MC-dependent part of AliRun extracted in AliMC (F.Carminati)
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterFinderAZ.cxx
CommitLineData
0df3ca52 1#include "AliMUONClusterFinderAZ.h"
2
1f9a65c4 3#include <stdlib.h>
0df3ca52 4#include <fcntl.h>
5#include <Riostream.h>
6#include <TROOT.h>
7#include <TCanvas.h>
8#include <TLine.h>
9#include <TTree.h>
10#include <TH2.h>
11#include <TView.h>
12#include <TStyle.h>
13#include <TMinuit.h>
14#include <TMatrixD.h>
15
16#include "AliHeader.h"
17#include "AliRun.h"
18#include "AliMUON.h"
19#include "AliMUONChamber.h"
20#include "AliMUONDigit.h"
21#include "AliMUONHit.h"
22#include "AliMUONChamber.h"
23#include "AliMUONRawCluster.h"
24#include "AliMUONClusterInput.h"
25#include "AliMUONPixel.h"
5d12ce38 26#include "AliMC.h"
0df3ca52 27
28// This function is used for fitting
29void fcn1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag);
30
31ClassImp(AliMUONClusterFinderAZ)
32
33AliMUONClusterFinderAZ* AliMUONClusterFinderAZ::fgClusterFinder = NULL;
34TMinuit* AliMUONClusterFinderAZ::fgMinuit = NULL;
35
36//_____________________________________________________________________________
37AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(Bool_t draw=0, Int_t iReco=0)
38{
39// Constructor
40 for (Int_t i=0; i<4; i++) {fHist[i] = 0;}
41 fMuonDigits = 0;
42 fSegmentation[1] = fSegmentation[0] = 0;
43 if (!fgClusterFinder) fgClusterFinder = this;
44 if (!fgMinuit) fgMinuit = new TMinuit(8);
45 fDraw = draw;
46 fReco = iReco;
47 fPixArray = new TObjArray(20);
48 /*
49 fPoints = 0;
50 fPhits = 0;
51 fRpoints = 0;
52 fCanvas = 0;
53 fNextCathode = kFALSE;
54 fColPad = 0;
55 */
56}
57
58//_____________________________________________________________________________
59AliMUONClusterFinderAZ::~AliMUONClusterFinderAZ()
60{
61 // Destructor
62 delete fgMinuit; fgMinuit = 0; delete fPixArray; fPixArray = 0;
63 /*
64 // Delete space point structure
65 if (fPoints) fPoints->Delete();
66 delete fPoints;
67 fPoints = 0;
68 //
69 if (fPhits) fPhits->Delete();
70 delete fPhits;
71 fPhits = 0;
72 //
73 if (fRpoints) fRpoints->Delete();
74 delete fRpoints;
75 fRpoints = 0;
76 */
77}
78
79//_____________________________________________________________________________
80void AliMUONClusterFinderAZ::FindRawClusters()
81{
82// To provide the same interface as in AliMUONClusterFinderVS
83
84 EventLoop (gAlice->GetHeader()->GetEvent(), AliMUONClusterInput::Instance()->Chamber());
85}
86
87//_____________________________________________________________________________
88void AliMUONClusterFinderAZ::EventLoop(Int_t nev=0, Int_t ch=0)
89{
90// Loop over events
91
92 FILE *lun = 0;
93 TCanvas *c1 = 0;
94 TView *view = 0;
95 TH2F *hist = 0;
96 Double_t p1[3]={0}, p2[3];
97 TTree *TR = 0;
98 if (fDraw) {
99 // File
100 lun = fopen("pool.dat","w");
101 c1 = new TCanvas("c1","Clusters",0,0,600,700);
102 c1->Divide(1,2);
103 new TCanvas("c2","Mlem",700,0,600,350);
104 }
105
106newev:
107 Int_t nparticles = 0, nent;
88cb7938 108
109 //Loaders
110 AliRunLoader * rl = AliRunLoader::GetRunLoader();
111 AliLoader * gime = rl->GetLoader("MUONLoader");
112
113 if (!fReco) nparticles = rl->GetEvent(nev);
5d12ce38 114 else nparticles = gAlice->GetMCApp()->GetNtrack();
0df3ca52 115 cout << "nev " << nev <<endl;
116 cout << "nparticles " << nparticles <<endl;
117 if (nparticles <= 0) return;
118
88cb7938 119 TTree *TH = gime->TreeH();
0df3ca52 120 Int_t ntracks = (Int_t) TH->GetEntries();
121 cout<<"ntracks "<<ntracks<<endl;
122
123 // Get pointers to Alice detectors and Digits containers
124 AliMUON *MUON = (AliMUON*) gAlice->GetModule("MUON");
125 if (!MUON) return;
126 // TClonesArray *Particles = gAlice->Particles();
127 if (!fReco) {
88cb7938 128 TR = gime->TreeR();
0df3ca52 129 if (TR) {
130 MUON->ResetRawClusters();
131 nent = (Int_t) TR->GetEntries();
132 if (nent != 1) {
133 cout << "Error in MUONdrawClust" << endl;
134 cout << " nent = " << nent << " not equal to 1" << endl;
135 //exit(0);
136 }
137 } // if (TR)
138 } // if (!fReco)
139
88cb7938 140 TTree *TD = gime->TreeD();
0df3ca52 141 //MUON->ResetDigits();
142
143 TClonesArray *MUONrawclust;
144 AliMUONChamber* iChamber = 0;
145
146 // As default draw the first cluster of the chamber #0
147
148newchamber:
149 if (ch > 9) {if (fReco) return; nev++; ch = 0; goto newev;}
150 //gAlice->ResetDigits();
1a1cdff8 151 fMuonDigits = MUON->GetMUONData()->Digits(ch);
0df3ca52 152 if (fMuonDigits == 0) return;
153 iChamber = &(MUON->Chamber(ch));
154 fSegmentation[0] = iChamber->SegmentationModel(1);
155 fSegmentation[1] = iChamber->SegmentationModel(2);
156 fResponse = iChamber->ResponseModel();
157
158 nent = 0;
159
160 if (TD) {
161 nent = (Int_t) TD->GetEntries();
162 //printf(" entries %d \n", nent);
163 }
164
165 Int_t ndigits[2]={9,9}, nShown[2]={0};
166 for (Int_t i=0; i<2; i++) {
167 for (Int_t j=0; j<kDim; j++) {fUsed[i][j]=kFALSE;}
168 }
169
170next:
171 if (ndigits[0] == nShown[0] && ndigits[1] == nShown[1]) {
172 // No more clusters
173 if (fReco) return;
174 ch++;
175 goto newchamber; // next chamber
176 }
177 Float_t xpad, ypad, zpad, zpad0;
178 TLine *line[99]={0};
179 Int_t nLine = 0;
180 Bool_t first = kTRUE;
181 cout << " *** Event # " << nev << " chamber: " << ch << endl;
182 fnPads[0] = fnPads[1] = 0;
183 for (Int_t i=0; i<kDim; i++) {fPadIJ[1][i] = 0;}
184 //for (Int_t iii = 0; iii<999; iii++) {
185 for (Int_t iii = 0; iii<2; iii++) {
186 Int_t cath = TMath::Odd(iii);
187 gAlice->ResetDigits();
188 TD->GetEvent(cath);
1a1cdff8 189 fMuonDigits = MUON->GetMUONData()->Digits(ch);
0df3ca52 190
191 ndigits[cath] = fMuonDigits->GetEntriesFast();
192 if (!ndigits[0] && !ndigits[1]) {if (fReco) return; ch++; goto newchamber;}
193 if (ndigits[cath] == 0) continue;
194 cout << " ndigits: " << ndigits[cath] << " " << cath << endl;
195
196 AliMUONDigit *mdig;
197 Int_t digit;
198
199 Bool_t EOC = kTRUE; // end-of-cluster
200 for (digit = 0; digit < ndigits[cath]; digit++) {
201 mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
202 if (mdig->Cathode() != cath) continue;
203 if (first) {
204 // Find first unused pad
205 if (fUsed[cath][digit]) continue;
206 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0);
207 } else {
208 if (fUsed[cath][digit]) continue;
209 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad);
210 if (TMath::Abs(zpad-zpad0)>0.1) continue; // different slats
211 // Find a pad overlapping with the cluster
212 if (!Overlap(cath,mdig)) continue;
213 }
214 // Add pad - recursive call
215 AddPad(cath,digit);
216 EOC = kFALSE;
217 if (digit >= 0) break;
218 }
219 if (first && EOC) {
220 // No more unused pads
221 if (cath == 0) continue; // on cathode #0 - check #1
222 else {
223 // No more clusters
224 if (fReco) return;
225 ch++;
226 goto newchamber; // next chamber
227 }
228 }
229 if (EOC) break; // cluster found
230 first = kFALSE;
231 cout << " nPads: " << fnPads[cath] << " " << nShown[cath]+fnPads[cath] << " " << cath << endl;
232 } // for (Int_t iii = 0;
233
234
235 if (fReco) goto skip;
236 char hName[4];
237 for (Int_t cath = 0; cath<2; cath++) {
238 // Build histograms
239 if (fHist[cath*2]) {fHist[cath*2]->Delete(); fHist[cath*2] = 0;}
240 if (fHist[cath*2+1]) {fHist[cath*2+1]->Delete(); fHist[cath*2+1] = 0;}
241 if (fnPads[cath] == 0) continue; // cluster on one cathode only
242 Float_t wxMin=999, wxMax=0, wyMin=999, wyMax=0;
243 Int_t minDx=0, maxDx=0, minDy=0, maxDy=0;
244 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
245 if (fPadIJ[0][i] != cath) continue;
246 if (fXyq[3][i] < wxMin) {wxMin = fXyq[3][i]; minDx = i;}
247 if (fXyq[3][i] > wxMax) {wxMax = fXyq[3][i]; maxDx = i;}
248 if (fXyq[4][i] < wyMin) {wyMin = fXyq[4][i]; minDy = i;}
249 if (fXyq[4][i] > wyMax) {wyMax = fXyq[4][i]; maxDy = i;}
250 }
251 cout << minDx << maxDx << minDy << maxDy << endl;
252 Int_t nx, ny, padSize;
253 Float_t xmin=9999, xmax=-9999, ymin=9999, ymax=-9999;
254 if (TMath::Nint(fXyq[3][minDx]*1000) == TMath::Nint(fXyq[3][maxDx]*1000) &&
255 TMath::Nint(fXyq[4][minDy]*1000) == TMath::Nint(fXyq[4][maxDy]*1000)) {
256 // the same segmentation
257 cout << " Same" << endl;
258 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
259 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
260 if (fPadIJ[0][i] != cath) continue;
261 if (fXyq[0][i] < xmin) xmin = fXyq[0][i];
262 if (fXyq[0][i] > xmax) xmax = fXyq[0][i];
263 if (fXyq[1][i] < ymin) ymin = fXyq[1][i];
264 if (fXyq[1][i] > ymax) ymax = fXyq[1][i];
265 }
266 xmin -= fXyq[3][minDx]; xmax += fXyq[3][minDx];
267 ymin -= fXyq[4][minDy]; ymax += fXyq[4][minDy];
268 nx = TMath::Nint ((xmax-xmin)/wxMin/2);
269 ny = TMath::Nint ((ymax-ymin)/wyMin/2);
270 sprintf(hName,"h%d",cath*2);
271 fHist[cath*2] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
272 cout << fHist[cath*2] << " " << fnPads[cath] << endl;
273 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
274 if (fPadIJ[0][i] != cath) continue;
275 fHist[cath*2]->Fill(fXyq[0][i],fXyq[1][i],fXyq[2][i]);
276 //cout << fXyq[0][i] << fXyq[1][i] << fXyq[2][i] << endl;
277 }
278 } else {
279 // different segmentation in the cluster
280 cout << " Different" << endl;
281 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
282 Int_t nOK = 0;
283 Int_t indx, locMin, locMax;
284 if (TMath::Nint(fXyq[3][minDx]*1000) != TMath::Nint(fXyq[3][maxDx]*1000)) {
285 // different segmentation along x
286 indx = 0;
287 locMin = minDx;
288 locMax = maxDx;
289 } else {
290 // different segmentation along y
291 indx = 1;
292 locMin = minDy;
293 locMax = maxDy;
294 }
295 Int_t loc = locMin;
296 for (Int_t i=0; i<2; i++) {
297 // loop over different pad sizes
298 if (i>0) loc = locMax;
299 padSize = TMath::Nint(fXyq[indx+3][loc]*1000);
300 xmin = 9999; xmax = -9999; ymin = 9999; ymax = -9999;
301 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
302 if (fPadIJ[0][j] != cath) continue;
303 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
304 nOK++;
305 xmin = TMath::Min (xmin,fXyq[0][j]);
306 xmax = TMath::Max (xmax,fXyq[0][j]);
307 ymin = TMath::Min (ymin,fXyq[1][j]);
308 ymax = TMath::Max (ymax,fXyq[1][j]);
309 }
