]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONClusterFinderAZ.cxx
Coding conventions
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterFinderAZ.cxx
CommitLineData
30178c30 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18// Clusterizer class developped by Zitchenko (Dubna)
0df3ca52 19
0df3ca52 20#include <Riostream.h>
21#include <TROOT.h>
22#include <TCanvas.h>
23#include <TLine.h>
24#include <TTree.h>
25#include <TH2.h>
26#include <TView.h>
27#include <TStyle.h>
28#include <TMinuit.h>
29#include <TMatrixD.h>
30
30178c30 31#include "AliMUONClusterFinderAZ.h"
0df3ca52 32#include "AliHeader.h"
33#include "AliRun.h"
34#include "AliMUON.h"
35#include "AliMUONChamber.h"
36#include "AliMUONDigit.h"
37#include "AliMUONHit.h"
38#include "AliMUONChamber.h"
39#include "AliMUONRawCluster.h"
40#include "AliMUONClusterInput.h"
41#include "AliMUONPixel.h"
5d12ce38 42#include "AliMC.h"
0df3ca52 43
0df3ca52 44ClassImp(AliMUONClusterFinderAZ)
0558a292 45
343146bf 46 const Double_t AliMUONClusterFinderAZ::fgkCouplMin = 1.e-3; // threshold on coupling
0558a292 47 AliMUONClusterFinderAZ* AliMUONClusterFinderAZ::fgClusterFinder = 0x0;
48 TMinuit* AliMUONClusterFinderAZ::fgMinuit = 0x0;
0df3ca52 49
0df3ca52 50//_____________________________________________________________________________
30178c30 51AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(Bool_t draw, Int_t iReco)
74f7bbc5 52 : AliMUONClusterFinderVS()
0df3ca52 53{
54// Constructor
55 for (Int_t i=0; i<4; i++) {fHist[i] = 0;}
56 fMuonDigits = 0;
57 fSegmentation[1] = fSegmentation[0] = 0;
0558a292 58 fgClusterFinder = 0x0;
59 fgMinuit = 0x0;
0df3ca52 60 if (!fgClusterFinder) fgClusterFinder = this;
61 if (!fgMinuit) fgMinuit = new TMinuit(8);
62 fDraw = draw;
63 fReco = iReco;
64 fPixArray = new TObjArray(20);
65 /*
66 fPoints = 0;
67 fPhits = 0;
68 fRpoints = 0;
69 fCanvas = 0;
70 fNextCathode = kFALSE;
71 fColPad = 0;
72 */
73}
74
74f7bbc5 75//_____________________________________________________________________________
76AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(const AliMUONClusterFinderAZ& rhs)
77 : AliMUONClusterFinderVS(rhs)
78{
79// Protected copy constructor
80
81 Fatal("AliMUONClusterFinderAZModule", "Not implemented.");
82}
83
0df3ca52 84//_____________________________________________________________________________
85AliMUONClusterFinderAZ::~AliMUONClusterFinderAZ()
86{
87 // Destructor
88 delete fgMinuit; fgMinuit = 0; delete fPixArray; fPixArray = 0;
89 /*
90 // Delete space point structure
91 if (fPoints) fPoints->Delete();
92 delete fPoints;
93 fPoints = 0;
94 //
95 if (fPhits) fPhits->Delete();
96 delete fPhits;
97 fPhits = 0;
98 //
99 if (fRpoints) fRpoints->Delete();
100 delete fRpoints;
101 fRpoints = 0;
102 */
103}
104
105//_____________________________________________________________________________
106void AliMUONClusterFinderAZ::FindRawClusters()
107{
108// To provide the same interface as in AliMUONClusterFinderVS
109
110 EventLoop (gAlice->GetHeader()->GetEvent(), AliMUONClusterInput::Instance()->Chamber());
111}
112
113//_____________________________________________________________________________
114void AliMUONClusterFinderAZ::EventLoop(Int_t nev=0, Int_t ch=0)
115{
116// Loop over events
117
118 FILE *lun = 0;
119 TCanvas *c1 = 0;
120 TView *view = 0;
121 TH2F *hist = 0;
122 Double_t p1[3]={0}, p2[3];
c1aed84f 123 TTree *treeR = 0;
0df3ca52 124 if (fDraw) {
125 // File
126 lun = fopen("pool.dat","w");
127 c1 = new TCanvas("c1","Clusters",0,0,600,700);
128 c1->Divide(1,2);
129 new TCanvas("c2","Mlem",700,0,600,350);
130 }
131
132newev:
133 Int_t nparticles = 0, nent;
88cb7938 134
135 //Loaders
136 AliRunLoader * rl = AliRunLoader::GetRunLoader();
137 AliLoader * gime = rl->GetLoader("MUONLoader");
138
139 if (!fReco) nparticles = rl->GetEvent(nev);
5d12ce38 140 else nparticles = gAlice->GetMCApp()->GetNtrack();
0df3ca52 141 cout << "nev " << nev <<endl;
142 cout << "nparticles " << nparticles <<endl;
143 if (nparticles <= 0) return;
144
c1aed84f 145 TTree *treeH = gime->TreeH();
146 Int_t ntracks = (Int_t) treeH->GetEntries();
0df3ca52 147 cout<<"ntracks "<<ntracks<<endl;
148
149 // Get pointers to Alice detectors and Digits containers
c1aed84f 150 AliMUON *muon = (AliMUON*) gAlice->GetModule("MUON");
151 if (!muon) return;
0df3ca52 152 // TClonesArray *Particles = gAlice->Particles();
153 if (!fReco) {
c1aed84f 154 treeR = gime->TreeR();
155 if (treeR) {
156 muon->ResetRawClusters();
157 nent = (Int_t) treeR->GetEntries();
0df3ca52 158 if (nent != 1) {
159 cout << "Error in MUONdrawClust" << endl;
160 cout << " nent = " << nent << " not equal to 1" << endl;
161 //exit(0);
162 }
c1aed84f 163 } // if (treeR)
0df3ca52 164 } // if (!fReco)
165
c1aed84f 166 TTree *treeD = gime->TreeD();
167 //muon->ResetDigits();
0df3ca52 168
c1aed84f 169 TClonesArray *listMUONrawclust ;
0df3ca52 170 AliMUONChamber* iChamber = 0;
171
172 // As default draw the first cluster of the chamber #0
173
174newchamber:
175 if (ch > 9) {if (fReco) return; nev++; ch = 0; goto newev;}
176 //gAlice->ResetDigits();
c1aed84f 177 fMuonDigits = muon->GetMUONData()->Digits(ch);
0df3ca52 178 if (fMuonDigits == 0) return;
c1aed84f 179 iChamber = &(muon->Chamber(ch));
0df3ca52 180 fSegmentation[0] = iChamber->SegmentationModel(1);
181 fSegmentation[1] = iChamber->SegmentationModel(2);
182 fResponse = iChamber->ResponseModel();
183
184 nent = 0;
185
c1aed84f 186 if (treeD) {
187 nent = (Int_t) treeD->GetEntries();
0df3ca52 188 //printf(" entries %d \n", nent);
189 }
190
191 Int_t ndigits[2]={9,9}, nShown[2]={0};
192 for (Int_t i=0; i<2; i++) {
343146bf 193 for (Int_t j=0; j<fgkDim; j++) {fUsed[i][j]=kFALSE;}
0df3ca52 194 }
195
196next:
197 if (ndigits[0] == nShown[0] && ndigits[1] == nShown[1]) {
198 // No more clusters
199 if (fReco) return;
200 ch++;
201 goto newchamber; // next chamber
202 }
203 Float_t xpad, ypad, zpad, zpad0;
204 TLine *line[99]={0};
205 Int_t nLine = 0;
206 Bool_t first = kTRUE;
207 cout << " *** Event # " << nev << " chamber: " << ch << endl;
208 fnPads[0] = fnPads[1] = 0;
343146bf 209 for (Int_t i=0; i<fgkDim; i++) {fPadIJ[1][i] = 0;}
0df3ca52 210 //for (Int_t iii = 0; iii<999; iii++) {
211 for (Int_t iii = 0; iii<2; iii++) {
212 Int_t cath = TMath::Odd(iii);
213 gAlice->ResetDigits();
c1aed84f 214 treeD->GetEvent(cath);
215 fMuonDigits = muon->GetMUONData()->Digits(ch);
0df3ca52 216
217 ndigits[cath] = fMuonDigits->GetEntriesFast();
218 if (!ndigits[0] && !ndigits[1]) {if (fReco) return; ch++; goto newchamber;}
219 if (ndigits[cath] == 0) continue;
220 cout << " ndigits: " << ndigits[cath] << " " << cath << endl;
221
222 AliMUONDigit *mdig;
223 Int_t digit;
224
c1aed84f 225 Bool_t eEOC = kTRUE; // end-of-cluster
0df3ca52 226 for (digit = 0; digit < ndigits[cath]; digit++) {
227 mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
228 if (mdig->Cathode() != cath) continue;
229 if (first) {
230 // Find first unused pad
231 if (fUsed[cath][digit]) continue;
232 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0);
233 } else {
234 if (fUsed[cath][digit]) continue;
235 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad);
236 if (TMath::Abs(zpad-zpad0)>0.1) continue; // different slats
237 // Find a pad overlapping with the cluster
238 if (!Overlap(cath,mdig)) continue;
239 }
240 // Add pad - recursive call
241 AddPad(cath,digit);
c1aed84f 242 eEOC = kFALSE;
0df3ca52 243 if (digit >= 0) break;
244 }
c1aed84f 245 if (first && eEOC) {
0df3ca52 246 // No more unused pads
247 if (cath == 0) continue; // on cathode #0 - check #1
248 else {
249 // No more clusters
250 if (fReco) return;
251 ch++;
252 goto newchamber; // next chamber
253 }
254 }
c1aed84f 255 if (eEOC) break; // cluster found
0df3ca52 256 first = kFALSE;
257 cout << " nPads: " << fnPads[cath] << " " << nShown[cath]+fnPads[cath] << " " << cath << endl;
258 } // for (Int_t iii = 0;
259
260
261 if (fReco) goto skip;
262 char hName[4];
263 for (Int_t cath = 0; cath<2; cath++) {
264 // Build histograms
265 if (fHist[cath*2]) {fHist[cath*2]->Delete(); fHist[cath*2] = 0;}
266 if (fHist[cath*2+1]) {fHist[cath*2+1]->Delete(); fHist[cath*2+1] = 0;}
267 if (fnPads[cath] == 0) continue; // cluster on one cathode only
268 Float_t wxMin=999, wxMax=0, wyMin=999, wyMax=0;
269 Int_t minDx=0, maxDx=0, minDy=0, maxDy=0;
270 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
271 if (fPadIJ[0][i] != cath) continue;
272 if (fXyq[3][i] < wxMin) {wxMin = fXyq[3][i]; minDx = i;}
273 if (fXyq[3][i] > wxMax) {wxMax = fXyq[3][i]; maxDx = i;}
274 if (fXyq[4][i] < wyMin) {wyMin = fXyq[4][i]; minDy = i;}
275 if (fXyq[4][i] > wyMax) {wyMax = fXyq[4][i]; maxDy = i;}
276 }
277 cout << minDx << maxDx << minDy << maxDy << endl;
278 Int_t nx, ny, padSize;
279 Float_t xmin=9999, xmax=-9999, ymin=9999, ymax=-9999;
280 if (TMath::Nint(fXyq[3][minDx]*1000) == TMath::Nint(fXyq[3][maxDx]*1000) &&
281 TMath::Nint(fXyq[4][minDy]*1000) == TMath::Nint(fXyq[4][maxDy]*1000)) {
282 // the same segmentation
283 cout << " Same" << endl;
284 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
285 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
286 if (fPadIJ[0][i] != cath) continue;
287 if (fXyq[0][i] < xmin) xmin = fXyq[0][i];
288 if (fXyq[0][i] > xmax) xmax = fXyq[0][i];
289 if (fXyq[1][i] < ymin) ymin = fXyq[1][i];
290 if (fXyq[1][i] > ymax) ymax = fXyq[1][i];
291 }
292 xmin -= fXyq[3][minDx]; xmax += fXyq[3][minDx];
293 ymin -= fXyq[4][minDy]; ymax += fXyq[4][minDy];
294 nx = TMath::Nint ((xmax-xmin)/wxMin/2);
295 ny = TMath::Nint ((ymax-ymin)/wyMin/2);
296 sprintf(hName,"h%d",cath*2);
297 fHist[cath*2] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
298 cout << fHist[cath*2] << " " << fnPads[cath] << endl;
299 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
300 if (fPadIJ[0][i] != cath) continue;
301 fHist[cath*2]->Fill(fXyq[0][i],fXyq[1][i],fXyq[2][i]);
302 //cout << fXyq[0][i] << fXyq[1][i] << fXyq[2][i] << endl;
303 }
304 } else {
305 // different segmentation in the cluster
306 cout << " Different" << endl;
307 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
308 Int_t nOK = 0;
309 Int_t indx, locMin, locMax;
310 if (TMath::Nint(fXyq[3][minDx]*1000) != TMath::Nint(fXyq[3][maxDx]*1000)) {
311 // different segmentation along x
312 indx = 0;
313 locMin = minDx;
314 locMax = maxDx;
315 } else {
316 // different segmentation along y
317 indx = 1;
318 locMin = minDy;
319 locMax = maxDy;
320 }
321 Int_t loc = locMin;
