
499 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
500 if (fPadIJ[1][j] == 0) continue; // pad charge was not modified
501 fPadIJ[1][j] = 0;
502 fXyq[2][j] = fXyq[5][j]; // use backup charge value
503 }
504 }
505 }
506 }
507 if (fReco) goto next;
508
509 for (Int_t i=0; i<fnMu; i++) {
510 // Check again if muon come thru the used pads (due to extra splitting)
511 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
512 if (TMath::Abs(fxyMu[i][0]-fXyq[0][j])<fXyq[3][j] &&
513 TMath::Abs(fxyMu[i][1]-fXyq[1][j])<fXyq[4][j]) {
514 printf("%12.3e %12.3e %12.3e %12.3e\n",fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
515 if (lun) fprintf(lun,"%4d %2d %12.3e %12.3e %12.3e %12.3e\n",nev,ch,fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
516 break;
517 }
518 }
519 } // for (Int_t i=0; i<fnMu;
520
521 // What's next?
522 char command[8];
523 cout << " What is next? " << endl;
524 command[0] = ' ';
525 if (fDraw) gets(command);
526 if (command[0] == 'n' || command[0] == 'N') {nev++; goto newev;} // next event
527 else if (command[0] == 'q' || command[0] == 'Q') {fclose(lun); return;} // exit display
528 //else if (command[0] == 'r' || command[0] == 'R') goto redraw; // redraw points
529 else if (command[0] == 'c' || command[0] == 'C') {
530 // new chamber
531 sscanf(command+1,"%d",&ch);
532 goto newchamber;
533 }
534 else if (command[0] == 'e' || command[0] == 'E') {
535 // new event
536 sscanf(command+1,"%d",&nev);
537 goto newev;
538 }
539 else goto next; // Next cluster
540}
541
542//_____________________________________________________________________________
543void AliMUONClusterFinderAZ::ModifyHistos(void)
544{
545 // Modify histograms to bring them to the same size
546 Int_t nhist = 0;
547 Float_t hlim[4][4], hbin[4][4]; // first index - xmin, xmax, ymin, ymax
548 Float_t binMin[4] = {999,999,999,999};
549
550 for (Int_t i=0; i<4; i++) {
551 if (!fHist[i]) continue;
552 hlim[0][nhist] = fHist[i]->GetXaxis()->GetXmin(); // xmin
553 hlim[1][nhist] = fHist[i]->GetXaxis()->GetXmax(); // xmax
554 hlim[2][nhist] = fHist[i]->GetYaxis()->GetXmin(); // ymin
555 hlim[3][nhist] = fHist[i]->GetYaxis()->GetXmax(); // ymax
556 hbin[0][nhist] = hbin[1][nhist] = fHist[i]->GetXaxis()->GetBinWidth(1);
557 hbin[2][nhist] = hbin[3][nhist] = fHist[i]->GetYaxis()->GetBinWidth(1);
558 binMin[0] = TMath::Min(binMin[0],hbin[0][nhist]);
559 binMin[2] = TMath::Min(binMin[2],hbin[2][nhist]);
560 nhist++;
561 }
562 binMin[1] = binMin[0];
563 binMin[3] = binMin[2];
564 cout << " Nhist: " << nhist << endl;
565
566 Int_t imin, imax;
567 for (Int_t lim=0; lim<4; lim++) {
568 while (1) {
569 imin = TMath::LocMin(nhist,hlim[lim]);
570 imax = TMath::LocMax(nhist,hlim[lim]);
571 if (TMath::Abs(hlim[lim][imin]-hlim[lim][imax])<0.01*binMin[lim]) break;
572 if (lim == 0 || lim == 2) {
573 // find lower limit
574 hlim[lim][imax] -= hbin[lim][imax];
575 } else {
576 // find upper limit
577 hlim[lim][imin] += hbin[lim][imin];
578 }
579 } // while (1)
580 }
581
582 // Rebuild histograms
583 nhist = 0;
584 TH2F *hist = 0;
585 Int_t nx, ny;
cd747ddb 586 Double_t x, y, cont, cmax=0;
0df3ca52 587 char hName[4];
588 for (Int_t ihist=0; ihist<4; ihist++) {
589 if (!fHist[ihist]) continue;
590 nx = TMath::Nint((hlim[1][nhist]-hlim[0][nhist])/hbin[0][nhist]);
591 ny = TMath::Nint((hlim[3][nhist]-hlim[2][nhist])/hbin[2][nhist]);
592 //hist = new TH2F("h","hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
593 sprintf(hName,"hh%d",ihist);
594 hist = new TH2F(hName,"hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
595 for (Int_t i=1; i<=fHist[ihist]->GetNbinsX(); i++) {
596 x = fHist[ihist]->GetXaxis()->GetBinCenter(i);
597 for (Int_t j=1; j<=fHist[ihist]->GetNbinsY(); j++) {
598 y = fHist[ihist]->GetYaxis()->GetBinCenter(j);
599 cont = fHist[ihist]->GetCellContent(i,j);
600 hist->Fill(x,y,cont);
601 }
602 }
603 cmax = TMath::Max (cmax,hist->GetMaximum());
604 fHist[ihist]->Delete();
605 fHist[ihist] = new TH2F(*hist);
606 hist->Delete();
607 nhist++;
608 }
609 printf("%f \n",cmax);
610
611 for (Int_t ihist=0; ihist<4; ihist++) {
612 if (!fHist[ihist]) continue;
613 fHist[ihist]->SetMaximum(cmax);
614 }
615}
616
617//_____________________________________________________________________________
618void AliMUONClusterFinderAZ::AddPad(Int_t cath, Int_t digit)
619{
620 // Add pad to the cluster
621 AliMUONDigit *mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
622
623 Int_t charge = mdig->Signal();
624 // get the center of the pad
625 Float_t xpad, ypad, zpad;
626 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
627
628 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
629 Int_t nPads = fnPads[0] + fnPads[1];
630 fXyq[0][nPads] = xpad;
631 fXyq[1][nPads] = ypad;
632 fXyq[2][nPads] = charge;
633 fXyq[3][nPads] = fSegmentation[cath]->Dpx(isec)/2;
634 fXyq[4][nPads] = fSegmentation[cath]->Dpy(isec)/2;
635 fXyq[5][nPads] = digit;
636 fPadIJ[0][nPads] = cath;
637 fPadIJ[1][nPads] = 0;
638 fUsed[cath][digit] = kTRUE;
639 //cout << " bbb " << fXyq[cath][2][nPads] << " " << fXyq[cath][0][nPads] << " " << fXyq[cath][1][nPads] << " " << fXyq[cath][3][nPads] << " " << fXyq[cath][4][nPads] << " " << zpad << " " << nPads << endl;
640 fnPads[cath]++;
641
642 // Check neighbours
643 Int_t nn, ix, iy, xList[10], yList[10];
644 AliMUONDigit *mdig1;
645
646 Int_t ndigits = fMuonDigits->GetEntriesFast();
647 fSegmentation[cath]->Neighbours(mdig->PadX(),mdig->PadY(),&nn,xList,yList);
648 for (Int_t in=0; in<nn; in++) {
649 ix=xList[in];
650 iy=yList[in];
651 for (Int_t digit1 = 0; digit1 < ndigits; digit1++) {
652 if (digit1 == digit) continue;
653 mdig1 = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit1);
654 if (mdig1->Cathode() != cath) continue;
655 if (!fUsed[cath][digit1] && mdig1->PadX() == ix && mdig1->PadY() == iy) {
656 fUsed[cath][digit1] = kTRUE;
657 // Add pad - recursive call
658 AddPad(cath,digit1);
659 }
660 } //for (Int_t digit1 = 0;
661 } // for (Int_t in=0;
662}
663
664//_____________________________________________________________________________
665Bool_t AliMUONClusterFinderAZ::Overlap(Int_t cath, TObject *dig)
666{
667 // Check if the pad from one cathode overlaps with a pad
668 // in the precluster on the other cathode
669
670 AliMUONDigit *mdig = (AliMUONDigit*) dig;
671
672 Float_t xpad, ypad, zpad;
673 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
674 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
675
676 Float_t xy1[4], xy12[4];
677 xy1[0] = xpad - fSegmentation[cath]->Dpx(isec)/2;
678 xy1[1] = xy1[0] + fSegmentation[cath]->Dpx(isec);
679 xy1[2] = ypad - fSegmentation[cath]->Dpy(isec)/2;
680 xy1[3] = xy1[2] + fSegmentation[cath]->Dpy(isec);
681 //cout << " ok " << fnPads[0]+fnPads[1] << xy1[0] << xy1[1] << xy1[2] << xy1[3] << endl;
682
683 Int_t cath1 = TMath::Even(cath);
684 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
685 if (fPadIJ[0][i] != cath1) continue;
686 if (Overlap(xy1, i, xy12, 0)) return kTRUE;
687 }
688 return kFALSE;
689}
690
691//_____________________________________________________________________________
692Bool_t AliMUONClusterFinderAZ::Overlap(Float_t *xy1, Int_t iPad, Float_t *xy12, Int_t iSkip)
693{
694 // Check if the pads xy1 and iPad overlap and return overlap area
695
696 Float_t xy2[4];
697 xy2[0] = fXyq[0][iPad] - fXyq[3][iPad];
698 xy2[1] = fXyq[0][iPad] + fXyq[3][iPad];
699 if (xy1[0] > xy2[1]-1.e-4 || xy1[1] < xy2[0]+1.e-4) return kFALSE;
700 xy2[2] = fXyq[1][iPad] - fXyq[4][iPad];
701 xy2[3] = fXyq[1][iPad] + fXyq[4][iPad];
702 if (xy1[2] > xy2[3]-1.e-4 || xy1[3] < xy2[2]+1.e-4) return kFALSE;
703 if (!iSkip) return kTRUE; // just check overlap (w/out computing the area)
704 xy12[0] = TMath::Max (xy1[0],xy2[0]);
705 xy12[1] = TMath::Min (xy1[1],xy2[1]);
706 xy12[2] = TMath::Max (xy1[2],xy2[2]);
707 xy12[3] = TMath::Min (xy1[3],xy2[3]);
708 return kTRUE;
709}
710
711//_____________________________________________________________________________
712/*
713Bool_t AliMUONClusterFinderAZ::Overlap(Int_t i, Int_t j, Float_t *xy12, Int_t iSkip)
714{
715 // Check if the pads i and j overlap and return overlap area
716
717 Float_t xy1[4], xy2[4];
718 return Overlap(xy1, xy2, xy12, iSkip);
719}
720*/
721//_____________________________________________________________________________
722Bool_t AliMUONClusterFinderAZ::CheckPrecluster(Int_t *nShown)
723{
724 // Check precluster in order to attempt to simplify it (mostly for
725 // two-cathode preclusters)
726
727 Int_t i1, i2;
728 Float_t xy1[4], xy12[4];
729
730 Int_t npad = fnPads[0] + fnPads[1];
731
732 // If pads have the same size take average of pads on both cathodes
733 Int_t sameSize = (fnPads[0] && fnPads[1]) ? 1 : 0;
734 if (sameSize) {
735 Double_t xSize = -1, ySize = 0;
736 for (Int_t i=0; i<npad; i++) {
737 if (fXyq[2][i] < 0) continue;
738 if (xSize < 0) { xSize = fXyq[3][i]; ySize = fXyq[4][i]; }
739 if (TMath::Abs(xSize-fXyq[3][i]) > 1.e-4 || TMath::Abs(ySize-fXyq[4][i]) > 1.e-4) { sameSize = 0; break; }
740 }
741 } // if (sameSize)
742 if (sameSize && (fnPads[0] > 2 || fnPads[1] > 2)) {
743 nShown[0] += fnPads[0];
744 nShown[1] += fnPads[1];
745 fnPads[0] = fnPads[1] = 0;
746 Int_t div;
747 for (Int_t i=0; i<npad; i++) {
748 if (fXyq[2][i] < 0) continue; // used pad
749 fXyq[2][fnPads[0]] = fXyq[2][i];
750 div = 1;