310 xmin -= fXyq[3][loc]; xmax += fXyq[3][loc];
311 ymin -= fXyq[4][loc]; ymax += fXyq[4][loc];
312 nx = TMath::Nint ((xmax-xmin)/fXyq[3][loc]/2);
313 ny = TMath::Nint ((ymax-ymin)/fXyq[4][loc]/2);
314 sprintf(hName,"h%d",cath*2+i);
315 fHist[cath*2+i] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
316 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
317 if (fPadIJ[0][j] != cath) continue;
318 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
319 fHist[cath*2+i]->Fill(fXyq[0][j],fXyq[1][j],fXyq[2][j]);
320 }
321 } // for (Int_t i=0;
322 if (nOK != fnPads[cath]) cout << " *** Too many segmentations: nPads, nOK " << fnPads[cath] << " " << nOK << endl;
323 } // if (TMath::Nint(fXyq[3][minDx]*1000)
324 } // for (Int_t cath = 0;
325
326 // Draw histograms and coordinates
327 for (Int_t cath=0; cath<2; cath++) {
328 if (cath == 0) ModifyHistos();
329 if (fnPads[cath] == 0) continue; // cluster on one cathode only
330 if (fDraw) {
331 c1->cd(cath+1);
332 gPad->SetTheta(55);
333 gPad->SetPhi(30);
cd747ddb 334 Double_t x, y, x0, y0, r1=999, r2=0;
0df3ca52 335 if (fHist[cath*2+1]) {
336 //
337 x0 = fHist[cath*2]->GetXaxis()->GetXmin() - 1000*TMath::Cos(30*TMath::Pi()/180);
338 y0 = fHist[cath*2]->GetYaxis()->GetXmin() - 1000*TMath::Sin(30*TMath::Pi()/180);
339 r1 = 0;
340 Int_t ihist=cath*2;
341 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
342 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
343 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
344 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
345 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
346 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
347 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
348 r1 = TMath::Max (r1,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
349 }
350 }
351 }
352 ihist = cath*2 + 1 ;
353 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
354 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
355 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
356 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
357 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
358 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
359 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
360 r2 = TMath::Max (r2,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
361 }
362 }
363 }
364 cout << r1 << " " << r2 << endl;
365 } // if (fHist[cath*2+1])
366 if (r1 > r2) {
367 //fHist[cath*2]->Draw("lego1");
368 fHist[cath*2]->Draw("lego1Fb");
369 //if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBb");
370 if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBbFb");
371 } else {
372 //fHist[cath*2+1]->Draw("lego1");
373 fHist[cath*2+1]->Draw("lego1Fb");
374 //fHist[cath*2]->Draw("lego1SameAxisBb");
375 fHist[cath*2]->Draw("lego1SameAxisFbBb");
376 }
377 c1->Update();
378 } // if (fDraw)
379 } // for (Int_t cath = 0;
380
381 // Draw generated hits
382 Double_t xNDC[6];
383 hist = fHist[0] ? fHist[0] : fHist[2];
384 p2[2] = hist->GetMaximum();
385 view = 0;
386 if (c1) view = c1->Pad()->GetView();
387 cout << " *** GEANT hits *** " << endl;
388 fnMu = 0;
389 Int_t ix, iy, iok;
390 for (Int_t i=0; i<ntracks; i++) {
391 TH->GetEvent(i);
392 for (AliMUONHit* mHit=(AliMUONHit*)MUON->FirstHit(-1);
393 mHit;
394 mHit=(AliMUONHit*)MUON->NextHit()) {
395 if (mHit->Chamber() != ch+1) continue; // chamber number
396 if (TMath::Abs(mHit->Z()-zpad0) > 1) continue; // different slat
397 p2[0] = p1[0] = mHit->X(); // x-pos of hit
398 p2[1] = p1[1] = mHit->Y(); // y-pos
399 if (p1[0] < hist->GetXaxis()->GetXmin() ||
400 p1[0] > hist->GetXaxis()->GetXmax()) continue;
401 if (p1[1] < hist->GetYaxis()->GetXmin() ||
402 p1[1] > hist->GetYaxis()->GetXmax()) continue;
403 // Check if track comes thru pads with signal
404 iok = 0;
405 for (Int_t ihist=0; ihist<4; ihist++) {
406 if (!fHist[ihist]) continue;
407 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
408 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
409 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
410 }
411 if (!iok) continue;
412 gStyle->SetLineColor(1);
413 if (TMath::Abs((Int_t)mHit->Particle()) == 13) {
414 gStyle->SetLineColor(4);
415 fnMu++;
416 if (fnMu <= 2) {
417 fxyMu[fnMu-1][0] = p1[0];
418 fxyMu[fnMu-1][1] = p1[1];
419 }
420 }
421 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mHit->Z());
422 if (view) {
423 view->WCtoNDC(p1, &xNDC[0]);
424 view->WCtoNDC(p2, &xNDC[3]);
425 for (Int_t ipad=1; ipad<3; ipad++) {
426 c1->cd(ipad);
427 //c1->DrawLine(xpad[0],xpad[1],xpad[3],xpad[4]);
428 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
429 line[nLine++]->Draw();
430 }
431 }
432 } // for (AliMUONHit* mHit=
433 } // for (Int_t i=0; i<ntracks;
434
435 // Draw reconstructed coordinates
ce3f5e87 436 MUONrawclust = MUON->GetMUONData()->RawClusters(ch);
0df3ca52 437 TR->GetEvent(ch);
438 //cout << MUONrawclust << " " << MUONrawclust->GetEntries() << endl;
439 AliMUONRawCluster *mRaw;
440 gStyle->SetLineColor(3);
441 cout << " *** Reconstructed hits *** " << endl;
442 for (Int_t i=0; i<MUONrawclust->GetEntries(); i++) {
443 mRaw = (AliMUONRawCluster*)MUONrawclust->UncheckedAt(i);
444 if (TMath::Abs(mRaw->fZ[0]-zpad0) > 1) continue; // different slat
445 p2[0] = p1[0] = mRaw->fX[0]; // x-pos of hit
446 p2[1] = p1[1] = mRaw->fY[0]; // y-pos
447 if (p1[0] < hist->GetXaxis()->GetXmin() ||
448 p1[0] > hist->GetXaxis()->GetXmax()) continue;
449 if (p1[1] < hist->GetYaxis()->GetXmin() ||
450 p1[1] > hist->GetYaxis()->GetXmax()) continue;
451 /*
452 TD->GetEvent(cath);
453 cout << mRaw->fMultiplicity[0] << mRaw->fMultiplicity[1] << endl;
454 for (Int_t j=0; j<mRaw->fMultiplicity[cath]; j++) {
455 Int_t digit = mRaw->fIndexMap[j][cath];
456 cout << ((AliMUONDigit*)fMuonDigits->UncheckedAt(digit))->Signal() << endl;
457 }
458 */
459 // Check if track comes thru pads with signal
460 iok = 0;
461 for (Int_t ihist=0; ihist<4; ihist++) {
462 if (!fHist[ihist]) continue;
463 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
464 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
465 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
466 }
467 if (!iok) continue;
468 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mRaw->fZ[0]);
469 if (view) {
470 view->WCtoNDC(p1, &xNDC[0]);
471 view->WCtoNDC(p2, &xNDC[3]);
472 for (Int_t ipad=1; ipad<3; ipad++) {
473 c1->cd(ipad);
474 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
475 line[nLine++]->Draw();
476 }
477 }
478 } // for (Int_t i=0; i<MUONrawclust->GetEntries();
479 if (fDraw) c1->Update();
480
481skip:
482 // Use MLEM for cluster finder
483 fZpad = zpad0;
484 Int_t nMax = 1, localMax[100], maxPos[100];
485 Double_t maxVal[100];
486
487 if (CheckPrecluster(nShown)) {
488 BuildPixArray();
489 if (fnPads[0]+fnPads[1] > 50) nMax = FindLocalMaxima(localMax, maxVal);
490 if (nMax > 1) TMath::Sort(nMax, maxVal, maxPos, kTRUE); // in decreasing order
491 for (Int_t i=0; i<nMax; i++) {
492 if (nMax > 1) FindCluster(localMax, maxPos[i]);
493 if (!MainLoop()) cout << " MainLoop failed " << endl;
494 if (i < nMax-1) {
495 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
496 if (fPadIJ[1][j] == 0) continue; // pad charge was not modified
497 fPadIJ[1][j] = 0;
498 fXyq[2][j] = fXyq[5][j]; // use backup charge value
499 }
500 }
501 }
502 }
503 if (fReco) goto next;
504
505 for (Int_t i=0; i<fnMu; i++) {
506 // Check again if muon come thru the used pads (due to extra splitting)
507 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
508 if (TMath::Abs(fxyMu[i][0]-fXyq[0][j])<fXyq[3][j] &&
509 TMath::Abs(fxyMu[i][1]-fXyq[1][j])<fXyq[4][j]) {
510 printf("%12.3e %12.3e %12.3e %12.3e\n",fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
511 if (lun) fprintf(lun,"%4d %2d %12.3e %12.3e %12.3e %12.3e\n",nev,ch,fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
512 break;
513 }
514 }
515 } // for (Int_t i=0; i<fnMu;
516
517 // What's next?
518 char command[8];
519 cout << " What is next? " << endl;
520 command[0] = ' ';
521 if (fDraw) gets(command);
522 if (command[0] == 'n' || command[0] == 'N') {nev++; goto newev;} // next event
523 else if (command[0] == 'q' || command[0] == 'Q') {fclose(lun); return;} // exit display
524 //else if (command[0] == 'r' || command[0] == 'R') goto redraw; // redraw points
525 else if (command[0] == 'c' || command[0] == 'C') {
526 // new chamber
527 sscanf(command+1,"%d",&ch);
528 goto newchamber;
529 }
530 else if (command[0] == 'e' || command[0] == 'E') {
531 // new event
532 sscanf(command+1,"%d",&nev);
533 goto newev;
534 }
535 else goto next; // Next cluster
536}
537
538//_____________________________________________________________________________
539void AliMUONClusterFinderAZ::ModifyHistos(void)
540{
541 // Modify histograms to bring them to the same size
542 Int_t nhist = 0;
543 Float_t hlim[4][4], hbin[4][4]; // first index - xmin, xmax, ymin, ymax
544 Float_t binMin[4] = {999,999,999,999};
545
546 for (Int_t i=0; i<4; i++) {
547 if (!fHist[i]) continue;
548 hlim[0][nhist] = fHist[i]->GetXaxis()->GetXmin(); // xmin
549 hlim[1][nhist] = fHist[i]->GetXaxis()->GetXmax(); // xmax
550 hlim[2][nhist] = fHist[i]->GetYaxis()->GetXmin(); // ymin
551 hlim[3][nhist] = fHist[i]->GetYaxis()->GetXmax(); // ymax
552 hbin[0][nhist] = hbin[1][nhist] = fHist[i]->GetXaxis()->GetBinWidth(1);
553 hbin[2][nhist] = hbin[3][nhist] = fHist[i]->GetYaxis()->GetBinWidth(1);
554 binMin[0] = TMath::Min(binMin[0],hbin[0][nhist]);
555 binMin[2] = TMath::Min(binMin[2],hbin[2][nhist]);
556 nhist++;
557 }
558 binMin[1] = binMin[0];
559 binMin[3] = binMin[2];
560 cout << " Nhist: " << nhist << endl;
561
562 Int_t imin, imax;
563 for (Int_t lim=0; lim<4; lim++) {
564 while (1) {
565 imin = TMath::LocMin(nhist,hlim[lim]);
566 imax = TMath::LocMax(nhist,hlim[lim]);
567 if (TMath::Abs(hlim[lim][imin]-hlim[lim][imax])<0.01*binMin[lim]) break;
568 if (lim == 0 || lim == 2) {
569 // find lower limit
570 hlim[lim][imax] -= hbin[lim][imax];
571 } else {
572 // find upper limit
573 hlim[lim][imin] += hbin[lim][imin];
574 }
575 } // while (1)
576 }
577
578 // Rebuild histograms
