]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONClusterFinderAZ.cxx
In stand-allone mode, pass stack to entries.
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterFinderAZ.cxx
CommitLineData
30178c30 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18// Clusterizer class developped by Zitchenko (Dubna)
0df3ca52 19
ae17f568 20#include <stdlib.h>
0df3ca52 21#include <Riostream.h>
22#include <TROOT.h>
23#include <TCanvas.h>
24#include <TLine.h>
25#include <TTree.h>
26#include <TH2.h>
27#include <TView.h>
28#include <TStyle.h>
29#include <TMinuit.h>
30#include <TMatrixD.h>
31
30178c30 32#include "AliMUONClusterFinderAZ.h"
0df3ca52 33#include "AliHeader.h"
34#include "AliRun.h"
35#include "AliMUON.h"
36#include "AliMUONChamber.h"
37#include "AliMUONDigit.h"
38#include "AliMUONHit.h"
39#include "AliMUONChamber.h"
40#include "AliMUONRawCluster.h"
41#include "AliMUONClusterInput.h"
42#include "AliMUONPixel.h"
5d12ce38 43#include "AliMC.h"
0df3ca52 44
0df3ca52 45ClassImp(AliMUONClusterFinderAZ)
0558a292 46
343146bf 47 const Double_t AliMUONClusterFinderAZ::fgkCouplMin = 1.e-3; // threshold on coupling
0558a292 48 AliMUONClusterFinderAZ* AliMUONClusterFinderAZ::fgClusterFinder = 0x0;
49 TMinuit* AliMUONClusterFinderAZ::fgMinuit = 0x0;
0df3ca52 50
0df3ca52 51//_____________________________________________________________________________
30178c30 52AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(Bool_t draw, Int_t iReco)
74f7bbc5 53 : AliMUONClusterFinderVS()
0df3ca52 54{
55// Constructor
56 for (Int_t i=0; i<4; i++) {fHist[i] = 0;}
57 fMuonDigits = 0;
58 fSegmentation[1] = fSegmentation[0] = 0;
0558a292 59 fgClusterFinder = 0x0;
60 fgMinuit = 0x0;
0df3ca52 61 if (!fgClusterFinder) fgClusterFinder = this;
62 if (!fgMinuit) fgMinuit = new TMinuit(8);
63 fDraw = draw;
64 fReco = iReco;
65 fPixArray = new TObjArray(20);
66 /*
67 fPoints = 0;
68 fPhits = 0;
69 fRpoints = 0;
70 fCanvas = 0;
71 fNextCathode = kFALSE;
72 fColPad = 0;
73 */
74}
75
74f7bbc5 76//_____________________________________________________________________________
77AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(const AliMUONClusterFinderAZ& rhs)
78 : AliMUONClusterFinderVS(rhs)
79{
80// Protected copy constructor
81
82 Fatal("AliMUONClusterFinderAZModule", "Not implemented.");
83}
84
0df3ca52 85//_____________________________________________________________________________
86AliMUONClusterFinderAZ::~AliMUONClusterFinderAZ()
87{
88 // Destructor
89 delete fgMinuit; fgMinuit = 0; delete fPixArray; fPixArray = 0;
90 /*
91 // Delete space point structure
92 if (fPoints) fPoints->Delete();
93 delete fPoints;
94 fPoints = 0;
95 //
96 if (fPhits) fPhits->Delete();
97 delete fPhits;
98 fPhits = 0;
99 //
100 if (fRpoints) fRpoints->Delete();
101 delete fRpoints;
102 fRpoints = 0;
103 */
104}
105
106//_____________________________________________________________________________
107void AliMUONClusterFinderAZ::FindRawClusters()
108{
109// To provide the same interface as in AliMUONClusterFinderVS
110
111 EventLoop (gAlice->GetHeader()->GetEvent(), AliMUONClusterInput::Instance()->Chamber());
112}
113
114//_____________________________________________________________________________
115void AliMUONClusterFinderAZ::EventLoop(Int_t nev=0, Int_t ch=0)
116{
117// Loop over events
118
119 FILE *lun = 0;
120 TCanvas *c1 = 0;
121 TView *view = 0;
122 TH2F *hist = 0;
123 Double_t p1[3]={0}, p2[3];
c1aed84f 124 TTree *treeR = 0;
0df3ca52 125 if (fDraw) {
126 // File
127 lun = fopen("pool.dat","w");
128 c1 = new TCanvas("c1","Clusters",0,0,600,700);
129 c1->Divide(1,2);
130 new TCanvas("c2","Mlem",700,0,600,350);
131 }
132
133newev:
134 Int_t nparticles = 0, nent;
88cb7938 135
136 //Loaders
137 AliRunLoader * rl = AliRunLoader::GetRunLoader();
138 AliLoader * gime = rl->GetLoader("MUONLoader");
139
140 if (!fReco) nparticles = rl->GetEvent(nev);
5d12ce38 141 else nparticles = gAlice->GetMCApp()->GetNtrack();
0df3ca52 142 cout << "nev " << nev <<endl;
143 cout << "nparticles " << nparticles <<endl;
144 if (nparticles <= 0) return;
145
c1aed84f 146 TTree *treeH = gime->TreeH();
147 Int_t ntracks = (Int_t) treeH->GetEntries();
0df3ca52 148 cout<<"ntracks "<<ntracks<<endl;
149
150 // Get pointers to Alice detectors and Digits containers
c1aed84f 151 AliMUON *muon = (AliMUON*) gAlice->GetModule("MUON");
152 if (!muon) return;
0df3ca52 153 // TClonesArray *Particles = gAlice->Particles();
154 if (!fReco) {
c1aed84f 155 treeR = gime->TreeR();
156 if (treeR) {
157 muon->ResetRawClusters();
158 nent = (Int_t) treeR->GetEntries();
0df3ca52 159 if (nent != 1) {
160 cout << "Error in MUONdrawClust" << endl;
161 cout << " nent = " << nent << " not equal to 1" << endl;
162 //exit(0);
163 }
c1aed84f 164 } // if (treeR)
0df3ca52 165 } // if (!fReco)
166
c1aed84f 167 TTree *treeD = gime->TreeD();
168 //muon->ResetDigits();
0df3ca52 169
c1aed84f 170 TClonesArray *listMUONrawclust ;
0df3ca52 171 AliMUONChamber* iChamber = 0;
172
173 // As default draw the first cluster of the chamber #0
174
175newchamber:
176 if (ch > 9) {if (fReco) return; nev++; ch = 0; goto newev;}
177 //gAlice->ResetDigits();
c1aed84f 178 fMuonDigits = muon->GetMUONData()->Digits(ch);
0df3ca52 179 if (fMuonDigits == 0) return;
c1aed84f 180 iChamber = &(muon->Chamber(ch));
0df3ca52 181 fSegmentation[0] = iChamber->SegmentationModel(1);
182 fSegmentation[1] = iChamber->SegmentationModel(2);
183 fResponse = iChamber->ResponseModel();
184
185 nent = 0;
186
c1aed84f 187 if (treeD) {
188 nent = (Int_t) treeD->GetEntries();
0df3ca52 189 //printf(" entries %d \n", nent);
190 }
191
192 Int_t ndigits[2]={9,9}, nShown[2]={0};
193 for (Int_t i=0; i<2; i++) {
343146bf 194 for (Int_t j=0; j<fgkDim; j++) {fUsed[i][j]=kFALSE;}
0df3ca52 195 }
196
197next:
198 if (ndigits[0] == nShown[0] && ndigits[1] == nShown[1]) {
199 // No more clusters
200 if (fReco) return;
201 ch++;
202 goto newchamber; // next chamber
203 }
204 Float_t xpad, ypad, zpad, zpad0;
205 TLine *line[99]={0};
206 Int_t nLine = 0;
207 Bool_t first = kTRUE;
208 cout << " *** Event # " << nev << " chamber: " << ch << endl;
209 fnPads[0] = fnPads[1] = 0;
343146bf 210 for (Int_t i=0; i<fgkDim; i++) {fPadIJ[1][i] = 0;}
0df3ca52 211 //for (Int_t iii = 0; iii<999; iii++) {
212 for (Int_t iii = 0; iii<2; iii++) {
213 Int_t cath = TMath::Odd(iii);
214 gAlice->ResetDigits();
c1aed84f 215 treeD->GetEvent(cath);
216 fMuonDigits = muon->GetMUONData()->Digits(ch);
0df3ca52 217
218 ndigits[cath] = fMuonDigits->GetEntriesFast();
219 if (!ndigits[0] && !ndigits[1]) {if (fReco) return; ch++; goto newchamber;}
220 if (ndigits[cath] == 0) continue;
221 cout << " ndigits: " << ndigits[cath] << " " << cath << endl;
222
223 AliMUONDigit *mdig;
224 Int_t digit;
225
c1aed84f 226 Bool_t eEOC = kTRUE; // end-of-cluster
0df3ca52 227 for (digit = 0; digit < ndigits[cath]; digit++) {
228 mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
229 if (mdig->Cathode() != cath) continue;
230 if (first) {
231 // Find first unused pad
232 if (fUsed[cath][digit]) continue;
233 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0);
234 } else {
235 if (fUsed[cath][digit]) continue;
236 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad);
237 if (TMath::Abs(zpad-zpad0)>0.1) continue; // different slats
238 // Find a pad overlapping with the cluster
239 if (!Overlap(cath,mdig)) continue;
240 }
241 // Add pad - recursive call
242 AddPad(cath,digit);
c1aed84f 243 eEOC = kFALSE;
0df3ca52 244 if (digit >= 0) break;
245 }
c1aed84f 246 if (first && eEOC) {
0df3ca52 247 // No more unused pads
248 if (cath == 0) continue; // on cathode #0 - check #1
249 else {
250 // No more clusters
251 if (fReco) return;
252 ch++;
253 goto newchamber; // next chamber
254 }
255 }
c1aed84f 256 if (eEOC) break; // cluster found
0df3ca52 257 first = kFALSE;
258 cout << " nPads: " << fnPads[cath] << " " << nShown[cath]+fnPads[cath] << " " << cath << endl;
259 } // for (Int_t iii = 0;
260
261
262 if (fReco) goto skip;
263 char hName[4];
264 for (Int_t cath = 0; cath<2; cath++) {
265 // Build histograms
266 if (fHist[cath*2]) {fHist[cath*2]->Delete(); fHist[cath*2] = 0;}
267 if (fHist[cath*2+1]) {fHist[cath*2+1]->Delete(); fHist[cath*2+1] = 0;}
268 if (fnPads[cath] == 0) continue; // cluster on one cathode only
269 Float_t wxMin=999, wxMax=0, wyMin=999, wyMax=0;
270 Int_t minDx=0, maxDx=0, minDy=0, maxDy=0;
271 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
272 if (fPadIJ[0][i] != cath) continue;
273 if (fXyq[3][i] < wxMin) {wxMin = fXyq[3][i]; minDx = i;}
274 if (fXyq[3][i] > wxMax) {wxMax = fXyq[3][i]; maxDx = i;}
275 if (fXyq[4][i] < wyMin) {wyMin = fXyq[4][i]; minDy = i;}
276 if (fXyq[4][i] > wyMax) {wyMax = fXyq[4][i]; maxDy = i;}
277 }
278 cout << minDx << maxDx << minDy << maxDy << endl;
279 Int_t nx, ny, padSize;
280 Float_t xmin=9999, xmax=-9999, ymin=9999, ymax=-9999;
281 if (TMath::Nint(fXyq[3][minDx]*1000) == TMath::Nint(fXyq[3][maxDx]*1000) &&
282 TMath::Nint(fXyq[4][minDy]*1000) == TMath::Nint(fXyq[4][maxDy]*1000)) {
283 // the same segmentation
284 cout << " Same" << endl;
285 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
286 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
287 if (fPadIJ[0][i] != cath) continue;
288 if (fXyq[0][i] < xmin) xmin = fXyq[0][i];
289 if (fXyq[0][i] > xmax) xmax = fXyq[0][i];
290 if (fXyq[1][i] < ymin) ymin = fXyq[1][i];
291 if (fXyq[1][i] > ymax) ymax = fXyq[1][i];
292 }
293 xmin -= fXyq[3][minDx]; xmax += fXyq[3][minDx];
294 ymin -= fXyq[4][minDy]; ymax += fXyq[4][minDy];
295 nx = TMath::Nint ((xmax-xmin)/wxMin/2);
296 ny = TMath::Nint ((ymax-ymin)/wyMin/2);
297 sprintf(hName,"h%d",cath*2);
298 fHist[cath*2] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
299 cout << fHist[cath*2] << " " << fnPads[cath] << endl;
300 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
301 if (fPadIJ[0][i] != cath) continue;
302 fHist[cath*2]->Fill(fXyq[0][i],fXyq[1][i],fXyq[2][i]);
303 //cout << fXyq[0][i] << fXyq[1][i] << fXyq[2][i] << endl;
304 }
305 } else {
306 // different segmentation in the cluster
307 cout << " Different" << endl;
308 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
309 Int_t nOK = 0;
310 Int_t indx, locMin, locMax;
311 if (TMath::Nint(fXyq[3][minDx]*1000) != TMath::Nint(fXyq[3][maxDx]*1000)) {
312 // different segmentation along x
313 indx = 0;
314 locMin = minDx;
315 locMax = maxDx;
316 } else {
317 // different segmentation along y
318 indx = 1;
319 locMin = minDy;
320 locMax = maxDy;