322 for (Int_t i=0; i<2; i++) {
323 // loop over different pad sizes
324 if (i>0) loc = locMax;
325 padSize = TMath::Nint(fXyq[indx+3][loc]*1000);
326 xmin = 9999; xmax = -9999; ymin = 9999; ymax = -9999;
327 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
328 if (fPadIJ[0][j] != cath) continue;
329 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
330 nOK++;
331 xmin = TMath::Min (xmin,fXyq[0][j]);
332 xmax = TMath::Max (xmax,fXyq[0][j]);
333 ymin = TMath::Min (ymin,fXyq[1][j]);
334 ymax = TMath::Max (ymax,fXyq[1][j]);
335 }
336 xmin -= fXyq[3][loc]; xmax += fXyq[3][loc];
337 ymin -= fXyq[4][loc]; ymax += fXyq[4][loc];
338 nx = TMath::Nint ((xmax-xmin)/fXyq[3][loc]/2);
339 ny = TMath::Nint ((ymax-ymin)/fXyq[4][loc]/2);
340 sprintf(hName,"h%d",cath*2+i);
341 fHist[cath*2+i] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
342 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
343 if (fPadIJ[0][j] != cath) continue;
344 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
345 fHist[cath*2+i]->Fill(fXyq[0][j],fXyq[1][j],fXyq[2][j]);
346 }
347 } // for (Int_t i=0;
348 if (nOK != fnPads[cath]) cout << " *** Too many segmentations: nPads, nOK " << fnPads[cath] << " " << nOK << endl;
349 } // if (TMath::Nint(fXyq[3][minDx]*1000)
350 } // for (Int_t cath = 0;
351
352 // Draw histograms and coordinates
353 for (Int_t cath=0; cath<2; cath++) {
354 if (cath == 0) ModifyHistos();
355 if (fnPads[cath] == 0) continue; // cluster on one cathode only
356 if (fDraw) {
357 c1->cd(cath+1);
358 gPad->SetTheta(55);
359 gPad->SetPhi(30);
cd747ddb 360 Double_t x, y, x0, y0, r1=999, r2=0;
0df3ca52 361 if (fHist[cath*2+1]) {
362 //
363 x0 = fHist[cath*2]->GetXaxis()->GetXmin() - 1000*TMath::Cos(30*TMath::Pi()/180);
364 y0 = fHist[cath*2]->GetYaxis()->GetXmin() - 1000*TMath::Sin(30*TMath::Pi()/180);
365 r1 = 0;
366 Int_t ihist=cath*2;
367 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
368 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
369 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
370 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
371 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
372 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
373 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
374 r1 = TMath::Max (r1,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
375 }
376 }
377 }
378 ihist = cath*2 + 1 ;
379 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
380 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
381 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
382 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
383 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
384 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
385 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
386 r2 = TMath::Max (r2,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
387 }
388 }
389 }
390 cout << r1 << " " << r2 << endl;
391 } // if (fHist[cath*2+1])
392 if (r1 > r2) {
393 //fHist[cath*2]->Draw("lego1");
394 fHist[cath*2]->Draw("lego1Fb");
395 //if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBb");
396 if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBbFb");
397 } else {
398 //fHist[cath*2+1]->Draw("lego1");
399 fHist[cath*2+1]->Draw("lego1Fb");
400 //fHist[cath*2]->Draw("lego1SameAxisBb");
401 fHist[cath*2]->Draw("lego1SameAxisFbBb");
402 }
403 c1->Update();
404 } // if (fDraw)
405 } // for (Int_t cath = 0;
406
407 // Draw generated hits
408 Double_t xNDC[6];
409 hist = fHist[0] ? fHist[0] : fHist[2];
410 p2[2] = hist->GetMaximum();
411 view = 0;
412 if (c1) view = c1->Pad()->GetView();
413 cout << " *** GEANT hits *** " << endl;
414 fnMu = 0;
415 Int_t ix, iy, iok;
416 for (Int_t i=0; i<ntracks; i++) {
c1aed84f 417 treeH->GetEvent(i);
418 for (AliMUONHit* mHit=(AliMUONHit*)muon->FirstHit(-1);
0df3ca52 419 mHit;
c1aed84f 420 mHit=(AliMUONHit*)muon->NextHit()) {
0df3ca52 421 if (mHit->Chamber() != ch+1) continue; // chamber number
422 if (TMath::Abs(mHit->Z()-zpad0) > 1) continue; // different slat
423 p2[0] = p1[0] = mHit->X(); // x-pos of hit
424 p2[1] = p1[1] = mHit->Y(); // y-pos
425 if (p1[0] < hist->GetXaxis()->GetXmin() ||
426 p1[0] > hist->GetXaxis()->GetXmax()) continue;
427 if (p1[1] < hist->GetYaxis()->GetXmin() ||
428 p1[1] > hist->GetYaxis()->GetXmax()) continue;
429 // Check if track comes thru pads with signal
430 iok = 0;
431 for (Int_t ihist=0; ihist<4; ihist++) {
432 if (!fHist[ihist]) continue;
433 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
434 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
435 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
436 }
437 if (!iok) continue;
438 gStyle->SetLineColor(1);
439 if (TMath::Abs((Int_t)mHit->Particle()) == 13) {
440 gStyle->SetLineColor(4);
441 fnMu++;
442 if (fnMu <= 2) {
443 fxyMu[fnMu-1][0] = p1[0];
444 fxyMu[fnMu-1][1] = p1[1];
445 }
446 }
447 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mHit->Z());
448 if (view) {
449 view->WCtoNDC(p1, &xNDC[0]);
450 view->WCtoNDC(p2, &xNDC[3]);
451 for (Int_t ipad=1; ipad<3; ipad++) {
452 c1->cd(ipad);
453 //c1->DrawLine(xpad[0],xpad[1],xpad[3],xpad[4]);
454 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
455 line[nLine++]->Draw();
456 }
457 }
458 } // for (AliMUONHit* mHit=
459 } // for (Int_t i=0; i<ntracks;
460
461 // Draw reconstructed coordinates
c1aed84f 462 listMUONrawclust = muon->GetMUONData()->RawClusters(ch);
463 treeR->GetEvent(ch);
464 //cout << listMUONrawclust << " " << listMUONrawclust ->GetEntries() << endl;
0df3ca52 465 AliMUONRawCluster *mRaw;
466 gStyle->SetLineColor(3);
467 cout << " *** Reconstructed hits *** " << endl;
c1aed84f 468 for (Int_t i=0; i<listMUONrawclust ->GetEntries(); i++) {
469 mRaw = (AliMUONRawCluster*)listMUONrawclust ->UncheckedAt(i);
ba12c242 470 if (TMath::Abs(mRaw->GetZ(0)-zpad0) > 1) continue; // different slat
471 p2[0] = p1[0] = mRaw->GetX(0); // x-pos of hit
472 p2[1] = p1[1] = mRaw->GetY(0); // y-pos
0df3ca52 473 if (p1[0] < hist->GetXaxis()->GetXmin() ||
474 p1[0] > hist->GetXaxis()->GetXmax()) continue;
475 if (p1[1] < hist->GetYaxis()->GetXmin() ||
476 p1[1] > hist->GetYaxis()->GetXmax()) continue;
477 /*
c1aed84f 478 treeD->GetEvent(cath);
0df3ca52 479 cout << mRaw->fMultiplicity[0] << mRaw->fMultiplicity[1] << endl;
480 for (Int_t j=0; j<mRaw->fMultiplicity[cath]; j++) {
481 Int_t digit = mRaw->fIndexMap[j][cath];
482 cout << ((AliMUONDigit*)fMuonDigits->UncheckedAt(digit))->Signal() << endl;
483 }
484 */
485 // Check if track comes thru pads with signal
486 iok = 0;
487 for (Int_t ihist=0; ihist<4; ihist++) {
488 if (!fHist[ihist]) continue;
489 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
490 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
491 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
492 }
493 if (!iok) continue;
ba12c242 494 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mRaw->GetZ(0));
0df3ca52 495 if (view) {
496 view->WCtoNDC(p1, &xNDC[0]);
497 view->WCtoNDC(p2, &xNDC[3]);
498 for (Int_t ipad=1; ipad<3; ipad++) {
499 c1->cd(ipad);
500 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
501 line[nLine++]->Draw();
502 }
503 }
c1aed84f 504 } // for (Int_t i=0; i<listMUONrawclust ->GetEntries();
0df3ca52 505 if (fDraw) c1->Update();
506
507skip:
508 // Use MLEM for cluster finder
509 fZpad = zpad0;
510 Int_t nMax = 1, localMax[100], maxPos[100];
511 Double_t maxVal[100];
512
513 if (CheckPrecluster(nShown)) {
514 BuildPixArray();
515 if (fnPads[0]+fnPads[1] > 50) nMax = FindLocalMaxima(localMax, maxVal);
516 if (nMax > 1) TMath::Sort(nMax, maxVal, maxPos, kTRUE); // in decreasing order
517 for (Int_t i=0; i<nMax; i++) {
518 if (nMax > 1) FindCluster(localMax, maxPos[i]);
519 if (!MainLoop()) cout << " MainLoop failed " << endl;
520 if (i < nMax-1) {
521 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
522 if (fPadIJ[1][j] == 0) continue; // pad charge was not modified
523 fPadIJ[1][j] = 0;
524 fXyq[2][j] = fXyq[5][j]; // use backup charge value
525 }
526 }
527 }
528 }
529 if (fReco) goto next;
530
531 for (Int_t i=0; i<fnMu; i++) {
532 // Check again if muon come thru the used pads (due to extra splitting)
533 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
534 if (TMath::Abs(fxyMu[i][0]-fXyq[0][j])<fXyq[3][j] &&
535 TMath::Abs(fxyMu[i][1]-fXyq[1][j])<fXyq[4][j]) {
536 printf("%12.3e %12.3e %12.3e %12.3e\n",fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
537 if (lun) fprintf(lun,"%4d %2d %12.3e %12.3e %12.3e %12.3e\n",nev,ch,fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
538 break;
539 }
540 }
541 } // for (Int_t i=0; i<fnMu;
542
543 // What's next?
544 char command[8];
545 cout << " What is next? " << endl;
546 command[0] = ' ';
547 if (fDraw) gets(command);
548 if (command[0] == 'n' || command[0] == 'N') {nev++; goto newev;} // next event
549 else if (command[0] == 'q' || command[0] == 'Q') {fclose(lun); return;} // exit display
550 //else if (command[0] == 'r' || command[0] == 'R') goto redraw; // redraw points
551 else if (command[0] == 'c' || command[0] == 'C') {
552 // new chamber
553 sscanf(command+1,"%d",&ch);
554 goto newchamber;
555 }
556 else if (command[0] == 'e' || command[0] == 'E') {
557 // new event
558 sscanf(command+1,"%d",&nev);
559 goto newev;
560 }
561 else goto next; // Next cluster
562}
563
564//_____________________________________________________________________________
565void AliMUONClusterFinderAZ::ModifyHistos(void)
566{
567 // Modify histograms to bring them to the same size
568 Int_t nhist = 0;
569 Float_t hlim[4][4], hbin[4][4]; // first index - xmin, xmax, ymin, ymax
570 Float_t binMin[4] = {999,999,999,999};
571
572 for (Int_t i=0; i<4; i++) {
573 if (!fHist[i]) continue;
574 hlim[0][nhist] = fHist[i]->GetXaxis()->GetXmin(); // xmin
575 hlim[1][nhist] = fHist[i]->GetXaxis()->GetXmax(); // xmax
576 hlim[2][nhist] = fHist[i]->GetYaxis()->GetXmin(); // ymin
577 hlim[3][nhist] = fHist[i]->GetYaxis()->GetXmax(); // ymax
578 hbin[0][nhist] = hbin[1][nhist] = fHist[i]->GetXaxis()->GetBinWidth(1);
579 hbin[2][nhist] = hbin[3][nhist] = fHist[i]->GetYaxis()->GetBinWidth(1);
580 binMin[0] = TMath::Min(binMin[0],hbin[0][nhist]);
581 binMin[2] = TMath::Min(binMin[2],hbin[2][nhist]);
582 nhist++;
583 }
584 binMin[1] = binMin[0];
585 binMin[3] = binMin[2];
586 cout << " Nhist: " << nhist << endl;
587
588 Int_t imin, imax;
589 for (Int_t lim=0; lim<4; lim++) {
590 while (1) {
591 imin = TMath::LocMin(nhist,hlim[lim]);