579 nhist = 0;
580 TH2F *hist = 0;
581 Int_t nx, ny;
cd747ddb 582 Double_t x, y, cont, cmax=0;
0df3ca52 583 char hName[4];
584 for (Int_t ihist=0; ihist<4; ihist++) {
585 if (!fHist[ihist]) continue;
586 nx = TMath::Nint((hlim[1][nhist]-hlim[0][nhist])/hbin[0][nhist]);
587 ny = TMath::Nint((hlim[3][nhist]-hlim[2][nhist])/hbin[2][nhist]);
588 //hist = new TH2F("h","hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
589 sprintf(hName,"hh%d",ihist);
590 hist = new TH2F(hName,"hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
591 for (Int_t i=1; i<=fHist[ihist]->GetNbinsX(); i++) {
592 x = fHist[ihist]->GetXaxis()->GetBinCenter(i);
593 for (Int_t j=1; j<=fHist[ihist]->GetNbinsY(); j++) {
594 y = fHist[ihist]->GetYaxis()->GetBinCenter(j);
595 cont = fHist[ihist]->GetCellContent(i,j);
596 hist->Fill(x,y,cont);
597 }
598 }
599 cmax = TMath::Max (cmax,hist->GetMaximum());
600 fHist[ihist]->Delete();
601 fHist[ihist] = new TH2F(*hist);
602 hist->Delete();
603 nhist++;
604 }
605 printf("%f \n",cmax);
606
607 for (Int_t ihist=0; ihist<4; ihist++) {
608 if (!fHist[ihist]) continue;
609 fHist[ihist]->SetMaximum(cmax);
610 }
611}
612
613//_____________________________________________________________________________
614void AliMUONClusterFinderAZ::AddPad(Int_t cath, Int_t digit)
615{
616 // Add pad to the cluster
617 AliMUONDigit *mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
618
619 Int_t charge = mdig->Signal();
620 // get the center of the pad
621 Float_t xpad, ypad, zpad;
622 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
623
624 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
625 Int_t nPads = fnPads[0] + fnPads[1];
626 fXyq[0][nPads] = xpad;
627 fXyq[1][nPads] = ypad;
628 fXyq[2][nPads] = charge;
629 fXyq[3][nPads] = fSegmentation[cath]->Dpx(isec)/2;
630 fXyq[4][nPads] = fSegmentation[cath]->Dpy(isec)/2;
631 fXyq[5][nPads] = digit;
632 fPadIJ[0][nPads] = cath;
633 fPadIJ[1][nPads] = 0;
634 fUsed[cath][digit] = kTRUE;
635 //cout << " bbb " << fXyq[cath][2][nPads] << " " << fXyq[cath][0][nPads] << " " << fXyq[cath][1][nPads] << " " << fXyq[cath][3][nPads] << " " << fXyq[cath][4][nPads] << " " << zpad << " " << nPads << endl;
636 fnPads[cath]++;
637
638 // Check neighbours
639 Int_t nn, ix, iy, xList[10], yList[10];
640 AliMUONDigit *mdig1;
641
642 Int_t ndigits = fMuonDigits->GetEntriesFast();
643 fSegmentation[cath]->Neighbours(mdig->PadX(),mdig->PadY(),&nn,xList,yList);
644 for (Int_t in=0; in<nn; in++) {
645 ix=xList[in];
646 iy=yList[in];
647 for (Int_t digit1 = 0; digit1 < ndigits; digit1++) {
648 if (digit1 == digit) continue;
649 mdig1 = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit1);
650 if (mdig1->Cathode() != cath) continue;
651 if (!fUsed[cath][digit1] && mdig1->PadX() == ix && mdig1->PadY() == iy) {
652 fUsed[cath][digit1] = kTRUE;
653 // Add pad - recursive call
654 AddPad(cath,digit1);
655 }
656 } //for (Int_t digit1 = 0;
657 } // for (Int_t in=0;
658}
659
660//_____________________________________________________________________________
661Bool_t AliMUONClusterFinderAZ::Overlap(Int_t cath, TObject *dig)
662{
663 // Check if the pad from one cathode overlaps with a pad
664 // in the precluster on the other cathode
665
666 AliMUONDigit *mdig = (AliMUONDigit*) dig;
667
668 Float_t xpad, ypad, zpad;
669 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
670 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
671
672 Float_t xy1[4], xy12[4];
673 xy1[0] = xpad - fSegmentation[cath]->Dpx(isec)/2;
674 xy1[1] = xy1[0] + fSegmentation[cath]->Dpx(isec);
675 xy1[2] = ypad - fSegmentation[cath]->Dpy(isec)/2;
676 xy1[3] = xy1[2] + fSegmentation[cath]->Dpy(isec);
677 //cout << " ok " << fnPads[0]+fnPads[1] << xy1[0] << xy1[1] << xy1[2] << xy1[3] << endl;
678
679 Int_t cath1 = TMath::Even(cath);
680 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
681 if (fPadIJ[0][i] != cath1) continue;
682 if (Overlap(xy1, i, xy12, 0)) return kTRUE;
683 }
684 return kFALSE;
685}
686
687//_____________________________________________________________________________
688Bool_t AliMUONClusterFinderAZ::Overlap(Float_t *xy1, Int_t iPad, Float_t *xy12, Int_t iSkip)
689{
690 // Check if the pads xy1 and iPad overlap and return overlap area
691
692 Float_t xy2[4];
693 xy2[0] = fXyq[0][iPad] - fXyq[3][iPad];
694 xy2[1] = fXyq[0][iPad] + fXyq[3][iPad];
695 if (xy1[0] > xy2[1]-1.e-4 || xy1[1] < xy2[0]+1.e-4) return kFALSE;
696 xy2[2] = fXyq[1][iPad] - fXyq[4][iPad];
697 xy2[3] = fXyq[1][iPad] + fXyq[4][iPad];
698 if (xy1[2] > xy2[3]-1.e-4 || xy1[3] < xy2[2]+1.e-4) return kFALSE;
699 if (!iSkip) return kTRUE; // just check overlap (w/out computing the area)
700 xy12[0] = TMath::Max (xy1[0],xy2[0]);
701 xy12[1] = TMath::Min (xy1[1],xy2[1]);
702 xy12[2] = TMath::Max (xy1[2],xy2[2]);
703 xy12[3] = TMath::Min (xy1[3],xy2[3]);
704 return kTRUE;
705}
706
707//_____________________________________________________________________________
708/*
709Bool_t AliMUONClusterFinderAZ::Overlap(Int_t i, Int_t j, Float_t *xy12, Int_t iSkip)
710{
711 // Check if the pads i and j overlap and return overlap area
712
713 Float_t xy1[4], xy2[4];
714 return Overlap(xy1, xy2, xy12, iSkip);
715}
716*/
717//_____________________________________________________________________________
718Bool_t AliMUONClusterFinderAZ::CheckPrecluster(Int_t *nShown)
719{
720 // Check precluster in order to attempt to simplify it (mostly for
721 // two-cathode preclusters)
722
723 Int_t i1, i2;
724 Float_t xy1[4], xy12[4];
725
726 Int_t npad = fnPads[0] + fnPads[1];
727
728 // If pads have the same size take average of pads on both cathodes
729 Int_t sameSize = (fnPads[0] && fnPads[1]) ? 1 : 0;
730 if (sameSize) {
731 Double_t xSize = -1, ySize = 0;
732 for (Int_t i=0; i<npad; i++) {
733 if (fXyq[2][i] < 0) continue;
734 if (xSize < 0) { xSize = fXyq[3][i]; ySize = fXyq[4][i]; }
735 if (TMath::Abs(xSize-fXyq[3][i]) > 1.e-4 || TMath::Abs(ySize-fXyq[4][i]) > 1.e-4) { sameSize = 0; break; }
736 }
737 } // if (sameSize)
738 if (sameSize && (fnPads[0] > 2 || fnPads[1] > 2)) {
739 nShown[0] += fnPads[0];
740 nShown[1] += fnPads[1];
741 fnPads[0] = fnPads[1] = 0;
742 Int_t div;
743 for (Int_t i=0; i<npad; i++) {
744 if (fXyq[2][i] < 0) continue; // used pad
745 fXyq[2][fnPads[0]] = fXyq[2][i];
746 div = 1;
747 for (Int_t j=i+1; j<npad; j++) {
748 if (fPadIJ[0][j] == fPadIJ[0][i]) continue; // same cathode
749 if (TMath::Abs(fXyq[0][j]-fXyq[0][i]) > 1.e-4) continue;
750 if (TMath::Abs(fXyq[1][j]-fXyq[1][i]) > 1.e-4) continue;
751 fXyq[2][fnPads[0]] += fXyq[2][j];
752 div = 2;
753 fXyq[2][j] = -2;
754 break;
755 }
756 fXyq[2][fnPads[0]] /= div;
757 fXyq[0][fnPads[0]] = fXyq[0][i];
758 fXyq[1][fnPads[0]] = fXyq[1][i];
759 fPadIJ[0][fnPads[0]++] = 0;
760 }
761 } // if (sameSize)
762
763 // Check if one-cathode precluster
764 i1 = fnPads[0]!=0 ? 0 : 1;
765 i2 = fnPads[1]!=0 ? 1 : 0;
766
767 if (i1 != i2) { // two-cathode
768
769 Int_t *flags = new Int_t[npad];
770 for (Int_t i=0; i<npad; i++) { flags[i] = 0; }
771
772 // Check pad overlaps
773 for (Int_t i=0; i<npad; i++) {
774 if (fPadIJ[0][i] != i1) continue;
775 xy1[0] = fXyq[0][i] - fXyq[3][i];
776 xy1[1] = fXyq[0][i] + fXyq[3][i];
777 xy1[2] = fXyq[1][i] - fXyq[4][i];
778 xy1[3] = fXyq[1][i] + fXyq[4][i];
779 for (Int_t j=0; j<npad; j++) {
780 if (fPadIJ[0][j] != i2) continue;
781 if (!Overlap(xy1, j, xy12, 0)) continue;
782 flags[i] = flags[j] = 1; // mark overlapped pads
783 } // for (Int_t j=0;
784 } // for (Int_t i=0;
785
786 // Check if all pads overlap
787 Int_t digit=0, cath, nFlags=0;
788 for (Int_t i=0; i<npad; i++) {nFlags += !flags[i];}
789 if (nFlags) cout << " nFlags = " << nFlags << endl;
790 //if (nFlags > 2 || (Float_t)nFlags / npad > 0.2) { // why 2 ??? - empirical choice
791 if (nFlags > 0) {
792 for (Int_t i=0; i<npad; i++) {
793 if (flags[i]) continue;
794 digit = TMath::Nint (fXyq[5][i]);
795 cath = fPadIJ[0][i];
796 fUsed[cath][digit] = kFALSE; // release pad
797 fXyq[2][i] = -2;
798 fnPads[cath]--;
799 }
800 } // if (nFlags > 2)
801
802 // Check correlations of cathode charges
803 if (fnPads[0] && fnPads[1]) { // two-cathode
804 Double_t sum[2]={0};
805 Int_t over[2] = {1, 1};
806 for (Int_t i=0; i<npad; i++) {
807 cath = fPadIJ[0][i];
808 if (fXyq[2][i] > 0) sum[cath] += fXyq[2][i];
809 if (fXyq[2][i] > fResponse->MaxAdc()-1) over[cath] = 0;
810 }
811 cout << " Total charge: " << sum[0] << " " << sum[1] << endl;
812 if ((over[0] || over[1]) && TMath::Abs(sum[0]-sum[1])/(sum[0]+sum[1])*2 > 1) { // 3 times difference
813 cout << " Release " << endl;
814 // Big difference
815 cath = sum[0]>sum[1] ? 0 : 1;
816 Int_t imax = 0;
817 Double_t cmax=-1;
818 Double_t *dist = new Double_t[npad];
819 for (Int_t i=0; i<npad; i++) {
820 if (fPadIJ[0][i] != cath) continue;
821 if (fXyq[2][i] < cmax) continue;
822 cmax = fXyq[2][i];
823 imax = i;
824 }
825 // Arrange pads according to their distance to the max,
826 // normalized to the pad size
827 for (Int_t i=0; i<npad; i++) {
828 dist[i] = 0;
829 if (fPadIJ[0][i] != cath) continue;
830 if (i == imax) continue;
831 if (fXyq[2][i] < 0) continue;
832 dist[i] = (fXyq[0][i]-fXyq[0][imax])*(fXyq[0][i]-fXyq[0][imax])/
833 fXyq[3][imax]/fXyq[3][imax]/4;
834 dist[i] += (fXyq[1][i]-fXyq[1][imax])*(fXyq[1][i]-fXyq[1][imax])/
835 fXyq[4][imax]/fXyq[4][imax]/4;
836 dist[i] = TMath::Sqrt (dist[i]);
837 }
838 TMath::Sort(npad, dist, flags, kFALSE); // in increasing order
839 Int_t indx;
840 Double_t xmax = -1;
841 for (Int_t i=0; i<npad; i++) {
842 indx = flags[i];
843 if (fPadIJ[0][indx] != cath) continue;
844 if (fXyq[2][indx] < 0) continue;
845 if (fXyq[2][indx] <= cmax || TMath::Abs(dist[indx]-xmax)<1.e-3) {
846 // Release pads
847 if (TMath::Abs(dist[indx]-xmax)<1.e-3)
cd747ddb 848 cmax = TMath::Max((Double_t)(fXyq[2][indx]),cmax);
0df3ca52 849 else cmax = fXyq[2][indx];
850 xmax = dist[indx];
851 digit = TMath::Nint (fXyq[5][indx]);
852 fUsed[cath][digit] = kFALSE;
853 fXyq[2][indx] = -2;
854 fnPads[cath]--;
855 // xmax = dist[i]; // Bug?
856 }
857 else break;
858 }
859 delete [] dist; dist = 0;
860 } // TMath::Abs(sum[0]-sum[1])...