751 for (Int_t j=i+1; j<npad; j++) {
752 if (fPadIJ[0][j] == fPadIJ[0][i]) continue; // same cathode
753 if (TMath::Abs(fXyq[0][j]-fXyq[0][i]) > 1.e-4) continue;
754 if (TMath::Abs(fXyq[1][j]-fXyq[1][i]) > 1.e-4) continue;
755 fXyq[2][fnPads[0]] += fXyq[2][j];
756 div = 2;
757 fXyq[2][j] = -2;
758 break;
759 }
760 fXyq[2][fnPads[0]] /= div;
761 fXyq[0][fnPads[0]] = fXyq[0][i];
762 fXyq[1][fnPads[0]] = fXyq[1][i];
763 fPadIJ[0][fnPads[0]++] = 0;
764 }
765 } // if (sameSize)
766
767 // Check if one-cathode precluster
768 i1 = fnPads[0]!=0 ? 0 : 1;
769 i2 = fnPads[1]!=0 ? 1 : 0;
770
771 if (i1 != i2) { // two-cathode
772
773 Int_t *flags = new Int_t[npad];
774 for (Int_t i=0; i<npad; i++) { flags[i] = 0; }
775
776 // Check pad overlaps
777 for (Int_t i=0; i<npad; i++) {
778 if (fPadIJ[0][i] != i1) continue;
779 xy1[0] = fXyq[0][i] - fXyq[3][i];
780 xy1[1] = fXyq[0][i] + fXyq[3][i];
781 xy1[2] = fXyq[1][i] - fXyq[4][i];
782 xy1[3] = fXyq[1][i] + fXyq[4][i];
783 for (Int_t j=0; j<npad; j++) {
784 if (fPadIJ[0][j] != i2) continue;
785 if (!Overlap(xy1, j, xy12, 0)) continue;
786 flags[i] = flags[j] = 1; // mark overlapped pads
787 } // for (Int_t j=0;
788 } // for (Int_t i=0;
789
790 // Check if all pads overlap
791 Int_t digit=0, cath, nFlags=0;
792 for (Int_t i=0; i<npad; i++) {nFlags += !flags[i];}
793 if (nFlags) cout << " nFlags = " << nFlags << endl;
794 //if (nFlags > 2 || (Float_t)nFlags / npad > 0.2) { // why 2 ??? - empirical choice
795 if (nFlags > 0) {
796 for (Int_t i=0; i<npad; i++) {
797 if (flags[i]) continue;
798 digit = TMath::Nint (fXyq[5][i]);
799 cath = fPadIJ[0][i];
800 fUsed[cath][digit] = kFALSE; // release pad
801 fXyq[2][i] = -2;
802 fnPads[cath]--;
803 }
804 } // if (nFlags > 2)
805
806 // Check correlations of cathode charges
807 if (fnPads[0] && fnPads[1]) { // two-cathode
808 Double_t sum[2]={0};
809 Int_t over[2] = {1, 1};
810 for (Int_t i=0; i<npad; i++) {
811 cath = fPadIJ[0][i];
812 if (fXyq[2][i] > 0) sum[cath] += fXyq[2][i];
813 if (fXyq[2][i] > fResponse->MaxAdc()-1) over[cath] = 0;
814 }
815 cout << " Total charge: " << sum[0] << " " << sum[1] << endl;
816 if ((over[0] || over[1]) && TMath::Abs(sum[0]-sum[1])/(sum[0]+sum[1])*2 > 1) { // 3 times difference
817 cout << " Release " << endl;
818 // Big difference
819 cath = sum[0]>sum[1] ? 0 : 1;
820 Int_t imax = 0;
821 Double_t cmax=-1;
822 Double_t *dist = new Double_t[npad];
823 for (Int_t i=0; i<npad; i++) {
824 if (fPadIJ[0][i] != cath) continue;
825 if (fXyq[2][i] < cmax) continue;
826 cmax = fXyq[2][i];
827 imax = i;
828 }
829 // Arrange pads according to their distance to the max,
830 // normalized to the pad size
831 for (Int_t i=0; i<npad; i++) {
832 dist[i] = 0;
833 if (fPadIJ[0][i] != cath) continue;
834 if (i == imax) continue;
835 if (fXyq[2][i] < 0) continue;
836 dist[i] = (fXyq[0][i]-fXyq[0][imax])*(fXyq[0][i]-fXyq[0][imax])/
837 fXyq[3][imax]/fXyq[3][imax]/4;
838 dist[i] += (fXyq[1][i]-fXyq[1][imax])*(fXyq[1][i]-fXyq[1][imax])/
839 fXyq[4][imax]/fXyq[4][imax]/4;
840 dist[i] = TMath::Sqrt (dist[i]);
841 }
842 TMath::Sort(npad, dist, flags, kFALSE); // in increasing order
843 Int_t indx;
844 Double_t xmax = -1;
845 for (Int_t i=0; i<npad; i++) {
846 indx = flags[i];
847 if (fPadIJ[0][indx] != cath) continue;
848 if (fXyq[2][indx] < 0) continue;
849 if (fXyq[2][indx] <= cmax || TMath::Abs(dist[indx]-xmax)<1.e-3) {
850 // Release pads
851 if (TMath::Abs(dist[indx]-xmax)<1.e-3)
cd747ddb 852 cmax = TMath::Max((Double_t)(fXyq[2][indx]),cmax);
0df3ca52 853 else cmax = fXyq[2][indx];
854 xmax = dist[indx];
855 digit = TMath::Nint (fXyq[5][indx]);
856 fUsed[cath][digit] = kFALSE;
857 fXyq[2][indx] = -2;
858 fnPads[cath]--;
859 // xmax = dist[i]; // Bug?
860 }
861 else break;
862 }
863 delete [] dist; dist = 0;
864 } // TMath::Abs(sum[0]-sum[1])...
865 } // if (fnPads[0] && fnPads[1])
866 delete [] flags; flags = 0;
867 } // if (i1 != i2)
868
869 if (!sameSize) { nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; }
870
871 // Move released pads to the right
872 Int_t beg = 0, end = npad-1, padij;
873 Double_t xyq;
874 while (beg < end) {
875 if (fXyq[2][beg] > 0) { beg++; continue; }
876 for (Int_t j=end; j>beg; j--) {
877 if (fXyq[2][j] < 0) continue;
878 end = j - 1;
879 for (Int_t j1=0; j1<2; j1++) {
880 padij = fPadIJ[j1][beg];
881 fPadIJ[j1][beg] = fPadIJ[j1][j];
882 fPadIJ[j1][j] = padij;
883 }
884 for (Int_t j1=0; j1<6; j1++) {
885 xyq = fXyq[j1][beg];
886 fXyq[j1][beg] = fXyq[j1][j];
887 fXyq[j1][j] = xyq;
888 }
889 break;
890 } // for (Int_t j=end;
891 beg++;
892 } // while
893 npad = fnPads[0] + fnPads[1];
894 if (npad > 500) { cout << " ***** Too large cluster. Give up. " << npad << endl; return kFALSE; }
895 // Back up charge value
896 for (Int_t j=0; j<npad; j++) fXyq[5][j] = fXyq[2][j];
897
898 return kTRUE;
899}
900
901//_____________________________________________________________________________
902void AliMUONClusterFinderAZ::BuildPixArray()
903{
904 // Build pixel array for MLEM method
905
906 Int_t nPix=0, i1, i2;
907 Float_t xy1[4], xy12[4];
908 AliMUONPixel *pixPtr=0;
909
910 Int_t npad = fnPads[0] + fnPads[1];
911
912 // One cathode is empty
913 i1 = fnPads[0]!=0 ? 0 : 1;
914 i2 = fnPads[1]!=0 ? 1 : 0;
915
916 // Build array of pixels on anode plane
917 if (i1 == i2) { // one-cathode precluster
918 for (Int_t j=0; j<npad; j++) {
919 pixPtr = new AliMUONPixel();
920 for (Int_t i=0; i<2; i++) {
921 pixPtr->SetCoord(i, fXyq[i][j]); // pixel coordinates
922 pixPtr->SetSize(i, fXyq[i+3][j]); // pixel size
923 }
924 pixPtr->SetCharge(fXyq[2][j]); // charge
925 fPixArray->Add((TObject*)pixPtr);
926 nPix++;
927 }
928 } else { // two-cathode precluster
929 for (Int_t i=0; i<npad; i++) {
930 if (fPadIJ[0][i] != i1) continue;
931 xy1[0] = fXyq[0][i] - fXyq[3][i];
932 xy1[1] = fXyq[0][i] + fXyq[3][i];
933 xy1[2] = fXyq[1][i] - fXyq[4][i];
934 xy1[3] = fXyq[1][i] + fXyq[4][i];
935 for (Int_t j=0; j<npad; j++) {
936 if (fPadIJ[0][j] != i2) continue;
937 if (!Overlap(xy1, j, xy12, 1)) continue;
938 pixPtr = new AliMUONPixel();
939 for (Int_t k=0; k<2; k++) {
940 pixPtr->SetCoord(k, (xy12[2*k]+xy12[2*k+1])/2); // pixel coordinates
941 pixPtr->SetSize(k, xy12[2*k+1]-pixPtr->Coord(k)); // size
942 }
943 pixPtr->SetCharge(TMath::Min (fXyq[2][i],fXyq[2][j])); //charge
944 fPixArray->Add((TObject*)pixPtr);
945 nPix++;
946 } // for (Int_t j=0;
947 } // for (Int_t i=0;
948 } // else
949
950 Float_t wxmin=999, wymin=999;
951 for (Int_t i=0; i<npad; i++) {
952 if (fPadIJ[0][i] == i1) wymin = TMath::Min (wymin,fXyq[4][i]);
953 if (fPadIJ[0][i] == i2) wxmin = TMath::Min (wxmin,fXyq[3][i]);
954 }
955 cout << wxmin << " " << wymin << endl;
956
957 // Check if small pixel X-size
958 AjustPixel(wxmin, 0);
959 // Check if small pixel Y-size
960 AjustPixel(wymin, 1);
961 // Check if large pixel size
962 AjustPixel(wxmin, wymin);
963
964 // Remove discarded pixels
965 for (Int_t i=0; i<nPix; i++) {
966 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
967 //pixPtr->Print();
968 if (pixPtr->Charge() < 1) { fPixArray->RemoveAt(i); delete pixPtr; }// discarded pixel
969 }
970 fPixArray->Compress();
971 nPix = fPixArray->GetEntriesFast();
972
973 if (nPix > npad) {
974 cout << nPix << endl;
975 // Too many pixels - sort and remove pixels with the lowest signal
976 fPixArray->Sort();
977 for (Int_t i=npad; i<nPix; i++) {
978 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
979 //pixPtr->Print();
980 fPixArray->RemoveAt(i);
981 delete pixPtr;
982 }
983 nPix = npad;
984 } // if (nPix > npad)
985
986 // Set pixel charges to the same value (for MLEM)
987 for (Int_t i=0; i<nPix; i++) {
988 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
989 //pixPtr->SetCharge(10);
990 cout << i+1 << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(0) << " " << pixPtr->Size(1) << endl;
991 }
992}
993
994//_____________________________________________________________________________
995void AliMUONClusterFinderAZ::AjustPixel(Float_t width, Int_t ixy)
996{
997 // Check if some pixels have small size (ajust if necessary)
998
999 AliMUONPixel *pixPtr, *pixPtr1 = 0;
1000 Int_t ixy1 = TMath::Even(ixy);
1001 Int_t nPix = fPixArray->GetEntriesFast();
1002
1003 for (Int_t i=0; i<nPix; i++) {
1004 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1005 if (pixPtr->Charge() < 1) continue; // discarded pixel
1006 if (pixPtr->Size(ixy)-width < -1.e-4) {
1007 // try to merge
1008 cout << " Small X or Y: " << ixy << " " << pixPtr->Size(ixy) << " " << width << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << endl;
1009 for (Int_t j=i+1; j<nPix; j++) {
1010 pixPtr1 = (AliMUONPixel*) fPixArray->UncheckedAt(j);
1011 if (pixPtr1->Charge() < 1) continue; // discarded pixel
1012 if (TMath::Abs(pixPtr1->Size(ixy)-width) < 1.e-4) continue; // right size
1013 if (TMath::Abs(pixPtr1->Coord(ixy1)-pixPtr->Coord(ixy1)) > 1.e-4) continue; // different rows/columns
1014 if (TMath::Abs(pixPtr1->Coord(ixy)-pixPtr->Coord(ixy)) < 2*width) {
1015 // merge
1016 pixPtr->SetSize(ixy, width);
1017 pixPtr->SetCoord(ixy, (pixPtr->Coord(ixy)+pixPtr1->Coord(ixy))/2);
1018 pixPtr->SetCharge(TMath::Min (pixPtr->Charge(),pixPtr1->Charge()));
1019 pixPtr1->SetCharge(0);
1020 pixPtr1 = 0;
1021 break;
1022 }
1023 } // for (Int_t j=i+1;
1024 //if (!pixPtr1) { cout << " I am here!" << endl; pixPtr->SetSize(ixy, width); } // ???
