]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONClusterFinderAZ.cxx
Bug correction
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterFinderAZ.cxx
CommitLineData
0df3ca52 1#include "AliMUONClusterFinderAZ.h"
2
1f9a65c4 3#include <stdlib.h>
0df3ca52 4#include <fcntl.h>
5#include <Riostream.h>
6#include <TROOT.h>
7#include <TCanvas.h>
8#include <TLine.h>
9#include <TTree.h>
10#include <TH2.h>
11#include <TView.h>
12#include <TStyle.h>
13#include <TMinuit.h>
14#include <TMatrixD.h>
15
16#include "AliHeader.h"
17#include "AliRun.h"
18#include "AliMUON.h"
19#include "AliMUONChamber.h"
20#include "AliMUONDigit.h"
21#include "AliMUONHit.h"
22#include "AliMUONChamber.h"
23#include "AliMUONRawCluster.h"
24#include "AliMUONClusterInput.h"
25#include "AliMUONPixel.h"
5d12ce38 26#include "AliMC.h"
0df3ca52 27
c1aed84f 28// Clusterizer class developped by Zitchenko (Dubna)
29//
30//
31//
9e993f2a 32
0df3ca52 33
34ClassImp(AliMUONClusterFinderAZ)
35
0df3ca52 36
37//_____________________________________________________________________________
38AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(Bool_t draw=0, Int_t iReco=0)
39{
40// Constructor
41 for (Int_t i=0; i<4; i++) {fHist[i] = 0;}
42 fMuonDigits = 0;
43 fSegmentation[1] = fSegmentation[0] = 0;
44 if (!fgClusterFinder) fgClusterFinder = this;
45 if (!fgMinuit) fgMinuit = new TMinuit(8);
46 fDraw = draw;
47 fReco = iReco;
48 fPixArray = new TObjArray(20);
49 /*
50 fPoints = 0;
51 fPhits = 0;
52 fRpoints = 0;
53 fCanvas = 0;
54 fNextCathode = kFALSE;
55 fColPad = 0;
56 */
9e993f2a 57 fgClusterFinder = NULL;
58 fgMinuit = NULL;
0df3ca52 59}
60
61//_____________________________________________________________________________
62AliMUONClusterFinderAZ::~AliMUONClusterFinderAZ()
63{
64 // Destructor
65 delete fgMinuit; fgMinuit = 0; delete fPixArray; fPixArray = 0;
66 /*
67 // Delete space point structure
68 if (fPoints) fPoints->Delete();
69 delete fPoints;
70 fPoints = 0;
71 //
72 if (fPhits) fPhits->Delete();
73 delete fPhits;
74 fPhits = 0;
75 //
76 if (fRpoints) fRpoints->Delete();
77 delete fRpoints;
78 fRpoints = 0;
79 */
80}
81
82//_____________________________________________________________________________
83void AliMUONClusterFinderAZ::FindRawClusters()
84{
85// To provide the same interface as in AliMUONClusterFinderVS
86
87 EventLoop (gAlice->GetHeader()->GetEvent(), AliMUONClusterInput::Instance()->Chamber());
88}
89
90//_____________________________________________________________________________
91void AliMUONClusterFinderAZ::EventLoop(Int_t nev=0, Int_t ch=0)
92{
93// Loop over events
94
95 FILE *lun = 0;
96 TCanvas *c1 = 0;
97 TView *view = 0;
98 TH2F *hist = 0;
99 Double_t p1[3]={0}, p2[3];
c1aed84f 100 TTree *treeR = 0;
0df3ca52 101 if (fDraw) {
102 // File
103 lun = fopen("pool.dat","w");
104 c1 = new TCanvas("c1","Clusters",0,0,600,700);
105 c1->Divide(1,2);
106 new TCanvas("c2","Mlem",700,0,600,350);
107 }
108
109newev:
110 Int_t nparticles = 0, nent;
88cb7938 111
112 //Loaders
113 AliRunLoader * rl = AliRunLoader::GetRunLoader();
114 AliLoader * gime = rl->GetLoader("MUONLoader");
115
116 if (!fReco) nparticles = rl->GetEvent(nev);
5d12ce38 117 else nparticles = gAlice->GetMCApp()->GetNtrack();
0df3ca52 118 cout << "nev " << nev <<endl;
119 cout << "nparticles " << nparticles <<endl;
120 if (nparticles <= 0) return;
121
c1aed84f 122 TTree *treeH = gime->TreeH();
123 Int_t ntracks = (Int_t) treeH->GetEntries();
0df3ca52 124 cout<<"ntracks "<<ntracks<<endl;
125
126 // Get pointers to Alice detectors and Digits containers
c1aed84f 127 AliMUON *muon = (AliMUON*) gAlice->GetModule("MUON");
128 if (!muon) return;
0df3ca52 129 // TClonesArray *Particles = gAlice->Particles();
130 if (!fReco) {
c1aed84f 131 treeR = gime->TreeR();
132 if (treeR) {
133 muon->ResetRawClusters();
134 nent = (Int_t) treeR->GetEntries();
0df3ca52 135 if (nent != 1) {
136 cout << "Error in MUONdrawClust" << endl;
137 cout << " nent = " << nent << " not equal to 1" << endl;
138 //exit(0);
139 }
c1aed84f 140 } // if (treeR)
0df3ca52 141 } // if (!fReco)
142
c1aed84f 143 TTree *treeD = gime->TreeD();
144 //muon->ResetDigits();
0df3ca52 145
c1aed84f 146 TClonesArray *listMUONrawclust ;
0df3ca52 147 AliMUONChamber* iChamber = 0;
148
149 // As default draw the first cluster of the chamber #0
150
151newchamber:
152 if (ch > 9) {if (fReco) return; nev++; ch = 0; goto newev;}
153 //gAlice->ResetDigits();
c1aed84f 154 fMuonDigits = muon->GetMUONData()->Digits(ch);
0df3ca52 155 if (fMuonDigits == 0) return;
c1aed84f 156 iChamber = &(muon->Chamber(ch));
0df3ca52 157 fSegmentation[0] = iChamber->SegmentationModel(1);
158 fSegmentation[1] = iChamber->SegmentationModel(2);
159 fResponse = iChamber->ResponseModel();
160
161 nent = 0;
162
c1aed84f 163 if (treeD) {
164 nent = (Int_t) treeD->GetEntries();
0df3ca52 165 //printf(" entries %d \n", nent);
166 }
167
168 Int_t ndigits[2]={9,9}, nShown[2]={0};
169 for (Int_t i=0; i<2; i++) {
170 for (Int_t j=0; j<kDim; j++) {fUsed[i][j]=kFALSE;}
171 }
172
173next:
174 if (ndigits[0] == nShown[0] && ndigits[1] == nShown[1]) {
175 // No more clusters
176 if (fReco) return;
177 ch++;
178 goto newchamber; // next chamber
179 }
180 Float_t xpad, ypad, zpad, zpad0;
181 TLine *line[99]={0};
182 Int_t nLine = 0;
183 Bool_t first = kTRUE;
184 cout << " *** Event # " << nev << " chamber: " << ch << endl;
185 fnPads[0] = fnPads[1] = 0;
186 for (Int_t i=0; i<kDim; i++) {fPadIJ[1][i] = 0;}
187 //for (Int_t iii = 0; iii<999; iii++) {
188 for (Int_t iii = 0; iii<2; iii++) {
189 Int_t cath = TMath::Odd(iii);
190 gAlice->ResetDigits();
c1aed84f 191 treeD->GetEvent(cath);
192 fMuonDigits = muon->GetMUONData()->Digits(ch);
0df3ca52 193
194 ndigits[cath] = fMuonDigits->GetEntriesFast();
195 if (!ndigits[0] && !ndigits[1]) {if (fReco) return; ch++; goto newchamber;}
196 if (ndigits[cath] == 0) continue;
197 cout << " ndigits: " << ndigits[cath] << " " << cath << endl;
198
199 AliMUONDigit *mdig;
200 Int_t digit;
201
c1aed84f 202 Bool_t eEOC = kTRUE; // end-of-cluster
0df3ca52 203 for (digit = 0; digit < ndigits[cath]; digit++) {
204 mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
205 if (mdig->Cathode() != cath) continue;
206 if (first) {
207 // Find first unused pad
208 if (fUsed[cath][digit]) continue;
209 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0);
210 } else {
211 if (fUsed[cath][digit]) continue;
212 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad);
213 if (TMath::Abs(zpad-zpad0)>0.1) continue; // different slats
214 // Find a pad overlapping with the cluster
215 if (!Overlap(cath,mdig)) continue;
216 }
217 // Add pad - recursive call
218 AddPad(cath,digit);
c1aed84f 219 eEOC = kFALSE;
0df3ca52 220 if (digit >= 0) break;
221 }
c1aed84f 222 if (first && eEOC) {
0df3ca52 223 // No more unused pads
224 if (cath == 0) continue; // on cathode #0 - check #1
225 else {
226 // No more clusters
227 if (fReco) return;
228 ch++;
229 goto newchamber; // next chamber
230 }
231 }
c1aed84f 232 if (eEOC) break; // cluster found
0df3ca52 233 first = kFALSE;
234 cout << " nPads: " << fnPads[cath] << " " << nShown[cath]+fnPads[cath] << " " << cath << endl;
235 } // for (Int_t iii = 0;
236
237
238 if (fReco) goto skip;
239 char hName[4];
240 for (Int_t cath = 0; cath<2; cath++) {
241 // Build histograms
242 if (fHist[cath*2]) {fHist[cath*2]->Delete(); fHist[cath*2] = 0;}
243 if (fHist[cath*2+1]) {fHist[cath*2+1]->Delete(); fHist[cath*2+1] = 0;}
244 if (fnPads[cath] == 0) continue; // cluster on one cathode only
245 Float_t wxMin=999, wxMax=0, wyMin=999, wyMax=0;
246 Int_t minDx=0, maxDx=0, minDy=0, maxDy=0;
247 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
248 if (fPadIJ[0][i] != cath) continue;
249 if (fXyq[3][i] < wxMin) {wxMin = fXyq[3][i]; minDx = i;}
250 if (fXyq[3][i] > wxMax) {wxMax = fXyq[3][i]; maxDx = i;}
251 if (fXyq[4][i] < wyMin) {wyMin = fXyq[4][i]; minDy = i;}
252 if (fXyq[4][i] > wyMax) {wyMax = fXyq[4][i]; maxDy = i;}
253 }
254 cout << minDx << maxDx << minDy << maxDy << endl;
255 Int_t nx, ny, padSize;
256 Float_t xmin=9999, xmax=-9999, ymin=9999, ymax=-9999;
257 if (TMath::Nint(fXyq[3][minDx]*1000) == TMath::Nint(fXyq[3][maxDx]*1000) &&
258 TMath::Nint(fXyq[4][minDy]*1000) == TMath::Nint(fXyq[4][maxDy]*1000)) {
259 // the same segmentation
260 cout << " Same" << endl;
261 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
262 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
263 if (fPadIJ[0][i] != cath) continue;
264 if (fXyq[0][i] < xmin) xmin = fXyq[0][i];
265 if (fXyq[0][i] > xmax) xmax = fXyq[0][i];
266 if (fXyq[1][i] < ymin) ymin = fXyq[1][i];
267 if (fXyq[1][i] > ymax) ymax = fXyq[1][i];
268 }
269 xmin -= fXyq[3][minDx]; xmax += fXyq[3][minDx];
270 ymin -= fXyq[4][minDy]; ymax += fXyq[4][minDy];
271 nx = TMath::Nint ((xmax-xmin)/wxMin/2);
272 ny = TMath::Nint ((ymax-ymin)/wyMin/2);
273 sprintf(hName,"h%d",cath*2);
274 fHist[cath*2] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
275 cout << fHist[cath*2] << " " << fnPads[cath] << endl;
276 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
277 if (fPadIJ[0][i] != cath) continue;
278 fHist[cath*2]->Fill(fXyq[0][i],fXyq[1][i],fXyq[2][i]);
279 //cout << fXyq[0][i] << fXyq[1][i] << fXyq[2][i] << endl;
280 }
281 } else {
282 // different segmentation in the cluster
283 cout << " Different" << endl;
284 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
285 Int_t nOK = 0;
286 Int_t indx, locMin, locMax;
287 if (TMath::Nint(fXyq[3][minDx]*1000) != TMath::Nint(fXyq[3][maxDx]*1000)) {
288 // different segmentation along x
289 indx = 0;
290 locMin = minDx;
291 locMax = maxDx;
292 } else {
293 // different segmentation along y
294 indx = 1;
295 locMin = minDy;
296 locMax = maxDy;
297 }
298 Int_t loc = locMin;
299 for (Int_t i=0; i<2; i++) {
300 // loop over different pad sizes
301 if (i>0) loc = locMax;
302 padSize = TMath::Nint(fXyq[indx+3][loc]*1000);
303 xmin = 9999; xmax = -9999; ymin = 9999; ymax = -9999;
304 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
305 if (fPadIJ[0][j] != cath) continue;
306 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
307 nOK++;
308 xmin = TMath::Min (xmin,fXyq[0][j]);
309 xmax = TMath::Max (xmax,fXyq[0][j]);