861 } // if (fnPads[0] && fnPads[1])
862 delete [] flags; flags = 0;
863 } // if (i1 != i2)
864
865 if (!sameSize) { nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; }
866
867 // Move released pads to the right
868 Int_t beg = 0, end = npad-1, padij;
869 Double_t xyq;
870 while (beg < end) {
871 if (fXyq[2][beg] > 0) { beg++; continue; }
872 for (Int_t j=end; j>beg; j--) {
873 if (fXyq[2][j] < 0) continue;
874 end = j - 1;
875 for (Int_t j1=0; j1<2; j1++) {
876 padij = fPadIJ[j1][beg];
877 fPadIJ[j1][beg] = fPadIJ[j1][j];
878 fPadIJ[j1][j] = padij;
879 }
880 for (Int_t j1=0; j1<6; j1++) {
881 xyq = fXyq[j1][beg];
882 fXyq[j1][beg] = fXyq[j1][j];
883 fXyq[j1][j] = xyq;
884 }
885 break;
886 } // for (Int_t j=end;
887 beg++;
888 } // while
889 npad = fnPads[0] + fnPads[1];
890 if (npad > 500) { cout << " ***** Too large cluster. Give up. " << npad << endl; return kFALSE; }
891 // Back up charge value
892 for (Int_t j=0; j<npad; j++) fXyq[5][j] = fXyq[2][j];
893
894 return kTRUE;
895}
896
897//_____________________________________________________________________________
898void AliMUONClusterFinderAZ::BuildPixArray()
899{
900 // Build pixel array for MLEM method
901
902 Int_t nPix=0, i1, i2;
903 Float_t xy1[4], xy12[4];
904 AliMUONPixel *pixPtr=0;
905
906 Int_t npad = fnPads[0] + fnPads[1];
907
908 // One cathode is empty
909 i1 = fnPads[0]!=0 ? 0 : 1;
910 i2 = fnPads[1]!=0 ? 1 : 0;
911
912 // Build array of pixels on anode plane
913 if (i1 == i2) { // one-cathode precluster
914 for (Int_t j=0; j<npad; j++) {
915 pixPtr = new AliMUONPixel();
916 for (Int_t i=0; i<2; i++) {
917 pixPtr->SetCoord(i, fXyq[i][j]); // pixel coordinates
918 pixPtr->SetSize(i, fXyq[i+3][j]); // pixel size
919 }
920 pixPtr->SetCharge(fXyq[2][j]); // charge
921 fPixArray->Add((TObject*)pixPtr);
922 nPix++;
923 }
924 } else { // two-cathode precluster
925 for (Int_t i=0; i<npad; i++) {
926 if (fPadIJ[0][i] != i1) continue;
927 xy1[0] = fXyq[0][i] - fXyq[3][i];
928 xy1[1] = fXyq[0][i] + fXyq[3][i];
929 xy1[2] = fXyq[1][i] - fXyq[4][i];
930 xy1[3] = fXyq[1][i] + fXyq[4][i];
931 for (Int_t j=0; j<npad; j++) {
932 if (fPadIJ[0][j] != i2) continue;
933 if (!Overlap(xy1, j, xy12, 1)) continue;
934 pixPtr = new AliMUONPixel();
935 for (Int_t k=0; k<2; k++) {
936 pixPtr->SetCoord(k, (xy12[2*k]+xy12[2*k+1])/2); // pixel coordinates
937 pixPtr->SetSize(k, xy12[2*k+1]-pixPtr->Coord(k)); // size
938 }
939 pixPtr->SetCharge(TMath::Min (fXyq[2][i],fXyq[2][j])); //charge
940 fPixArray->Add((TObject*)pixPtr);
941 nPix++;
942 } // for (Int_t j=0;
943 } // for (Int_t i=0;
944 } // else
945
946 Float_t wxmin=999, wymin=999;
947 for (Int_t i=0; i<npad; i++) {
948 if (fPadIJ[0][i] == i1) wymin = TMath::Min (wymin,fXyq[4][i]);
949 if (fPadIJ[0][i] == i2) wxmin = TMath::Min (wxmin,fXyq[3][i]);
950 }
951 cout << wxmin << " " << wymin << endl;
952
953 // Check if small pixel X-size
954 AjustPixel(wxmin, 0);
955 // Check if small pixel Y-size
956 AjustPixel(wymin, 1);
957 // Check if large pixel size
958 AjustPixel(wxmin, wymin);
959
960 // Remove discarded pixels
961 for (Int_t i=0; i<nPix; i++) {
962 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
963 //pixPtr->Print();
964 if (pixPtr->Charge() < 1) { fPixArray->RemoveAt(i); delete pixPtr; }// discarded pixel
965 }
966 fPixArray->Compress();
967 nPix = fPixArray->GetEntriesFast();
968
969 if (nPix > npad) {
970 cout << nPix << endl;
971 // Too many pixels - sort and remove pixels with the lowest signal
972 fPixArray->Sort();
973 for (Int_t i=npad; i<nPix; i++) {
974 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
975 //pixPtr->Print();
976 fPixArray->RemoveAt(i);
977 delete pixPtr;
978 }
979 nPix = npad;
980 } // if (nPix > npad)
981
982 // Set pixel charges to the same value (for MLEM)
983 for (Int_t i=0; i<nPix; i++) {
984 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
985 //pixPtr->SetCharge(10);
986 cout << i+1 << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(0) << " " << pixPtr->Size(1) << endl;
987 }
988}
989
990//_____________________________________________________________________________
991void AliMUONClusterFinderAZ::AjustPixel(Float_t width, Int_t ixy)
992{
993 // Check if some pixels have small size (ajust if necessary)
994
995 AliMUONPixel *pixPtr, *pixPtr1 = 0;
996 Int_t ixy1 = TMath::Even(ixy);
997 Int_t nPix = fPixArray->GetEntriesFast();
998
999 for (Int_t i=0; i<nPix; i++) {
1000 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1001 if (pixPtr->Charge() < 1) continue; // discarded pixel
1002 if (pixPtr->Size(ixy)-width < -1.e-4) {
1003 // try to merge
1004 cout << " Small X or Y: " << ixy << " " << pixPtr->Size(ixy) << " " << width << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << endl;
1005 for (Int_t j=i+1; j<nPix; j++) {
1006 pixPtr1 = (AliMUONPixel*) fPixArray->UncheckedAt(j);
1007 if (pixPtr1->Charge() < 1) continue; // discarded pixel
1008 if (TMath::Abs(pixPtr1->Size(ixy)-width) < 1.e-4) continue; // right size
1009 if (TMath::Abs(pixPtr1->Coord(ixy1)-pixPtr->Coord(ixy1)) > 1.e-4) continue; // different rows/columns
1010 if (TMath::Abs(pixPtr1->Coord(ixy)-pixPtr->Coord(ixy)) < 2*width) {
1011 // merge
1012 pixPtr->SetSize(ixy, width);
1013 pixPtr->SetCoord(ixy, (pixPtr->Coord(ixy)+pixPtr1->Coord(ixy))/2);
1014 pixPtr->SetCharge(TMath::Min (pixPtr->Charge(),pixPtr1->Charge()));
1015 pixPtr1->SetCharge(0);
1016 pixPtr1 = 0;
1017 break;
1018 }
1019 } // for (Int_t j=i+1;
1020 //if (!pixPtr1) { cout << " I am here!" << endl; pixPtr->SetSize(ixy, width); } // ???
1021 //else if (pixPtr1->Charge() > 0.5 || i == nPix-1) {
1022 if (pixPtr1 || i == nPix-1) {
1023 // edge pixel - just increase its size
1024 cout << " Edge ..." << endl;
1025 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1026 // ???if (fPadIJ[0][j] != i1) continue;
1027 if (TMath::Abs(pixPtr->Coord(ixy1)-fXyq[ixy1][j]) > 1.e-4) continue;
1028 if (pixPtr->Coord(ixy) < fXyq[ixy][j])
1029 pixPtr->Shift(ixy, -pixPtr->Size(ixy));
1030 else pixPtr->Shift(ixy, pixPtr->Size(ixy));
1031 pixPtr->SetSize(ixy, width);
1032 break;
1033 }
1034 }
1035 } // if (pixPtr->Size(ixy)-width < -1.e-4)
1036 } // for (Int_t i=0; i<nPix;
1037 return;
1038}
1039
1040//_____________________________________________________________________________
1041void AliMUONClusterFinderAZ::AjustPixel(Float_t wxmin, Float_t wymin)
1042{
1043 // Check if some pixels have large size (ajust if necessary)
1044
1045 Int_t nx, ny;
1046 Int_t nPix = fPixArray->GetEntriesFast();
1047 AliMUONPixel *pixPtr, *pixPtr1, pix;
1048
1049 // Check if large pixel size
1050 for (Int_t i=0; i<nPix; i++) {
1051 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1052 if (pixPtr->Charge() < 1) continue; // discarded pixel
1053 if (pixPtr->Size(0)-wxmin > 1.e-4 || pixPtr->Size(1)-wymin > 1.e-4) {
1054 cout << " Different " << pixPtr->Size(0) << " " << wxmin << " " << pixPtr->Size(1) << " " << wymin << endl;
1055 pix = *pixPtr;
1056 nx = TMath::Nint (pix.Size(0)/wxmin);
1057 ny = TMath::Nint (pix.Size(1)/wymin);
1058 pix.Shift(0, -pix.Size(0)-wxmin);
1059 pix.Shift(1, -pix.Size(1)-wymin);
1060 pix.SetSize(0, wxmin);
1061 pix.SetSize(1, wymin);
1062 for (Int_t ii=0; ii<nx; ii++) {
1063 pix.Shift(0, wxmin*2);
1064 for (Int_t jj=0; jj<ny; jj++) {
1065 pix.Shift(1, wymin*2);
1066 pixPtr1 = new AliMUONPixel(pix);
1067 fPixArray->Add((TObject*)pixPtr1);
1068 }
1069 }
1070 pixPtr->SetCharge(0);
1071 }
1072 } // for (Int_t i=0; i<nPix;
1073 return;
1074}
1075
1076//_____________________________________________________________________________
1077Bool_t AliMUONClusterFinderAZ::MainLoop()
1078{
1079 // Repeat MLEM algorithm until pixel size becomes sufficiently small
1080
1081 TH2D *mlem;
1082
1083 Int_t ix, iy;
1084 //Int_t nn, xList[10], yList[10];
1085 Int_t nPix = fPixArray->GetEntriesFast();
1086 Int_t npadTot = fnPads[0] + fnPads[1], npadOK = 0;
1087 AliMUONPixel *pixPtr = 0;
1088 Double_t *coef = 0, *probi = 0;
1089 for (Int_t i=0; i<npadTot; i++) if (fPadIJ[1][i] == 0) npadOK++;
1090
1091 while (1) {
1092
1093 mlem = (TH2D*) gROOT->FindObject("mlem");
1094 if (mlem) mlem->Delete();
1095 // Calculate coefficients
1096 cout << " nPix, npadTot, npadOK " << nPix << " " << npadTot << " " << npadOK << endl;
1097
1098 // Calculate coefficients and pixel visibilities
1099 coef = new Double_t [npadTot*nPix];
1100 probi = new Double_t [nPix];
1101 Int_t indx = 0, cath;
1102 for (Int_t ipix=0; ipix<nPix; ipix++) {
1103 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1104 probi[ipix] = 0;
1105 for (Int_t j=0; j<npadTot; j++) {
1106 if (fPadIJ[1][j] < 0) { coef[j*nPix+ipix] = 0; continue; }
1107 cath = fPadIJ[0][j];
1108 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
1109 fSegmentation[cath]->SetPad(ix,iy);
1110 /*
1111 fSegmentation[cath]->Neighbours(ix,iy,&nn,xList,yList);
1112 if (nn != 4) {
1113 cout << nn << ": ";
1114 for (Int_t i=0; i<nn; i++) {cout << xList[i] << " " << yList[i] << ", ";}
1115 cout << endl;
1116 }
1117 */
1118 Double_t sum = 0;
1119 fSegmentation[cath]->SetHit(pixPtr->Coord(0),pixPtr->Coord(1),fZpad);
1120 sum += fResponse->IntXY(fSegmentation[cath]);
1121 indx = j*nPix + ipix;
1122 coef[indx] = sum;
1123 probi[ipix] += coef[indx];
1124 //cout << j << " " << ipix << " " << coef[indx] << endl;
1125 } // for (Int_t j=0;
1126 //cout << " prob: " << probi[ipix] << endl;
1127 if (probi[ipix] < 0.01) pixPtr->SetCharge(0); // "invisible" pixel
1128 } // for (Int_t ipix=0;
1129
1130 // MLEM algorithm
1131 Mlem(coef, probi);
1132
cd747ddb 1133 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 1134 for (Int_t ipix=0; ipix<nPix; ipix++) {
1135 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1136 for (Int_t i=0; i<4; i++)
1137 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1138 //cout << ipix+1; pixPtr->Print();
1139 }
1140 for (Int_t i=0; i<4; i++) {
1141 xylim[i] -= pixPtr->Size(i/2); cout << (i%2 ? -1 : 1)*xylim[i] << " "; }
1142 cout << endl;
1143
1144 // Ajust histogram to approximately the same limits as for the pads
1145 // (for good presentation)
1146 //*
1147 Float_t xypads[4];
1148 if (fHist[0]) {
1149 xypads[0] = fHist[0]->GetXaxis()->GetXmin();
1150 xypads[1] = -fHist[0]->GetXaxis()->GetXmax();
1151 xypads[2] = fHist[0]->GetYaxis()->GetXmin();
1152 xypads[3] = -fHist[0]->GetYaxis()->GetXmax();
1153 for (Int_t i=0; i<4; i++) {
1154 while(1) {
1155 if (xylim[i] < xypads[i]) break;
1156 xylim[i] -= 2*pixPtr->Size(i/2);
1157 }
1158 }
1159 } // if (fHist[0])
1160 //*/
1161
1162 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
1163 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
1164 mlem = new TH2D("mlem","mlem",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
1165 for (Int_t ipix=0; ipix<nPix; ipix++) {
1166 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1167 mlem->Fill(pixPtr->Coord(0),pixPtr->Coord(1),pixPtr->Charge());
1168 }
1169 //gPad->GetCanvas()->cd(3);
1170 if (fDraw) {
1171 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1172 gPad->SetTheta(55);
1173 gPad->SetPhi(30);
1174 mlem->Draw("lego1Fb");
1175 gPad->Update();
1176 gets((char*)&ix);
1177 }
1178
1179 // Check if the total charge of pixels is too low
1180 Double_t qTot = 0;
1181 for (Int_t i=0; i<nPix; i++) {
1182 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1183 qTot += pixPtr->Charge();
1184 }
1185 if (qTot < 1.e-4 || npadOK < 3 && qTot < 50) {
1186 delete [] coef; delete [] probi; coef = 0; probi = 0;
1187 fPixArray->Delete();
1188 return kFALSE;
1189 }
1190
1191 // Plot data - expectation
1192 /*
1193 Double_t x, y, cont;
1194 for (Int_t j=0; j<npadTot; j++) {
1195 Double_t sum1 = 0;
1196 for (Int_t i=0; i<nPix; i++) {
1197 // Caculate expectation
1198 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1199 sum1 += pixPtr->Charge()*coef[j*nPix+i];