1025 //else if (pixPtr1->Charge() > 0.5 || i == nPix-1) {
1026 if (pixPtr1 || i == nPix-1) {
1027 // edge pixel - just increase its size
1028 cout << " Edge ..." << endl;
1029 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1030 // ???if (fPadIJ[0][j] != i1) continue;
1031 if (TMath::Abs(pixPtr->Coord(ixy1)-fXyq[ixy1][j]) > 1.e-4) continue;
1032 if (pixPtr->Coord(ixy) < fXyq[ixy][j])
1033 pixPtr->Shift(ixy, -pixPtr->Size(ixy));
1034 else pixPtr->Shift(ixy, pixPtr->Size(ixy));
1035 pixPtr->SetSize(ixy, width);
1036 break;
1037 }
1038 }
1039 } // if (pixPtr->Size(ixy)-width < -1.e-4)
1040 } // for (Int_t i=0; i<nPix;
1041 return;
1042}
1043
1044//_____________________________________________________________________________
1045void AliMUONClusterFinderAZ::AjustPixel(Float_t wxmin, Float_t wymin)
1046{
1047 // Check if some pixels have large size (ajust if necessary)
1048
1049 Int_t nx, ny;
1050 Int_t nPix = fPixArray->GetEntriesFast();
1051 AliMUONPixel *pixPtr, *pixPtr1, pix;
1052
1053 // Check if large pixel size
1054 for (Int_t i=0; i<nPix; i++) {
1055 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1056 if (pixPtr->Charge() < 1) continue; // discarded pixel
1057 if (pixPtr->Size(0)-wxmin > 1.e-4 || pixPtr->Size(1)-wymin > 1.e-4) {
1058 cout << " Different " << pixPtr->Size(0) << " " << wxmin << " " << pixPtr->Size(1) << " " << wymin << endl;
1059 pix = *pixPtr;
1060 nx = TMath::Nint (pix.Size(0)/wxmin);
1061 ny = TMath::Nint (pix.Size(1)/wymin);
1062 pix.Shift(0, -pix.Size(0)-wxmin);
1063 pix.Shift(1, -pix.Size(1)-wymin);
1064 pix.SetSize(0, wxmin);
1065 pix.SetSize(1, wymin);
1066 for (Int_t ii=0; ii<nx; ii++) {
1067 pix.Shift(0, wxmin*2);
1068 for (Int_t jj=0; jj<ny; jj++) {
1069 pix.Shift(1, wymin*2);
1070 pixPtr1 = new AliMUONPixel(pix);
1071 fPixArray->Add((TObject*)pixPtr1);
1072 }
1073 }
1074 pixPtr->SetCharge(0);
1075 }
1076 } // for (Int_t i=0; i<nPix;
1077 return;
1078}
1079
1080//_____________________________________________________________________________
1081Bool_t AliMUONClusterFinderAZ::MainLoop()
1082{
1083 // Repeat MLEM algorithm until pixel size becomes sufficiently small
1084
1085 TH2D *mlem;
1086
1087 Int_t ix, iy;
1088 //Int_t nn, xList[10], yList[10];
1089 Int_t nPix = fPixArray->GetEntriesFast();
1090 Int_t npadTot = fnPads[0] + fnPads[1], npadOK = 0;
1091 AliMUONPixel *pixPtr = 0;
1092 Double_t *coef = 0, *probi = 0;
1093 for (Int_t i=0; i<npadTot; i++) if (fPadIJ[1][i] == 0) npadOK++;
1094
1095 while (1) {
1096
1097 mlem = (TH2D*) gROOT->FindObject("mlem");
1098 if (mlem) mlem->Delete();
1099 // Calculate coefficients
1100 cout << " nPix, npadTot, npadOK " << nPix << " " << npadTot << " " << npadOK << endl;
1101
1102 // Calculate coefficients and pixel visibilities
1103 coef = new Double_t [npadTot*nPix];
1104 probi = new Double_t [nPix];
1105 Int_t indx = 0, cath;
1106 for (Int_t ipix=0; ipix<nPix; ipix++) {
1107 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1108 probi[ipix] = 0;
1109 for (Int_t j=0; j<npadTot; j++) {
1110 if (fPadIJ[1][j] < 0) { coef[j*nPix+ipix] = 0; continue; }
1111 cath = fPadIJ[0][j];
1112 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
1113 fSegmentation[cath]->SetPad(ix,iy);
1114 /*
1115 fSegmentation[cath]->Neighbours(ix,iy,&nn,xList,yList);
1116 if (nn != 4) {
1117 cout << nn << ": ";
1118 for (Int_t i=0; i<nn; i++) {cout << xList[i] << " " << yList[i] << ", ";}
1119 cout << endl;
1120 }
1121 */
1122 Double_t sum = 0;
1123 fSegmentation[cath]->SetHit(pixPtr->Coord(0),pixPtr->Coord(1),fZpad);
1124 sum += fResponse->IntXY(fSegmentation[cath]);
1125 indx = j*nPix + ipix;
1126 coef[indx] = sum;
1127 probi[ipix] += coef[indx];
1128 //cout << j << " " << ipix << " " << coef[indx] << endl;
1129 } // for (Int_t j=0;
1130 //cout << " prob: " << probi[ipix] << endl;
1131 if (probi[ipix] < 0.01) pixPtr->SetCharge(0); // "invisible" pixel
1132 } // for (Int_t ipix=0;
1133
1134 // MLEM algorithm
1135 Mlem(coef, probi);
1136
cd747ddb 1137 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 1138 for (Int_t ipix=0; ipix<nPix; ipix++) {
1139 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1140 for (Int_t i=0; i<4; i++)
1141 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1142 //cout << ipix+1; pixPtr->Print();
1143 }
1144 for (Int_t i=0; i<4; i++) {
1145 xylim[i] -= pixPtr->Size(i/2); cout << (i%2 ? -1 : 1)*xylim[i] << " "; }
1146 cout << endl;
1147
1148 // Ajust histogram to approximately the same limits as for the pads
1149 // (for good presentation)
1150 //*
1151 Float_t xypads[4];
1152 if (fHist[0]) {
1153 xypads[0] = fHist[0]->GetXaxis()->GetXmin();
1154 xypads[1] = -fHist[0]->GetXaxis()->GetXmax();
1155 xypads[2] = fHist[0]->GetYaxis()->GetXmin();
1156 xypads[3] = -fHist[0]->GetYaxis()->GetXmax();
1157 for (Int_t i=0; i<4; i++) {
1158 while(1) {
1159 if (xylim[i] < xypads[i]) break;
1160 xylim[i] -= 2*pixPtr->Size(i/2);
1161 }
1162 }
1163 } // if (fHist[0])
1164 //*/
1165
1166 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
1167 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
1168 mlem = new TH2D("mlem","mlem",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
1169 for (Int_t ipix=0; ipix<nPix; ipix++) {
1170 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1171 mlem->Fill(pixPtr->Coord(0),pixPtr->Coord(1),pixPtr->Charge());
1172 }
1173 //gPad->GetCanvas()->cd(3);
1174 if (fDraw) {
1175 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1176 gPad->SetTheta(55);
1177 gPad->SetPhi(30);
1178 mlem->Draw("lego1Fb");
1179 gPad->Update();
1180 gets((char*)&ix);
1181 }
1182
1183 // Check if the total charge of pixels is too low
1184 Double_t qTot = 0;
1185 for (Int_t i=0; i<nPix; i++) {
1186 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1187 qTot += pixPtr->Charge();
1188 }
1189 if (qTot < 1.e-4 || npadOK < 3 && qTot < 50) {
1190 delete [] coef; delete [] probi; coef = 0; probi = 0;
1191 fPixArray->Delete();
1192 return kFALSE;
1193 }
1194
1195 // Plot data - expectation
1196 /*
1197 Double_t x, y, cont;
1198 for (Int_t j=0; j<npadTot; j++) {
1199 Double_t sum1 = 0;
1200 for (Int_t i=0; i<nPix; i++) {
1201 // Caculate expectation
1202 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1203 sum1 += pixPtr->Charge()*coef[j*nPix+i];
1204 }
1205 sum1 = TMath::Min (sum1,(Double_t)fResponse->MaxAdc());
1206 x = fXyq[0][j];
1207 y = fXyq[1][j];
1208 cath = fPadIJ[0][j];
1209 Int_t ihist = cath*2;
1210 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1211 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1212 cont = fHist[ihist]->GetCellContent(ix,iy);
1213 if (cont == 0 && fHist[ihist+1]) {
1214 ihist += 1;
1215 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1216 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1217 }
1218 fHist[ihist]->SetBinContent(ix,iy,fXyq[2][j]-sum1);
1219 }
1220 ((TCanvas*)gROOT->FindObject("c1"))->cd(1);
1221 //gPad->SetTheta(55);
1222 //gPad->SetPhi(30);
1223 //mlem->Draw("lego1");
1224 gPad->Modified();
1225 ((TCanvas*)gROOT->FindObject("c1"))->cd(2);
1226 gPad->Modified();
1227 */
1228
1229 // Calculate position of the center-of-gravity around the maximum pixel
1230 Double_t xyCOG[2];
1231 FindCOG(mlem, xyCOG);
1232
1233 if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.07 && pixPtr->Size(0) > pixPtr->Size(1)) break;
1234 //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) >= 0.07 || pixPtr->Size(0) < pixPtr->Size(1)) {
1235 // Sort pixels according to the charge
1236 fPixArray->Sort();
1237 /*
1238 for (Int_t i=0; i<nPix; i++) {
1239 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1240 cout << i+1; pixPtr->Print();
1241 }
1242 */
1243 Double_t pixMin = 0.01*((AliMUONPixel*)fPixArray->UncheckedAt(0))->Charge();
1244 pixMin = TMath::Min (pixMin,50.);
1245
1246 // Decrease pixel size and shift pixels to make them centered at
1247 // the maximum one
1248 indx = (pixPtr->Size(0)>pixPtr->Size(1)) ? 0 : 1;
1249 Double_t width = 0, shift[2]={0};
1250 ix = 1;
1251 for (Int_t i=0; i<4; i++) xylim[i] = 999;
1252 Int_t nPix1 = nPix; nPix = 0;
1253 for (Int_t ipix=0; ipix<nPix1; ipix++) {
1254 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1255 if (nPix >= npadOK) { // too many pixels already
1256 fPixArray->RemoveAt(ipix);
1257 delete pixPtr;
1258 continue;
1259 }
1260 if (pixPtr->Charge() < pixMin) { // low charge
1261 fPixArray->RemoveAt(ipix);
1262 delete pixPtr;
1263 continue;
1264 }
1265 for (Int_t i=0; i<2; i++) {
1266 if (!i) {
1267 pixPtr->SetCharge(10);
1268 pixPtr->SetSize(indx, pixPtr->Size(indx)/2);
1269 width = -pixPtr->Size(indx);
1270 pixPtr->Shift(indx, width);
1271 // Shift pixel position
1272 if (ix) {
1273 ix = 0;
1274 for (Int_t j=0; j<2; j++) {
1275 shift[j] = pixPtr->Coord(j) - xyCOG[j];
1276 shift[j] -= ((Int_t)(shift[j]/pixPtr->Size(j)/2))*pixPtr->Size(j)*2;
1277 }
1278 //cout << ipix << " " << i << " " << shift[0] << " " << shift[1] << endl;
1279 } // if (ix)
1280 pixPtr->Shift(0, -shift[0]);
1281 pixPtr->Shift(1, -shift[1]);