592 imax = TMath::LocMax(nhist,hlim[lim]);
593 if (TMath::Abs(hlim[lim][imin]-hlim[lim][imax])<0.01*binMin[lim]) break;
594 if (lim == 0 || lim == 2) {
595 // find lower limit
596 hlim[lim][imax] -= hbin[lim][imax];
597 } else {
598 // find upper limit
599 hlim[lim][imin] += hbin[lim][imin];
600 }
601 } // while (1)
602 }
603
604 // Rebuild histograms
605 nhist = 0;
606 TH2F *hist = 0;
607 Int_t nx, ny;
cd747ddb 608 Double_t x, y, cont, cmax=0;
0df3ca52 609 char hName[4];
610 for (Int_t ihist=0; ihist<4; ihist++) {
611 if (!fHist[ihist]) continue;
612 nx = TMath::Nint((hlim[1][nhist]-hlim[0][nhist])/hbin[0][nhist]);
613 ny = TMath::Nint((hlim[3][nhist]-hlim[2][nhist])/hbin[2][nhist]);
614 //hist = new TH2F("h","hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
615 sprintf(hName,"hh%d",ihist);
616 hist = new TH2F(hName,"hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
617 for (Int_t i=1; i<=fHist[ihist]->GetNbinsX(); i++) {
618 x = fHist[ihist]->GetXaxis()->GetBinCenter(i);
619 for (Int_t j=1; j<=fHist[ihist]->GetNbinsY(); j++) {
620 y = fHist[ihist]->GetYaxis()->GetBinCenter(j);
621 cont = fHist[ihist]->GetCellContent(i,j);
622 hist->Fill(x,y,cont);
623 }
624 }
625 cmax = TMath::Max (cmax,hist->GetMaximum());
626 fHist[ihist]->Delete();
627 fHist[ihist] = new TH2F(*hist);
628 hist->Delete();
629 nhist++;
630 }
631 printf("%f \n",cmax);
632
633 for (Int_t ihist=0; ihist<4; ihist++) {
634 if (!fHist[ihist]) continue;
635 fHist[ihist]->SetMaximum(cmax);
636 }
637}
638
639//_____________________________________________________________________________
640void AliMUONClusterFinderAZ::AddPad(Int_t cath, Int_t digit)
641{
642 // Add pad to the cluster
643 AliMUONDigit *mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
644
645 Int_t charge = mdig->Signal();
646 // get the center of the pad
647 Float_t xpad, ypad, zpad;
648 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
649
650 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
651 Int_t nPads = fnPads[0] + fnPads[1];
652 fXyq[0][nPads] = xpad;
653 fXyq[1][nPads] = ypad;
654 fXyq[2][nPads] = charge;
655 fXyq[3][nPads] = fSegmentation[cath]->Dpx(isec)/2;
656 fXyq[4][nPads] = fSegmentation[cath]->Dpy(isec)/2;
657 fXyq[5][nPads] = digit;
658 fPadIJ[0][nPads] = cath;
659 fPadIJ[1][nPads] = 0;
660 fUsed[cath][digit] = kTRUE;
661 //cout << " bbb " << fXyq[cath][2][nPads] << " " << fXyq[cath][0][nPads] << " " << fXyq[cath][1][nPads] << " " << fXyq[cath][3][nPads] << " " << fXyq[cath][4][nPads] << " " << zpad << " " << nPads << endl;
662 fnPads[cath]++;
663
664 // Check neighbours
665 Int_t nn, ix, iy, xList[10], yList[10];
666 AliMUONDigit *mdig1;
667
668 Int_t ndigits = fMuonDigits->GetEntriesFast();
669 fSegmentation[cath]->Neighbours(mdig->PadX(),mdig->PadY(),&nn,xList,yList);
670 for (Int_t in=0; in<nn; in++) {
671 ix=xList[in];
672 iy=yList[in];
673 for (Int_t digit1 = 0; digit1 < ndigits; digit1++) {
674 if (digit1 == digit) continue;
675 mdig1 = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit1);
676 if (mdig1->Cathode() != cath) continue;
677 if (!fUsed[cath][digit1] && mdig1->PadX() == ix && mdig1->PadY() == iy) {
678 fUsed[cath][digit1] = kTRUE;
679 // Add pad - recursive call
680 AddPad(cath,digit1);
681 }
682 } //for (Int_t digit1 = 0;
683 } // for (Int_t in=0;
684}
685
686//_____________________________________________________________________________
687Bool_t AliMUONClusterFinderAZ::Overlap(Int_t cath, TObject *dig)
688{
689 // Check if the pad from one cathode overlaps with a pad
690 // in the precluster on the other cathode
691
692 AliMUONDigit *mdig = (AliMUONDigit*) dig;
693
694 Float_t xpad, ypad, zpad;
695 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
696 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
697
698 Float_t xy1[4], xy12[4];
699 xy1[0] = xpad - fSegmentation[cath]->Dpx(isec)/2;
700 xy1[1] = xy1[0] + fSegmentation[cath]->Dpx(isec);
701 xy1[2] = ypad - fSegmentation[cath]->Dpy(isec)/2;
702 xy1[3] = xy1[2] + fSegmentation[cath]->Dpy(isec);
703 //cout << " ok " << fnPads[0]+fnPads[1] << xy1[0] << xy1[1] << xy1[2] << xy1[3] << endl;
704
705 Int_t cath1 = TMath::Even(cath);
706 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
707 if (fPadIJ[0][i] != cath1) continue;
708 if (Overlap(xy1, i, xy12, 0)) return kTRUE;
709 }
710 return kFALSE;
711}
712
713//_____________________________________________________________________________
714Bool_t AliMUONClusterFinderAZ::Overlap(Float_t *xy1, Int_t iPad, Float_t *xy12, Int_t iSkip)
715{
716 // Check if the pads xy1 and iPad overlap and return overlap area
717
718 Float_t xy2[4];
719 xy2[0] = fXyq[0][iPad] - fXyq[3][iPad];
720 xy2[1] = fXyq[0][iPad] + fXyq[3][iPad];
721 if (xy1[0] > xy2[1]-1.e-4 || xy1[1] < xy2[0]+1.e-4) return kFALSE;
722 xy2[2] = fXyq[1][iPad] - fXyq[4][iPad];
723 xy2[3] = fXyq[1][iPad] + fXyq[4][iPad];
724 if (xy1[2] > xy2[3]-1.e-4 || xy1[3] < xy2[2]+1.e-4) return kFALSE;
725 if (!iSkip) return kTRUE; // just check overlap (w/out computing the area)
726 xy12[0] = TMath::Max (xy1[0],xy2[0]);
727 xy12[1] = TMath::Min (xy1[1],xy2[1]);
728 xy12[2] = TMath::Max (xy1[2],xy2[2]);
729 xy12[3] = TMath::Min (xy1[3],xy2[3]);
730 return kTRUE;
731}
732
733//_____________________________________________________________________________
734/*
735Bool_t AliMUONClusterFinderAZ::Overlap(Int_t i, Int_t j, Float_t *xy12, Int_t iSkip)
736{
737 // Check if the pads i and j overlap and return overlap area
738
739 Float_t xy1[4], xy2[4];
740 return Overlap(xy1, xy2, xy12, iSkip);
741}
742*/
743//_____________________________________________________________________________
744Bool_t AliMUONClusterFinderAZ::CheckPrecluster(Int_t *nShown)
745{
746 // Check precluster in order to attempt to simplify it (mostly for
747 // two-cathode preclusters)
748
749 Int_t i1, i2;
750 Float_t xy1[4], xy12[4];
751
752 Int_t npad = fnPads[0] + fnPads[1];
753
754 // If pads have the same size take average of pads on both cathodes
755 Int_t sameSize = (fnPads[0] && fnPads[1]) ? 1 : 0;
756 if (sameSize) {
757 Double_t xSize = -1, ySize = 0;
758 for (Int_t i=0; i<npad; i++) {
759 if (fXyq[2][i] < 0) continue;
760 if (xSize < 0) { xSize = fXyq[3][i]; ySize = fXyq[4][i]; }
761 if (TMath::Abs(xSize-fXyq[3][i]) > 1.e-4 || TMath::Abs(ySize-fXyq[4][i]) > 1.e-4) { sameSize = 0; break; }
762 }
763 } // if (sameSize)
764 if (sameSize && (fnPads[0] > 2 || fnPads[1] > 2)) {
765 nShown[0] += fnPads[0];
766 nShown[1] += fnPads[1];
767 fnPads[0] = fnPads[1] = 0;
768 Int_t div;
769 for (Int_t i=0; i<npad; i++) {
770 if (fXyq[2][i] < 0) continue; // used pad
771 fXyq[2][fnPads[0]] = fXyq[2][i];
772 div = 1;
773 for (Int_t j=i+1; j<npad; j++) {
774 if (fPadIJ[0][j] == fPadIJ[0][i]) continue; // same cathode
775 if (TMath::Abs(fXyq[0][j]-fXyq[0][i]) > 1.e-4) continue;
776 if (TMath::Abs(fXyq[1][j]-fXyq[1][i]) > 1.e-4) continue;
777 fXyq[2][fnPads[0]] += fXyq[2][j];
778 div = 2;
779 fXyq[2][j] = -2;
780 break;
781 }
782 fXyq[2][fnPads[0]] /= div;
783 fXyq[0][fnPads[0]] = fXyq[0][i];
784 fXyq[1][fnPads[0]] = fXyq[1][i];
785 fPadIJ[0][fnPads[0]++] = 0;
786 }
787 } // if (sameSize)
788
789 // Check if one-cathode precluster
790 i1 = fnPads[0]!=0 ? 0 : 1;
791 i2 = fnPads[1]!=0 ? 1 : 0;
792
793 if (i1 != i2) { // two-cathode
794
795 Int_t *flags = new Int_t[npad];
796 for (Int_t i=0; i<npad; i++) { flags[i] = 0; }
797
798 // Check pad overlaps
799 for (Int_t i=0; i<npad; i++) {
800 if (fPadIJ[0][i] != i1) continue;
801 xy1[0] = fXyq[0][i] - fXyq[3][i];
802 xy1[1] = fXyq[0][i] + fXyq[3][i];
803 xy1[2] = fXyq[1][i] - fXyq[4][i];
804 xy1[3] = fXyq[1][i] + fXyq[4][i];
805 for (Int_t j=0; j<npad; j++) {
806 if (fPadIJ[0][j] != i2) continue;
807 if (!Overlap(xy1, j, xy12, 0)) continue;
808 flags[i] = flags[j] = 1; // mark overlapped pads
809 } // for (Int_t j=0;
810 } // for (Int_t i=0;
811
812 // Check if all pads overlap
813 Int_t digit=0, cath, nFlags=0;
814 for (Int_t i=0; i<npad; i++) {nFlags += !flags[i];}
815 if (nFlags) cout << " nFlags = " << nFlags << endl;
816 //if (nFlags > 2 || (Float_t)nFlags / npad > 0.2) { // why 2 ??? - empirical choice
817 if (nFlags > 0) {
818 for (Int_t i=0; i<npad; i++) {
819 if (flags[i]) continue;
820 digit = TMath::Nint (fXyq[5][i]);
821 cath = fPadIJ[0][i];
822 fUsed[cath][digit] = kFALSE; // release pad
823 fXyq[2][i] = -2;
824 fnPads[cath]--;
825 }
826 } // if (nFlags > 2)
827
828 // Check correlations of cathode charges
829 if (fnPads[0] && fnPads[1]) { // two-cathode
830 Double_t sum[2]={0};
831 Int_t over[2] = {1, 1};
832 for (Int_t i=0; i<npad; i++) {
833 cath = fPadIJ[0][i];
834 if (fXyq[2][i] > 0) sum[cath] += fXyq[2][i];
835 if (fXyq[2][i] > fResponse->MaxAdc()-1) over[cath] = 0;
836 }
837 cout << " Total charge: " << sum[0] << " " << sum[1] << endl;
838 if ((over[0] || over[1]) && TMath::Abs(sum[0]-sum[1])/(sum[0]+sum[1])*2 > 1) { // 3 times difference
839 cout << " Release " << endl;
840 // Big difference
841 cath = sum[0]>sum[1] ? 0 : 1;
842 Int_t imax = 0;
843 Double_t cmax=-1;
844 Double_t *dist = new Double_t[npad];
845 for (Int_t i=0; i<npad; i++) {
846 if (fPadIJ[0][i] != cath) continue;
847 if (fXyq[2][i] < cmax) continue;
848 cmax = fXyq[2][i];
849 imax = i;
850 }
851 // Arrange pads according to their distance to the max,
852 // normalized to the pad size
853 for (Int_t i=0; i<npad; i++) {
854 dist[i] = 0;
855 if (fPadIJ[0][i] != cath) continue;
856 if (i == imax) continue;
857 if (fXyq[2][i] < 0) continue;
858 dist[i] = (fXyq[0][i]-fXyq[0][imax])*(fXyq[0][i]-fXyq[0][imax])/
859 fXyq[3][imax]/fXyq[3][imax]/4;
860 dist[i] += (fXyq[1][i]-fXyq[1][imax])*(fXyq[1][i]-fXyq[1][imax])/
861 fXyq[4][imax]/fXyq[4][imax]/4;
862 dist[i] = TMath::Sqrt (dist[i]);
863 }
864 TMath::Sort(npad, dist, flags, kFALSE); // in increasing order
865 Int_t indx;
866 Double_t xmax = -1;
867 for (Int_t i=0; i<npad; i++) {
868 indx = flags[i];
869 if (fPadIJ[0][indx] != cath) continue;
870 if (fXyq[2][indx] < 0) continue;
871 if (fXyq[2][indx] <= cmax || TMath::Abs(dist[indx]-xmax)<1.e-3) {
872 // Release pads
873 if (TMath::Abs(dist[indx]-xmax)<1.e-3)
cd747ddb 874 cmax = TMath::Max((Double_t)(fXyq[2][indx]),cmax);
0df3ca52 875 else cmax = fXyq[2][indx];
876 xmax = dist[indx];
877 digit = TMath::Nint (fXyq[5][indx]);
878 fUsed[cath][digit] = kFALSE;
879 fXyq[2][indx] = -2;
880 fnPads[cath]--;
881 // xmax = dist[i]; // Bug?
882 }
883 else break;
884 }
885 delete [] dist; dist = 0;
886 } // TMath::Abs(sum[0]-sum[1])...