1200 }
1201 sum1 = TMath::Min (sum1,(Double_t)fResponse->MaxAdc());
1202 x = fXyq[0][j];
1203 y = fXyq[1][j];
1204 cath = fPadIJ[0][j];
1205 Int_t ihist = cath*2;
1206 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1207 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1208 cont = fHist[ihist]->GetCellContent(ix,iy);
1209 if (cont == 0 && fHist[ihist+1]) {
1210 ihist += 1;
1211 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1212 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1213 }
1214 fHist[ihist]->SetBinContent(ix,iy,fXyq[2][j]-sum1);
1215 }
1216 ((TCanvas*)gROOT->FindObject("c1"))->cd(1);
1217 //gPad->SetTheta(55);
1218 //gPad->SetPhi(30);
1219 //mlem->Draw("lego1");
1220 gPad->Modified();
1221 ((TCanvas*)gROOT->FindObject("c1"))->cd(2);
1222 gPad->Modified();
1223 */
1224
1225 // Calculate position of the center-of-gravity around the maximum pixel
1226 Double_t xyCOG[2];
1227 FindCOG(mlem, xyCOG);
1228
1229 if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.07 && pixPtr->Size(0) > pixPtr->Size(1)) break;
1230 //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) >= 0.07 || pixPtr->Size(0) < pixPtr->Size(1)) {
1231 // Sort pixels according to the charge
1232 fPixArray->Sort();
1233 /*
1234 for (Int_t i=0; i<nPix; i++) {
1235 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1236 cout << i+1; pixPtr->Print();
1237 }
1238 */
1239 Double_t pixMin = 0.01*((AliMUONPixel*)fPixArray->UncheckedAt(0))->Charge();
1240 pixMin = TMath::Min (pixMin,50.);
1241
1242 // Decrease pixel size and shift pixels to make them centered at
1243 // the maximum one
1244 indx = (pixPtr->Size(0)>pixPtr->Size(1)) ? 0 : 1;
1245 Double_t width = 0, shift[2]={0};
1246 ix = 1;
1247 for (Int_t i=0; i<4; i++) xylim[i] = 999;
1248 Int_t nPix1 = nPix; nPix = 0;
1249 for (Int_t ipix=0; ipix<nPix1; ipix++) {
1250 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1251 if (nPix >= npadOK) { // too many pixels already
1252 fPixArray->RemoveAt(ipix);
1253 delete pixPtr;
1254 continue;
1255 }
1256 if (pixPtr->Charge() < pixMin) { // low charge
1257 fPixArray->RemoveAt(ipix);
1258 delete pixPtr;
1259 continue;
1260 }
1261 for (Int_t i=0; i<2; i++) {
1262 if (!i) {
1263 pixPtr->SetCharge(10);
1264 pixPtr->SetSize(indx, pixPtr->Size(indx)/2);
1265 width = -pixPtr->Size(indx);
1266 pixPtr->Shift(indx, width);
1267 // Shift pixel position
1268 if (ix) {
1269 ix = 0;
1270 for (Int_t j=0; j<2; j++) {
1271 shift[j] = pixPtr->Coord(j) - xyCOG[j];
1272 shift[j] -= ((Int_t)(shift[j]/pixPtr->Size(j)/2))*pixPtr->Size(j)*2;
1273 }
1274 //cout << ipix << " " << i << " " << shift[0] << " " << shift[1] << endl;
1275 } // if (ix)
1276 pixPtr->Shift(0, -shift[0]);
1277 pixPtr->Shift(1, -shift[1]);
1278 } else {
1279 pixPtr = new AliMUONPixel(*pixPtr);
1280 pixPtr->Shift(indx, -2*width);
1281 fPixArray->Add((TObject*)pixPtr);
1282 } // else
1283 //pixPtr->Print();
1284 for (Int_t i=0; i<4; i++)
1285 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1286 } // for (Int_t i=0; i<2;
1287 nPix += 2;
1288 } // for (Int_t ipix=0;
1289
1290 fPixArray->Compress();
1291 nPix = fPixArray->GetEntriesFast();
1292
1293 // Remove excessive pixels
1294 if (nPix > npadOK) {
1295 for (Int_t ipix=npadOK; ipix<nPix; ipix++) {
1296 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1297 fPixArray->RemoveAt(ipix);
1298 delete pixPtr;
1299 }
1300 } else {
1301 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(0);
1302 // add pixels if the maximum is at the limit of pixel area
1303 // start from Y-direction
1304 Int_t j = 0;
1305 for (Int_t i=3; i>-1; i--) {
1306 if (nPix < npadOK &&
1307 TMath::Abs((i%2 ? -1 : 1)*xylim[i]-xyCOG[i/2]) < pixPtr->Size(i/2)) {
1308 pixPtr = new AliMUONPixel(*pixPtr);
1309 pixPtr->SetCoord(i/2, xyCOG[i/2]+(i%2 ? 2:-2)*pixPtr->Size(i/2));
1310 j = TMath::Even (i/2);
1311 pixPtr->SetCoord(j, xyCOG[j]);
1312 fPixArray->Add((TObject*)pixPtr);
1313 nPix++;
1314 }
1315 }
1316 } // else
1317
1318 fPixArray->Compress();
1319 nPix = fPixArray->GetEntriesFast();
1320 delete [] coef; delete [] probi; coef = 0; probi = 0;
1321 } // while (1)
1322
1323 // remove pixels with low signal or low visibility
1324 // Cuts are empirical !!!
1325 Double_t thresh = TMath::Max (mlem->GetMaximum()/100.,1.);
1326 thresh = TMath::Min (thresh,50.);
1327 Double_t cmax = -1, charge = 0;
1328 for (Int_t i=0; i<nPix; i++) cmax = TMath::Max (cmax,probi[i]);
1329 // Mark pixels which should be removed
1330 for (Int_t i=0; i<nPix; i++) {
1331 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1332 charge = pixPtr->Charge();
1333 if (charge < thresh) pixPtr->SetCharge(-charge);
1334 else if (cmax > 1.91) {
1335 if (probi[i] < 1.9) pixPtr->SetCharge(-charge);
1336 }
1337 else if (probi[i] < cmax*0.9) pixPtr->SetCharge(-charge);
1338 }
1339 // Move charge of removed pixels to their nearest neighbour (to keep total charge the same)
1340 Int_t near = 0;
1341 for (Int_t i=0; i<nPix; i++) {
1342 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1343 charge = pixPtr->Charge();
1344 if (charge > 0) continue;
1345 near = FindNearest(pixPtr);
1346 pixPtr->SetCharge(0);
1347 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(near);
1348 pixPtr->SetCharge(pixPtr->Charge() - charge);
1349 }
1350 // Update histogram
1351 for (Int_t i=0; i<nPix; i++) {
1352 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1353 ix = mlem->GetXaxis()->FindBin(pixPtr->Coord(0));
1354 iy = mlem->GetYaxis()->FindBin(pixPtr->Coord(1));
1355 mlem->SetBinContent(ix, iy, pixPtr->Charge());
1356 }
1357 if (fDraw) {
1358 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1359 gPad->SetTheta(55);
1360 gPad->SetPhi(30);
1361 mlem->Draw("lego1Fb");
1362 gPad->Update();
1363 }
1364
1365 fxyMu[0][6] = fxyMu[1][6] = 9999;
1366 // Try to split into clusters
1367 Bool_t ok = kTRUE;
1368 if (mlem->GetSum() < 1) ok = kFALSE;
1369 else Split(mlem, coef);
1370 delete [] coef; delete [] probi; coef = 0; probi = 0;
1371 fPixArray->Delete();
1372 return ok;
1373}
1374
1375//_____________________________________________________________________________
1376void AliMUONClusterFinderAZ::Mlem(Double_t *coef, Double_t *probi)
1377{
1378 // Use MLEM to find pixel charges
1379
1380 Int_t nPix = fPixArray->GetEntriesFast();
1381 Int_t npad = fnPads[0] + fnPads[1];
1382 Double_t *probi1 = new Double_t [nPix];
1383 Int_t indx, indx1;
1384 AliMUONPixel *pixPtr;
1385
1386 for (Int_t iter=0; iter<15; iter++) {
1387 // Do iterations
1388 for (Int_t ipix=0; ipix<nPix; ipix++) {
1389 // Correct each pixel
1390 if (probi[ipix] < 0.01) continue; // skip "invisible" pixel
1391 Double_t sum = 0;
1392 probi1[ipix] = probi[ipix];
1393 for (Int_t j=0; j<npad; j++) {
1394 if (fPadIJ[1][j] < 0) continue;
1395 Double_t sum1 = 0;
1396 indx1 = j*nPix;
1397 indx = indx1 + ipix;
1398 for (Int_t i=0; i<nPix; i++) {
1399 // Caculate expectation
1400 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1401 sum1 += pixPtr->Charge()*coef[indx1+i];
1402 } // for (Int_t i=0;
1403 if (fXyq[2][j] > fResponse->MaxAdc()-1 && sum1 > fResponse->MaxAdc()) { probi1[ipix] -= coef[indx]; continue; } // correct for pad charge overflows
1404 //cout << sum1 << " " << fXyq[2][j] << " " << coef[j*nPix+ipix] << endl;
1405 if (coef[indx] > 1.e-6) sum += fXyq[2][j]*coef[indx]/sum1;
1406 } // for (Int_t j=0;
1407 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1408 if (probi1[ipix] > 1.e-6) pixPtr->SetCharge(pixPtr->Charge()*sum/probi1[ipix]);
1409 } // for (Int_t ipix=0;
1410 } // for (Int_t iter=0;
1411 delete [] probi1;
1412 return;
1413}
1414
1415//_____________________________________________________________________________
1416void AliMUONClusterFinderAZ::FindCOG(TH2D *mlem, Double_t *xyc)
1417{
1418 // Calculate position of the center-of-gravity around the maximum pixel
1419
1420 Int_t ixmax, iymax, ix, nsumx=0, nsumy=0, nsum=0;
1421 Int_t i1 = -9, j1 = -9;
1422 mlem->GetMaximumBin(ixmax,iymax,ix);
1423 Int_t nx = mlem->GetNbinsX();
1424 Int_t ny = mlem->GetNbinsY();
1425 Double_t thresh = mlem->GetMaximum()/10;
1426 Double_t x, y, cont, xq=0, yq=0, qq=0;
1427
1428 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1429 y = mlem->GetYaxis()->GetBinCenter(i);
1430 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1431 cont = mlem->GetCellContent(j,i);
1432 if (cont < thresh) continue;
1433 if (i != i1) {i1 = i; nsumy++;}
1434 if (j != j1) {j1 = j; nsumx++;}
1435 x = mlem->GetXaxis()->GetBinCenter(j);
1436 xq += x*cont;
1437 yq += y*cont;
1438 qq += cont;
1439 nsum++;
1440 }
1441 }
1442
1443 Double_t cmax = 0;
1444 Int_t i2 = 0, j2 = 0;
1445 x = y = 0;
1446 if (nsumy == 1) {
1447 // one bin in Y - add one more (with the largest signal)
1448 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1449 if (i == iymax) continue;
1450 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1451 cont = mlem->GetCellContent(j,i);
1452 if (cont > cmax) {
1453 cmax = cont;
1454 x = mlem->GetXaxis()->GetBinCenter(j);
1455 y = mlem->GetYaxis()->GetBinCenter(i);
1456 i2 = i;
1457 j2 = j;
1458 }
1459 }
1460 }
1461 xq += x*cmax;
1462 yq += y*cmax;
1463 qq += cmax;
1464 if (i2 != i1) nsumy++;
1465 if (j2 != j1) nsumx++;
1466 nsum++;
1467 } // if (nsumy == 1)
1468
1469 if (nsumx == 1) {
1470 // one bin in X - add one more (with the largest signal)
1471 cmax = x = y = 0;
1472 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1473 if (j == ixmax) continue;
1474 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1475 cont = mlem->GetCellContent(j,i);
1476 if (cont > cmax) {
1477 cmax = cont;
1478 x = mlem->GetXaxis()->GetBinCenter(j);
1479 y = mlem->GetYaxis()->GetBinCenter(i);
1480 i2 = i;
1481 j2 = j;
1482 }
1483 }
1484 }
1485 xq += x*cmax;
1486 yq += y*cmax;
1487 qq += cmax;
1488 if (i2 != i1) nsumy++;
1489 if (j2 != j1) nsumx++;
1490 nsum++;
1491 } // if (nsumx == 1)
1492
1493 xyc[0] = xq/qq; xyc[1] = yq/qq;
1494 cout << xyc[0] << " " << xyc[1] << " " << qq << " " << nsum << " " << nsumx << " " << nsumy << endl;
1495 return;
1496}
1497
1498//_____________________________________________________________________________
1499Int_t AliMUONClusterFinderAZ::FindNearest(AliMUONPixel *pixPtr0)
1500{
1501 // Find the pixel nearest to the given one
1502 // (algorithm may be not very efficient)
1503
1504 Int_t nPix = fPixArray->GetEntriesFast(), imin = 0;
1505 Double_t rmin = 99999, dx = 0, dy = 0, r = 0;
1506 Double_t xc = pixPtr0->Coord(0), yc = pixPtr0->Coord(1);
1507 AliMUONPixel *pixPtr;
1508
1509 for (Int_t i=0; i<nPix; i++) {
1510 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1511 if (pixPtr->Charge() < 0.5) continue;
1512 dx = (xc - pixPtr->Coord(0)) / pixPtr->Size(0);
1513 dy = (yc - pixPtr->Coord(1)) / pixPtr->Size(1);
1514 r = dx *dx + dy * dy;
1515 if (r < rmin) { rmin = r; imin = i; }
1516 }
1517 return imin;
1518}
1519
1520//_____________________________________________________________________________
1521void AliMUONClusterFinderAZ::Split(TH2D *mlem, Double_t *coef)
1522{
1523 // The main steering function to work with clusters of pixels in anode
1524 // plane (find clusters, decouple them from each other, merge them (if
1525 // necessary), pick up coupled pads, call the fitting function)
1526
1527 Int_t nx = mlem->GetNbinsX();
1528 Int_t ny = mlem->GetNbinsY();
1529 Int_t nPix = fPixArray->GetEntriesFast();
1530
1531 Bool_t *used = new Bool_t[ny*nx];
1532 Double_t cont;
1533 Int_t nclust = 0, indx, indx1;
1534
1535 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
1536
1537 TObjArray *clusters[200]={0};
1538 TObjArray *pix;
1539
1540 // Find clusters of histogram bins (easier to work in 2-D space)
1541 for (Int_t i=1; i<=ny; i++) {
1542 for (Int_t j=1; j<=nx; j++) {
1543 indx = (i-1)*nx + j - 1;
1544 if (used[indx]) continue;
1545 cont = mlem->GetCellContent(j,i);