1282 } else {
1283 pixPtr = new AliMUONPixel(*pixPtr);
1284 pixPtr->Shift(indx, -2*width);
1285 fPixArray->Add((TObject*)pixPtr);
1286 } // else
1287 //pixPtr->Print();
1288 for (Int_t i=0; i<4; i++)
1289 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1290 } // for (Int_t i=0; i<2;
1291 nPix += 2;
1292 } // for (Int_t ipix=0;
1293
1294 fPixArray->Compress();
1295 nPix = fPixArray->GetEntriesFast();
1296
1297 // Remove excessive pixels
1298 if (nPix > npadOK) {
1299 for (Int_t ipix=npadOK; ipix<nPix; ipix++) {
1300 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1301 fPixArray->RemoveAt(ipix);
1302 delete pixPtr;
1303 }
1304 } else {
1305 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(0);
1306 // add pixels if the maximum is at the limit of pixel area
1307 // start from Y-direction
1308 Int_t j = 0;
1309 for (Int_t i=3; i>-1; i--) {
1310 if (nPix < npadOK &&
1311 TMath::Abs((i%2 ? -1 : 1)*xylim[i]-xyCOG[i/2]) < pixPtr->Size(i/2)) {
1312 pixPtr = new AliMUONPixel(*pixPtr);
1313 pixPtr->SetCoord(i/2, xyCOG[i/2]+(i%2 ? 2:-2)*pixPtr->Size(i/2));
1314 j = TMath::Even (i/2);
1315 pixPtr->SetCoord(j, xyCOG[j]);
1316 fPixArray->Add((TObject*)pixPtr);
1317 nPix++;
1318 }
1319 }
1320 } // else
1321
1322 fPixArray->Compress();
1323 nPix = fPixArray->GetEntriesFast();
1324 delete [] coef; delete [] probi; coef = 0; probi = 0;
1325 } // while (1)
1326
1327 // remove pixels with low signal or low visibility
1328 // Cuts are empirical !!!
1329 Double_t thresh = TMath::Max (mlem->GetMaximum()/100.,1.);
1330 thresh = TMath::Min (thresh,50.);
1331 Double_t cmax = -1, charge = 0;
1332 for (Int_t i=0; i<nPix; i++) cmax = TMath::Max (cmax,probi[i]);
1333 // Mark pixels which should be removed
1334 for (Int_t i=0; i<nPix; i++) {
1335 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1336 charge = pixPtr->Charge();
1337 if (charge < thresh) pixPtr->SetCharge(-charge);
1338 else if (cmax > 1.91) {
1339 if (probi[i] < 1.9) pixPtr->SetCharge(-charge);
1340 }
1341 else if (probi[i] < cmax*0.9) pixPtr->SetCharge(-charge);
1342 }
1343 // Move charge of removed pixels to their nearest neighbour (to keep total charge the same)
1344 Int_t near = 0;
1345 for (Int_t i=0; i<nPix; i++) {
1346 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1347 charge = pixPtr->Charge();
1348 if (charge > 0) continue;
1349 near = FindNearest(pixPtr);
1350 pixPtr->SetCharge(0);
1351 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(near);
1352 pixPtr->SetCharge(pixPtr->Charge() - charge);
1353 }
1354 // Update histogram
1355 for (Int_t i=0; i<nPix; i++) {
1356 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1357 ix = mlem->GetXaxis()->FindBin(pixPtr->Coord(0));
1358 iy = mlem->GetYaxis()->FindBin(pixPtr->Coord(1));
1359 mlem->SetBinContent(ix, iy, pixPtr->Charge());
1360 }
1361 if (fDraw) {
1362 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1363 gPad->SetTheta(55);
1364 gPad->SetPhi(30);
1365 mlem->Draw("lego1Fb");
1366 gPad->Update();
1367 }
1368
1369 fxyMu[0][6] = fxyMu[1][6] = 9999;
1370 // Try to split into clusters
1371 Bool_t ok = kTRUE;
1372 if (mlem->GetSum() < 1) ok = kFALSE;
1373 else Split(mlem, coef);
1374 delete [] coef; delete [] probi; coef = 0; probi = 0;
1375 fPixArray->Delete();
1376 return ok;
1377}
1378
1379//_____________________________________________________________________________
1380void AliMUONClusterFinderAZ::Mlem(Double_t *coef, Double_t *probi)
1381{
1382 // Use MLEM to find pixel charges
1383
1384 Int_t nPix = fPixArray->GetEntriesFast();
1385 Int_t npad = fnPads[0] + fnPads[1];
1386 Double_t *probi1 = new Double_t [nPix];
1387 Int_t indx, indx1;
1388 AliMUONPixel *pixPtr;
1389
1390 for (Int_t iter=0; iter<15; iter++) {
1391 // Do iterations
1392 for (Int_t ipix=0; ipix<nPix; ipix++) {
1393 // Correct each pixel
1394 if (probi[ipix] < 0.01) continue; // skip "invisible" pixel
1395 Double_t sum = 0;
1396 probi1[ipix] = probi[ipix];
1397 for (Int_t j=0; j<npad; j++) {
1398 if (fPadIJ[1][j] < 0) continue;
1399 Double_t sum1 = 0;
1400 indx1 = j*nPix;
1401 indx = indx1 + ipix;
1402 for (Int_t i=0; i<nPix; i++) {
1403 // Caculate expectation
1404 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1405 sum1 += pixPtr->Charge()*coef[indx1+i];
1406 } // for (Int_t i=0;
1407 if (fXyq[2][j] > fResponse->MaxAdc()-1 && sum1 > fResponse->MaxAdc()) { probi1[ipix] -= coef[indx]; continue; } // correct for pad charge overflows
1408 //cout << sum1 << " " << fXyq[2][j] << " " << coef[j*nPix+ipix] << endl;
1409 if (coef[indx] > 1.e-6) sum += fXyq[2][j]*coef[indx]/sum1;
1410 } // for (Int_t j=0;
1411 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1412 if (probi1[ipix] > 1.e-6) pixPtr->SetCharge(pixPtr->Charge()*sum/probi1[ipix]);
1413 } // for (Int_t ipix=0;
1414 } // for (Int_t iter=0;
1415 delete [] probi1;
1416 return;
1417}
1418
1419//_____________________________________________________________________________
1420void AliMUONClusterFinderAZ::FindCOG(TH2D *mlem, Double_t *xyc)
1421{
1422 // Calculate position of the center-of-gravity around the maximum pixel
1423
1424 Int_t ixmax, iymax, ix, nsumx=0, nsumy=0, nsum=0;
1425 Int_t i1 = -9, j1 = -9;
1426 mlem->GetMaximumBin(ixmax,iymax,ix);
1427 Int_t nx = mlem->GetNbinsX();
1428 Int_t ny = mlem->GetNbinsY();
1429 Double_t thresh = mlem->GetMaximum()/10;
1430 Double_t x, y, cont, xq=0, yq=0, qq=0;
1431
1432 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1433 y = mlem->GetYaxis()->GetBinCenter(i);
1434 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1435 cont = mlem->GetCellContent(j,i);
1436 if (cont < thresh) continue;
1437 if (i != i1) {i1 = i; nsumy++;}
1438 if (j != j1) {j1 = j; nsumx++;}
1439 x = mlem->GetXaxis()->GetBinCenter(j);
1440 xq += x*cont;
1441 yq += y*cont;
1442 qq += cont;
1443 nsum++;
1444 }
1445 }
1446
1447 Double_t cmax = 0;
1448 Int_t i2 = 0, j2 = 0;
1449 x = y = 0;
1450 if (nsumy == 1) {
1451 // one bin in Y - add one more (with the largest signal)
1452 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1453 if (i == iymax) continue;
1454 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1455 cont = mlem->GetCellContent(j,i);
1456 if (cont > cmax) {
1457 cmax = cont;
1458 x = mlem->GetXaxis()->GetBinCenter(j);
1459 y = mlem->GetYaxis()->GetBinCenter(i);
1460 i2 = i;
1461 j2 = j;
1462 }
1463 }
1464 }
1465 xq += x*cmax;
1466 yq += y*cmax;
1467 qq += cmax;
1468 if (i2 != i1) nsumy++;
1469 if (j2 != j1) nsumx++;
1470 nsum++;
1471 } // if (nsumy == 1)
1472
1473 if (nsumx == 1) {
1474 // one bin in X - add one more (with the largest signal)
1475 cmax = x = y = 0;
1476 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1477 if (j == ixmax) continue;
1478 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1479 cont = mlem->GetCellContent(j,i);
1480 if (cont > cmax) {
1481 cmax = cont;
1482 x = mlem->GetXaxis()->GetBinCenter(j);
1483 y = mlem->GetYaxis()->GetBinCenter(i);
1484 i2 = i;
1485 j2 = j;
1486 }
1487 }
1488 }
1489 xq += x*cmax;
1490 yq += y*cmax;
1491 qq += cmax;
1492 if (i2 != i1) nsumy++;
1493 if (j2 != j1) nsumx++;
1494 nsum++;
1495 } // if (nsumx == 1)
1496
1497 xyc[0] = xq/qq; xyc[1] = yq/qq;
1498 cout << xyc[0] << " " << xyc[1] << " " << qq << " " << nsum << " " << nsumx << " " << nsumy << endl;
1499 return;
1500}
1501
1502//_____________________________________________________________________________
1503Int_t AliMUONClusterFinderAZ::FindNearest(AliMUONPixel *pixPtr0)
1504{
1505 // Find the pixel nearest to the given one
1506 // (algorithm may be not very efficient)
1507
1508 Int_t nPix = fPixArray->GetEntriesFast(), imin = 0;
1509 Double_t rmin = 99999, dx = 0, dy = 0, r = 0;
1510 Double_t xc = pixPtr0->Coord(0), yc = pixPtr0->Coord(1);
1511 AliMUONPixel *pixPtr;
1512
1513 for (Int_t i=0; i<nPix; i++) {
1514 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1515 if (pixPtr->Charge() < 0.5) continue;
1516 dx = (xc - pixPtr->Coord(0)) / pixPtr->Size(0);
1517 dy = (yc - pixPtr->Coord(1)) / pixPtr->Size(1);
1518 r = dx *dx + dy * dy;
1519 if (r < rmin) { rmin = r; imin = i; }
1520 }
1521 return imin;
1522}
1523
1524//_____________________________________________________________________________
1525void AliMUONClusterFinderAZ::Split(TH2D *mlem, Double_t *coef)
1526{
1527 // The main steering function to work with clusters of pixels in anode
1528 // plane (find clusters, decouple them from each other, merge them (if
1529 // necessary), pick up coupled pads, call the fitting function)
1530
1531 Int_t nx = mlem->GetNbinsX();
1532 Int_t ny = mlem->GetNbinsY();
1533 Int_t nPix = fPixArray->GetEntriesFast();
1534
1535 Bool_t *used = new Bool_t[ny*nx];
1536 Double_t cont;
1537 Int_t nclust = 0, indx, indx1;
1538
1539 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
1540
1541 TObjArray *clusters[200]={0};
1542 TObjArray *pix;
1543
1544 // Find clusters of histogram bins (easier to work in 2-D space)
1545 for (Int_t i=1; i<=ny; i++) {
1546 for (Int_t j=1; j<=nx; j++) {