887 } // if (fnPads[0] && fnPads[1])
888 delete [] flags; flags = 0;
889 } // if (i1 != i2)
890
891 if (!sameSize) { nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; }
892
893 // Move released pads to the right
894 Int_t beg = 0, end = npad-1, padij;
895 Double_t xyq;
896 while (beg < end) {
897 if (fXyq[2][beg] > 0) { beg++; continue; }
898 for (Int_t j=end; j>beg; j--) {
899 if (fXyq[2][j] < 0) continue;
900 end = j - 1;
901 for (Int_t j1=0; j1<2; j1++) {
902 padij = fPadIJ[j1][beg];
903 fPadIJ[j1][beg] = fPadIJ[j1][j];
904 fPadIJ[j1][j] = padij;
905 }
906 for (Int_t j1=0; j1<6; j1++) {
907 xyq = fXyq[j1][beg];
908 fXyq[j1][beg] = fXyq[j1][j];
909 fXyq[j1][j] = xyq;
910 }
911 break;
912 } // for (Int_t j=end;
913 beg++;
914 } // while
915 npad = fnPads[0] + fnPads[1];
916 if (npad > 500) { cout << " ***** Too large cluster. Give up. " << npad << endl; return kFALSE; }
917 // Back up charge value
918 for (Int_t j=0; j<npad; j++) fXyq[5][j] = fXyq[2][j];
919
920 return kTRUE;
921}
922
923//_____________________________________________________________________________
924void AliMUONClusterFinderAZ::BuildPixArray()
925{
926 // Build pixel array for MLEM method
927
928 Int_t nPix=0, i1, i2;
929 Float_t xy1[4], xy12[4];
930 AliMUONPixel *pixPtr=0;
931
932 Int_t npad = fnPads[0] + fnPads[1];
933
934 // One cathode is empty
935 i1 = fnPads[0]!=0 ? 0 : 1;
936 i2 = fnPads[1]!=0 ? 1 : 0;
937
938 // Build array of pixels on anode plane
939 if (i1 == i2) { // one-cathode precluster
940 for (Int_t j=0; j<npad; j++) {
941 pixPtr = new AliMUONPixel();
942 for (Int_t i=0; i<2; i++) {
943 pixPtr->SetCoord(i, fXyq[i][j]); // pixel coordinates
944 pixPtr->SetSize(i, fXyq[i+3][j]); // pixel size
945 }
946 pixPtr->SetCharge(fXyq[2][j]); // charge
947 fPixArray->Add((TObject*)pixPtr);
948 nPix++;
949 }
950 } else { // two-cathode precluster
951 for (Int_t i=0; i<npad; i++) {
952 if (fPadIJ[0][i] != i1) continue;
953 xy1[0] = fXyq[0][i] - fXyq[3][i];
954 xy1[1] = fXyq[0][i] + fXyq[3][i];
955 xy1[2] = fXyq[1][i] - fXyq[4][i];
956 xy1[3] = fXyq[1][i] + fXyq[4][i];
957 for (Int_t j=0; j<npad; j++) {
958 if (fPadIJ[0][j] != i2) continue;
959 if (!Overlap(xy1, j, xy12, 1)) continue;
960 pixPtr = new AliMUONPixel();
961 for (Int_t k=0; k<2; k++) {
962 pixPtr->SetCoord(k, (xy12[2*k]+xy12[2*k+1])/2); // pixel coordinates
963 pixPtr->SetSize(k, xy12[2*k+1]-pixPtr->Coord(k)); // size
964 }
965 pixPtr->SetCharge(TMath::Min (fXyq[2][i],fXyq[2][j])); //charge
966 fPixArray->Add((TObject*)pixPtr);
967 nPix++;
968 } // for (Int_t j=0;
969 } // for (Int_t i=0;
970 } // else
971
972 Float_t wxmin=999, wymin=999;
973 for (Int_t i=0; i<npad; i++) {
974 if (fPadIJ[0][i] == i1) wymin = TMath::Min (wymin,fXyq[4][i]);
975 if (fPadIJ[0][i] == i2) wxmin = TMath::Min (wxmin,fXyq[3][i]);
976 }
977 cout << wxmin << " " << wymin << endl;
978
979 // Check if small pixel X-size
980 AjustPixel(wxmin, 0);
981 // Check if small pixel Y-size
982 AjustPixel(wymin, 1);
983 // Check if large pixel size
984 AjustPixel(wxmin, wymin);
985
986 // Remove discarded pixels
987 for (Int_t i=0; i<nPix; i++) {
988 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
989 //pixPtr->Print();
990 if (pixPtr->Charge() < 1) { fPixArray->RemoveAt(i); delete pixPtr; }// discarded pixel
991 }
992 fPixArray->Compress();
993 nPix = fPixArray->GetEntriesFast();
994
995 if (nPix > npad) {
996 cout << nPix << endl;
997 // Too many pixels - sort and remove pixels with the lowest signal
998 fPixArray->Sort();
999 for (Int_t i=npad; i<nPix; i++) {
1000 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1001 //pixPtr->Print();
1002 fPixArray->RemoveAt(i);
1003 delete pixPtr;
1004 }
1005 nPix = npad;
1006 } // if (nPix > npad)
1007
1008 // Set pixel charges to the same value (for MLEM)
1009 for (Int_t i=0; i<nPix; i++) {
1010 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1011 //pixPtr->SetCharge(10);
1012 cout << i+1 << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(0) << " " << pixPtr->Size(1) << endl;
1013 }
1014}
1015
1016//_____________________________________________________________________________
1017void AliMUONClusterFinderAZ::AjustPixel(Float_t width, Int_t ixy)
1018{
1019 // Check if some pixels have small size (ajust if necessary)
1020
1021 AliMUONPixel *pixPtr, *pixPtr1 = 0;
1022 Int_t ixy1 = TMath::Even(ixy);
1023 Int_t nPix = fPixArray->GetEntriesFast();
1024
1025 for (Int_t i=0; i<nPix; i++) {
1026 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1027 if (pixPtr->Charge() < 1) continue; // discarded pixel
1028 if (pixPtr->Size(ixy)-width < -1.e-4) {
1029 // try to merge
1030 cout << " Small X or Y: " << ixy << " " << pixPtr->Size(ixy) << " " << width << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << endl;
1031 for (Int_t j=i+1; j<nPix; j++) {
1032 pixPtr1 = (AliMUONPixel*) fPixArray->UncheckedAt(j);
1033 if (pixPtr1->Charge() < 1) continue; // discarded pixel
1034 if (TMath::Abs(pixPtr1->Size(ixy)-width) < 1.e-4) continue; // right size
1035 if (TMath::Abs(pixPtr1->Coord(ixy1)-pixPtr->Coord(ixy1)) > 1.e-4) continue; // different rows/columns
1036 if (TMath::Abs(pixPtr1->Coord(ixy)-pixPtr->Coord(ixy)) < 2*width) {
1037 // merge
1038 pixPtr->SetSize(ixy, width);
1039 pixPtr->SetCoord(ixy, (pixPtr->Coord(ixy)+pixPtr1->Coord(ixy))/2);
1040 pixPtr->SetCharge(TMath::Min (pixPtr->Charge(),pixPtr1->Charge()));
1041 pixPtr1->SetCharge(0);
1042 pixPtr1 = 0;
1043 break;
1044 }
1045 } // for (Int_t j=i+1;
1046 //if (!pixPtr1) { cout << " I am here!" << endl; pixPtr->SetSize(ixy, width); } // ???
1047 //else if (pixPtr1->Charge() > 0.5 || i == nPix-1) {
1048 if (pixPtr1 || i == nPix-1) {
1049 // edge pixel - just increase its size
1050 cout << " Edge ..." << endl;
1051 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1052 // ???if (fPadIJ[0][j] != i1) continue;
1053 if (TMath::Abs(pixPtr->Coord(ixy1)-fXyq[ixy1][j]) > 1.e-4) continue;
1054 if (pixPtr->Coord(ixy) < fXyq[ixy][j])
1055 pixPtr->Shift(ixy, -pixPtr->Size(ixy));
1056 else pixPtr->Shift(ixy, pixPtr->Size(ixy));
1057 pixPtr->SetSize(ixy, width);
1058 break;
1059 }
1060 }
1061 } // if (pixPtr->Size(ixy)-width < -1.e-4)
1062 } // for (Int_t i=0; i<nPix;
1063 return;
1064}
1065
1066//_____________________________________________________________________________
1067void AliMUONClusterFinderAZ::AjustPixel(Float_t wxmin, Float_t wymin)
1068{
1069 // Check if some pixels have large size (ajust if necessary)
1070
1071 Int_t nx, ny;
1072 Int_t nPix = fPixArray->GetEntriesFast();
1073 AliMUONPixel *pixPtr, *pixPtr1, pix;
1074
1075 // Check if large pixel size
1076 for (Int_t i=0; i<nPix; i++) {
1077 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1078 if (pixPtr->Charge() < 1) continue; // discarded pixel
1079 if (pixPtr->Size(0)-wxmin > 1.e-4 || pixPtr->Size(1)-wymin > 1.e-4) {
1080 cout << " Different " << pixPtr->Size(0) << " " << wxmin << " " << pixPtr->Size(1) << " " << wymin << endl;
1081 pix = *pixPtr;
1082 nx = TMath::Nint (pix.Size(0)/wxmin);
1083 ny = TMath::Nint (pix.Size(1)/wymin);
1084 pix.Shift(0, -pix.Size(0)-wxmin);
1085 pix.Shift(1, -pix.Size(1)-wymin);
1086 pix.SetSize(0, wxmin);
1087 pix.SetSize(1, wymin);
1088 for (Int_t ii=0; ii<nx; ii++) {
1089 pix.Shift(0, wxmin*2);
1090 for (Int_t jj=0; jj<ny; jj++) {
1091 pix.Shift(1, wymin*2);
1092 pixPtr1 = new AliMUONPixel(pix);
1093 fPixArray->Add((TObject*)pixPtr1);
1094 }
1095 }
1096 pixPtr->SetCharge(0);
1097 }
1098 } // for (Int_t i=0; i<nPix;
1099 return;
1100}
1101
1102//_____________________________________________________________________________
1103Bool_t AliMUONClusterFinderAZ::MainLoop()
1104{
1105 // Repeat MLEM algorithm until pixel size becomes sufficiently small
1106
1107 TH2D *mlem;
1108
1109 Int_t ix, iy;
1110 //Int_t nn, xList[10], yList[10];
1111 Int_t nPix = fPixArray->GetEntriesFast();
1112 Int_t npadTot = fnPads[0] + fnPads[1], npadOK = 0;
1113 AliMUONPixel *pixPtr = 0;
1114 Double_t *coef = 0, *probi = 0;
1115 for (Int_t i=0; i<npadTot; i++) if (fPadIJ[1][i] == 0) npadOK++;
1116
1117 while (1) {
1118
1119 mlem = (TH2D*) gROOT->FindObject("mlem");
1120 if (mlem) mlem->Delete();
1121 // Calculate coefficients
1122 cout << " nPix, npadTot, npadOK " << nPix << " " << npadTot << " " << npadOK << endl;
1123
1124 // Calculate coefficients and pixel visibilities
1125 coef = new Double_t [npadTot*nPix];
1126 probi = new Double_t [nPix];
1127 Int_t indx = 0, cath;
1128 for (Int_t ipix=0; ipix<nPix; ipix++) {
1129 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1130 probi[ipix] = 0;
1131 for (Int_t j=0; j<npadTot; j++) {
1132 if (fPadIJ[1][j] < 0) { coef[j*nPix+ipix] = 0; continue; }
1133 cath = fPadIJ[0][j];
1134 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
1135 fSegmentation[cath]->SetPad(ix,iy);
1136 /*
1137 fSegmentation[cath]->Neighbours(ix,iy,&nn,xList,yList);
1138 if (nn != 4) {
1139 cout << nn << ": ";
1140 for (Int_t i=0; i<nn; i++) {cout << xList[i] << " " << yList[i] << ", ";}
1141 cout << endl;
1142 }
1143 */
1144 Double_t sum = 0;
1145 fSegmentation[cath]->SetHit(pixPtr->Coord(0),pixPtr->Coord(1),fZpad);
1146 sum += fResponse->IntXY(fSegmentation[cath]);
1147 indx = j*nPix + ipix;
1148 coef[indx] = sum;
1149 probi[ipix] += coef[indx];
1150 //cout << j << " " << ipix << " " << coef[indx] << endl;
1151 } // for (Int_t j=0;
1152 //cout << " prob: " << probi[ipix] << endl;
1153 if (probi[ipix] < 0.01) pixPtr->SetCharge(0); // "invisible" pixel
1154 } // for (Int_t ipix=0;
1155
1156 // MLEM algorithm
1157 Mlem(coef, probi);
1158
cd747ddb 1159 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 1160 for (Int_t ipix=0; ipix<nPix; ipix++) {
1161 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1162 for (Int_t i=0; i<4; i++)
1163 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1164 //cout << ipix+1; pixPtr->Print();
1165 }
1166 for (Int_t i=0; i<4; i++) {
1167 xylim[i] -= pixPtr->Size(i/2); cout << (i%2 ? -1 : 1)*xylim[i] << " "; }
1168 cout << endl;
1169
1170 // Ajust histogram to approximately the same limits as for the pads
1171 // (for good presentation)
1172 //*
1173 Float_t xypads[4];
1174 if (fHist[0]) {
1175 xypads[0] = fHist[0]->GetXaxis()->GetXmin();
1176 xypads[1] = -fHist[0]->GetXaxis()->GetXmax();
1177 xypads[2] = fHist[0]->GetYaxis()->GetXmin();
1178 xypads[3] = -fHist[0]->GetYaxis()->GetXmax();
1179 for (Int_t i=0; i<4; i++) {
1180 while(1) {
1181 if (xylim[i] < xypads[i]) break;
1182 xylim[i] -= 2*pixPtr->Size(i/2);
1183 }
1184 }
1185 } // if (fHist[0])
1186 //*/
1187
1188 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
1189 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
1190 mlem = new TH2D("mlem","mlem",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
1191 for (Int_t ipix=0; ipix<nPix; ipix++) {
1192 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1193 mlem->Fill(pixPtr->Coord(0),pixPtr->Coord(1),pixPtr->Charge());
1194 }
1195 //gPad->GetCanvas()->cd(3);
1196 if (fDraw) {
1197 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1198 gPad->SetTheta(55);
1199 gPad->SetPhi(30);
1200 mlem->Draw("lego1Fb");
1201 gPad->Update();
1202 gets((char*)&ix);
1203 }
1204
1205 // Check if the total charge of pixels is too low
1206 Double_t qTot = 0;
1207 for (Int_t i=0; i<nPix; i++) {
1208 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1209 qTot += pixPtr->Charge();
1210 }
1211 if (qTot < 1.e-4 || npadOK < 3 && qTot < 50) {
1212 delete [] coef; delete [] probi; coef = 0; probi = 0;
1213 fPixArray->Delete();
1214 return kFALSE;
1215 }
1216
1217 // Plot data - expectation
1218 /*
1219 Double_t x, y, cont;
1220 for (Int_t j=0; j<npadTot; j++) {
1221 Double_t sum1 = 0;
1222 for (Int_t i=0; i<nPix; i++) {
1223 // Caculate expectation
1224 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1225 sum1 += pixPtr->Charge()*coef[j*nPix+i];
1226 }
1227 sum1 = TMath::Min (sum1,(Double_t)fResponse->MaxAdc());
1228 x = fXyq[0][j];
1229 y = fXyq[1][j];