310 ymin = TMath::Min (ymin,fXyq[1][j]);
311 ymax = TMath::Max (ymax,fXyq[1][j]);
312 }
313 xmin -= fXyq[3][loc]; xmax += fXyq[3][loc];
314 ymin -= fXyq[4][loc]; ymax += fXyq[4][loc];
315 nx = TMath::Nint ((xmax-xmin)/fXyq[3][loc]/2);
316 ny = TMath::Nint ((ymax-ymin)/fXyq[4][loc]/2);
317 sprintf(hName,"h%d",cath*2+i);
318 fHist[cath*2+i] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
319 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
320 if (fPadIJ[0][j] != cath) continue;
321 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
322 fHist[cath*2+i]->Fill(fXyq[0][j],fXyq[1][j],fXyq[2][j]);
323 }
324 } // for (Int_t i=0;
325 if (nOK != fnPads[cath]) cout << " *** Too many segmentations: nPads, nOK " << fnPads[cath] << " " << nOK << endl;
326 } // if (TMath::Nint(fXyq[3][minDx]*1000)
327 } // for (Int_t cath = 0;
328
329 // Draw histograms and coordinates
330 for (Int_t cath=0; cath<2; cath++) {
331 if (cath == 0) ModifyHistos();
332 if (fnPads[cath] == 0) continue; // cluster on one cathode only
333 if (fDraw) {
334 c1->cd(cath+1);
335 gPad->SetTheta(55);
336 gPad->SetPhi(30);
cd747ddb 337 Double_t x, y, x0, y0, r1=999, r2=0;
0df3ca52 338 if (fHist[cath*2+1]) {
339 //
340 x0 = fHist[cath*2]->GetXaxis()->GetXmin() - 1000*TMath::Cos(30*TMath::Pi()/180);
341 y0 = fHist[cath*2]->GetYaxis()->GetXmin() - 1000*TMath::Sin(30*TMath::Pi()/180);
342 r1 = 0;
343 Int_t ihist=cath*2;
344 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
345 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
346 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
347 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
348 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
349 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
350 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
351 r1 = TMath::Max (r1,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
352 }
353 }
354 }
355 ihist = cath*2 + 1 ;
356 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
357 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
358 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
359 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
360 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
361 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
362 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
363 r2 = TMath::Max (r2,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
364 }
365 }
366 }
367 cout << r1 << " " << r2 << endl;
368 } // if (fHist[cath*2+1])
369 if (r1 > r2) {
370 //fHist[cath*2]->Draw("lego1");
371 fHist[cath*2]->Draw("lego1Fb");
372 //if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBb");
373 if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBbFb");
374 } else {
375 //fHist[cath*2+1]->Draw("lego1");
376 fHist[cath*2+1]->Draw("lego1Fb");
377 //fHist[cath*2]->Draw("lego1SameAxisBb");
378 fHist[cath*2]->Draw("lego1SameAxisFbBb");
379 }
380 c1->Update();
381 } // if (fDraw)
382 } // for (Int_t cath = 0;
383
384 // Draw generated hits
385 Double_t xNDC[6];
386 hist = fHist[0] ? fHist[0] : fHist[2];
387 p2[2] = hist->GetMaximum();
388 view = 0;
389 if (c1) view = c1->Pad()->GetView();
390 cout << " *** GEANT hits *** " << endl;
391 fnMu = 0;
392 Int_t ix, iy, iok;
393 for (Int_t i=0; i<ntracks; i++) {
c1aed84f 394 treeH->GetEvent(i);
395 for (AliMUONHit* mHit=(AliMUONHit*)muon->FirstHit(-1);
0df3ca52 396 mHit;
c1aed84f 397 mHit=(AliMUONHit*)muon->NextHit()) {
0df3ca52 398 if (mHit->Chamber() != ch+1) continue; // chamber number
399 if (TMath::Abs(mHit->Z()-zpad0) > 1) continue; // different slat
400 p2[0] = p1[0] = mHit->X(); // x-pos of hit
401 p2[1] = p1[1] = mHit->Y(); // y-pos
402 if (p1[0] < hist->GetXaxis()->GetXmin() ||
403 p1[0] > hist->GetXaxis()->GetXmax()) continue;
404 if (p1[1] < hist->GetYaxis()->GetXmin() ||
405 p1[1] > hist->GetYaxis()->GetXmax()) continue;
406 // Check if track comes thru pads with signal
407 iok = 0;
408 for (Int_t ihist=0; ihist<4; ihist++) {
409 if (!fHist[ihist]) continue;
410 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
411 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
412 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
413 }
414 if (!iok) continue;
415 gStyle->SetLineColor(1);
416 if (TMath::Abs((Int_t)mHit->Particle()) == 13) {
417 gStyle->SetLineColor(4);
418 fnMu++;
419 if (fnMu <= 2) {
420 fxyMu[fnMu-1][0] = p1[0];
421 fxyMu[fnMu-1][1] = p1[1];
422 }
423 }
424 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mHit->Z());
425 if (view) {
426 view->WCtoNDC(p1, &xNDC[0]);
427 view->WCtoNDC(p2, &xNDC[3]);
428 for (Int_t ipad=1; ipad<3; ipad++) {
429 c1->cd(ipad);
430 //c1->DrawLine(xpad[0],xpad[1],xpad[3],xpad[4]);
431 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
432 line[nLine++]->Draw();
433 }
434 }
435 } // for (AliMUONHit* mHit=
436 } // for (Int_t i=0; i<ntracks;
437
438 // Draw reconstructed coordinates
c1aed84f 439 listMUONrawclust = muon->GetMUONData()->RawClusters(ch);
440 treeR->GetEvent(ch);
441 //cout << listMUONrawclust << " " << listMUONrawclust ->GetEntries() << endl;
0df3ca52 442 AliMUONRawCluster *mRaw;
443 gStyle->SetLineColor(3);
444 cout << " *** Reconstructed hits *** " << endl;
c1aed84f 445 for (Int_t i=0; i<listMUONrawclust ->GetEntries(); i++) {
446 mRaw = (AliMUONRawCluster*)listMUONrawclust ->UncheckedAt(i);
ba12c242 447 if (TMath::Abs(mRaw->GetZ(0)-zpad0) > 1) continue; // different slat
448 p2[0] = p1[0] = mRaw->GetX(0); // x-pos of hit
449 p2[1] = p1[1] = mRaw->GetY(0); // y-pos
0df3ca52 450 if (p1[0] < hist->GetXaxis()->GetXmin() ||
451 p1[0] > hist->GetXaxis()->GetXmax()) continue;
452 if (p1[1] < hist->GetYaxis()->GetXmin() ||
453 p1[1] > hist->GetYaxis()->GetXmax()) continue;
454 /*
c1aed84f 455 treeD->GetEvent(cath);
0df3ca52 456 cout << mRaw->fMultiplicity[0] << mRaw->fMultiplicity[1] << endl;
457 for (Int_t j=0; j<mRaw->fMultiplicity[cath]; j++) {
458 Int_t digit = mRaw->fIndexMap[j][cath];
459 cout << ((AliMUONDigit*)fMuonDigits->UncheckedAt(digit))->Signal() << endl;
460 }
461 */
462 // Check if track comes thru pads with signal
463 iok = 0;
464 for (Int_t ihist=0; ihist<4; ihist++) {
465 if (!fHist[ihist]) continue;
466 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
467 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
468 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
469 }
470 if (!iok) continue;
ba12c242 471 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mRaw->GetZ(0));
0df3ca52 472 if (view) {
473 view->WCtoNDC(p1, &xNDC[0]);
474 view->WCtoNDC(p2, &xNDC[3]);
475 for (Int_t ipad=1; ipad<3; ipad++) {
476 c1->cd(ipad);
477 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
478 line[nLine++]->Draw();
479 }
480 }
c1aed84f 481 } // for (Int_t i=0; i<listMUONrawclust ->GetEntries();
0df3ca52 482 if (fDraw) c1->Update();
483
484skip:
485 // Use MLEM for cluster finder
486 fZpad = zpad0;
487 Int_t nMax = 1, localMax[100], maxPos[100];
488 Double_t maxVal[100];
489
490 if (CheckPrecluster(nShown)) {
491 BuildPixArray();
492 if (fnPads[0]+fnPads[1] > 50) nMax = FindLocalMaxima(localMax, maxVal);
493 if (nMax > 1) TMath::Sort(nMax, maxVal, maxPos, kTRUE); // in decreasing order
494 for (Int_t i=0; i<nMax; i++) {
495 if (nMax > 1) FindCluster(localMax, maxPos[i]);
496 if (!MainLoop()) cout << " MainLoop failed " << endl;
497 if (i < nMax-1) {
498 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
499 if (fPadIJ[1][j] == 0) continue; // pad charge was not modified
500 fPadIJ[1][j] = 0;
501 fXyq[2][j] = fXyq[5][j]; // use backup charge value
502 }
503 }
504 }
505 }
506 if (fReco) goto next;
507
508 for (Int_t i=0; i<fnMu; i++) {
509 // Check again if muon come thru the used pads (due to extra splitting)
510 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
511 if (TMath::Abs(fxyMu[i][0]-fXyq[0][j])<fXyq[3][j] &&
512 TMath::Abs(fxyMu[i][1]-fXyq[1][j])<fXyq[4][j]) {
513 printf("%12.3e %12.3e %12.3e %12.3e\n",fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
514 if (lun) fprintf(lun,"%4d %2d %12.3e %12.3e %12.3e %12.3e\n",nev,ch,fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
515 break;
516 }
517 }
518 } // for (Int_t i=0; i<fnMu;
519
520 // What's next?
521 char command[8];
522 cout << " What is next? " << endl;
523 command[0] = ' ';
524 if (fDraw) gets(command);
525 if (command[0] == 'n' || command[0] == 'N') {nev++; goto newev;} // next event
526 else if (command[0] == 'q' || command[0] == 'Q') {fclose(lun); return;} // exit display
527 //else if (command[0] == 'r' || command[0] == 'R') goto redraw; // redraw points
528 else if (command[0] == 'c' || command[0] == 'C') {
529 // new chamber
530 sscanf(command+1,"%d",&ch);
531 goto newchamber;
532 }
533 else if (command[0] == 'e' || command[0] == 'E') {
534 // new event
535 sscanf(command+1,"%d",&nev);
536 goto newev;
537 }
538 else goto next; // Next cluster
539}
540
541//_____________________________________________________________________________
542void AliMUONClusterFinderAZ::ModifyHistos(void)
543{
544 // Modify histograms to bring them to the same size
545 Int_t nhist = 0;
546 Float_t hlim[4][4], hbin[4][4]; // first index - xmin, xmax, ymin, ymax
547 Float_t binMin[4] = {999,999,999,999};
548
549 for (Int_t i=0; i<4; i++) {
550 if (!fHist[i]) continue;
551 hlim[0][nhist] = fHist[i]->GetXaxis()->GetXmin(); // xmin
552 hlim[1][nhist] = fHist[i]->GetXaxis()->GetXmax(); // xmax
553 hlim[2][nhist] = fHist[i]->GetYaxis()->GetXmin(); // ymin
554 hlim[3][nhist] = fHist[i]->GetYaxis()->GetXmax(); // ymax
555 hbin[0][nhist] = hbin[1][nhist] = fHist[i]->GetXaxis()->GetBinWidth(1);
556 hbin[2][nhist] = hbin[3][nhist] = fHist[i]->GetYaxis()->GetBinWidth(1);
557 binMin[0] = TMath::Min(binMin[0],hbin[0][nhist]);
558 binMin[2] = TMath::Min(binMin[2],hbin[2][nhist]);
559 nhist++;
560 }
561 binMin[1] = binMin[0];
562 binMin[3] = binMin[2];
563 cout << " Nhist: " << nhist << endl;
564
565 Int_t imin, imax;
566 for (Int_t lim=0; lim<4; lim++) {
567 while (1) {
568 imin = TMath::LocMin(nhist,hlim[lim]);
569 imax = TMath::LocMax(nhist,hlim[lim]);
570 if (TMath::Abs(hlim[lim][imin]-hlim[lim][imax])<0.01*binMin[lim]) break;
571 if (lim == 0 || lim == 2) {
572 // find lower limit
573 hlim[lim][imax] -= hbin[lim][imax];
574 } else {