321 }
322 Int_t loc = locMin;
323 for (Int_t i=0; i<2; i++) {
324 // loop over different pad sizes
325 if (i>0) loc = locMax;
326 padSize = TMath::Nint(fXyq[indx+3][loc]*1000);
327 xmin = 9999; xmax = -9999; ymin = 9999; ymax = -9999;
328 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
329 if (fPadIJ[0][j] != cath) continue;
330 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
331 nOK++;
332 xmin = TMath::Min (xmin,fXyq[0][j]);
333 xmax = TMath::Max (xmax,fXyq[0][j]);
334 ymin = TMath::Min (ymin,fXyq[1][j]);
335 ymax = TMath::Max (ymax,fXyq[1][j]);
336 }
337 xmin -= fXyq[3][loc]; xmax += fXyq[3][loc];
338 ymin -= fXyq[4][loc]; ymax += fXyq[4][loc];
339 nx = TMath::Nint ((xmax-xmin)/fXyq[3][loc]/2);
340 ny = TMath::Nint ((ymax-ymin)/fXyq[4][loc]/2);
341 sprintf(hName,"h%d",cath*2+i);
342 fHist[cath*2+i] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
343 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
344 if (fPadIJ[0][j] != cath) continue;
345 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
346 fHist[cath*2+i]->Fill(fXyq[0][j],fXyq[1][j],fXyq[2][j]);
347 }
348 } // for (Int_t i=0;
349 if (nOK != fnPads[cath]) cout << " *** Too many segmentations: nPads, nOK " << fnPads[cath] << " " << nOK << endl;
350 } // if (TMath::Nint(fXyq[3][minDx]*1000)
351 } // for (Int_t cath = 0;
352
353 // Draw histograms and coordinates
354 for (Int_t cath=0; cath<2; cath++) {
355 if (cath == 0) ModifyHistos();
356 if (fnPads[cath] == 0) continue; // cluster on one cathode only
357 if (fDraw) {
358 c1->cd(cath+1);
359 gPad->SetTheta(55);
360 gPad->SetPhi(30);
cd747ddb 361 Double_t x, y, x0, y0, r1=999, r2=0;
0df3ca52 362 if (fHist[cath*2+1]) {
363 //
364 x0 = fHist[cath*2]->GetXaxis()->GetXmin() - 1000*TMath::Cos(30*TMath::Pi()/180);
365 y0 = fHist[cath*2]->GetYaxis()->GetXmin() - 1000*TMath::Sin(30*TMath::Pi()/180);
366 r1 = 0;
367 Int_t ihist=cath*2;
368 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
369 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
370 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
371 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
372 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
373 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
374 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
375 r1 = TMath::Max (r1,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
376 }
377 }
378 }
379 ihist = cath*2 + 1 ;
380 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
381 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
382 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
383 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
384 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
385 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
386 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
387 r2 = TMath::Max (r2,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
388 }
389 }
390 }
391 cout << r1 << " " << r2 << endl;
392 } // if (fHist[cath*2+1])
393 if (r1 > r2) {
394 //fHist[cath*2]->Draw("lego1");
395 fHist[cath*2]->Draw("lego1Fb");
396 //if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBb");
397 if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBbFb");
398 } else {
399 //fHist[cath*2+1]->Draw("lego1");
400 fHist[cath*2+1]->Draw("lego1Fb");
401 //fHist[cath*2]->Draw("lego1SameAxisBb");
402 fHist[cath*2]->Draw("lego1SameAxisFbBb");
403 }
404 c1->Update();
405 } // if (fDraw)
406 } // for (Int_t cath = 0;
407
408 // Draw generated hits
409 Double_t xNDC[6];
410 hist = fHist[0] ? fHist[0] : fHist[2];
411 p2[2] = hist->GetMaximum();
412 view = 0;
413 if (c1) view = c1->Pad()->GetView();
414 cout << " *** GEANT hits *** " << endl;
415 fnMu = 0;
416 Int_t ix, iy, iok;
417 for (Int_t i=0; i<ntracks; i++) {
c1aed84f 418 treeH->GetEvent(i);
419 for (AliMUONHit* mHit=(AliMUONHit*)muon->FirstHit(-1);
0df3ca52 420 mHit;
c1aed84f 421 mHit=(AliMUONHit*)muon->NextHit()) {
0df3ca52 422 if (mHit->Chamber() != ch+1) continue; // chamber number
423 if (TMath::Abs(mHit->Z()-zpad0) > 1) continue; // different slat
424 p2[0] = p1[0] = mHit->X(); // x-pos of hit
425 p2[1] = p1[1] = mHit->Y(); // y-pos
426 if (p1[0] < hist->GetXaxis()->GetXmin() ||
427 p1[0] > hist->GetXaxis()->GetXmax()) continue;
428 if (p1[1] < hist->GetYaxis()->GetXmin() ||
429 p1[1] > hist->GetYaxis()->GetXmax()) continue;
430 // Check if track comes thru pads with signal
431 iok = 0;
432 for (Int_t ihist=0; ihist<4; ihist++) {
433 if (!fHist[ihist]) continue;
434 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
435 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
436 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
437 }
438 if (!iok) continue;
439 gStyle->SetLineColor(1);
440 if (TMath::Abs((Int_t)mHit->Particle()) == 13) {
441 gStyle->SetLineColor(4);
442 fnMu++;
443 if (fnMu <= 2) {
444 fxyMu[fnMu-1][0] = p1[0];
445 fxyMu[fnMu-1][1] = p1[1];
446 }
447 }
448 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mHit->Z());
449 if (view) {
450 view->WCtoNDC(p1, &xNDC[0]);
451 view->WCtoNDC(p2, &xNDC[3]);
452 for (Int_t ipad=1; ipad<3; ipad++) {
453 c1->cd(ipad);
454 //c1->DrawLine(xpad[0],xpad[1],xpad[3],xpad[4]);
455 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
456 line[nLine++]->Draw();
457 }
458 }
459 } // for (AliMUONHit* mHit=
460 } // for (Int_t i=0; i<ntracks;
461
462 // Draw reconstructed coordinates
c1aed84f 463 listMUONrawclust = muon->GetMUONData()->RawClusters(ch);
464 treeR->GetEvent(ch);
465 //cout << listMUONrawclust << " " << listMUONrawclust ->GetEntries() << endl;
0df3ca52 466 AliMUONRawCluster *mRaw;
467 gStyle->SetLineColor(3);
468 cout << " *** Reconstructed hits *** " << endl;
c1aed84f 469 for (Int_t i=0; i<listMUONrawclust ->GetEntries(); i++) {
470 mRaw = (AliMUONRawCluster*)listMUONrawclust ->UncheckedAt(i);
ba12c242 471 if (TMath::Abs(mRaw->GetZ(0)-zpad0) > 1) continue; // different slat
472 p2[0] = p1[0] = mRaw->GetX(0); // x-pos of hit
473 p2[1] = p1[1] = mRaw->GetY(0); // y-pos
0df3ca52 474 if (p1[0] < hist->GetXaxis()->GetXmin() ||
475 p1[0] > hist->GetXaxis()->GetXmax()) continue;
476 if (p1[1] < hist->GetYaxis()->GetXmin() ||
477 p1[1] > hist->GetYaxis()->GetXmax()) continue;
478 /*
c1aed84f 479 treeD->GetEvent(cath);
0df3ca52 480 cout << mRaw->fMultiplicity[0] << mRaw->fMultiplicity[1] << endl;
481 for (Int_t j=0; j<mRaw->fMultiplicity[cath]; j++) {
482 Int_t digit = mRaw->fIndexMap[j][cath];
483 cout << ((AliMUONDigit*)fMuonDigits->UncheckedAt(digit))->Signal() << endl;
484 }
485 */
486 // Check if track comes thru pads with signal
487 iok = 0;
488 for (Int_t ihist=0; ihist<4; ihist++) {
489 if (!fHist[ihist]) continue;
490 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
491 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
492 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
493 }
494 if (!iok) continue;
ba12c242 495 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mRaw->GetZ(0));
0df3ca52 496 if (view) {
497 view->WCtoNDC(p1, &xNDC[0]);
498 view->WCtoNDC(p2, &xNDC[3]);
499 for (Int_t ipad=1; ipad<3; ipad++) {
500 c1->cd(ipad);
501 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
502 line[nLine++]->Draw();
503 }
504 }
c1aed84f 505 } // for (Int_t i=0; i<listMUONrawclust ->GetEntries();
0df3ca52 506 if (fDraw) c1->Update();
507
508skip:
509 // Use MLEM for cluster finder
510 fZpad = zpad0;
511 Int_t nMax = 1, localMax[100], maxPos[100];
512 Double_t maxVal[100];
513
514 if (CheckPrecluster(nShown)) {
515 BuildPixArray();
516 if (fnPads[0]+fnPads[1] > 50) nMax = FindLocalMaxima(localMax, maxVal);
517 if (nMax > 1) TMath::Sort(nMax, maxVal, maxPos, kTRUE); // in decreasing order
518 for (Int_t i=0; i<nMax; i++) {
519 if (nMax > 1) FindCluster(localMax, maxPos[i]);
520 if (!MainLoop()) cout << " MainLoop failed " << endl;
521 if (i < nMax-1) {
522 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
523 if (fPadIJ[1][j] == 0) continue; // pad charge was not modified
524 fPadIJ[1][j] = 0;
525 fXyq[2][j] = fXyq[5][j]; // use backup charge value
526 }
527 }
528 }
529 }
530 if (fReco) goto next;
531
532 for (Int_t i=0; i<fnMu; i++) {
533 // Check again if muon come thru the used pads (due to extra splitting)
534 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
535 if (TMath::Abs(fxyMu[i][0]-fXyq[0][j])<fXyq[3][j] &&
536 TMath::Abs(fxyMu[i][1]-fXyq[1][j])<fXyq[4][j]) {
537 printf("%12.3e %12.3e %12.3e %12.3e\n",fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
538 if (lun) fprintf(lun,"%4d %2d %12.3e %12.3e %12.3e %12.3e\n",nev,ch,fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
539 break;
540 }
541 }
542 } // for (Int_t i=0; i<fnMu;
543
544 // What's next?
545 char command[8];
546 cout << " What is next? " << endl;
547 command[0] = ' ';
548 if (fDraw) gets(command);
549 if (command[0] == 'n' || command[0] == 'N') {nev++; goto newev;} // next event
550 else if (command[0] == 'q' || command[0] == 'Q') {fclose(lun); return;} // exit display
551 //else if (command[0] == 'r' || command[0] == 'R') goto redraw; // redraw points
552 else if (command[0] == 'c' || command[0] == 'C') {
553 // new chamber
554 sscanf(command+1,"%d",&ch);
555 goto newchamber;
556 }
557 else if (command[0] == 'e' || command[0] == 'E') {
558 // new event
559 sscanf(command+1,"%d",&nev);
560 goto newev;
561 }
562 else goto next; // Next cluster
563}
564
565//_____________________________________________________________________________
566void AliMUONClusterFinderAZ::ModifyHistos(void)
567{
568 // Modify histograms to bring them to the same size
569 Int_t nhist = 0;
570 Float_t hlim[4][4], hbin[4][4]; // first index - xmin, xmax, ymin, ymax
571 Float_t binMin[4] = {999,999,999,999};
572
573 for (Int_t i=0; i<4; i++) {
574 if (!fHist[i]) continue;
575 hlim[0][nhist] = fHist[i]->GetXaxis()->GetXmin(); // xmin
576 hlim[1][nhist] = fHist[i]->GetXaxis()->GetXmax(); // xmax
577 hlim[2][nhist] = fHist[i]->GetYaxis()->GetXmin(); // ymin
578 hlim[3][nhist] = fHist[i]->GetYaxis()->GetXmax(); // ymax
579 hbin[0][nhist] = hbin[1][nhist] = fHist[i]->GetXaxis()->GetBinWidth(1);
580 hbin[2][nhist] = hbin[3][nhist] = fHist[i]->GetYaxis()->GetBinWidth(1);
581 binMin[0] = TMath::Min(binMin[0],hbin[0][nhist]);
582 binMin[2] = TMath::Min(binMin[2],hbin[2][nhist]);
583 nhist++;
584 }
585 binMin[1] = binMin[0];
586 binMin[3] = binMin[2];
587 cout << " Nhist: " << nhist << endl;
588
589 Int_t imin, imax;
590 for (Int_t lim=0; lim<4; lim++) {
591 while (1) {
