New MUON data container AliMUONData implementation
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterFinderAZ.cxx
CommitLineData
0df3ca52 1#include "AliMUONClusterFinderAZ.h"
2
1f9a65c4 3#include <stdlib.h>
0df3ca52 4#include <fcntl.h>
5#include <Riostream.h>
6#include <TROOT.h>
7#include <TCanvas.h>
8#include <TLine.h>
9#include <TTree.h>
10#include <TH2.h>
11#include <TView.h>
12#include <TStyle.h>
13#include <TMinuit.h>
14#include <TMatrixD.h>
15
16#include "AliHeader.h"
17#include "AliRun.h"
18#include "AliMUON.h"
19#include "AliMUONChamber.h"
20#include "AliMUONDigit.h"
21#include "AliMUONHit.h"
22#include "AliMUONChamber.h"
23#include "AliMUONRawCluster.h"
24#include "AliMUONClusterInput.h"
25#include "AliMUONPixel.h"
26
27// This function is used for fitting
28void fcn1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag);
29
30ClassImp(AliMUONClusterFinderAZ)
31
32AliMUONClusterFinderAZ* AliMUONClusterFinderAZ::fgClusterFinder = NULL;
33TMinuit* AliMUONClusterFinderAZ::fgMinuit = NULL;
34
35//_____________________________________________________________________________
36AliMUONClusterFinderAZ::AliMUONClusterFinderAZ(Bool_t draw=0, Int_t iReco=0)
37{
38// Constructor
39 for (Int_t i=0; i<4; i++) {fHist[i] = 0;}
40 fMuonDigits = 0;
41 fSegmentation[1] = fSegmentation[0] = 0;
42 if (!fgClusterFinder) fgClusterFinder = this;
43 if (!fgMinuit) fgMinuit = new TMinuit(8);
44 fDraw = draw;
45 fReco = iReco;
46 fPixArray = new TObjArray(20);
47 /*
48 fPoints = 0;
49 fPhits = 0;
50 fRpoints = 0;
51 fCanvas = 0;
52 fNextCathode = kFALSE;
53 fColPad = 0;
54 */
55}
56
57//_____________________________________________________________________________
58AliMUONClusterFinderAZ::~AliMUONClusterFinderAZ()
59{
60 // Destructor
61 delete fgMinuit; fgMinuit = 0; delete fPixArray; fPixArray = 0;
62 /*
63 // Delete space point structure
64 if (fPoints) fPoints->Delete();
65 delete fPoints;
66 fPoints = 0;
67 //
68 if (fPhits) fPhits->Delete();
69 delete fPhits;
70 fPhits = 0;
71 //
72 if (fRpoints) fRpoints->Delete();
73 delete fRpoints;
74 fRpoints = 0;
75 */
76}
77
78//_____________________________________________________________________________
79void AliMUONClusterFinderAZ::FindRawClusters()
80{
81// To provide the same interface as in AliMUONClusterFinderVS
82
83 EventLoop (gAlice->GetHeader()->GetEvent(), AliMUONClusterInput::Instance()->Chamber());
84}
85
86//_____________________________________________________________________________
87void AliMUONClusterFinderAZ::EventLoop(Int_t nev=0, Int_t ch=0)
88{
89// Loop over events
90
91 FILE *lun = 0;
92 TCanvas *c1 = 0;
93 TView *view = 0;
94 TH2F *hist = 0;
95 Double_t p1[3]={0}, p2[3];
96 TTree *TR = 0;
97 if (fDraw) {
98 // File
99 lun = fopen("pool.dat","w");
100 c1 = new TCanvas("c1","Clusters",0,0,600,700);
101 c1->Divide(1,2);
102 new TCanvas("c2","Mlem",700,0,600,350);
103 }
104
105newev:
106 Int_t nparticles = 0, nent;
88cb7938 107
108 //Loaders
109 AliRunLoader * rl = AliRunLoader::GetRunLoader();
110 AliLoader * gime = rl->GetLoader("MUONLoader");
111
112 if (!fReco) nparticles = rl->GetEvent(nev);
0df3ca52 113 else nparticles = gAlice->GetNtrack();
114 cout << "nev " << nev <<endl;
115 cout << "nparticles " << nparticles <<endl;
116 if (nparticles <= 0) return;
117
88cb7938 118 TTree *TH = gime->TreeH();
0df3ca52 119 Int_t ntracks = (Int_t) TH->GetEntries();
120 cout<<"ntracks "<<ntracks<<endl;
121
122 // Get pointers to Alice detectors and Digits containers
123 AliMUON *MUON = (AliMUON*) gAlice->GetModule("MUON");
124 if (!MUON) return;
125 // TClonesArray *Particles = gAlice->Particles();
126 if (!fReco) {
88cb7938 127 TR = gime->TreeR();
0df3ca52 128 if (TR) {
129 MUON->ResetRawClusters();
130 nent = (Int_t) TR->GetEntries();
131 if (nent != 1) {
132 cout << "Error in MUONdrawClust" << endl;
133 cout << " nent = " << nent << " not equal to 1" << endl;
134 //exit(0);
135 }
136 } // if (TR)
137 } // if (!fReco)
138
88cb7938 139 TTree *TD = gime->TreeD();
0df3ca52 140 //MUON->ResetDigits();
141
142 TClonesArray *MUONrawclust;
143 AliMUONChamber* iChamber = 0;
144
145 // As default draw the first cluster of the chamber #0
146
147newchamber:
148 if (ch > 9) {if (fReco) return; nev++; ch = 0; goto newev;}
149 //gAlice->ResetDigits();
ce3f5e87 150 fMuonDigits = MUON->GetMUONData()->Digits(ch,0);
0df3ca52 151 if (fMuonDigits == 0) return;
152 iChamber = &(MUON->Chamber(ch));
153 fSegmentation[0] = iChamber->SegmentationModel(1);
154 fSegmentation[1] = iChamber->SegmentationModel(2);
155 fResponse = iChamber->ResponseModel();
156
157 nent = 0;
158
159 if (TD) {
160 nent = (Int_t) TD->GetEntries();
161 //printf(" entries %d \n", nent);
162 }
163
164 Int_t ndigits[2]={9,9}, nShown[2]={0};
165 for (Int_t i=0; i<2; i++) {
166 for (Int_t j=0; j<kDim; j++) {fUsed[i][j]=kFALSE;}
167 }
168
169next:
170 if (ndigits[0] == nShown[0] && ndigits[1] == nShown[1]) {
171 // No more clusters
172 if (fReco) return;
173 ch++;
174 goto newchamber; // next chamber
175 }
176 Float_t xpad, ypad, zpad, zpad0;