575 // find upper limit
576 hlim[lim][imin] += hbin[lim][imin];
577 }
578 } // while (1)
579 }
580
581 // Rebuild histograms
582 nhist = 0;
583 TH2F *hist = 0;
584 Int_t nx, ny;
cd747ddb 585 Double_t x, y, cont, cmax=0;
0df3ca52 586 char hName[4];
587 for (Int_t ihist=0; ihist<4; ihist++) {
588 if (!fHist[ihist]) continue;
589 nx = TMath::Nint((hlim[1][nhist]-hlim[0][nhist])/hbin[0][nhist]);
590 ny = TMath::Nint((hlim[3][nhist]-hlim[2][nhist])/hbin[2][nhist]);
591 //hist = new TH2F("h","hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
592 sprintf(hName,"hh%d",ihist);
593 hist = new TH2F(hName,"hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
594 for (Int_t i=1; i<=fHist[ihist]->GetNbinsX(); i++) {
595 x = fHist[ihist]->GetXaxis()->GetBinCenter(i);
596 for (Int_t j=1; j<=fHist[ihist]->GetNbinsY(); j++) {
597 y = fHist[ihist]->GetYaxis()->GetBinCenter(j);
598 cont = fHist[ihist]->GetCellContent(i,j);
599 hist->Fill(x,y,cont);
600 }
601 }
602 cmax = TMath::Max (cmax,hist->GetMaximum());
603 fHist[ihist]->Delete();
604 fHist[ihist] = new TH2F(*hist);
605 hist->Delete();
606 nhist++;
607 }
608 printf("%f \n",cmax);
609
610 for (Int_t ihist=0; ihist<4; ihist++) {
611 if (!fHist[ihist]) continue;
612 fHist[ihist]->SetMaximum(cmax);
613 }
614}
615
616//_____________________________________________________________________________
617void AliMUONClusterFinderAZ::AddPad(Int_t cath, Int_t digit)
618{
619 // Add pad to the cluster
620 AliMUONDigit *mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
621
622 Int_t charge = mdig->Signal();
623 // get the center of the pad
624 Float_t xpad, ypad, zpad;
625 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
626
627 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
628 Int_t nPads = fnPads[0] + fnPads[1];
629 fXyq[0][nPads] = xpad;
630 fXyq[1][nPads] = ypad;
631 fXyq[2][nPads] = charge;
632 fXyq[3][nPads] = fSegmentation[cath]->Dpx(isec)/2;
633 fXyq[4][nPads] = fSegmentation[cath]->Dpy(isec)/2;
634 fXyq[5][nPads] = digit;
635 fPadIJ[0][nPads] = cath;
636 fPadIJ[1][nPads] = 0;
637 fUsed[cath][digit] = kTRUE;
638 //cout << " bbb " << fXyq[cath][2][nPads] << " " << fXyq[cath][0][nPads] << " " << fXyq[cath][1][nPads] << " " << fXyq[cath][3][nPads] << " " << fXyq[cath][4][nPads] << " " << zpad << " " << nPads << endl;
639 fnPads[cath]++;
640
641 // Check neighbours
642 Int_t nn, ix, iy, xList[10], yList[10];
643 AliMUONDigit *mdig1;
644
645 Int_t ndigits = fMuonDigits->GetEntriesFast();
646 fSegmentation[cath]->Neighbours(mdig->PadX(),mdig->PadY(),&nn,xList,yList);
647 for (Int_t in=0; in<nn; in++) {
648 ix=xList[in];
649 iy=yList[in];
650 for (Int_t digit1 = 0; digit1 < ndigits; digit1++) {
651 if (digit1 == digit) continue;
652 mdig1 = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit1);
653 if (mdig1->Cathode() != cath) continue;
654 if (!fUsed[cath][digit1] && mdig1->PadX() == ix && mdig1->PadY() == iy) {
655 fUsed[cath][digit1] = kTRUE;
656 // Add pad - recursive call
657 AddPad(cath,digit1);
658 }
659 } //for (Int_t digit1 = 0;
660 } // for (Int_t in=0;
661}
662
663//_____________________________________________________________________________
664Bool_t AliMUONClusterFinderAZ::Overlap(Int_t cath, TObject *dig)
665{
666 // Check if the pad from one cathode overlaps with a pad
667 // in the precluster on the other cathode
668
669 AliMUONDigit *mdig = (AliMUONDigit*) dig;
670
671 Float_t xpad, ypad, zpad;
672 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
673 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
674
675 Float_t xy1[4], xy12[4];
676 xy1[0] = xpad - fSegmentation[cath]->Dpx(isec)/2;
677 xy1[1] = xy1[0] + fSegmentation[cath]->Dpx(isec);
678 xy1[2] = ypad - fSegmentation[cath]->Dpy(isec)/2;
679 xy1[3] = xy1[2] + fSegmentation[cath]->Dpy(isec);
680 //cout << " ok " << fnPads[0]+fnPads[1] << xy1[0] << xy1[1] << xy1[2] << xy1[3] << endl;
681
682 Int_t cath1 = TMath::Even(cath);
683 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
684 if (fPadIJ[0][i] != cath1) continue;
685 if (Overlap(xy1, i, xy12, 0)) return kTRUE;
686 }
687 return kFALSE;
688}
689
690//_____________________________________________________________________________
691Bool_t AliMUONClusterFinderAZ::Overlap(Float_t *xy1, Int_t iPad, Float_t *xy12, Int_t iSkip)
692{
693 // Check if the pads xy1 and iPad overlap and return overlap area
694
695 Float_t xy2[4];
696 xy2[0] = fXyq[0][iPad] - fXyq[3][iPad];
697 xy2[1] = fXyq[0][iPad] + fXyq[3][iPad];
698 if (xy1[0] > xy2[1]-1.e-4 || xy1[1] < xy2[0]+1.e-4) return kFALSE;
699 xy2[2] = fXyq[1][iPad] - fXyq[4][iPad];
700 xy2[3] = fXyq[1][iPad] + fXyq[4][iPad];
701 if (xy1[2] > xy2[3]-1.e-4 || xy1[3] < xy2[2]+1.e-4) return kFALSE;
702 if (!iSkip) return kTRUE; // just check overlap (w/out computing the area)
703 xy12[0] = TMath::Max (xy1[0],xy2[0]);
704 xy12[1] = TMath::Min (xy1[1],xy2[1]);
705 xy12[2] = TMath::Max (xy1[2],xy2[2]);
706 xy12[3] = TMath::Min (xy1[3],xy2[3]);
707 return kTRUE;
708}
709
710//_____________________________________________________________________________
711/*
712Bool_t AliMUONClusterFinderAZ::Overlap(Int_t i, Int_t j, Float_t *xy12, Int_t iSkip)
713{
714 // Check if the pads i and j overlap and return overlap area
715
716 Float_t xy1[4], xy2[4];
717 return Overlap(xy1, xy2, xy12, iSkip);
718}
719*/
720//_____________________________________________________________________________
721Bool_t AliMUONClusterFinderAZ::CheckPrecluster(Int_t *nShown)
722{
723 // Check precluster in order to attempt to simplify it (mostly for
724 // two-cathode preclusters)
725
726 Int_t i1, i2;
727 Float_t xy1[4], xy12[4];
728
729 Int_t npad = fnPads[0] + fnPads[1];
730
731 // If pads have the same size take average of pads on both cathodes
732 Int_t sameSize = (fnPads[0] && fnPads[1]) ? 1 : 0;
733 if (sameSize) {
734 Double_t xSize = -1, ySize = 0;
735 for (Int_t i=0; i<npad; i++) {
736 if (fXyq[2][i] < 0) continue;
737 if (xSize < 0) { xSize = fXyq[3][i]; ySize = fXyq[4][i]; }
738 if (TMath::Abs(xSize-fXyq[3][i]) > 1.e-4 || TMath::Abs(ySize-fXyq[4][i]) > 1.e-4) { sameSize = 0; break; }
739 }
740 } // if (sameSize)
741 if (sameSize && (fnPads[0] > 2 || fnPads[1] > 2)) {
742 nShown[0] += fnPads[0];
743 nShown[1] += fnPads[1];
744 fnPads[0] = fnPads[1] = 0;
745 Int_t div;
746 for (Int_t i=0; i<npad; i++) {
747 if (fXyq[2][i] < 0) continue; // used pad
748 fXyq[2][fnPads[0]] = fXyq[2][i];
749 div = 1;
750 for (Int_t j=i+1; j<npad; j++) {
751 if (fPadIJ[0][j] == fPadIJ[0][i]) continue; // same cathode
752 if (TMath::Abs(fXyq[0][j]-fXyq[0][i]) > 1.e-4) continue;
753 if (TMath::Abs(fXyq[1][j]-fXyq[1][i]) > 1.e-4) continue;
754 fXyq[2][fnPads[0]] += fXyq[2][j];
755 div = 2;
756 fXyq[2][j] = -2;
757 break;
758 }
759 fXyq[2][fnPads[0]] /= div;
760 fXyq[0][fnPads[0]] = fXyq[0][i];
761 fXyq[1][fnPads[0]] = fXyq[1][i];
762 fPadIJ[0][fnPads[0]++] = 0;
763 }
764 } // if (sameSize)
765
766 // Check if one-cathode precluster
767 i1 = fnPads[0]!=0 ? 0 : 1;
768 i2 = fnPads[1]!=0 ? 1 : 0;
769
770 if (i1 != i2) { // two-cathode
771
772 Int_t *flags = new Int_t[npad];
773 for (Int_t i=0; i<npad; i++) { flags[i] = 0; }
774
775 // Check pad overlaps
776 for (Int_t i=0; i<npad; i++) {
777 if (fPadIJ[0][i] != i1) continue;
778 xy1[0] = fXyq[0][i] - fXyq[3][i];
779 xy1[1] = fXyq[0][i] + fXyq[3][i];
780 xy1[2] = fXyq[1][i] - fXyq[4][i];
781 xy1[3] = fXyq[1][i] + fXyq[4][i];
782 for (Int_t j=0; j<npad; j++) {
783 if (fPadIJ[0][j] != i2) continue;
784 if (!Overlap(xy1, j, xy12, 0)) continue;
785 flags[i] = flags[j] = 1; // mark overlapped pads
786 } // for (Int_t j=0;
787 } // for (Int_t i=0;
788
789 // Check if all pads overlap
790 Int_t digit=0, cath, nFlags=0;
791 for (Int_t i=0; i<npad; i++) {nFlags += !flags[i];}
792 if (nFlags) cout << " nFlags = " << nFlags << endl;
793 //if (nFlags > 2 || (Float_t)nFlags / npad > 0.2) { // why 2 ??? - empirical choice
794 if (nFlags > 0) {
795 for (Int_t i=0; i<npad; i++) {
796 if (flags[i]) continue;
797 digit = TMath::Nint (fXyq[5][i]);
798 cath = fPadIJ[0][i];
799 fUsed[cath][digit] = kFALSE; // release pad
800 fXyq[2][i] = -2;
801 fnPads[cath]--;
802 }
803 } // if (nFlags > 2)
804
805 // Check correlations of cathode charges
806 if (fnPads[0] && fnPads[1]) { // two-cathode
807 Double_t sum[2]={0};
808 Int_t over[2] = {1, 1};
809 for (Int_t i=0; i<npad; i++) {
810 cath = fPadIJ[0][i];
811 if (fXyq[2][i] > 0) sum[cath] += fXyq[2][i];
812 if (fXyq[2][i] > fResponse->MaxAdc()-1) over[cath] = 0;
813 }
814 cout << " Total charge: " << sum[0] << " " << sum[1] << endl;
815 if ((over[0] || over[1]) && TMath::Abs(sum[0]-sum[1])/(sum[0]+sum[1])*2 > 1) { // 3 times difference
816 cout << " Release " << endl;
817 // Big difference
818 cath = sum[0]>sum[1] ? 0 : 1;
819 Int_t imax = 0;
820 Double_t cmax=-1;
821 Double_t *dist = new Double_t[npad];
822 for (Int_t i=0; i<npad; i++) {
823 if (fPadIJ[0][i] != cath) continue;
824 if (fXyq[2][i] < cmax) continue;
825 cmax = fXyq[2][i];
826 imax = i;
827 }
828 // Arrange pads according to their distance to the max,
829 // normalized to the pad size
830 for (Int_t i=0; i<npad; i++) {
831 dist[i] = 0;
832 if (fPadIJ[0][i] != cath) continue;
833 if (i == imax) continue;
834 if (fXyq[2][i] < 0) continue;
835 dist[i] = (fXyq[0][i]-fXyq[0][imax])*(fXyq[0][i]-fXyq[0][imax])/
836 fXyq[3][imax]/fXyq[3][imax]/4;
837 dist[i] += (fXyq[1][i]-fXyq[1][imax])*(fXyq[1][i]-fXyq[1][imax])/
838 fXyq[4][imax]/fXyq[4][imax]/4;
839 dist[i] = TMath::Sqrt (dist[i]);
840 }
841 TMath::Sort(npad, dist, flags, kFALSE); // in increasing order
842 Int_t indx;
843 Double_t xmax = -1;
844 for (Int_t i=0; i<npad; i++) {
845 indx = flags[i];
846 if (fPadIJ[0][indx] != cath) continue;
847 if (fXyq[2][indx] < 0) continue;
848 if (fXyq[2][indx] <= cmax || TMath::Abs(dist[indx]-xmax)<1.e-3) {
849 // Release pads
850 if (TMath::Abs(dist[indx]-xmax)<1.e-3)
cd747ddb 851 cmax = TMath::Max((Double_t)(fXyq[2][indx]),cmax);
0df3ca52 852 else cmax = fXyq[2][indx];
853 xmax = dist[indx];
854 digit = TMath::Nint (fXyq[5][indx]);
855 fUsed[cath][digit] = kFALSE;
856 fXyq[2][indx] = -2;
857 fnPads[cath]--;
858 // xmax = dist[i]; // Bug?
859 }
860 else break;
861 }
862 delete [] dist; dist = 0;
863 } // TMath::Abs(sum[0]-sum[1])...