592 imin = TMath::LocMin(nhist,hlim[lim]);
593 imax = TMath::LocMax(nhist,hlim[lim]);
594 if (TMath::Abs(hlim[lim][imin]-hlim[lim][imax])<0.01*binMin[lim]) break;
595 if (lim == 0 || lim == 2) {
596 // find lower limit
597 hlim[lim][imax] -= hbin[lim][imax];
598 } else {
599 // find upper limit
600 hlim[lim][imin] += hbin[lim][imin];
601 }
602 } // while (1)
603 }
604
605 // Rebuild histograms
606 nhist = 0;
607 TH2F *hist = 0;
608 Int_t nx, ny;
cd747ddb 609 Double_t x, y, cont, cmax=0;
0df3ca52 610 char hName[4];
611 for (Int_t ihist=0; ihist<4; ihist++) {
612 if (!fHist[ihist]) continue;
613 nx = TMath::Nint((hlim[1][nhist]-hlim[0][nhist])/hbin[0][nhist]);
614 ny = TMath::Nint((hlim[3][nhist]-hlim[2][nhist])/hbin[2][nhist]);
615 //hist = new TH2F("h","hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
616 sprintf(hName,"hh%d",ihist);
617 hist = new TH2F(hName,"hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
618 for (Int_t i=1; i<=fHist[ihist]->GetNbinsX(); i++) {
619 x = fHist[ihist]->GetXaxis()->GetBinCenter(i);
620 for (Int_t j=1; j<=fHist[ihist]->GetNbinsY(); j++) {
621 y = fHist[ihist]->GetYaxis()->GetBinCenter(j);
622 cont = fHist[ihist]->GetCellContent(i,j);
623 hist->Fill(x,y,cont);
624 }
625 }
626 cmax = TMath::Max (cmax,hist->GetMaximum());
627 fHist[ihist]->Delete();
628 fHist[ihist] = new TH2F(*hist);
629 hist->Delete();
630 nhist++;
631 }
632 printf("%f \n",cmax);
633
634 for (Int_t ihist=0; ihist<4; ihist++) {
635 if (!fHist[ihist]) continue;
636 fHist[ihist]->SetMaximum(cmax);
637 }
638}
639
640//_____________________________________________________________________________
641void AliMUONClusterFinderAZ::AddPad(Int_t cath, Int_t digit)
642{
643 // Add pad to the cluster
644 AliMUONDigit *mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
645
646 Int_t charge = mdig->Signal();
647 // get the center of the pad
648 Float_t xpad, ypad, zpad;
649 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
650
651 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
652 Int_t nPads = fnPads[0] + fnPads[1];
653 fXyq[0][nPads] = xpad;
654 fXyq[1][nPads] = ypad;
655 fXyq[2][nPads] = charge;
656 fXyq[3][nPads] = fSegmentation[cath]->Dpx(isec)/2;
657 fXyq[4][nPads] = fSegmentation[cath]->Dpy(isec)/2;
658 fXyq[5][nPads] = digit;
659 fPadIJ[0][nPads] = cath;
660 fPadIJ[1][nPads] = 0;
661 fUsed[cath][digit] = kTRUE;
662 //cout << " bbb " << fXyq[cath][2][nPads] << " " << fXyq[cath][0][nPads] << " " << fXyq[cath][1][nPads] << " " << fXyq[cath][3][nPads] << " " << fXyq[cath][4][nPads] << " " << zpad << " " << nPads << endl;
663 fnPads[cath]++;
664
665 // Check neighbours
666 Int_t nn, ix, iy, xList[10], yList[10];
667 AliMUONDigit *mdig1;
668
669 Int_t ndigits = fMuonDigits->GetEntriesFast();
670 fSegmentation[cath]->Neighbours(mdig->PadX(),mdig->PadY(),&nn,xList,yList);
671 for (Int_t in=0; in<nn; in++) {
672 ix=xList[in];
673 iy=yList[in];
674 for (Int_t digit1 = 0; digit1 < ndigits; digit1++) {
675 if (digit1 == digit) continue;
676 mdig1 = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit1);
677 if (mdig1->Cathode() != cath) continue;
678 if (!fUsed[cath][digit1] && mdig1->PadX() == ix && mdig1->PadY() == iy) {
679 fUsed[cath][digit1] = kTRUE;
680 // Add pad - recursive call
681 AddPad(cath,digit1);
682 }
683 } //for (Int_t digit1 = 0;
684 } // for (Int_t in=0;
685}
686
687//_____________________________________________________________________________
688Bool_t AliMUONClusterFinderAZ::Overlap(Int_t cath, TObject *dig)
689{
690 // Check if the pad from one cathode overlaps with a pad
691 // in the precluster on the other cathode
692
693 AliMUONDigit *mdig = (AliMUONDigit*) dig;
694
695 Float_t xpad, ypad, zpad;
696 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
697 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
698
699 Float_t xy1[4], xy12[4];
700 xy1[0] = xpad - fSegmentation[cath]->Dpx(isec)/2;
701 xy1[1] = xy1[0] + fSegmentation[cath]->Dpx(isec);
702 xy1[2] = ypad - fSegmentation[cath]->Dpy(isec)/2;
703 xy1[3] = xy1[2] + fSegmentation[cath]->Dpy(isec);
704 //cout << " ok " << fnPads[0]+fnPads[1] << xy1[0] << xy1[1] << xy1[2] << xy1[3] << endl;
705
706 Int_t cath1 = TMath::Even(cath);
707 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
708 if (fPadIJ[0][i] != cath1) continue;
709 if (Overlap(xy1, i, xy12, 0)) return kTRUE;
710 }
711 return kFALSE;
712}
713
714//_____________________________________________________________________________
715Bool_t AliMUONClusterFinderAZ::Overlap(Float_t *xy1, Int_t iPad, Float_t *xy12, Int_t iSkip)
716{
717 // Check if the pads xy1 and iPad overlap and return overlap area
718
719 Float_t xy2[4];
720 xy2[0] = fXyq[0][iPad] - fXyq[3][iPad];
721 xy2[1] = fXyq[0][iPad] + fXyq[3][iPad];
722 if (xy1[0] > xy2[1]-1.e-4 || xy1[1] < xy2[0]+1.e-4) return kFALSE;
723 xy2[2] = fXyq[1][iPad] - fXyq[4][iPad];
724 xy2[3] = fXyq[1][iPad] + fXyq[4][iPad];
725 if (xy1[2] > xy2[3]-1.e-4 || xy1[3] < xy2[2]+1.e-4) return kFALSE;
726 if (!iSkip) return kTRUE; // just check overlap (w/out computing the area)
727 xy12[0] = TMath::Max (xy1[0],xy2[0]);
728 xy12[1] = TMath::Min (xy1[1],xy2[1]);
729 xy12[2] = TMath::Max (xy1[2],xy2[2]);
730 xy12[3] = TMath::Min (xy1[3],xy2[3]);
731 return kTRUE;
732}
733
734//_____________________________________________________________________________
735/*
736Bool_t AliMUONClusterFinderAZ::Overlap(Int_t i, Int_t j, Float_t *xy12, Int_t iSkip)
737{
738 // Check if the pads i and j overlap and return overlap area
739
740 Float_t xy1[4], xy2[4];
741 return Overlap(xy1, xy2, xy12, iSkip);
742}
743*/
744//_____________________________________________________________________________
745Bool_t AliMUONClusterFinderAZ::CheckPrecluster(Int_t *nShown)
746{
747 // Check precluster in order to attempt to simplify it (mostly for
748 // two-cathode preclusters)
749
750 Int_t i1, i2;
751 Float_t xy1[4], xy12[4];
752
753 Int_t npad = fnPads[0] + fnPads[1];
754
755 // If pads have the same size take average of pads on both cathodes
756 Int_t sameSize = (fnPads[0] && fnPads[1]) ? 1 : 0;
757 if (sameSize) {
758 Double_t xSize = -1, ySize = 0;
759 for (Int_t i=0; i<npad; i++) {
760 if (fXyq[2][i] < 0) continue;
761 if (xSize < 0) { xSize = fXyq[3][i]; ySize = fXyq[4][i]; }
762 if (TMath::Abs(xSize-fXyq[3][i]) > 1.e-4 || TMath::Abs(ySize-fXyq[4][i]) > 1.e-4) { sameSize = 0; break; }
763 }
764 } // if (sameSize)
765 if (sameSize && (fnPads[0] > 2 || fnPads[1] > 2)) {
766 nShown[0] += fnPads[0];
767 nShown[1] += fnPads[1];
768 fnPads[0] = fnPads[1] = 0;
769 Int_t div;
770 for (Int_t i=0; i<npad; i++) {
771 if (fXyq[2][i] < 0) continue; // used pad
772 fXyq[2][fnPads[0]] = fXyq[2][i];
773 div = 1;
774 for (Int_t j=i+1; j<npad; j++) {
775 if (fPadIJ[0][j] == fPadIJ[0][i]) continue; // same cathode
776 if (TMath::Abs(fXyq[0][j]-fXyq[0][i]) > 1.e-4) continue;
777 if (TMath::Abs(fXyq[1][j]-fXyq[1][i]) > 1.e-4) continue;
778 fXyq[2][fnPads[0]] += fXyq[2][j];
779 div = 2;
780 fXyq[2][j] = -2;
781 break;
782 }
783 fXyq[2][fnPads[0]] /= div;
784 fXyq[0][fnPads[0]] = fXyq[0][i];
785 fXyq[1][fnPads[0]] = fXyq[1][i];
786 fPadIJ[0][fnPads[0]++] = 0;
787 }
788 } // if (sameSize)
789
790 // Check if one-cathode precluster
791 i1 = fnPads[0]!=0 ? 0 : 1;
792 i2 = fnPads[1]!=0 ? 1 : 0;
793
794 if (i1 != i2) { // two-cathode
795
796 Int_t *flags = new Int_t[npad];
797 for (Int_t i=0; i<npad; i++) { flags[i] = 0; }
798
799 // Check pad overlaps
800 for (Int_t i=0; i<npad; i++) {
801 if (fPadIJ[0][i] != i1) continue;
802 xy1[0] = fXyq[0][i] - fXyq[3][i];
803 xy1[1] = fXyq[0][i] + fXyq[3][i];
804 xy1[2] = fXyq[1][i] - fXyq[4][i];
805 xy1[3] = fXyq[1][i] + fXyq[4][i];
806 for (Int_t j=0; j<npad; j++) {
807 if (fPadIJ[0][j] != i2) continue;
808 if (!Overlap(xy1, j, xy12, 0)) continue;
809 flags[i] = flags[j] = 1; // mark overlapped pads
810 } // for (Int_t j=0;
811 } // for (Int_t i=0;
812
813 // Check if all pads overlap
814 Int_t digit=0, cath, nFlags=0;
815 for (Int_t i=0; i<npad; i++) {nFlags += !flags[i];}
816 if (nFlags) cout << " nFlags = " << nFlags << endl;
817 //if (nFlags > 2 || (Float_t)nFlags / npad > 0.2) { // why 2 ??? - empirical choice
818 if (nFlags > 0) {
819 for (Int_t i=0; i<npad; i++) {
820 if (flags[i]) continue;
821 digit = TMath::Nint (fXyq[5][i]);
822 cath = fPadIJ[0][i];
823 fUsed[cath][digit] = kFALSE; // release pad
824 fXyq[2][i] = -2;
825 fnPads[cath]--;
826 }
827 } // if (nFlags > 2)
828
829 // Check correlations of cathode charges
830 if (fnPads[0] && fnPads[1]) { // two-cathode
831 Double_t sum[2]={0};
832 Int_t over[2] = {1, 1};
833 for (Int_t i=0; i<npad; i++) {
834 cath = fPadIJ[0][i];
835 if (fXyq[2][i] > 0) sum[cath] += fXyq[2][i];
836 if (fXyq[2][i] > fResponse->MaxAdc()-1) over[cath] = 0;
837 }
838 cout << " Total charge: " << sum[0] << " " << sum[1] << endl;
839 if ((over[0] || over[1]) && TMath::Abs(sum[0]-sum[1])/(sum[0]+sum[1])*2 > 1) { // 3 times difference
840 cout << " Release " << endl;
841 // Big difference
842 cath = sum[0]>sum[1] ? 0 : 1;
843 Int_t imax = 0;
844 Double_t cmax=-1;
845 Double_t *dist = new Double_t[npad];
846 for (Int_t i=0; i<npad; i++) {
847 if (fPadIJ[0][i] != cath) continue;
848 if (fXyq[2][i] < cmax) continue;
849 cmax = fXyq[2][i];
850 imax = i;
851 }
852 // Arrange pads according to their distance to the max,
853 // normalized to the pad size
854 for (Int_t i=0; i<npad; i++) {
855 dist[i] = 0;
856 if (fPadIJ[0][i] != cath) continue;
857 if (i == imax) continue;
858 if (fXyq[2][i] < 0) continue;
859 dist[i] = (fXyq[0][i]-fXyq[0][imax])*(fXyq[0][i]-fXyq[0][imax])/
860 fXyq[3][imax]/fXyq[3][imax]/4;
861 dist[i] += (fXyq[1][i]-fXyq[1][imax])*(fXyq[1][i]-fXyq[1][imax])/
862 fXyq[4][imax]/fXyq[4][imax]/4;
863 dist[i] = TMath::Sqrt (dist[i]);
864 }
865 TMath::Sort(npad, dist, flags, kFALSE); // in increasing order
866 Int_t indx;
867 Double_t xmax = -1;
868 for (Int_t i=0; i<npad; i++) {
869 indx = flags[i];
870 if (fPadIJ[0][indx] != cath) continue;
871 if (fXyq[2][indx] < 0) continue;
872 if (fXyq[2][indx] <= cmax || TMath::Abs(dist[indx]-xmax)<1.e-3) {
873 // Release pads
874 if (TMath::Abs(dist[indx]-xmax)<1.e-3)
cd747ddb 875 cmax = TMath::Max((Double_t)(fXyq[2][indx]),cmax);
0df3ca52 876 else cmax = fXyq[2][indx];
877 xmax = dist[indx];
878 digit = TMath::Nint (fXyq[5][indx]);
879 fUsed[cath][digit] = kFALSE;
880 fXyq[2][indx] = -2;
881 fnPads[cath]--;
882 // xmax = dist[i]; // Bug?
883 }
884 else break;
885 }
886 delete [] dist; dist = 0;
887 } // TMath::Abs(sum[0]-sum[1])...