177 TLine *line[99]={0};
178 Int_t nLine = 0;
179 Bool_t first = kTRUE;
180 cout << " *** Event # " << nev << " chamber: " << ch << endl;
181 fnPads[0] = fnPads[1] = 0;
182 for (Int_t i=0; i<kDim; i++) {fPadIJ[1][i] = 0;}
183 //for (Int_t iii = 0; iii<999; iii++) {
184 for (Int_t iii = 0; iii<2; iii++) {
185 Int_t cath = TMath::Odd(iii);
186 gAlice->ResetDigits();
187 TD->GetEvent(cath);
ce3f5e87 188 fMuonDigits = MUON->GetMUONData()->Digits(ch,0);
0df3ca52 189
190 ndigits[cath] = fMuonDigits->GetEntriesFast();
191 if (!ndigits[0] && !ndigits[1]) {if (fReco) return; ch++; goto newchamber;}
192 if (ndigits[cath] == 0) continue;
193 cout << " ndigits: " << ndigits[cath] << " " << cath << endl;
194
195 AliMUONDigit *mdig;
196 Int_t digit;
197
198 Bool_t EOC = kTRUE; // end-of-cluster
199 for (digit = 0; digit < ndigits[cath]; digit++) {
200 mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
201 if (mdig->Cathode() != cath) continue;
202 if (first) {
203 // Find first unused pad
204 if (fUsed[cath][digit]) continue;
205 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad0);
206 } else {
207 if (fUsed[cath][digit]) continue;
208 fSegmentation[cath]->GetPadC(mdig->PadX(),mdig->PadY(),xpad,ypad,zpad);
209 if (TMath::Abs(zpad-zpad0)>0.1) continue; // different slats
210 // Find a pad overlapping with the cluster
211 if (!Overlap(cath,mdig)) continue;
212 }
213 // Add pad - recursive call
214 AddPad(cath,digit);
215 EOC = kFALSE;
216 if (digit >= 0) break;
217 }
218 if (first && EOC) {
219 // No more unused pads
220 if (cath == 0) continue; // on cathode #0 - check #1
221 else {
222 // No more clusters
223 if (fReco) return;
224 ch++;
225 goto newchamber; // next chamber
226 }
227 }
228 if (EOC) break; // cluster found
229 first = kFALSE;
230 cout << " nPads: " << fnPads[cath] << " " << nShown[cath]+fnPads[cath] << " " << cath << endl;
231 } // for (Int_t iii = 0;
232
233
234 if (fReco) goto skip;
235 char hName[4];
236 for (Int_t cath = 0; cath<2; cath++) {
237 // Build histograms
238 if (fHist[cath*2]) {fHist[cath*2]->Delete(); fHist[cath*2] = 0;}
239 if (fHist[cath*2+1]) {fHist[cath*2+1]->Delete(); fHist[cath*2+1] = 0;}
240 if (fnPads[cath] == 0) continue; // cluster on one cathode only
241 Float_t wxMin=999, wxMax=0, wyMin=999, wyMax=0;
242 Int_t minDx=0, maxDx=0, minDy=0, maxDy=0;
243 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
244 if (fPadIJ[0][i] != cath) continue;
245 if (fXyq[3][i] < wxMin) {wxMin = fXyq[3][i]; minDx = i;}
246 if (fXyq[3][i] > wxMax) {wxMax = fXyq[3][i]; maxDx = i;}
247 if (fXyq[4][i] < wyMin) {wyMin = fXyq[4][i]; minDy = i;}
248 if (fXyq[4][i] > wyMax) {wyMax = fXyq[4][i]; maxDy = i;}
249 }
250 cout << minDx << maxDx << minDy << maxDy << endl;
251 Int_t nx, ny, padSize;
252 Float_t xmin=9999, xmax=-9999, ymin=9999, ymax=-9999;
253 if (TMath::Nint(fXyq[3][minDx]*1000) == TMath::Nint(fXyq[3][maxDx]*1000) &&
254 TMath::Nint(fXyq[4][minDy]*1000) == TMath::Nint(fXyq[4][maxDy]*1000)) {
255 // the same segmentation
256 cout << " Same" << endl;
257 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
258 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
259 if (fPadIJ[0][i] != cath) continue;
260 if (fXyq[0][i] < xmin) xmin = fXyq[0][i];
261 if (fXyq[0][i] > xmax) xmax = fXyq[0][i];
262 if (fXyq[1][i] < ymin) ymin = fXyq[1][i];
263 if (fXyq[1][i] > ymax) ymax = fXyq[1][i];
264 }
265 xmin -= fXyq[3][minDx]; xmax += fXyq[3][minDx];
266 ymin -= fXyq[4][minDy]; ymax += fXyq[4][minDy];
267 nx = TMath::Nint ((xmax-xmin)/wxMin/2);
268 ny = TMath::Nint ((ymax-ymin)/wyMin/2);
269 sprintf(hName,"h%d",cath*2);
270 fHist[cath*2] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
271 cout << fHist[cath*2] << " " << fnPads[cath] << endl;
272 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
273 if (fPadIJ[0][i] != cath) continue;
274 fHist[cath*2]->Fill(fXyq[0][i],fXyq[1][i],fXyq[2][i]);
275 //cout << fXyq[0][i] << fXyq[1][i] << fXyq[2][i] << endl;
276 }
277 } else {
278 // different segmentation in the cluster
279 cout << " Different" << endl;
280 cout << fXyq[3][minDx] << " " << fXyq[3][maxDx] << " " << fXyq[4][minDy] << " " << fXyq[4][maxDy] << endl;
281 Int_t nOK = 0;
282 Int_t indx, locMin, locMax;
283 if (TMath::Nint(fXyq[3][minDx]*1000) != TMath::Nint(fXyq[3][maxDx]*1000)) {
284 // different segmentation along x
285 indx = 0;
286 locMin = minDx;
287 locMax = maxDx;
288 } else {
289 // different segmentation along y
290 indx = 1;
291 locMin = minDy;
292 locMax = maxDy;
293 }
294 Int_t loc = locMin;
295 for (Int_t i=0; i<2; i++) {
296 // loop over different pad sizes
297 if (i>0) loc = locMax;
298 padSize = TMath::Nint(fXyq[indx+3][loc]*1000);
299 xmin = 9999; xmax = -9999; ymin = 9999; ymax = -9999;
300 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
301 if (fPadIJ[0][j] != cath) continue;
302 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
303 nOK++;
304 xmin = TMath::Min (xmin,fXyq[0][j]);
305 xmax = TMath::Max (xmax,fXyq[0][j]);
306 ymin = TMath::Min (ymin,fXyq[1][j]);
307 ymax = TMath::Max (ymax,fXyq[1][j]);
