New cluster finding using MLEM algorithm. New macro MUONraw.C (analog to MUONrawclust...
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterFinderAZ.cxx
CommitLineData
0df3ca52 1#include "AliMUONClusterFinderAZ.h"
2
3#include <fcntl.h>
4#include <Riostream.h>
5#include <TROOT.h>
6#include <TCanvas.h>
7#include <TLine.h>
8#include <TTree.h>
9#include <TH2.h>
10#include <TView.h>
11#include <TStyle.h>
12#include <TMinuit.h>
13#include <TMatrixD.h>
14
15#include "AliHeader.h"
16#include "AliRun.h"
17#include "AliMUON.h"
18#include "AliMUONChamber.h"
19#include "AliMUONDigit.h"
20#include "AliMUONHit.h"
21#include "AliMUONChamber.h"
22#include "AliMUONRawCluster.h"
23#include "AliMUONClusterInput.h"
24#include "AliMUONPixel.h"
25
26// This function is used for fitting
27void fcn1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag);
28
29ClassImp(AliMUONClusterFinderAZ)
30
31AliMUONClusterFinderAZ* AliMUONClusterFinderAZ::fgClusterFinder = NULL;
32TMinuit* AliMUONClusterFinderAZ::fgMinuit = NULL;
33
34//_____________________________________________________________________________
35AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(Bool_t draw=0, Int_t iReco=0)
36{
37// Constructor
38 for (Int_t i=0; i<4; i++) {fHist[i] = 0;}
39 fMuonDigits = 0;
40 fSegmentation[1] = fSegmentation[0] = 0;
41 if (!fgClusterFinder) fgClusterFinder = this;
42 if (!fgMinuit) fgMinuit = new TMinuit(8);
43 fDraw = draw;
44 fReco = iReco;
45 fPixArray = new TObjArray(20);
46 /*
47 fPoints = 0;
48 fPhits = 0;
49 fRpoints = 0;
50 fCanvas = 0;
51 fNextCathode = kFALSE;
52 fColPad = 0;
53 */
54}
55
56//_____________________________________________________________________________
57AliMUONClusterFinderAZ::~AliMUONClusterFinderAZ()
58{
59 // Destructor
60 delete fgMinuit; fgMinuit = 0; delete fPixArray; fPixArray = 0;
61 /*
62 // Delete space point structure
63 if (fPoints) fPoints->Delete();
64 delete fPoints;
65 fPoints = 0;
66 //
67 if (fPhits) fPhits->Delete();
68 delete fPhits;
69 fPhits = 0;
70 //
71 if (fRpoints) fRpoints->Delete();
72 delete fRpoints;
73 fRpoints = 0;
74 */
75}
76
77//_____________________________________________________________________________
78void AliMUONClusterFinderAZ::FindRawClusters()
79{
80// To provide the same interface as in AliMUONClusterFinderVS
81
82 EventLoop (gAlice->GetHeader()->GetEvent(), AliMUONClusterInput::Instance()->Chamber());
83}
84
85//_____________________________________________________________________________
86void AliMUONClusterFinderAZ::EventLoop(Int_t nev=0, Int_t ch=0)
87{
88// Loop over events
89
90 FILE *lun = 0;
91 TCanvas *c1 = 0;
92 TView *view = 0;
93 TH2F *hist = 0;
94 Double_t p1[3]={0}, p2[3];
95 TTree *TR = 0;
96 if (fDraw) {
97 // File
98 lun = fopen("pool.dat","w");
99 c1 = new TCanvas("c1","Clusters",0,0,600,700);
100 c1->Divide(1,2);
101 new TCanvas("c2","Mlem",700,0,600,350);
102 }
103
104newev:
105 Int_t nparticles = 0, nent;
106 if (!fReco) nparticles = gAlice->GetEvent(nev);
107 else nparticles = gAlice->GetNtrack();
108 cout << "nev " << nev <<endl;
109 cout << "nparticles " << nparticles <<endl;
110 if (nparticles <= 0) return;
111
112 TTree *TH = gAlice->TreeH();
113 Int_t ntracks = (Int_t) TH->GetEntries();
114 cout<<"ntracks "<<ntracks<<endl;
115
116 // Get pointers to Alice detectors and Digits containers
117 AliMUON *MUON = (AliMUON*) gAlice->GetModule("MUON");
118 if (!MUON) return;
119 // TClonesArray *Particles = gAlice->Particles();
120 if (!fReco) {
121 TR = gAlice->TreeR();
122 if (TR) {
123 MUON->ResetRawClusters();
124 nent = (Int_t) TR->GetEntries();
125 if (nent != 1) {
126 cout << "Error in MUONdrawClust" << endl;
127 cout << " nent = " << nent << " not equal to 1" << endl;
128 //exit(0);
129 }
130 } // if (TR)
131 } // if (!fReco)
132
133 TTree *TD = gAlice->TreeD();
134 //MUON->ResetDigits();
135
136 TClonesArray *MUONrawclust;
137 AliMUONChamber* iChamber = 0;
138
139 // As default draw the first cluster of the chamber #0
140
141newchamber:
142 if (ch > 9) {if (fReco) return; nev++; ch = 0; goto newev;}
143 //gAlice->ResetDigits();
144 fMuonDigits = MUON->DigitsAddress(ch);
145 if (fMuonDigits == 0) return;
146 iChamber = &(MUON->Chamber(ch));
147 fSegmentation[0] = iChamber->SegmentationModel(1);
148 fSegmentation[1] = iChamber->SegmentationModel(2);
149 fResponse = iChamber->ResponseModel();
150
151 nent = 0;
152
153 if (TD) {
154 nent = (Int_t) TD->GetEntries();
155 //printf(" entries %d \n", nent);
156 }
157
158 Int_t ndigits[2]={9,9}, nShown[2]={0};
159 for (Int_t i=0; i<2; i++) {
160 for (Int_t j=0; j<kDim; j++) {fUsed[i][j]=kFALSE;}
161 }
162
163next:
164 if (ndigits[0] == nShown[0] && ndigits[1] == nShown[1]) {
165 // No more clusters
166 if (fReco) return;
167 ch++;
168 goto newchamber; // next chamber
169 }
170 Float_t xpad, ypad, zpad, zpad0;
171 TLine *line[99]={0};
172 Int_t nLine = 0;
173 Bool_t first = kTRUE;
174 cout << " *** Event # " << nev << " chamber: " << ch << endl;
175 fnPads[0] = fnPads[1] = 0;
176 for (Int_t i=0; i<kDim; i++) {fPadIJ[1][i] = 0;}
177 //for (Int_t iii = 0; iii<999; iii++) {
178 for (Int_t iii = 0; iii<2; iii++) {
179 Int_t cath = TMath::Odd(iii);
180 gAlice->ResetDigits();
181 TD->GetEvent(cath);
182 fMuonDigits = MUON->DigitsAddress(ch);
183
184 ndigits[cath] = fMuonDigits->GetEntriesFast();
185 if (!ndigits[0] && !ndigits[1]) {if (fReco) return; ch++; goto newchamber;}
186 if (ndigits[cath] == 0) continue;
187 cout << " ndigits: " << ndigits[cath] << " " << cath << endl;
188
189 AliMUONDigit *mdig;
190 Int_t digit;
191
192 Bool_t EOC = kTRUE; // end-of-cluster
193 for (digit = 0; digit < ndigits[cath]; digit++) {
194 mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
195 if (mdig->Cathode() != cath) continue;
196 if (first) {
197 // Find first unused pad
198 if (fUsed[cath][digit]) continue;
199 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0);
200 } else {
201 if (fUsed[cath][digit]) continue;
202 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad);
203 if (TMath::Abs(zpad-zpad0)>0.1) continue; // different slats
204 // Find a pad overlapping with the cluster
205 if (!Overlap(cath,mdig)) continue;
206 }
207 // Add pad - recursive call
208 AddPad(cath,digit);
209 EOC = kFALSE;
210 if (digit >= 0) break;
211 }
212 if (first && EOC) {
213 // No more unused pads
214 if (cath == 0) continue; // on cathode #0 - check #1
215 else {
216 // No more clusters
217 if (fReco) return;
218 ch++;
219 goto newchamber; // next chamber
220 }
221 }
222 if (EOC) break; // cluster found
223 first = kFALSE;
224 cout << " nPads: " << fnPads[cath] << " " << nShown[cath]+fnPads[cath] << " " << cath << endl;
225 } // for (Int_t iii = 0;
226
227
228 if (fReco) goto skip;
229 char hName[4];
230 for (Int_t cath = 0; cath<2; cath++) {
231 // Build histograms
232 if (fHist[cath*2]) {fHist[cath*2]->Delete(); fHist[cath*2] = 0;}
233 if (fHist[cath*2+1]) {fHist[cath*2+1]->Delete(); fHist[cath*2+1] = 0;}
234 if (fnPads[cath] == 0) continue; // cluster on one cathode only
235 Float_t wxMin=999, wxMax=0, wyMin=999, wyMax=0;
236 Int_t minDx=0, maxDx=0, minDy=0, maxDy=0;
237 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
238 if (fPadIJ[0][i] != cath) continue;
239 if (fXyq[3][i] < wxMin) {wxMin = fXyq[3][i]; minDx = i;}
240 if (fXyq[3][i] > wxMax) {wxMax = fXyq[3][i]; maxDx = i;}
241 if (fXyq[4][i] < wyMin) {wyMin = fXyq[4][i]; minDy = i;}
242 if (fXyq[4][i] > wyMax) {wyMax = fXyq[4][i]; maxDy = i;}
243 }
244 cout << minDx << maxDx << minDy << maxDy << endl;
245 Int_t nx, ny, padSize;
246 Float_t xmin=9999, xmax=-9999, ymin=9999, ymax=-9999;
247 if (TMath::Nint(fXyq[3][minDx]*1000) == TMath::Nint(fXyq[3][maxDx]*1000) &&
248 TMath::Nint(fXyq[4][minDy]*1000) == TMath::Nint(fXyq[4][maxDy]*1000)) {
249 // the same segmentation
250 cout << " Same" << endl;
251 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
252 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
253 if (fPadIJ[0][i] != cath) continue;
254 if (fXyq[0][i] < xmin) xmin = fXyq[0][i];
255 if (fXyq[0][i] > xmax) xmax = fXyq[0][i];
256 if (fXyq[1][i] < ymin) ymin = fXyq[1][i];
257 if (fXyq[1][i] > ymax) ymax = fXyq[1][i];
258 }
259 xmin -= fXyq[3][minDx]; xmax += fXyq[3][minDx];
260 ymin -= fXyq[4][minDy]; ymax += fXyq[4][minDy];
261 nx = TMath::Nint ((xmax-xmin)/wxMin/2);
262 ny = TMath::Nint ((ymax-ymin)/wyMin/2);
263 sprintf(hName,"h%d",cath*2);
264 fHist[cath*2] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
265 cout << fHist[cath*2] << " " << fnPads[cath] << endl;
266 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
267 if (fPadIJ[0][i] != cath) continue;
268 fHist[cath*2]->Fill(fXyq[0][i],fXyq[1][i],fXyq[2][i]);
269 //cout << fXyq[0][i] << fXyq[1][i] << fXyq[2][i] << endl;
270 }
271 } else {
272 // different segmentation in the cluster
273 cout << " Different" << endl;
274 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
275 Int_t nOK = 0;
276 Int_t indx, locMin, locMax;
277 if (TMath::Nint(fXyq[3][minDx]*1000) != TMath::Nint(fXyq[3][maxDx]*1000)) {
278 // different segmentation along x
279 indx = 0;
280 locMin = minDx;
281 locMax = maxDx;
282 } else {
283 // different segmentation along y
284 indx = 1;
285 locMin = minDy;
286 locMax = maxDy;
287 }
288 Int_t loc = locMin;
289 for (Int_t i=0; i<2; i++) {
290 // loop over different pad sizes
291 if (i>0) loc = locMax;
292 padSize = TMath::Nint(fXyq[indx+3][loc]*1000);
293 xmin = 9999; xmax = -9999; ymin = 9999; ymax = -9999;
294 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
295 if (fPadIJ[0][j] != cath) continue;
296 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
297 nOK++;
298 xmin = TMath::Min (xmin,fXyq[0][j]);
299 xmax = TMath::Max (xmax,fXyq[0][j]);
300 ymin = TMath::Min (ymin,fXyq[1][j]);
301 ymax = TMath::Max (ymax,fXyq[1][j]);
302 }
303 xmin -= fXyq[3][loc]; xmax += fXyq[3][loc];
304 ymin -= fXyq[4][loc]; ymax += fXyq[4][loc];
305 nx = TMath::Nint ((xmax-xmin)/fXyq[3][loc]/2);
306 ny = TMath::Nint ((ymax-ymin)/fXyq[4][loc]/2);