888 } // if (fnPads[0] && fnPads[1])
889 delete [] flags; flags = 0;
890 } // if (i1 != i2)
891
892 if (!sameSize) { nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; }
893
894 // Move released pads to the right
895 Int_t beg = 0, end = npad-1, padij;
896 Double_t xyq;
897 while (beg < end) {
898 if (fXyq[2][beg] > 0) { beg++; continue; }
899 for (Int_t j=end; j>beg; j--) {
900 if (fXyq[2][j] < 0) continue;
901 end = j - 1;
902 for (Int_t j1=0; j1<2; j1++) {
903 padij = fPadIJ[j1][beg];
904 fPadIJ[j1][beg] = fPadIJ[j1][j];
905 fPadIJ[j1][j] = padij;
906 }
907 for (Int_t j1=0; j1<6; j1++) {
908 xyq = fXyq[j1][beg];
909 fXyq[j1][beg] = fXyq[j1][j];
910 fXyq[j1][j] = xyq;
911 }
912 break;
913 } // for (Int_t j=end;
914 beg++;
915 } // while
916 npad = fnPads[0] + fnPads[1];
917 if (npad > 500) { cout << " ***** Too large cluster. Give up. " << npad << endl; return kFALSE; }
918 // Back up charge value
919 for (Int_t j=0; j<npad; j++) fXyq[5][j] = fXyq[2][j];
920
921 return kTRUE;
922}
923
924//_____________________________________________________________________________
925void AliMUONClusterFinderAZ::BuildPixArray()
926{
927 // Build pixel array for MLEM method
928
929 Int_t nPix=0, i1, i2;
930 Float_t xy1[4], xy12[4];
931 AliMUONPixel *pixPtr=0;
932
933 Int_t npad = fnPads[0] + fnPads[1];
934
935 // One cathode is empty
936 i1 = fnPads[0]!=0 ? 0 : 1;
937 i2 = fnPads[1]!=0 ? 1 : 0;
938
939 // Build array of pixels on anode plane
940 if (i1 == i2) { // one-cathode precluster
941 for (Int_t j=0; j<npad; j++) {
942 pixPtr = new AliMUONPixel();
943 for (Int_t i=0; i<2; i++) {
944 pixPtr->SetCoord(i, fXyq[i][j]); // pixel coordinates
945 pixPtr->SetSize(i, fXyq[i+3][j]); // pixel size
946 }
947 pixPtr->SetCharge(fXyq[2][j]); // charge
948 fPixArray->Add((TObject*)pixPtr);
949 nPix++;
950 }
951 } else { // two-cathode precluster
952 for (Int_t i=0; i<npad; i++) {
953 if (fPadIJ[0][i] != i1) continue;
954 xy1[0] = fXyq[0][i] - fXyq[3][i];
955 xy1[1] = fXyq[0][i] + fXyq[3][i];
956 xy1[2] = fXyq[1][i] - fXyq[4][i];
957 xy1[3] = fXyq[1][i] + fXyq[4][i];
958 for (Int_t j=0; j<npad; j++) {
959 if (fPadIJ[0][j] != i2) continue;
960 if (!Overlap(xy1, j, xy12, 1)) continue;
961 pixPtr = new AliMUONPixel();
962 for (Int_t k=0; k<2; k++) {
963 pixPtr->SetCoord(k, (xy12[2*k]+xy12[2*k+1])/2); // pixel coordinates
964 pixPtr->SetSize(k, xy12[2*k+1]-pixPtr->Coord(k)); // size
965 }
966 pixPtr->SetCharge(TMath::Min (fXyq[2][i],fXyq[2][j])); //charge
967 fPixArray->Add((TObject*)pixPtr);
968 nPix++;
969 } // for (Int_t j=0;
970 } // for (Int_t i=0;
971 } // else
972
973 Float_t wxmin=999, wymin=999;
974 for (Int_t i=0; i<npad; i++) {
975 if (fPadIJ[0][i] == i1) wymin = TMath::Min (wymin,fXyq[4][i]);
976 if (fPadIJ[0][i] == i2) wxmin = TMath::Min (wxmin,fXyq[3][i]);
977 }
978 cout << wxmin << " " << wymin << endl;
979
980 // Check if small pixel X-size
981 AjustPixel(wxmin, 0);
982 // Check if small pixel Y-size
983 AjustPixel(wymin, 1);
984 // Check if large pixel size
985 AjustPixel(wxmin, wymin);
986
987 // Remove discarded pixels
988 for (Int_t i=0; i<nPix; i++) {
989 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
990 //pixPtr->Print();
991 if (pixPtr->Charge() < 1) { fPixArray->RemoveAt(i); delete pixPtr; }// discarded pixel
992 }
993 fPixArray->Compress();
994 nPix = fPixArray->GetEntriesFast();
995
996 if (nPix > npad) {
997 cout << nPix << endl;
998 // Too many pixels - sort and remove pixels with the lowest signal
999 fPixArray->Sort();
1000 for (Int_t i=npad; i<nPix; i++) {
1001 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1002 //pixPtr->Print();
1003 fPixArray->RemoveAt(i);
1004 delete pixPtr;
1005 }
1006 nPix = npad;
1007 } // if (nPix > npad)
1008
1009 // Set pixel charges to the same value (for MLEM)
1010 for (Int_t i=0; i<nPix; i++) {
1011 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1012 //pixPtr->SetCharge(10);
1013 cout << i+1 << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(0) << " " << pixPtr->Size(1) << endl;
1014 }
1015}
1016
1017//_____________________________________________________________________________
1018void AliMUONClusterFinderAZ::AjustPixel(Float_t width, Int_t ixy)
1019{
1020 // Check if some pixels have small size (ajust if necessary)
1021
1022 AliMUONPixel *pixPtr, *pixPtr1 = 0;
1023 Int_t ixy1 = TMath::Even(ixy);
1024 Int_t nPix = fPixArray->GetEntriesFast();
1025
1026 for (Int_t i=0; i<nPix; i++) {
1027 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1028 if (pixPtr->Charge() < 1) continue; // discarded pixel
1029 if (pixPtr->Size(ixy)-width < -1.e-4) {
1030 // try to merge
1031 cout << " Small X or Y: " << ixy << " " << pixPtr->Size(ixy) << " " << width << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << endl;
1032 for (Int_t j=i+1; j<nPix; j++) {
1033 pixPtr1 = (AliMUONPixel*) fPixArray->UncheckedAt(j);
1034 if (pixPtr1->Charge() < 1) continue; // discarded pixel
1035 if (TMath::Abs(pixPtr1->Size(ixy)-width) < 1.e-4) continue; // right size
1036 if (TMath::Abs(pixPtr1->Coord(ixy1)-pixPtr->Coord(ixy1)) > 1.e-4) continue; // different rows/columns
1037 if (TMath::Abs(pixPtr1->Coord(ixy)-pixPtr->Coord(ixy)) < 2*width) {
1038 // merge
1039 pixPtr->SetSize(ixy, width);
1040 pixPtr->SetCoord(ixy, (pixPtr->Coord(ixy)+pixPtr1->Coord(ixy))/2);
1041 pixPtr->SetCharge(TMath::Min (pixPtr->Charge(),pixPtr1->Charge()));
1042 pixPtr1->SetCharge(0);
1043 pixPtr1 = 0;
1044 break;
1045 }
1046 } // for (Int_t j=i+1;
1047 //if (!pixPtr1) { cout << " I am here!" << endl; pixPtr->SetSize(ixy, width); } // ???
1048 //else if (pixPtr1->Charge() > 0.5 || i == nPix-1) {
1049 if (pixPtr1 || i == nPix-1) {
1050 // edge pixel - just increase its size
1051 cout << " Edge ..." << endl;
1052 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1053 // ???if (fPadIJ[0][j] != i1) continue;
1054 if (TMath::Abs(pixPtr->Coord(ixy1)-fXyq[ixy1][j]) > 1.e-4) continue;
1055 if (pixPtr->Coord(ixy) < fXyq[ixy][j])
1056 pixPtr->Shift(ixy, -pixPtr->Size(ixy));
1057 else pixPtr->Shift(ixy, pixPtr->Size(ixy));
1058 pixPtr->SetSize(ixy, width);
1059 break;
1060 }
1061 }
1062 } // if (pixPtr->Size(ixy)-width < -1.e-4)
1063 } // for (Int_t i=0; i<nPix;
1064 return;
1065}
1066
1067//_____________________________________________________________________________
1068void AliMUONClusterFinderAZ::AjustPixel(Float_t wxmin, Float_t wymin)
1069{
1070 // Check if some pixels have large size (ajust if necessary)
1071
1072 Int_t nx, ny;
1073 Int_t nPix = fPixArray->GetEntriesFast();
1074 AliMUONPixel *pixPtr, *pixPtr1, pix;
1075
1076 // Check if large pixel size
1077 for (Int_t i=0; i<nPix; i++) {
1078 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1079 if (pixPtr->Charge() < 1) continue; // discarded pixel
1080 if (pixPtr->Size(0)-wxmin > 1.e-4 || pixPtr->Size(1)-wymin > 1.e-4) {
1081 cout << " Different " << pixPtr->Size(0) << " " << wxmin << " " << pixPtr->Size(1) << " " << wymin << endl;
1082 pix = *pixPtr;
1083 nx = TMath::Nint (pix.Size(0)/wxmin);
1084 ny = TMath::Nint (pix.Size(1)/wymin);
1085 pix.Shift(0, -pix.Size(0)-wxmin);
1086 pix.Shift(1, -pix.Size(1)-wymin);
1087 pix.SetSize(0, wxmin);
1088 pix.SetSize(1, wymin);
1089 for (Int_t ii=0; ii<nx; ii++) {
1090 pix.Shift(0, wxmin*2);
1091 for (Int_t jj=0; jj<ny; jj++) {
1092 pix.Shift(1, wymin*2);
1093 pixPtr1 = new AliMUONPixel(pix);
1094 fPixArray->Add((TObject*)pixPtr1);
1095 }
1096 }
1097 pixPtr->SetCharge(0);
1098 }
1099 } // for (Int_t i=0; i<nPix;
1100 return;
1101}
1102
1103//_____________________________________________________________________________
1104Bool_t AliMUONClusterFinderAZ::MainLoop()
1105{
1106 // Repeat MLEM algorithm until pixel size becomes sufficiently small
1107
1108 TH2D *mlem;
1109
1110 Int_t ix, iy;
1111 //Int_t nn, xList[10], yList[10];
1112 Int_t nPix = fPixArray->GetEntriesFast();
1113 Int_t npadTot = fnPads[0] + fnPads[1], npadOK = 0;
1114 AliMUONPixel *pixPtr = 0;
1115 Double_t *coef = 0, *probi = 0;
1116 for (Int_t i=0; i<npadTot; i++) if (fPadIJ[1][i] == 0) npadOK++;
1117
1118 while (1) {
1119
1120 mlem = (TH2D*) gROOT->FindObject("mlem");
1121 if (mlem) mlem->Delete();
1122 // Calculate coefficients
1123 cout << " nPix, npadTot, npadOK " << nPix << " " << npadTot << " " << npadOK << endl;
1124
1125 // Calculate coefficients and pixel visibilities
1126 coef = new Double_t [npadTot*nPix];
1127 probi = new Double_t [nPix];
1128 Int_t indx = 0, cath;
1129 for (Int_t ipix=0; ipix<nPix; ipix++) {
1130 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1131 probi[ipix] = 0;
1132 for (Int_t j=0; j<npadTot; j++) {
1133 if (fPadIJ[1][j] < 0) { coef[j*nPix+ipix] = 0; continue; }
1134 cath = fPadIJ[0][j];
1135 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
1136 fSegmentation[cath]->SetPad(ix,iy);
1137 /*
1138 fSegmentation[cath]->Neighbours(ix,iy,&nn,xList,yList);
1139 if (nn != 4) {
1140 cout << nn << ": ";
1141 for (Int_t i=0; i<nn; i++) {cout << xList[i] << " " << yList[i] << ", ";}
1142 cout << endl;
1143 }
1144 */
1145 Double_t sum = 0;
1146 fSegmentation[cath]->SetHit(pixPtr->Coord(0),pixPtr->Coord(1),fZpad);
1147 sum += fResponse->IntXY(fSegmentation[cath]);
1148 indx = j*nPix + ipix;
1149 coef[indx] = sum;
1150 probi[ipix] += coef[indx];
1151 //cout << j << " " << ipix << " " << coef[indx] << endl;
1152 } // for (Int_t j=0;
1153 //cout << " prob: " << probi[ipix] << endl;
1154 if (probi[ipix] < 0.01) pixPtr->SetCharge(0); // "invisible" pixel
1155 } // for (Int_t ipix=0;
1156
1157 // MLEM algorithm
1158 Mlem(coef, probi);
1159
cd747ddb 1160 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 1161 for (Int_t ipix=0; ipix<nPix; ipix++) {
1162 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1163 for (Int_t i=0; i<4; i++)
1164 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1165 //cout << ipix+1; pixPtr->Print();
1166 }
1167 for (Int_t i=0; i<4; i++) {
1168 xylim[i] -= pixPtr->Size(i/2); cout << (i%2 ? -1 : 1)*xylim[i] << " "; }
1169 cout << endl;
1170
1171 // Ajust histogram to approximately the same limits as for the pads
1172 // (for good presentation)
1173 //*
1174 Float_t xypads[4];
1175 if (fHist[0]) {
1176 xypads[0] = fHist[0]->GetXaxis()->GetXmin();
1177 xypads[1] = -fHist[0]->GetXaxis()->GetXmax();
1178 xypads[2] = fHist[0]->GetYaxis()->GetXmin();
1179 xypads[3] = -fHist[0]->GetYaxis()->GetXmax();
1180 for (Int_t i=0; i<4; i++) {
1181 while(1) {
1182 if (xylim[i] < xypads[i]) break;
1183 xylim[i] -= 2*pixPtr->Size(i/2);
1184 }
1185 }
1186 } // if (fHist[0])
1187 //*/
1188
1189 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
1190 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
1191 mlem = new TH2D("mlem","mlem",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
1192 for (Int_t ipix=0; ipix<nPix; ipix++) {
1193 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1194 mlem->Fill(pixPtr->Coord(0),pixPtr->Coord(1),pixPtr->Charge());
1195 }
1196 //gPad->GetCanvas()->cd(3);
1197 if (fDraw) {
1198 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1199 gPad->SetTheta(55);
1200 gPad->SetPhi(30);
1201 mlem->Draw("lego1Fb");
1202 gPad->Update();
1203 gets((char*)&ix);
1204 }
1205
1206 // Check if the total charge of pixels is too low
1207 Double_t qTot = 0;
1208 for (Int_t i=0; i<nPix; i++) {
1209 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1210 qTot += pixPtr->Charge();
1211 }
1212 if (qTot < 1.e-4 || npadOK < 3 && qTot < 50) {
1213 delete [] coef; delete [] probi; coef = 0; probi = 0;
1214 fPixArray->Delete();
1215 return kFALSE;
1216 }
1217
1218 // Plot data - expectation
1219 /*
1220 Double_t x, y, cont;
1221 for (Int_t j=0; j<npadTot; j++) {
1222 Double_t sum1 = 0;
1223 for (Int_t i=0; i<nPix; i++) {
1224 // Caculate expectation
1225 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1226 sum1 += pixPtr->Charge()*coef[j*nPix+i];
1227 }
1228 sum1 = TMath::Min (sum1,(Double_t)fResponse->MaxAdc());
1229 x = fXyq[0][j];
1230 y = fXyq[1][j];