308 }
309 xmin -= fXyq[3][loc]; xmax += fXyq[3][loc];
310 ymin -= fXyq[4][loc]; ymax += fXyq[4][loc];
311 nx = TMath::Nint ((xmax-xmin)/fXyq[3][loc]/2);
312 ny = TMath::Nint ((ymax-ymin)/fXyq[4][loc]/2);
313 sprintf(hName,"h%d",cath*2+i);
314 fHist[cath*2+i] = new TH2F(hName,"cluster",nx,xmin,xmax,ny,ymin,ymax);
315 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
316 if (fPadIJ[0][j] != cath) continue;
317 if (TMath::Nint(fXyq[indx+3][j]*1000) != padSize) continue;
318 fHist[cath*2+i]->Fill(fXyq[0][j],fXyq[1][j],fXyq[2][j]);
319 }
320 } // for (Int_t i=0;
321 if (nOK != fnPads[cath]) cout << " *** Too many segmentations: nPads, nOK " << fnPads[cath] << " " << nOK << endl;
322 } // if (TMath::Nint(fXyq[3][minDx]*1000)
323 } // for (Int_t cath = 0;
324
325 // Draw histograms and coordinates
326 for (Int_t cath=0; cath<2; cath++) {
327 if (cath == 0) ModifyHistos();
328 if (fnPads[cath] == 0) continue; // cluster on one cathode only
329 if (fDraw) {
330 c1->cd(cath+1);
331 gPad->SetTheta(55);
332 gPad->SetPhi(30);
cd747ddb 333 Double_t x, y, x0, y0, r1=999, r2=0;
0df3ca52 334 if (fHist[cath*2+1]) {
335 //
336 x0 = fHist[cath*2]->GetXaxis()->GetXmin() - 1000*TMath::Cos(30*TMath::Pi()/180);
337 y0 = fHist[cath*2]->GetYaxis()->GetXmin() - 1000*TMath::Sin(30*TMath::Pi()/180);
338 r1 = 0;
339 Int_t ihist=cath*2;
340 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
341 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
342 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
343 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
344 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
345 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
346 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
347 r1 = TMath::Max (r1,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
348 }
349 }
350 }
351 ihist = cath*2 + 1 ;
352 for (Int_t iy=1; iy<=fHist[ihist]->GetNbinsY(); iy++) {
353 y = fHist[ihist]->GetYaxis()->GetBinCenter(iy)
354 + fHist[ihist]->GetYaxis()->GetBinWidth(iy);
355 for (Int_t ix=1; ix<=fHist[ihist]->GetNbinsX(); ix++) {
356 if (fHist[ihist]->GetCellContent(ix,iy) > 0.1) {
357 x = fHist[ihist]->GetXaxis()->GetBinCenter(ix)
358 + fHist[ihist]->GetXaxis()->GetBinWidth(ix);
359 r2 = TMath::Max (r2,TMath::Sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)));
360 }
361 }
362 }
363 cout << r1 << " " << r2 << endl;
364 } // if (fHist[cath*2+1])
365 if (r1 > r2) {
366 //fHist[cath*2]->Draw("lego1");
367 fHist[cath*2]->Draw("lego1Fb");
368 //if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBb");
369 if (fHist[cath*2+1]) fHist[cath*2+1]->Draw("lego1SameAxisBbFb");
370 } else {
371 //fHist[cath*2+1]->Draw("lego1");
372 fHist[cath*2+1]->Draw("lego1Fb");
373 //fHist[cath*2]->Draw("lego1SameAxisBb");
374 fHist[cath*2]->Draw("lego1SameAxisFbBb");
375 }
376 c1->Update();
377 } // if (fDraw)
378 } // for (Int_t cath = 0;
379
380 // Draw generated hits
381 Double_t xNDC[6];
382 hist = fHist[0] ? fHist[0] : fHist[2];
383 p2[2] = hist->GetMaximum();
384 view = 0;
385 if (c1) view = c1->Pad()->GetView();
386 cout << " *** GEANT hits *** " << endl;
387 fnMu = 0;
388 Int_t ix, iy, iok;
389 for (Int_t i=0; i<ntracks; i++) {
390 TH->GetEvent(i);
391 for (AliMUONHit* mHit=(AliMUONHit*)MUON->FirstHit(-1);
392 mHit;
393 mHit=(AliMUONHit*)MUON->NextHit()) {
394 if (mHit->Chamber() != ch+1) continue; // chamber number
395 if (TMath::Abs(mHit->Z()-zpad0) > 1) continue; // different slat
396 p2[0] = p1[0] = mHit->X(); // x-pos of hit
397 p2[1] = p1[1] = mHit->Y(); // y-pos
398 if (p1[0] < hist->GetXaxis()->GetXmin() ||
399 p1[0] > hist->GetXaxis()->GetXmax()) continue;
400 if (p1[1] < hist->GetYaxis()->GetXmin() ||
401 p1[1] > hist->GetYaxis()->GetXmax()) continue;
402 // Check if track comes thru pads with signal
403 iok = 0;
404 for (Int_t ihist=0; ihist<4; ihist++) {
405 if (!fHist[ihist]) continue;
406 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
407 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
408 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
409 }
410 if (!iok) continue;
411 gStyle->SetLineColor(1);
412 if (TMath::Abs((Int_t)mHit->Particle()) == 13) {
413 gStyle->SetLineColor(4);
414 fnMu++;
415 if (fnMu <= 2) {
416 fxyMu[fnMu-1][0] = p1[0];
417 fxyMu[fnMu-1][1] = p1[1];
418 }
419 }
420 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mHit->Z());
421 if (view) {
422 view->WCtoNDC(p1, &xNDC[0]);
423 view->WCtoNDC(p2, &xNDC[3]);
424 for (Int_t ipad=1; ipad<3; ipad++) {
425 c1->cd(ipad);
426 //c1->DrawLine(xpad[0],xpad[1],xpad[3],xpad[4]);
427 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
428 line[nLine++]->Draw();
429 }
430 }
431 } // for (AliMUONHit* mHit=
432 } // for (Int_t i=0; i<ntracks;
433
434 // Draw reconstructed coordinates
ce3f5e87 435 MUONrawclust = MUON->GetMUONData()->RawClusters(ch);
0df3ca52 436 TR->GetEvent(ch);
437 //cout << MUONrawclust << " " << MUONrawclust->GetEntries() << endl;
438 AliMUONRawCluster *mRaw;
439 gStyle->SetLineColor(3);
440 cout << " *** Reconstructed hits *** " << endl;