307 sprintf(hName,"h%d",cath*2+i);
308 fHist[cath*2+i] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
309 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
310 if (fPadIJ[0][j] != cath) continue;
311 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
312 fHist[cath*2+i]->Fill(fXyq[0][j],fXyq[1][j],fXyq[2][j]);
313 }
314 } // for (Int_t i=0;
315 if (nOK != fnPads[cath]) cout << " *** Too many segmentations: nPads, nOK " << fnPads[cath] << " " << nOK << endl;
316 } // if (TMath::Nint(fXyq[3][minDx]*1000)
317 } // for (Int_t cath = 0;
318
319 // Draw histograms and coordinates
320 for (Int_t cath=0; cath<2; cath++) {
321 if (cath == 0) ModifyHistos();
322 if (fnPads[cath] == 0) continue; // cluster on one cathode only
323 if (fDraw) {
324 c1->cd(cath+1);
325 gPad->SetTheta(55);
326 gPad->SetPhi(30);
327 Float_t x, y, x0, y0, r1=999, r2=0;
328 if (fHist[cath*2+1]) {
329 //
330 x0 = fHist[cath*2]->GetXaxis()->GetXmin() - 1000*TMath::Cos(30*TMath::Pi()/180);
331 y0 = fHist[cath*2]->GetYaxis()->GetXmin() - 1000*TMath::Sin(30*TMath::Pi()/180);
332 r1 = 0;
333 Int_t ihist=cath*2;
334 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
335 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
336 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
337 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
338 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
339 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
340 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
341 r1 = TMath::Max (r1,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
342 }
343 }
344 }
345 ihist = cath*2 + 1 ;
346 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
347 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
348 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
349 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
350 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
351 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
352 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
353 r2 = TMath::Max (r2,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
354 }
355 }
356 }
357 cout << r1 << " " << r2 << endl;
358 } // if (fHist[cath*2+1])
359 if (r1 > r2) {
360 //fHist[cath*2]->Draw("lego1");
361 fHist[cath*2]->Draw("lego1Fb");
362 //if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBb");
363 if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBbFb");
364 } else {
365 //fHist[cath*2+1]->Draw("lego1");
366 fHist[cath*2+1]->Draw("lego1Fb");
367 //fHist[cath*2]->Draw("lego1SameAxisBb");
368 fHist[cath*2]->Draw("lego1SameAxisFbBb");
369 }
370 c1->Update();
371 } // if (fDraw)
372 } // for (Int_t cath = 0;
373
374 // Draw generated hits
375 Double_t xNDC[6];
376 hist = fHist[0] ? fHist[0] : fHist[2];
377 p2[2] = hist->GetMaximum();
378 view = 0;
379 if (c1) view = c1->Pad()->GetView();
380 cout << " *** GEANT hits *** " << endl;
381 fnMu = 0;
382 Int_t ix, iy, iok;
383 for (Int_t i=0; i<ntracks; i++) {
384 TH->GetEvent(i);
385 for (AliMUONHit* mHit=(AliMUONHit*)MUON->FirstHit(-1);
386 mHit;
387 mHit=(AliMUONHit*)MUON->NextHit()) {
388 if (mHit->Chamber() != ch+1) continue; // chamber number
389 if (TMath::Abs(mHit->Z()-zpad0) > 1) continue; // different slat
390 p2[0] = p1[0] = mHit->X(); // x-pos of hit
391 p2[1] = p1[1] = mHit->Y(); // y-pos
392 if (p1[0] < hist->GetXaxis()->GetXmin() ||
393 p1[0] > hist->GetXaxis()->GetXmax()) continue;
394 if (p1[1] < hist->GetYaxis()->GetXmin() ||
395 p1[1] > hist->GetYaxis()->GetXmax()) continue;
396 // Check if track comes thru pads with signal
397 iok = 0;
398 for (Int_t ihist=0; ihist<4; ihist++) {
399 if (!fHist[ihist]) continue;
400 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
401 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
402 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
403 }
404 if (!iok) continue;
405 gStyle->SetLineColor(1);
406 if (TMath::Abs((Int_t)mHit->Particle()) == 13) {
407 gStyle->SetLineColor(4);
408 fnMu++;
409 if (fnMu <= 2) {
410 fxyMu[fnMu-1][0] = p1[0];
411 fxyMu[fnMu-1][1] = p1[1];
412 }
413 }
414 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mHit->Z());
415 if (view) {
416 view->WCtoNDC(p1, &xNDC[0]);
417 view->WCtoNDC(p2, &xNDC[3]);
418 for (Int_t ipad=1; ipad<3; ipad++) {
419 c1->cd(ipad);
420 //c1->DrawLine(xpad[0],xpad[1],xpad[3],xpad[4]);
421 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
422 line[nLine++]->Draw();
423 }
424 }
425 } // for (AliMUONHit* mHit=
426 } // for (Int_t i=0; i<ntracks;
427
428 // Draw reconstructed coordinates
429 MUONrawclust = MUON->RawClustAddress(ch);
430 TR->GetEvent(ch);
431 //cout << MUONrawclust << " " << MUONrawclust->GetEntries() << endl;
432 AliMUONRawCluster *mRaw;
433 gStyle->SetLineColor(3);
434 cout << " *** Reconstructed hits *** " << endl;
435 for (Int_t i=0; i<MUONrawclust->GetEntries(); i++) {
436 mRaw = (AliMUONRawCluster*)MUONrawclust->UncheckedAt(i);
437 if (TMath::Abs(mRaw->fZ[0]-zpad0) > 1) continue; // different slat
438 p2[0] = p1[0] = mRaw->fX[0]; // x-pos of hit
439 p2[1] = p1[1] = mRaw->fY[0]; // y-pos
440 if (p1[0] < hist->GetXaxis()->GetXmin() ||
441 p1[0] > hist->GetXaxis()->GetXmax()) continue;
442 if (p1[1] < hist->GetYaxis()->GetXmin() ||
443 p1[1] > hist->GetYaxis()->GetXmax()) continue;
444 /*
445 TD->GetEvent(cath);
446 cout << mRaw->fMultiplicity[0] << mRaw->fMultiplicity[1] << endl;
447 for (Int_t j=0; j<mRaw->fMultiplicity[cath]; j++) {
448 Int_t digit = mRaw->fIndexMap[j][cath];
449 cout << ((AliMUONDigit*)fMuonDigits->UncheckedAt(digit))->Signal() << endl;
450 }
451 */
452 // Check if track comes thru pads with signal
453 iok = 0;
454 for (Int_t ihist=0; ihist<4; ihist++) {
455 if (!fHist[ihist]) continue;
456 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
457 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
458 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
459 }
460 if (!iok) continue;
461 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mRaw->fZ[0]);
462 if (view) {
463 view->WCtoNDC(p1, &xNDC[0]);
464 view->WCtoNDC(p2, &xNDC[3]);
465 for (Int_t ipad=1; ipad<3; ipad++) {
466 c1->cd(ipad);
467 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
468 line[nLine++]->Draw();
469 }
470 }
471 } // for (Int_t i=0; i<MUONrawclust->GetEntries();
472 if (fDraw) c1->Update();
473
474skip:
475 // Use MLEM for cluster finder
476 fZpad = zpad0;
477 Int_t nMax = 1, localMax[100], maxPos[100];
478 Double_t maxVal[100];
479
480 if (CheckPrecluster(nShown)) {
481 BuildPixArray();
482 if (fnPads[0]+fnPads[1] > 50) nMax = FindLocalMaxima(localMax, maxVal);
483 if (nMax > 1) TMath::Sort(nMax, maxVal, maxPos, kTRUE); // in decreasing order
484 for (Int_t i=0; i<nMax; i++) {
485 if (nMax > 1) FindCluster(localMax, maxPos[i]);
486 if (!MainLoop()) cout << " MainLoop failed " << endl;
487 if (i < nMax-1) {
488 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
489 if (fPadIJ[1][j] == 0) continue; // pad charge was not modified
490 fPadIJ[1][j] = 0;
491 fXyq[2][j] = fXyq[5][j]; // use backup charge value
492 }
493 }
494 }
495 }
496 if (fReco) goto next;
497
498 for (Int_t i=0; i<fnMu; i++) {
499 // Check again if muon come thru the used pads (due to extra splitting)
500 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
501 if (TMath::Abs(fxyMu[i][0]-fXyq[0][j])<fXyq[3][j] &&
502 TMath::Abs(fxyMu[i][1]-fXyq[1][j])<fXyq[4][j]) {
503 printf("%12.3e %12.3e %12.3e %12.3e\n",fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
504 if (lun) fprintf(lun,"%4d %2d %12.3e %12.3e %12.3e %12.3e\n",nev,ch,fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
505 break;
506 }
507 }
508 } // for (Int_t i=0; i<fnMu;
509
510 // What's next?
511 char command[8];
512 cout << " What is next? " << endl;
513 command[0] = ' ';
514 if (fDraw) gets(command);
515 if (command[0] == 'n' || command[0] == 'N') {nev++; goto newev;} // next event
516 else if (command[0] == 'q' || command[0] == 'Q') {fclose(lun); return;} // exit display
517 //else if (command[0] == 'r' || command[0] == 'R') goto redraw; // redraw points
518 else if (command[0] == 'c' || command[0] == 'C') {
519 // new chamber
520 sscanf(command+1,"%d",&ch);
521 goto newchamber;
522 }
523 else if (command[0] == 'e' || command[0] == 'E') {
524 // new event
525 sscanf(command+1,"%d",&nev);
526 goto newev;
527 }
528 else goto next; // Next cluster
529}
530
531//_____________________________________________________________________________
532void AliMUONClusterFinderAZ::ModifyHistos(void)
533{
534 // Modify histograms to bring them to the same size
535 Int_t nhist = 0;
536 Float_t hlim[4][4], hbin[4][4]; // first index - xmin, xmax, ymin, ymax
537 Float_t binMin[4] = {999,999,999,999};
538
539 for (Int_t i=0; i<4; i++) {
540 if (!fHist[i]) continue;
541 hlim[0][nhist] = fHist[i]->GetXaxis()->GetXmin(); // xmin
542 hlim[1][nhist] = fHist[i]->GetXaxis()->GetXmax(); // xmax
543 hlim[2][nhist] = fHist[i]->GetYaxis()->GetXmin(); // ymin
544 hlim[3][nhist] = fHist[i]->GetYaxis()->GetXmax(); // ymax
545 hbin[0][nhist] = hbin[1][nhist] = fHist[i]->GetXaxis()->GetBinWidth(1);
546 hbin[2][nhist] = hbin[3][nhist] = fHist[i]->GetYaxis()->GetBinWidth(1);
547 binMin[0] = TMath::Min(binMin[0],hbin[0][nhist]);
548 binMin[2] = TMath::Min(binMin[2],hbin[2][nhist]);
549 nhist++;
550 }
551 binMin[1] = binMin[0];
552 binMin[3] = binMin[2];
553 cout << " Nhist: " << nhist << endl;
554
555 Int_t imin, imax;
556 for (Int_t lim=0; lim<4; lim++) {
557 while (1) {
558 imin = TMath::LocMin(nhist,hlim[lim]);
559 imax = TMath::LocMax(nhist,hlim[lim]);
560 if (TMath::Abs(hlim[lim][imin]-hlim[lim][imax])<0.01*binMin[lim]) break;
561 if (lim == 0 || lim == 2) {
562 // find lower limit
563 hlim[lim][imax] -= hbin[lim][imax];
564 } else {
565 // find upper limit
566 hlim[lim][imin] += hbin[lim][imin];
567 }
568 } // while (1)
569 }
570
571 // Rebuild histograms
572 nhist = 0;
573 TH2F *hist = 0;
574 Int_t nx, ny;
575 Float_t x, y, cont, cmax=0;