1546 if (cont < 0.5) continue;
1547 pix = new TObjArray(20);
1548 used[indx] = 1;
1549 pix->Add(BinToPix(mlem,j,i));
1550 AddBin(mlem, i, j, 0, used, pix); // recursive call
1551 clusters[nclust++] = pix;
1552 if (nclust > 200) { cout << " Too many clusters " << endl; ::exit(0); }
1553 } // for (Int_t j=1; j<=nx; j++) {
1554 } // for (Int_t i=1; i<=ny;
1555 cout << nclust << endl;
1556 delete [] used; used = 0;
1557
1558 // Compute couplings between clusters and clusters to pads
1559 Int_t npad = fnPads[0] + fnPads[1];
1560
1561 // Exclude pads with overflows
1562 for (Int_t j=0; j<npad; j++) {
1563 if (fXyq[2][j] > fResponse->MaxAdc()-1) fPadIJ[1][j] = -9;
1564 else fPadIJ[1][j] = 0;
1565 }
1566
1567 // Compute couplings of clusters to pads
1568 TMatrixD *aij_clu_pad = new TMatrixD(nclust,npad);
1569 *aij_clu_pad = 0;
1570 Int_t npxclu;
1571 for (Int_t iclust=0; iclust<nclust; iclust++) {
1572 pix = clusters[iclust];
1573 npxclu = pix->GetEntriesFast();
1574 for (Int_t i=0; i<npxclu; i++) {
1575 indx = fPixArray->IndexOf(pix->UncheckedAt(i));
1576 for (Int_t j=0; j<npad; j++) {
1577 // Exclude overflows
1578 if (fPadIJ[1][j] < 0) continue;
1579 if (coef[j*nPix+indx] < kCouplMin) continue;
1580 (*aij_clu_pad)(iclust,j) += coef[j*nPix+indx];
1581 }
1582 }
1583 }
1584 // Compute couplings between clusters
1585 TMatrixD *aij_clu_clu = new TMatrixD(nclust,nclust);
1586 *aij_clu_clu = 0;
1587 for (Int_t iclust=0; iclust<nclust; iclust++) {
1588 for (Int_t j=0; j<npad; j++) {
1589 // Exclude overflows
1590 if (fPadIJ[1][j] < 0) continue;
1591 if ((*aij_clu_pad)(iclust,j) < kCouplMin) continue;
1592 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
1593 if ((*aij_clu_pad)(iclust1,j) < kCouplMin) continue;
1594 (*aij_clu_clu)(iclust,iclust1) +=
1595 TMath::Sqrt ((*aij_clu_pad)(iclust,j)*(*aij_clu_pad)(iclust1,j));
1596 }
1597 }
1598 }
1599 for (Int_t iclust=0; iclust<nclust; iclust++) {
1600 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
1601 (*aij_clu_clu)(iclust1,iclust) = (*aij_clu_clu)(iclust,iclust1);
1602 }
1603 }
1604
1605 if (nclust > 1) aij_clu_clu->Print();
1606
1607 // Find groups of coupled clusters
1608 used = new Bool_t[nclust];
1609 for (Int_t i=0; i<nclust; i++) used[i] = kFALSE;
1610 Int_t *clustNumb = new Int_t[nclust];
1611 Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
1612 Double_t parOk[8];
1613
1614 for (Int_t igroup=0; igroup<nclust; igroup++) {
1615 if (used[igroup]) continue;
1616 used[igroup] = kTRUE;
1617 clustNumb[0] = igroup;
1618 nCoupled = 1;
1619 // Find group of coupled clusters
1620 AddCluster(igroup, nclust, aij_clu_clu, used, clustNumb, nCoupled); // recursive
1621 cout << " nCoupled: " << nCoupled << endl;
1622 for (Int_t i=0; i<nCoupled; i++) cout << clustNumb[i] << " "; cout << endl;
1623
1624 while (nCoupled > 0) {
1625
1626 if (nCoupled < 4) {
1627 nForFit = nCoupled;
1628 for (Int_t i=0; i<nCoupled; i++) clustFit[i] = clustNumb[i];
1629 } else {
1630 // Too many coupled clusters to fit - try to decouple them
1631 // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
1632 // all the others in the group
1633 for (Int_t j=0; j<3; j++) minGroup[j] = -1;
1634 Double_t coupl = MinGroupCoupl(nCoupled, clustNumb, aij_clu_clu, minGroup);
1635
1636 // Flag clusters for fit
1637 nForFit = 0;
1638 while (minGroup[nForFit] >= 0 && nForFit < 3) {
1639 cout << clustNumb[minGroup[nForFit]] << " ";
1640 clustFit[nForFit] = clustNumb[minGroup[nForFit]];
1641 clustNumb[minGroup[nForFit]] -= 999;
1642 nForFit++;
1643 }
1644 cout << nForFit << " " << coupl << endl;
1645 } // else
1646
1647 // Select pads for fit.
1648 if (SelectPad(nCoupled, nForFit, clustNumb, clustFit, aij_clu_pad) < 3 && nCoupled > 1) {
1649 // Deselect pads
1650 for (Int_t j=0; j<npad; j++) if (TMath::Abs(fPadIJ[1][j]) == 1) fPadIJ[1][j] = 0;
1651 // Merge the failed cluster candidates (with too few pads to fit) with
1652 // the one with the strongest coupling
1653 Merge(nForFit, nCoupled, clustNumb, clustFit, clusters, aij_clu_clu, aij_clu_pad);
1654 } else {
1655 // Do the fit
1656 nfit = Fit(nForFit, clustFit, clusters, parOk);
1657 }
1658
1659 // Subtract the fitted charges from pads with strong coupling and/or
1660 // return pads for further use
1661 UpdatePads(nfit, parOk);
1662
1663 // Mark used pads
1664 for (Int_t j=0; j<npad; j++) {if (fPadIJ[1][j] == 1) fPadIJ[1][j] = -1;}
1665
1666 // Sort the clusters (move to the right the used ones)
1667 Int_t beg = 0, end = nCoupled - 1;
1668 while (beg < end) {
1669 if (clustNumb[beg] >= 0) { beg++; continue; }
1670 for (Int_t j=end; j>beg; j--) {
1671 if (clustNumb[j] < 0) continue;
1672 end = j - 1;
1673 indx = clustNumb[beg];
1674 clustNumb[beg] = clustNumb[j];
1675 clustNumb[j] = indx;
1676 break;
1677 }
1678 beg++;
1679 }
1680
1681 nCoupled -= nForFit;
1682 if (nCoupled > 3) {
1683 // Remove couplings of used clusters
1684 for (Int_t iclust=nCoupled; iclust<nCoupled+nForFit; iclust++) {
1685 indx = clustNumb[iclust] + 999;
1686 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1687 indx1 = clustNumb[iclust1];
1688 (*aij_clu_clu)(indx,indx1) = (*aij_clu_clu)(indx1,indx) = 0;
1689 }
1690 }
1691
1692 // Update the remaining clusters couplings (exclude couplings from
1693 // the used pads)
1694 for (Int_t j=0; j<npad; j++) {
1695 if (fPadIJ[1][j] != -1) continue;
1696 for (Int_t iclust=0; iclust<nCoupled; iclust++) {
1697 indx = clustNumb[iclust];
1698 if ((*aij_clu_pad)(indx,j) < kCouplMin) continue;
1699 for (Int_t iclust1=iclust+1; iclust1<nCoupled; iclust1++) {
1700 indx1 = clustNumb[iclust1];
1701 if ((*aij_clu_pad)(indx1,j) < kCouplMin) continue;
1702 // Check this
1703 (*aij_clu_clu)(indx,indx1) -=
1704 TMath::Sqrt ((*aij_clu_pad)(indx,j)*(*aij_clu_pad)(indx1,j));
1705 (*aij_clu_clu)(indx1,indx) = (*aij_clu_clu)(indx,indx1);
1706 }
1707 }
1708 fPadIJ[1][j] = -9;
1709 } // for (Int_t j=0; j<npad;
1710 } // if (nCoupled > 3)
1711 } // while (nCoupled > 0)
1712 } // for (Int_t igroup=0; igroup<nclust;
1713
1714 //delete aij_clu; aij_clu = 0; delete aij_clu_pad; aij_clu_pad = 0;
1715 aij_clu_clu->Delete(); aij_clu_pad->Delete();
1716 for (Int_t iclust=0; iclust<nclust; iclust++) {
1717 pix = clusters[iclust];
1718 pix->Clear();
1719 delete pix; pix = 0;
1720 }
1721 delete [] clustNumb; clustNumb = 0; delete [] used; used = 0;
1722}
1723
1724//_____________________________________________________________________________
1725void AliMUONClusterFinderAZ::AddBin(TH2D *mlem, Int_t ic, Int_t jc, Int_t mode, Bool_t *used, TObjArray *pix)
1726{
1727 // Add a bin to the cluster
1728
1729 Int_t nx = mlem->GetNbinsX();
1730 Int_t ny = mlem->GetNbinsY();
1731 Double_t cont1, cont = mlem->GetCellContent(jc,ic);
1732 AliMUONPixel *pixPtr = 0;
1733
1734 for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) {
1735 for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) {
1736 if (i != ic && j != jc) continue;
1737 if (used[(i-1)*nx+j-1]) continue;
1738 cont1 = mlem->GetCellContent(j,i);
1739 if (mode && cont1 > cont) continue;
1740 used[(i-1)*nx+j-1] = kTRUE;
1741 if (cont1 < 0.5) continue;
1742 if (pix) pix->Add(BinToPix(mlem,j,i));
1743 else {
1744 pixPtr = new AliMUONPixel (mlem->GetXaxis()->GetBinCenter(j),
1745 mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
1746 fPixArray->Add((TObject*)pixPtr);
1747 }
1748 AddBin(mlem, i, j, mode, used, pix); // recursive call
1749 }
1750 }
1751}
1752
1753//_____________________________________________________________________________
1754TObject* AliMUONClusterFinderAZ::BinToPix(TH2D *mlem, Int_t jc, Int_t ic)
1755{
1756 // Translate histogram bin to pixel
1757
1758 Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
1759 Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
1760
1761 Int_t nPix = fPixArray->GetEntriesFast();
1762 AliMUONPixel *pixPtr;
1763
1764 // Compare pixel and bin positions
1765 for (Int_t i=0; i<nPix; i++) {
1766 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1767 if (pixPtr->Charge() < 0.5) continue;
1768 if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4) return (TObject*) pixPtr;
1769 }
1770 cout << " Something wrong ??? " << endl;
1771 return NULL;
1772}
1773
1774//_____________________________________________________________________________
1775void AliMUONClusterFinderAZ::AddCluster(Int_t ic, Int_t nclust, TMatrixD *aij_clu_clu, Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
1776{
1777 // Add a cluster to the group of coupled clusters
1778
1779 for (Int_t i=0; i<nclust; i++) {
1780 if (used[i]) continue;
1781 if ((*aij_clu_clu)(i,ic) < kCouplMin) continue;
1782 used[i] = kTRUE;
1783 clustNumb[nCoupled++] = i;
1784 AddCluster(i, nclust, aij_clu_clu, used, clustNumb, nCoupled);
1785 }
1786}
1787
1788//_____________________________________________________________________________
1789Double_t AliMUONClusterFinderAZ::MinGroupCoupl(Int_t nCoupled, Int_t *clustNumb, TMatrixD *aij_clu_clu, Int_t *minGroup)
1790{
1791 // Find group of clusters with minimum coupling to all the others
1792
1793 Int_t i123max = TMath::Min(3,nCoupled/2);
1794 Int_t indx, indx1, indx2, indx3, nTot = 0;
1795 Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1796
1797 for (Int_t i123=1; i123<=i123max; i123++) {
1798
1799 if (i123 == 1) {
1800 coupl1 = new Double_t [nCoupled];
1801 for (Int_t i=0; i<nCoupled; i++) coupl1[i] = 0;
1802 }
1803 else if (i123 == 2) {
1804 nTot = nCoupled*nCoupled;
1805 coupl2 = new Double_t [nTot];
1806 for (Int_t i=0; i<nTot; i++) coupl2[i] = 9999;
1807 } else {
1808 nTot = nTot*nCoupled;
1809 coupl3 = new Double_t [nTot];
1810 for (Int_t i=0; i<nTot; i++) coupl3[i] = 9999;
1811 } // else
1812
1813 for (Int_t i=0; i<nCoupled; i++) {
1814 indx1 = clustNumb[i];
1815 for (Int_t j=i+1; j<nCoupled; j++) {
1816 indx2 = clustNumb[j];
1817 if (i123 == 1) {
1818 coupl1[i] += (*aij_clu_clu)(indx1,indx2);
1819 coupl1[j] += (*aij_clu_clu)(indx1,indx2);
1820 }
1821 else if (i123 == 2) {
1822 indx = i*nCoupled + j;
1823 coupl2[indx] = coupl1[i] + coupl1[j];
1824 coupl2[indx] -= 2 * ((*aij_clu_clu)(indx1,indx2));
1825 } else {
1826 for (Int_t k=j+1; k<nCoupled; k++) {
1827 indx3 = clustNumb[k];
1828 indx = i*nCoupled*nCoupled + j*nCoupled + k;
1829 coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
1830 coupl3[indx] -= 2 * ((*aij_clu_clu)(indx1,indx3)+(*aij_clu_clu)(indx2,indx3));
1831 }
1832 } // else
1833 } // for (Int_t j=i+1;
1834 } // for (Int_t i=0;
1835 } // for (Int_t i123=1;
1836
1837 // Find minimum coupling
1838 Double_t couplMin = 9999;
1839 Int_t locMin = 0;
1840
1841 for (Int_t i123=1; i123<=i123max; i123++) {
1842 if (i123 == 1) {
1843 locMin = TMath::LocMin(nCoupled, coupl1);
1844 couplMin = coupl1[locMin];
1845 minGroup[0] = locMin;
1846 delete [] coupl1; coupl1 = 0;
1847 }
1848 else if (i123 == 2) {
1849 locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1850 if (coupl2[locMin] < couplMin) {
1851 couplMin = coupl2[locMin];
1852 minGroup[0] = locMin/nCoupled;
1853 minGroup[1] = locMin%nCoupled;
1854 }
1855 delete [] coupl2; coupl2 = 0;
1856 } else {
1857 locMin = TMath::LocMin(nTot, coupl3);
1858 if (coupl3[locMin] < couplMin) {
1859 couplMin = coupl3[locMin];
1860 minGroup[0] = locMin/nCoupled/nCoupled;
1861 minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1862 minGroup[2] = locMin%nCoupled;
1863 }
1864 delete [] coupl3; coupl3 = 0;
1865 } // else
1866 } // for (Int_t i123=1;
1867 return couplMin;
1868}
1869
1870//_____________________________________________________________________________
1871Int_t AliMUONClusterFinderAZ::SelectPad(Int_t nCoupled, Int_t nForFit, Int_t *clustNumb, Int_t *clustFit, TMatrixD *aij_clu_pad)
1872{
1873 // Select pads for fit. If too many coupled clusters, find pads giving
1874 // the strongest coupling with the rest of clusters and exclude them from the fit.