441 for (Int_t i=0; i<MUONrawclust->GetEntries(); i++) {
442 mRaw = (AliMUONRawCluster*)MUONrawclust->UncheckedAt(i);
443 if (TMath::Abs(mRaw->fZ[0]-zpad0) > 1) continue; // different slat
444 p2[0] = p1[0] = mRaw->fX[0]; // x-pos of hit
445 p2[1] = p1[1] = mRaw->fY[0]; // y-pos
446 if (p1[0] < hist->GetXaxis()->GetXmin() ||
447 p1[0] > hist->GetXaxis()->GetXmax()) continue;
448 if (p1[1] < hist->GetYaxis()->GetXmin() ||
449 p1[1] > hist->GetYaxis()->GetXmax()) continue;
450 /*
451 TD->GetEvent(cath);
452 cout << mRaw->fMultiplicity[0] << mRaw->fMultiplicity[1] << endl;
453 for (Int_t j=0; j<mRaw->fMultiplicity[cath]; j++) {
454 Int_t digit = mRaw->fIndexMap[j][cath];
455 cout << ((AliMUONDigit*)fMuonDigits->UncheckedAt(digit))->Signal() << endl;
456 }
457 */
458 // Check if track comes thru pads with signal
459 iok = 0;
460 for (Int_t ihist=0; ihist<4; ihist++) {
461 if (!fHist[ihist]) continue;
462 ix = fHist[ihist]->GetXaxis()->FindBin(p1[0]);
463 iy = fHist[ihist]->GetYaxis()->FindBin(p1[1]);
464 if (fHist[ihist]->GetCellContent(ix,iy) > 0.5) {iok = 1; break;}
465 }
466 if (!iok) continue;
467 printf(" X=%10.4f, Y=%10.4f, Z=%10.4f\n",p1[0],p1[1],mRaw->fZ[0]);
468 if (view) {
469 view->WCtoNDC(p1, &xNDC[0]);
470 view->WCtoNDC(p2, &xNDC[3]);
471 for (Int_t ipad=1; ipad<3; ipad++) {
472 c1->cd(ipad);
473 line[nLine] = new TLine(xNDC[0],xNDC[1],xNDC[3],xNDC[4]);
474 line[nLine++]->Draw();
475 }
476 }
477 } // for (Int_t i=0; i<MUONrawclust->GetEntries();
478 if (fDraw) c1->Update();
479
480skip:
481 // Use MLEM for cluster finder
482 fZpad = zpad0;
483 Int_t nMax = 1, localMax[100], maxPos[100];
484 Double_t maxVal[100];
485
486 if (CheckPrecluster(nShown)) {
487 BuildPixArray();
488 if (fnPads[0]+fnPads[1] > 50) nMax = FindLocalMaxima(localMax, maxVal);
489 if (nMax > 1) TMath::Sort(nMax, maxVal, maxPos, kTRUE); // in decreasing order
490 for (Int_t i=0; i<nMax; i++) {
491 if (nMax > 1) FindCluster(localMax, maxPos[i]);
492 if (!MainLoop()) cout << " MainLoop failed " << endl;
493 if (i < nMax-1) {
494 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
495 if (fPadIJ[1][j] == 0) continue; // pad charge was not modified
496 fPadIJ[1][j] = 0;
497 fXyq[2][j] = fXyq[5][j]; // use backup charge value
498 }
499 }
500 }
501 }
502 if (fReco) goto next;
503
504 for (Int_t i=0; i<fnMu; i++) {
505 // Check again if muon come thru the used pads (due to extra splitting)
506 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
507 if (TMath::Abs(fxyMu[i][0]-fXyq[0][j])<fXyq[3][j] &&
508 TMath::Abs(fxyMu[i][1]-fXyq[1][j])<fXyq[4][j]) {
509 printf("%12.3e %12.3e %12.3e %12.3e\n",fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
510 if (lun) fprintf(lun,"%4d %2d %12.3e %12.3e %12.3e %12.3e\n",nev,ch,fxyMu[i][2],fxyMu[i][3],fxyMu[i][4],fxyMu[i][5]);
511 break;
512 }
513 }
514 } // for (Int_t i=0; i<fnMu;
515
516 // What's next?
517 char command[8];
518 cout << " What is next? " << endl;
519 command[0] = ' ';
520 if (fDraw) gets(command);
521 if (command[0] == 'n' || command[0] == 'N') {nev++; goto newev;} // next event
522 else if (command[0] == 'q' || command[0] == 'Q') {fclose(lun); return;} // exit display
523 //else if (command[0] == 'r' || command[0] == 'R') goto redraw; // redraw points
524 else if (command[0] == 'c' || command[0] == 'C') {
525 // new chamber
526 sscanf(command+1,"%d",&ch);
527 goto newchamber;
528 }
529 else if (command[0] == 'e' || command[0] == 'E') {
530 // new event
531 sscanf(command+1,"%d",&nev);
532 goto newev;
533 }
534 else goto next; // Next cluster
535}
536
537//_____________________________________________________________________________
538void AliMUONClusterFinderAZ::ModifyHistos(void)
539{
540 // Modify histograms to bring them to the same size
541 Int_t nhist = 0;
542 Float_t hlim[4][4], hbin[4][4]; // first index - xmin, xmax, ymin, ymax
543 Float_t binMin[4] = {999,999,999,999};
544
545 for (Int_t i=0; i<4; i++) {
546 if (!fHist[i]) continue;
547 hlim[0][nhist] = fHist[i]->GetXaxis()->GetXmin(); // xmin
548 hlim[1][nhist] = fHist[i]->GetXaxis()->GetXmax(); // xmax
549 hlim[2][nhist] = fHist[i]->GetYaxis()->GetXmin(); // ymin
550 hlim[3][nhist] = fHist[i]->GetYaxis()->GetXmax(); // ymax
551 hbin[0][nhist] = hbin[1][nhist] = fHist[i]->GetXaxis()->GetBinWidth(1);
552 hbin[2][nhist] = hbin[3][nhist] = fHist[i]->GetYaxis()->GetBinWidth(1);
553 binMin[0] = TMath::Min(binMin[0],hbin[0][nhist]);
554 binMin[2] = TMath::Min(binMin[2],hbin[2][nhist]);
555 nhist++;
556 }
557 binMin[1] = binMin[0];
558 binMin[3] = binMin[2];
559 cout << " Nhist: " << nhist << endl;
560
561 Int_t imin, imax;
562 for (Int_t lim=0; lim<4; lim++) {
563 while (1) {
564 imin = TMath::LocMin(nhist,hlim[lim]);
565 imax = TMath::LocMax(nhist,hlim[lim]);
566 if (TMath::Abs(hlim[lim][imin]-hlim[lim][imax])<0.01*binMin[lim]) break;
567 if (lim == 0 || lim == 2) {
568 // find lower limit
569 hlim[lim][imax] -= hbin[lim][imax];
570 } else {
571 // find upper limit
572 hlim[lim][imin] += hbin[lim][imin];
573 }
574 } // while (1)
575 }
576