1547 indx = (i-1)*nx + j - 1;
1548 if (used[indx]) continue;
1549 cont = mlem->GetCellContent(j,i);
1550 if (cont < 0.5) continue;
1551 pix = new TObjArray(20);
1552 used[indx] = 1;
1553 pix->Add(BinToPix(mlem,j,i));
1554 AddBin(mlem, i, j, 0, used, pix); // recursive call
1555 clusters[nclust++] = pix;
1556 if (nclust > 200) { cout << " Too many clusters " << endl; ::exit(0); }
1557 } // for (Int_t j=1; j<=nx; j++) {
1558 } // for (Int_t i=1; i<=ny;
1559 cout << nclust << endl;
1560 delete [] used; used = 0;
1561
1562 // Compute couplings between clusters and clusters to pads
1563 Int_t npad = fnPads[0] + fnPads[1];
1564
1565 // Exclude pads with overflows
1566 for (Int_t j=0; j<npad; j++) {
1567 if (fXyq[2][j] > fResponse->MaxAdc()-1) fPadIJ[1][j] = -9;
1568 else fPadIJ[1][j] = 0;
1569 }
1570
1571 // Compute couplings of clusters to pads
c1aed84f 1572 TMatrixD *aijclupad = new TMatrixD(nclust,npad);
1573 *aijclupad = 0;
0df3ca52 1574 Int_t npxclu;
1575 for (Int_t iclust=0; iclust<nclust; iclust++) {
1576 pix = clusters[iclust];
1577 npxclu = pix->GetEntriesFast();
1578 for (Int_t i=0; i<npxclu; i++) {
1579 indx = fPixArray->IndexOf(pix->UncheckedAt(i));
1580 for (Int_t j=0; j<npad; j++) {
1581 // Exclude overflows
1582 if (fPadIJ[1][j] < 0) continue;
1583 if (coef[j*nPix+indx] < kCouplMin) continue;
c1aed84f 1584 (*aijclupad)(iclust,j) += coef[j*nPix+indx];
0df3ca52 1585 }
1586 }
1587 }
1588 // Compute couplings between clusters
c1aed84f 1589 TMatrixD *aijcluclu = new TMatrixD(nclust,nclust);
1590 *aijcluclu = 0;
0df3ca52 1591 for (Int_t iclust=0; iclust<nclust; iclust++) {
1592 for (Int_t j=0; j<npad; j++) {
1593 // Exclude overflows
1594 if (fPadIJ[1][j] < 0) continue;
c1aed84f 1595 if ((*aijclupad)(iclust,j) < kCouplMin) continue;
0df3ca52 1596 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
c1aed84f 1597 if ((*aijclupad)(iclust1,j) < kCouplMin) continue;
1598 (*aijcluclu)(iclust,iclust1) +=
1599 TMath::Sqrt ((*aijclupad)(iclust,j)*(*aijclupad)(iclust1,j));
0df3ca52 1600 }
1601 }
1602 }
1603 for (Int_t iclust=0; iclust<nclust; iclust++) {
1604 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
c1aed84f 1605 (*aijcluclu)(iclust1,iclust) = (*aijcluclu)(iclust,iclust1);
0df3ca52 1606 }
1607 }
1608
c1aed84f 1609 if (nclust > 1) aijcluclu->Print();
0df3ca52 1610
1611 // Find groups of coupled clusters
1612 used = new Bool_t[nclust];
1613 for (Int_t i=0; i<nclust; i++) used[i] = kFALSE;
1614 Int_t *clustNumb = new Int_t[nclust];
1615 Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
1616 Double_t parOk[8];
1617
1618 for (Int_t igroup=0; igroup<nclust; igroup++) {
1619 if (used[igroup]) continue;
1620 used[igroup] = kTRUE;
1621 clustNumb[0] = igroup;
1622 nCoupled = 1;
1623 // Find group of coupled clusters
c1aed84f 1624 AddCluster(igroup, nclust, aijcluclu, used, clustNumb, nCoupled); // recursive
0df3ca52 1625 cout << " nCoupled: " << nCoupled << endl;
1626 for (Int_t i=0; i<nCoupled; i++) cout << clustNumb[i] << " "; cout << endl;
1627
1628 while (nCoupled > 0) {
1629
1630 if (nCoupled < 4) {
1631 nForFit = nCoupled;
1632 for (Int_t i=0; i<nCoupled; i++) clustFit[i] = clustNumb[i];
1633 } else {
1634 // Too many coupled clusters to fit - try to decouple them
1635 // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
1636 // all the others in the group
1637 for (Int_t j=0; j<3; j++) minGroup[j] = -1;
c1aed84f 1638 Double_t coupl = MinGroupCoupl(nCoupled, clustNumb, aijcluclu, minGroup);
0df3ca52 1639
1640 // Flag clusters for fit
1641 nForFit = 0;
1642 while (minGroup[nForFit] >= 0 && nForFit < 3) {
1643 cout << clustNumb[minGroup[nForFit]] << " ";
1644 clustFit[nForFit] = clustNumb[minGroup[nForFit]];
1645 clustNumb[minGroup[nForFit]] -= 999;
1646 nForFit++;
1647 }
1648 cout << nForFit << " " << coupl << endl;
1649 } // else
1650
1651 // Select pads for fit.
c1aed84f 1652 if (SelectPad(nCoupled, nForFit, clustNumb, clustFit, aijclupad) < 3 && nCoupled > 1) {
0df3ca52 1653 // Deselect pads
1654 for (Int_t j=0; j<npad; j++) if (TMath::Abs(fPadIJ[1][j]) == 1) fPadIJ[1][j] = 0;
1655 // Merge the failed cluster candidates (with too few pads to fit) with
1656 // the one with the strongest coupling
c1aed84f 1657 Merge(nForFit, nCoupled, clustNumb, clustFit, clusters, aijcluclu, aijclupad);
0df3ca52 1658 } else {
1659 // Do the fit
1660 nfit = Fit(nForFit, clustFit, clusters, parOk);
1661 }
1662
1663 // Subtract the fitted charges from pads with strong coupling and/or
1664 // return pads for further use
1665 UpdatePads(nfit, parOk);
1666
1667 // Mark used pads
1668 for (Int_t j=0; j<npad; j++) {if (fPadIJ[1][j] == 1) fPadIJ[1][j] = -1;}
1669
1670 // Sort the clusters (move to the right the used ones)
1671 Int_t beg = 0, end = nCoupled - 1;
1672 while (beg < end) {
1673 if (clustNumb[beg] >= 0) { beg++; continue; }
1674 for (Int_t j=end; j>beg; j--) {
1675 if (clustNumb[j] < 0) continue;
1676 end = j - 1;
1677 indx = clustNumb[beg];
1678 clustNumb[beg] = clustNumb[j];
1679 clustNumb[j] = indx;
1680 break;
1681 }
1682 beg++;
1683 }
1684
1685 nCoupled -= nForFit;
1686 if (nCoupled > 3) {
1687 // Remove couplings of used clusters
1688 for (Int_t iclust=nCoupled; iclust<nCoupled+nForFit; iclust++) {
1689 indx = clustNumb[iclust] + 999;
1690 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1691 indx1 = clustNumb[iclust1];
c1aed84f 1692 (*aijcluclu)(indx,indx1) = (*aijcluclu)(indx1,indx) = 0;
0df3ca52 1693 }
1694 }
1695
1696 // Update the remaining clusters couplings (exclude couplings from
1697 // the used pads)
1698 for (Int_t j=0; j<npad; j++) {
1699 if (fPadIJ[1][j] != -1) continue;
1700 for (Int_t iclust=0; iclust<nCoupled; iclust++) {
1701 indx = clustNumb[iclust];
c1aed84f 1702 if ((*aijclupad)(indx,j) < kCouplMin) continue;
0df3ca52 1703 for (Int_t iclust1=iclust+1; iclust1<nCoupled; iclust1++) {
1704 indx1 = clustNumb[iclust1];
c1aed84f 1705 if ((*aijclupad)(indx1,j) < kCouplMin) continue;
0df3ca52 1706 // Check this
c1aed84f 1707 (*aijcluclu)(indx,indx1) -=
1708 TMath::Sqrt ((*aijclupad)(indx,j)*(*aijclupad)(indx1,j));
1709 (*aijcluclu)(indx1,indx) = (*aijcluclu)(indx,indx1);
0df3ca52 1710 }
1711 }
1712 fPadIJ[1][j] = -9;
1713 } // for (Int_t j=0; j<npad;
1714 } // if (nCoupled > 3)
1715 } // while (nCoupled > 0)
1716 } // for (Int_t igroup=0; igroup<nclust;
1717
c1aed84f 1718 //delete aij_clu; aij_clu = 0; delete aijclupad; aijclupad = 0;
1719 aijcluclu->Delete(); aijclupad->Delete();
0df3ca52 1720 for (Int_t iclust=0; iclust<nclust; iclust++) {
1721 pix = clusters[iclust];
1722 pix->Clear();
1723 delete pix; pix = 0;
1724 }
1725 delete [] clustNumb; clustNumb = 0; delete [] used; used = 0;
1726}
1727
1728//_____________________________________________________________________________
1729void AliMUONClusterFinderAZ::AddBin(TH2D *mlem, Int_t ic, Int_t jc, Int_t mode, Bool_t *used, TObjArray *pix)
1730{
1731 // Add a bin to the cluster
1732
1733 Int_t nx = mlem->GetNbinsX();
1734 Int_t ny = mlem->GetNbinsY();
1735 Double_t cont1, cont = mlem->GetCellContent(jc,ic);
1736 AliMUONPixel *pixPtr = 0;
1737
1738 for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) {
1739 for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) {
1740 if (i != ic && j != jc) continue;
1741 if (used[(i-1)*nx+j-1]) continue;
1742 cont1 = mlem->GetCellContent(j,i);
1743 if (mode && cont1 > cont) continue;
1744 used[(i-1)*nx+j-1] = kTRUE;
1745 if (cont1 < 0.5) continue;
1746 if (pix) pix->Add(BinToPix(mlem,j,i));
1747 else {
1748 pixPtr = new AliMUONPixel (mlem->GetXaxis()->GetBinCenter(j),
1749 mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
1750 fPixArray->Add((TObject*)pixPtr);
1751 }
1752 AddBin(mlem, i, j, mode, used, pix); // recursive call
1753 }
1754 }
1755}
1756
1757//_____________________________________________________________________________
1758TObject* AliMUONClusterFinderAZ::BinToPix(TH2D *mlem, Int_t jc, Int_t ic)
1759{
1760 // Translate histogram bin to pixel
1761
1762 Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
1763 Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
1764
1765 Int_t nPix = fPixArray->GetEntriesFast();
1766 AliMUONPixel *pixPtr;
1767
1768 // Compare pixel and bin positions
1769 for (Int_t i=0; i<nPix; i++) {
1770 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1771 if (pixPtr->Charge() < 0.5) continue;
1772 if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4) return (TObject*) pixPtr;
1773 }
1774 cout << " Something wrong ??? " << endl;
1775 return NULL;
1776}
1777
1778//_____________________________________________________________________________
c1aed84f 1779void AliMUONClusterFinderAZ::AddCluster(Int_t ic, Int_t nclust, TMatrixD *aijcluclu, Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
0df3ca52 1780{
1781 // Add a cluster to the group of coupled clusters
1782
1783 for (Int_t i=0; i<nclust; i++) {
1784 if (used[i]) continue;
c1aed84f 1785 if ((*aijcluclu)(i,ic) < kCouplMin) continue;
0df3ca52 1786 used[i] = kTRUE;