864 } // if (fnPads[0] && fnPads[1])
865 delete [] flags; flags = 0;
866 } // if (i1 != i2)
867
868 if (!sameSize) { nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; }
869
870 // Move released pads to the right
871 Int_t beg = 0, end = npad-1, padij;
872 Double_t xyq;
873 while (beg < end) {
874 if (fXyq[2][beg] > 0) { beg++; continue; }
875 for (Int_t j=end; j>beg; j--) {
876 if (fXyq[2][j] < 0) continue;
877 end = j - 1;
878 for (Int_t j1=0; j1<2; j1++) {
879 padij = fPadIJ[j1][beg];
880 fPadIJ[j1][beg] = fPadIJ[j1][j];
881 fPadIJ[j1][j] = padij;
882 }
883 for (Int_t j1=0; j1<6; j1++) {
884 xyq = fXyq[j1][beg];
885 fXyq[j1][beg] = fXyq[j1][j];
886 fXyq[j1][j] = xyq;
887 }
888 break;
889 } // for (Int_t j=end;
890 beg++;
891 } // while
892 npad = fnPads[0] + fnPads[1];
893 if (npad > 500) { cout << " ***** Too large cluster. Give up. " << npad << endl; return kFALSE; }
894 // Back up charge value
895 for (Int_t j=0; j<npad; j++) fXyq[5][j] = fXyq[2][j];
896
897 return kTRUE;
898}
899
900//_____________________________________________________________________________
901void AliMUONClusterFinderAZ::BuildPixArray()
902{
903 // Build pixel array for MLEM method
904
905 Int_t nPix=0, i1, i2;
906 Float_t xy1[4], xy12[4];
907 AliMUONPixel *pixPtr=0;
908
909 Int_t npad = fnPads[0] + fnPads[1];
910
911 // One cathode is empty
912 i1 = fnPads[0]!=0 ? 0 : 1;
913 i2 = fnPads[1]!=0 ? 1 : 0;
914
915 // Build array of pixels on anode plane
916 if (i1 == i2) { // one-cathode precluster
917 for (Int_t j=0; j<npad; j++) {
918 pixPtr = new AliMUONPixel();
919 for (Int_t i=0; i<2; i++) {
920 pixPtr->SetCoord(i, fXyq[i][j]); // pixel coordinates
921 pixPtr->SetSize(i, fXyq[i+3][j]); // pixel size
922 }
923 pixPtr->SetCharge(fXyq[2][j]); // charge
924 fPixArray->Add((TObject*)pixPtr);
925 nPix++;
926 }
927 } else { // two-cathode precluster
928 for (Int_t i=0; i<npad; i++) {
929 if (fPadIJ[0][i] != i1) continue;
930 xy1[0] = fXyq[0][i] - fXyq[3][i];
931 xy1[1] = fXyq[0][i] + fXyq[3][i];
932 xy1[2] = fXyq[1][i] - fXyq[4][i];
933 xy1[3] = fXyq[1][i] + fXyq[4][i];
934 for (Int_t j=0; j<npad; j++) {
935 if (fPadIJ[0][j] != i2) continue;
936 if (!Overlap(xy1, j, xy12, 1)) continue;
937 pixPtr = new AliMUONPixel();
938 for (Int_t k=0; k<2; k++) {
939 pixPtr->SetCoord(k, (xy12[2*k]+xy12[2*k+1])/2); // pixel coordinates
940 pixPtr->SetSize(k, xy12[2*k+1]-pixPtr->Coord(k)); // size
941 }
942 pixPtr->SetCharge(TMath::Min (fXyq[2][i],fXyq[2][j])); //charge
943 fPixArray->Add((TObject*)pixPtr);
944 nPix++;
945 } // for (Int_t j=0;
946 } // for (Int_t i=0;
947 } // else
948
949 Float_t wxmin=999, wymin=999;
950 for (Int_t i=0; i<npad; i++) {
951 if (fPadIJ[0][i] == i1) wymin = TMath::Min (wymin,fXyq[4][i]);
952 if (fPadIJ[0][i] == i2) wxmin = TMath::Min (wxmin,fXyq[3][i]);
953 }
954 cout << wxmin << " " << wymin << endl;
955
956 // Check if small pixel X-size
957 AjustPixel(wxmin, 0);
958 // Check if small pixel Y-size
959 AjustPixel(wymin, 1);
960 // Check if large pixel size
961 AjustPixel(wxmin, wymin);
962
963 // Remove discarded pixels
964 for (Int_t i=0; i<nPix; i++) {
965 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
966 //pixPtr->Print();
967 if (pixPtr->Charge() < 1) { fPixArray->RemoveAt(i); delete pixPtr; }// discarded pixel
968 }
969 fPixArray->Compress();
970 nPix = fPixArray->GetEntriesFast();
971
972 if (nPix > npad) {
973 cout << nPix << endl;
974 // Too many pixels - sort and remove pixels with the lowest signal
975 fPixArray->Sort();
976 for (Int_t i=npad; i<nPix; i++) {
977 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
978 //pixPtr->Print();
979 fPixArray->RemoveAt(i);
980 delete pixPtr;
981 }
982 nPix = npad;
983 } // if (nPix > npad)
984
985 // Set pixel charges to the same value (for MLEM)
986 for (Int_t i=0; i<nPix; i++) {
987 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
988 //pixPtr->SetCharge(10);
989 cout << i+1 << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(0) << " " << pixPtr->Size(1) << endl;
990 }
991}
992
993//_____________________________________________________________________________
994void AliMUONClusterFinderAZ::AjustPixel(Float_t width, Int_t ixy)
995{
996 // Check if some pixels have small size (ajust if necessary)
997
998 AliMUONPixel *pixPtr, *pixPtr1 = 0;
999 Int_t ixy1 = TMath::Even(ixy);
1000 Int_t nPix = fPixArray->GetEntriesFast();
1001
1002 for (Int_t i=0; i<nPix; i++) {
1003 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1004 if (pixPtr->Charge() < 1) continue; // discarded pixel
1005 if (pixPtr->Size(ixy)-width < -1.e-4) {
1006 // try to merge
1007 cout << " Small X or Y: " << ixy << " " << pixPtr->Size(ixy) << " " << width << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << endl;
1008 for (Int_t j=i+1; j<nPix; j++) {
1009 pixPtr1 = (AliMUONPixel*) fPixArray->UncheckedAt(j);
1010 if (pixPtr1->Charge() < 1) continue; // discarded pixel
1011 if (TMath::Abs(pixPtr1->Size(ixy)-width) < 1.e-4) continue; // right size
1012 if (TMath::Abs(pixPtr1->Coord(ixy1)-pixPtr->Coord(ixy1)) > 1.e-4) continue; // different rows/columns
1013 if (TMath::Abs(pixPtr1->Coord(ixy)-pixPtr->Coord(ixy)) < 2*width) {
1014 // merge
1015 pixPtr->SetSize(ixy, width);
1016 pixPtr->SetCoord(ixy, (pixPtr->Coord(ixy)+pixPtr1->Coord(ixy))/2);
1017 pixPtr->SetCharge(TMath::Min (pixPtr->Charge(),pixPtr1->Charge()));
1018 pixPtr1->SetCharge(0);
1019 pixPtr1 = 0;
1020 break;
1021 }
1022 } // for (Int_t j=i+1;
1023 //if (!pixPtr1) { cout << " I am here!" << endl; pixPtr->SetSize(ixy, width); } // ???
1024 //else if (pixPtr1->Charge() > 0.5 || i == nPix-1) {
1025 if (pixPtr1 || i == nPix-1) {
1026 // edge pixel - just increase its size
1027 cout << " Edge ..." << endl;
1028 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1029 // ???if (fPadIJ[0][j] != i1) continue;
1030 if (TMath::Abs(pixPtr->Coord(ixy1)-fXyq[ixy1][j]) > 1.e-4) continue;
1031 if (pixPtr->Coord(ixy) < fXyq[ixy][j])
1032 pixPtr->Shift(ixy, -pixPtr->Size(ixy));
1033 else pixPtr->Shift(ixy, pixPtr->Size(ixy));
1034 pixPtr->SetSize(ixy, width);
1035 break;
1036 }
1037 }
1038 } // if (pixPtr->Size(ixy)-width < -1.e-4)
1039 } // for (Int_t i=0; i<nPix;
1040 return;
1041}
1042
1043//_____________________________________________________________________________
1044void AliMUONClusterFinderAZ::AjustPixel(Float_t wxmin, Float_t wymin)
1045{
1046 // Check if some pixels have large size (ajust if necessary)
1047
1048 Int_t nx, ny;
1049 Int_t nPix = fPixArray->GetEntriesFast();
1050 AliMUONPixel *pixPtr, *pixPtr1, pix;
1051
1052 // Check if large pixel size
1053 for (Int_t i=0; i<nPix; i++) {
1054 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1055 if (pixPtr->Charge() < 1) continue; // discarded pixel
1056 if (pixPtr->Size(0)-wxmin > 1.e-4 || pixPtr->Size(1)-wymin > 1.e-4) {
1057 cout << " Different " << pixPtr->Size(0) << " " << wxmin << " " << pixPtr->Size(1) << " " << wymin << endl;
1058 pix = *pixPtr;
1059 nx = TMath::Nint (pix.Size(0)/wxmin);
1060 ny = TMath::Nint (pix.Size(1)/wymin);
1061 pix.Shift(0, -pix.Size(0)-wxmin);
1062 pix.Shift(1, -pix.Size(1)-wymin);
1063 pix.SetSize(0, wxmin);
1064 pix.SetSize(1, wymin);
1065 for (Int_t ii=0; ii<nx; ii++) {
1066 pix.Shift(0, wxmin*2);
1067 for (Int_t jj=0; jj<ny; jj++) {
1068 pix.Shift(1, wymin*2);
1069 pixPtr1 = new AliMUONPixel(pix);
1070 fPixArray->Add((TObject*)pixPtr1);
1071 }
1072 }
1073 pixPtr->SetCharge(0);
1074 }
1075 } // for (Int_t i=0; i<nPix;
1076 return;
1077}
1078
1079//_____________________________________________________________________________
1080Bool_t AliMUONClusterFinderAZ::MainLoop()
1081{
1082 // Repeat MLEM algorithm until pixel size becomes sufficiently small
1083
1084 TH2D *mlem;
1085
1086 Int_t ix, iy;
1087 //Int_t nn, xList[10], yList[10];
1088 Int_t nPix = fPixArray->GetEntriesFast();
1089 Int_t npadTot = fnPads[0] + fnPads[1], npadOK = 0;
1090 AliMUONPixel *pixPtr = 0;
1091 Double_t *coef = 0, *probi = 0;
1092 for (Int_t i=0; i<npadTot; i++) if (fPadIJ[1][i] == 0) npadOK++;
1093
1094 while (1) {
1095
1096 mlem = (TH2D*) gROOT->FindObject("mlem");
1097 if (mlem) mlem->Delete();
1098 // Calculate coefficients
1099 cout << " nPix, npadTot, npadOK " << nPix << " " << npadTot << " " << npadOK << endl;
1100
1101 // Calculate coefficients and pixel visibilities
1102 coef = new Double_t [npadTot*nPix];
1103 probi = new Double_t [nPix];
1104 Int_t indx = 0, cath;
1105 for (Int_t ipix=0; ipix<nPix; ipix++) {
1106 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1107 probi[ipix] = 0;
1108 for (Int_t j=0; j<npadTot; j++) {
1109 if (fPadIJ[1][j] < 0) { coef[j*nPix+ipix] = 0; continue; }
1110 cath = fPadIJ[0][j];
1111 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
1112 fSegmentation[cath]->SetPad(ix,iy);
1113 /*
1114 fSegmentation[cath]->Neighbours(ix,iy,&nn,xList,yList);
1115 if (nn != 4) {
1116 cout << nn << ": ";
1117 for (Int_t i=0; i<nn; i++) {cout << xList[i] << " " << yList[i] << ", ";}
1118 cout << endl;
1119 }
1120 */
1121 Double_t sum = 0;
1122 fSegmentation[cath]->SetHit(pixPtr->Coord(0),pixPtr->Coord(1),fZpad);
1123 sum += fResponse->IntXY(fSegmentation[cath]);
1124 indx = j*nPix + ipix;
1125 coef[indx] = sum;
1126 probi[ipix] += coef[indx];
1127 //cout << j << " " << ipix << " " << coef[indx] << endl;
1128 } // for (Int_t j=0;
1129 //cout << " prob: " << probi[ipix] << endl;
1130 if (probi[ipix] < 0.01) pixPtr->SetCharge(0); // "invisible" pixel
1131 } // for (Int_t ipix=0;
1132
1133 // MLEM algorithm
1134 Mlem(coef, probi);
1135
cd747ddb 1136 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 1137 for (Int_t ipix=0; ipix<nPix; ipix++) {
1138 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1139 for (Int_t i=0; i<4; i++)
1140 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1141 //cout << ipix+1; pixPtr->Print();
1142 }
1143 for (Int_t i=0; i<4; i++) {
1144 xylim[i] -= pixPtr->Size(i/2); cout << (i%2 ? -1 : 1)*xylim[i] << " "; }
1145 cout << endl;
1146
1147 // Ajust histogram to approximately the same limits as for the pads
1148 // (for good presentation)
1149 //*
1150 Float_t xypads[4];
1151 if (fHist[0]) {
1152 xypads[0] = fHist[0]->GetXaxis()->GetXmin();
1153 xypads[1] = -fHist[0]->GetXaxis()->GetXmax();
1154 xypads[2] = fHist[0]->GetYaxis()->GetXmin();
1155 xypads[3] = -fHist[0]->GetYaxis()->GetXmax();
1156 for (Int_t i=0; i<4; i++) {
1157 while(1) {
1158 if (xylim[i] < xypads[i]) break;
1159 xylim[i] -= 2*pixPtr->Size(i/2);
1160 }
1161 }
1162 } // if (fHist[0])
1163 //*/
1164
1165 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
1166 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
1167 mlem = new TH2D("mlem","mlem",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
1168 for (Int_t ipix=0; ipix<nPix; ipix++) {
1169 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1170 mlem->Fill(pixPtr->Coord(0),pixPtr->Coord(1),pixPtr->Charge());
1171 }
1172 //gPad->GetCanvas()->cd(3);
1173 if (fDraw) {
1174 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1175 gPad->SetTheta(55);
1176 gPad->SetPhi(30);
1177 mlem->Draw("lego1Fb");
1178 gPad->Update();
1179 gets((char*)&ix);
1180 }
1181
1182 // Check if the total charge of pixels is too low
1183 Double_t qTot = 0;
1184 for (Int_t i=0; i<nPix; i++) {
1185 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1186 qTot += pixPtr->Charge();
1187 }
1188 if (qTot < 1.e-4 || npadOK < 3 && qTot < 50) {
1189 delete [] coef; delete [] probi; coef = 0; probi = 0;
1190 fPixArray->Delete();
1191 return kFALSE;
1192 }
1193
1194 // Plot data - expectation
1195 /*
1196 Double_t x, y, cont;
1197 for (Int_t j=0; j<npadTot; j++) {
1198 Double_t sum1 = 0;
1199 for (Int_t i=0; i<nPix; i++) {
1200 // Caculate expectation
1201 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1202 sum1 += pixPtr->Charge()*coef[j*nPix+i];
1203 }
1204 sum1 = TMath::Min (sum1,(Double_t)fResponse->MaxAdc());
1205 x = fXyq[0][j];
1206 y = fXyq[1][j];
1207 cath = fPadIJ[0][j];
1208 Int_t ihist = cath*2;
1209 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1210 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1211 cont = fHist[ihist]->GetCellContent(ix,iy);
1212 if (cont == 0 && fHist[ihist+1]) {
1213 ihist += 1;
1214 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1215 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1216 }
1217 fHist[ihist]->SetBinContent(ix,iy,fXyq[2][j]-sum1);
1218 }
1219 ((TCanvas*)gROOT->FindObject("c1"))->cd(1);
1220 //gPad->SetTheta(55);
1221 //gPad->SetPhi(30);
1222 //mlem->Draw("lego1");
1223 gPad->Modified();
1224 ((TCanvas*)gROOT->FindObject("c1"))->cd(2);
1225 gPad->Modified();
1226 */
1227
1228 // Calculate position of the center-of-gravity around the maximum pixel
1229 Double_t xyCOG[2];
1230 FindCOG(mlem, xyCOG);
1231
1232 if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.07 && pixPtr->Size(0) > pixPtr->Size(1)) break;
1233 //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) >= 0.07 || pixPtr->Size(0) < pixPtr->Size(1)) {
1234 // Sort pixels according to the charge
1235 fPixArray->Sort();
1236 /*
1237 for (Int_t i=0; i<nPix; i++) {
1238 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1239 cout << i+1; pixPtr->Print();
1240 }
1241 */
1242 Double_t pixMin = 0.01*((AliMUONPixel*)fPixArray->UncheckedAt(0))->Charge();
1243 pixMin = TMath::Min (pixMin,50.);
1244
1245 // Decrease pixel size and shift pixels to make them centered at
1246 // the maximum one
1247 indx = (pixPtr->Size(0)>pixPtr->Size(1)) ? 0 : 1;
1248 Double_t width = 0, shift[2]={0};
1249 ix = 1;
1250 for (Int_t i=0; i<4; i++) xylim[i] = 999;
1251 Int_t nPix1 = nPix; nPix = 0;
1252 for (Int_t ipix=0; ipix<nPix1; ipix++) {
1253 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1254 if (nPix >= npadOK) { // too many pixels already
1255 fPixArray->RemoveAt(ipix);
1256 delete pixPtr;
1257 continue;
1258 }
1259 if (pixPtr->Charge() < pixMin) { // low charge
1260 fPixArray->RemoveAt(ipix);
1261 delete pixPtr;
1262 continue;
1263 }
1264 for (Int_t i=0; i<2; i++) {
1265 if (!i) {
1266 pixPtr->SetCharge(10);
1267 pixPtr->SetSize(indx, pixPtr->Size(indx)/2);
1268 width = -pixPtr->Size(indx);
1269 pixPtr->Shift(indx, width);
1270 // Shift pixel position
1271 if (ix) {
1272 ix = 0;
1273 for (Int_t j=0; j<2; j++) {
1274 shift[j] = pixPtr->Coord(j) - xyCOG[j];
1275 shift[j] -= ((Int_t)(shift[j]/pixPtr->Size(j)/2))*pixPtr->Size(j)*2;
1276 }
1277 //cout << ipix << " " << i << " " << shift[0] << " " << shift[1] << endl;
1278 } // if (ix)
1279 pixPtr->Shift(0, -shift[0]);
1280 pixPtr->Shift(1, -shift[1]);
1281 } else {
1282 pixPtr = new AliMUONPixel(*pixPtr);
1283 pixPtr->Shift(indx, -2*width);
1284 fPixArray->Add((TObject*)pixPtr);
1285 } // else
1286 //pixPtr->Print();
1287 for (Int_t i=0; i<4; i++)
1288 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1289 } // for (Int_t i=0; i<2;
1290 nPix += 2;
1291 } // for (Int_t ipix=0;
1292
1293 fPixArray->Compress();
1294 nPix = fPixArray->GetEntriesFast();
1295
1296 // Remove excessive pixels
1297 if (nPix > npadOK) {
1298 for (Int_t ipix=npadOK; ipix<nPix; ipix++) {
1299 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1300 fPixArray->RemoveAt(ipix);
1301 delete pixPtr;
1302 }
1303 } else {
1304 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(0);
1305 // add pixels if the maximum is at the limit of pixel area
1306 // start from Y-direction
1307 Int_t j = 0;
1308 for (Int_t i=3; i>-1; i--) {
1309 if (nPix < npadOK &&
1310 TMath::Abs((i%2 ? -1 : 1)*xylim[i]-xyCOG[i/2]) < pixPtr->Size(i/2)) {
1311 pixPtr = new AliMUONPixel(*pixPtr);
1312 pixPtr->SetCoord(i/2, xyCOG[i/2]+(i%2 ? 2:-2)*pixPtr->Size(i/2));
1313 j = TMath::Even (i/2);
1314 pixPtr->SetCoord(j, xyCOG[j]);
1315 fPixArray->Add((TObject*)pixPtr);
1316 nPix++;
1317 }
1318 }
1319 } // else
1320
1321 fPixArray->Compress();
1322 nPix = fPixArray->GetEntriesFast();
1323 delete [] coef; delete [] probi; coef = 0; probi = 0;
1324 } // while (1)
1325
1326 // remove pixels with low signal or low visibility
1327 // Cuts are empirical !!!