577 // Rebuild histograms
578 nhist = 0;
579 TH2F *hist = 0;
580 Int_t nx, ny;
cd747ddb 581 Double_t x, y, cont, cmax=0;
0df3ca52 582 char hName[4];
583 for (Int_t ihist=0; ihist<4; ihist++) {
584 if (!fHist[ihist]) continue;
585 nx = TMath::Nint((hlim[1][nhist]-hlim[0][nhist])/hbin[0][nhist]);
586 ny = TMath::Nint((hlim[3][nhist]-hlim[2][nhist])/hbin[2][nhist]);
587 //hist = new TH2F("h","hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
588 sprintf(hName,"hh%d",ihist);
589 hist = new TH2F(hName,"hist",nx,hlim[0][nhist],hlim[1][nhist],ny,hlim[2][nhist],hlim[3][nhist]);
590 for (Int_t i=1; i<=fHist[ihist]->GetNbinsX(); i++) {
591 x = fHist[ihist]->GetXaxis()->GetBinCenter(i);
592 for (Int_t j=1; j<=fHist[ihist]->GetNbinsY(); j++) {
593 y = fHist[ihist]->GetYaxis()->GetBinCenter(j);
594 cont = fHist[ihist]->GetCellContent(i,j);
595 hist->Fill(x,y,cont);
596 }
597 }
598 cmax = TMath::Max (cmax,hist->GetMaximum());
599 fHist[ihist]->Delete();
600 fHist[ihist] = new TH2F(*hist);
601 hist->Delete();
602 nhist++;
603 }
604 printf("%f \n",cmax);
605
606 for (Int_t ihist=0; ihist<4; ihist++) {
607 if (!fHist[ihist]) continue;
608 fHist[ihist]->SetMaximum(cmax);
609 }
610}
611
612//_____________________________________________________________________________
613void AliMUONClusterFinderAZ::AddPad(Int_t cath, Int_t digit)
614{
615 // Add pad to the cluster
616 AliMUONDigit *mdig = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit);
617
618 Int_t charge = mdig->Signal();
619 // get the center of the pad
620 Float_t xpad, ypad, zpad;
621 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
622
623 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
624 Int_t nPads = fnPads[0] + fnPads[1];
625 fXyq[0][nPads] = xpad;
626 fXyq[1][nPads] = ypad;
627 fXyq[2][nPads] = charge;
628 fXyq[3][nPads] = fSegmentation[cath]->Dpx(isec)/2;
629 fXyq[4][nPads] = fSegmentation[cath]->Dpy(isec)/2;
630 fXyq[5][nPads] = digit;
631 fPadIJ[0][nPads] = cath;
632 fPadIJ[1][nPads] = 0;
633 fUsed[cath][digit] = kTRUE;
634 //cout << " bbb " << fXyq[cath][2][nPads] << " " << fXyq[cath][0][nPads] << " " << fXyq[cath][1][nPads] << " " << fXyq[cath][3][nPads] << " " << fXyq[cath][4][nPads] << " " << zpad << " " << nPads << endl;
635 fnPads[cath]++;
636
637 // Check neighbours
638 Int_t nn, ix, iy, xList[10], yList[10];
639 AliMUONDigit *mdig1;
640
641 Int_t ndigits = fMuonDigits->GetEntriesFast();
642 fSegmentation[cath]->Neighbours(mdig->PadX(),mdig->PadY(),&nn,xList,yList);
643 for (Int_t in=0; in<nn; in++) {
644 ix=xList[in];
645 iy=yList[in];
646 for (Int_t digit1 = 0; digit1 < ndigits; digit1++) {
647 if (digit1 == digit) continue;
648 mdig1 = (AliMUONDigit*)fMuonDigits->UncheckedAt(digit1);
649 if (mdig1->Cathode() != cath) continue;
650 if (!fUsed[cath][digit1] && mdig1->PadX() == ix && mdig1->PadY() == iy) {
651 fUsed[cath][digit1] = kTRUE;
652 // Add pad - recursive call
653 AddPad(cath,digit1);
654 }
655 } //for (Int_t digit1 = 0;
656 } // for (Int_t in=0;
657}
658
659//_____________________________________________________________________________
660Bool_t AliMUONClusterFinderAZ::Overlap(Int_t cath, TObject *dig)
661{
662 // Check if the pad from one cathode overlaps with a pad
663 // in the precluster on the other cathode
664
665 AliMUONDigit *mdig = (AliMUONDigit*) dig;
666
667 Float_t xpad, ypad, zpad;
668 fSegmentation[cath]->GetPadC(mdig->PadX(), mdig->PadY(), xpad, ypad, zpad);
669 Int_t isec = fSegmentation[cath]->Sector(mdig->PadX(), mdig->PadY());
670
671 Float_t xy1[4], xy12[4];
672 xy1[0] = xpad - fSegmentation[cath]->Dpx(isec)/2;
673 xy1[1] = xy1[0] + fSegmentation[cath]->Dpx(isec);
674 xy1[2] = ypad - fSegmentation[cath]->Dpy(isec)/2;
675 xy1[3] = xy1[2] + fSegmentation[cath]->Dpy(isec);
676 //cout << " ok " << fnPads[0]+fnPads[1] << xy1[0] << xy1[1] << xy1[2] << xy1[3] << endl;
677
678 Int_t cath1 = TMath::Even(cath);
679 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {
680 if (fPadIJ[0][i] != cath1) continue;
681 if (Overlap(xy1, i, xy12, 0)) return kTRUE;
682 }
683 return kFALSE;
684}
685
686//_____________________________________________________________________________
687Bool_t AliMUONClusterFinderAZ::Overlap(Float_t *xy1, Int_t iPad, Float_t *xy12, Int_t iSkip)
688{
689 // Check if the pads xy1 and iPad overlap and return overlap area
690
691 Float_t xy2[4];
692 xy2[0] = fXyq[0][iPad] - fXyq[3][iPad];
693 xy2[1] = fXyq[0][iPad] + fXyq[3][iPad];
694 if (xy1[0] > xy2[1]-1.e-4 || xy1[1] < xy2[0]+1.e-4) return kFALSE;
695 xy2[2] = fXyq[1][iPad] - fXyq[4][iPad];
696 xy2[3] = fXyq[1][iPad] + fXyq[4][iPad];
697 if (xy1[2] > xy2[3]-1.e-4 || xy1[3] < xy2[2]+1.e-4) return kFALSE;
698 if (!iSkip) return kTRUE; // just check overlap (w/out computing the area)
699 xy12[0] = TMath::Max (xy1[0],xy2[0]);
700 xy12[1] = TMath::Min (xy1[1],xy2[1]);
701 xy12[2] = TMath::Max (xy1[2],xy2[2]);
702 xy12[3] = TMath::Min (xy1[3],xy2[3]);
703 return kTRUE;
704}
705
706//_____________________________________________________________________________
707/*