1230 cath = fPadIJ[0][j];
1231 Int_t ihist = cath*2;
1232 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1233 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1234 cont = fHist[ihist]->GetCellContent(ix,iy);
1235 if (cont == 0 && fHist[ihist+1]) {
1236 ihist += 1;
1237 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1238 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1239 }
1240 fHist[ihist]->SetBinContent(ix,iy,fXyq[2][j]-sum1);
1241 }
1242 ((TCanvas*)gROOT->FindObject("c1"))->cd(1);
1243 //gPad->SetTheta(55);
1244 //gPad->SetPhi(30);
1245 //mlem->Draw("lego1");
1246 gPad->Modified();
1247 ((TCanvas*)gROOT->FindObject("c1"))->cd(2);
1248 gPad->Modified();
1249 */
1250
1251 // Calculate position of the center-of-gravity around the maximum pixel
1252 Double_t xyCOG[2];
1253 FindCOG(mlem, xyCOG);
1254
1255 if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.07 && pixPtr->Size(0) > pixPtr->Size(1)) break;
1256 //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) >= 0.07 || pixPtr->Size(0) < pixPtr->Size(1)) {
1257 // Sort pixels according to the charge
1258 fPixArray->Sort();
1259 /*
1260 for (Int_t i=0; i<nPix; i++) {
1261 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1262 cout << i+1; pixPtr->Print();
1263 }
1264 */
1265 Double_t pixMin = 0.01*((AliMUONPixel*)fPixArray->UncheckedAt(0))->Charge();
1266 pixMin = TMath::Min (pixMin,50.);
1267
1268 // Decrease pixel size and shift pixels to make them centered at
1269 // the maximum one
1270 indx = (pixPtr->Size(0)>pixPtr->Size(1)) ? 0 : 1;
1271 Double_t width = 0, shift[2]={0};
1272 ix = 1;
1273 for (Int_t i=0; i<4; i++) xylim[i] = 999;
1274 Int_t nPix1 = nPix; nPix = 0;
1275 for (Int_t ipix=0; ipix<nPix1; ipix++) {
1276 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1277 if (nPix >= npadOK) { // too many pixels already
1278 fPixArray->RemoveAt(ipix);
1279 delete pixPtr;
1280 continue;
1281 }
1282 if (pixPtr->Charge() < pixMin) { // low charge
1283 fPixArray->RemoveAt(ipix);
1284 delete pixPtr;
1285 continue;
1286 }
1287 for (Int_t i=0; i<2; i++) {
1288 if (!i) {
1289 pixPtr->SetCharge(10);
1290 pixPtr->SetSize(indx, pixPtr->Size(indx)/2);
1291 width = -pixPtr->Size(indx);
1292 pixPtr->Shift(indx, width);
1293 // Shift pixel position
1294 if (ix) {
1295 ix = 0;
1296 for (Int_t j=0; j<2; j++) {
1297 shift[j] = pixPtr->Coord(j) - xyCOG[j];
1298 shift[j] -= ((Int_t)(shift[j]/pixPtr->Size(j)/2))*pixPtr->Size(j)*2;
1299 }
1300 //cout << ipix << " " << i << " " << shift[0] << " " << shift[1] << endl;
1301 } // if (ix)
1302 pixPtr->Shift(0, -shift[0]);
1303 pixPtr->Shift(1, -shift[1]);
1304 } else {
1305 pixPtr = new AliMUONPixel(*pixPtr);
1306 pixPtr->Shift(indx, -2*width);
1307 fPixArray->Add((TObject*)pixPtr);
1308 } // else
1309 //pixPtr->Print();
1310 for (Int_t i=0; i<4; i++)
1311 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1312 } // for (Int_t i=0; i<2;
1313 nPix += 2;
1314 } // for (Int_t ipix=0;
1315
1316 fPixArray->Compress();
1317 nPix = fPixArray->GetEntriesFast();
1318
1319 // Remove excessive pixels
1320 if (nPix > npadOK) {
1321 for (Int_t ipix=npadOK; ipix<nPix; ipix++) {
1322 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1323 fPixArray->RemoveAt(ipix);
1324 delete pixPtr;
1325 }
1326 } else {
1327 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(0);
1328 // add pixels if the maximum is at the limit of pixel area
1329 // start from Y-direction
1330 Int_t j = 0;
1331 for (Int_t i=3; i>-1; i--) {
1332 if (nPix < npadOK &&
1333 TMath::Abs((i%2 ? -1 : 1)*xylim[i]-xyCOG[i/2]) < pixPtr->Size(i/2)) {
1334 pixPtr = new AliMUONPixel(*pixPtr);
1335 pixPtr->SetCoord(i/2, xyCOG[i/2]+(i%2 ? 2:-2)*pixPtr->Size(i/2));
1336 j = TMath::Even (i/2);
1337 pixPtr->SetCoord(j, xyCOG[j]);
1338 fPixArray->Add((TObject*)pixPtr);
1339 nPix++;
1340 }
1341 }
1342 } // else
1343
1344 fPixArray->Compress();
1345 nPix = fPixArray->GetEntriesFast();
1346 delete [] coef; delete [] probi; coef = 0; probi = 0;
1347 } // while (1)
1348
1349 // remove pixels with low signal or low visibility
1350 // Cuts are empirical !!!
1351 Double_t thresh = TMath::Max (mlem->GetMaximum()/100.,1.);
1352 thresh = TMath::Min (thresh,50.);
1353 Double_t cmax = -1, charge = 0;
1354 for (Int_t i=0; i<nPix; i++) cmax = TMath::Max (cmax,probi[i]);
1355 // Mark pixels which should be removed
1356 for (Int_t i=0; i<nPix; i++) {
1357 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1358 charge = pixPtr->Charge();
1359 if (charge < thresh) pixPtr->SetCharge(-charge);
1360 else if (cmax > 1.91) {
1361 if (probi[i] < 1.9) pixPtr->SetCharge(-charge);
1362 }
1363 else if (probi[i] < cmax*0.9) pixPtr->SetCharge(-charge);
1364 }
1365 // Move charge of removed pixels to their nearest neighbour (to keep total charge the same)
1366 Int_t near = 0;
1367 for (Int_t i=0; i<nPix; i++) {
1368 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1369 charge = pixPtr->Charge();
1370 if (charge > 0) continue;
1371 near = FindNearest(pixPtr);
1372 pixPtr->SetCharge(0);
1373 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(near);
1374 pixPtr->SetCharge(pixPtr->Charge() - charge);
1375 }
1376 // Update histogram
1377 for (Int_t i=0; i<nPix; i++) {
1378 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1379 ix = mlem->GetXaxis()->FindBin(pixPtr->Coord(0));
1380 iy = mlem->GetYaxis()->FindBin(pixPtr->Coord(1));
1381 mlem->SetBinContent(ix, iy, pixPtr->Charge());
1382 }
1383 if (fDraw) {
1384 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1385 gPad->SetTheta(55);
1386 gPad->SetPhi(30);
1387 mlem->Draw("lego1Fb");
1388 gPad->Update();
1389 }
1390
1391 fxyMu[0][6] = fxyMu[1][6] = 9999;
1392 // Try to split into clusters
1393 Bool_t ok = kTRUE;
1394 if (mlem->GetSum() < 1) ok = kFALSE;
1395 else Split(mlem, coef);
1396 delete [] coef; delete [] probi; coef = 0; probi = 0;
1397 fPixArray->Delete();
1398 return ok;
1399}
1400
1401//_____________________________________________________________________________
1402void AliMUONClusterFinderAZ::Mlem(Double_t *coef, Double_t *probi)
1403{
1404 // Use MLEM to find pixel charges
1405
1406 Int_t nPix = fPixArray->GetEntriesFast();
1407 Int_t npad = fnPads[0] + fnPads[1];
1408 Double_t *probi1 = new Double_t [nPix];
1409 Int_t indx, indx1;
1410 AliMUONPixel *pixPtr;
1411
1412 for (Int_t iter=0; iter<15; iter++) {
1413 // Do iterations
1414 for (Int_t ipix=0; ipix<nPix; ipix++) {
1415 // Correct each pixel
1416 if (probi[ipix] < 0.01) continue; // skip "invisible" pixel
1417 Double_t sum = 0;
1418 probi1[ipix] = probi[ipix];
1419 for (Int_t j=0; j<npad; j++) {
1420 if (fPadIJ[1][j] < 0) continue;
1421 Double_t sum1 = 0;
1422 indx1 = j*nPix;
1423 indx = indx1 + ipix;
1424 for (Int_t i=0; i<nPix; i++) {
1425 // Caculate expectation
1426 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1427 sum1 += pixPtr->Charge()*coef[indx1+i];
1428 } // for (Int_t i=0;
1429 if (fXyq[2][j] > fResponse->MaxAdc()-1 && sum1 > fResponse->MaxAdc()) { probi1[ipix] -= coef[indx]; continue; } // correct for pad charge overflows
1430 //cout << sum1 << " " << fXyq[2][j] << " " << coef[j*nPix+ipix] << endl;
1431 if (coef[indx] > 1.e-6) sum += fXyq[2][j]*coef[indx]/sum1;
1432 } // for (Int_t j=0;
1433 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1434 if (probi1[ipix] > 1.e-6) pixPtr->SetCharge(pixPtr->Charge()*sum/probi1[ipix]);
1435 } // for (Int_t ipix=0;
1436 } // for (Int_t iter=0;
1437 delete [] probi1;
1438 return;
1439}
1440
1441//_____________________________________________________________________________
1442void AliMUONClusterFinderAZ::FindCOG(TH2D *mlem, Double_t *xyc)
1443{
1444 // Calculate position of the center-of-gravity around the maximum pixel
1445
1446 Int_t ixmax, iymax, ix, nsumx=0, nsumy=0, nsum=0;
1447 Int_t i1 = -9, j1 = -9;
1448 mlem->GetMaximumBin(ixmax,iymax,ix);
1449 Int_t nx = mlem->GetNbinsX();
1450 Int_t ny = mlem->GetNbinsY();
1451 Double_t thresh = mlem->GetMaximum()/10;
1452 Double_t x, y, cont, xq=0, yq=0, qq=0;
1453
1454 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1455 y = mlem->GetYaxis()->GetBinCenter(i);
1456 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1457 cont = mlem->GetCellContent(j,i);
1458 if (cont < thresh) continue;
1459 if (i != i1) {i1 = i; nsumy++;}
1460 if (j != j1) {j1 = j; nsumx++;}
1461 x = mlem->GetXaxis()->GetBinCenter(j);
1462 xq += x*cont;
1463 yq += y*cont;
1464 qq += cont;
1465 nsum++;
1466 }
1467 }
1468
1469 Double_t cmax = 0;
1470 Int_t i2 = 0, j2 = 0;
1471 x = y = 0;
1472 if (nsumy == 1) {
1473 // one bin in Y - add one more (with the largest signal)
1474 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1475 if (i == iymax) continue;
1476 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1477 cont = mlem->GetCellContent(j,i);
1478 if (cont > cmax) {
1479 cmax = cont;
1480 x = mlem->GetXaxis()->GetBinCenter(j);
1481 y = mlem->GetYaxis()->GetBinCenter(i);
1482 i2 = i;
1483 j2 = j;
1484 }
1485 }
1486 }
1487 xq += x*cmax;
1488 yq += y*cmax;
1489 qq += cmax;
1490 if (i2 != i1) nsumy++;
1491 if (j2 != j1) nsumx++;
1492 nsum++;
1493 } // if (nsumy == 1)
1494
1495 if (nsumx == 1) {
1496 // one bin in X - add one more (with the largest signal)
1497 cmax = x = y = 0;
1498 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1499 if (j == ixmax) continue;
1500 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1501 cont = mlem->GetCellContent(j,i);
1502 if (cont > cmax) {
1503 cmax = cont;
1504 x = mlem->GetXaxis()->GetBinCenter(j);
1505 y = mlem->GetYaxis()->GetBinCenter(i);
1506 i2 = i;
1507 j2 = j;
1508 }
1509 }
1510 }
1511 xq += x*cmax;
1512 yq += y*cmax;
1513 qq += cmax;
1514 if (i2 != i1) nsumy++;
1515 if (j2 != j1) nsumx++;
1516 nsum++;
1517 } // if (nsumx == 1)
1518
1519 xyc[0] = xq/qq; xyc[1] = yq/qq;
1520 cout << xyc[0] << " " << xyc[1] << " " << qq << " " << nsum << " " << nsumx << " " << nsumy << endl;
1521 return;
1522}
1523
1524//_____________________________________________________________________________
1525Int_t AliMUONClusterFinderAZ::FindNearest(AliMUONPixel *pixPtr0)
1526{
1527 // Find the pixel nearest to the given one
1528 // (algorithm may be not very efficient)
1529
1530 Int_t nPix = fPixArray->GetEntriesFast(), imin = 0;
1531 Double_t rmin = 99999, dx = 0, dy = 0, r = 0;
1532 Double_t xc = pixPtr0->Coord(0), yc = pixPtr0->Coord(1);
1533 AliMUONPixel *pixPtr;
1534
1535 for (Int_t i=0; i<nPix; i++) {
1536 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1537 if (pixPtr->Charge() < 0.5) continue;
1538 dx = (xc - pixPtr->Coord(0)) / pixPtr->Size(0);
1539 dy = (yc - pixPtr->Coord(1)) / pixPtr->Size(1);
1540 r = dx *dx + dy * dy;
1541 if (r < rmin) { rmin = r; imin = i; }
1542 }
1543 return imin;
1544}
1545
1546//_____________________________________________________________________________
1547void AliMUONClusterFinderAZ::Split(TH2D *mlem, Double_t *coef)
1548{
1549 // The main steering function to work with clusters of pixels in anode
1550 // plane (find clusters, decouple them from each other, merge them (if
1551 // necessary), pick up coupled pads, call the fitting function)
1552
1553 Int_t nx = mlem->GetNbinsX();
1554 Int_t ny = mlem->GetNbinsY();
1555 Int_t nPix = fPixArray->GetEntriesFast();
1556
1557 Bool_t *used = new Bool_t[ny*nx];
1558 Double_t cont;
1559 Int_t nclust = 0, indx, indx1;
1560
1561 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
1562
1563 TObjArray *clusters[200]={0};
1564 TObjArray *pix;
1565
1566 // Find clusters of histogram bins (easier to work in 2-D space)
1567 for (Int_t i=1; i<=ny; i++) {
1568 for (Int_t j=1; j<=nx; j++) {
1569 indx = (i-1)*nx + j - 1;
1570 if (used[indx]) continue;
1571 cont = mlem->GetCellContent(j,i);
1572 if (cont < 0.5) continue;
1573 pix = new TObjArray(20);
1574 used[indx] = 1;
1575 pix->Add(BinToPix(mlem,j,i));
1576 AddBin(mlem, i, j, 0, used, pix); // recursive call
1577 clusters[nclust++] = pix;
1578 if (nclust > 200) { cout << " Too many clusters " << endl; ::exit(0); }