576 char hName[4];
577 for (Int_t ihist=0; ihist<4; ihist++) {
578 if (!fHist[ihist]) continue;
579 nx = TMath::Nint((hlim[1][nhist]-hlim[0][nhist])/hbin[0][nhist]);
580 ny = TMath::Nint((hlim[3][nhist]-hlim[2][nhist])/hbin[2][nhist]);
581 //hist = new TH2F("h","hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
582 sprintf(hName,"hh%d",ihist);
583 hist = new TH2F(hName,"hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
584 for (Int_t i=1; i<=fHist[ihist]->GetNbinsX(); i++) {
585 x = fHist[ihist]->GetXaxis()->GetBinCenter(i);
586 for (Int_t j=1; j<=fHist[ihist]->GetNbinsY(); j++) {
587 y = fHist[ihist]->GetYaxis()->GetBinCenter(j);
588 cont = fHist[ihist]->GetCellContent(i,j);
589 hist->Fill(x,y,cont);
590 }
591 }
592 cmax = TMath::Max (cmax,hist->GetMaximum());
593 fHist[ihist]->Delete();
594 fHist[ihist] = new TH2F(*hist);
595 hist->Delete();
596 nhist++;
597 }
598 printf("%f \n",cmax);
599
600 for (Int_t ihist=0; ihist<4; ihist++) {
601 if (!fHist[ihist]) continue;
602 fHist[ihist]->SetMaximum(cmax);
603 }
604}
605
606//_____________________________________________________________________________
607void AliMUONClusterFinderAZ::AddPad(Int_t cath, Int_t digit)
608{
609 // Add pad to the cluster
610 AliMUONDigit *mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
611
612 Int_t charge = mdig->Signal();
613 // get the center of the pad
614 Float_t xpad, ypad, zpad;
615 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
616
617 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
618 Int_t nPads = fnPads[0] + fnPads[1];
619 fXyq[0][nPads] = xpad;
620 fXyq[1][nPads] = ypad;
621 fXyq[2][nPads] = charge;
622 fXyq[3][nPads] = fSegmentation[cath]->Dpx(isec)/2;
623 fXyq[4][nPads] = fSegmentation[cath]->Dpy(isec)/2;
624 fXyq[5][nPads] = digit;
625 fPadIJ[0][nPads] = cath;
626 fPadIJ[1][nPads] = 0;
627 fUsed[cath][digit] = kTRUE;
628 //cout << " bbb " << fXyq[cath][2][nPads] << " " << fXyq[cath][0][nPads] << " " << fXyq[cath][1][nPads] << " " << fXyq[cath][3][nPads] << " " << fXyq[cath][4][nPads] << " " << zpad << " " << nPads << endl;
629 fnPads[cath]++;
630
631 // Check neighbours
632 Int_t nn, ix, iy, xList[10], yList[10];
633 AliMUONDigit *mdig1;
634
635 Int_t ndigits = fMuonDigits->GetEntriesFast();
636 fSegmentation[cath]->Neighbours(mdig->PadX(),mdig->PadY(),&nn,xList,yList);
637 for (Int_t in=0; in<nn; in++) {
638 ix=xList[in];
639 iy=yList[in];
640 for (Int_t digit1 = 0; digit1 < ndigits; digit1++) {
641 if (digit1 == digit) continue;
642 mdig1 = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit1);
643 if (mdig1->Cathode() != cath) continue;
644 if (!fUsed[cath][digit1] && mdig1->PadX() == ix && mdig1->PadY() == iy) {
645 fUsed[cath][digit1] = kTRUE;
646 // Add pad - recursive call
647 AddPad(cath,digit1);
648 }
649 } //for (Int_t digit1 = 0;
650 } // for (Int_t in=0;
651}
652
653//_____________________________________________________________________________
654Bool_t AliMUONClusterFinderAZ::Overlap(Int_t cath, TObject *dig)
655{
656 // Check if the pad from one cathode overlaps with a pad
657 // in the precluster on the other cathode
658
659 AliMUONDigit *mdig = (AliMUONDigit*) dig;
660
661 Float_t xpad, ypad, zpad;
662 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
663 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
664
665 Float_t xy1[4], xy12[4];
666 xy1[0] = xpad - fSegmentation[cath]->Dpx(isec)/2;
667 xy1[1] = xy1[0] + fSegmentation[cath]->Dpx(isec);
668 xy1[2] = ypad - fSegmentation[cath]->Dpy(isec)/2;
669 xy1[3] = xy1[2] + fSegmentation[cath]->Dpy(isec);
670 //cout << " ok " << fnPads[0]+fnPads[1] << xy1[0] << xy1[1] << xy1[2] << xy1[3] << endl;
671
672 Int_t cath1 = TMath::Even(cath);
673 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
674 if (fPadIJ[0][i] != cath1) continue;
675 if (Overlap(xy1, i, xy12, 0)) return kTRUE;
676 }
677 return kFALSE;
678}
679
680//_____________________________________________________________________________
681Bool_t AliMUONClusterFinderAZ::Overlap(Float_t *xy1, Int_t iPad, Float_t *xy12, Int_t iSkip)
682{
683 // Check if the pads xy1 and iPad overlap and return overlap area
684
685 Float_t xy2[4];
686 xy2[0] = fXyq[0][iPad] - fXyq[3][iPad];
687 xy2[1] = fXyq[0][iPad] + fXyq[3][iPad];
688 if (xy1[0] > xy2[1]-1.e-4 || xy1[1] < xy2[0]+1.e-4) return kFALSE;
689 xy2[2] = fXyq[1][iPad] - fXyq[4][iPad];
690 xy2[3] = fXyq[1][iPad] + fXyq[4][iPad];
691 if (xy1[2] > xy2[3]-1.e-4 || xy1[3] < xy2[2]+1.e-4) return kFALSE;
692 if (!iSkip) return kTRUE; // just check overlap (w/out computing the area)
693 xy12[0] = TMath::Max (xy1[0],xy2[0]);
694 xy12[1] = TMath::Min (xy1[1],xy2[1]);
695 xy12[2] = TMath::Max (xy1[2],xy2[2]);
696 xy12[3] = TMath::Min (xy1[3],xy2[3]);
697 return kTRUE;
698}
699
700//_____________________________________________________________________________
701/*
702Bool_t AliMUONClusterFinderAZ::Overlap(Int_t i, Int_t j, Float_t *xy12, Int_t iSkip)
703{
704 // Check if the pads i and j overlap and return overlap area
705
706 Float_t xy1[4], xy2[4];
707 return Overlap(xy1, xy2, xy12, iSkip);
708}
709*/
710//_____________________________________________________________________________
711Bool_t AliMUONClusterFinderAZ::CheckPrecluster(Int_t *nShown)
712{
713 // Check precluster in order to attempt to simplify it (mostly for
714 // two-cathode preclusters)
715
716 Int_t i1, i2;
717 Float_t xy1[4], xy12[4];
718
719 Int_t npad = fnPads[0] + fnPads[1];
720
721 // If pads have the same size take average of pads on both cathodes
722 Int_t sameSize = (fnPads[0] && fnPads[1]) ? 1 : 0;
723 if (sameSize) {
724 Double_t xSize = -1, ySize = 0;
725 for (Int_t i=0; i<npad; i++) {
726 if (fXyq[2][i] < 0) continue;
727 if (xSize < 0) { xSize = fXyq[3][i]; ySize = fXyq[4][i]; }
728 if (TMath::Abs(xSize-fXyq[3][i]) > 1.e-4 || TMath::Abs(ySize-fXyq[4][i]) > 1.e-4) { sameSize = 0; break; }
729 }
730 } // if (sameSize)
731 if (sameSize && (fnPads[0] > 2 || fnPads[1] > 2)) {
732 nShown[0] += fnPads[0];
733 nShown[1] += fnPads[1];
734 fnPads[0] = fnPads[1] = 0;
735 Int_t div;
736 for (Int_t i=0; i<npad; i++) {
737 if (fXyq[2][i] < 0) continue; // used pad
738 fXyq[2][fnPads[0]] = fXyq[2][i];
739 div = 1;
740 for (Int_t j=i+1; j<npad; j++) {
741 if (fPadIJ[0][j] == fPadIJ[0][i]) continue; // same cathode
742 if (TMath::Abs(fXyq[0][j]-fXyq[0][i]) > 1.e-4) continue;
743 if (TMath::Abs(fXyq[1][j]-fXyq[1][i]) > 1.e-4) continue;
744 fXyq[2][fnPads[0]] += fXyq[2][j];
745 div = 2;
746 fXyq[2][j] = -2;
747 break;
748 }
749 fXyq[2][fnPads[0]] /= div;
750 fXyq[0][fnPads[0]] = fXyq[0][i];
751 fXyq[1][fnPads[0]] = fXyq[1][i];
752 fPadIJ[0][fnPads[0]++] = 0;
753 }
754 } // if (sameSize)
755
756 // Check if one-cathode precluster
757 i1 = fnPads[0]!=0 ? 0 : 1;
758 i2 = fnPads[1]!=0 ? 1 : 0;
759
760 if (i1 != i2) { // two-cathode
761
762 Int_t *flags = new Int_t[npad];
763 for (Int_t i=0; i<npad; i++) { flags[i] = 0; }
764
765 // Check pad overlaps
766 for (Int_t i=0; i<npad; i++) {
767 if (fPadIJ[0][i] != i1) continue;
768 xy1[0] = fXyq[0][i] - fXyq[3][i];
769 xy1[1] = fXyq[0][i] + fXyq[3][i];
770 xy1[2] = fXyq[1][i] - fXyq[4][i];
771 xy1[3] = fXyq[1][i] + fXyq[4][i];
772 for (Int_t j=0; j<npad; j++) {
773 if (fPadIJ[0][j] != i2) continue;
774 if (!Overlap(xy1, j, xy12, 0)) continue;
775 flags[i] = flags[j] = 1; // mark overlapped pads
776 } // for (Int_t j=0;
777 } // for (Int_t i=0;
778
779 // Check if all pads overlap
780 Int_t digit=0, cath, nFlags=0;
781 for (Int_t i=0; i<npad; i++) {nFlags += !flags[i];}
782 if (nFlags) cout << " nFlags = " << nFlags << endl;
783 //if (nFlags > 2 || (Float_t)nFlags / npad > 0.2) { // why 2 ??? - empirical choice
784 if (nFlags > 0) {
785 for (Int_t i=0; i<npad; i++) {
786 if (flags[i]) continue;
787 digit = TMath::Nint (fXyq[5][i]);
788 cath = fPadIJ[0][i];
789 fUsed[cath][digit] = kFALSE; // release pad
790 fXyq[2][i] = -2;
791 fnPads[cath]--;
792 }
793 } // if (nFlags > 2)
794
795 // Check correlations of cathode charges
796 if (fnPads[0] && fnPads[1]) { // two-cathode
797 Double_t sum[2]={0};
798 Int_t over[2] = {1, 1};
799 for (Int_t i=0; i<npad; i++) {
800 cath = fPadIJ[0][i];
801 if (fXyq[2][i] > 0) sum[cath] += fXyq[2][i];
802 if (fXyq[2][i] > fResponse->MaxAdc()-1) over[cath] = 0;
803 }
804 cout << " Total charge: " << sum[0] << " " << sum[1] << endl;
805 if ((over[0] || over[1]) && TMath::Abs(sum[0]-sum[1])/(sum[0]+sum[1])*2 > 1) { // 3 times difference
806 cout << " Release " << endl;
807 // Big difference
808 cath = sum[0]>sum[1] ? 0 : 1;
809 Int_t imax = 0;
810 Double_t cmax=-1;
811 Double_t *dist = new Double_t[npad];
812 for (Int_t i=0; i<npad; i++) {
813 if (fPadIJ[0][i] != cath) continue;
814 if (fXyq[2][i] < cmax) continue;
815 cmax = fXyq[2][i];
816 imax = i;
817 }
818 // Arrange pads according to their distance to the max,
819 // normalized to the pad size
820 for (Int_t i=0; i<npad; i++) {
821 dist[i] = 0;
822 if (fPadIJ[0][i] != cath) continue;
823 if (i == imax) continue;
824 if (fXyq[2][i] < 0) continue;
825 dist[i] = (fXyq[0][i]-fXyq[0][imax])*(fXyq[0][i]-fXyq[0][imax])/
826 fXyq[3][imax]/fXyq[3][imax]/4;
827 dist[i] += (fXyq[1][i]-fXyq[1][imax])*(fXyq[1][i]-fXyq[1][imax])/
828 fXyq[4][imax]/fXyq[4][imax]/4;
829 dist[i] = TMath::Sqrt (dist[i]);
830 }
831 TMath::Sort(npad, dist, flags, kFALSE); // in increasing order
832 Int_t indx;
833 Double_t xmax = -1;
834 for (Int_t i=0; i<npad; i++) {
835 indx = flags[i];
836 if (fPadIJ[0][indx] != cath) continue;
837 if (fXyq[2][indx] < 0) continue;
838 if (fXyq[2][indx] <= cmax || TMath::Abs(dist[indx]-xmax)<1.e-3) {
839 // Release pads
840 if (TMath::Abs(dist[indx]-xmax)<1.e-3)
841 cmax = TMath::Max(fXyq[2][indx],cmax);
842 else cmax = fXyq[2][indx];
843 xmax = dist[indx];
844 digit = TMath::Nint (fXyq[5][indx]);
845 fUsed[cath][digit] = kFALSE;
846 fXyq[2][indx] = -2;
847 fnPads[cath]--;
848 // xmax = dist[i]; // Bug?
849 }
850 else break;
851 }
852 delete [] dist; dist = 0;
853 } // TMath::Abs(sum[0]-sum[1])...