708Bool_t AliMUONClusterFinderAZ::Overlap(Int_t i, Int_t j, Float_t *xy12, Int_t iSkip)
709{
710 // Check if the pads i and j overlap and return overlap area
711
712 Float_t xy1[4], xy2[4];
713 return Overlap(xy1, xy2, xy12, iSkip);
714}
715*/
716//_____________________________________________________________________________
717Bool_t AliMUONClusterFinderAZ::CheckPrecluster(Int_t *nShown)
718{
719 // Check precluster in order to attempt to simplify it (mostly for
720 // two-cathode preclusters)
721
722 Int_t i1, i2;
723 Float_t xy1[4], xy12[4];
724
725 Int_t npad = fnPads[0] + fnPads[1];
726
727 // If pads have the same size take average of pads on both cathodes
728 Int_t sameSize = (fnPads[0] && fnPads[1]) ? 1 : 0;
729 if (sameSize) {
730 Double_t xSize = -1, ySize = 0;
731 for (Int_t i=0; i<npad; i++) {
732 if (fXyq[2][i] < 0) continue;
733 if (xSize < 0) { xSize = fXyq[3][i]; ySize = fXyq[4][i]; }
734 if (TMath::Abs(xSize-fXyq[3][i]) > 1.e-4 || TMath::Abs(ySize-fXyq[4][i]) > 1.e-4) { sameSize = 0; break; }
735 }
736 } // if (sameSize)
737 if (sameSize && (fnPads[0] > 2 || fnPads[1] > 2)) {
738 nShown[0] += fnPads[0];
739 nShown[1] += fnPads[1];
740 fnPads[0] = fnPads[1] = 0;
741 Int_t div;
742 for (Int_t i=0; i<npad; i++) {
743 if (fXyq[2][i] < 0) continue; // used pad
744 fXyq[2][fnPads[0]] = fXyq[2][i];
745 div = 1;
746 for (Int_t j=i+1; j<npad; j++) {
747 if (fPadIJ[0][j] == fPadIJ[0][i]) continue; // same cathode
748 if (TMath::Abs(fXyq[0][j]-fXyq[0][i]) > 1.e-4) continue;
749 if (TMath::Abs(fXyq[1][j]-fXyq[1][i]) > 1.e-4) continue;
750 fXyq[2][fnPads[0]] += fXyq[2][j];
751 div = 2;
752 fXyq[2][j] = -2;
753 break;
754 }
755 fXyq[2][fnPads[0]] /= div;
756 fXyq[0][fnPads[0]] = fXyq[0][i];
757 fXyq[1][fnPads[0]] = fXyq[1][i];
758 fPadIJ[0][fnPads[0]++] = 0;
759 }
760 } // if (sameSize)
761
762 // Check if one-cathode precluster
763 i1 = fnPads[0]!=0 ? 0 : 1;
764 i2 = fnPads[1]!=0 ? 1 : 0;
765
766 if (i1 != i2) { // two-cathode
767
768 Int_t *flags = new Int_t[npad];
769 for (Int_t i=0; i<npad; i++) { flags[i] = 0; }
770
771 // Check pad overlaps
772 for (Int_t i=0; i<npad; i++) {
773 if (fPadIJ[0][i] != i1) continue;
774 xy1[0] = fXyq[0][i] - fXyq[3][i];
775 xy1[1] = fXyq[0][i] + fXyq[3][i];
776 xy1[2] = fXyq[1][i] - fXyq[4][i];
777 xy1[3] = fXyq[1][i] + fXyq[4][i];
778 for (Int_t j=0; j<npad; j++) {
779 if (fPadIJ[0][j] != i2) continue;
780 if (!Overlap(xy1, j, xy12, 0)) continue;
781 flags[i] = flags[j] = 1; // mark overlapped pads
782 } // for (Int_t j=0;
783 } // for (Int_t i=0;
784
785 // Check if all pads overlap
786 Int_t digit=0, cath, nFlags=0;
787 for (Int_t i=0; i<npad; i++) {nFlags += !flags[i];}
788 if (nFlags) cout << " nFlags = " << nFlags << endl;
789 //if (nFlags > 2 || (Float_t)nFlags / npad > 0.2) { // why 2 ??? - empirical choice
790 if (nFlags > 0) {
791 for (Int_t i=0; i<npad; i++) {
792 if (flags[i]) continue;
793 digit = TMath::Nint (fXyq[5][i]);
794 cath = fPadIJ[0][i];
795 fUsed[cath][digit] = kFALSE; // release pad
796 fXyq[2][i] = -2;
797 fnPads[cath]--;
798 }
799 } // if (nFlags > 2)
800
801 // Check correlations of cathode charges
802 if (fnPads[0] && fnPads[1]) { // two-cathode
803 Double_t sum[2]={0};
804 Int_t over[2] = {1, 1};
805 for (Int_t i=0; i<npad; i++) {
806 cath = fPadIJ[0][i];
807 if (fXyq[2][i] > 0) sum[cath] += fXyq[2][i];
808 if (fXyq[2][i] > fResponse->MaxAdc()-1) over[cath] = 0;
809 }
810 cout << " Total charge: " << sum[0] << " " << sum[1] << endl;
811 if ((over[0] || over[1]) && TMath::Abs(sum[0]-sum[1])/(sum[0]+sum[1])*2 > 1) { // 3 times difference
812 cout << " Release " << endl;
813 // Big difference
814 cath = sum[0]>sum[1] ? 0 : 1;
815 Int_t imax = 0;
816 Double_t cmax=-1;
817 Double_t *dist = new Double_t[npad];
818 for (Int_t i=0; i<npad; i++) {
819 if (fPadIJ[0][i] != cath) continue;
820 if (fXyq[2][i] < cmax) continue;
821 cmax = fXyq[2][i];
822 imax = i;
823 }
824 // Arrange pads according to their distance to the max,
825 // normalized to the pad size
826 for (Int_t i=0; i<npad; i++) {
827 dist[i] = 0;
828 if (fPadIJ[0][i] != cath) continue;
829 if (i == imax) continue;
830 if (fXyq[2][i] < 0) continue;
831 dist[i] = (fXyq[0][i]-fXyq[0][imax])*(fXyq[0][i]-fXyq[0][imax])/
832 fXyq[3][imax]/fXyq[3][imax]/4;
833 dist[i] += (fXyq[1][i]-fXyq[1][imax])*(fXyq[1][i]-fXyq[1][imax])/
834 fXyq[4][imax]/fXyq[4][imax]/4;
835 dist[i] = TMath::Sqrt (dist[i]);
836 }
837 TMath::Sort(npad, dist, flags, kFALSE); // in increasing order
838 Int_t indx;
839 Double_t xmax = -1;
840 for (Int_t i=0; i<npad; i++) {
841 indx = flags[i];
842 if (fPadIJ[0][indx] != cath) continue;
843 if (fXyq[2][indx] < 0) continue;
844 if (fXyq[2][indx] <= cmax || TMath::Abs(dist[indx]-xmax)<1.e-3) {
845 // Release pads
846 if (TMath::Abs(dist[indx]-xmax)<1.e-3)
cd747ddb 847 cmax = TMath::Max((Double_t)(fXyq[2][indx]),cmax);
0df3ca52 848 else cmax = fXyq[2][indx];
849 xmax = dist[indx];
850 digit = TMath::Nint (fXyq[5][indx]);
851 fUsed[cath][digit] = kFALSE;
852 fXyq[2][indx] = -2;
853 fnPads[cath]--;
854 // xmax = dist[i]; // Bug?