1231 cath = fPadIJ[0][j];
1232 Int_t ihist = cath*2;
1233 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1234 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1235 cont = fHist[ihist]->GetCellContent(ix,iy);
1236 if (cont == 0 && fHist[ihist+1]) {
1237 ihist += 1;
1238 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1239 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1240 }
1241 fHist[ihist]->SetBinContent(ix,iy,fXyq[2][j]-sum1);
1242 }
1243 ((TCanvas*)gROOT->FindObject("c1"))->cd(1);
1244 //gPad->SetTheta(55);
1245 //gPad->SetPhi(30);
1246 //mlem->Draw("lego1");
1247 gPad->Modified();
1248 ((TCanvas*)gROOT->FindObject("c1"))->cd(2);
1249 gPad->Modified();
1250 */
1251
1252 // Calculate position of the center-of-gravity around the maximum pixel
1253 Double_t xyCOG[2];
1254 FindCOG(mlem, xyCOG);
1255
1256 if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.07 && pixPtr->Size(0) > pixPtr->Size(1)) break;
1257 //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) >= 0.07 || pixPtr->Size(0) < pixPtr->Size(1)) {
1258 // Sort pixels according to the charge
1259 fPixArray->Sort();
1260 /*
1261 for (Int_t i=0; i<nPix; i++) {
1262 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1263 cout << i+1; pixPtr->Print();
1264 }
1265 */
1266 Double_t pixMin = 0.01*((AliMUONPixel*)fPixArray->UncheckedAt(0))->Charge();
1267 pixMin = TMath::Min (pixMin,50.);
1268
1269 // Decrease pixel size and shift pixels to make them centered at
1270 // the maximum one
1271 indx = (pixPtr->Size(0)>pixPtr->Size(1)) ? 0 : 1;
1272 Double_t width = 0, shift[2]={0};
1273 ix = 1;
1274 for (Int_t i=0; i<4; i++) xylim[i] = 999;
1275 Int_t nPix1 = nPix; nPix = 0;
1276 for (Int_t ipix=0; ipix<nPix1; ipix++) {
1277 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1278 if (nPix >= npadOK) { // too many pixels already
1279 fPixArray->RemoveAt(ipix);
1280 delete pixPtr;
1281 continue;
1282 }
1283 if (pixPtr->Charge() < pixMin) { // low charge
1284 fPixArray->RemoveAt(ipix);
1285 delete pixPtr;
1286 continue;
1287 }
1288 for (Int_t i=0; i<2; i++) {
1289 if (!i) {
1290 pixPtr->SetCharge(10);
1291 pixPtr->SetSize(indx, pixPtr->Size(indx)/2);
1292 width = -pixPtr->Size(indx);
1293 pixPtr->Shift(indx, width);
1294 // Shift pixel position
1295 if (ix) {
1296 ix = 0;
1297 for (Int_t j=0; j<2; j++) {
1298 shift[j] = pixPtr->Coord(j) - xyCOG[j];
1299 shift[j] -= ((Int_t)(shift[j]/pixPtr->Size(j)/2))*pixPtr->Size(j)*2;
1300 }
1301 //cout << ipix << " " << i << " " << shift[0] << " " << shift[1] << endl;
1302 } // if (ix)
1303 pixPtr->Shift(0, -shift[0]);
1304 pixPtr->Shift(1, -shift[1]);
1305 } else {
1306 pixPtr = new AliMUONPixel(*pixPtr);
1307 pixPtr->Shift(indx, -2*width);
1308 fPixArray->Add((TObject*)pixPtr);
1309 } // else
1310 //pixPtr->Print();
1311 for (Int_t i=0; i<4; i++)
1312 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1313 } // for (Int_t i=0; i<2;
1314 nPix += 2;
1315 } // for (Int_t ipix=0;
1316
1317 fPixArray->Compress();
1318 nPix = fPixArray->GetEntriesFast();
1319
1320 // Remove excessive pixels
1321 if (nPix > npadOK) {
1322 for (Int_t ipix=npadOK; ipix<nPix; ipix++) {
1323 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1324 fPixArray->RemoveAt(ipix);
1325 delete pixPtr;
1326 }
1327 } else {
1328 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(0);
1329 // add pixels if the maximum is at the limit of pixel area
1330 // start from Y-direction
1331 Int_t j = 0;
1332 for (Int_t i=3; i>-1; i--) {
1333 if (nPix < npadOK &&
1334 TMath::Abs((i%2 ? -1 : 1)*xylim[i]-xyCOG[i/2]) < pixPtr->Size(i/2)) {
1335 pixPtr = new AliMUONPixel(*pixPtr);
1336 pixPtr->SetCoord(i/2, xyCOG[i/2]+(i%2 ? 2:-2)*pixPtr->Size(i/2));
1337 j = TMath::Even (i/2);
1338 pixPtr->SetCoord(j, xyCOG[j]);
1339 fPixArray->Add((TObject*)pixPtr);
1340 nPix++;
1341 }
1342 }
1343 } // else
1344
1345 fPixArray->Compress();
1346 nPix = fPixArray->GetEntriesFast();
1347 delete [] coef; delete [] probi; coef = 0; probi = 0;
1348 } // while (1)
1349
1350 // remove pixels with low signal or low visibility
1351 // Cuts are empirical !!!
1352 Double_t thresh = TMath::Max (mlem->GetMaximum()/100.,1.);
1353 thresh = TMath::Min (thresh,50.);
1354 Double_t cmax = -1, charge = 0;
1355 for (Int_t i=0; i<nPix; i++) cmax = TMath::Max (cmax,probi[i]);
1356 // Mark pixels which should be removed
1357 for (Int_t i=0; i<nPix; i++) {
1358 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1359 charge = pixPtr->Charge();
1360 if (charge < thresh) pixPtr->SetCharge(-charge);
1361 else if (cmax > 1.91) {
1362 if (probi[i] < 1.9) pixPtr->SetCharge(-charge);
1363 }
1364 else if (probi[i] < cmax*0.9) pixPtr->SetCharge(-charge);
1365 }
1366 // Move charge of removed pixels to their nearest neighbour (to keep total charge the same)
1367 Int_t near = 0;
1368 for (Int_t i=0; i<nPix; i++) {
1369 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1370 charge = pixPtr->Charge();
1371 if (charge > 0) continue;
1372 near = FindNearest(pixPtr);
1373 pixPtr->SetCharge(0);
1374 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(near);
1375 pixPtr->SetCharge(pixPtr->Charge() - charge);
1376 }
1377 // Update histogram
1378 for (Int_t i=0; i<nPix; i++) {
1379 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1380 ix = mlem->GetXaxis()->FindBin(pixPtr->Coord(0));
1381 iy = mlem->GetYaxis()->FindBin(pixPtr->Coord(1));
1382 mlem->SetBinContent(ix, iy, pixPtr->Charge());
1383 }
1384 if (fDraw) {
1385 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1386 gPad->SetTheta(55);
1387 gPad->SetPhi(30);
1388 mlem->Draw("lego1Fb");
1389 gPad->Update();
1390 }
1391
1392 fxyMu[0][6] = fxyMu[1][6] = 9999;
1393 // Try to split into clusters
1394 Bool_t ok = kTRUE;
1395 if (mlem->GetSum() < 1) ok = kFALSE;
1396 else Split(mlem, coef);
1397 delete [] coef; delete [] probi; coef = 0; probi = 0;
1398 fPixArray->Delete();
1399 return ok;
1400}
1401
1402//_____________________________________________________________________________
1403void AliMUONClusterFinderAZ::Mlem(Double_t *coef, Double_t *probi)
1404{
1405 // Use MLEM to find pixel charges
1406
1407 Int_t nPix = fPixArray->GetEntriesFast();
1408 Int_t npad = fnPads[0] + fnPads[1];
1409 Double_t *probi1 = new Double_t [nPix];
1410 Int_t indx, indx1;
1411 AliMUONPixel *pixPtr;
1412
1413 for (Int_t iter=0; iter<15; iter++) {
1414 // Do iterations
1415 for (Int_t ipix=0; ipix<nPix; ipix++) {
1416 // Correct each pixel
1417 if (probi[ipix] < 0.01) continue; // skip "invisible" pixel
1418 Double_t sum = 0;
1419 probi1[ipix] = probi[ipix];
1420 for (Int_t j=0; j<npad; j++) {
1421 if (fPadIJ[1][j] < 0) continue;
1422 Double_t sum1 = 0;
1423 indx1 = j*nPix;
1424 indx = indx1 + ipix;
1425 for (Int_t i=0; i<nPix; i++) {
1426 // Caculate expectation
1427 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1428 sum1 += pixPtr->Charge()*coef[indx1+i];
1429 } // for (Int_t i=0;
1430 if (fXyq[2][j] > fResponse->MaxAdc()-1 && sum1 > fResponse->MaxAdc()) { probi1[ipix] -= coef[indx]; continue; } // correct for pad charge overflows
1431 //cout << sum1 << " " << fXyq[2][j] << " " << coef[j*nPix+ipix] << endl;
1432 if (coef[indx] > 1.e-6) sum += fXyq[2][j]*coef[indx]/sum1;
1433 } // for (Int_t j=0;
1434 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1435 if (probi1[ipix] > 1.e-6) pixPtr->SetCharge(pixPtr->Charge()*sum/probi1[ipix]);
1436 } // for (Int_t ipix=0;
1437 } // for (Int_t iter=0;
1438 delete [] probi1;
1439 return;
1440}
1441
1442//_____________________________________________________________________________
1443void AliMUONClusterFinderAZ::FindCOG(TH2D *mlem, Double_t *xyc)
1444{
1445 // Calculate position of the center-of-gravity around the maximum pixel
1446
1447 Int_t ixmax, iymax, ix, nsumx=0, nsumy=0, nsum=0;
1448 Int_t i1 = -9, j1 = -9;
1449 mlem->GetMaximumBin(ixmax,iymax,ix);
1450 Int_t nx = mlem->GetNbinsX();
1451 Int_t ny = mlem->GetNbinsY();
1452 Double_t thresh = mlem->GetMaximum()/10;
1453 Double_t x, y, cont, xq=0, yq=0, qq=0;
1454
1455 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1456 y = mlem->GetYaxis()->GetBinCenter(i);
1457 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1458 cont = mlem->GetCellContent(j,i);
1459 if (cont < thresh) continue;
1460 if (i != i1) {i1 = i; nsumy++;}
1461 if (j != j1) {j1 = j; nsumx++;}
1462 x = mlem->GetXaxis()->GetBinCenter(j);
1463 xq += x*cont;
1464 yq += y*cont;
1465 qq += cont;
1466 nsum++;
1467 }
1468 }
1469
1470 Double_t cmax = 0;
1471 Int_t i2 = 0, j2 = 0;
1472 x = y = 0;
1473 if (nsumy == 1) {
1474 // one bin in Y - add one more (with the largest signal)
1475 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1476 if (i == iymax) continue;
1477 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1478 cont = mlem->GetCellContent(j,i);
1479 if (cont > cmax) {
1480 cmax = cont;
1481 x = mlem->GetXaxis()->GetBinCenter(j);
1482 y = mlem->GetYaxis()->GetBinCenter(i);
1483 i2 = i;
1484 j2 = j;
1485 }
1486 }
1487 }
1488 xq += x*cmax;
1489 yq += y*cmax;
1490 qq += cmax;
1491 if (i2 != i1) nsumy++;
1492 if (j2 != j1) nsumx++;
1493 nsum++;
1494 } // if (nsumy == 1)
1495
1496 if (nsumx == 1) {
1497 // one bin in X - add one more (with the largest signal)
1498 cmax = x = y = 0;
1499 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1500 if (j == ixmax) continue;
1501 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1502 cont = mlem->GetCellContent(j,i);
1503 if (cont > cmax) {
1504 cmax = cont;
1505 x = mlem->GetXaxis()->GetBinCenter(j);
1506 y = mlem->GetYaxis()->GetBinCenter(i);
1507 i2 = i;
1508 j2 = j;
1509 }
1510 }
1511 }
1512 xq += x*cmax;
1513 yq += y*cmax;
1514 qq += cmax;
1515 if (i2 != i1) nsumy++;
1516 if (j2 != j1) nsumx++;
1517 nsum++;
1518 } // if (nsumx == 1)
1519
1520 xyc[0] = xq/qq; xyc[1] = yq/qq;
1521 cout << xyc[0] << " " << xyc[1] << " " << qq << " " << nsum << " " << nsumx << " " << nsumy << endl;
1522 return;
1523}
1524
1525//_____________________________________________________________________________
1526Int_t AliMUONClusterFinderAZ::FindNearest(AliMUONPixel *pixPtr0)
1527{
1528 // Find the pixel nearest to the given one
1529 // (algorithm may be not very efficient)
1530
1531 Int_t nPix = fPixArray->GetEntriesFast(), imin = 0;
1532 Double_t rmin = 99999, dx = 0, dy = 0, r = 0;
1533 Double_t xc = pixPtr0->Coord(0), yc = pixPtr0->Coord(1);
1534 AliMUONPixel *pixPtr;
1535
1536 for (Int_t i=0; i<nPix; i++) {
1537 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1538 if (pixPtr->Charge() < 0.5) continue;
1539 dx = (xc - pixPtr->Coord(0)) / pixPtr->Size(0);
1540 dy = (yc - pixPtr->Coord(1)) / pixPtr->Size(1);
1541 r = dx *dx + dy * dy;
1542 if (r < rmin) { rmin = r; imin = i; }
1543 }
1544 return imin;
1545}
1546
1547//_____________________________________________________________________________
1548void AliMUONClusterFinderAZ::Split(TH2D *mlem, Double_t *coef)
1549{
1550 // The main steering function to work with clusters of pixels in anode
1551 // plane (find clusters, decouple them from each other, merge them (if
1552 // necessary), pick up coupled pads, call the fitting function)
1553
1554 Int_t nx = mlem->GetNbinsX();
1555 Int_t ny = mlem->GetNbinsY();
1556 Int_t nPix = fPixArray->GetEntriesFast();
1557
1558 Bool_t *used = new Bool_t[ny*nx];
1559 Double_t cont;
1560 Int_t nclust = 0, indx, indx1;
1561
1562 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
1563
1564 TObjArray *clusters[200]={0};
1565 TObjArray *pix;
1566
1567 // Find clusters of histogram bins (easier to work in 2-D space)
1568 for (Int_t i=1; i<=ny; i++) {
1569 for (Int_t j=1; j<=nx; j++) {
1570 indx = (i-1)*nx + j - 1;
1571 if (used[indx]) continue;
1572 cont = mlem->GetCellContent(j,i);
1573 if (cont < 0.5) continue;
1574 pix = new TObjArray(20);
1575 used[indx] = 1;
1576 pix->Add(BinToPix(mlem,j,i));
1577 AddBin(mlem, i, j, 0, used, pix); // recursive call
1578 clusters[nclust++] = pix;
1579 if (nclust > 200) { cout << " Too many clusters " << endl; ::exit(0); }