1787 clustNumb[nCoupled++] = i;
c1aed84f 1788 AddCluster(i, nclust, aijcluclu, used, clustNumb, nCoupled);
0df3ca52 1789 }
1790}
1791
1792//_____________________________________________________________________________
c1aed84f 1793Double_t AliMUONClusterFinderAZ::MinGroupCoupl(Int_t nCoupled, Int_t *clustNumb, TMatrixD *aijcluclu, Int_t *minGroup)
0df3ca52 1794{
1795 // Find group of clusters with minimum coupling to all the others
1796
1797 Int_t i123max = TMath::Min(3,nCoupled/2);
1798 Int_t indx, indx1, indx2, indx3, nTot = 0;
1799 Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1800
1801 for (Int_t i123=1; i123<=i123max; i123++) {
1802
1803 if (i123 == 1) {
1804 coupl1 = new Double_t [nCoupled];
1805 for (Int_t i=0; i<nCoupled; i++) coupl1[i] = 0;
1806 }
1807 else if (i123 == 2) {
1808 nTot = nCoupled*nCoupled;
1809 coupl2 = new Double_t [nTot];
1810 for (Int_t i=0; i<nTot; i++) coupl2[i] = 9999;
1811 } else {
1812 nTot = nTot*nCoupled;
1813 coupl3 = new Double_t [nTot];
1814 for (Int_t i=0; i<nTot; i++) coupl3[i] = 9999;
1815 } // else
1816
1817 for (Int_t i=0; i<nCoupled; i++) {
1818 indx1 = clustNumb[i];
1819 for (Int_t j=i+1; j<nCoupled; j++) {
1820 indx2 = clustNumb[j];
1821 if (i123 == 1) {
c1aed84f 1822 coupl1[i] += (*aijcluclu)(indx1,indx2);
1823 coupl1[j] += (*aijcluclu)(indx1,indx2);
0df3ca52 1824 }
1825 else if (i123 == 2) {
1826 indx = i*nCoupled + j;
1827 coupl2[indx] = coupl1[i] + coupl1[j];
c1aed84f 1828 coupl2[indx] -= 2 * ((*aijcluclu)(indx1,indx2));
0df3ca52 1829 } else {
1830 for (Int_t k=j+1; k<nCoupled; k++) {
1831 indx3 = clustNumb[k];
1832 indx = i*nCoupled*nCoupled + j*nCoupled + k;
1833 coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
c1aed84f 1834 coupl3[indx] -= 2 * ((*aijcluclu)(indx1,indx3)+(*aijcluclu)(indx2,indx3));
0df3ca52 1835 }
1836 } // else
1837 } // for (Int_t j=i+1;
1838 } // for (Int_t i=0;
1839 } // for (Int_t i123=1;
1840
1841 // Find minimum coupling
1842 Double_t couplMin = 9999;
1843 Int_t locMin = 0;
1844
1845 for (Int_t i123=1; i123<=i123max; i123++) {
1846 if (i123 == 1) {
1847 locMin = TMath::LocMin(nCoupled, coupl1);
1848 couplMin = coupl1[locMin];
1849 minGroup[0] = locMin;
1850 delete [] coupl1; coupl1 = 0;
1851 }
1852 else if (i123 == 2) {
1853 locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1854 if (coupl2[locMin] < couplMin) {
1855 couplMin = coupl2[locMin];
1856 minGroup[0] = locMin/nCoupled;
1857 minGroup[1] = locMin%nCoupled;
1858 }
1859 delete [] coupl2; coupl2 = 0;
1860 } else {
1861 locMin = TMath::LocMin(nTot, coupl3);
1862 if (coupl3[locMin] < couplMin) {
1863 couplMin = coupl3[locMin];
1864 minGroup[0] = locMin/nCoupled/nCoupled;
1865 minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1866 minGroup[2] = locMin%nCoupled;
1867 }
1868 delete [] coupl3; coupl3 = 0;
1869 } // else
1870 } // for (Int_t i123=1;
1871 return couplMin;
1872}
1873
1874//_____________________________________________________________________________
c1aed84f 1875Int_t AliMUONClusterFinderAZ::SelectPad(Int_t nCoupled, Int_t nForFit, Int_t *clustNumb, Int_t *clustFit, TMatrixD *aijclupad)
0df3ca52 1876{
1877 // Select pads for fit. If too many coupled clusters, find pads giving
1878 // the strongest coupling with the rest of clusters and exclude them from the fit.
1879
1880 Int_t npad = fnPads[0] + fnPads[1];
c1aed84f 1881 Double_t *padpix = 0;
0df3ca52 1882
1883 if (nCoupled > 3) {
c1aed84f 1884 padpix = new Double_t[npad];
1885 for (Int_t i=0; i<npad; i++) padpix[i] = 0;
0df3ca52 1886 }
1887
1888 Int_t nOK = 0, indx, indx1;
1889 for (Int_t iclust=0; iclust<nForFit; iclust++) {
1890 indx = clustFit[iclust];
1891 for (Int_t j=0; j<npad; j++) {
1892 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
c1aed84f 1893 if ((*aijclupad)(indx,j) < kCouplMin) continue;
0df3ca52 1894 fPadIJ[1][j] = 1; // pad to be used in fit
1895 nOK++;
1896 if (nCoupled > 3) {
1897 // Check other clusters
1898 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1899 indx1 = clustNumb[iclust1];
1900 if (indx1 < 0) continue;
c1aed84f 1901 if ((*aijclupad)(indx1,j) < kCouplMin) continue;
1902 padpix[j] += (*aijclupad)(indx1,j);
0df3ca52 1903 }
1904 } // if (nCoupled > 3)
1905 } // for (Int_t j=0; j<npad;
1906 } // for (Int_t iclust=0; iclust<nForFit
1907 if (nCoupled < 4) return nOK;
1908
1909 Double_t aaa = 0;
1910 for (Int_t j=0; j<npad; j++) {
c1aed84f 1911 if (padpix[j] < kCouplMin) continue;
1912 cout << j << " " << padpix[j] << " ";
0df3ca52 1913 cout << fXyq[0][j] << " " << fXyq[1][j] << endl;
c1aed84f 1914 aaa += padpix[j];
0df3ca52 1915 fPadIJ[1][j] = -1; // exclude pads with strong coupling to the other clusters
1916 nOK--;
1917 }
c1aed84f 1918 delete [] padpix; padpix = 0;
0df3ca52 1919 return nOK;
1920}
1921
1922//_____________________________________________________________________________
c1aed84f 1923void AliMUONClusterFinderAZ::Merge(Int_t nForFit, Int_t nCoupled, Int_t *clustNumb, Int_t *clustFit, TObjArray **clusters, TMatrixD *aijcluclu, TMatrixD *aijclupad)
0df3ca52 1924{
1925 // Merge the group of clusters with the one having the strongest coupling with them
1926
1927 Int_t indx, indx1, npxclu, npxclu1, imax=0;
1928 TObjArray *pix, *pix1;
1929 Double_t couplMax;
1930
1931 for (Int_t icl=0; icl<nForFit; icl++) {
1932 indx = clustFit[icl];
1933 pix = clusters[indx];
1934 npxclu = pix->GetEntriesFast();
1935 couplMax = -1;
1936 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1937 indx1 = clustNumb[icl1];
1938 if (indx1 < 0) continue;
c1aed84f 1939 if ((*aijcluclu)(indx,indx1) > couplMax) {
1940 couplMax = (*aijcluclu)(indx,indx1);
0df3ca52 1941 imax = indx1;
1942 }
1943 } // for (Int_t icl1=0;
1944 /*if (couplMax < kCouplMin) {
1945 cout << " Oops " << couplMax << endl;
c1aed84f 1946 aijcluclu->Print();
0df3ca52 1947 cout << icl << " " << indx << " " << npxclu << " " << nLinks << endl;
1948 ::exit(0);
1949 }*/
1950 // Add to it
1951 pix1 = clusters[imax];
1952 npxclu1 = pix1->GetEntriesFast();
1953 // Add pixels
1954 for (Int_t i=0; i<npxclu; i++) { pix1->Add(pix->UncheckedAt(i)); pix->RemoveAt(i); }
1955 cout << " New number of pixels: " << npxclu1 << " " << pix1->GetEntriesFast() << endl;
1956 //Add cluster-to-cluster couplings
c1aed84f 1957 //aijcluclu->Print();
0df3ca52 1958 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1959 indx1 = clustNumb[icl1];
1960 if (indx1 < 0 || indx1 == imax) continue;
c1aed84f 1961 (*aijcluclu)(indx1,imax) += (*aijcluclu)(indx,indx1);
1962 (*aijcluclu)(imax,indx1) = (*aijcluclu)(indx1,imax);
0df3ca52 1963 }
c1aed84f 1964 (*aijcluclu)(indx,imax) = (*aijcluclu)(imax,indx) = 0;
1965 //aijcluclu->Print();
0df3ca52 1966 //Add cluster-to-pad couplings
1967 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1968 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
c1aed84f 1969 (*aijclupad)(imax,j) += (*aijclupad)(indx,j);
1970 (*aijclupad)(indx,j) = 0;
0df3ca52 1971 }
1972 } // for (Int_t icl=0; icl<nForFit;
1973}
1974
1975//_____________________________________________________________________________
1976Int_t AliMUONClusterFinderAZ::Fit(Int_t nfit, Int_t *clustFit, TObjArray **clusters, Double_t *parOk)
1977{
1978 // Find selected clusters to selected pad charges
1979
1980 TH2D *mlem = (TH2D*) gROOT->FindObject("mlem");
1981 //Int_t nx = mlem->GetNbinsX();
1982 //Int_t ny = mlem->GetNbinsY();
1983 Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
1984 Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
1985 Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
1986 Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
1987 //Double_t qmin = 0, qmax = 1;
1988 Double_t step[3]={0.01,0.002,0.02};
1989
1990 Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8];
1991 TObjArray *pix;
1992 Int_t npxclu;
1993
1994 // Number of pads to use
1995 Int_t npads = 0;
1996 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {if (fPadIJ[1][i] == 1) npads++;}
1997 for (Int_t i=0; i<nfit; i++) {cout << i+1 << " " << clustFit[i] << " ";}
1998 cout << nfit << endl;
1999 cout << " Number of pads to fit: " << npads << endl;
2000 fNpar = 0;
2001 fQtot = 0;
2002 if (npads < 2) return 0;
2003
2004 // Take cluster maxima as fitting seeds
2005 AliMUONPixel *pixPtr;
2006 Double_t xyseed[3][2], qseed[3];
2007 for (Int_t ifit=1; ifit<=nfit; ifit++) {
2008 cmax = 0;
2009 pix = clusters[clustFit[ifit-1]];
2010 npxclu = pix->GetEntriesFast();
2011 for (Int_t clu=0; clu<npxclu; clu++) {
2012 pixPtr = (AliMUONPixel*) pix->UncheckedAt(clu);
2013 cont = pixPtr->Charge();
2014 fQtot += cont;
2015 if (cont > cmax) {
2016 cmax = cont;
2017 xseed = pixPtr->Coord(0);
2018 yseed = pixPtr->Coord(1);
2019 }
2020 }
2021 xyseed[ifit-1][0] = xseed;
2022 xyseed[ifit-1][1] = yseed;
2023 qseed[ifit-1] = cmax;
2024 } // for (Int_t ifit=1;
2025
2026 Int_t nDof, maxSeed[3];
2027 Double_t fmin, chi2o = 9999, chi2n;
2028
2029 // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
2030 // lower, try 3-track (if number of pads is sufficient).