854 } // if (fnPads[0] && fnPads[1])
855 delete [] flags; flags = 0;
856 } // if (i1 != i2)
857
858 if (!sameSize) { nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; }
859
860 // Move released pads to the right
861 Int_t beg = 0, end = npad-1, padij;
862 Double_t xyq;
863 while (beg < end) {
864 if (fXyq[2][beg] > 0) { beg++; continue; }
865 for (Int_t j=end; j>beg; j--) {
866 if (fXyq[2][j] < 0) continue;
867 end = j - 1;
868 for (Int_t j1=0; j1<2; j1++) {
869 padij = fPadIJ[j1][beg];
870 fPadIJ[j1][beg] = fPadIJ[j1][j];
871 fPadIJ[j1][j] = padij;
872 }
873 for (Int_t j1=0; j1<6; j1++) {
874 xyq = fXyq[j1][beg];
875 fXyq[j1][beg] = fXyq[j1][j];
876 fXyq[j1][j] = xyq;
877 }
878 break;
879 } // for (Int_t j=end;
880 beg++;
881 } // while
882 npad = fnPads[0] + fnPads[1];
883 if (npad > 500) { cout << " ***** Too large cluster. Give up. " << npad << endl; return kFALSE; }
884 // Back up charge value
885 for (Int_t j=0; j<npad; j++) fXyq[5][j] = fXyq[2][j];
886
887 return kTRUE;
888}
889
890//_____________________________________________________________________________
891void AliMUONClusterFinderAZ::BuildPixArray()
892{
893 // Build pixel array for MLEM method
894
895 Int_t nPix=0, i1, i2;
896 Float_t xy1[4], xy12[4];
897 AliMUONPixel *pixPtr=0;
898
899 Int_t npad = fnPads[0] + fnPads[1];
900
901 // One cathode is empty
902 i1 = fnPads[0]!=0 ? 0 : 1;
903 i2 = fnPads[1]!=0 ? 1 : 0;
904
905 // Build array of pixels on anode plane
906 if (i1 == i2) { // one-cathode precluster
907 for (Int_t j=0; j<npad; j++) {
908 pixPtr = new AliMUONPixel();
909 for (Int_t i=0; i<2; i++) {
910 pixPtr->SetCoord(i, fXyq[i][j]); // pixel coordinates
911 pixPtr->SetSize(i, fXyq[i+3][j]); // pixel size
912 }
913 pixPtr->SetCharge(fXyq[2][j]); // charge
914 fPixArray->Add((TObject*)pixPtr);
915 nPix++;
916 }
917 } else { // two-cathode precluster
918 for (Int_t i=0; i<npad; i++) {
919 if (fPadIJ[0][i] != i1) continue;
920 xy1[0] = fXyq[0][i] - fXyq[3][i];
921 xy1[1] = fXyq[0][i] + fXyq[3][i];
922 xy1[2] = fXyq[1][i] - fXyq[4][i];
923 xy1[3] = fXyq[1][i] + fXyq[4][i];
924 for (Int_t j=0; j<npad; j++) {
925 if (fPadIJ[0][j] != i2) continue;
926 if (!Overlap(xy1, j, xy12, 1)) continue;
927 pixPtr = new AliMUONPixel();
928 for (Int_t k=0; k<2; k++) {
929 pixPtr->SetCoord(k, (xy12[2*k]+xy12[2*k+1])/2); // pixel coordinates
930 pixPtr->SetSize(k, xy12[2*k+1]-pixPtr->Coord(k)); // size
931 }
932 pixPtr->SetCharge(TMath::Min (fXyq[2][i],fXyq[2][j])); //charge
933 fPixArray->Add((TObject*)pixPtr);
934 nPix++;
935 } // for (Int_t j=0;
936 } // for (Int_t i=0;
937 } // else
938
939 Float_t wxmin=999, wymin=999;
940 for (Int_t i=0; i<npad; i++) {
941 if (fPadIJ[0][i] == i1) wymin = TMath::Min (wymin,fXyq[4][i]);
942 if (fPadIJ[0][i] == i2) wxmin = TMath::Min (wxmin,fXyq[3][i]);
943 }
944 cout << wxmin << " " << wymin << endl;
945
946 // Check if small pixel X-size
947 AjustPixel(wxmin, 0);
948 // Check if small pixel Y-size
949 AjustPixel(wymin, 1);
950 // Check if large pixel size
951 AjustPixel(wxmin, wymin);
952
953 // Remove discarded pixels
954 for (Int_t i=0; i<nPix; i++) {
955 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
956 //pixPtr->Print();
957 if (pixPtr->Charge() < 1) { fPixArray->RemoveAt(i); delete pixPtr; }// discarded pixel
958 }
959 fPixArray->Compress();
960 nPix = fPixArray->GetEntriesFast();
961
962 if (nPix > npad) {
963 cout << nPix << endl;
964 // Too many pixels - sort and remove pixels with the lowest signal
965 fPixArray->Sort();
966 for (Int_t i=npad; i<nPix; i++) {
967 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
968 //pixPtr->Print();
969 fPixArray->RemoveAt(i);
970 delete pixPtr;
971 }
972 nPix = npad;
973 } // if (nPix > npad)
974
975 // Set pixel charges to the same value (for MLEM)
976 for (Int_t i=0; i<nPix; i++) {
977 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
978 //pixPtr->SetCharge(10);
979 cout << i+1 << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(0) << " " << pixPtr->Size(1) << endl;
980 }
981}
982
983//_____________________________________________________________________________
984void AliMUONClusterFinderAZ::AjustPixel(Float_t width, Int_t ixy)
985{
986 // Check if some pixels have small size (ajust if necessary)
987
988 AliMUONPixel *pixPtr, *pixPtr1 = 0;
989 Int_t ixy1 = TMath::Even(ixy);
990 Int_t nPix = fPixArray->GetEntriesFast();
991
992 for (Int_t i=0; i<nPix; i++) {
993 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
994 if (pixPtr->Charge() < 1) continue; // discarded pixel
995 if (pixPtr->Size(ixy)-width < -1.e-4) {
996 // try to merge
997 cout << " Small X or Y: " << ixy << " " << pixPtr->Size(ixy) << " " << width << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << endl;
998 for (Int_t j=i+1; j<nPix; j++) {
999 pixPtr1 = (AliMUONPixel*) fPixArray->UncheckedAt(j);
1000 if (pixPtr1->Charge() < 1) continue; // discarded pixel
1001 if (TMath::Abs(pixPtr1->Size(ixy)-width) < 1.e-4) continue; // right size
1002 if (TMath::Abs(pixPtr1->Coord(ixy1)-pixPtr->Coord(ixy1)) > 1.e-4) continue; // different rows/columns
1003 if (TMath::Abs(pixPtr1->Coord(ixy)-pixPtr->Coord(ixy)) < 2*width) {
1004 // merge
1005 pixPtr->SetSize(ixy, width);
1006 pixPtr->SetCoord(ixy, (pixPtr->Coord(ixy)+pixPtr1->Coord(ixy))/2);
1007 pixPtr->SetCharge(TMath::Min (pixPtr->Charge(),pixPtr1->Charge()));
1008 pixPtr1->SetCharge(0);
1009 pixPtr1 = 0;
1010 break;
1011 }
1012 } // for (Int_t j=i+1;
1013 //if (!pixPtr1) { cout << " I am here!" << endl; pixPtr->SetSize(ixy, width); } // ???
1014 //else if (pixPtr1->Charge() > 0.5 || i == nPix-1) {
1015 if (pixPtr1 || i == nPix-1) {
1016 // edge pixel - just increase its size
1017 cout << " Edge ..." << endl;
1018 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1019 // ???if (fPadIJ[0][j] != i1) continue;
1020 if (TMath::Abs(pixPtr->Coord(ixy1)-fXyq[ixy1][j]) > 1.e-4) continue;
1021 if (pixPtr->Coord(ixy) < fXyq[ixy][j])
1022 pixPtr->Shift(ixy, -pixPtr->Size(ixy));
1023 else pixPtr->Shift(ixy, pixPtr->Size(ixy));
1024 pixPtr->SetSize(ixy, width);
1025 break;
1026 }
1027 }
1028 } // if (pixPtr->Size(ixy)-width < -1.e-4)
1029 } // for (Int_t i=0; i<nPix;
1030 return;
1031}
1032
1033//_____________________________________________________________________________
1034void AliMUONClusterFinderAZ::AjustPixel(Float_t wxmin, Float_t wymin)
1035{
1036 // Check if some pixels have large size (ajust if necessary)
1037
1038 Int_t nx, ny;
1039 Int_t nPix = fPixArray->GetEntriesFast();
1040 AliMUONPixel *pixPtr, *pixPtr1, pix;
1041
1042 // Check if large pixel size
1043 for (Int_t i=0; i<nPix; i++) {
1044 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1045 if (pixPtr->Charge() < 1) continue; // discarded pixel
1046 if (pixPtr->Size(0)-wxmin > 1.e-4 || pixPtr->Size(1)-wymin > 1.e-4) {
1047 cout << " Different " << pixPtr->Size(0) << " " << wxmin << " " << pixPtr->Size(1) << " " << wymin << endl;
1048 pix = *pixPtr;
1049 nx = TMath::Nint (pix.Size(0)/wxmin);
1050 ny = TMath::Nint (pix.Size(1)/wymin);
1051 pix.Shift(0, -pix.Size(0)-wxmin);
1052 pix.Shift(1, -pix.Size(1)-wymin);
1053 pix.SetSize(0, wxmin);
1054 pix.SetSize(1, wymin);
1055 for (Int_t ii=0; ii<nx; ii++) {
1056 pix.Shift(0, wxmin*2);
1057 for (Int_t jj=0; jj<ny; jj++) {
1058 pix.Shift(1, wymin*2);
1059 pixPtr1 = new AliMUONPixel(pix);
1060 fPixArray->Add((TObject*)pixPtr1);
1061 }
1062 }
1063 pixPtr->SetCharge(0);
1064 }
1065 } // for (Int_t i=0; i<nPix;
1066 return;
1067}
1068
1069//_____________________________________________________________________________
1070Bool_t AliMUONClusterFinderAZ::MainLoop()
1071{
1072 // Repeat MLEM algorithm until pixel size becomes sufficiently small
1073
1074 TH2D *mlem;
1075
1076 Int_t ix, iy;
1077 //Int_t nn, xList[10], yList[10];
1078 Int_t nPix = fPixArray->GetEntriesFast();
1079 Int_t npadTot = fnPads[0] + fnPads[1], npadOK = 0;
1080 AliMUONPixel *pixPtr = 0;
1081 Double_t *coef = 0, *probi = 0;
1082 for (Int_t i=0; i<npadTot; i++) if (fPadIJ[1][i] == 0) npadOK++;
1083
1084 while (1) {
1085
1086 mlem = (TH2D*) gROOT->FindObject("mlem");
1087 if (mlem) mlem->Delete();
1088 // Calculate coefficients
1089 cout << " nPix, npadTot, npadOK " << nPix << " " << npadTot << " " << npadOK << endl;
1090
1091 // Calculate coefficients and pixel visibilities
1092 coef = new Double_t [npadTot*nPix];
1093 probi = new Double_t [nPix];
1094 Int_t indx = 0, cath;
1095 for (Int_t ipix=0; ipix<nPix; ipix++) {
1096 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1097 probi[ipix] = 0;
1098 for (Int_t j=0; j<npadTot; j++) {
1099 if (fPadIJ[1][j] < 0) { coef[j*nPix+ipix] = 0; continue; }
1100 cath = fPadIJ[0][j];
1101 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
1102 fSegmentation[cath]->SetPad(ix,iy);
1103 /*
1104 fSegmentation[cath]->Neighbours(ix,iy,&nn,xList,yList);
1105 if (nn != 4) {
1106 cout << nn << ": ";
1107 for (Int_t i=0; i<nn; i++) {cout << xList[i] << " " << yList[i] << ", ";}
1108 cout << endl;
1109 }
1110 */
1111 Double_t sum = 0;
1112 fSegmentation[cath]->SetHit(pixPtr->Coord(0),pixPtr->Coord(1),fZpad);
1113 sum += fResponse->IntXY(fSegmentation[cath]);
1114 indx = j*nPix + ipix;
1115 coef[indx] = sum;
1116 probi[ipix] += coef[indx];
1117 //cout << j << " " << ipix << " " << coef[indx] << endl;
1118 } // for (Int_t j=0;
1119 //cout << " prob: " << probi[ipix] << endl;
1120 if (probi[ipix] < 0.01) pixPtr->SetCharge(0); // "invisible" pixel
1121 } // for (Int_t ipix=0;
1122
1123 // MLEM algorithm
1124 Mlem(coef, probi);
1125
1126 Float_t xylim[4] = {999, 999, 999, 999};
1127 for (Int_t ipix=0; ipix<nPix; ipix++) {
1128 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1129 for (Int_t i=0; i<4; i++)
1130 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1131 //cout << ipix+1; pixPtr->Print();
1132 }
1133 for (Int_t i=0; i<4; i++) {
1134 xylim[i] -= pixPtr->Size(i/2); cout << (i%2 ? -1 : 1)*xylim[i] << " "; }
1135 cout << endl;
1136
1137 // Ajust histogram to approximately the same limits as for the pads
1138 // (for good presentation)
1139 //*
1140 Float_t xypads[4];
1141 if (fHist[0]) {
1142 xypads[0] = fHist[0]->GetXaxis()->GetXmin();
1143 xypads[1] = -fHist[0]->GetXaxis()->GetXmax();
1144 xypads[2] = fHist[0]->GetYaxis()->GetXmin();
1145 xypads[3] = -fHist[0]->GetYaxis()->GetXmax();
1146 for (Int_t i=0; i<4; i++) {
1147 while(1) {
1148 if (xylim[i] < xypads[i]) break;
1149 xylim[i] -= 2*pixPtr->Size(i/2);
1150 }
1151 }
1152 } // if (fHist[0])
1153 //*/
1154
1155 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
1156 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
1157 mlem = new TH2D("mlem","mlem",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
1158 for (Int_t ipix=0; ipix<nPix; ipix++) {
1159 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1160 mlem->Fill(pixPtr->Coord(0),pixPtr->Coord(1),pixPtr->Charge());
1161 }
1162 //gPad->GetCanvas()->cd(3);
1163 if (fDraw) {
1164 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1165 gPad->SetTheta(55);
1166 gPad->SetPhi(30);
1167 mlem->Draw("lego1Fb");
1168 gPad->Update();
1169 gets((char*)&ix);
1170 }
1171
1172 // Check if the total charge of pixels is too low
1173 Double_t qTot = 0;
1174 for (Int_t i=0; i<nPix; i++) {
1175 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1176 qTot += pixPtr->Charge();
1177 }
1178 if (qTot < 1.e-4 || npadOK < 3 && qTot < 50) {
1179 delete [] coef; delete [] probi; coef = 0; probi = 0;
1180 fPixArray->Delete();
1181 return kFALSE;
1182 }
1183
1184 // Plot data - expectation
1185 /*
1186 Double_t x, y, cont;
1187 for (Int_t j=0; j<npadTot; j++) {
1188 Double_t sum1 = 0;
1189 for (Int_t i=0; i<nPix; i++) {
1190 // Caculate expectation
1191 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1192 sum1 += pixPtr->Charge()*coef[j*nPix+i];
1193 }
1194 sum1 = TMath::Min (sum1,(Double_t)fResponse->MaxAdc());
1195 x = fXyq[0][j];
1196 y = fXyq[1][j];
1197 cath = fPadIJ[0][j];
1198 Int_t ihist = cath*2;
1199 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1200 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1201 cont = fHist[ihist]->GetCellContent(ix,iy);
1202 if (cont == 0 && fHist[ihist+1]) {
1203 ihist += 1;
1204 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1205 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1206 }
1207 fHist[ihist]->SetBinContent(ix,iy,fXyq[2][j]-sum1);
1208 }
1209 ((TCanvas*)gROOT->FindObject("c1"))->cd(1);
1210 //gPad->SetTheta(55);
1211 //gPad->SetPhi(30);
1212 //mlem->Draw("lego1");
1213 gPad->Modified();
1214 ((TCanvas*)gROOT->FindObject("c1"))->cd(2);
1215 gPad->Modified();
1216 */
1217
1218 // Calculate position of the center-of-gravity around the maximum pixel
1219 Double_t xyCOG[2];
1220 FindCOG(mlem, xyCOG);
1221
1222 if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.07 && pixPtr->Size(0) > pixPtr->Size(1)) break;
1223 //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) >= 0.07 || pixPtr->Size(0) < pixPtr->Size(1)) {
1224 // Sort pixels according to the charge
1225 fPixArray->Sort();
1226 /*
1227 for (Int_t i=0; i<nPix; i++) {
1228 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1229 cout << i+1; pixPtr->Print();
1230 }
1231 */
1232 Double_t pixMin = 0.01*((AliMUONPixel*)fPixArray->UncheckedAt(0))->Charge();
1233 pixMin = TMath::Min (pixMin,50.);
1234
1235 // Decrease pixel size and shift pixels to make them centered at
1236 // the maximum one
1237 indx = (pixPtr->Size(0)>pixPtr->Size(1)) ? 0 : 1;
1238 Double_t width = 0, shift[2]={0};
1239 ix = 1;
1240 for (Int_t i=0; i<4; i++) xylim[i] = 999;
1241 Int_t nPix1 = nPix; nPix = 0;
1242 for (Int_t ipix=0; ipix<nPix1; ipix++) {
1243 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1244 if (nPix >= npadOK) { // too many pixels already
1245 fPixArray->RemoveAt(ipix);
1246 delete pixPtr;
1247 continue;
1248 }
1249 if (pixPtr->Charge() < pixMin) { // low charge
1250 fPixArray->RemoveAt(ipix);
1251 delete pixPtr;
1252 continue;
1253 }
1254 for (Int_t i=0; i<2; i++) {
1255 if (!i) {
1256 pixPtr->SetCharge(10);
1257 pixPtr->SetSize(indx, pixPtr->Size(indx)/2);
1258 width = -pixPtr->Size(indx);
1259 pixPtr->Shift(indx, width);
1260 // Shift pixel position
1261 if (ix) {
1262 ix = 0;
1263 for (Int_t j=0; j<2; j++) {
1264 shift[j] = pixPtr->Coord(j) - xyCOG[j];
1265 shift[j] -= ((Int_t)(shift[j]/pixPtr->Size(j)/2))*pixPtr->Size(j)*2;
1266 }
1267 //cout << ipix << " " << i << " " << shift[0] << " " << shift[1] << endl;
1268 } // if (ix)
1269 pixPtr->Shift(0, -shift[0]);
1270 pixPtr->Shift(1, -shift[1]);
1271 } else {
1272 pixPtr = new AliMUONPixel(*pixPtr);
1273 pixPtr->Shift(indx, -2*width);
1274 fPixArray->Add((TObject*)pixPtr);
1275 } // else
1276 //pixPtr->Print();
1277 for (Int_t i=0; i<4; i++)
1278 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1279 } // for (Int_t i=0; i<2;
1280 nPix += 2;
1281 } // for (Int_t ipix=0;
1282
1283 fPixArray->Compress();
1284 nPix = fPixArray->GetEntriesFast();
1285
1286 // Remove excessive pixels
1287 if (nPix > npadOK) {
1288 for (Int_t ipix=npadOK; ipix<nPix; ipix++) {
1289 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1290 fPixArray->RemoveAt(ipix);
1291 delete pixPtr;
1292 }
1293 } else {
1294 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(0);
1295 // add pixels if the maximum is at the limit of pixel area
1296 // start from Y-direction
1297 Int_t j = 0;
1298 for (Int_t i=3; i>-1; i--) {
1299 if (nPix < npadOK &&
1300 TMath::Abs((i%2 ? -1 : 1)*xylim[i]-xyCOG[i/2]) < pixPtr->Size(i/2)) {
1301 pixPtr = new AliMUONPixel(*pixPtr);
1302 pixPtr->SetCoord(i/2, xyCOG[i/2]+(i%2 ? 2:-2)*pixPtr->Size(i/2));
1303 j = TMath::Even (i/2);
1304 pixPtr->SetCoord(j, xyCOG[j]);
1305 fPixArray->Add((TObject*)pixPtr);
1306 nPix++;
1307 }
1308 }
1309 } // else
1310
1311 fPixArray->Compress();
1312 nPix = fPixArray->GetEntriesFast();
1313 delete [] coef; delete [] probi; coef = 0; probi = 0;
1314 } // while (1)
1315
1316 // remove pixels with low signal or low visibility
1317 // Cuts are empirical !!!