1580 } // for (Int_t j=1; j<=nx; j++) {
1581 } // for (Int_t i=1; i<=ny;
1582 cout << nclust << endl;
1583 delete [] used; used = 0;
1584
1585 // Compute couplings between clusters and clusters to pads
1586 Int_t npad = fnPads[0] + fnPads[1];
1587
1588 // Exclude pads with overflows
1589 for (Int_t j=0; j<npad; j++) {
1590 if (fXyq[2][j] > fResponse->MaxAdc()-1) fPadIJ[1][j] = -9;
1591 else fPadIJ[1][j] = 0;
1592 }
1593
1594 // Compute couplings of clusters to pads
c1aed84f 1595 TMatrixD *aijclupad = new TMatrixD(nclust,npad);
1596 *aijclupad = 0;
0df3ca52 1597 Int_t npxclu;
1598 for (Int_t iclust=0; iclust<nclust; iclust++) {
1599 pix = clusters[iclust];
1600 npxclu = pix->GetEntriesFast();
1601 for (Int_t i=0; i<npxclu; i++) {
1602 indx = fPixArray->IndexOf(pix->UncheckedAt(i));
1603 for (Int_t j=0; j<npad; j++) {
1604 // Exclude overflows
1605 if (fPadIJ[1][j] < 0) continue;
343146bf 1606 if (coef[j*nPix+indx] < fgkCouplMin) continue;
c1aed84f 1607 (*aijclupad)(iclust,j) += coef[j*nPix+indx];
0df3ca52 1608 }
1609 }
1610 }
1611 // Compute couplings between clusters
c1aed84f 1612 TMatrixD *aijcluclu = new TMatrixD(nclust,nclust);
1613 *aijcluclu = 0;
0df3ca52 1614 for (Int_t iclust=0; iclust<nclust; iclust++) {
1615 for (Int_t j=0; j<npad; j++) {
1616 // Exclude overflows
1617 if (fPadIJ[1][j] < 0) continue;
343146bf 1618 if ((*aijclupad)(iclust,j) < fgkCouplMin) continue;
0df3ca52 1619 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
343146bf 1620 if ((*aijclupad)(iclust1,j) < fgkCouplMin) continue;
c1aed84f 1621 (*aijcluclu)(iclust,iclust1) +=
1622 TMath::Sqrt ((*aijclupad)(iclust,j)*(*aijclupad)(iclust1,j));
0df3ca52 1623 }
1624 }
1625 }
1626 for (Int_t iclust=0; iclust<nclust; iclust++) {
1627 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
c1aed84f 1628 (*aijcluclu)(iclust1,iclust) = (*aijcluclu)(iclust,iclust1);
0df3ca52 1629 }
1630 }
1631
c1aed84f 1632 if (nclust > 1) aijcluclu->Print();
0df3ca52 1633
1634 // Find groups of coupled clusters
1635 used = new Bool_t[nclust];
1636 for (Int_t i=0; i<nclust; i++) used[i] = kFALSE;
1637 Int_t *clustNumb = new Int_t[nclust];
1638 Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
1639 Double_t parOk[8];
1640
1641 for (Int_t igroup=0; igroup<nclust; igroup++) {
1642 if (used[igroup]) continue;
1643 used[igroup] = kTRUE;
1644 clustNumb[0] = igroup;
1645 nCoupled = 1;
1646 // Find group of coupled clusters
c1aed84f 1647 AddCluster(igroup, nclust, aijcluclu, used, clustNumb, nCoupled); // recursive
0df3ca52 1648 cout << " nCoupled: " << nCoupled << endl;
1649 for (Int_t i=0; i<nCoupled; i++) cout << clustNumb[i] << " "; cout << endl;
1650
1651 while (nCoupled > 0) {
1652
1653 if (nCoupled < 4) {
1654 nForFit = nCoupled;
1655 for (Int_t i=0; i<nCoupled; i++) clustFit[i] = clustNumb[i];
1656 } else {
1657 // Too many coupled clusters to fit - try to decouple them
1658 // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
1659 // all the others in the group
1660 for (Int_t j=0; j<3; j++) minGroup[j] = -1;
c1aed84f 1661 Double_t coupl = MinGroupCoupl(nCoupled, clustNumb, aijcluclu, minGroup);
0df3ca52 1662
1663 // Flag clusters for fit
1664 nForFit = 0;
1665 while (minGroup[nForFit] >= 0 && nForFit < 3) {
1666 cout << clustNumb[minGroup[nForFit]] << " ";
1667 clustFit[nForFit] = clustNumb[minGroup[nForFit]];
1668 clustNumb[minGroup[nForFit]] -= 999;
1669 nForFit++;
1670 }
1671 cout << nForFit << " " << coupl << endl;
1672 } // else
1673
1674 // Select pads for fit.
c1aed84f 1675 if (SelectPad(nCoupled, nForFit, clustNumb, clustFit, aijclupad) < 3 && nCoupled > 1) {
0df3ca52 1676 // Deselect pads
1677 for (Int_t j=0; j<npad; j++) if (TMath::Abs(fPadIJ[1][j]) == 1) fPadIJ[1][j] = 0;
1678 // Merge the failed cluster candidates (with too few pads to fit) with
1679 // the one with the strongest coupling
c1aed84f 1680 Merge(nForFit, nCoupled, clustNumb, clustFit, clusters, aijcluclu, aijclupad);
0df3ca52 1681 } else {
1682 // Do the fit
1683 nfit = Fit(nForFit, clustFit, clusters, parOk);
1684 }
1685
1686 // Subtract the fitted charges from pads with strong coupling and/or
1687 // return pads for further use
1688 UpdatePads(nfit, parOk);
1689
1690 // Mark used pads
1691 for (Int_t j=0; j<npad; j++) {if (fPadIJ[1][j] == 1) fPadIJ[1][j] = -1;}
1692
1693 // Sort the clusters (move to the right the used ones)
1694 Int_t beg = 0, end = nCoupled - 1;
1695 while (beg < end) {
1696 if (clustNumb[beg] >= 0) { beg++; continue; }
1697 for (Int_t j=end; j>beg; j--) {
1698 if (clustNumb[j] < 0) continue;
1699 end = j - 1;
1700 indx = clustNumb[beg];
1701 clustNumb[beg] = clustNumb[j];
1702 clustNumb[j] = indx;
1703 break;
1704 }
1705 beg++;
1706 }
1707
1708 nCoupled -= nForFit;
1709 if (nCoupled > 3) {
1710 // Remove couplings of used clusters
1711 for (Int_t iclust=nCoupled; iclust<nCoupled+nForFit; iclust++) {
1712 indx = clustNumb[iclust] + 999;
1713 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1714 indx1 = clustNumb[iclust1];
c1aed84f 1715 (*aijcluclu)(indx,indx1) = (*aijcluclu)(indx1,indx) = 0;
0df3ca52 1716 }
1717 }
1718
1719 // Update the remaining clusters couplings (exclude couplings from
1720 // the used pads)
1721 for (Int_t j=0; j<npad; j++) {
1722 if (fPadIJ[1][j] != -1) continue;
1723 for (Int_t iclust=0; iclust<nCoupled; iclust++) {
1724 indx = clustNumb[iclust];
343146bf 1725 if ((*aijclupad)(indx,j) < fgkCouplMin) continue;
0df3ca52 1726 for (Int_t iclust1=iclust+1; iclust1<nCoupled; iclust1++) {
1727 indx1 = clustNumb[iclust1];
343146bf 1728 if ((*aijclupad)(indx1,j) < fgkCouplMin) continue;
0df3ca52 1729 // Check this
c1aed84f 1730 (*aijcluclu)(indx,indx1) -=
1731 TMath::Sqrt ((*aijclupad)(indx,j)*(*aijclupad)(indx1,j));
1732 (*aijcluclu)(indx1,indx) = (*aijcluclu)(indx,indx1);
0df3ca52 1733 }
1734 }
1735 fPadIJ[1][j] = -9;
1736 } // for (Int_t j=0; j<npad;
1737 } // if (nCoupled > 3)
1738 } // while (nCoupled > 0)
1739 } // for (Int_t igroup=0; igroup<nclust;
1740
c1aed84f 1741 //delete aij_clu; aij_clu = 0; delete aijclupad; aijclupad = 0;
1742 aijcluclu->Delete(); aijclupad->Delete();
0df3ca52 1743 for (Int_t iclust=0; iclust<nclust; iclust++) {
1744 pix = clusters[iclust];
1745 pix->Clear();
1746 delete pix; pix = 0;
1747 }
1748 delete [] clustNumb; clustNumb = 0; delete [] used; used = 0;
1749}
1750
1751//_____________________________________________________________________________
1752void AliMUONClusterFinderAZ::AddBin(TH2D *mlem, Int_t ic, Int_t jc, Int_t mode, Bool_t *used, TObjArray *pix)
1753{
1754 // Add a bin to the cluster
1755
1756 Int_t nx = mlem->GetNbinsX();
1757 Int_t ny = mlem->GetNbinsY();
1758 Double_t cont1, cont = mlem->GetCellContent(jc,ic);
1759 AliMUONPixel *pixPtr = 0;
1760
1761 for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) {
1762 for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) {
1763 if (i != ic && j != jc) continue;
1764 if (used[(i-1)*nx+j-1]) continue;
1765 cont1 = mlem->GetCellContent(j,i);
1766 if (mode && cont1 > cont) continue;
1767 used[(i-1)*nx+j-1] = kTRUE;
1768 if (cont1 < 0.5) continue;
1769 if (pix) pix->Add(BinToPix(mlem,j,i));
1770 else {
1771 pixPtr = new AliMUONPixel (mlem->GetXaxis()->GetBinCenter(j),
1772 mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
1773 fPixArray->Add((TObject*)pixPtr);
1774 }
1775 AddBin(mlem, i, j, mode, used, pix); // recursive call
1776 }
1777 }
1778}
1779
1780//_____________________________________________________________________________
1781TObject* AliMUONClusterFinderAZ::BinToPix(TH2D *mlem, Int_t jc, Int_t ic)
1782{
1783 // Translate histogram bin to pixel
1784
1785 Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
1786 Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
1787
1788 Int_t nPix = fPixArray->GetEntriesFast();
1789 AliMUONPixel *pixPtr;
1790
1791 // Compare pixel and bin positions
1792 for (Int_t i=0; i<nPix; i++) {
1793 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1794 if (pixPtr->Charge() < 0.5) continue;
1795 if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4) return (TObject*) pixPtr;
1796 }
1797 cout << " Something wrong ??? " << endl;
1798 return NULL;
1799}
1800
1801//_____________________________________________________________________________
c1aed84f 1802void AliMUONClusterFinderAZ::AddCluster(Int_t ic, Int_t nclust, TMatrixD *aijcluclu, Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
0df3ca52 1803{
1804 // Add a cluster to the group of coupled clusters
1805
1806 for (Int_t i=0; i<nclust; i++) {
1807 if (used[i]) continue;
343146bf 1808 if ((*aijcluclu)(i,ic) < fgkCouplMin) continue;
0df3ca52 1809 used[i] = kTRUE;
1810 clustNumb[nCoupled++] = i;
c1aed84f 1811 AddCluster(i, nclust, aijcluclu, used, clustNumb, nCoupled);
0df3ca52 1812 }
1813}
1814
1815//_____________________________________________________________________________
c1aed84f 1816Double_t AliMUONClusterFinderAZ::MinGroupCoupl(Int_t nCoupled, Int_t *clustNumb, TMatrixD *aijcluclu, Int_t *minGroup)
0df3ca52 1817{
1818 // Find group of clusters with minimum coupling to all the others
1819
1820 Int_t i123max = TMath::Min(3,nCoupled/2);
1821 Int_t indx, indx1, indx2, indx3, nTot = 0;
1822 Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1823
1824 for (Int_t i123=1; i123<=i123max; i123++) {
1825
1826 if (i123 == 1) {
1827 coupl1 = new Double_t [nCoupled];
1828 for (Int_t i=0; i<nCoupled; i++) coupl1[i] = 0;
1829 }
1830 else if (i123 == 2) {
1831 nTot = nCoupled*nCoupled;
1832 coupl2 = new Double_t [nTot];
1833 for (Int_t i=0; i<nTot; i++) coupl2[i] = 9999;
1834 } else {
1835 nTot = nTot*nCoupled;
1836 coupl3 = new Double_t [nTot];
1837 for (Int_t i=0; i<nTot; i++) coupl3[i] = 9999;
1838 } // else
1839
1840 for (Int_t i=0; i<nCoupled; i++) {
1841 indx1 = clustNumb[i];
1842 for (Int_t j=i+1; j<nCoupled; j++) {
1843 indx2 = clustNumb[j];
1844 if (i123 == 1) {
c1aed84f 1845 coupl1[i] += (*aijcluclu)(indx1,indx2);
1846 coupl1[j] += (*aijcluclu)(indx1,indx2);
0df3ca52 1847 }
1848 else if (i123 == 2) {
1849 indx = i*nCoupled + j;
1850 coupl2[indx] = coupl1[i] + coupl1[j];
c1aed84f 1851 coupl2[indx] -= 2 * ((*aijcluclu)(indx1,indx2));
0df3ca52 1852 } else {
1853 for (Int_t k=j+1; k<nCoupled; k++) {
1854 indx3 = clustNumb[k];
1855 indx = i*nCoupled*nCoupled + j*nCoupled + k;
1856 coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
c1aed84f 1857 coupl3[indx] -= 2 * ((*aijcluclu)(indx1,indx3)+(*aijcluclu)(indx2,indx3));
0df3ca52 1858 }
1859 } // else
1860 } // for (Int_t j=i+1;
1861 } // for (Int_t i=0;
1862 } // for (Int_t i123=1;
1863
1864 // Find minimum coupling
1865 Double_t couplMin = 9999;
1866 Int_t locMin = 0;
1867
1868 for (Int_t i123=1; i123<=i123max; i123++) {
1869 if (i123 == 1) {
1870 locMin = TMath::LocMin(nCoupled, coupl1);
1871 couplMin = coupl1[locMin];
1872 minGroup[0] = locMin;
1873 delete [] coupl1; coupl1 = 0;
1874 }
1875 else if (i123 == 2) {
1876 locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1877 if (coupl2[locMin] < couplMin) {
1878 couplMin = coupl2[locMin];
1879 minGroup[0] = locMin/nCoupled;
1880 minGroup[1] = locMin%nCoupled;
1881 }
1882 delete [] coupl2; coupl2 = 0;
1883 } else {
1884 locMin = TMath::LocMin(nTot, coupl3);
1885 if (coupl3[locMin] < couplMin) {
1886 couplMin = coupl3[locMin];
1887 minGroup[0] = locMin/nCoupled/nCoupled;
1888 minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1889 minGroup[2] = locMin%nCoupled;
1890 }
1891 delete [] coupl3; coupl3 = 0;
1892 } // else
1893 } // for (Int_t i123=1;
1894 return couplMin;
1895}
1896
1897//_____________________________________________________________________________
c1aed84f 1898Int_t AliMUONClusterFinderAZ::SelectPad(Int_t nCoupled, Int_t nForFit, Int_t *clustNumb, Int_t *clustFit, TMatrixD *aijclupad)
0df3ca52 1899{
1900 // Select pads for fit. If too many coupled clusters, find pads giving
1901 // the strongest coupling with the rest of clusters and exclude them from the fit.