1579 } // for (Int_t j=1; j<=nx; j++) {
1580 } // for (Int_t i=1; i<=ny;
1581 cout << nclust << endl;
1582 delete [] used; used = 0;
1583
1584 // Compute couplings between clusters and clusters to pads
1585 Int_t npad = fnPads[0] + fnPads[1];
1586
1587 // Exclude pads with overflows
1588 for (Int_t j=0; j<npad; j++) {
1589 if (fXyq[2][j] > fResponse->MaxAdc()-1) fPadIJ[1][j] = -9;
1590 else fPadIJ[1][j] = 0;
1591 }
1592
1593 // Compute couplings of clusters to pads
c1aed84f 1594 TMatrixD *aijclupad = new TMatrixD(nclust,npad);
1595 *aijclupad = 0;
0df3ca52 1596 Int_t npxclu;
1597 for (Int_t iclust=0; iclust<nclust; iclust++) {
1598 pix = clusters[iclust];
1599 npxclu = pix->GetEntriesFast();
1600 for (Int_t i=0; i<npxclu; i++) {
1601 indx = fPixArray->IndexOf(pix->UncheckedAt(i));
1602 for (Int_t j=0; j<npad; j++) {
1603 // Exclude overflows
1604 if (fPadIJ[1][j] < 0) continue;
343146bf 1605 if (coef[j*nPix+indx] < fgkCouplMin) continue;
c1aed84f 1606 (*aijclupad)(iclust,j) += coef[j*nPix+indx];
0df3ca52 1607 }
1608 }
1609 }
1610 // Compute couplings between clusters
c1aed84f 1611 TMatrixD *aijcluclu = new TMatrixD(nclust,nclust);
1612 *aijcluclu = 0;
0df3ca52 1613 for (Int_t iclust=0; iclust<nclust; iclust++) {
1614 for (Int_t j=0; j<npad; j++) {
1615 // Exclude overflows
1616 if (fPadIJ[1][j] < 0) continue;
343146bf 1617 if ((*aijclupad)(iclust,j) < fgkCouplMin) continue;
0df3ca52 1618 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
343146bf 1619 if ((*aijclupad)(iclust1,j) < fgkCouplMin) continue;
c1aed84f 1620 (*aijcluclu)(iclust,iclust1) +=
1621 TMath::Sqrt ((*aijclupad)(iclust,j)*(*aijclupad)(iclust1,j));
0df3ca52 1622 }
1623 }
1624 }
1625 for (Int_t iclust=0; iclust<nclust; iclust++) {
1626 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
c1aed84f 1627 (*aijcluclu)(iclust1,iclust) = (*aijcluclu)(iclust,iclust1);
0df3ca52 1628 }
1629 }
1630
c1aed84f 1631 if (nclust > 1) aijcluclu->Print();
0df3ca52 1632
1633 // Find groups of coupled clusters
1634 used = new Bool_t[nclust];
1635 for (Int_t i=0; i<nclust; i++) used[i] = kFALSE;
1636 Int_t *clustNumb = new Int_t[nclust];
1637 Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
1638 Double_t parOk[8];
1639
1640 for (Int_t igroup=0; igroup<nclust; igroup++) {
1641 if (used[igroup]) continue;
1642 used[igroup] = kTRUE;
1643 clustNumb[0] = igroup;
1644 nCoupled = 1;
1645 // Find group of coupled clusters
c1aed84f 1646 AddCluster(igroup, nclust, aijcluclu, used, clustNumb, nCoupled); // recursive
0df3ca52 1647 cout << " nCoupled: " << nCoupled << endl;
1648 for (Int_t i=0; i<nCoupled; i++) cout << clustNumb[i] << " "; cout << endl;
1649
1650 while (nCoupled > 0) {
1651
1652 if (nCoupled < 4) {
1653 nForFit = nCoupled;
1654 for (Int_t i=0; i<nCoupled; i++) clustFit[i] = clustNumb[i];
1655 } else {
1656 // Too many coupled clusters to fit - try to decouple them
1657 // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
1658 // all the others in the group
1659 for (Int_t j=0; j<3; j++) minGroup[j] = -1;
c1aed84f 1660 Double_t coupl = MinGroupCoupl(nCoupled, clustNumb, aijcluclu, minGroup);
0df3ca52 1661
1662 // Flag clusters for fit
1663 nForFit = 0;
1664 while (minGroup[nForFit] >= 0 && nForFit < 3) {
1665 cout << clustNumb[minGroup[nForFit]] << " ";
1666 clustFit[nForFit] = clustNumb[minGroup[nForFit]];
1667 clustNumb[minGroup[nForFit]] -= 999;
1668 nForFit++;
1669 }
1670 cout << nForFit << " " << coupl << endl;
1671 } // else
1672
1673 // Select pads for fit.
c1aed84f 1674 if (SelectPad(nCoupled, nForFit, clustNumb, clustFit, aijclupad) < 3 && nCoupled > 1) {
0df3ca52 1675 // Deselect pads
1676 for (Int_t j=0; j<npad; j++) if (TMath::Abs(fPadIJ[1][j]) == 1) fPadIJ[1][j] = 0;
1677 // Merge the failed cluster candidates (with too few pads to fit) with
1678 // the one with the strongest coupling
c1aed84f 1679 Merge(nForFit, nCoupled, clustNumb, clustFit, clusters, aijcluclu, aijclupad);
0df3ca52 1680 } else {
1681 // Do the fit
1682 nfit = Fit(nForFit, clustFit, clusters, parOk);
1683 }
1684
1685 // Subtract the fitted charges from pads with strong coupling and/or
1686 // return pads for further use
1687 UpdatePads(nfit, parOk);
1688
1689 // Mark used pads
1690 for (Int_t j=0; j<npad; j++) {if (fPadIJ[1][j] == 1) fPadIJ[1][j] = -1;}
1691
1692 // Sort the clusters (move to the right the used ones)
1693 Int_t beg = 0, end = nCoupled - 1;
1694 while (beg < end) {
1695 if (clustNumb[beg] >= 0) { beg++; continue; }
1696 for (Int_t j=end; j>beg; j--) {
1697 if (clustNumb[j] < 0) continue;
1698 end = j - 1;
1699 indx = clustNumb[beg];
1700 clustNumb[beg] = clustNumb[j];
1701 clustNumb[j] = indx;
1702 break;
1703 }
1704 beg++;
1705 }
1706
1707 nCoupled -= nForFit;
1708 if (nCoupled > 3) {
1709 // Remove couplings of used clusters
1710 for (Int_t iclust=nCoupled; iclust<nCoupled+nForFit; iclust++) {
1711 indx = clustNumb[iclust] + 999;
1712 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1713 indx1 = clustNumb[iclust1];
c1aed84f 1714 (*aijcluclu)(indx,indx1) = (*aijcluclu)(indx1,indx) = 0;
0df3ca52 1715 }
1716 }
1717
1718 // Update the remaining clusters couplings (exclude couplings from
1719 // the used pads)
1720 for (Int_t j=0; j<npad; j++) {
1721 if (fPadIJ[1][j] != -1) continue;
1722 for (Int_t iclust=0; iclust<nCoupled; iclust++) {
1723 indx = clustNumb[iclust];
343146bf 1724 if ((*aijclupad)(indx,j) < fgkCouplMin) continue;
0df3ca52 1725 for (Int_t iclust1=iclust+1; iclust1<nCoupled; iclust1++) {
1726 indx1 = clustNumb[iclust1];
343146bf 1727 if ((*aijclupad)(indx1,j) < fgkCouplMin) continue;
0df3ca52 1728 // Check this
c1aed84f 1729 (*aijcluclu)(indx,indx1) -=
1730 TMath::Sqrt ((*aijclupad)(indx,j)*(*aijclupad)(indx1,j));
1731 (*aijcluclu)(indx1,indx) = (*aijcluclu)(indx,indx1);
0df3ca52 1732 }
1733 }
1734 fPadIJ[1][j] = -9;
1735 } // for (Int_t j=0; j<npad;
1736 } // if (nCoupled > 3)
1737 } // while (nCoupled > 0)
1738 } // for (Int_t igroup=0; igroup<nclust;
1739
c1aed84f 1740 //delete aij_clu; aij_clu = 0; delete aijclupad; aijclupad = 0;
1741 aijcluclu->Delete(); aijclupad->Delete();
0df3ca52 1742 for (Int_t iclust=0; iclust<nclust; iclust++) {
1743 pix = clusters[iclust];
1744 pix->Clear();
1745 delete pix; pix = 0;
1746 }
1747 delete [] clustNumb; clustNumb = 0; delete [] used; used = 0;
1748}
1749
1750//_____________________________________________________________________________
1751void AliMUONClusterFinderAZ::AddBin(TH2D *mlem, Int_t ic, Int_t jc, Int_t mode, Bool_t *used, TObjArray *pix)
1752{
1753 // Add a bin to the cluster
1754
1755 Int_t nx = mlem->GetNbinsX();
1756 Int_t ny = mlem->GetNbinsY();
1757 Double_t cont1, cont = mlem->GetCellContent(jc,ic);
1758 AliMUONPixel *pixPtr = 0;
1759
1760 for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) {
1761 for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) {
1762 if (i != ic && j != jc) continue;
1763 if (used[(i-1)*nx+j-1]) continue;
1764 cont1 = mlem->GetCellContent(j,i);
1765 if (mode && cont1 > cont) continue;
1766 used[(i-1)*nx+j-1] = kTRUE;
1767 if (cont1 < 0.5) continue;
1768 if (pix) pix->Add(BinToPix(mlem,j,i));
1769 else {
1770 pixPtr = new AliMUONPixel (mlem->GetXaxis()->GetBinCenter(j),
1771 mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
1772 fPixArray->Add((TObject*)pixPtr);
1773 }
1774 AddBin(mlem, i, j, mode, used, pix); // recursive call
1775 }
1776 }
1777}
1778
1779//_____________________________________________________________________________
1780TObject* AliMUONClusterFinderAZ::BinToPix(TH2D *mlem, Int_t jc, Int_t ic)
1781{
1782 // Translate histogram bin to pixel
1783
1784 Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
1785 Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
1786
1787 Int_t nPix = fPixArray->GetEntriesFast();
1788 AliMUONPixel *pixPtr;
1789
1790 // Compare pixel and bin positions
1791 for (Int_t i=0; i<nPix; i++) {
1792 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1793 if (pixPtr->Charge() < 0.5) continue;
1794 if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4) return (TObject*) pixPtr;
1795 }
1796 cout << " Something wrong ??? " << endl;
1797 return NULL;
1798}
1799
1800//_____________________________________________________________________________
c1aed84f 1801void AliMUONClusterFinderAZ::AddCluster(Int_t ic, Int_t nclust, TMatrixD *aijcluclu, Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
0df3ca52 1802{
1803 // Add a cluster to the group of coupled clusters
1804
1805 for (Int_t i=0; i<nclust; i++) {
1806 if (used[i]) continue;
343146bf 1807 if ((*aijcluclu)(i,ic) < fgkCouplMin) continue;
0df3ca52 1808 used[i] = kTRUE;
1809 clustNumb[nCoupled++] = i;
c1aed84f 1810 AddCluster(i, nclust, aijcluclu, used, clustNumb, nCoupled);
0df3ca52 1811 }
1812}
1813
1814//_____________________________________________________________________________
c1aed84f 1815Double_t AliMUONClusterFinderAZ::MinGroupCoupl(Int_t nCoupled, Int_t *clustNumb, TMatrixD *aijcluclu, Int_t *minGroup)
0df3ca52 1816{
1817 // Find group of clusters with minimum coupling to all the others
1818
1819 Int_t i123max = TMath::Min(3,nCoupled/2);
1820 Int_t indx, indx1, indx2, indx3, nTot = 0;
1821 Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1822
1823 for (Int_t i123=1; i123<=i123max; i123++) {
1824
1825 if (i123 == 1) {
1826 coupl1 = new Double_t [nCoupled];
1827 for (Int_t i=0; i<nCoupled; i++) coupl1[i] = 0;
1828 }
1829 else if (i123 == 2) {
1830 nTot = nCoupled*nCoupled;
1831 coupl2 = new Double_t [nTot];
1832 for (Int_t i=0; i<nTot; i++) coupl2[i] = 9999;
1833 } else {
1834 nTot = nTot*nCoupled;
1835 coupl3 = new Double_t [nTot];
1836 for (Int_t i=0; i<nTot; i++) coupl3[i] = 9999;
1837 } // else
1838
1839 for (Int_t i=0; i<nCoupled; i++) {
1840 indx1 = clustNumb[i];
1841 for (Int_t j=i+1; j<nCoupled; j++) {
1842 indx2 = clustNumb[j];
1843 if (i123 == 1) {
c1aed84f 1844 coupl1[i] += (*aijcluclu)(indx1,indx2);
1845 coupl1[j] += (*aijcluclu)(indx1,indx2);
0df3ca52 1846 }
1847 else if (i123 == 2) {
1848 indx = i*nCoupled + j;
1849 coupl2[indx] = coupl1[i] + coupl1[j];
c1aed84f 1850 coupl2[indx] -= 2 * ((*aijcluclu)(indx1,indx2));
0df3ca52 1851 } else {
1852 for (Int_t k=j+1; k<nCoupled; k++) {
1853 indx3 = clustNumb[k];
1854 indx = i*nCoupled*nCoupled + j*nCoupled + k;
1855 coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
c1aed84f 1856 coupl3[indx] -= 2 * ((*aijcluclu)(indx1,indx3)+(*aijcluclu)(indx2,indx3));
0df3ca52 1857 }
1858 } // else
1859 } // for (Int_t j=i+1;
1860 } // for (Int_t i=0;
1861 } // for (Int_t i123=1;
1862
1863 // Find minimum coupling
1864 Double_t couplMin = 9999;
1865 Int_t locMin = 0;
1866
1867 for (Int_t i123=1; i123<=i123max; i123++) {
1868 if (i123 == 1) {
1869 locMin = TMath::LocMin(nCoupled, coupl1);
1870 couplMin = coupl1[locMin];
1871 minGroup[0] = locMin;
1872 delete [] coupl1; coupl1 = 0;
1873 }
1874 else if (i123 == 2) {
1875 locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1876 if (coupl2[locMin] < couplMin) {
1877 couplMin = coupl2[locMin];
1878 minGroup[0] = locMin/nCoupled;
1879 minGroup[1] = locMin%nCoupled;
1880 }
1881 delete [] coupl2; coupl2 = 0;
1882 } else {
1883 locMin = TMath::LocMin(nTot, coupl3);
1884 if (coupl3[locMin] < couplMin) {
1885 couplMin = coupl3[locMin];
1886 minGroup[0] = locMin/nCoupled/nCoupled;
1887 minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1888 minGroup[2] = locMin%nCoupled;
1889 }
1890 delete [] coupl3; coupl3 = 0;
1891 } // else
1892 } // for (Int_t i123=1;
1893 return couplMin;
1894}
1895
1896//_____________________________________________________________________________
c1aed84f 1897Int_t AliMUONClusterFinderAZ::SelectPad(Int_t nCoupled, Int_t nForFit, Int_t *clustNumb, Int_t *clustFit, TMatrixD *aijclupad)
0df3ca52 1898{
1899 // Select pads for fit. If too many coupled clusters, find pads giving
1900 // the strongest coupling with the rest of clusters and exclude them from the fit.