1328 Double_t thresh = TMath::Max (mlem->GetMaximum()/100.,1.);
1329 thresh = TMath::Min (thresh,50.);
1330 Double_t cmax = -1, charge = 0;
1331 for (Int_t i=0; i<nPix; i++) cmax = TMath::Max (cmax,probi[i]);
1332 // Mark pixels which should be removed
1333 for (Int_t i=0; i<nPix; i++) {
1334 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1335 charge = pixPtr->Charge();
1336 if (charge < thresh) pixPtr->SetCharge(-charge);
1337 else if (cmax > 1.91) {
1338 if (probi[i] < 1.9) pixPtr->SetCharge(-charge);
1339 }
1340 else if (probi[i] < cmax*0.9) pixPtr->SetCharge(-charge);
1341 }
1342 // Move charge of removed pixels to their nearest neighbour (to keep total charge the same)
1343 Int_t near = 0;
1344 for (Int_t i=0; i<nPix; i++) {
1345 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1346 charge = pixPtr->Charge();
1347 if (charge > 0) continue;
1348 near = FindNearest(pixPtr);
1349 pixPtr->SetCharge(0);
1350 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(near);
1351 pixPtr->SetCharge(pixPtr->Charge() - charge);
1352 }
1353 // Update histogram
1354 for (Int_t i=0; i<nPix; i++) {
1355 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1356 ix = mlem->GetXaxis()->FindBin(pixPtr->Coord(0));
1357 iy = mlem->GetYaxis()->FindBin(pixPtr->Coord(1));
1358 mlem->SetBinContent(ix, iy, pixPtr->Charge());
1359 }
1360 if (fDraw) {
1361 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1362 gPad->SetTheta(55);
1363 gPad->SetPhi(30);
1364 mlem->Draw("lego1Fb");
1365 gPad->Update();
1366 }
1367
1368 fxyMu[0][6] = fxyMu[1][6] = 9999;
1369 // Try to split into clusters
1370 Bool_t ok = kTRUE;
1371 if (mlem->GetSum() < 1) ok = kFALSE;
1372 else Split(mlem, coef);
1373 delete [] coef; delete [] probi; coef = 0; probi = 0;
1374 fPixArray->Delete();
1375 return ok;
1376}
1377
1378//_____________________________________________________________________________
1379void AliMUONClusterFinderAZ::Mlem(Double_t *coef, Double_t *probi)
1380{
1381 // Use MLEM to find pixel charges
1382
1383 Int_t nPix = fPixArray->GetEntriesFast();
1384 Int_t npad = fnPads[0] + fnPads[1];
1385 Double_t *probi1 = new Double_t [nPix];
1386 Int_t indx, indx1;
1387 AliMUONPixel *pixPtr;
1388
1389 for (Int_t iter=0; iter<15; iter++) {
1390 // Do iterations
1391 for (Int_t ipix=0; ipix<nPix; ipix++) {
1392 // Correct each pixel
1393 if (probi[ipix] < 0.01) continue; // skip "invisible" pixel
1394 Double_t sum = 0;
1395 probi1[ipix] = probi[ipix];
1396 for (Int_t j=0; j<npad; j++) {
1397 if (fPadIJ[1][j] < 0) continue;
1398 Double_t sum1 = 0;
1399 indx1 = j*nPix;
1400 indx = indx1 + ipix;
1401 for (Int_t i=0; i<nPix; i++) {
1402 // Caculate expectation
1403 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1404 sum1 += pixPtr->Charge()*coef[indx1+i];
1405 } // for (Int_t i=0;
1406 if (fXyq[2][j] > fResponse->MaxAdc()-1 && sum1 > fResponse->MaxAdc()) { probi1[ipix] -= coef[indx]; continue; } // correct for pad charge overflows
1407 //cout << sum1 << " " << fXyq[2][j] << " " << coef[j*nPix+ipix] << endl;
1408 if (coef[indx] > 1.e-6) sum += fXyq[2][j]*coef[indx]/sum1;
1409 } // for (Int_t j=0;
1410 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1411 if (probi1[ipix] > 1.e-6) pixPtr->SetCharge(pixPtr->Charge()*sum/probi1[ipix]);
1412 } // for (Int_t ipix=0;
1413 } // for (Int_t iter=0;
1414 delete [] probi1;
1415 return;
1416}
1417
1418//_____________________________________________________________________________
1419void AliMUONClusterFinderAZ::FindCOG(TH2D *mlem, Double_t *xyc)
1420{
1421 // Calculate position of the center-of-gravity around the maximum pixel
1422
1423 Int_t ixmax, iymax, ix, nsumx=0, nsumy=0, nsum=0;
1424 Int_t i1 = -9, j1 = -9;
1425 mlem->GetMaximumBin(ixmax,iymax,ix);
1426 Int_t nx = mlem->GetNbinsX();
1427 Int_t ny = mlem->GetNbinsY();
1428 Double_t thresh = mlem->GetMaximum()/10;
1429 Double_t x, y, cont, xq=0, yq=0, qq=0;
1430
1431 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1432 y = mlem->GetYaxis()->GetBinCenter(i);
1433 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1434 cont = mlem->GetCellContent(j,i);
1435 if (cont < thresh) continue;
1436 if (i != i1) {i1 = i; nsumy++;}
1437 if (j != j1) {j1 = j; nsumx++;}
1438 x = mlem->GetXaxis()->GetBinCenter(j);
1439 xq += x*cont;
1440 yq += y*cont;
1441 qq += cont;
1442 nsum++;
1443 }
1444 }
1445
1446 Double_t cmax = 0;
1447 Int_t i2 = 0, j2 = 0;
1448 x = y = 0;
1449 if (nsumy == 1) {
1450 // one bin in Y - add one more (with the largest signal)
1451 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1452 if (i == iymax) continue;
1453 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1454 cont = mlem->GetCellContent(j,i);
1455 if (cont > cmax) {
1456 cmax = cont;
1457 x = mlem->GetXaxis()->GetBinCenter(j);
1458 y = mlem->GetYaxis()->GetBinCenter(i);
1459 i2 = i;
1460 j2 = j;
1461 }
1462 }
1463 }
1464 xq += x*cmax;
1465 yq += y*cmax;
1466 qq += cmax;
1467 if (i2 != i1) nsumy++;
1468 if (j2 != j1) nsumx++;
1469 nsum++;
1470 } // if (nsumy == 1)
1471
1472 if (nsumx == 1) {
1473 // one bin in X - add one more (with the largest signal)
1474 cmax = x = y = 0;
1475 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1476 if (j == ixmax) continue;
1477 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1478 cont = mlem->GetCellContent(j,i);
1479 if (cont > cmax) {
1480 cmax = cont;
1481 x = mlem->GetXaxis()->GetBinCenter(j);
1482 y = mlem->GetYaxis()->GetBinCenter(i);
1483 i2 = i;
1484 j2 = j;
1485 }
1486 }
1487 }
1488 xq += x*cmax;
1489 yq += y*cmax;
1490 qq += cmax;
1491 if (i2 != i1) nsumy++;
1492 if (j2 != j1) nsumx++;
1493 nsum++;
1494 } // if (nsumx == 1)
1495
1496 xyc[0] = xq/qq; xyc[1] = yq/qq;
1497 cout << xyc[0] << " " << xyc[1] << " " << qq << " " << nsum << " " << nsumx << " " << nsumy << endl;
1498 return;
1499}
1500
1501//_____________________________________________________________________________
1502Int_t AliMUONClusterFinderAZ::FindNearest(AliMUONPixel *pixPtr0)
1503{
1504 // Find the pixel nearest to the given one
1505 // (algorithm may be not very efficient)
1506
1507 Int_t nPix = fPixArray->GetEntriesFast(), imin = 0;
1508 Double_t rmin = 99999, dx = 0, dy = 0, r = 0;
1509 Double_t xc = pixPtr0->Coord(0), yc = pixPtr0->Coord(1);
1510 AliMUONPixel *pixPtr;
1511
1512 for (Int_t i=0; i<nPix; i++) {
1513 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1514 if (pixPtr->Charge() < 0.5) continue;
1515 dx = (xc - pixPtr->Coord(0)) / pixPtr->Size(0);
1516 dy = (yc - pixPtr->Coord(1)) / pixPtr->Size(1);
1517 r = dx *dx + dy * dy;
1518 if (r < rmin) { rmin = r; imin = i; }
1519 }
1520 return imin;
1521}
1522
1523//_____________________________________________________________________________
1524void AliMUONClusterFinderAZ::Split(TH2D *mlem, Double_t *coef)
1525{
1526 // The main steering function to work with clusters of pixels in anode
1527 // plane (find clusters, decouple them from each other, merge them (if
1528 // necessary), pick up coupled pads, call the fitting function)
1529
1530 Int_t nx = mlem->GetNbinsX();
1531 Int_t ny = mlem->GetNbinsY();
1532 Int_t nPix = fPixArray->GetEntriesFast();
1533
1534 Bool_t *used = new Bool_t[ny*nx];
1535 Double_t cont;
1536 Int_t nclust = 0, indx, indx1;
1537
1538 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
1539
1540 TObjArray *clusters[200]={0};
1541 TObjArray *pix;
1542
1543 // Find clusters of histogram bins (easier to work in 2-D space)
1544 for (Int_t i=1; i<=ny; i++) {
1545 for (Int_t j=1; j<=nx; j++) {
1546 indx = (i-1)*nx + j - 1;
1547 if (used[indx]) continue;
1548 cont = mlem->GetCellContent(j,i);
1549 if (cont < 0.5) continue;
1550 pix = new TObjArray(20);
1551 used[indx] = 1;
1552 pix->Add(BinToPix(mlem,j,i));
1553 AddBin(mlem, i, j, 0, used, pix); // recursive call
1554 clusters[nclust++] = pix;
1555 if (nclust > 200) { cout << " Too many clusters " << endl; ::exit(0); }
1556 } // for (Int_t j=1; j<=nx; j++) {
1557 } // for (Int_t i=1; i<=ny;
1558 cout << nclust << endl;
1559 delete [] used; used = 0;
1560
1561 // Compute couplings between clusters and clusters to pads
1562 Int_t npad = fnPads[0] + fnPads[1];
1563
1564 // Exclude pads with overflows
1565 for (Int_t j=0; j<npad; j++) {
1566 if (fXyq[2][j] > fResponse->MaxAdc()-1) fPadIJ[1][j] = -9;
1567 else fPadIJ[1][j] = 0;
1568 }
1569
1570 // Compute couplings of clusters to pads
c1aed84f 1571 TMatrixD *aijclupad = new TMatrixD(nclust,npad);
1572 *aijclupad = 0;
0df3ca52 1573 Int_t npxclu;
1574 for (Int_t iclust=0; iclust<nclust; iclust++) {
1575 pix = clusters[iclust];
1576 npxclu = pix->GetEntriesFast();
1577 for (Int_t i=0; i<npxclu; i++) {
1578 indx = fPixArray->IndexOf(pix->UncheckedAt(i));
1579 for (Int_t j=0; j<npad; j++) {
1580 // Exclude overflows
1581 if (fPadIJ[1][j] < 0) continue;
1582 if (coef[j*nPix+indx] < kCouplMin) continue;
c1aed84f 1583 (*aijclupad)(iclust,j) += coef[j*nPix+indx];
0df3ca52 1584 }
1585 }
1586 }
1587 // Compute couplings between clusters
c1aed84f 1588 TMatrixD *aijcluclu = new TMatrixD(nclust,nclust);
1589 *aijcluclu = 0;
0df3ca52 1590 for (Int_t iclust=0; iclust<nclust; iclust++) {
1591 for (Int_t j=0; j<npad; j++) {
1592 // Exclude overflows
1593 if (fPadIJ[1][j] < 0) continue;
c1aed84f 1594 if ((*aijclupad)(iclust,j) < kCouplMin) continue;
0df3ca52 1595 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
c1aed84f 1596 if ((*aijclupad)(iclust1,j) < kCouplMin) continue;
1597 (*aijcluclu)(iclust,iclust1) +=
1598 TMath::Sqrt ((*aijclupad)(iclust,j)*(*aijclupad)(iclust1,j));
0df3ca52 1599 }
1600 }
1601 }
1602 for (Int_t iclust=0; iclust<nclust; iclust++) {
1603 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
c1aed84f 1604 (*aijcluclu)(iclust1,iclust) = (*aijcluclu)(iclust,iclust1);
0df3ca52 1605 }
1606 }
1607
c1aed84f 1608 if (nclust > 1) aijcluclu->Print();
0df3ca52 1609
1610 // Find groups of coupled clusters
1611 used = new Bool_t[nclust];