1902
1903 Int_t npad = fnPads[0] + fnPads[1];
c1aed84f 1904 Double_t *padpix = 0;
0df3ca52 1905
1906 if (nCoupled > 3) {
c1aed84f 1907 padpix = new Double_t[npad];
1908 for (Int_t i=0; i<npad; i++) padpix[i] = 0;
0df3ca52 1909 }
1910
1911 Int_t nOK = 0, indx, indx1;
1912 for (Int_t iclust=0; iclust<nForFit; iclust++) {
1913 indx = clustFit[iclust];
1914 for (Int_t j=0; j<npad; j++) {
1915 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
343146bf 1916 if ((*aijclupad)(indx,j) < fgkCouplMin) continue;
0df3ca52 1917 fPadIJ[1][j] = 1; // pad to be used in fit
1918 nOK++;
1919 if (nCoupled > 3) {
1920 // Check other clusters
1921 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1922 indx1 = clustNumb[iclust1];
1923 if (indx1 < 0) continue;
343146bf 1924 if ((*aijclupad)(indx1,j) < fgkCouplMin) continue;
c1aed84f 1925 padpix[j] += (*aijclupad)(indx1,j);
0df3ca52 1926 }
1927 } // if (nCoupled > 3)
1928 } // for (Int_t j=0; j<npad;
1929 } // for (Int_t iclust=0; iclust<nForFit
1930 if (nCoupled < 4) return nOK;
1931
1932 Double_t aaa = 0;
1933 for (Int_t j=0; j<npad; j++) {
343146bf 1934 if (padpix[j] < fgkCouplMin) continue;
c1aed84f 1935 cout << j << " " << padpix[j] << " ";
0df3ca52 1936 cout << fXyq[0][j] << " " << fXyq[1][j] << endl;
c1aed84f 1937 aaa += padpix[j];
0df3ca52 1938 fPadIJ[1][j] = -1; // exclude pads with strong coupling to the other clusters
1939 nOK--;
1940 }
c1aed84f 1941 delete [] padpix; padpix = 0;
0df3ca52 1942 return nOK;
1943}
1944
1945//_____________________________________________________________________________
c1aed84f 1946void AliMUONClusterFinderAZ::Merge(Int_t nForFit, Int_t nCoupled, Int_t *clustNumb, Int_t *clustFit, TObjArray **clusters, TMatrixD *aijcluclu, TMatrixD *aijclupad)
0df3ca52 1947{
1948 // Merge the group of clusters with the one having the strongest coupling with them
1949
1950 Int_t indx, indx1, npxclu, npxclu1, imax=0;
1951 TObjArray *pix, *pix1;
1952 Double_t couplMax;
1953
1954 for (Int_t icl=0; icl<nForFit; icl++) {
1955 indx = clustFit[icl];
1956 pix = clusters[indx];
1957 npxclu = pix->GetEntriesFast();
1958 couplMax = -1;
1959 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1960 indx1 = clustNumb[icl1];
1961 if (indx1 < 0) continue;
c1aed84f 1962 if ((*aijcluclu)(indx,indx1) > couplMax) {
1963 couplMax = (*aijcluclu)(indx,indx1);
0df3ca52 1964 imax = indx1;
1965 }
1966 } // for (Int_t icl1=0;
343146bf 1967 /*if (couplMax < fgkCouplMin) {
0df3ca52 1968 cout << " Oops " << couplMax << endl;
c1aed84f 1969 aijcluclu->Print();
0df3ca52 1970 cout << icl << " " << indx << " " << npxclu << " " << nLinks << endl;
1971 ::exit(0);
1972 }*/
1973 // Add to it
1974 pix1 = clusters[imax];
1975 npxclu1 = pix1->GetEntriesFast();
1976 // Add pixels
1977 for (Int_t i=0; i<npxclu; i++) { pix1->Add(pix->UncheckedAt(i)); pix->RemoveAt(i); }
1978 cout << " New number of pixels: " << npxclu1 << " " << pix1->GetEntriesFast() << endl;
1979 //Add cluster-to-cluster couplings
c1aed84f 1980 //aijcluclu->Print();
0df3ca52 1981 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1982 indx1 = clustNumb[icl1];
1983 if (indx1 < 0 || indx1 == imax) continue;
c1aed84f 1984 (*aijcluclu)(indx1,imax) += (*aijcluclu)(indx,indx1);
1985 (*aijcluclu)(imax,indx1) = (*aijcluclu)(indx1,imax);
0df3ca52 1986 }
c1aed84f 1987 (*aijcluclu)(indx,imax) = (*aijcluclu)(imax,indx) = 0;
1988 //aijcluclu->Print();
0df3ca52 1989 //Add cluster-to-pad couplings
1990 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1991 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
c1aed84f 1992 (*aijclupad)(imax,j) += (*aijclupad)(indx,j);
1993 (*aijclupad)(indx,j) = 0;
0df3ca52 1994 }
1995 } // for (Int_t icl=0; icl<nForFit;
1996}
1997
1998//_____________________________________________________________________________
1999Int_t AliMUONClusterFinderAZ::Fit(Int_t nfit, Int_t *clustFit, TObjArray **clusters, Double_t *parOk)
2000{
2001 // Find selected clusters to selected pad charges
2002
2003 TH2D *mlem = (TH2D*) gROOT->FindObject("mlem");
2004 //Int_t nx = mlem->GetNbinsX();
2005 //Int_t ny = mlem->GetNbinsY();
2006 Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
2007 Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
2008 Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
2009 Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
2010 //Double_t qmin = 0, qmax = 1;
2011 Double_t step[3]={0.01,0.002,0.02};
2012
2013 Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8];
2014 TObjArray *pix;
2015 Int_t npxclu;
2016
2017 // Number of pads to use
2018 Int_t npads = 0;
2019 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {if (fPadIJ[1][i] == 1) npads++;}
2020 for (Int_t i=0; i<nfit; i++) {cout << i+1 << " " << clustFit[i] << " ";}
2021 cout << nfit << endl;
2022 cout << " Number of pads to fit: " << npads << endl;
2023 fNpar = 0;
2024 fQtot = 0;
2025 if (npads < 2) return 0;
2026
2027 // Take cluster maxima as fitting seeds
2028 AliMUONPixel *pixPtr;
2029 Double_t xyseed[3][2], qseed[3];
2030 for (Int_t ifit=1; ifit<=nfit; ifit++) {
2031 cmax = 0;
2032 pix = clusters[clustFit[ifit-1]];
2033 npxclu = pix->GetEntriesFast();
2034 for (Int_t clu=0; clu<npxclu; clu++) {
2035 pixPtr = (AliMUONPixel*) pix->UncheckedAt(clu);
2036 cont = pixPtr->Charge();
2037 fQtot += cont;
2038 if (cont > cmax) {
2039 cmax = cont;
2040 xseed = pixPtr->Coord(0);
2041 yseed = pixPtr->Coord(1);
2042 }
2043 }
2044 xyseed[ifit-1][0] = xseed;
2045 xyseed[ifit-1][1] = yseed;
2046 qseed[ifit-1] = cmax;
2047 } // for (Int_t ifit=1;
2048
2049 Int_t nDof, maxSeed[3];
2050 Double_t fmin, chi2o = 9999, chi2n;
2051
2052 // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
2053 // lower, try 3-track (if number of pads is sufficient).
2054
2055 TMath::Sort(nfit, qseed, maxSeed, kTRUE); // in decreasing order
2056 nfit = TMath::Min (nfit, (npads + 1) / 3);
2057
2058 Double_t *gin = 0, func0, func1, param[8], param0[2][8], deriv[2][8], step0[8];
2059 Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0;
2060 Double_t delta[8], scMax, dder[8], estim, shiftSave = 0;
2061 Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail;
2062
2063 for (Int_t iseed=0; iseed<nfit; iseed++) {
2064
2065 for (Int_t j=0; j<3; j++) step0[fNpar+j] = shift[fNpar+j] = step[j];
2066 param[fNpar] = xyseed[maxSeed[iseed]][0];
2067 parmin[fNpar] = xmin;
2068 parmax[fNpar++] = xmax;
2069 param[fNpar] = xyseed[maxSeed[iseed]][1];
2070 parmin[fNpar] = ymin;
2071 parmax[fNpar++] = ymax;
2072 if (fNpar > 2) {
2073 param[fNpar] = fNpar == 4 ? 0.5 : 0.3;
2074 parmin[fNpar] = 0;
2075 parmax[fNpar++] = 1;
2076 }
2077
2078 // Try new algorithm
2079 min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
2080
2081 while (1) {
2082 max = !min;
30178c30 2083 Fcn1(fNpar, gin, func0, param, 1); nCall++;
0df3ca52 2084 //cout << " Func: " << func0 << endl;
2085
2086 func2[max] = func0;
2087 for (Int_t j=0; j<fNpar; j++) {
2088 param0[max][j] = param[j];
2089 delta[j] = step0[j];
2090 param[j] += delta[j] / 10;
2091 if (j > 0) param[j-1] -= delta[j-1] / 10;
30178c30 2092 Fcn1(fNpar, gin, func1, param, 1); nCall++;
0df3ca52 2093 deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
2094 //cout << j << " " << deriv[max][j] << endl;
2095 dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
2096 (param0[0][j] - param0[1][j]) : 0; // second derivative
2097 }
2098 param[fNpar-1] -= delta[fNpar-1] / 10;
2099 if (nCall > 2000) ::exit(0);
2100
2101 min = func2[0] < func2[1] ? 0 : 1;
2102 nFail = min == max ? 0 : nFail + 1;
2103
2104 stepMax = derMax = estim = 0;
2105 for (Int_t j=0; j<fNpar; j++) {
2106 // Estimated distance to minimum
2107 shift0 = shift[j];
2108 if (nLoop == 1) shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
2109 else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3) shift[j] = 0;
2110 else if (deriv[min][j]*deriv[!min][j] > 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])
2111 || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) {
2112 shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
2113 if (min == max) {
2114 if (memory[j] > 1) { shift[j] *= 2; } //cout << " Memory " << memory[j] << " " << shift[j] << endl; }
2115 memory[j]++;
2116 }
2117 } else {
2118 shift[j] = -deriv[min][j] / dder[j];
2119 memory[j] = 0;
2120 }
2121 if (TMath::Abs(shift[j])/step0[j] > estim) {
2122 estim = TMath::Abs(shift[j])/step0[j];
2123 iestMax = j;
2124 }
2125
2126 // Too big step
2127 if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
2128
2129 // Failed to improve minimum
2130 if (min != max) {
2131 memory[j] = 0;
2132 param[j] = param0[min][j];
2133 if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j]) shift[j] = (shift[j] + shift0) / 2;
2134 else shift[j] /= -2;
2135 }
2136
2137 // Too big step
2138 if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
2139 shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
2140
2141 // Introduce step relaxation factor
2142 if (memory[j] < 3) {
2143 scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
2144 if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
2145 shift[j] = TMath::Sign (shift0*scMax, shift[j]);
2146 }
2147 param[j] += shift[j];
2148
2149 //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
2150 stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
2151 if (TMath::Abs(deriv[min][j]) > derMax) {
2152 idMax = j;
2153 derMax = TMath::Abs (deriv[min][j]);
2154 }
2155 } // for (Int_t j=0; j<fNpar;
2156 //cout << max << " " << func2[min] << " " << derMax << " " << stepMax << " " << estim << " " << iestMax << " " << nCall << endl;
2157 if (estim < 1 && derMax < 2 || nLoop > 100) break; // minimum was found
2158
2159 nLoop++;
2160 // Check for small step
2161 if (shift[idMax] == 0) { shift[idMax] = step0[idMax]/10; param[idMax] += shift[idMax]; continue; }
2162 if (!memory[idMax] && derMax > 0.5 && nLoop > 10) {
2163 //cout << " ok " << deriv[min][idMax] << " " << deriv[!min][idMax] << " " << dder[idMax]*shift[idMax] << " " << shift[idMax] << endl;
2164 if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10) {
2165 if (min == max) dder[idMax] = -dder[idMax];
2166 shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
2167 param[idMax] += shift[idMax];
2168 stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
2169 //cout << shift[idMax] << " " << param[idMax] << endl;
2170 if (min == max) shiftSave = shift[idMax];
2171 }
2172 if (nFail > 10) {
2173 param[idMax] -= shift[idMax];
2174 shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
2175 param[idMax] += shift[idMax];
2176 //cout << shift[idMax] << endl;
2177 }
2178 }
2179 } // while (1)
2180 fmin = func2[min];
2181
2182 nDof = npads - fNpar;
2183 chi2n = nDof ? fmin/nDof : 0;
2184
2185 if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; }
2186 // Save parameters and errors
2187 for (Int_t i=0; i<fNpar; i++) {
2188 parOk[i] = param0[min][i];
2189 errOk[i] = fmin;
2190 }
2191
2192 cout << chi2o << " " << chi2n << endl;
2193 chi2o = chi2n;
2194 if (fmin < 0.1) break; // !!!???