855 }
856 else break;
857 }
858 delete [] dist; dist = 0;
859 } // TMath::Abs(sum[0]-sum[1])...
860 } // if (fnPads[0] && fnPads[1])
861 delete [] flags; flags = 0;
862 } // if (i1 != i2)
863
864 if (!sameSize) { nShown[0] += fnPads[0]; nShown[1] += fnPads[1]; }
865
866 // Move released pads to the right
867 Int_t beg = 0, end = npad-1, padij;
868 Double_t xyq;
869 while (beg < end) {
870 if (fXyq[2][beg] > 0) { beg++; continue; }
871 for (Int_t j=end; j>beg; j--) {
872 if (fXyq[2][j] < 0) continue;
873 end = j - 1;
874 for (Int_t j1=0; j1<2; j1++) {
875 padij = fPadIJ[j1][beg];
876 fPadIJ[j1][beg] = fPadIJ[j1][j];
877 fPadIJ[j1][j] = padij;
878 }
879 for (Int_t j1=0; j1<6; j1++) {
880 xyq = fXyq[j1][beg];
881 fXyq[j1][beg] = fXyq[j1][j];
882 fXyq[j1][j] = xyq;
883 }
884 break;
885 } // for (Int_t j=end;
886 beg++;
887 } // while
888 npad = fnPads[0] + fnPads[1];
889 if (npad > 500) { cout << " ***** Too large cluster. Give up. " << npad << endl; return kFALSE; }
890 // Back up charge value
891 for (Int_t j=0; j<npad; j++) fXyq[5][j] = fXyq[2][j];
892
893 return kTRUE;
894}
895
896//_____________________________________________________________________________
897void AliMUONClusterFinderAZ::BuildPixArray()
898{
899 // Build pixel array for MLEM method
900
901 Int_t nPix=0, i1, i2;
902 Float_t xy1[4], xy12[4];
903 AliMUONPixel *pixPtr=0;
904
905 Int_t npad = fnPads[0] + fnPads[1];
906
907 // One cathode is empty
908 i1 = fnPads[0]!=0 ? 0 : 1;
909 i2 = fnPads[1]!=0 ? 1 : 0;
910
911 // Build array of pixels on anode plane
912 if (i1 == i2) { // one-cathode precluster
913 for (Int_t j=0; j<npad; j++) {
914 pixPtr = new AliMUONPixel();
915 for (Int_t i=0; i<2; i++) {
916 pixPtr->SetCoord(i, fXyq[i][j]); // pixel coordinates
917 pixPtr->SetSize(i, fXyq[i+3][j]); // pixel size
918 }
919 pixPtr->SetCharge(fXyq[2][j]); // charge
920 fPixArray->Add((TObject*)pixPtr);
921 nPix++;
922 }
923 } else { // two-cathode precluster
924 for (Int_t i=0; i<npad; i++) {
925 if (fPadIJ[0][i] != i1) continue;
926 xy1[0] = fXyq[0][i] - fXyq[3][i];
927 xy1[1] = fXyq[0][i] + fXyq[3][i];
928 xy1[2] = fXyq[1][i] - fXyq[4][i];
929 xy1[3] = fXyq[1][i] + fXyq[4][i];
930 for (Int_t j=0; j<npad; j++) {
931 if (fPadIJ[0][j] != i2) continue;
932 if (!Overlap(xy1, j, xy12, 1)) continue;
933 pixPtr = new AliMUONPixel();
934 for (Int_t k=0; k<2; k++) {
935 pixPtr->SetCoord(k, (xy12[2*k]+xy12[2*k+1])/2); // pixel coordinates
936 pixPtr->SetSize(k, xy12[2*k+1]-pixPtr->Coord(k)); // size
937 }
938 pixPtr->SetCharge(TMath::Min (fXyq[2][i],fXyq[2][j])); //charge
939 fPixArray->Add((TObject*)pixPtr);
940 nPix++;
941 } // for (Int_t j=0;
942 } // for (Int_t i=0;
943 } // else
944
945 Float_t wxmin=999, wymin=999;
946 for (Int_t i=0; i<npad; i++) {
947 if (fPadIJ[0][i] == i1) wymin = TMath::Min (wymin,fXyq[4][i]);
948 if (fPadIJ[0][i] == i2) wxmin = TMath::Min (wxmin,fXyq[3][i]);
949 }
950 cout << wxmin << " " << wymin << endl;
951
952 // Check if small pixel X-size
953 AjustPixel(wxmin, 0);
954 // Check if small pixel Y-size
955 AjustPixel(wymin, 1);
956 // Check if large pixel size
957 AjustPixel(wxmin, wymin);
958
959 // Remove discarded pixels
960 for (Int_t i=0; i<nPix; i++) {
961 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
962 //pixPtr->Print();
963 if (pixPtr->Charge() < 1) { fPixArray->RemoveAt(i); delete pixPtr; }// discarded pixel
964 }
965 fPixArray->Compress();
966 nPix = fPixArray->GetEntriesFast();
967
968 if (nPix > npad) {
969 cout << nPix << endl;
970 // Too many pixels - sort and remove pixels with the lowest signal
971 fPixArray->Sort();
972 for (Int_t i=npad; i<nPix; i++) {
973 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
974 //pixPtr->Print();
975 fPixArray->RemoveAt(i);
976 delete pixPtr;
977 }
978 nPix = npad;
979 } // if (nPix > npad)
980
981 // Set pixel charges to the same value (for MLEM)
982 for (Int_t i=0; i<nPix; i++) {
983 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
984 //pixPtr->SetCharge(10);
985 cout << i+1 << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << " " << pixPtr->Size(0) << " " << pixPtr->Size(1) << endl;
986 }
987}
988
989//_____________________________________________________________________________
990void AliMUONClusterFinderAZ::AjustPixel(Float_t width, Int_t ixy)
991{
992 // Check if some pixels have small size (ajust if necessary)
993
994 AliMUONPixel *pixPtr, *pixPtr1 = 0;
995 Int_t ixy1 = TMath::Even(ixy);
996 Int_t nPix = fPixArray->GetEntriesFast();
997
998 for (Int_t i=0; i<nPix; i++) {
999 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1000 if (pixPtr->Charge() < 1) continue; // discarded pixel
1001 if (pixPtr->Size(ixy)-width < -1.e-4) {
1002 // try to merge
1003 cout << " Small X or Y: " << ixy << " " << pixPtr->Size(ixy) << " " << width << " " << pixPtr->Coord(0) << " " << pixPtr->Coord(1) << endl;
1004 for (Int_t j=i+1; j<nPix; j++) {
1005 pixPtr1 = (AliMUONPixel*) fPixArray->UncheckedAt(j);
1006 if (pixPtr1->Charge() < 1) continue; // discarded pixel
1007 if (TMath::Abs(pixPtr1->Size(ixy)-width) < 1.e-4) continue; // right size
1008 if (TMath::Abs(pixPtr1->Coord(ixy1)-pixPtr->Coord(ixy1)) > 1.e-4) continue; // different rows/columns
1009 if (TMath::Abs(pixPtr1->Coord(ixy)-pixPtr->Coord(ixy)) < 2*width) {
1010 // merge
1011 pixPtr->SetSize(ixy, width);
1012 pixPtr->SetCoord(ixy, (pixPtr->Coord(ixy)+pixPtr1->Coord(ixy))/2);
1013 pixPtr->SetCharge(TMath::Min (pixPtr->Charge(),pixPtr1->Charge()));
1014 pixPtr1->SetCharge(0);
1015 pixPtr1 = 0;
1016 break;
1017 }
1018 } // for (Int_t j=i+1;
1019 //if (!pixPtr1) { cout << " I am here!" << endl; pixPtr->SetSize(ixy, width); } // ???