1612 for (Int_t i=0; i<nclust; i++) used[i] = kFALSE;
1613 Int_t *clustNumb = new Int_t[nclust];
1614 Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
1615 Double_t parOk[8];
1616
1617 for (Int_t igroup=0; igroup<nclust; igroup++) {
1618 if (used[igroup]) continue;
1619 used[igroup] = kTRUE;
1620 clustNumb[0] = igroup;
1621 nCoupled = 1;
1622 // Find group of coupled clusters
c1aed84f 1623 AddCluster(igroup, nclust, aijcluclu, used, clustNumb, nCoupled); // recursive
0df3ca52 1624 cout << " nCoupled: " << nCoupled << endl;
1625 for (Int_t i=0; i<nCoupled; i++) cout << clustNumb[i] << " "; cout << endl;
1626
1627 while (nCoupled > 0) {
1628
1629 if (nCoupled < 4) {
1630 nForFit = nCoupled;
1631 for (Int_t i=0; i<nCoupled; i++) clustFit[i] = clustNumb[i];
1632 } else {
1633 // Too many coupled clusters to fit - try to decouple them
1634 // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
1635 // all the others in the group
1636 for (Int_t j=0; j<3; j++) minGroup[j] = -1;
c1aed84f 1637 Double_t coupl = MinGroupCoupl(nCoupled, clustNumb, aijcluclu, minGroup);
0df3ca52 1638
1639 // Flag clusters for fit
1640 nForFit = 0;
1641 while (minGroup[nForFit] >= 0 && nForFit < 3) {
1642 cout << clustNumb[minGroup[nForFit]] << " ";
1643 clustFit[nForFit] = clustNumb[minGroup[nForFit]];
1644 clustNumb[minGroup[nForFit]] -= 999;
1645 nForFit++;
1646 }
1647 cout << nForFit << " " << coupl << endl;
1648 } // else
1649
1650 // Select pads for fit.
c1aed84f 1651 if (SelectPad(nCoupled, nForFit, clustNumb, clustFit, aijclupad) < 3 && nCoupled > 1) {
0df3ca52 1652 // Deselect pads
1653 for (Int_t j=0; j<npad; j++) if (TMath::Abs(fPadIJ[1][j]) == 1) fPadIJ[1][j] = 0;
1654 // Merge the failed cluster candidates (with too few pads to fit) with
1655 // the one with the strongest coupling
c1aed84f 1656 Merge(nForFit, nCoupled, clustNumb, clustFit, clusters, aijcluclu, aijclupad);
0df3ca52 1657 } else {
1658 // Do the fit
1659 nfit = Fit(nForFit, clustFit, clusters, parOk);
1660 }
1661
1662 // Subtract the fitted charges from pads with strong coupling and/or
1663 // return pads for further use
1664 UpdatePads(nfit, parOk);
1665
1666 // Mark used pads
1667 for (Int_t j=0; j<npad; j++) {if (fPadIJ[1][j] == 1) fPadIJ[1][j] = -1;}
1668
1669 // Sort the clusters (move to the right the used ones)
1670 Int_t beg = 0, end = nCoupled - 1;
1671 while (beg < end) {
1672 if (clustNumb[beg] >= 0) { beg++; continue; }
1673 for (Int_t j=end; j>beg; j--) {
1674 if (clustNumb[j] < 0) continue;
1675 end = j - 1;
1676 indx = clustNumb[beg];
1677 clustNumb[beg] = clustNumb[j];
1678 clustNumb[j] = indx;
1679 break;
1680 }
1681 beg++;
1682 }
1683
1684 nCoupled -= nForFit;
1685 if (nCoupled > 3) {
1686 // Remove couplings of used clusters
1687 for (Int_t iclust=nCoupled; iclust<nCoupled+nForFit; iclust++) {
1688 indx = clustNumb[iclust] + 999;
1689 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1690 indx1 = clustNumb[iclust1];
c1aed84f 1691 (*aijcluclu)(indx,indx1) = (*aijcluclu)(indx1,indx) = 0;
0df3ca52 1692 }
1693 }
1694
1695 // Update the remaining clusters couplings (exclude couplings from
1696 // the used pads)
1697 for (Int_t j=0; j<npad; j++) {
1698 if (fPadIJ[1][j] != -1) continue;
1699 for (Int_t iclust=0; iclust<nCoupled; iclust++) {
1700 indx = clustNumb[iclust];
c1aed84f 1701 if ((*aijclupad)(indx,j) < kCouplMin) continue;
0df3ca52 1702 for (Int_t iclust1=iclust+1; iclust1<nCoupled; iclust1++) {
1703 indx1 = clustNumb[iclust1];
c1aed84f 1704 if ((*aijclupad)(indx1,j) < kCouplMin) continue;
0df3ca52 1705 // Check this
c1aed84f 1706 (*aijcluclu)(indx,indx1) -=
1707 TMath::Sqrt ((*aijclupad)(indx,j)*(*aijclupad)(indx1,j));
1708 (*aijcluclu)(indx1,indx) = (*aijcluclu)(indx,indx1);
0df3ca52 1709 }
1710 }
1711 fPadIJ[1][j] = -9;
1712 } // for (Int_t j=0; j<npad;
1713 } // if (nCoupled > 3)
1714 } // while (nCoupled > 0)
1715 } // for (Int_t igroup=0; igroup<nclust;
1716
c1aed84f 1717 //delete aij_clu; aij_clu = 0; delete aijclupad; aijclupad = 0;
1718 aijcluclu->Delete(); aijclupad->Delete();
0df3ca52 1719 for (Int_t iclust=0; iclust<nclust; iclust++) {
1720 pix = clusters[iclust];
1721 pix->Clear();
1722 delete pix; pix = 0;
1723 }
1724 delete [] clustNumb; clustNumb = 0; delete [] used; used = 0;
1725}
1726
1727//_____________________________________________________________________________
1728void AliMUONClusterFinderAZ::AddBin(TH2D *mlem, Int_t ic, Int_t jc, Int_t mode, Bool_t *used, TObjArray *pix)
1729{
1730 // Add a bin to the cluster
1731
1732 Int_t nx = mlem->GetNbinsX();
1733 Int_t ny = mlem->GetNbinsY();
1734 Double_t cont1, cont = mlem->GetCellContent(jc,ic);
1735 AliMUONPixel *pixPtr = 0;
1736
1737 for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) {
1738 for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) {
1739 if (i != ic && j != jc) continue;
1740 if (used[(i-1)*nx+j-1]) continue;
1741 cont1 = mlem->GetCellContent(j,i);
1742 if (mode && cont1 > cont) continue;
1743 used[(i-1)*nx+j-1] = kTRUE;
1744 if (cont1 < 0.5) continue;
1745 if (pix) pix->Add(BinToPix(mlem,j,i));
1746 else {
1747 pixPtr = new AliMUONPixel (mlem->GetXaxis()->GetBinCenter(j),
1748 mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
1749 fPixArray->Add((TObject*)pixPtr);
1750 }
1751 AddBin(mlem, i, j, mode, used, pix); // recursive call
1752 }
1753 }
1754}
1755
1756//_____________________________________________________________________________
1757TObject* AliMUONClusterFinderAZ::BinToPix(TH2D *mlem, Int_t jc, Int_t ic)
1758{
1759 // Translate histogram bin to pixel
1760
1761 Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
1762 Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
1763
1764 Int_t nPix = fPixArray->GetEntriesFast();
1765 AliMUONPixel *pixPtr;
1766
1767 // Compare pixel and bin positions
1768 for (Int_t i=0; i<nPix; i++) {
1769 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1770 if (pixPtr->Charge() < 0.5) continue;
1771 if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4) return (TObject*) pixPtr;
1772 }
1773 cout << " Something wrong ??? " << endl;
1774 return NULL;
1775}
1776
1777//_____________________________________________________________________________
c1aed84f 1778void AliMUONClusterFinderAZ::AddCluster(Int_t ic, Int_t nclust, TMatrixD *aijcluclu, Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
0df3ca52 1779{
1780 // Add a cluster to the group of coupled clusters
1781
1782 for (Int_t i=0; i<nclust; i++) {
1783 if (used[i]) continue;
c1aed84f 1784 if ((*aijcluclu)(i,ic) < kCouplMin) continue;
0df3ca52 1785 used[i] = kTRUE;
1786 clustNumb[nCoupled++] = i;
c1aed84f 1787 AddCluster(i, nclust, aijcluclu, used, clustNumb, nCoupled);
0df3ca52 1788 }
1789}
1790
1791//_____________________________________________________________________________
c1aed84f 1792Double_t AliMUONClusterFinderAZ::MinGroupCoupl(Int_t nCoupled, Int_t *clustNumb, TMatrixD *aijcluclu, Int_t *minGroup)
0df3ca52 1793{
1794 // Find group of clusters with minimum coupling to all the others
1795
1796 Int_t i123max = TMath::Min(3,nCoupled/2);
1797 Int_t indx, indx1, indx2, indx3, nTot = 0;
1798 Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1799
1800 for (Int_t i123=1; i123<=i123max; i123++) {
1801
1802 if (i123 == 1) {
1803 coupl1 = new Double_t [nCoupled];
1804 for (Int_t i=0; i<nCoupled; i++) coupl1[i] = 0;
1805 }
1806 else if (i123 == 2) {
1807 nTot = nCoupled*nCoupled;
1808 coupl2 = new Double_t [nTot];
1809 for (Int_t i=0; i<nTot; i++) coupl2[i] = 9999;
1810 } else {
1811 nTot = nTot*nCoupled;
1812 coupl3 = new Double_t [nTot];
1813 for (Int_t i=0; i<nTot; i++) coupl3[i] = 9999;
1814 } // else
1815
1816 for (Int_t i=0; i<nCoupled; i++) {
1817 indx1 = clustNumb[i];
1818 for (Int_t j=i+1; j<nCoupled; j++) {
1819 indx2 = clustNumb[j];
1820 if (i123 == 1) {
c1aed84f 1821 coupl1[i] += (*aijcluclu)(indx1,indx2);
1822 coupl1[j] += (*aijcluclu)(indx1,indx2);
0df3ca52 1823 }
1824 else if (i123 == 2) {
1825 indx = i*nCoupled + j;
1826 coupl2[indx] = coupl1[i] + coupl1[j];
c1aed84f 1827 coupl2[indx] -= 2 * ((*aijcluclu)(indx1,indx2));
0df3ca52 1828 } else {
1829 for (Int_t k=j+1; k<nCoupled; k++) {
1830 indx3 = clustNumb[k];
1831 indx = i*nCoupled*nCoupled + j*nCoupled + k;
1832 coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
c1aed84f 1833 coupl3[indx] -= 2 * ((*aijcluclu)(indx1,indx3)+(*aijcluclu)(indx2,indx3));
0df3ca52 1834 }
1835 } // else
1836 } // for (Int_t j=i+1;
1837 } // for (Int_t i=0;
1838 } // for (Int_t i123=1;
1839
1840 // Find minimum coupling
1841 Double_t couplMin = 9999;
1842 Int_t locMin = 0;
1843
1844 for (Int_t i123=1; i123<=i123max; i123++) {
1845 if (i123 == 1) {
1846 locMin = TMath::LocMin(nCoupled, coupl1);
1847 couplMin = coupl1[locMin];
1848 minGroup[0] = locMin;
1849 delete [] coupl1; coupl1 = 0;
1850 }
1851 else if (i123 == 2) {
1852 locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1853 if (coupl2[locMin] < couplMin) {
1854 couplMin = coupl2[locMin];
1855 minGroup[0] = locMin/nCoupled;
1856 minGroup[1] = locMin%nCoupled;
1857 }
1858 delete [] coupl2; coupl2 = 0;
1859 } else {
1860 locMin = TMath::LocMin(nTot, coupl3);
1861 if (coupl3[locMin] < couplMin) {
1862 couplMin = coupl3[locMin];
1863 minGroup[0] = locMin/nCoupled/nCoupled;
1864 minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1865 minGroup[2] = locMin%nCoupled;
1866 }
1867 delete [] coupl3; coupl3 = 0;
1868 } // else
1869 } // for (Int_t i123=1;
1870 return couplMin;
1871}
1872
1873//_____________________________________________________________________________
c1aed84f 1874Int_t AliMUONClusterFinderAZ::SelectPad(Int_t nCoupled, Int_t nForFit, Int_t *clustNumb, Int_t *clustFit, TMatrixD *aijclupad)
0df3ca52 1875{
1876 // Select pads for fit. If too many coupled clusters, find pads giving
1877 // the strongest coupling with the rest of clusters and exclude them from the fit.