1318 Double_t thresh = TMath::Max (mlem->GetMaximum()/100.,1.);
1319 thresh = TMath::Min (thresh,50.);
1320 Double_t cmax = -1, charge = 0;
1321 for (Int_t i=0; i<nPix; i++) cmax = TMath::Max (cmax,probi[i]);
1322 // Mark pixels which should be removed
1323 for (Int_t i=0; i<nPix; i++) {
1324 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1325 charge = pixPtr->Charge();
1326 if (charge < thresh) pixPtr->SetCharge(-charge);
1327 else if (cmax > 1.91) {
1328 if (probi[i] < 1.9) pixPtr->SetCharge(-charge);
1329 }
1330 else if (probi[i] < cmax*0.9) pixPtr->SetCharge(-charge);
1331 }
1332 // Move charge of removed pixels to their nearest neighbour (to keep total charge the same)
1333 Int_t near = 0;
1334 for (Int_t i=0; i<nPix; i++) {
1335 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1336 charge = pixPtr->Charge();
1337 if (charge > 0) continue;
1338 near = FindNearest(pixPtr);
1339 pixPtr->SetCharge(0);
1340 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(near);
1341 pixPtr->SetCharge(pixPtr->Charge() - charge);
1342 }
1343 // Update histogram
1344 for (Int_t i=0; i<nPix; i++) {
1345 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1346 ix = mlem->GetXaxis()->FindBin(pixPtr->Coord(0));
1347 iy = mlem->GetYaxis()->FindBin(pixPtr->Coord(1));
1348 mlem->SetBinContent(ix, iy, pixPtr->Charge());
1349 }
1350 if (fDraw) {
1351 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1352 gPad->SetTheta(55);
1353 gPad->SetPhi(30);
1354 mlem->Draw("lego1Fb");
1355 gPad->Update();
1356 }
1357
1358 fxyMu[0][6] = fxyMu[1][6] = 9999;
1359 // Try to split into clusters
1360 Bool_t ok = kTRUE;
1361 if (mlem->GetSum() < 1) ok = kFALSE;
1362 else Split(mlem, coef);
1363 delete [] coef; delete [] probi; coef = 0; probi = 0;
1364 fPixArray->Delete();
1365 return ok;
1366}
1367
1368//_____________________________________________________________________________
1369void AliMUONClusterFinderAZ::Mlem(Double_t *coef, Double_t *probi)
1370{
1371 // Use MLEM to find pixel charges
1372
1373 Int_t nPix = fPixArray->GetEntriesFast();
1374 Int_t npad = fnPads[0] + fnPads[1];
1375 Double_t *probi1 = new Double_t [nPix];
1376 Int_t indx, indx1;
1377 AliMUONPixel *pixPtr;
1378
1379 for (Int_t iter=0; iter<15; iter++) {
1380 // Do iterations
1381 for (Int_t ipix=0; ipix<nPix; ipix++) {
1382 // Correct each pixel
1383 if (probi[ipix] < 0.01) continue; // skip "invisible" pixel
1384 Double_t sum = 0;
1385 probi1[ipix] = probi[ipix];
1386 for (Int_t j=0; j<npad; j++) {
1387 if (fPadIJ[1][j] < 0) continue;
1388 Double_t sum1 = 0;
1389 indx1 = j*nPix;
1390 indx = indx1 + ipix;
1391 for (Int_t i=0; i<nPix; i++) {
1392 // Caculate expectation
1393 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1394 sum1 += pixPtr->Charge()*coef[indx1+i];
1395 } // for (Int_t i=0;
1396 if (fXyq[2][j] > fResponse->MaxAdc()-1 && sum1 > fResponse->MaxAdc()) { probi1[ipix] -= coef[indx]; continue; } // correct for pad charge overflows
1397 //cout << sum1 << " " << fXyq[2][j] << " " << coef[j*nPix+ipix] << endl;
1398 if (coef[indx] > 1.e-6) sum += fXyq[2][j]*coef[indx]/sum1;
1399 } // for (Int_t j=0;
1400 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1401 if (probi1[ipix] > 1.e-6) pixPtr->SetCharge(pixPtr->Charge()*sum/probi1[ipix]);
1402 } // for (Int_t ipix=0;
1403 } // for (Int_t iter=0;
1404 delete [] probi1;
1405 return;
1406}
1407
1408//_____________________________________________________________________________
1409void AliMUONClusterFinderAZ::FindCOG(TH2D *mlem, Double_t *xyc)
1410{
1411 // Calculate position of the center-of-gravity around the maximum pixel
1412
1413 Int_t ixmax, iymax, ix, nsumx=0, nsumy=0, nsum=0;
1414 Int_t i1 = -9, j1 = -9;
1415 mlem->GetMaximumBin(ixmax,iymax,ix);
1416 Int_t nx = mlem->GetNbinsX();
1417 Int_t ny = mlem->GetNbinsY();
1418 Double_t thresh = mlem->GetMaximum()/10;
1419 Double_t x, y, cont, xq=0, yq=0, qq=0;
1420
1421 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1422 y = mlem->GetYaxis()->GetBinCenter(i);
1423 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1424 cont = mlem->GetCellContent(j,i);
1425 if (cont < thresh) continue;
1426 if (i != i1) {i1 = i; nsumy++;}
1427 if (j != j1) {j1 = j; nsumx++;}
1428 x = mlem->GetXaxis()->GetBinCenter(j);
1429 xq += x*cont;
1430 yq += y*cont;
1431 qq += cont;
1432 nsum++;
1433 }
1434 }
1435
1436 Double_t cmax = 0;
1437 Int_t i2 = 0, j2 = 0;
1438 x = y = 0;
1439 if (nsumy == 1) {
1440 // one bin in Y - add one more (with the largest signal)
1441 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1442 if (i == iymax) continue;
1443 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1444 cont = mlem->GetCellContent(j,i);
1445 if (cont > cmax) {
1446 cmax = cont;
1447 x = mlem->GetXaxis()->GetBinCenter(j);
1448 y = mlem->GetYaxis()->GetBinCenter(i);
1449 i2 = i;
1450 j2 = j;
1451 }
1452 }
1453 }
1454 xq += x*cmax;
1455 yq += y*cmax;
1456 qq += cmax;
1457 if (i2 != i1) nsumy++;
1458 if (j2 != j1) nsumx++;
1459 nsum++;
1460 } // if (nsumy == 1)
1461
1462 if (nsumx == 1) {
1463 // one bin in X - add one more (with the largest signal)
1464 cmax = x = y = 0;
1465 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1466 if (j == ixmax) continue;
1467 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1468 cont = mlem->GetCellContent(j,i);
1469 if (cont > cmax) {
1470 cmax = cont;
1471 x = mlem->GetXaxis()->GetBinCenter(j);
1472 y = mlem->GetYaxis()->GetBinCenter(i);
1473 i2 = i;
1474 j2 = j;
1475 }
1476 }
1477 }
1478 xq += x*cmax;
1479 yq += y*cmax;
1480 qq += cmax;
1481 if (i2 != i1) nsumy++;
1482 if (j2 != j1) nsumx++;
1483 nsum++;
1484 } // if (nsumx == 1)
1485
1486 xyc[0] = xq/qq; xyc[1] = yq/qq;
1487 cout << xyc[0] << " " << xyc[1] << " " << qq << " " << nsum << " " << nsumx << " " << nsumy << endl;
1488 return;
1489}
1490
1491//_____________________________________________________________________________
1492Int_t AliMUONClusterFinderAZ::FindNearest(AliMUONPixel *pixPtr0)
1493{
1494 // Find the pixel nearest to the given one
1495 // (algorithm may be not very efficient)
1496
1497 Int_t nPix = fPixArray->GetEntriesFast(), imin = 0;
1498 Double_t rmin = 99999, dx = 0, dy = 0, r = 0;
1499 Double_t xc = pixPtr0->Coord(0), yc = pixPtr0->Coord(1);
1500 AliMUONPixel *pixPtr;
1501
1502 for (Int_t i=0; i<nPix; i++) {
1503 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1504 if (pixPtr->Charge() < 0.5) continue;
1505 dx = (xc - pixPtr->Coord(0)) / pixPtr->Size(0);
1506 dy = (yc - pixPtr->Coord(1)) / pixPtr->Size(1);
1507 r = dx *dx + dy * dy;
1508 if (r < rmin) { rmin = r; imin = i; }
1509 }
1510 return imin;
1511}
1512
1513//_____________________________________________________________________________
1514void AliMUONClusterFinderAZ::Split(TH2D *mlem, Double_t *coef)
1515{
1516 // The main steering function to work with clusters of pixels in anode
1517 // plane (find clusters, decouple them from each other, merge them (if
1518 // necessary), pick up coupled pads, call the fitting function)
1519
1520 Int_t nx = mlem->GetNbinsX();
1521 Int_t ny = mlem->GetNbinsY();
1522 Int_t nPix = fPixArray->GetEntriesFast();
1523
1524 Bool_t *used = new Bool_t[ny*nx];
1525 Double_t cont;
1526 Int_t nclust = 0, indx, indx1;
1527
1528 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
1529
1530 TObjArray *clusters[200]={0};
1531 TObjArray *pix;
1532
1533 // Find clusters of histogram bins (easier to work in 2-D space)
1534 for (Int_t i=1; i<=ny; i++) {
1535 for (Int_t j=1; j<=nx; j++) {
1536 indx = (i-1)*nx + j - 1;
1537 if (used[indx]) continue;
1538 cont = mlem->GetCellContent(j,i);
1539 if (cont < 0.5) continue;
1540 pix = new TObjArray(20);
1541 used[indx] = 1;
1542 pix->Add(BinToPix(mlem,j,i));
1543 AddBin(mlem, i, j, 0, used, pix); // recursive call
1544 clusters[nclust++] = pix;
1545 if (nclust > 200) { cout << " Too many clusters " << endl; ::exit(0); }
1546 } // for (Int_t j=1; j<=nx; j++) {
1547 } // for (Int_t i=1; i<=ny;
1548 cout << nclust << endl;
1549 delete [] used; used = 0;
1550
1551 // Compute couplings between clusters and clusters to pads
1552 Int_t npad = fnPads[0] + fnPads[1];
1553
1554 // Exclude pads with overflows
1555 for (Int_t j=0; j<npad; j++) {
1556 if (fXyq[2][j] > fResponse->MaxAdc()-1) fPadIJ[1][j] = -9;
1557 else fPadIJ[1][j] = 0;
1558 }
1559
1560 // Compute couplings of clusters to pads
1561 TMatrixD *aij_clu_pad = new TMatrixD(nclust,npad);
1562 *aij_clu_pad = 0;
1563 Int_t npxclu;
1564 for (Int_t iclust=0; iclust<nclust; iclust++) {
1565 pix = clusters[iclust];
1566 npxclu = pix->GetEntriesFast();
1567 for (Int_t i=0; i<npxclu; i++) {
1568 indx = fPixArray->IndexOf(pix->UncheckedAt(i));
1569 for (Int_t j=0; j<npad; j++) {
1570 // Exclude overflows
1571 if (fPadIJ[1][j] < 0) continue;
1572 if (coef[j*nPix+indx] < kCouplMin) continue;
1573 (*aij_clu_pad)(iclust,j) += coef[j*nPix+indx];
1574 }
1575 }
1576 }
1577 // Compute couplings between clusters
1578 TMatrixD *aij_clu_clu = new TMatrixD(nclust,nclust);
1579 *aij_clu_clu = 0;
1580 for (Int_t iclust=0; iclust<nclust; iclust++) {
1581 for (Int_t j=0; j<npad; j++) {
1582 // Exclude overflows
1583 if (fPadIJ[1][j] < 0) continue;
1584 if ((*aij_clu_pad)(iclust,j) < kCouplMin) continue;
1585 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
1586 if ((*aij_clu_pad)(iclust1,j) < kCouplMin) continue;
1587 (*aij_clu_clu)(iclust,iclust1) +=
1588 TMath::Sqrt ((*aij_clu_pad)(iclust,j)*(*aij_clu_pad)(iclust1,j));
1589 }
1590 }
1591 }
1592 for (Int_t iclust=0; iclust<nclust; iclust++) {
1593 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
1594 (*aij_clu_clu)(iclust1,iclust) = (*aij_clu_clu)(iclust,iclust1);
1595 }
1596 }
1597
1598 if (nclust > 1) aij_clu_clu->Print();