1875
1876 Int_t npad = fnPads[0] + fnPads[1];
1877 Double_t *pad_pix = 0;
1878
1879 if (nCoupled > 3) {
1880 pad_pix = new Double_t[npad];
1881 for (Int_t i=0; i<npad; i++) pad_pix[i] = 0;
1882 }
1883
1884 Int_t nOK = 0, indx, indx1;
1885 for (Int_t iclust=0; iclust<nForFit; iclust++) {
1886 indx = clustFit[iclust];
1887 for (Int_t j=0; j<npad; j++) {
1888 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
1889 if ((*aij_clu_pad)(indx,j) < kCouplMin) continue;
1890 fPadIJ[1][j] = 1; // pad to be used in fit
1891 nOK++;
1892 if (nCoupled > 3) {
1893 // Check other clusters
1894 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1895 indx1 = clustNumb[iclust1];
1896 if (indx1 < 0) continue;
1897 if ((*aij_clu_pad)(indx1,j) < kCouplMin) continue;
1898 pad_pix[j] += (*aij_clu_pad)(indx1,j);
1899 }
1900 } // if (nCoupled > 3)
1901 } // for (Int_t j=0; j<npad;
1902 } // for (Int_t iclust=0; iclust<nForFit
1903 if (nCoupled < 4) return nOK;
1904
1905 Double_t aaa = 0;
1906 for (Int_t j=0; j<npad; j++) {
1907 if (pad_pix[j] < kCouplMin) continue;
1908 cout << j << " " << pad_pix[j] << " ";
1909 cout << fXyq[0][j] << " " << fXyq[1][j] << endl;
1910 aaa += pad_pix[j];
1911 fPadIJ[1][j] = -1; // exclude pads with strong coupling to the other clusters
1912 nOK--;
1913 }
1914 delete [] pad_pix; pad_pix = 0;
1915 return nOK;
1916}
1917
1918//_____________________________________________________________________________
1919void AliMUONClusterFinderAZ::Merge(Int_t nForFit, Int_t nCoupled, Int_t *clustNumb, Int_t *clustFit, TObjArray **clusters, TMatrixD *aij_clu_clu, TMatrixD *aij_clu_pad)
1920{
1921 // Merge the group of clusters with the one having the strongest coupling with them
1922
1923 Int_t indx, indx1, npxclu, npxclu1, imax=0;
1924 TObjArray *pix, *pix1;
1925 Double_t couplMax;
1926
1927 for (Int_t icl=0; icl<nForFit; icl++) {
1928 indx = clustFit[icl];
1929 pix = clusters[indx];
1930 npxclu = pix->GetEntriesFast();
1931 couplMax = -1;
1932 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1933 indx1 = clustNumb[icl1];
1934 if (indx1 < 0) continue;
1935 if ((*aij_clu_clu)(indx,indx1) > couplMax) {
1936 couplMax = (*aij_clu_clu)(indx,indx1);
1937 imax = indx1;
1938 }
1939 } // for (Int_t icl1=0;
1940 /*if (couplMax < kCouplMin) {
1941 cout << " Oops " << couplMax << endl;
1942 aij_clu_clu->Print();
1943 cout << icl << " " << indx << " " << npxclu << " " << nLinks << endl;
1944 ::exit(0);
1945 }*/
1946 // Add to it
1947 pix1 = clusters[imax];
1948 npxclu1 = pix1->GetEntriesFast();
1949 // Add pixels
1950 for (Int_t i=0; i<npxclu; i++) { pix1->Add(pix->UncheckedAt(i)); pix->RemoveAt(i); }
1951 cout << " New number of pixels: " << npxclu1 << " " << pix1->GetEntriesFast() << endl;
1952 //Add cluster-to-cluster couplings
1953 //aij_clu_clu->Print();
1954 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1955 indx1 = clustNumb[icl1];
1956 if (indx1 < 0 || indx1 == imax) continue;
1957 (*aij_clu_clu)(indx1,imax) += (*aij_clu_clu)(indx,indx1);
1958 (*aij_clu_clu)(imax,indx1) = (*aij_clu_clu)(indx1,imax);
1959 }
1960 (*aij_clu_clu)(indx,imax) = (*aij_clu_clu)(imax,indx) = 0;
1961 //aij_clu_clu->Print();
1962 //Add cluster-to-pad couplings
1963 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1964 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
1965 (*aij_clu_pad)(imax,j) += (*aij_clu_pad)(indx,j);
1966 (*aij_clu_pad)(indx,j) = 0;
1967 }
1968 } // for (Int_t icl=0; icl<nForFit;
1969}
1970
1971//_____________________________________________________________________________
1972Int_t AliMUONClusterFinderAZ::Fit(Int_t nfit, Int_t *clustFit, TObjArray **clusters, Double_t *parOk)
1973{
1974 // Find selected clusters to selected pad charges
1975
1976 TH2D *mlem = (TH2D*) gROOT->FindObject("mlem");
1977 //Int_t nx = mlem->GetNbinsX();
1978 //Int_t ny = mlem->GetNbinsY();
1979 Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
1980 Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
1981 Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
1982 Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
1983 //Double_t qmin = 0, qmax = 1;
1984 Double_t step[3]={0.01,0.002,0.02};
1985
1986 Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8];
1987 TObjArray *pix;
1988 Int_t npxclu;
1989
1990 // Number of pads to use
1991 Int_t npads = 0;
1992 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {if (fPadIJ[1][i] == 1) npads++;}
1993 for (Int_t i=0; i<nfit; i++) {cout << i+1 << " " << clustFit[i] << " ";}
1994 cout << nfit << endl;
1995 cout << " Number of pads to fit: " << npads << endl;
1996 fNpar = 0;
1997 fQtot = 0;
1998 if (npads < 2) return 0;
1999
2000 // Take cluster maxima as fitting seeds
2001 AliMUONPixel *pixPtr;
2002 Double_t xyseed[3][2], qseed[3];
2003 for (Int_t ifit=1; ifit<=nfit; ifit++) {
2004 cmax = 0;
2005 pix = clusters[clustFit[ifit-1]];
2006 npxclu = pix->GetEntriesFast();
2007 for (Int_t clu=0; clu<npxclu; clu++) {
2008 pixPtr = (AliMUONPixel*) pix->UncheckedAt(clu);
2009 cont = pixPtr->Charge();
2010 fQtot += cont;
2011 if (cont > cmax) {
2012 cmax = cont;
2013 xseed = pixPtr->Coord(0);
2014 yseed = pixPtr->Coord(1);
2015 }
2016 }
2017 xyseed[ifit-1][0] = xseed;
2018 xyseed[ifit-1][1] = yseed;
2019 qseed[ifit-1] = cmax;
2020 } // for (Int_t ifit=1;
2021
2022 Int_t nDof, maxSeed[3];
2023 Double_t fmin, chi2o = 9999, chi2n;
2024
2025 // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
2026 // lower, try 3-track (if number of pads is sufficient).
2027
2028 TMath::Sort(nfit, qseed, maxSeed, kTRUE); // in decreasing order
2029 nfit = TMath::Min (nfit, (npads + 1) / 3);
2030
2031 Double_t *gin = 0, func0, func1, param[8], param0[2][8], deriv[2][8], step0[8];
2032 Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0;
2033 Double_t delta[8], scMax, dder[8], estim, shiftSave = 0;
2034 Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail;
2035
2036 for (Int_t iseed=0; iseed<nfit; iseed++) {
2037
2038 for (Int_t j=0; j<3; j++) step0[fNpar+j] = shift[fNpar+j] = step[j];
2039 param[fNpar] = xyseed[maxSeed[iseed]][0];
2040 parmin[fNpar] = xmin;
2041 parmax[fNpar++] = xmax;
2042 param[fNpar] = xyseed[maxSeed[iseed]][1];
2043 parmin[fNpar] = ymin;
2044 parmax[fNpar++] = ymax;
2045 if (fNpar > 2) {
2046 param[fNpar] = fNpar == 4 ? 0.5 : 0.3;
2047 parmin[fNpar] = 0;
2048 parmax[fNpar++] = 1;
2049 }
2050
2051 // Try new algorithm
2052 min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
2053
2054 while (1) {
2055 max = !min;
2056 fcn1(fNpar, gin, func0, param, 1); nCall++;
2057 //cout << " Func: " << func0 << endl;
2058
2059 func2[max] = func0;
2060 for (Int_t j=0; j<fNpar; j++) {
2061 param0[max][j] = param[j];
2062 delta[j] = step0[j];
2063 param[j] += delta[j] / 10;
2064 if (j > 0) param[j-1] -= delta[j-1] / 10;
2065 fcn1(fNpar, gin, func1, param, 1); nCall++;
2066 deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
2067 //cout << j << " " << deriv[max][j] << endl;
2068 dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
2069 (param0[0][j] - param0[1][j]) : 0; // second derivative
2070 }
2071 param[fNpar-1] -= delta[fNpar-1] / 10;
2072 if (nCall > 2000) ::exit(0);
2073
2074 min = func2[0] < func2[1] ? 0 : 1;
2075 nFail = min == max ? 0 : nFail + 1;
2076
2077 stepMax = derMax = estim = 0;
2078 for (Int_t j=0; j<fNpar; j++) {
2079 // Estimated distance to minimum
2080 shift0 = shift[j];
2081 if (nLoop == 1) shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
2082 else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3) shift[j] = 0;
2083 else if (deriv[min][j]*deriv[!min][j] > 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])
2084 || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) {
2085 shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
2086 if (min == max) {
2087 if (memory[j] > 1) { shift[j] *= 2; } //cout << " Memory " << memory[j] << " " << shift[j] << endl; }
2088 memory[j]++;
2089 }
2090 } else {
2091 shift[j] = -deriv[min][j] / dder[j];
2092 memory[j] = 0;
2093 }
2094 if (TMath::Abs(shift[j])/step0[j] > estim) {
2095 estim = TMath::Abs(shift[j])/step0[j];
2096 iestMax = j;
2097 }
2098
2099 // Too big step
2100 if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
2101
2102 // Failed to improve minimum
2103 if (min != max) {
2104 memory[j] = 0;
2105 param[j] = param0[min][j];
2106 if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j]) shift[j] = (shift[j] + shift0) / 2;
2107 else shift[j] /= -2;
2108 }
2109
2110 // Too big step
2111 if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
2112 shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
2113
2114 // Introduce step relaxation factor
2115 if (memory[j] < 3) {
2116 scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
2117 if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
2118 shift[j] = TMath::Sign (shift0*scMax, shift[j]);
2119 }
2120 param[j] += shift[j];
2121
2122 //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
2123 stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
2124 if (TMath::Abs(deriv[min][j]) > derMax) {
2125 idMax = j;
2126 derMax = TMath::Abs (deriv[min][j]);
2127 }
2128 } // for (Int_t j=0; j<fNpar;
2129 //cout << max << " " << func2[min] << " " << derMax << " " << stepMax << " " << estim << " " << iestMax << " " << nCall << endl;
2130 if (estim < 1 && derMax < 2 || nLoop > 100) break; // minimum was found
2131
2132 nLoop++;
2133 // Check for small step
2134 if (shift[idMax] == 0) { shift[idMax] = step0[idMax]/10; param[idMax] += shift[idMax]; continue; }
2135 if (!memory[idMax] && derMax > 0.5 && nLoop > 10) {
2136 //cout << " ok " << deriv[min][idMax] << " " << deriv[!min][idMax] << " " << dder[idMax]*shift[idMax] << " " << shift[idMax] << endl;
2137 if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10) {
2138 if (min == max) dder[idMax] = -dder[idMax];
2139 shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
2140 param[idMax] += shift[idMax];
2141 stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
2142 //cout << shift[idMax] << " " << param[idMax] << endl;
2143 if (min == max) shiftSave = shift[idMax];
2144 }
2145 if (nFail > 10) {
2146 param[idMax] -= shift[idMax];
2147 shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
2148 param[idMax] += shift[idMax];
2149 //cout << shift[idMax] << endl;
2150 }
2151 }
2152 } // while (1)
2153 fmin = func2[min];
2154
2155 nDof = npads - fNpar;
2156 chi2n = nDof ? fmin/nDof : 0;
2157
2158 if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; }
2159 // Save parameters and errors
2160 for (Int_t i=0; i<fNpar; i++) {
2161 parOk[i] = param0[min][i];
2162 errOk[i] = fmin;
2163 }
2164
2165 cout << chi2o << " " << chi2n << endl;
2166 chi2o = chi2n;
2167 if (fmin < 0.1) break; // !!!???