1878
1879 Int_t npad = fnPads[0] + fnPads[1];
c1aed84f 1880 Double_t *padpix = 0;
0df3ca52 1881
1882 if (nCoupled > 3) {
c1aed84f 1883 padpix = new Double_t[npad];
1884 for (Int_t i=0; i<npad; i++) padpix[i] = 0;
0df3ca52 1885 }
1886
1887 Int_t nOK = 0, indx, indx1;
1888 for (Int_t iclust=0; iclust<nForFit; iclust++) {
1889 indx = clustFit[iclust];
1890 for (Int_t j=0; j<npad; j++) {
1891 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
c1aed84f 1892 if ((*aijclupad)(indx,j) < kCouplMin) continue;
0df3ca52 1893 fPadIJ[1][j] = 1; // pad to be used in fit
1894 nOK++;
1895 if (nCoupled > 3) {
1896 // Check other clusters
1897 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1898 indx1 = clustNumb[iclust1];
1899 if (indx1 < 0) continue;
c1aed84f 1900 if ((*aijclupad)(indx1,j) < kCouplMin) continue;
1901 padpix[j] += (*aijclupad)(indx1,j);
0df3ca52 1902 }
1903 } // if (nCoupled > 3)
1904 } // for (Int_t j=0; j<npad;
1905 } // for (Int_t iclust=0; iclust<nForFit
1906 if (nCoupled < 4) return nOK;
1907
1908 Double_t aaa = 0;
1909 for (Int_t j=0; j<npad; j++) {
c1aed84f 1910 if (padpix[j] < kCouplMin) continue;
1911 cout << j << " " << padpix[j] << " ";
0df3ca52 1912 cout << fXyq[0][j] << " " << fXyq[1][j] << endl;
c1aed84f 1913 aaa += padpix[j];
0df3ca52 1914 fPadIJ[1][j] = -1; // exclude pads with strong coupling to the other clusters
1915 nOK--;
1916 }
c1aed84f 1917 delete [] padpix; padpix = 0;
0df3ca52 1918 return nOK;
1919}
1920
1921//_____________________________________________________________________________
c1aed84f 1922void AliMUONClusterFinderAZ::Merge(Int_t nForFit, Int_t nCoupled, Int_t *clustNumb, Int_t *clustFit, TObjArray **clusters, TMatrixD *aijcluclu, TMatrixD *aijclupad)
0df3ca52 1923{
1924 // Merge the group of clusters with the one having the strongest coupling with them
1925
1926 Int_t indx, indx1, npxclu, npxclu1, imax=0;
1927 TObjArray *pix, *pix1;
1928 Double_t couplMax;
1929
1930 for (Int_t icl=0; icl<nForFit; icl++) {
1931 indx = clustFit[icl];
1932 pix = clusters[indx];
1933 npxclu = pix->GetEntriesFast();
1934 couplMax = -1;
1935 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1936 indx1 = clustNumb[icl1];
1937 if (indx1 < 0) continue;
c1aed84f 1938 if ((*aijcluclu)(indx,indx1) > couplMax) {
1939 couplMax = (*aijcluclu)(indx,indx1);
0df3ca52 1940 imax = indx1;
1941 }
1942 } // for (Int_t icl1=0;
1943 /*if (couplMax < kCouplMin) {
1944 cout << " Oops " << couplMax << endl;
c1aed84f 1945 aijcluclu->Print();
0df3ca52 1946 cout << icl << " " << indx << " " << npxclu << " " << nLinks << endl;
1947 ::exit(0);
1948 }*/
1949 // Add to it
1950 pix1 = clusters[imax];
1951 npxclu1 = pix1->GetEntriesFast();
1952 // Add pixels
1953 for (Int_t i=0; i<npxclu; i++) { pix1->Add(pix->UncheckedAt(i)); pix->RemoveAt(i); }
1954 cout << " New number of pixels: " << npxclu1 << " " << pix1->GetEntriesFast() << endl;
1955 //Add cluster-to-cluster couplings
c1aed84f 1956 //aijcluclu->Print();
0df3ca52 1957 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1958 indx1 = clustNumb[icl1];
1959 if (indx1 < 0 || indx1 == imax) continue;
c1aed84f 1960 (*aijcluclu)(indx1,imax) += (*aijcluclu)(indx,indx1);
1961 (*aijcluclu)(imax,indx1) = (*aijcluclu)(indx1,imax);
0df3ca52 1962 }
c1aed84f 1963 (*aijcluclu)(indx,imax) = (*aijcluclu)(imax,indx) = 0;
1964 //aijcluclu->Print();
0df3ca52 1965 //Add cluster-to-pad couplings
1966 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1967 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
c1aed84f 1968 (*aijclupad)(imax,j) += (*aijclupad)(indx,j);
1969 (*aijclupad)(indx,j) = 0;
0df3ca52 1970 }
1971 } // for (Int_t icl=0; icl<nForFit;
1972}
1973
1974//_____________________________________________________________________________
1975Int_t AliMUONClusterFinderAZ::Fit(Int_t nfit, Int_t *clustFit, TObjArray **clusters, Double_t *parOk)
1976{
1977 // Find selected clusters to selected pad charges
1978
1979 TH2D *mlem = (TH2D*) gROOT->FindObject("mlem");
1980 //Int_t nx = mlem->GetNbinsX();
1981 //Int_t ny = mlem->GetNbinsY();
1982 Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
1983 Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
1984 Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
1985 Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
1986 //Double_t qmin = 0, qmax = 1;
1987 Double_t step[3]={0.01,0.002,0.02};
1988
1989 Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8];
1990 TObjArray *pix;
1991 Int_t npxclu;
1992
1993 // Number of pads to use
1994 Int_t npads = 0;
1995 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {if (fPadIJ[1][i] == 1) npads++;}
1996 for (Int_t i=0; i<nfit; i++) {cout << i+1 << " " << clustFit[i] << " ";}
1997 cout << nfit << endl;
1998 cout << " Number of pads to fit: " << npads << endl;
1999 fNpar = 0;
2000 fQtot = 0;
2001 if (npads < 2) return 0;
2002
2003 // Take cluster maxima as fitting seeds
2004 AliMUONPixel *pixPtr;
2005 Double_t xyseed[3][2], qseed[3];
2006 for (Int_t ifit=1; ifit<=nfit; ifit++) {
2007 cmax = 0;
2008 pix = clusters[clustFit[ifit-1]];
2009 npxclu = pix->GetEntriesFast();
2010 for (Int_t clu=0; clu<npxclu; clu++) {
2011 pixPtr = (AliMUONPixel*) pix->UncheckedAt(clu);
2012 cont = pixPtr->Charge();
2013 fQtot += cont;
2014 if (cont > cmax) {
2015 cmax = cont;
2016 xseed = pixPtr->Coord(0);
2017 yseed = pixPtr->Coord(1);
2018 }
2019 }
2020 xyseed[ifit-1][0] = xseed;
2021 xyseed[ifit-1][1] = yseed;
2022 qseed[ifit-1] = cmax;
2023 } // for (Int_t ifit=1;
2024
2025 Int_t nDof, maxSeed[3];
2026 Double_t fmin, chi2o = 9999, chi2n;
2027
2028 // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
2029 // lower, try 3-track (if number of pads is sufficient).
2030
2031 TMath::Sort(nfit, qseed, maxSeed, kTRUE); // in decreasing order
2032 nfit = TMath::Min (nfit, (npads + 1) / 3);
2033
2034 Double_t *gin = 0, func0, func1, param[8], param0[2][8], deriv[2][8], step0[8];
2035 Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0;
2036 Double_t delta[8], scMax, dder[8], estim, shiftSave = 0;
2037 Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail;
2038
2039 for (Int_t iseed=0; iseed<nfit; iseed++) {
2040
2041 for (Int_t j=0; j<3; j++) step0[fNpar+j] = shift[fNpar+j] = step[j];
2042 param[fNpar] = xyseed[maxSeed[iseed]][0];
2043 parmin[fNpar] = xmin;
2044 parmax[fNpar++] = xmax;
2045 param[fNpar] = xyseed[maxSeed[iseed]][1];
2046 parmin[fNpar] = ymin;
2047 parmax[fNpar++] = ymax;
2048 if (fNpar > 2) {
2049 param[fNpar] = fNpar == 4 ? 0.5 : 0.3;
2050 parmin[fNpar] = 0;
2051 parmax[fNpar++] = 1;
2052 }
2053
2054 // Try new algorithm
2055 min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
2056
2057 while (1) {
2058 max = !min;
2059 fcn1(fNpar, gin, func0, param, 1); nCall++;
2060 //cout << " Func: " << func0 << endl;
2061
2062 func2[max] = func0;
2063 for (Int_t j=0; j<fNpar; j++) {
2064 param0[max][j] = param[j];
2065 delta[j] = step0[j];
2066 param[j] += delta[j] / 10;
2067 if (j > 0) param[j-1] -= delta[j-1] / 10;
2068 fcn1(fNpar, gin, func1, param, 1); nCall++;
2069 deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
2070 //cout << j << " " << deriv[max][j] << endl;
2071 dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
2072 (param0[0][j] - param0[1][j]) : 0; // second derivative
2073 }
2074 param[fNpar-1] -= delta[fNpar-1] / 10;
2075 if (nCall > 2000) ::exit(0);
2076
2077 min = func2[0] < func2[1] ? 0 : 1;
2078 nFail = min == max ? 0 : nFail + 1;
2079
2080 stepMax = derMax = estim = 0;
2081 for (Int_t j=0; j<fNpar; j++) {
2082 // Estimated distance to minimum
2083 shift0 = shift[j];
2084 if (nLoop == 1) shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
2085 else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3) shift[j] = 0;
2086 else if (deriv[min][j]*deriv[!min][j] > 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])
2087 || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) {
2088 shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
2089 if (min == max) {
2090 if (memory[j] > 1) { shift[j] *= 2; } //cout << " Memory " << memory[j] << " " << shift[j] << endl; }
2091 memory[j]++;
2092 }
2093 } else {
2094 shift[j] = -deriv[min][j] / dder[j];
2095 memory[j] = 0;
2096 }
2097 if (TMath::Abs(shift[j])/step0[j] > estim) {
2098 estim = TMath::Abs(shift[j])/step0[j];
2099 iestMax = j;
2100 }
2101
2102 // Too big step
2103 if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
2104
2105 // Failed to improve minimum
2106 if (min != max) {
2107 memory[j] = 0;
2108 param[j] = param0[min][j];
2109 if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j]) shift[j] = (shift[j] + shift0) / 2;
2110 else shift[j] /= -2;
2111 }
2112
2113 // Too big step
2114 if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
2115 shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
2116
2117 // Introduce step relaxation factor
2118 if (memory[j] < 3) {
2119 scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
2120 if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
2121 shift[j] = TMath::Sign (shift0*scMax, shift[j]);
2122 }
2123 param[j] += shift[j];
2124
2125 //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
2126 stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
2127 if (TMath::Abs(deriv[min][j]) > derMax) {
2128 idMax = j;
2129 derMax = TMath::Abs (deriv[min][j]);
2130 }
2131 } // for (Int_t j=0; j<fNpar;
2132 //cout << max << " " << func2[min] << " " << derMax << " " << stepMax << " " << estim << " " << iestMax << " " << nCall << endl;
2133 if (estim < 1 && derMax < 2 || nLoop > 100) break; // minimum was found
2134
2135 nLoop++;
2136 // Check for small step
2137 if (shift[idMax] == 0) { shift[idMax] = step0[idMax]/10; param[idMax] += shift[idMax]; continue; }
2138 if (!memory[idMax] && derMax > 0.5 && nLoop > 10) {
2139 //cout << " ok " << deriv[min][idMax] << " " << deriv[!min][idMax] << " " << dder[idMax]*shift[idMax] << " " << shift[idMax] << endl;
2140 if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10) {
2141 if (min == max) dder[idMax] = -dder[idMax];
2142 shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
2143 param[idMax] += shift[idMax];
2144 stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
2145 //cout << shift[idMax] << " " << param[idMax] << endl;
2146 if (min == max) shiftSave = shift[idMax];
2147 }
2148 if (nFail > 10) {
2149 param[idMax] -= shift[idMax];
2150 shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
2151 param[idMax] += shift[idMax];
2152 //cout << shift[idMax] << endl;
2153 }
2154 }
2155 } // while (1)
2156 fmin = func2[min];
2157
2158 nDof = npads - fNpar;
2159 chi2n = nDof ? fmin/nDof : 0;
2160
2161 if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; }
2162 // Save parameters and errors
2163 for (Int_t i=0; i<fNpar; i++) {
2164 parOk[i] = param0[min][i];
2165 errOk[i] = fmin;
2166 }
2167
2168 cout << chi2o << " " << chi2n << endl;
2169 chi2o = chi2n;
2170 if (fmin < 0.1) break; // !!!???