1599
1600 // Find groups of coupled clusters
1601 used = new Bool_t[nclust];
1602 for (Int_t i=0; i<nclust; i++) used[i] = kFALSE;
1603 Int_t *clustNumb = new Int_t[nclust];
1604 Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
1605 Double_t parOk[8];
1606
1607 for (Int_t igroup=0; igroup<nclust; igroup++) {
1608 if (used[igroup]) continue;
1609 used[igroup] = kTRUE;
1610 clustNumb[0] = igroup;
1611 nCoupled = 1;
1612 // Find group of coupled clusters
1613 AddCluster(igroup, nclust, aij_clu_clu, used, clustNumb, nCoupled); // recursive
1614 cout << " nCoupled: " << nCoupled << endl;
1615 for (Int_t i=0; i<nCoupled; i++) cout << clustNumb[i] << " "; cout << endl;
1616
1617 while (nCoupled > 0) {
1618
1619 if (nCoupled < 4) {
1620 nForFit = nCoupled;
1621 for (Int_t i=0; i<nCoupled; i++) clustFit[i] = clustNumb[i];
1622 } else {
1623 // Too many coupled clusters to fit - try to decouple them
1624 // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
1625 // all the others in the group
1626 for (Int_t j=0; j<3; j++) minGroup[j] = -1;
1627 Double_t coupl = MinGroupCoupl(nCoupled, clustNumb, aij_clu_clu, minGroup);
1628
1629 // Flag clusters for fit
1630 nForFit = 0;
1631 while (minGroup[nForFit] >= 0 && nForFit < 3) {
1632 cout << clustNumb[minGroup[nForFit]] << " ";
1633 clustFit[nForFit] = clustNumb[minGroup[nForFit]];
1634 clustNumb[minGroup[nForFit]] -= 999;
1635 nForFit++;
1636 }
1637 cout << nForFit << " " << coupl << endl;
1638 } // else
1639
1640 // Select pads for fit.
1641 if (SelectPad(nCoupled, nForFit, clustNumb, clustFit, aij_clu_pad) < 3 && nCoupled > 1) {
1642 // Deselect pads
1643 for (Int_t j=0; j<npad; j++) if (TMath::Abs(fPadIJ[1][j]) == 1) fPadIJ[1][j] = 0;
1644 // Merge the failed cluster candidates (with too few pads to fit) with
1645 // the one with the strongest coupling
1646 Merge(nForFit, nCoupled, clustNumb, clustFit, clusters, aij_clu_clu, aij_clu_pad);
1647 } else {
1648 // Do the fit
1649 nfit = Fit(nForFit, clustFit, clusters, parOk);
1650 }
1651
1652 // Subtract the fitted charges from pads with strong coupling and/or
1653 // return pads for further use
1654 UpdatePads(nfit, parOk);
1655
1656 // Mark used pads
1657 for (Int_t j=0; j<npad; j++) {if (fPadIJ[1][j] == 1) fPadIJ[1][j] = -1;}
1658
1659 // Sort the clusters (move to the right the used ones)
1660 Int_t beg = 0, end = nCoupled - 1;
1661 while (beg < end) {
1662 if (clustNumb[beg] >= 0) { beg++; continue; }
1663 for (Int_t j=end; j>beg; j--) {
1664 if (clustNumb[j] < 0) continue;
1665 end = j - 1;
1666 indx = clustNumb[beg];
1667 clustNumb[beg] = clustNumb[j];
1668 clustNumb[j] = indx;
1669 break;
1670 }
1671 beg++;
1672 }
1673
1674 nCoupled -= nForFit;
1675 if (nCoupled > 3) {
1676 // Remove couplings of used clusters
1677 for (Int_t iclust=nCoupled; iclust<nCoupled+nForFit; iclust++) {
1678 indx = clustNumb[iclust] + 999;
1679 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1680 indx1 = clustNumb[iclust1];
1681 (*aij_clu_clu)(indx,indx1) = (*aij_clu_clu)(indx1,indx) = 0;
1682 }
1683 }
1684
1685 // Update the remaining clusters couplings (exclude couplings from
1686 // the used pads)
1687 for (Int_t j=0; j<npad; j++) {
1688 if (fPadIJ[1][j] != -1) continue;
1689 for (Int_t iclust=0; iclust<nCoupled; iclust++) {
1690 indx = clustNumb[iclust];
1691 if ((*aij_clu_pad)(indx,j) < kCouplMin) continue;
1692 for (Int_t iclust1=iclust+1; iclust1<nCoupled; iclust1++) {
1693 indx1 = clustNumb[iclust1];
1694 if ((*aij_clu_pad)(indx1,j) < kCouplMin) continue;
1695 // Check this
1696 (*aij_clu_clu)(indx,indx1) -=
1697 TMath::Sqrt ((*aij_clu_pad)(indx,j)*(*aij_clu_pad)(indx1,j));
1698 (*aij_clu_clu)(indx1,indx) = (*aij_clu_clu)(indx,indx1);
1699 }
1700 }
1701 fPadIJ[1][j] = -9;
1702 } // for (Int_t j=0; j<npad;
1703 } // if (nCoupled > 3)
1704 } // while (nCoupled > 0)
1705 } // for (Int_t igroup=0; igroup<nclust;
1706
1707 //delete aij_clu; aij_clu = 0; delete aij_clu_pad; aij_clu_pad = 0;
1708 aij_clu_clu->Delete(); aij_clu_pad->Delete();
1709 for (Int_t iclust=0; iclust<nclust; iclust++) {
1710 pix = clusters[iclust];
1711 pix->Clear();
1712 delete pix; pix = 0;
1713 }
1714 delete [] clustNumb; clustNumb = 0; delete [] used; used = 0;
1715}
1716
1717//_____________________________________________________________________________
1718void AliMUONClusterFinderAZ::AddBin(TH2D *mlem, Int_t ic, Int_t jc, Int_t mode, Bool_t *used, TObjArray *pix)
1719{
1720 // Add a bin to the cluster
1721
1722 Int_t nx = mlem->GetNbinsX();
1723 Int_t ny = mlem->GetNbinsY();
1724 Double_t cont1, cont = mlem->GetCellContent(jc,ic);
1725 AliMUONPixel *pixPtr = 0;
1726
1727 for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) {
1728 for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) {
1729 if (i != ic && j != jc) continue;
1730 if (used[(i-1)*nx+j-1]) continue;
1731 cont1 = mlem->GetCellContent(j,i);
1732 if (mode && cont1 > cont) continue;
1733 used[(i-1)*nx+j-1] = kTRUE;
1734 if (cont1 < 0.5) continue;
1735 if (pix) pix->Add(BinToPix(mlem,j,i));
1736 else {
1737 pixPtr = new AliMUONPixel (mlem->GetXaxis()->GetBinCenter(j),
1738 mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
1739 fPixArray->Add((TObject*)pixPtr);
1740 }
1741 AddBin(mlem, i, j, mode, used, pix); // recursive call
1742 }
1743 }
1744}
1745
1746//_____________________________________________________________________________
1747TObject* AliMUONClusterFinderAZ::BinToPix(TH2D *mlem, Int_t jc, Int_t ic)
1748{
1749 // Translate histogram bin to pixel
1750
1751 Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
1752 Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
1753
1754 Int_t nPix = fPixArray->GetEntriesFast();
1755 AliMUONPixel *pixPtr;
1756
1757 // Compare pixel and bin positions
1758 for (Int_t i=0; i<nPix; i++) {
1759 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1760 if (pixPtr->Charge() < 0.5) continue;
1761 if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4) return (TObject*) pixPtr;
1762 }
1763 cout << " Something wrong ??? " << endl;
1764 return NULL;
1765}
1766
1767//_____________________________________________________________________________
1768void AliMUONClusterFinderAZ::AddCluster(Int_t ic, Int_t nclust, TMatrixD *aij_clu_clu, Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
1769{
1770 // Add a cluster to the group of coupled clusters
1771
1772 for (Int_t i=0; i<nclust; i++) {
1773 if (used[i]) continue;
1774 if ((*aij_clu_clu)(i,ic) < kCouplMin) continue;
1775 used[i] = kTRUE;
1776 clustNumb[nCoupled++] = i;
1777 AddCluster(i, nclust, aij_clu_clu, used, clustNumb, nCoupled);
1778 }
1779}
1780
1781//_____________________________________________________________________________
1782Double_t AliMUONClusterFinderAZ::MinGroupCoupl(Int_t nCoupled, Int_t *clustNumb, TMatrixD *aij_clu_clu, Int_t *minGroup)
1783{
1784 // Find group of clusters with minimum coupling to all the others
1785
1786 Int_t i123max = TMath::Min(3,nCoupled/2);
1787 Int_t indx, indx1, indx2, indx3, nTot = 0;
1788 Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1789
1790 for (Int_t i123=1; i123<=i123max; i123++) {
1791
1792 if (i123 == 1) {
1793 coupl1 = new Double_t [nCoupled];
1794 for (Int_t i=0; i<nCoupled; i++) coupl1[i] = 0;
1795 }
1796 else if (i123 == 2) {
1797 nTot = nCoupled*nCoupled;
1798 coupl2 = new Double_t [nTot];
1799 for (Int_t i=0; i<nTot; i++) coupl2[i] = 9999;
1800 } else {
1801 nTot = nTot*nCoupled;
1802 coupl3 = new Double_t [nTot];
1803 for (Int_t i=0; i<nTot; i++) coupl3[i] = 9999;
1804 } // else
1805
1806 for (Int_t i=0; i<nCoupled; i++) {
1807 indx1 = clustNumb[i];
1808 for (Int_t j=i+1; j<nCoupled; j++) {
1809 indx2 = clustNumb[j];
1810 if (i123 == 1) {
1811 coupl1[i] += (*aij_clu_clu)(indx1,indx2);
1812 coupl1[j] += (*aij_clu_clu)(indx1,indx2);
1813 }
1814 else if (i123 == 2) {
1815 indx = i*nCoupled + j;
1816 coupl2[indx] = coupl1[i] + coupl1[j];
1817 coupl2[indx] -= 2 * ((*aij_clu_clu)(indx1,indx2));
1818 } else {
1819 for (Int_t k=j+1; k<nCoupled; k++) {
1820 indx3 = clustNumb[k];
1821 indx = i*nCoupled*nCoupled + j*nCoupled + k;
1822 coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
1823 coupl3[indx] -= 2 * ((*aij_clu_clu)(indx1,indx3)+(*aij_clu_clu)(indx2,indx3));
1824 }
1825 } // else
1826 } // for (Int_t j=i+1;
1827 } // for (Int_t i=0;
1828 } // for (Int_t i123=1;
1829
1830 // Find minimum coupling
1831 Double_t couplMin = 9999;
1832 Int_t locMin = 0;
1833
1834 for (Int_t i123=1; i123<=i123max; i123++) {
1835 if (i123 == 1) {
1836 locMin = TMath::LocMin(nCoupled, coupl1);
1837 couplMin = coupl1[locMin];
1838 minGroup[0] = locMin;
1839 delete [] coupl1; coupl1 = 0;
1840 }
1841 else if (i123 == 2) {
1842 locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1843 if (coupl2[locMin] < couplMin) {
1844 couplMin = coupl2[locMin];
1845 minGroup[0] = locMin/nCoupled;
1846 minGroup[1] = locMin%nCoupled;
1847 }
1848 delete [] coupl2; coupl2 = 0;
1849 } else {
1850 locMin = TMath::LocMin(nTot, coupl3);
1851 if (coupl3[locMin] < couplMin) {
1852 couplMin = coupl3[locMin];
1853 minGroup[0] = locMin/nCoupled/nCoupled;
1854 minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1855 minGroup[2] = locMin%nCoupled;
1856 }
1857 delete [] coupl3; coupl3 = 0;
1858 } // else
1859 } // for (Int_t i123=1;
1860 return couplMin;
1861}
1862
1863//_____________________________________________________________________________
1864Int_t AliMUONClusterFinderAZ::SelectPad(Int_t nCoupled, Int_t nForFit, Int_t *clustNumb, Int_t *clustFit, TMatrixD *aij_clu_pad)
1865{
1866 // Select pads for fit. If too many coupled clusters, find pads giving
1867 // the strongest coupling with the rest of clusters and exclude them from the fit.