2195 } // for (Int_t iseed=0;
2196
2197 for (Int_t i=0; i<fNpar; i++) {
2198 if (i == 4 || i == 7) continue;
2199 cout << parOk[i] << " " << errOk[i] << endl;
2200 }
2201 nfit = (fNpar + 1) / 3;
2202 Double_t rad;
2203 Int_t indx, imax;
2204 if (fReco) {
2205 for (Int_t j=0; j<nfit; j++) {
2206 indx = j<2 ? j*2 : j*2+1;
2207 AddRawCluster (parOk[indx], parOk[indx+1], errOk[indx]);
2208 }
2209 return nfit;
2210 }
2211 for (Int_t i=0; i<fnMu; i++) {
2212 cmax = fxyMu[i][6];
2213 for (Int_t j=0; j<nfit; j++) {
2214 indx = j<2 ? j*2 : j*2+1;
2215 rad = (fxyMu[i][0]-parOk[indx])*(fxyMu[i][0]-parOk[indx]) +
2216 (fxyMu[i][1]-parOk[indx+1])*(fxyMu[i][1]-parOk[indx+1]);
2217 if (rad < cmax) {
2218 cmax = rad;
2219 imax = indx;
2220 fxyMu[i][6] = cmax;
2221 fxyMu[i][2] = parOk[imax] - fxyMu[i][0];
2222 fxyMu[i][4] = parOk[imax+1] - fxyMu[i][1];
2223 fxyMu[i][3] = errOk[imax];
2224 fxyMu[i][5] = errOk[imax+1];
2225 }
2226 }
2227 }
2228 return nfit;
2229}
2230
2231//_____________________________________________________________________________
30178c30 2232void AliMUONClusterFinderAZ::Fcn1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
0df3ca52 2233{
2234 // Fit for one track
2235 AliMUONClusterFinderAZ& c = *(AliMUONClusterFinderAZ::fgClusterFinder);
2236
2237 Int_t cath, ix, iy, indx, npads=0;
2238 Double_t charge, delta, coef=0, chi2=0;
2239 for (Int_t j=0; j<c.fnPads[0]+c.fnPads[1]; j++) {
2240 if (c.fPadIJ[1][j] != 1) continue;
2241 cath = c.fPadIJ[0][j];
2242 npads++;
2243 c.fSegmentation[cath]->GetPadI(c.fXyq[0][j],c.fXyq[1][j],c.fZpad,ix,iy);
2244 c.fSegmentation[cath]->SetPad(ix,iy);
2245 charge = 0;
2246 for (Int_t i=c.fNpar/3; i>=0; i--) { // sum over tracks
2247 indx = i<2 ? 2*i : 2*i+1;
2248 c.fSegmentation[cath]->SetHit(par[indx],par[indx+1],c.fZpad);
2249 //charge += c.fResponse->IntXY(c.fSegmentation[cath])*par[icl*3+2];
2250 if (c.fNpar == 2) coef = 1;
2251 else coef = i==c.fNpar/3 ? par[indx+2] : 1-coef;
2252 //coef = TMath::Max (coef, 0.);
2253 if (c.fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2254 //coef = TMath::Max (coef, 0.);
2255 charge += c.fResponse->IntXY(c.fSegmentation[cath])*coef;
2256 }
2257 charge *= c.fQtot;
2258 //if (c.fXyq[2][j] > c.fResponse->MaxAdc()-1 && charge >
2259 // c.fResponse->MaxAdc()) charge = c.fResponse->MaxAdc();
2260 delta = charge - c.fXyq[2][j];
2261 delta /= TMath::Sqrt ((Double_t)c.fXyq[2][j]);
2262 //chi2 += TMath::Abs(delta);
2263 chi2 += delta*delta;
2264 } // for (Int_t j=0;
2265 f = chi2;
2266 Double_t qAver = c.fQtot/npads; //(c.fnPads[0]+c.fnPads[1]);
2267 f = chi2/qAver;
2268}
2269
2270//_____________________________________________________________________________
6aaf81e6 2271void AliMUONClusterFinderAZ::UpdatePads(Int_t /*nfit*/, Double_t *par)
0df3ca52 2272{
2273 // Subtract the fitted charges from pads with strong coupling
2274
2275 Int_t cath, ix, iy, indx;
2276 Double_t charge, coef=0;
2277 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2278 if (fPadIJ[1][j] != -1) continue;
2279 if (fNpar != 0) {
2280 cath = fPadIJ[0][j];
2281 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
2282 fSegmentation[cath]->SetPad(ix,iy);
2283 charge = 0;
2284 for (Int_t i=fNpar/3; i>=0; i--) { // sum over tracks
2285 indx = i<2 ? 2*i : 2*i+1;
2286 fSegmentation[cath]->SetHit(par[indx],par[indx+1],fZpad);
2287 if (fNpar == 2) coef = 1;
2288 else coef = i==fNpar/3 ? par[indx+2] : 1-coef;
2289 if (fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2290 charge += fResponse->IntXY(fSegmentation[cath])*coef;
2291 }
2292 charge *= fQtot;
2293 fXyq[2][j] -= charge;
2294 } // if (fNpar != 0)
2295 if (fXyq[2][j] > fResponse->ZeroSuppression()) fPadIJ[1][j] = 0; // return pad for further using
2296 } // for (Int_t j=0;
2297}
2298
2299//_____________________________________________________________________________
30178c30 2300Bool_t AliMUONClusterFinderAZ::TestTrack(Int_t /*t*/) const {
0df3ca52 2301// Test if track was user selected
2302 return kTRUE;
2303 /*
2304 if (fTrack[0]==-1 || fTrack[1]==-1) {
2305 return kTRUE;
2306 } else if (t==fTrack[0] || t==fTrack[1]) {
2307 return kTRUE;
2308 } else {
2309 return kFALSE;
2310 }
2311 */
2312}
2313
2314//_____________________________________________________________________________
2315void AliMUONClusterFinderAZ::AddRawCluster(Double_t x, Double_t y, Double_t fmin)
2316{
2317 //
2318 // Add a raw cluster copy to the list
2319 //
2320 AliMUONRawCluster cnew;
2321 AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON");
2322 //pMUON->AddRawCluster(fInput->Chamber(),c);
2323
2324 Int_t cath;
2325 for (cath=0; cath<2; cath++) {
ba12c242 2326 cnew.SetX(cath, x);
2327 cnew.SetY(cath, y);
2328 cnew.SetZ(cath, fZpad);
2329 cnew.SetCharge(cath, 100);
9e993f2a 2330 cnew.SetPeakSignal(cath,20);
2331 cnew.SetMultiplicity(cath, 5);
3b5272e3 2332 cnew.SetNcluster(cath, 1);
2333 cnew.SetChi2(cath, fmin); //0.1;
0df3ca52 2334 /*
2335 cnew.fMultiplicity[cath]=c->fMultiplicity[cath];
2336 for (i=0; i<fMul[cath]; i++) {
2337 cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath];
2338 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
2339 }
2340 fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath);
2341 fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]);
2342 FillCluster(&cnew,cath);
2343 */
2344 }
2345 //cnew.fClusterType=cnew.PhysicsContribution();
ce3f5e87 2346 pMUON->GetMUONData()->AddRawCluster(AliMUONClusterInput::Instance()->Chamber(),cnew);
0df3ca52 2347 //fNPeaks++;
2348}
2349
2350//_____________________________________________________________________________
2351Int_t AliMUONClusterFinderAZ::FindLocalMaxima(Int_t *localMax, Double_t *maxVal)
2352{
2353 // Find local maxima in pixel space for large preclusters in order to
2354 // try to split them into smaller pieces (to speed up the MLEM procedure)
2355
2356 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2357 if (hist) hist->Delete();
2358
cd747ddb 2359 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 2360 Int_t nPix = fPixArray->GetEntriesFast();
2361 AliMUONPixel *pixPtr = 0;
2362 for (Int_t ipix=0; ipix<nPix; ipix++) {
2363 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2364 for (Int_t i=0; i<4; i++)
2365 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
2366 }
2367 for (Int_t i=0; i<4; i++) xylim[i] -= pixPtr->Size(i/2);
2368
2369 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
2370 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
2371 hist = new TH2D("anode","anode",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
2372 for (Int_t ipix=0; ipix<nPix; ipix++) {
2373 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2374 hist->Fill(pixPtr->Coord(0), pixPtr->Coord(1), pixPtr->Charge());
2375 }
2376 if (fDraw) {
2377 ((TCanvas*)gROOT->FindObject("c2"))->cd();
2378 gPad->SetTheta(55);
2379 gPad->SetPhi(30);
2380 hist->Draw("lego1Fb");
2381 gPad->Update();
2382 int ia;
2383 cin >> ia;
2384 }
2385
2386 Int_t nMax = 0, indx;
2387 Int_t *isLocalMax = new Int_t[ny*nx];
2388 for (Int_t i=0; i<ny*nx; i++) isLocalMax[i] = 0;
2389
2390 for (Int_t i=1; i<=ny; i++) {
2391 indx = (i-1) * nx;
2392 for (Int_t j=1; j<=nx; j++) {
2393 if (hist->GetCellContent(j,i) < 0.5) continue;
2394 //if (isLocalMax[indx+j-1] < 0) continue;
2395 if (isLocalMax[indx+j-1] != 0) continue;
2396 FlagLocalMax(hist, i, j, isLocalMax);
2397 }
2398 }
2399
2400 for (Int_t i=1; i<=ny; i++) {
2401 indx = (i-1) * nx;
2402 for (Int_t j=1; j<=nx; j++) {
2403 if (isLocalMax[indx+j-1] > 0) {
2404 localMax[nMax] = indx + j - 1;
2405 maxVal[nMax++] = hist->GetCellContent(j,i);
2406 }
2407 if (nMax > 99) { cout << " Too many local maxima !!!" << endl; ::exit(0); }
2408 }
2409 }
2410 cout << " Local max: " << nMax << endl;
2411 delete [] isLocalMax; isLocalMax = 0;
2412 return nMax;
2413}
2414
2415//_____________________________________________________________________________
2416void AliMUONClusterFinderAZ::FlagLocalMax(TH2D *hist, Int_t i, Int_t j, Int_t *isLocalMax)
2417{
2418 // Flag pixels (whether or not local maxima)
2419
2420 Int_t nx = hist->GetNbinsX();
2421 Int_t ny = hist->GetNbinsY();
2422 Int_t cont = TMath::Nint (hist->GetCellContent(j,i));
2423 Int_t cont1 = 0;
2424
2425 for (Int_t i1=i-1; i1<i+2; i1++) {
2426 if (i1 < 1 || i1 > ny) continue;
2427 for (Int_t j1=j-1; j1<j+2; j1++) {
2428 if (j1 < 1 || j1 > nx) continue;
2429 if (i == i1 && j == j1) continue;
2430 cont1 = TMath::Nint (hist->GetCellContent(j1,i1));
2431 if (cont < cont1) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2432 else if (cont > cont1) isLocalMax[(i1-1)*nx+j1-1] = -1;
2433 else { // the same charge
2434 isLocalMax[(i-1)*nx+j-1] = 1;
2435 if (isLocalMax[(i1-1)*nx+j1-1] == 0) {
2436 FlagLocalMax(hist, i1, j1, isLocalMax);
2437 if (isLocalMax[(i1-1)*nx+j1-1] < 0) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2438 else isLocalMax[(i1-1)*nx+j1-1] = -1;
2439 }
2440 }
2441 }
2442 }
2443 isLocalMax[(i-1)*nx+j-1] = 1; // local maximum
2444}
2445
2446//_____________________________________________________________________________
2447void AliMUONClusterFinderAZ::FindCluster(Int_t *localMax, Int_t iMax)
2448{
2449 // Find pixel cluster around local maximum #iMax and pick up pads
2450 // overlapping with it
2451
2452 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2453 Int_t nx = hist->GetNbinsX();
2454 Int_t ny = hist->GetNbinsY();
2455 Int_t ic = localMax[iMax] / nx + 1;
2456 Int_t jc = localMax[iMax] % nx + 1;
2457 Bool_t *used = new Bool_t[ny*nx];
2458 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
2459
2460 // Drop all pixels from the array - pick up only the ones from the cluster
2461 fPixArray->Delete();
2462
2463 Double_t wx = hist->GetXaxis()->GetBinWidth(1)/2;
2464 Double_t wy = hist->GetYaxis()->GetBinWidth(1)/2;
2465 Double_t yc = hist->GetYaxis()->GetBinCenter(ic);
2466 Double_t xc = hist->GetXaxis()->GetBinCenter(jc);
2467 Double_t cont = hist->GetCellContent(jc,ic);
2468 AliMUONPixel *pixPtr = new AliMUONPixel (xc, yc, wx, wy, cont);
2469 fPixArray->Add((TObject*)pixPtr);
2470 used[(ic-1)*nx+jc-1] = kTRUE;
2471 AddBin(hist, ic, jc, 1, used, (TObjArray*)0); // recursive call
2472
2473 Int_t nPix = fPixArray->GetEntriesFast(), npad = fnPads[0] + fnPads[1];
2474 for (Int_t i=0; i<nPix; i++) {
2475 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(0,wx);
2476 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(1,wy);
2477 }
2478 cout << iMax << " " << nPix << endl;
2479
2480 Float_t xy[4], xy12[4];
2481 // Pick up pads which overlap with found pixels
2482 for (Int_t i=0; i<npad; i++) fPadIJ[1][i] = -1;
2483 for (Int_t i=0; i<nPix; i++) {
2484 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
2485 for (Int_t j=0; j<4; j++)
2486 xy[j] = pixPtr->Coord(j/2) + (j%2 ? 1 : -1)*pixPtr->Size(j/2);
2487 for (Int_t j=0; j<npad; j++)
2488 if (Overlap(xy, j, xy12, 0)) fPadIJ[1][j] = 0; // flag for use
2489 }
2490
2491 delete [] used; used = 0;
2492}
30178c30 2493
2494//_____________________________________________________________________________
2495AliMUONClusterFinderAZ&
2496AliMUONClusterFinderAZ::operator=(const AliMUONClusterFinderAZ& rhs)
2497{
2498// Protected assignement operator
2499
2500 if (this == &rhs) return *this;
2501
2502 Fatal("operator=", "Not implemented.");
2503
2504 return *this;
2505}
2506