2031
2032 TMath::Sort(nfit, qseed, maxSeed, kTRUE); // in decreasing order
2033 nfit = TMath::Min (nfit, (npads + 1) / 3);
2034
2035 Double_t *gin = 0, func0, func1, param[8], param0[2][8], deriv[2][8], step0[8];
2036 Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0;
2037 Double_t delta[8], scMax, dder[8], estim, shiftSave = 0;
2038 Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail;
2039
2040 for (Int_t iseed=0; iseed<nfit; iseed++) {
2041
2042 for (Int_t j=0; j<3; j++) step0[fNpar+j] = shift[fNpar+j] = step[j];
2043 param[fNpar] = xyseed[maxSeed[iseed]][0];
2044 parmin[fNpar] = xmin;
2045 parmax[fNpar++] = xmax;
2046 param[fNpar] = xyseed[maxSeed[iseed]][1];
2047 parmin[fNpar] = ymin;
2048 parmax[fNpar++] = ymax;
2049 if (fNpar > 2) {
2050 param[fNpar] = fNpar == 4 ? 0.5 : 0.3;
2051 parmin[fNpar] = 0;
2052 parmax[fNpar++] = 1;
2053 }
2054
2055 // Try new algorithm
2056 min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
2057
2058 while (1) {
2059 max = !min;
2060 fcn1(fNpar, gin, func0, param, 1); nCall++;
2061 //cout << " Func: " << func0 << endl;
2062
2063 func2[max] = func0;
2064 for (Int_t j=0; j<fNpar; j++) {
2065 param0[max][j] = param[j];
2066 delta[j] = step0[j];
2067 param[j] += delta[j] / 10;
2068 if (j > 0) param[j-1] -= delta[j-1] / 10;
2069 fcn1(fNpar, gin, func1, param, 1); nCall++;
2070 deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
2071 //cout << j << " " << deriv[max][j] << endl;
2072 dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
2073 (param0[0][j] - param0[1][j]) : 0; // second derivative
2074 }
2075 param[fNpar-1] -= delta[fNpar-1] / 10;
2076 if (nCall > 2000) ::exit(0);
2077
2078 min = func2[0] < func2[1] ? 0 : 1;
2079 nFail = min == max ? 0 : nFail + 1;
2080
2081 stepMax = derMax = estim = 0;
2082 for (Int_t j=0; j<fNpar; j++) {
2083 // Estimated distance to minimum
2084 shift0 = shift[j];
2085 if (nLoop == 1) shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
2086 else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3) shift[j] = 0;
2087 else if (deriv[min][j]*deriv[!min][j] > 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])
2088 || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) {
2089 shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
2090 if (min == max) {
2091 if (memory[j] > 1) { shift[j] *= 2; } //cout << " Memory " << memory[j] << " " << shift[j] << endl; }
2092 memory[j]++;
2093 }
2094 } else {
2095 shift[j] = -deriv[min][j] / dder[j];
2096 memory[j] = 0;
2097 }
2098 if (TMath::Abs(shift[j])/step0[j] > estim) {
2099 estim = TMath::Abs(shift[j])/step0[j];
2100 iestMax = j;
2101 }
2102
2103 // Too big step
2104 if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
2105
2106 // Failed to improve minimum
2107 if (min != max) {
2108 memory[j] = 0;
2109 param[j] = param0[min][j];
2110 if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j]) shift[j] = (shift[j] + shift0) / 2;
2111 else shift[j] /= -2;
2112 }
2113
2114 // Too big step
2115 if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
2116 shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
2117
2118 // Introduce step relaxation factor
2119 if (memory[j] < 3) {
2120 scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
2121 if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
2122 shift[j] = TMath::Sign (shift0*scMax, shift[j]);
2123 }
2124 param[j] += shift[j];
2125
2126 //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
2127 stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
2128 if (TMath::Abs(deriv[min][j]) > derMax) {
2129 idMax = j;
2130 derMax = TMath::Abs (deriv[min][j]);
2131 }
2132 } // for (Int_t j=0; j<fNpar;
2133 //cout << max << " " << func2[min] << " " << derMax << " " << stepMax << " " << estim << " " << iestMax << " " << nCall << endl;
2134 if (estim < 1 && derMax < 2 || nLoop > 100) break; // minimum was found
2135
2136 nLoop++;
2137 // Check for small step
2138 if (shift[idMax] == 0) { shift[idMax] = step0[idMax]/10; param[idMax] += shift[idMax]; continue; }
2139 if (!memory[idMax] && derMax > 0.5 && nLoop > 10) {
2140 //cout << " ok " << deriv[min][idMax] << " " << deriv[!min][idMax] << " " << dder[idMax]*shift[idMax] << " " << shift[idMax] << endl;
2141 if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10) {
2142 if (min == max) dder[idMax] = -dder[idMax];
2143 shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
2144 param[idMax] += shift[idMax];
2145 stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
2146 //cout << shift[idMax] << " " << param[idMax] << endl;
2147 if (min == max) shiftSave = shift[idMax];
2148 }
2149 if (nFail > 10) {
2150 param[idMax] -= shift[idMax];
2151 shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
2152 param[idMax] += shift[idMax];
2153 //cout << shift[idMax] << endl;
2154 }
2155 }
2156 } // while (1)
2157 fmin = func2[min];
2158
2159 nDof = npads - fNpar;
2160 chi2n = nDof ? fmin/nDof : 0;
2161
2162 if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; }
2163 // Save parameters and errors
2164 for (Int_t i=0; i<fNpar; i++) {
2165 parOk[i] = param0[min][i];
2166 errOk[i] = fmin;
2167 }
2168
2169 cout << chi2o << " " << chi2n << endl;
2170 chi2o = chi2n;
2171 if (fmin < 0.1) break; // !!!???