1868
1869 Int_t npad = fnPads[0] + fnPads[1];
1870 Double_t *pad_pix = 0;
1871
1872 if (nCoupled > 3) {
1873 pad_pix = new Double_t[npad];
1874 for (Int_t i=0; i<npad; i++) pad_pix[i] = 0;
1875 }
1876
1877 Int_t nOK = 0, indx, indx1;
1878 for (Int_t iclust=0; iclust<nForFit; iclust++) {
1879 indx = clustFit[iclust];
1880 for (Int_t j=0; j<npad; j++) {
1881 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
1882 if ((*aij_clu_pad)(indx,j) < kCouplMin) continue;
1883 fPadIJ[1][j] = 1; // pad to be used in fit
1884 nOK++;
1885 if (nCoupled > 3) {
1886 // Check other clusters
1887 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1888 indx1 = clustNumb[iclust1];
1889 if (indx1 < 0) continue;
1890 if ((*aij_clu_pad)(indx1,j) < kCouplMin) continue;
1891 pad_pix[j] += (*aij_clu_pad)(indx1,j);
1892 }
1893 } // if (nCoupled > 3)
1894 } // for (Int_t j=0; j<npad;
1895 } // for (Int_t iclust=0; iclust<nForFit
1896 if (nCoupled < 4) return nOK;
1897
1898 Double_t aaa = 0;
1899 for (Int_t j=0; j<npad; j++) {
1900 if (pad_pix[j] < kCouplMin) continue;
1901 cout << j << " " << pad_pix[j] << " ";
1902 cout << fXyq[0][j] << " " << fXyq[1][j] << endl;
1903 aaa += pad_pix[j];
1904 fPadIJ[1][j] = -1; // exclude pads with strong coupling to the other clusters
1905 nOK--;
1906 }
1907 delete [] pad_pix; pad_pix = 0;
1908 return nOK;
1909}
1910
1911//_____________________________________________________________________________
1912void AliMUONClusterFinderAZ::Merge(Int_t nForFit, Int_t nCoupled, Int_t *clustNumb, Int_t *clustFit, TObjArray **clusters, TMatrixD *aij_clu_clu, TMatrixD *aij_clu_pad)
1913{
1914 // Merge the group of clusters with the one having the strongest coupling with them
1915
1916 Int_t indx, indx1, npxclu, npxclu1, imax=0;
1917 TObjArray *pix, *pix1;
1918 Double_t couplMax;
1919
1920 for (Int_t icl=0; icl<nForFit; icl++) {
1921 indx = clustFit[icl];
1922 pix = clusters[indx];
1923 npxclu = pix->GetEntriesFast();
1924 couplMax = -1;
1925 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1926 indx1 = clustNumb[icl1];
1927 if (indx1 < 0) continue;
1928 if ((*aij_clu_clu)(indx,indx1) > couplMax) {
1929 couplMax = (*aij_clu_clu)(indx,indx1);
1930 imax = indx1;
1931 }
1932 } // for (Int_t icl1=0;
1933 /*if (couplMax < kCouplMin) {
1934 cout << " Oops " << couplMax << endl;
1935 aij_clu_clu->Print();
1936 cout << icl << " " << indx << " " << npxclu << " " << nLinks << endl;
1937 ::exit(0);
1938 }*/
1939 // Add to it
1940 pix1 = clusters[imax];
1941 npxclu1 = pix1->GetEntriesFast();
1942 // Add pixels
1943 for (Int_t i=0; i<npxclu; i++) { pix1->Add(pix->UncheckedAt(i)); pix->RemoveAt(i); }
1944 cout << " New number of pixels: " << npxclu1 << " " << pix1->GetEntriesFast() << endl;
1945 //Add cluster-to-cluster couplings
1946 //aij_clu_clu->Print();
1947 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1948 indx1 = clustNumb[icl1];
1949 if (indx1 < 0 || indx1 == imax) continue;
1950 (*aij_clu_clu)(indx1,imax) += (*aij_clu_clu)(indx,indx1);
1951 (*aij_clu_clu)(imax,indx1) = (*aij_clu_clu)(indx1,imax);
1952 }
1953 (*aij_clu_clu)(indx,imax) = (*aij_clu_clu)(imax,indx) = 0;
1954 //aij_clu_clu->Print();
1955 //Add cluster-to-pad couplings
1956 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1957 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
1958 (*aij_clu_pad)(imax,j) += (*aij_clu_pad)(indx,j);
1959 (*aij_clu_pad)(indx,j) = 0;
1960 }
1961 } // for (Int_t icl=0; icl<nForFit;
1962}
1963
1964//_____________________________________________________________________________
1965Int_t AliMUONClusterFinderAZ::Fit(Int_t nfit, Int_t *clustFit, TObjArray **clusters, Double_t *parOk)
1966{
1967 // Find selected clusters to selected pad charges
1968
1969 TH2D *mlem = (TH2D*) gROOT->FindObject("mlem");
1970 //Int_t nx = mlem->GetNbinsX();
1971 //Int_t ny = mlem->GetNbinsY();
1972 Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
1973 Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
1974 Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
1975 Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
1976 //Double_t qmin = 0, qmax = 1;
1977 Double_t step[3]={0.01,0.002,0.02};
1978
1979 Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8];
1980 TObjArray *pix;
1981 Int_t npxclu;
1982
1983 // Number of pads to use
1984 Int_t npads = 0;
1985 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {if (fPadIJ[1][i] == 1) npads++;}
1986 for (Int_t i=0; i<nfit; i++) {cout << i+1 << " " << clustFit[i] << " ";}
1987 cout << nfit << endl;
1988 cout << " Number of pads to fit: " << npads << endl;
1989 fNpar = 0;
1990 fQtot = 0;
1991 if (npads < 2) return 0;
1992
1993 // Take cluster maxima as fitting seeds
1994 AliMUONPixel *pixPtr;
1995 Double_t xyseed[3][2], qseed[3];
1996 for (Int_t ifit=1; ifit<=nfit; ifit++) {
1997 cmax = 0;
1998 pix = clusters[clustFit[ifit-1]];
1999 npxclu = pix->GetEntriesFast();
2000 for (Int_t clu=0; clu<npxclu; clu++) {
2001 pixPtr = (AliMUONPixel*) pix->UncheckedAt(clu);
2002 cont = pixPtr->Charge();
2003 fQtot += cont;
2004 if (cont > cmax) {
2005 cmax = cont;
2006 xseed = pixPtr->Coord(0);
2007 yseed = pixPtr->Coord(1);
2008 }
2009 }
2010 xyseed[ifit-1][0] = xseed;
2011 xyseed[ifit-1][1] = yseed;
2012 qseed[ifit-1] = cmax;
2013 } // for (Int_t ifit=1;
2014
2015 Int_t nDof, maxSeed[3];
2016 Double_t fmin, chi2o = 9999, chi2n;
2017
2018 // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
2019 // lower, try 3-track (if number of pads is sufficient).
2020
2021 TMath::Sort(nfit, qseed, maxSeed, kTRUE); // in decreasing order
2022 nfit = TMath::Min (nfit, (npads + 1) / 3);
2023
2024 Double_t *gin = 0, func0, func1, param[8], param0[2][8], deriv[2][8], step0[8];
2025 Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0;
2026 Double_t delta[8], scMax, dder[8], estim, shiftSave = 0;
2027 Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail;
2028
2029 for (Int_t iseed=0; iseed<nfit; iseed++) {
2030
2031 for (Int_t j=0; j<3; j++) step0[fNpar+j] = shift[fNpar+j] = step[j];
2032 param[fNpar] = xyseed[maxSeed[iseed]][0];
2033 parmin[fNpar] = xmin;
2034 parmax[fNpar++] = xmax;
2035 param[fNpar] = xyseed[maxSeed[iseed]][1];
2036 parmin[fNpar] = ymin;
2037 parmax[fNpar++] = ymax;
2038 if (fNpar > 2) {
2039 param[fNpar] = fNpar == 4 ? 0.5 : 0.3;
2040 parmin[fNpar] = 0;
2041 parmax[fNpar++] = 1;
2042 }
2043
2044 // Try new algorithm
2045 min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
2046
2047 while (1) {
2048 max = !min;
2049 fcn1(fNpar, gin, func0, param, 1); nCall++;
2050 //cout << " Func: " << func0 << endl;
2051
2052 func2[max] = func0;
2053 for (Int_t j=0; j<fNpar; j++) {
2054 param0[max][j] = param[j];
2055 delta[j] = step0[j];
2056 param[j] += delta[j] / 10;
2057 if (j > 0) param[j-1] -= delta[j-1] / 10;
2058 fcn1(fNpar, gin, func1, param, 1); nCall++;
2059 deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
2060 //cout << j << " " << deriv[max][j] << endl;
2061 dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
2062 (param0[0][j] - param0[1][j]) : 0; // second derivative
2063 }
2064 param[fNpar-1] -= delta[fNpar-1] / 10;
2065 if (nCall > 2000) ::exit(0);
2066
2067 min = func2[0] < func2[1] ? 0 : 1;
2068 nFail = min == max ? 0 : nFail + 1;
2069
2070 stepMax = derMax = estim = 0;
2071 for (Int_t j=0; j<fNpar; j++) {
2072 // Estimated distance to minimum
2073 shift0 = shift[j];
2074 if (nLoop == 1) shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
2075 else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3) shift[j] = 0;
2076 else if (deriv[min][j]*deriv[!min][j] > 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])
2077 || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) {
2078 shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
2079 if (min == max) {
2080 if (memory[j] > 1) { shift[j] *= 2; } //cout << " Memory " << memory[j] << " " << shift[j] << endl; }
2081 memory[j]++;
2082 }
2083 } else {
2084 shift[j] = -deriv[min][j] / dder[j];
2085 memory[j] = 0;
2086 }
2087 if (TMath::Abs(shift[j])/step0[j] > estim) {
2088 estim = TMath::Abs(shift[j])/step0[j];
2089 iestMax = j;
2090 }
2091
2092 // Too big step
2093 if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
2094
2095 // Failed to improve minimum
2096 if (min != max) {
2097 memory[j] = 0;
2098 param[j] = param0[min][j];
2099 if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j]) shift[j] = (shift[j] + shift0) / 2;
2100 else shift[j] /= -2;
2101 }
2102
2103 // Too big step
2104 if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
2105 shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
2106
2107 // Introduce step relaxation factor
2108 if (memory[j] < 3) {
2109 scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
2110 if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
2111 shift[j] = TMath::Sign (shift0*scMax, shift[j]);
2112 }
2113 param[j] += shift[j];
2114
2115 //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
2116 stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
2117 if (TMath::Abs(deriv[min][j]) > derMax) {
2118 idMax = j;
2119 derMax = TMath::Abs (deriv[min][j]);
2120 }
2121 } // for (Int_t j=0; j<fNpar;
2122 //cout << max << " " << func2[min] << " " << derMax << " " << stepMax << " " << estim << " " << iestMax << " " << nCall << endl;
2123 if (estim < 1 && derMax < 2 || nLoop > 100) break; // minimum was found
2124
2125 nLoop++;
2126 // Check for small step
2127 if (shift[idMax] == 0) { shift[idMax] = step0[idMax]/10; param[idMax] += shift[idMax]; continue; }
2128 if (!memory[idMax] && derMax > 0.5 && nLoop > 10) {
2129 //cout << " ok " << deriv[min][idMax] << " " << deriv[!min][idMax] << " " << dder[idMax]*shift[idMax] << " " << shift[idMax] << endl;
2130 if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10) {
2131 if (min == max) dder[idMax] = -dder[idMax];
2132 shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
2133 param[idMax] += shift[idMax];
2134 stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
2135 //cout << shift[idMax] << " " << param[idMax] << endl;
2136 if (min == max) shiftSave = shift[idMax];
2137 }
2138 if (nFail > 10) {
2139 param[idMax] -= shift[idMax];
2140 shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
2141 param[idMax] += shift[idMax];
2142 //cout << shift[idMax] << endl;
2143 }
2144 }
2145 } // while (1)
2146 fmin = func2[min];
2147
2148 nDof = npads - fNpar;
2149 chi2n = nDof ? fmin/nDof : 0;
2150
2151 if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; }
2152 // Save parameters and errors
2153 for (Int_t i=0; i<fNpar; i++) {
2154 parOk[i] = param0[min][i];
2155 errOk[i] = fmin;
2156 }
2157
2158 cout << chi2o << " " << chi2n << endl;
2159 chi2o = chi2n;
2160 if (fmin < 0.1) break; // !!!???