2168 } // for (Int_t iseed=0;
2169
2170 for (Int_t i=0; i<fNpar; i++) {
2171 if (i == 4 || i == 7) continue;
2172 cout << parOk[i] << " " << errOk[i] << endl;
2173 }
2174 nfit = (fNpar + 1) / 3;
2175 Double_t rad;
2176 Int_t indx, imax;
2177 if (fReco) {
2178 for (Int_t j=0; j<nfit; j++) {
2179 indx = j<2 ? j*2 : j*2+1;
2180 AddRawCluster (parOk[indx], parOk[indx+1], errOk[indx]);
2181 }
2182 return nfit;
2183 }
2184 for (Int_t i=0; i<fnMu; i++) {
2185 cmax = fxyMu[i][6];
2186 for (Int_t j=0; j<nfit; j++) {
2187 indx = j<2 ? j*2 : j*2+1;
2188 rad = (fxyMu[i][0]-parOk[indx])*(fxyMu[i][0]-parOk[indx]) +
2189 (fxyMu[i][1]-parOk[indx+1])*(fxyMu[i][1]-parOk[indx+1]);
2190 if (rad < cmax) {
2191 cmax = rad;
2192 imax = indx;
2193 fxyMu[i][6] = cmax;
2194 fxyMu[i][2] = parOk[imax] - fxyMu[i][0];
2195 fxyMu[i][4] = parOk[imax+1] - fxyMu[i][1];
2196 fxyMu[i][3] = errOk[imax];
2197 fxyMu[i][5] = errOk[imax+1];
2198 }
2199 }
2200 }
2201 return nfit;
2202}
2203
2204//_____________________________________________________________________________
6aaf81e6 2205void fcn1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
0df3ca52 2206{
2207 // Fit for one track
2208 AliMUONClusterFinderAZ& c = *(AliMUONClusterFinderAZ::fgClusterFinder);
2209
2210 Int_t cath, ix, iy, indx, npads=0;
2211 Double_t charge, delta, coef=0, chi2=0;
2212 for (Int_t j=0; j<c.fnPads[0]+c.fnPads[1]; j++) {
2213 if (c.fPadIJ[1][j] != 1) continue;
2214 cath = c.fPadIJ[0][j];
2215 npads++;
2216 c.fSegmentation[cath]->GetPadI(c.fXyq[0][j],c.fXyq[1][j],c.fZpad,ix,iy);
2217 c.fSegmentation[cath]->SetPad(ix,iy);
2218 charge = 0;
2219 for (Int_t i=c.fNpar/3; i>=0; i--) { // sum over tracks
2220 indx = i<2 ? 2*i : 2*i+1;
2221 c.fSegmentation[cath]->SetHit(par[indx],par[indx+1],c.fZpad);
2222 //charge += c.fResponse->IntXY(c.fSegmentation[cath])*par[icl*3+2];
2223 if (c.fNpar == 2) coef = 1;
2224 else coef = i==c.fNpar/3 ? par[indx+2] : 1-coef;
2225 //coef = TMath::Max (coef, 0.);
2226 if (c.fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2227 //coef = TMath::Max (coef, 0.);
2228 charge += c.fResponse->IntXY(c.fSegmentation[cath])*coef;
2229 }
2230 charge *= c.fQtot;
2231 //if (c.fXyq[2][j] > c.fResponse->MaxAdc()-1 && charge >
2232 // c.fResponse->MaxAdc()) charge = c.fResponse->MaxAdc();
2233 delta = charge - c.fXyq[2][j];
2234 delta /= TMath::Sqrt ((Double_t)c.fXyq[2][j]);
2235 //chi2 += TMath::Abs(delta);
2236 chi2 += delta*delta;
2237 } // for (Int_t j=0;
2238 f = chi2;
2239 Double_t qAver = c.fQtot/npads; //(c.fnPads[0]+c.fnPads[1]);
2240 f = chi2/qAver;
2241}
2242
2243//_____________________________________________________________________________
6aaf81e6 2244void AliMUONClusterFinderAZ::UpdatePads(Int_t /*nfit*/, Double_t *par)
0df3ca52 2245{
2246 // Subtract the fitted charges from pads with strong coupling
2247
2248 Int_t cath, ix, iy, indx;
2249 Double_t charge, coef=0;
2250 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2251 if (fPadIJ[1][j] != -1) continue;
2252 if (fNpar != 0) {
2253 cath = fPadIJ[0][j];
2254 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
2255 fSegmentation[cath]->SetPad(ix,iy);
2256 charge = 0;
2257 for (Int_t i=fNpar/3; i>=0; i--) { // sum over tracks
2258 indx = i<2 ? 2*i : 2*i+1;
2259 fSegmentation[cath]->SetHit(par[indx],par[indx+1],fZpad);
2260 if (fNpar == 2) coef = 1;
2261 else coef = i==fNpar/3 ? par[indx+2] : 1-coef;
2262 if (fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2263 charge += fResponse->IntXY(fSegmentation[cath])*coef;
2264 }
2265 charge *= fQtot;
2266 fXyq[2][j] -= charge;
2267 } // if (fNpar != 0)
2268 if (fXyq[2][j] > fResponse->ZeroSuppression()) fPadIJ[1][j] = 0; // return pad for further using
2269 } // for (Int_t j=0;
2270}
2271
2272//_____________________________________________________________________________
6aaf81e6 2273Bool_t AliMUONClusterFinderAZ::TestTrack(Int_t /*t*/) {
0df3ca52 2274// Test if track was user selected
2275 return kTRUE;
2276 /*
2277 if (fTrack[0]==-1 || fTrack[1]==-1) {
2278 return kTRUE;
2279 } else if (t==fTrack[0] || t==fTrack[1]) {
2280 return kTRUE;
2281 } else {
2282 return kFALSE;
2283 }
2284 */
2285}
2286
2287//_____________________________________________________________________________
2288void AliMUONClusterFinderAZ::AddRawCluster(Double_t x, Double_t y, Double_t fmin)
2289{
2290 //
2291 // Add a raw cluster copy to the list
2292 //
2293 AliMUONRawCluster cnew;
2294 AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON");
2295 //pMUON->AddRawCluster(fInput->Chamber(),c);
2296
2297 Int_t cath;
2298 for (cath=0; cath<2; cath++) {
2299 cnew.fX[cath] = x;
2300 cnew.fY[cath] = y;
2301 cnew.fZ[cath] = fZpad;
2302 cnew.fQ[cath] = 100;
2303 cnew.fPeakSignal[cath] = 20;
2304 cnew.fMultiplicity[cath] = 5;
2305 cnew.fNcluster[cath] = 1;
2306 cnew.fChi2[cath] = fmin; //0.1;
2307 /*
2308 cnew.fMultiplicity[cath]=c->fMultiplicity[cath];
2309 for (i=0; i<fMul[cath]; i++) {
2310 cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath];
2311 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
2312 }
2313 fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath);
2314 fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]);
2315 FillCluster(&cnew,cath);
2316 */
2317 }
2318 //cnew.fClusterType=cnew.PhysicsContribution();
ce3f5e87 2319 pMUON->GetMUONData()->AddRawCluster(AliMUONClusterInput::Instance()->Chamber(),cnew);
0df3ca52 2320 //fNPeaks++;
2321}
2322
2323//_____________________________________________________________________________
2324Int_t AliMUONClusterFinderAZ::FindLocalMaxima(Int_t *localMax, Double_t *maxVal)
2325{
2326 // Find local maxima in pixel space for large preclusters in order to
2327 // try to split them into smaller pieces (to speed up the MLEM procedure)
2328
2329 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2330 if (hist) hist->Delete();
2331
cd747ddb 2332 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 2333 Int_t nPix = fPixArray->GetEntriesFast();
2334 AliMUONPixel *pixPtr = 0;
2335 for (Int_t ipix=0; ipix<nPix; ipix++) {
2336 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2337 for (Int_t i=0; i<4; i++)
2338 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
2339 }
2340 for (Int_t i=0; i<4; i++) xylim[i] -= pixPtr->Size(i/2);
2341
2342 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
2343 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
2344 hist = new TH2D("anode","anode",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
2345 for (Int_t ipix=0; ipix<nPix; ipix++) {
2346 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2347 hist->Fill(pixPtr->Coord(0), pixPtr->Coord(1), pixPtr->Charge());
2348 }
2349 if (fDraw) {
2350 ((TCanvas*)gROOT->FindObject("c2"))->cd();
2351 gPad->SetTheta(55);
2352 gPad->SetPhi(30);
2353 hist->Draw("lego1Fb");
2354 gPad->Update();
2355 int ia;
2356 cin >> ia;
2357 }
2358
2359 Int_t nMax = 0, indx;
2360 Int_t *isLocalMax = new Int_t[ny*nx];
2361 for (Int_t i=0; i<ny*nx; i++) isLocalMax[i] = 0;
2362
2363 for (Int_t i=1; i<=ny; i++) {
2364 indx = (i-1) * nx;
2365 for (Int_t j=1; j<=nx; j++) {
2366 if (hist->GetCellContent(j,i) < 0.5) continue;
2367 //if (isLocalMax[indx+j-1] < 0) continue;
2368 if (isLocalMax[indx+j-1] != 0) continue;
2369 FlagLocalMax(hist, i, j, isLocalMax);
2370 }
2371 }
2372
2373 for (Int_t i=1; i<=ny; i++) {
2374 indx = (i-1) * nx;
2375 for (Int_t j=1; j<=nx; j++) {
2376 if (isLocalMax[indx+j-1] > 0) {
2377 localMax[nMax] = indx + j - 1;
2378 maxVal[nMax++] = hist->GetCellContent(j,i);
2379 }
2380 if (nMax > 99) { cout << " Too many local maxima !!!" << endl; ::exit(0); }
2381 }
2382 }
2383 cout << " Local max: " << nMax << endl;
2384 delete [] isLocalMax; isLocalMax = 0;
2385 return nMax;
2386}
2387
2388//_____________________________________________________________________________
2389void AliMUONClusterFinderAZ::FlagLocalMax(TH2D *hist, Int_t i, Int_t j, Int_t *isLocalMax)
2390{
2391 // Flag pixels (whether or not local maxima)
2392
2393 Int_t nx = hist->GetNbinsX();
2394 Int_t ny = hist->GetNbinsY();
2395 Int_t cont = TMath::Nint (hist->GetCellContent(j,i));
2396 Int_t cont1 = 0;
2397
2398 for (Int_t i1=i-1; i1<i+2; i1++) {
2399 if (i1 < 1 || i1 > ny) continue;
2400 for (Int_t j1=j-1; j1<j+2; j1++) {
2401 if (j1 < 1 || j1 > nx) continue;
2402 if (i == i1 && j == j1) continue;
2403 cont1 = TMath::Nint (hist->GetCellContent(j1,i1));
2404 if (cont < cont1) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2405 else if (cont > cont1) isLocalMax[(i1-1)*nx+j1-1] = -1;
2406 else { // the same charge
2407 isLocalMax[(i-1)*nx+j-1] = 1;
2408 if (isLocalMax[(i1-1)*nx+j1-1] == 0) {
2409 FlagLocalMax(hist, i1, j1, isLocalMax);
2410 if (isLocalMax[(i1-1)*nx+j1-1] < 0) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2411 else isLocalMax[(i1-1)*nx+j1-1] = -1;
2412 }
2413 }
2414 }
2415 }
2416 isLocalMax[(i-1)*nx+j-1] = 1; // local maximum
2417}
2418
2419//_____________________________________________________________________________
2420void AliMUONClusterFinderAZ::FindCluster(Int_t *localMax, Int_t iMax)
2421{
2422 // Find pixel cluster around local maximum #iMax and pick up pads
2423 // overlapping with it
2424
2425 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2426 Int_t nx = hist->GetNbinsX();
2427 Int_t ny = hist->GetNbinsY();
2428 Int_t ic = localMax[iMax] / nx + 1;
2429 Int_t jc = localMax[iMax] % nx + 1;
2430 Bool_t *used = new Bool_t[ny*nx];
2431 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
2432
2433 // Drop all pixels from the array - pick up only the ones from the cluster
2434 fPixArray->Delete();
2435
2436 Double_t wx = hist->GetXaxis()->GetBinWidth(1)/2;
2437 Double_t wy = hist->GetYaxis()->GetBinWidth(1)/2;
2438 Double_t yc = hist->GetYaxis()->GetBinCenter(ic);
2439 Double_t xc = hist->GetXaxis()->GetBinCenter(jc);
2440 Double_t cont = hist->GetCellContent(jc,ic);
2441 AliMUONPixel *pixPtr = new AliMUONPixel (xc, yc, wx, wy, cont);
2442 fPixArray->Add((TObject*)pixPtr);
2443 used[(ic-1)*nx+jc-1] = kTRUE;
2444 AddBin(hist, ic, jc, 1, used, (TObjArray*)0); // recursive call
2445
2446 Int_t nPix = fPixArray->GetEntriesFast(), npad = fnPads[0] + fnPads[1];
2447 for (Int_t i=0; i<nPix; i++) {
2448 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(0,wx);
2449 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(1,wy);
2450 }
2451 cout << iMax << " " << nPix << endl;
2452
2453 Float_t xy[4], xy12[4];
2454 // Pick up pads which overlap with found pixels
2455 for (Int_t i=0; i<npad; i++) fPadIJ[1][i] = -1;
2456 for (Int_t i=0; i<nPix; i++) {
2457 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
2458 for (Int_t j=0; j<4; j++)
2459 xy[j] = pixPtr->Coord(j/2) + (j%2 ? 1 : -1)*pixPtr->Size(j/2);
2460 for (Int_t j=0; j<npad; j++)
2461 if (Overlap(xy, j, xy12, 0)) fPadIJ[1][j] = 0; // flag for use
2462 }
2463
2464 delete [] used; used = 0;
2465}