1901
1902 Int_t npad = fnPads[0] + fnPads[1];
c1aed84f 1903 Double_t *padpix = 0;
0df3ca52 1904
1905 if (nCoupled > 3) {
c1aed84f 1906 padpix = new Double_t[npad];
1907 for (Int_t i=0; i<npad; i++) padpix[i] = 0;
0df3ca52 1908 }
1909
1910 Int_t nOK = 0, indx, indx1;
1911 for (Int_t iclust=0; iclust<nForFit; iclust++) {
1912 indx = clustFit[iclust];
1913 for (Int_t j=0; j<npad; j++) {
1914 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
343146bf 1915 if ((*aijclupad)(indx,j) < fgkCouplMin) continue;
0df3ca52 1916 fPadIJ[1][j] = 1; // pad to be used in fit
1917 nOK++;
1918 if (nCoupled > 3) {
1919 // Check other clusters
1920 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1921 indx1 = clustNumb[iclust1];
1922 if (indx1 < 0) continue;
343146bf 1923 if ((*aijclupad)(indx1,j) < fgkCouplMin) continue;
c1aed84f 1924 padpix[j] += (*aijclupad)(indx1,j);
0df3ca52 1925 }
1926 } // if (nCoupled > 3)
1927 } // for (Int_t j=0; j<npad;
1928 } // for (Int_t iclust=0; iclust<nForFit
1929 if (nCoupled < 4) return nOK;
1930
1931 Double_t aaa = 0;
1932 for (Int_t j=0; j<npad; j++) {
343146bf 1933 if (padpix[j] < fgkCouplMin) continue;
c1aed84f 1934 cout << j << " " << padpix[j] << " ";
0df3ca52 1935 cout << fXyq[0][j] << " " << fXyq[1][j] << endl;
c1aed84f 1936 aaa += padpix[j];
0df3ca52 1937 fPadIJ[1][j] = -1; // exclude pads with strong coupling to the other clusters
1938 nOK--;
1939 }
c1aed84f 1940 delete [] padpix; padpix = 0;
0df3ca52 1941 return nOK;
1942}
1943
1944//_____________________________________________________________________________
c1aed84f 1945void AliMUONClusterFinderAZ::Merge(Int_t nForFit, Int_t nCoupled, Int_t *clustNumb, Int_t *clustFit, TObjArray **clusters, TMatrixD *aijcluclu, TMatrixD *aijclupad)
0df3ca52 1946{
1947 // Merge the group of clusters with the one having the strongest coupling with them
1948
1949 Int_t indx, indx1, npxclu, npxclu1, imax=0;
1950 TObjArray *pix, *pix1;
1951 Double_t couplMax;
1952
1953 for (Int_t icl=0; icl<nForFit; icl++) {
1954 indx = clustFit[icl];
1955 pix = clusters[indx];
1956 npxclu = pix->GetEntriesFast();
1957 couplMax = -1;
1958 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1959 indx1 = clustNumb[icl1];
1960 if (indx1 < 0) continue;
c1aed84f 1961 if ((*aijcluclu)(indx,indx1) > couplMax) {
1962 couplMax = (*aijcluclu)(indx,indx1);
0df3ca52 1963 imax = indx1;
1964 }
1965 } // for (Int_t icl1=0;
343146bf 1966 /*if (couplMax < fgkCouplMin) {
0df3ca52 1967 cout << " Oops " << couplMax << endl;
c1aed84f 1968 aijcluclu->Print();
0df3ca52 1969 cout << icl << " " << indx << " " << npxclu << " " << nLinks << endl;
1970 ::exit(0);
1971 }*/
1972 // Add to it
1973 pix1 = clusters[imax];
1974 npxclu1 = pix1->GetEntriesFast();
1975 // Add pixels
1976 for (Int_t i=0; i<npxclu; i++) { pix1->Add(pix->UncheckedAt(i)); pix->RemoveAt(i); }
1977 cout << " New number of pixels: " << npxclu1 << " " << pix1->GetEntriesFast() << endl;
1978 //Add cluster-to-cluster couplings
c1aed84f 1979 //aijcluclu->Print();
0df3ca52 1980 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1981 indx1 = clustNumb[icl1];
1982 if (indx1 < 0 || indx1 == imax) continue;
c1aed84f 1983 (*aijcluclu)(indx1,imax) += (*aijcluclu)(indx,indx1);
1984 (*aijcluclu)(imax,indx1) = (*aijcluclu)(indx1,imax);
0df3ca52 1985 }
c1aed84f 1986 (*aijcluclu)(indx,imax) = (*aijcluclu)(imax,indx) = 0;
1987 //aijcluclu->Print();
0df3ca52 1988 //Add cluster-to-pad couplings
1989 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1990 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
c1aed84f 1991 (*aijclupad)(imax,j) += (*aijclupad)(indx,j);
1992 (*aijclupad)(indx,j) = 0;
0df3ca52 1993 }
1994 } // for (Int_t icl=0; icl<nForFit;
1995}
1996
1997//_____________________________________________________________________________
1998Int_t AliMUONClusterFinderAZ::Fit(Int_t nfit, Int_t *clustFit, TObjArray **clusters, Double_t *parOk)
1999{
2000 // Find selected clusters to selected pad charges
2001
2002 TH2D *mlem = (TH2D*) gROOT->FindObject("mlem");
2003 //Int_t nx = mlem->GetNbinsX();
2004 //Int_t ny = mlem->GetNbinsY();
2005 Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
2006 Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
2007 Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
2008 Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
2009 //Double_t qmin = 0, qmax = 1;
2010 Double_t step[3]={0.01,0.002,0.02};
2011
2012 Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8];
2013 TObjArray *pix;
2014 Int_t npxclu;
2015
2016 // Number of pads to use
2017 Int_t npads = 0;
2018 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {if (fPadIJ[1][i] == 1) npads++;}
2019 for (Int_t i=0; i<nfit; i++) {cout << i+1 << " " << clustFit[i] << " ";}
2020 cout << nfit << endl;
2021 cout << " Number of pads to fit: " << npads << endl;
2022 fNpar = 0;
2023 fQtot = 0;
2024 if (npads < 2) return 0;
2025
2026 // Take cluster maxima as fitting seeds
2027 AliMUONPixel *pixPtr;
2028 Double_t xyseed[3][2], qseed[3];
2029 for (Int_t ifit=1; ifit<=nfit; ifit++) {
2030 cmax = 0;
2031 pix = clusters[clustFit[ifit-1]];
2032 npxclu = pix->GetEntriesFast();
2033 for (Int_t clu=0; clu<npxclu; clu++) {
2034 pixPtr = (AliMUONPixel*) pix->UncheckedAt(clu);
2035 cont = pixPtr->Charge();
2036 fQtot += cont;
2037 if (cont > cmax) {
2038 cmax = cont;
2039 xseed = pixPtr->Coord(0);
2040 yseed = pixPtr->Coord(1);
2041 }
2042 }
2043 xyseed[ifit-1][0] = xseed;
2044 xyseed[ifit-1][1] = yseed;
2045 qseed[ifit-1] = cmax;
2046 } // for (Int_t ifit=1;
2047
2048 Int_t nDof, maxSeed[3];
2049 Double_t fmin, chi2o = 9999, chi2n;
2050
2051 // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
2052 // lower, try 3-track (if number of pads is sufficient).
2053
2054 TMath::Sort(nfit, qseed, maxSeed, kTRUE); // in decreasing order
2055 nfit = TMath::Min (nfit, (npads + 1) / 3);
2056
2057 Double_t *gin = 0, func0, func1, param[8], param0[2][8], deriv[2][8], step0[8];
2058 Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0;
2059 Double_t delta[8], scMax, dder[8], estim, shiftSave = 0;
2060 Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail;
2061
2062 for (Int_t iseed=0; iseed<nfit; iseed++) {
2063
2064 for (Int_t j=0; j<3; j++) step0[fNpar+j] = shift[fNpar+j] = step[j];
2065 param[fNpar] = xyseed[maxSeed[iseed]][0];
2066 parmin[fNpar] = xmin;
2067 parmax[fNpar++] = xmax;
2068 param[fNpar] = xyseed[maxSeed[iseed]][1];
2069 parmin[fNpar] = ymin;
2070 parmax[fNpar++] = ymax;
2071 if (fNpar > 2) {
2072 param[fNpar] = fNpar == 4 ? 0.5 : 0.3;
2073 parmin[fNpar] = 0;
2074 parmax[fNpar++] = 1;
2075 }
2076
2077 // Try new algorithm
2078 min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
2079
2080 while (1) {
2081 max = !min;
30178c30 2082 Fcn1(fNpar, gin, func0, param, 1); nCall++;
0df3ca52 2083 //cout << " Func: " << func0 << endl;
2084
2085 func2[max] = func0;
2086 for (Int_t j=0; j<fNpar; j++) {
2087 param0[max][j] = param[j];
2088 delta[j] = step0[j];
2089 param[j] += delta[j] / 10;
2090 if (j > 0) param[j-1] -= delta[j-1] / 10;
30178c30 2091 Fcn1(fNpar, gin, func1, param, 1); nCall++;
0df3ca52 2092 deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
2093 //cout << j << " " << deriv[max][j] << endl;
2094 dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
2095 (param0[0][j] - param0[1][j]) : 0; // second derivative
2096 }
2097 param[fNpar-1] -= delta[fNpar-1] / 10;
2098 if (nCall > 2000) ::exit(0);
2099
2100 min = func2[0] < func2[1] ? 0 : 1;
2101 nFail = min == max ? 0 : nFail + 1;
2102
2103 stepMax = derMax = estim = 0;
2104 for (Int_t j=0; j<fNpar; j++) {
2105 // Estimated distance to minimum
2106 shift0 = shift[j];
2107 if (nLoop == 1) shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
2108 else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3) shift[j] = 0;
2109 else if (deriv[min][j]*deriv[!min][j] > 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])
2110 || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) {
2111 shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
2112 if (min == max) {
2113 if (memory[j] > 1) { shift[j] *= 2; } //cout << " Memory " << memory[j] << " " << shift[j] << endl; }
2114 memory[j]++;
2115 }
2116 } else {
2117 shift[j] = -deriv[min][j] / dder[j];
2118 memory[j] = 0;
2119 }
2120 if (TMath::Abs(shift[j])/step0[j] > estim) {
2121 estim = TMath::Abs(shift[j])/step0[j];
2122 iestMax = j;
2123 }
2124
2125 // Too big step
2126 if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
2127
2128 // Failed to improve minimum
2129 if (min != max) {
2130 memory[j] = 0;
2131 param[j] = param0[min][j];
2132 if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j]) shift[j] = (shift[j] + shift0) / 2;
2133 else shift[j] /= -2;
2134 }
2135
2136 // Too big step
2137 if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
2138 shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
2139
2140 // Introduce step relaxation factor
2141 if (memory[j] < 3) {
2142 scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
2143 if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
2144 shift[j] = TMath::Sign (shift0*scMax, shift[j]);
2145 }
2146 param[j] += shift[j];
2147
2148 //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
2149 stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
2150 if (TMath::Abs(deriv[min][j]) > derMax) {
2151 idMax = j;
2152 derMax = TMath::Abs (deriv[min][j]);
2153 }
2154 } // for (Int_t j=0; j<fNpar;
2155 //cout << max << " " << func2[min] << " " << derMax << " " << stepMax << " " << estim << " " << iestMax << " " << nCall << endl;
2156 if (estim < 1 && derMax < 2 || nLoop > 100) break; // minimum was found
2157
2158 nLoop++;
2159 // Check for small step
2160 if (shift[idMax] == 0) { shift[idMax] = step0[idMax]/10; param[idMax] += shift[idMax]; continue; }
2161 if (!memory[idMax] && derMax > 0.5 && nLoop > 10) {
2162 //cout << " ok " << deriv[min][idMax] << " " << deriv[!min][idMax] << " " << dder[idMax]*shift[idMax] << " " << shift[idMax] << endl;
2163 if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10) {
2164 if (min == max) dder[idMax] = -dder[idMax];
2165 shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
2166 param[idMax] += shift[idMax];
2167 stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
2168 //cout << shift[idMax] << " " << param[idMax] << endl;
2169 if (min == max) shiftSave = shift[idMax];
2170 }
2171 if (nFail > 10) {
2172 param[idMax] -= shift[idMax];
2173 shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
2174 param[idMax] += shift[idMax];
2175 //cout << shift[idMax] << endl;
2176 }
2177 }
2178 } // while (1)
2179 fmin = func2[min];
2180
2181 nDof = npads - fNpar;
2182 chi2n = nDof ? fmin/nDof : 0;
2183
2184 if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; }
2185 // Save parameters and errors
2186 for (Int_t i=0; i<fNpar; i++) {
2187 parOk[i] = param0[min][i];
2188 errOk[i] = fmin;
2189 }
2190
2191 cout << chi2o << " " << chi2n << endl;
2192 chi2o = chi2n;
2193 if (fmin < 0.1) break; // !!!???