2161 } // for (Int_t iseed=0;
2162
2163 for (Int_t i=0; i<fNpar; i++) {
2164 if (i == 4 || i == 7) continue;
2165 cout << parOk[i] << " " << errOk[i] << endl;
2166 }
2167 nfit = (fNpar + 1) / 3;
2168 Double_t rad;
2169 Int_t indx, imax;
2170 if (fReco) {
2171 for (Int_t j=0; j<nfit; j++) {
2172 indx = j<2 ? j*2 : j*2+1;
2173 AddRawCluster (parOk[indx], parOk[indx+1], errOk[indx]);
2174 }
2175 return nfit;
2176 }
2177 for (Int_t i=0; i<fnMu; i++) {
2178 cmax = fxyMu[i][6];
2179 for (Int_t j=0; j<nfit; j++) {
2180 indx = j<2 ? j*2 : j*2+1;
2181 rad = (fxyMu[i][0]-parOk[indx])*(fxyMu[i][0]-parOk[indx]) +
2182 (fxyMu[i][1]-parOk[indx+1])*(fxyMu[i][1]-parOk[indx+1]);
2183 if (rad < cmax) {
2184 cmax = rad;
2185 imax = indx;
2186 fxyMu[i][6] = cmax;
2187 fxyMu[i][2] = parOk[imax] - fxyMu[i][0];
2188 fxyMu[i][4] = parOk[imax+1] - fxyMu[i][1];
2189 fxyMu[i][3] = errOk[imax];
2190 fxyMu[i][5] = errOk[imax+1];
2191 }
2192 }
2193 }
2194 return nfit;
2195}
2196
2197//_____________________________________________________________________________
2198void fcn1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag)
2199{
2200 // Fit for one track
2201 AliMUONClusterFinderAZ& c = *(AliMUONClusterFinderAZ::fgClusterFinder);
2202
2203 Int_t cath, ix, iy, indx, npads=0;
2204 Double_t charge, delta, coef=0, chi2=0;
2205 for (Int_t j=0; j<c.fnPads[0]+c.fnPads[1]; j++) {
2206 if (c.fPadIJ[1][j] != 1) continue;
2207 cath = c.fPadIJ[0][j];
2208 npads++;
2209 c.fSegmentation[cath]->GetPadI(c.fXyq[0][j],c.fXyq[1][j],c.fZpad,ix,iy);
2210 c.fSegmentation[cath]->SetPad(ix,iy);
2211 charge = 0;
2212 for (Int_t i=c.fNpar/3; i>=0; i--) { // sum over tracks
2213 indx = i<2 ? 2*i : 2*i+1;
2214 c.fSegmentation[cath]->SetHit(par[indx],par[indx+1],c.fZpad);
2215 //charge += c.fResponse->IntXY(c.fSegmentation[cath])*par[icl*3+2];
2216 if (c.fNpar == 2) coef = 1;
2217 else coef = i==c.fNpar/3 ? par[indx+2] : 1-coef;
2218 //coef = TMath::Max (coef, 0.);
2219 if (c.fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2220 //coef = TMath::Max (coef, 0.);
2221 charge += c.fResponse->IntXY(c.fSegmentation[cath])*coef;
2222 }
2223 charge *= c.fQtot;
2224 //if (c.fXyq[2][j] > c.fResponse->MaxAdc()-1 && charge >
2225 // c.fResponse->MaxAdc()) charge = c.fResponse->MaxAdc();
2226 delta = charge - c.fXyq[2][j];
2227 delta /= TMath::Sqrt ((Double_t)c.fXyq[2][j]);
2228 //chi2 += TMath::Abs(delta);
2229 chi2 += delta*delta;
2230 } // for (Int_t j=0;
2231 f = chi2;
2232 Double_t qAver = c.fQtot/npads; //(c.fnPads[0]+c.fnPads[1]);
2233 f = chi2/qAver;
2234}
2235
2236//_____________________________________________________________________________
2237void AliMUONClusterFinderAZ::UpdatePads(Int_t nfit, Double_t *par)
2238{
2239 // Subtract the fitted charges from pads with strong coupling
2240
2241 Int_t cath, ix, iy, indx;
2242 Double_t charge, coef=0;
2243 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2244 if (fPadIJ[1][j] != -1) continue;
2245 if (fNpar != 0) {
2246 cath = fPadIJ[0][j];
2247 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
2248 fSegmentation[cath]->SetPad(ix,iy);
2249 charge = 0;
2250 for (Int_t i=fNpar/3; i>=0; i--) { // sum over tracks
2251 indx = i<2 ? 2*i : 2*i+1;
2252 fSegmentation[cath]->SetHit(par[indx],par[indx+1],fZpad);
2253 if (fNpar == 2) coef = 1;
2254 else coef = i==fNpar/3 ? par[indx+2] : 1-coef;
2255 if (fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2256 charge += fResponse->IntXY(fSegmentation[cath])*coef;
2257 }
2258 charge *= fQtot;
2259 fXyq[2][j] -= charge;
2260 } // if (fNpar != 0)
2261 if (fXyq[2][j] > fResponse->ZeroSuppression()) fPadIJ[1][j] = 0; // return pad for further using
2262 } // for (Int_t j=0;
2263}
2264
2265//_____________________________________________________________________________
2266Bool_t AliMUONClusterFinderAZ::TestTrack(Int_t t) {
2267// Test if track was user selected
2268 return kTRUE;
2269 /*
2270 if (fTrack[0]==-1 || fTrack[1]==-1) {
2271 return kTRUE;
2272 } else if (t==fTrack[0] || t==fTrack[1]) {
2273 return kTRUE;
2274 } else {
2275 return kFALSE;
2276 }
2277 */
2278}
2279
2280//_____________________________________________________________________________
2281void AliMUONClusterFinderAZ::AddRawCluster(Double_t x, Double_t y, Double_t fmin)
2282{
2283 //
2284 // Add a raw cluster copy to the list
2285 //
2286 AliMUONRawCluster cnew;
2287 AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON");
2288 //pMUON->AddRawCluster(fInput->Chamber(),c);
2289
2290 Int_t cath;
2291 for (cath=0; cath<2; cath++) {
2292 cnew.fX[cath] = x;
2293 cnew.fY[cath] = y;
2294 cnew.fZ[cath] = fZpad;
2295 cnew.fQ[cath] = 100;
2296 cnew.fPeakSignal[cath] = 20;
2297 cnew.fMultiplicity[cath] = 5;
2298 cnew.fNcluster[cath] = 1;
2299 cnew.fChi2[cath] = fmin; //0.1;
2300 /*
2301 cnew.fMultiplicity[cath]=c->fMultiplicity[cath];
2302 for (i=0; i<fMul[cath]; i++) {
2303 cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath];
2304 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
2305 }
2306 fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath);
2307 fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]);
2308 FillCluster(&cnew,cath);
2309 */
2310 }
2311 //cnew.fClusterType=cnew.PhysicsContribution();
2312 pMUON->AddRawCluster(AliMUONClusterInput::Instance()->Chamber(),cnew);
2313 //fNPeaks++;
2314}
2315
2316//_____________________________________________________________________________
2317Int_t AliMUONClusterFinderAZ::FindLocalMaxima(Int_t *localMax, Double_t *maxVal)
2318{
2319 // Find local maxima in pixel space for large preclusters in order to
2320 // try to split them into smaller pieces (to speed up the MLEM procedure)
2321
2322 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2323 if (hist) hist->Delete();
2324
2325 Float_t xylim[4] = {999, 999, 999, 999};
2326 Int_t nPix = fPixArray->GetEntriesFast();
2327 AliMUONPixel *pixPtr = 0;
2328 for (Int_t ipix=0; ipix<nPix; ipix++) {
2329 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2330 for (Int_t i=0; i<4; i++)
2331 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
2332 }
2333 for (Int_t i=0; i<4; i++) xylim[i] -= pixPtr->Size(i/2);
2334
2335 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
2336 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
2337 hist = new TH2D("anode","anode",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
2338 for (Int_t ipix=0; ipix<nPix; ipix++) {
2339 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2340 hist->Fill(pixPtr->Coord(0), pixPtr->Coord(1), pixPtr->Charge());
2341 }
2342 if (fDraw) {
2343 ((TCanvas*)gROOT->FindObject("c2"))->cd();
2344 gPad->SetTheta(55);
2345 gPad->SetPhi(30);
2346 hist->Draw("lego1Fb");
2347 gPad->Update();
2348 int ia;
2349 cin >> ia;
2350 }
2351
2352 Int_t nMax = 0, indx;
2353 Int_t *isLocalMax = new Int_t[ny*nx];
2354 for (Int_t i=0; i<ny*nx; i++) isLocalMax[i] = 0;
2355
2356 for (Int_t i=1; i<=ny; i++) {
2357 indx = (i-1) * nx;
2358 for (Int_t j=1; j<=nx; j++) {
2359 if (hist->GetCellContent(j,i) < 0.5) continue;
2360 //if (isLocalMax[indx+j-1] < 0) continue;
2361 if (isLocalMax[indx+j-1] != 0) continue;
2362 FlagLocalMax(hist, i, j, isLocalMax);
2363 }
2364 }
2365
2366 for (Int_t i=1; i<=ny; i++) {
2367 indx = (i-1) * nx;
2368 for (Int_t j=1; j<=nx; j++) {
2369 if (isLocalMax[indx+j-1] > 0) {
2370 localMax[nMax] = indx + j - 1;
2371 maxVal[nMax++] = hist->GetCellContent(j,i);
2372 }
2373 if (nMax > 99) { cout << " Too many local maxima !!!" << endl; ::exit(0); }
2374 }
2375 }
2376 cout << " Local max: " << nMax << endl;
2377 delete [] isLocalMax; isLocalMax = 0;
2378 return nMax;
2379}
2380
2381//_____________________________________________________________________________
2382void AliMUONClusterFinderAZ::FlagLocalMax(TH2D *hist, Int_t i, Int_t j, Int_t *isLocalMax)
2383{
2384 // Flag pixels (whether or not local maxima)
2385
2386 Int_t nx = hist->GetNbinsX();
2387 Int_t ny = hist->GetNbinsY();
2388 Int_t cont = TMath::Nint (hist->GetCellContent(j,i));
2389 Int_t cont1 = 0;
2390
2391 for (Int_t i1=i-1; i1<i+2; i1++) {
2392 if (i1 < 1 || i1 > ny) continue;
2393 for (Int_t j1=j-1; j1<j+2; j1++) {
2394 if (j1 < 1 || j1 > nx) continue;
2395 if (i == i1 && j == j1) continue;
2396 cont1 = TMath::Nint (hist->GetCellContent(j1,i1));
2397 if (cont < cont1) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2398 else if (cont > cont1) isLocalMax[(i1-1)*nx+j1-1] = -1;
2399 else { // the same charge
2400 isLocalMax[(i-1)*nx+j-1] = 1;
2401 if (isLocalMax[(i1-1)*nx+j1-1] == 0) {
2402 FlagLocalMax(hist, i1, j1, isLocalMax);
2403 if (isLocalMax[(i1-1)*nx+j1-1] < 0) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2404 else isLocalMax[(i1-1)*nx+j1-1] = -1;
2405 }
2406 }
2407 }
2408 }
2409 isLocalMax[(i-1)*nx+j-1] = 1; // local maximum
2410}
2411
2412//_____________________________________________________________________________
2413void AliMUONClusterFinderAZ::FindCluster(Int_t *localMax, Int_t iMax)
2414{
2415 // Find pixel cluster around local maximum #iMax and pick up pads
2416 // overlapping with it
2417
2418 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2419 Int_t nx = hist->GetNbinsX();
2420 Int_t ny = hist->GetNbinsY();
2421 Int_t ic = localMax[iMax] / nx + 1;
2422 Int_t jc = localMax[iMax] % nx + 1;
2423 Bool_t *used = new Bool_t[ny*nx];
2424 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
2425
2426 // Drop all pixels from the array - pick up only the ones from the cluster
2427 fPixArray->Delete();
2428
2429 Double_t wx = hist->GetXaxis()->GetBinWidth(1)/2;
2430 Double_t wy = hist->GetYaxis()->GetBinWidth(1)/2;
2431 Double_t yc = hist->GetYaxis()->GetBinCenter(ic);
2432 Double_t xc = hist->GetXaxis()->GetBinCenter(jc);
2433 Double_t cont = hist->GetCellContent(jc,ic);
2434 AliMUONPixel *pixPtr = new AliMUONPixel (xc, yc, wx, wy, cont);
2435 fPixArray->Add((TObject*)pixPtr);
2436 used[(ic-1)*nx+jc-1] = kTRUE;
2437 AddBin(hist, ic, jc, 1, used, (TObjArray*)0); // recursive call
2438
2439 Int_t nPix = fPixArray->GetEntriesFast(), npad = fnPads[0] + fnPads[1];
2440 for (Int_t i=0; i<nPix; i++) {
2441 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(0,wx);
2442 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(1,wy);
2443 }
2444 cout << iMax << " " << nPix << endl;
2445
2446 Float_t xy[4], xy12[4];
2447 // Pick up pads which overlap with found pixels
2448 for (Int_t i=0; i<npad; i++) fPadIJ[1][i] = -1;
2449 for (Int_t i=0; i<nPix; i++) {
2450 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
2451 for (Int_t j=0; j<4; j++)
2452 xy[j] = pixPtr->Coord(j/2) + (j%2 ? 1 : -1)*pixPtr->Size(j/2);
2453 for (Int_t j=0; j<npad; j++)
2454 if (Overlap(xy, j, xy12, 0)) fPadIJ[1][j] = 0; // flag for use
2455 }
2456
2457 delete [] used; used = 0;
2458}