2171 } // for (Int_t iseed=0;
2172
2173 for (Int_t i=0; i<fNpar; i++) {
2174 if (i == 4 || i == 7) continue;
2175 cout << parOk[i] << " " << errOk[i] << endl;
2176 }
2177 nfit = (fNpar + 1) / 3;
2178 Double_t rad;
2179 Int_t indx, imax;
2180 if (fReco) {
2181 for (Int_t j=0; j<nfit; j++) {
2182 indx = j<2 ? j*2 : j*2+1;
2183 AddRawCluster (parOk[indx], parOk[indx+1], errOk[indx]);
2184 }
2185 return nfit;
2186 }
2187 for (Int_t i=0; i<fnMu; i++) {
2188 cmax = fxyMu[i][6];
2189 for (Int_t j=0; j<nfit; j++) {
2190 indx = j<2 ? j*2 : j*2+1;
2191 rad = (fxyMu[i][0]-parOk[indx])*(fxyMu[i][0]-parOk[indx]) +
2192 (fxyMu[i][1]-parOk[indx+1])*(fxyMu[i][1]-parOk[indx+1]);
2193 if (rad < cmax) {
2194 cmax = rad;
2195 imax = indx;
2196 fxyMu[i][6] = cmax;
2197 fxyMu[i][2] = parOk[imax] - fxyMu[i][0];
2198 fxyMu[i][4] = parOk[imax+1] - fxyMu[i][1];
2199 fxyMu[i][3] = errOk[imax];
2200 fxyMu[i][5] = errOk[imax+1];
2201 }
2202 }
2203 }
2204 return nfit;
2205}
2206
2207//_____________________________________________________________________________
9e993f2a 2208void AliMUONClusterFinderAZ::fcn1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
0df3ca52 2209{
2210 // Fit for one track
2211 AliMUONClusterFinderAZ& c = *(AliMUONClusterFinderAZ::fgClusterFinder);
2212
2213 Int_t cath, ix, iy, indx, npads=0;
2214 Double_t charge, delta, coef=0, chi2=0;
2215 for (Int_t j=0; j<c.fnPads[0]+c.fnPads[1]; j++) {
2216 if (c.fPadIJ[1][j] != 1) continue;
2217 cath = c.fPadIJ[0][j];
2218 npads++;
2219 c.fSegmentation[cath]->GetPadI(c.fXyq[0][j],c.fXyq[1][j],c.fZpad,ix,iy);
2220 c.fSegmentation[cath]->SetPad(ix,iy);
2221 charge = 0;
2222 for (Int_t i=c.fNpar/3; i>=0; i--) { // sum over tracks
2223 indx = i<2 ? 2*i : 2*i+1;
2224 c.fSegmentation[cath]->SetHit(par[indx],par[indx+1],c.fZpad);
2225 //charge += c.fResponse->IntXY(c.fSegmentation[cath])*par[icl*3+2];
2226 if (c.fNpar == 2) coef = 1;
2227 else coef = i==c.fNpar/3 ? par[indx+2] : 1-coef;
2228 //coef = TMath::Max (coef, 0.);
2229 if (c.fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2230 //coef = TMath::Max (coef, 0.);
2231 charge += c.fResponse->IntXY(c.fSegmentation[cath])*coef;
2232 }
2233 charge *= c.fQtot;
2234 //if (c.fXyq[2][j] > c.fResponse->MaxAdc()-1 && charge >
2235 // c.fResponse->MaxAdc()) charge = c.fResponse->MaxAdc();
2236 delta = charge - c.fXyq[2][j];
2237 delta /= TMath::Sqrt ((Double_t)c.fXyq[2][j]);
2238 //chi2 += TMath::Abs(delta);
2239 chi2 += delta*delta;
2240 } // for (Int_t j=0;
2241 f = chi2;
2242 Double_t qAver = c.fQtot/npads; //(c.fnPads[0]+c.fnPads[1]);
2243 f = chi2/qAver;
2244}
2245
2246//_____________________________________________________________________________
6aaf81e6 2247void AliMUONClusterFinderAZ::UpdatePads(Int_t /*nfit*/, Double_t *par)
0df3ca52 2248{
2249 // Subtract the fitted charges from pads with strong coupling
2250
2251 Int_t cath, ix, iy, indx;
2252 Double_t charge, coef=0;
2253 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2254 if (fPadIJ[1][j] != -1) continue;
2255 if (fNpar != 0) {
2256 cath = fPadIJ[0][j];
2257 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
2258 fSegmentation[cath]->SetPad(ix,iy);
2259 charge = 0;
2260 for (Int_t i=fNpar/3; i>=0; i--) { // sum over tracks
2261 indx = i<2 ? 2*i : 2*i+1;
2262 fSegmentation[cath]->SetHit(par[indx],par[indx+1],fZpad);
2263 if (fNpar == 2) coef = 1;
2264 else coef = i==fNpar/3 ? par[indx+2] : 1-coef;
2265 if (fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2266 charge += fResponse->IntXY(fSegmentation[cath])*coef;
2267 }
2268 charge *= fQtot;
2269 fXyq[2][j] -= charge;
2270 } // if (fNpar != 0)
2271 if (fXyq[2][j] > fResponse->ZeroSuppression()) fPadIJ[1][j] = 0; // return pad for further using
2272 } // for (Int_t j=0;
2273}
2274
2275//_____________________________________________________________________________
6aaf81e6 2276Bool_t AliMUONClusterFinderAZ::TestTrack(Int_t /*t*/) {
0df3ca52 2277// Test if track was user selected
2278 return kTRUE;
2279 /*
2280 if (fTrack[0]==-1 || fTrack[1]==-1) {
2281 return kTRUE;
2282 } else if (t==fTrack[0] || t==fTrack[1]) {
2283 return kTRUE;
2284 } else {
2285 return kFALSE;
2286 }
2287 */
2288}
2289
2290//_____________________________________________________________________________
2291void AliMUONClusterFinderAZ::AddRawCluster(Double_t x, Double_t y, Double_t fmin)
2292{
2293 //
2294 // Add a raw cluster copy to the list
2295 //
2296 AliMUONRawCluster cnew;
2297 AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON");
2298 //pMUON->AddRawCluster(fInput->Chamber(),c);
2299
2300 Int_t cath;
2301 for (cath=0; cath<2; cath++) {
ba12c242 2302 cnew.SetX(cath, x);
2303 cnew.SetY(cath, y);
2304 cnew.SetZ(cath, fZpad);
2305 cnew.SetCharge(cath, 100);
9e993f2a 2306 cnew.SetPeakSignal(cath,20);
2307 cnew.SetMultiplicity(cath, 5);
3b5272e3 2308 cnew.SetNcluster(cath, 1);
2309 cnew.SetChi2(cath, fmin); //0.1;
0df3ca52 2310 /*
2311 cnew.fMultiplicity[cath]=c->fMultiplicity[cath];
2312 for (i=0; i<fMul[cath]; i++) {
2313 cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath];
2314 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
2315 }
2316 fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath);
2317 fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]);
2318 FillCluster(&cnew,cath);
2319 */
2320 }
2321 //cnew.fClusterType=cnew.PhysicsContribution();
ce3f5e87 2322 pMUON->GetMUONData()->AddRawCluster(AliMUONClusterInput::Instance()->Chamber(),cnew);
0df3ca52 2323 //fNPeaks++;
2324}
2325
2326//_____________________________________________________________________________
2327Int_t AliMUONClusterFinderAZ::FindLocalMaxima(Int_t *localMax, Double_t *maxVal)
2328{
2329 // Find local maxima in pixel space for large preclusters in order to
2330 // try to split them into smaller pieces (to speed up the MLEM procedure)
2331
2332 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2333 if (hist) hist->Delete();
2334
cd747ddb 2335 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 2336 Int_t nPix = fPixArray->GetEntriesFast();
2337 AliMUONPixel *pixPtr = 0;
2338 for (Int_t ipix=0; ipix<nPix; ipix++) {
2339 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2340 for (Int_t i=0; i<4; i++)
2341 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
2342 }
2343 for (Int_t i=0; i<4; i++) xylim[i] -= pixPtr->Size(i/2);
2344
2345 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
2346 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
2347 hist = new TH2D("anode","anode",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
2348 for (Int_t ipix=0; ipix<nPix; ipix++) {
2349 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2350 hist->Fill(pixPtr->Coord(0), pixPtr->Coord(1), pixPtr->Charge());
2351 }
2352 if (fDraw) {
2353 ((TCanvas*)gROOT->FindObject("c2"))->cd();
2354 gPad->SetTheta(55);
2355 gPad->SetPhi(30);
2356 hist->Draw("lego1Fb");
2357 gPad->Update();
2358 int ia;
2359 cin >> ia;
2360 }
2361
2362 Int_t nMax = 0, indx;
2363 Int_t *isLocalMax = new Int_t[ny*nx];
2364 for (Int_t i=0; i<ny*nx; i++) isLocalMax[i] = 0;
2365
2366 for (Int_t i=1; i<=ny; i++) {
2367 indx = (i-1) * nx;
2368 for (Int_t j=1; j<=nx; j++) {
2369 if (hist->GetCellContent(j,i) < 0.5) continue;
2370 //if (isLocalMax[indx+j-1] < 0) continue;
2371 if (isLocalMax[indx+j-1] != 0) continue;
2372 FlagLocalMax(hist, i, j, isLocalMax);
2373 }
2374 }
2375
2376 for (Int_t i=1; i<=ny; i++) {
2377 indx = (i-1) * nx;
2378 for (Int_t j=1; j<=nx; j++) {
2379 if (isLocalMax[indx+j-1] > 0) {
2380 localMax[nMax] = indx + j - 1;
2381 maxVal[nMax++] = hist->GetCellContent(j,i);
2382 }
2383 if (nMax > 99) { cout << " Too many local maxima !!!" << endl; ::exit(0); }
2384 }
2385 }
2386 cout << " Local max: " << nMax << endl;
2387 delete [] isLocalMax; isLocalMax = 0;
2388 return nMax;
2389}
2390
2391//_____________________________________________________________________________
2392void AliMUONClusterFinderAZ::FlagLocalMax(TH2D *hist, Int_t i, Int_t j, Int_t *isLocalMax)
2393{
2394 // Flag pixels (whether or not local maxima)
2395
2396 Int_t nx = hist->GetNbinsX();
2397 Int_t ny = hist->GetNbinsY();
2398 Int_t cont = TMath::Nint (hist->GetCellContent(j,i));
2399 Int_t cont1 = 0;
2400
2401 for (Int_t i1=i-1; i1<i+2; i1++) {
2402 if (i1 < 1 || i1 > ny) continue;
2403 for (Int_t j1=j-1; j1<j+2; j1++) {
2404 if (j1 < 1 || j1 > nx) continue;
2405 if (i == i1 && j == j1) continue;
2406 cont1 = TMath::Nint (hist->GetCellContent(j1,i1));
2407 if (cont < cont1) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2408 else if (cont > cont1) isLocalMax[(i1-1)*nx+j1-1] = -1;
2409 else { // the same charge
2410 isLocalMax[(i-1)*nx+j-1] = 1;
2411 if (isLocalMax[(i1-1)*nx+j1-1] == 0) {
2412 FlagLocalMax(hist, i1, j1, isLocalMax);
2413 if (isLocalMax[(i1-1)*nx+j1-1] < 0) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2414 else isLocalMax[(i1-1)*nx+j1-1] = -1;
2415 }
2416 }
2417 }
2418 }
2419 isLocalMax[(i-1)*nx+j-1] = 1; // local maximum
2420}
2421
2422//_____________________________________________________________________________
2423void AliMUONClusterFinderAZ::FindCluster(Int_t *localMax, Int_t iMax)
2424{
2425 // Find pixel cluster around local maximum #iMax and pick up pads
2426 // overlapping with it
2427
2428 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2429 Int_t nx = hist->GetNbinsX();
2430 Int_t ny = hist->GetNbinsY();
2431 Int_t ic = localMax[iMax] / nx + 1;
2432 Int_t jc = localMax[iMax] % nx + 1;
2433 Bool_t *used = new Bool_t[ny*nx];
2434 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
2435
2436 // Drop all pixels from the array - pick up only the ones from the cluster
2437 fPixArray->Delete();
2438
2439 Double_t wx = hist->GetXaxis()->GetBinWidth(1)/2;
2440 Double_t wy = hist->GetYaxis()->GetBinWidth(1)/2;
2441 Double_t yc = hist->GetYaxis()->GetBinCenter(ic);
2442 Double_t xc = hist->GetXaxis()->GetBinCenter(jc);
2443 Double_t cont = hist->GetCellContent(jc,ic);
2444 AliMUONPixel *pixPtr = new AliMUONPixel (xc, yc, wx, wy, cont);
2445 fPixArray->Add((TObject*)pixPtr);
2446 used[(ic-1)*nx+jc-1] = kTRUE;
2447 AddBin(hist, ic, jc, 1, used, (TObjArray*)0); // recursive call
2448
2449 Int_t nPix = fPixArray->GetEntriesFast(), npad = fnPads[0] + fnPads[1];
2450 for (Int_t i=0; i<nPix; i++) {
2451 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(0,wx);
2452 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(1,wy);
2453 }
2454 cout << iMax << " " << nPix << endl;
2455
2456 Float_t xy[4], xy12[4];
2457 // Pick up pads which overlap with found pixels
2458 for (Int_t i=0; i<npad; i++) fPadIJ[1][i] = -1;
2459 for (Int_t i=0; i<nPix; i++) {
2460 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
2461 for (Int_t j=0; j<4; j++)
2462 xy[j] = pixPtr->Coord(j/2) + (j%2 ? 1 : -1)*pixPtr->Size(j/2);
2463 for (Int_t j=0; j<npad; j++)
2464 if (Overlap(xy, j, xy12, 0)) fPadIJ[1][j] = 0; // flag for use
2465 }
2466
2467 delete [] used; used = 0;
2468}