2194 } // for (Int_t iseed=0;
2195
2196 for (Int_t i=0; i<fNpar; i++) {
2197 if (i == 4 || i == 7) continue;
2198 cout << parOk[i] << " " << errOk[i] << endl;
2199 }
2200 nfit = (fNpar + 1) / 3;
2201 Double_t rad;
2202 Int_t indx, imax;
2203 if (fReco) {
2204 for (Int_t j=0; j<nfit; j++) {
2205 indx = j<2 ? j*2 : j*2+1;
2206 AddRawCluster (parOk[indx], parOk[indx+1], errOk[indx]);
2207 }
2208 return nfit;
2209 }
2210 for (Int_t i=0; i<fnMu; i++) {
2211 cmax = fxyMu[i][6];
2212 for (Int_t j=0; j<nfit; j++) {
2213 indx = j<2 ? j*2 : j*2+1;
2214 rad = (fxyMu[i][0]-parOk[indx])*(fxyMu[i][0]-parOk[indx]) +
2215 (fxyMu[i][1]-parOk[indx+1])*(fxyMu[i][1]-parOk[indx+1]);
2216 if (rad < cmax) {
2217 cmax = rad;
2218 imax = indx;
2219 fxyMu[i][6] = cmax;
2220 fxyMu[i][2] = parOk[imax] - fxyMu[i][0];
2221 fxyMu[i][4] = parOk[imax+1] - fxyMu[i][1];
2222 fxyMu[i][3] = errOk[imax];
2223 fxyMu[i][5] = errOk[imax+1];
2224 }
2225 }
2226 }
2227 return nfit;
2228}
2229
2230//_____________________________________________________________________________
30178c30 2231void AliMUONClusterFinderAZ::Fcn1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
0df3ca52 2232{
2233 // Fit for one track
2234 AliMUONClusterFinderAZ& c = *(AliMUONClusterFinderAZ::fgClusterFinder);
2235
2236 Int_t cath, ix, iy, indx, npads=0;
2237 Double_t charge, delta, coef=0, chi2=0;
2238 for (Int_t j=0; j<c.fnPads[0]+c.fnPads[1]; j++) {
2239 if (c.fPadIJ[1][j] != 1) continue;
2240 cath = c.fPadIJ[0][j];
2241 npads++;
2242 c.fSegmentation[cath]->GetPadI(c.fXyq[0][j],c.fXyq[1][j],c.fZpad,ix,iy);
2243 c.fSegmentation[cath]->SetPad(ix,iy);
2244 charge = 0;
2245 for (Int_t i=c.fNpar/3; i>=0; i--) { // sum over tracks
2246 indx = i<2 ? 2*i : 2*i+1;
2247 c.fSegmentation[cath]->SetHit(par[indx],par[indx+1],c.fZpad);
2248 //charge += c.fResponse->IntXY(c.fSegmentation[cath])*par[icl*3+2];
2249 if (c.fNpar == 2) coef = 1;
2250 else coef = i==c.fNpar/3 ? par[indx+2] : 1-coef;
2251 //coef = TMath::Max (coef, 0.);
2252 if (c.fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2253 //coef = TMath::Max (coef, 0.);
2254 charge += c.fResponse->IntXY(c.fSegmentation[cath])*coef;
2255 }
2256 charge *= c.fQtot;
2257 //if (c.fXyq[2][j] > c.fResponse->MaxAdc()-1 && charge >
2258 // c.fResponse->MaxAdc()) charge = c.fResponse->MaxAdc();
2259 delta = charge - c.fXyq[2][j];
2260 delta /= TMath::Sqrt ((Double_t)c.fXyq[2][j]);
2261 //chi2 += TMath::Abs(delta);
2262 chi2 += delta*delta;
2263 } // for (Int_t j=0;
2264 f = chi2;
2265 Double_t qAver = c.fQtot/npads; //(c.fnPads[0]+c.fnPads[1]);
2266 f = chi2/qAver;
2267}
2268
2269//_____________________________________________________________________________
6aaf81e6 2270void AliMUONClusterFinderAZ::UpdatePads(Int_t /*nfit*/, Double_t *par)
0df3ca52 2271{
2272 // Subtract the fitted charges from pads with strong coupling
2273
2274 Int_t cath, ix, iy, indx;
2275 Double_t charge, coef=0;
2276 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2277 if (fPadIJ[1][j] != -1) continue;
2278 if (fNpar != 0) {
2279 cath = fPadIJ[0][j];
2280 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
2281 fSegmentation[cath]->SetPad(ix,iy);
2282 charge = 0;
2283 for (Int_t i=fNpar/3; i>=0; i--) { // sum over tracks
2284 indx = i<2 ? 2*i : 2*i+1;
2285 fSegmentation[cath]->SetHit(par[indx],par[indx+1],fZpad);
2286 if (fNpar == 2) coef = 1;
2287 else coef = i==fNpar/3 ? par[indx+2] : 1-coef;
2288 if (fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2289 charge += fResponse->IntXY(fSegmentation[cath])*coef;
2290 }
2291 charge *= fQtot;
2292 fXyq[2][j] -= charge;
2293 } // if (fNpar != 0)
2294 if (fXyq[2][j] > fResponse->ZeroSuppression()) fPadIJ[1][j] = 0; // return pad for further using
2295 } // for (Int_t j=0;
2296}
2297
2298//_____________________________________________________________________________
30178c30 2299Bool_t AliMUONClusterFinderAZ::TestTrack(Int_t /*t*/) const {
0df3ca52 2300// Test if track was user selected
2301 return kTRUE;
2302 /*
2303 if (fTrack[0]==-1 || fTrack[1]==-1) {
2304 return kTRUE;
2305 } else if (t==fTrack[0] || t==fTrack[1]) {
2306 return kTRUE;
2307 } else {
2308 return kFALSE;
2309 }
2310 */
2311}
2312
2313//_____________________________________________________________________________
2314void AliMUONClusterFinderAZ::AddRawCluster(Double_t x, Double_t y, Double_t fmin)
2315{
2316 //
2317 // Add a raw cluster copy to the list
2318 //
2319 AliMUONRawCluster cnew;
2320 AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON");
2321 //pMUON->AddRawCluster(fInput->Chamber(),c);
2322
2323 Int_t cath;
2324 for (cath=0; cath<2; cath++) {
ba12c242 2325 cnew.SetX(cath, x);
2326 cnew.SetY(cath, y);
2327 cnew.SetZ(cath, fZpad);
2328 cnew.SetCharge(cath, 100);
9e993f2a 2329 cnew.SetPeakSignal(cath,20);
2330 cnew.SetMultiplicity(cath, 5);
3b5272e3 2331 cnew.SetNcluster(cath, 1);
2332 cnew.SetChi2(cath, fmin); //0.1;
0df3ca52 2333 /*
2334 cnew.fMultiplicity[cath]=c->fMultiplicity[cath];
2335 for (i=0; i<fMul[cath]; i++) {
2336 cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath];
2337 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
2338 }
2339 fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath);
2340 fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]);
2341 FillCluster(&cnew,cath);
2342 */
2343 }
2344 //cnew.fClusterType=cnew.PhysicsContribution();
ce3f5e87 2345 pMUON->GetMUONData()->AddRawCluster(AliMUONClusterInput::Instance()->Chamber(),cnew);
0df3ca52 2346 //fNPeaks++;
2347}
2348
2349//_____________________________________________________________________________
2350Int_t AliMUONClusterFinderAZ::FindLocalMaxima(Int_t *localMax, Double_t *maxVal)
2351{
2352 // Find local maxima in pixel space for large preclusters in order to
2353 // try to split them into smaller pieces (to speed up the MLEM procedure)
2354
2355 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2356 if (hist) hist->Delete();
2357
cd747ddb 2358 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 2359 Int_t nPix = fPixArray->GetEntriesFast();
2360 AliMUONPixel *pixPtr = 0;
2361 for (Int_t ipix=0; ipix<nPix; ipix++) {
2362 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2363 for (Int_t i=0; i<4; i++)
2364 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
2365 }
2366 for (Int_t i=0; i<4; i++) xylim[i] -= pixPtr->Size(i/2);
2367
2368 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
2369 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
2370 hist = new TH2D("anode","anode",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
2371 for (Int_t ipix=0; ipix<nPix; ipix++) {
2372 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2373 hist->Fill(pixPtr->Coord(0), pixPtr->Coord(1), pixPtr->Charge());
2374 }
2375 if (fDraw) {
2376 ((TCanvas*)gROOT->FindObject("c2"))->cd();
2377 gPad->SetTheta(55);
2378 gPad->SetPhi(30);
2379 hist->Draw("lego1Fb");
2380 gPad->Update();
2381 int ia;
2382 cin >> ia;
2383 }
2384
2385 Int_t nMax = 0, indx;
2386 Int_t *isLocalMax = new Int_t[ny*nx];
2387 for (Int_t i=0; i<ny*nx; i++) isLocalMax[i] = 0;
2388
2389 for (Int_t i=1; i<=ny; i++) {
2390 indx = (i-1) * nx;
2391 for (Int_t j=1; j<=nx; j++) {
2392 if (hist->GetCellContent(j,i) < 0.5) continue;
2393 //if (isLocalMax[indx+j-1] < 0) continue;
2394 if (isLocalMax[indx+j-1] != 0) continue;
2395 FlagLocalMax(hist, i, j, isLocalMax);
2396 }
2397 }
2398
2399 for (Int_t i=1; i<=ny; i++) {
2400 indx = (i-1) * nx;
2401 for (Int_t j=1; j<=nx; j++) {
2402 if (isLocalMax[indx+j-1] > 0) {
2403 localMax[nMax] = indx + j - 1;
2404 maxVal[nMax++] = hist->GetCellContent(j,i);
2405 }
2406 if (nMax > 99) { cout << " Too many local maxima !!!" << endl; ::exit(0); }
2407 }
2408 }
2409 cout << " Local max: " << nMax << endl;
2410 delete [] isLocalMax; isLocalMax = 0;
2411 return nMax;
2412}
2413
2414//_____________________________________________________________________________
2415void AliMUONClusterFinderAZ::FlagLocalMax(TH2D *hist, Int_t i, Int_t j, Int_t *isLocalMax)
2416{
2417 // Flag pixels (whether or not local maxima)
2418
2419 Int_t nx = hist->GetNbinsX();
2420 Int_t ny = hist->GetNbinsY();
2421 Int_t cont = TMath::Nint (hist->GetCellContent(j,i));
2422 Int_t cont1 = 0;
2423
2424 for (Int_t i1=i-1; i1<i+2; i1++) {
2425 if (i1 < 1 || i1 > ny) continue;
2426 for (Int_t j1=j-1; j1<j+2; j1++) {
2427 if (j1 < 1 || j1 > nx) continue;
2428 if (i == i1 && j == j1) continue;
2429 cont1 = TMath::Nint (hist->GetCellContent(j1,i1));
2430 if (cont < cont1) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2431 else if (cont > cont1) isLocalMax[(i1-1)*nx+j1-1] = -1;
2432 else { // the same charge
2433 isLocalMax[(i-1)*nx+j-1] = 1;
2434 if (isLocalMax[(i1-1)*nx+j1-1] == 0) {
2435 FlagLocalMax(hist, i1, j1, isLocalMax);
2436 if (isLocalMax[(i1-1)*nx+j1-1] < 0) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2437 else isLocalMax[(i1-1)*nx+j1-1] = -1;
2438 }
2439 }
2440 }
2441 }
2442 isLocalMax[(i-1)*nx+j-1] = 1; // local maximum
2443}
2444
2445//_____________________________________________________________________________
2446void AliMUONClusterFinderAZ::FindCluster(Int_t *localMax, Int_t iMax)
2447{
2448 // Find pixel cluster around local maximum #iMax and pick up pads
2449 // overlapping with it
2450
2451 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2452 Int_t nx = hist->GetNbinsX();
2453 Int_t ny = hist->GetNbinsY();
2454 Int_t ic = localMax[iMax] / nx + 1;
2455 Int_t jc = localMax[iMax] % nx + 1;
2456 Bool_t *used = new Bool_t[ny*nx];
2457 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
2458
2459 // Drop all pixels from the array - pick up only the ones from the cluster
2460 fPixArray->Delete();
2461
2462 Double_t wx = hist->GetXaxis()->GetBinWidth(1)/2;
2463 Double_t wy = hist->GetYaxis()->GetBinWidth(1)/2;
2464 Double_t yc = hist->GetYaxis()->GetBinCenter(ic);
2465 Double_t xc = hist->GetXaxis()->GetBinCenter(jc);
2466 Double_t cont = hist->GetCellContent(jc,ic);
2467 AliMUONPixel *pixPtr = new AliMUONPixel (xc, yc, wx, wy, cont);
2468 fPixArray->Add((TObject*)pixPtr);
2469 used[(ic-1)*nx+jc-1] = kTRUE;
2470 AddBin(hist, ic, jc, 1, used, (TObjArray*)0); // recursive call
2471
2472 Int_t nPix = fPixArray->GetEntriesFast(), npad = fnPads[0] + fnPads[1];
2473 for (Int_t i=0; i<nPix; i++) {
2474 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(0,wx);
2475 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(1,wy);
2476 }
2477 cout << iMax << " " << nPix << endl;
2478
2479 Float_t xy[4], xy12[4];
2480 // Pick up pads which overlap with found pixels
2481 for (Int_t i=0; i<npad; i++) fPadIJ[1][i] = -1;
2482 for (Int_t i=0; i<nPix; i++) {
2483 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
2484 for (Int_t j=0; j<4; j++)
2485 xy[j] = pixPtr->Coord(j/2) + (j%2 ? 1 : -1)*pixPtr->Size(j/2);
2486 for (Int_t j=0; j<npad; j++)
2487 if (Overlap(xy, j, xy12, 0)) fPadIJ[1][j] = 0; // flag for use
2488 }
2489
2490 delete [] used; used = 0;
2491}
30178c30 2492
2493//_____________________________________________________________________________
2494AliMUONClusterFinderAZ&
2495AliMUONClusterFinderAZ::operator=(const AliMUONClusterFinderAZ& rhs)
2496{
2497// Protected assignement operator
2498
2499 if (this == &rhs) return *this;
2500
2501 Fatal("operator=", "Not implemented.");
2502
2503 return *this;
2504}
2505