2172 } // for (Int_t iseed=0;
2173
2174 for (Int_t i=0; i<fNpar; i++) {
2175 if (i == 4 || i == 7) continue;
2176 cout << parOk[i] << " " << errOk[i] << endl;
2177 }
2178 nfit = (fNpar + 1) / 3;
2179 Double_t rad;
2180 Int_t indx, imax;
2181 if (fReco) {
2182 for (Int_t j=0; j<nfit; j++) {
2183 indx = j<2 ? j*2 : j*2+1;
2184 AddRawCluster (parOk[indx], parOk[indx+1], errOk[indx]);
2185 }
2186 return nfit;
2187 }
2188 for (Int_t i=0; i<fnMu; i++) {
2189 cmax = fxyMu[i][6];
2190 for (Int_t j=0; j<nfit; j++) {
2191 indx = j<2 ? j*2 : j*2+1;
2192 rad = (fxyMu[i][0]-parOk[indx])*(fxyMu[i][0]-parOk[indx]) +
2193 (fxyMu[i][1]-parOk[indx+1])*(fxyMu[i][1]-parOk[indx+1]);
2194 if (rad < cmax) {
2195 cmax = rad;
2196 imax = indx;
2197 fxyMu[i][6] = cmax;
2198 fxyMu[i][2] = parOk[imax] - fxyMu[i][0];
2199 fxyMu[i][4] = parOk[imax+1] - fxyMu[i][1];
2200 fxyMu[i][3] = errOk[imax];
2201 fxyMu[i][5] = errOk[imax+1];
2202 }
2203 }
2204 }
2205 return nfit;
2206}
2207
2208//_____________________________________________________________________________
6aaf81e6 2209void fcn1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
0df3ca52 2210{
2211 // Fit for one track
2212 AliMUONClusterFinderAZ& c = *(AliMUONClusterFinderAZ::fgClusterFinder);
2213
2214 Int_t cath, ix, iy, indx, npads=0;
2215 Double_t charge, delta, coef=0, chi2=0;
2216 for (Int_t j=0; j<c.fnPads[0]+c.fnPads[1]; j++) {
2217 if (c.fPadIJ[1][j] != 1) continue;
2218 cath = c.fPadIJ[0][j];
2219 npads++;
2220 c.fSegmentation[cath]->GetPadI(c.fXyq[0][j],c.fXyq[1][j],c.fZpad,ix,iy);
2221 c.fSegmentation[cath]->SetPad(ix,iy);
2222 charge = 0;
2223 for (Int_t i=c.fNpar/3; i>=0; i--) { // sum over tracks
2224 indx = i<2 ? 2*i : 2*i+1;
2225 c.fSegmentation[cath]->SetHit(par[indx],par[indx+1],c.fZpad);
2226 //charge += c.fResponse->IntXY(c.fSegmentation[cath])*par[icl*3+2];
2227 if (c.fNpar == 2) coef = 1;
2228 else coef = i==c.fNpar/3 ? par[indx+2] : 1-coef;
2229 //coef = TMath::Max (coef, 0.);
2230 if (c.fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2231 //coef = TMath::Max (coef, 0.);
2232 charge += c.fResponse->IntXY(c.fSegmentation[cath])*coef;
2233 }
2234 charge *= c.fQtot;
2235 //if (c.fXyq[2][j] > c.fResponse->MaxAdc()-1 && charge >
2236 // c.fResponse->MaxAdc()) charge = c.fResponse->MaxAdc();
2237 delta = charge - c.fXyq[2][j];
2238 delta /= TMath::Sqrt ((Double_t)c.fXyq[2][j]);
2239 //chi2 += TMath::Abs(delta);
2240 chi2 += delta*delta;
2241 } // for (Int_t j=0;
2242 f = chi2;
2243 Double_t qAver = c.fQtot/npads; //(c.fnPads[0]+c.fnPads[1]);
2244 f = chi2/qAver;
2245}
2246
2247//_____________________________________________________________________________
6aaf81e6 2248void AliMUONClusterFinderAZ::UpdatePads(Int_t /*nfit*/, Double_t *par)
0df3ca52 2249{
2250 // Subtract the fitted charges from pads with strong coupling
2251
2252 Int_t cath, ix, iy, indx;
2253 Double_t charge, coef=0;
2254 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2255 if (fPadIJ[1][j] != -1) continue;
2256 if (fNpar != 0) {
2257 cath = fPadIJ[0][j];
2258 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
2259 fSegmentation[cath]->SetPad(ix,iy);
2260 charge = 0;
2261 for (Int_t i=fNpar/3; i>=0; i--) { // sum over tracks
2262 indx = i<2 ? 2*i : 2*i+1;
2263 fSegmentation[cath]->SetHit(par[indx],par[indx+1],fZpad);
2264 if (fNpar == 2) coef = 1;
2265 else coef = i==fNpar/3 ? par[indx+2] : 1-coef;
2266 if (fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2267 charge += fResponse->IntXY(fSegmentation[cath])*coef;
2268 }
2269 charge *= fQtot;
2270 fXyq[2][j] -= charge;
2271 } // if (fNpar != 0)
2272 if (fXyq[2][j] > fResponse->ZeroSuppression()) fPadIJ[1][j] = 0; // return pad for further using
2273 } // for (Int_t j=0;
2274}
2275
2276//_____________________________________________________________________________
6aaf81e6 2277Bool_t AliMUONClusterFinderAZ::TestTrack(Int_t /*t*/) {
0df3ca52 2278// Test if track was user selected
2279 return kTRUE;
2280 /*
2281 if (fTrack[0]==-1 || fTrack[1]==-1) {
2282 return kTRUE;
2283 } else if (t==fTrack[0] || t==fTrack[1]) {
2284 return kTRUE;
2285 } else {
2286 return kFALSE;
2287 }
2288 */
2289}
2290
2291//_____________________________________________________________________________
2292void AliMUONClusterFinderAZ::AddRawCluster(Double_t x, Double_t y, Double_t fmin)
2293{
2294 //
2295 // Add a raw cluster copy to the list
2296 //
2297 AliMUONRawCluster cnew;
2298 AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON");
2299 //pMUON->AddRawCluster(fInput->Chamber(),c);
2300
2301 Int_t cath;
2302 for (cath=0; cath<2; cath++) {
2303 cnew.fX[cath] = x;
2304 cnew.fY[cath] = y;
2305 cnew.fZ[cath] = fZpad;
2306 cnew.fQ[cath] = 100;
2307 cnew.fPeakSignal[cath] = 20;
2308 cnew.fMultiplicity[cath] = 5;
2309 cnew.fNcluster[cath] = 1;
2310 cnew.fChi2[cath] = fmin; //0.1;
2311 /*
2312 cnew.fMultiplicity[cath]=c->fMultiplicity[cath];
2313 for (i=0; i<fMul[cath]; i++) {
2314 cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath];
2315 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
2316 }
2317 fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath);
2318 fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]);
2319 FillCluster(&cnew,cath);
2320 */
2321 }
2322 //cnew.fClusterType=cnew.PhysicsContribution();
ce3f5e87 2323 pMUON->GetMUONData()->AddRawCluster(AliMUONClusterInput::Instance()->Chamber(),cnew);
0df3ca52 2324 //fNPeaks++;
2325}
2326
2327//_____________________________________________________________________________
2328Int_t AliMUONClusterFinderAZ::FindLocalMaxima(Int_t *localMax, Double_t *maxVal)
2329{
2330 // Find local maxima in pixel space for large preclusters in order to
2331 // try to split them into smaller pieces (to speed up the MLEM procedure)
2332
2333 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2334 if (hist) hist->Delete();
2335
cd747ddb 2336 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 2337 Int_t nPix = fPixArray->GetEntriesFast();
2338 AliMUONPixel *pixPtr = 0;
2339 for (Int_t ipix=0; ipix<nPix; ipix++) {
2340 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2341 for (Int_t i=0; i<4; i++)
2342 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
2343 }
2344 for (Int_t i=0; i<4; i++) xylim[i] -= pixPtr->Size(i/2);
2345
2346 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
2347 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
2348 hist = new TH2D("anode","anode",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
2349 for (Int_t ipix=0; ipix<nPix; ipix++) {
2350 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2351 hist->Fill(pixPtr->Coord(0), pixPtr->Coord(1), pixPtr->Charge());
2352 }
2353 if (fDraw) {
2354 ((TCanvas*)gROOT->FindObject("c2"))->cd();
2355 gPad->SetTheta(55);
2356 gPad->SetPhi(30);
2357 hist->Draw("lego1Fb");
2358 gPad->Update();
2359 int ia;
2360 cin >> ia;
2361 }
2362
2363 Int_t nMax = 0, indx;
2364 Int_t *isLocalMax = new Int_t[ny*nx];
2365 for (Int_t i=0; i<ny*nx; i++) isLocalMax[i] = 0;
2366
2367 for (Int_t i=1; i<=ny; i++) {
2368 indx = (i-1) * nx;
2369 for (Int_t j=1; j<=nx; j++) {
2370 if (hist->GetCellContent(j,i) < 0.5) continue;
2371 //if (isLocalMax[indx+j-1] < 0) continue;
2372 if (isLocalMax[indx+j-1] != 0) continue;
2373 FlagLocalMax(hist, i, j, isLocalMax);
2374 }
2375 }
2376
2377 for (Int_t i=1; i<=ny; i++) {
2378 indx = (i-1) * nx;
2379 for (Int_t j=1; j<=nx; j++) {
2380 if (isLocalMax[indx+j-1] > 0) {
2381 localMax[nMax] = indx + j - 1;
2382 maxVal[nMax++] = hist->GetCellContent(j,i);
2383 }
2384 if (nMax > 99) { cout << " Too many local maxima !!!" << endl; ::exit(0); }
2385 }
2386 }
2387 cout << " Local max: " << nMax << endl;
2388 delete [] isLocalMax; isLocalMax = 0;
2389 return nMax;
2390}
2391
2392//_____________________________________________________________________________
2393void AliMUONClusterFinderAZ::FlagLocalMax(TH2D *hist, Int_t i, Int_t j, Int_t *isLocalMax)
2394{
2395 // Flag pixels (whether or not local maxima)
2396
2397 Int_t nx = hist->GetNbinsX();
2398 Int_t ny = hist->GetNbinsY();
2399 Int_t cont = TMath::Nint (hist->GetCellContent(j,i));
2400 Int_t cont1 = 0;
2401
2402 for (Int_t i1=i-1; i1<i+2; i1++) {
2403 if (i1 < 1 || i1 > ny) continue;
2404 for (Int_t j1=j-1; j1<j+2; j1++) {
2405 if (j1 < 1 || j1 > nx) continue;
2406 if (i == i1 && j == j1) continue;
2407 cont1 = TMath::Nint (hist->GetCellContent(j1,i1));
2408 if (cont < cont1) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2409 else if (cont > cont1) isLocalMax[(i1-1)*nx+j1-1] = -1;
2410 else { // the same charge
2411 isLocalMax[(i-1)*nx+j-1] = 1;
2412 if (isLocalMax[(i1-1)*nx+j1-1] == 0) {
2413 FlagLocalMax(hist, i1, j1, isLocalMax);
2414 if (isLocalMax[(i1-1)*nx+j1-1] < 0) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2415 else isLocalMax[(i1-1)*nx+j1-1] = -1;
2416 }
2417 }
2418 }
2419 }
2420 isLocalMax[(i-1)*nx+j-1] = 1; // local maximum
2421}
2422
2423//_____________________________________________________________________________
2424void AliMUONClusterFinderAZ::FindCluster(Int_t *localMax, Int_t iMax)
2425{
2426 // Find pixel cluster around local maximum #iMax and pick up pads
2427 // overlapping with it
2428
2429 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2430 Int_t nx = hist->GetNbinsX();
2431 Int_t ny = hist->GetNbinsY();
2432 Int_t ic = localMax[iMax] / nx + 1;
2433 Int_t jc = localMax[iMax] % nx + 1;
2434 Bool_t *used = new Bool_t[ny*nx];
2435 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
2436
2437 // Drop all pixels from the array - pick up only the ones from the cluster
2438 fPixArray->Delete();
2439
2440 Double_t wx = hist->GetXaxis()->GetBinWidth(1)/2;
2441 Double_t wy = hist->GetYaxis()->GetBinWidth(1)/2;
2442 Double_t yc = hist->GetYaxis()->GetBinCenter(ic);
2443 Double_t xc = hist->GetXaxis()->GetBinCenter(jc);
2444 Double_t cont = hist->GetCellContent(jc,ic);
2445 AliMUONPixel *pixPtr = new AliMUONPixel (xc, yc, wx, wy, cont);
2446 fPixArray->Add((TObject*)pixPtr);
2447 used[(ic-1)*nx+jc-1] = kTRUE;
2448 AddBin(hist, ic, jc, 1, used, (TObjArray*)0); // recursive call
2449
2450 Int_t nPix = fPixArray->GetEntriesFast(), npad = fnPads[0] + fnPads[1];
2451 for (Int_t i=0; i<nPix; i++) {
2452 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(0,wx);
2453 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(1,wy);
2454 }
2455 cout << iMax << " " << nPix << endl;
2456
2457 Float_t xy[4], xy12[4];
2458 // Pick up pads which overlap with found pixels
2459 for (Int_t i=0; i<npad; i++) fPadIJ[1][i] = -1;
2460 for (Int_t i=0; i<nPix; i++) {
2461 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
2462 for (Int_t j=0; j<4; j++)
2463 xy[j] = pixPtr->Coord(j/2) + (j%2 ? 1 : -1)*pixPtr->Size(j/2);
2464 for (Int_t j=0; j<npad; j++)
2465 if (Overlap(xy, j, xy12, 0)) fPadIJ[1][j] = 0; // flag for use
2466 }
2467
2468 delete [] used; used = 0;
2469}