1020 //else if (pixPtr1->Charge() > 0.5 || i == nPix-1) {
1021 if (pixPtr1 || i == nPix-1) {
1022 // edge pixel - just increase its size
1023 cout << " Edge ..." << endl;
1024 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1025 // ???if (fPadIJ[0][j] != i1) continue;
1026 if (TMath::Abs(pixPtr->Coord(ixy1)-fXyq[ixy1][j]) > 1.e-4) continue;
1027 if (pixPtr->Coord(ixy) < fXyq[ixy][j])
1028 pixPtr->Shift(ixy, -pixPtr->Size(ixy));
1029 else pixPtr->Shift(ixy, pixPtr->Size(ixy));
1030 pixPtr->SetSize(ixy, width);
1031 break;
1032 }
1033 }
1034 } // if (pixPtr->Size(ixy)-width < -1.e-4)
1035 } // for (Int_t i=0; i<nPix;
1036 return;
1037}
1038
1039//_____________________________________________________________________________
1040void AliMUONClusterFinderAZ::AjustPixel(Float_t wxmin, Float_t wymin)
1041{
1042 // Check if some pixels have large size (ajust if necessary)
1043
1044 Int_t nx, ny;
1045 Int_t nPix = fPixArray->GetEntriesFast();
1046 AliMUONPixel *pixPtr, *pixPtr1, pix;
1047
1048 // Check if large pixel size
1049 for (Int_t i=0; i<nPix; i++) {
1050 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1051 if (pixPtr->Charge() < 1) continue; // discarded pixel
1052 if (pixPtr->Size(0)-wxmin > 1.e-4 || pixPtr->Size(1)-wymin > 1.e-4) {
1053 cout << " Different " << pixPtr->Size(0) << " " << wxmin << " " << pixPtr->Size(1) << " " << wymin << endl;
1054 pix = *pixPtr;
1055 nx = TMath::Nint (pix.Size(0)/wxmin);
1056 ny = TMath::Nint (pix.Size(1)/wymin);
1057 pix.Shift(0, -pix.Size(0)-wxmin);
1058 pix.Shift(1, -pix.Size(1)-wymin);
1059 pix.SetSize(0, wxmin);
1060 pix.SetSize(1, wymin);
1061 for (Int_t ii=0; ii<nx; ii++) {
1062 pix.Shift(0, wxmin*2);
1063 for (Int_t jj=0; jj<ny; jj++) {
1064 pix.Shift(1, wymin*2);
1065 pixPtr1 = new AliMUONPixel(pix);
1066 fPixArray->Add((TObject*)pixPtr1);
1067 }
1068 }
1069 pixPtr->SetCharge(0);
1070 }
1071 } // for (Int_t i=0; i<nPix;
1072 return;
1073}
1074
1075//_____________________________________________________________________________
1076Bool_t AliMUONClusterFinderAZ::MainLoop()
1077{
1078 // Repeat MLEM algorithm until pixel size becomes sufficiently small
1079
1080 TH2D *mlem;
1081
1082 Int_t ix, iy;
1083 //Int_t nn, xList[10], yList[10];
1084 Int_t nPix = fPixArray->GetEntriesFast();
1085 Int_t npadTot = fnPads[0] + fnPads[1], npadOK = 0;
1086 AliMUONPixel *pixPtr = 0;
1087 Double_t *coef = 0, *probi = 0;
1088 for (Int_t i=0; i<npadTot; i++) if (fPadIJ[1][i] == 0) npadOK++;
1089
1090 while (1) {
1091
1092 mlem = (TH2D*) gROOT->FindObject("mlem");
1093 if (mlem) mlem->Delete();
1094 // Calculate coefficients
1095 cout << " nPix, npadTot, npadOK " << nPix << " " << npadTot << " " << npadOK << endl;
1096
1097 // Calculate coefficients and pixel visibilities
1098 coef = new Double_t [npadTot*nPix];
1099 probi = new Double_t [nPix];
1100 Int_t indx = 0, cath;
1101 for (Int_t ipix=0; ipix<nPix; ipix++) {
1102 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1103 probi[ipix] = 0;
1104 for (Int_t j=0; j<npadTot; j++) {
1105 if (fPadIJ[1][j] < 0) { coef[j*nPix+ipix] = 0; continue; }
1106 cath = fPadIJ[0][j];
1107 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
1108 fSegmentation[cath]->SetPad(ix,iy);
1109 /*
1110 fSegmentation[cath]->Neighbours(ix,iy,&nn,xList,yList);
1111 if (nn != 4) {
1112 cout << nn << ": ";
1113 for (Int_t i=0; i<nn; i++) {cout << xList[i] << " " << yList[i] << ", ";}
1114 cout << endl;
1115 }
1116 */
1117 Double_t sum = 0;
1118 fSegmentation[cath]->SetHit(pixPtr->Coord(0),pixPtr->Coord(1),fZpad);
1119 sum += fResponse->IntXY(fSegmentation[cath]);
1120 indx = j*nPix + ipix;
1121 coef[indx] = sum;
1122 probi[ipix] += coef[indx];
1123 //cout << j << " " << ipix << " " << coef[indx] << endl;
1124 } // for (Int_t j=0;
1125 //cout << " prob: " << probi[ipix] << endl;
1126 if (probi[ipix] < 0.01) pixPtr->SetCharge(0); // "invisible" pixel
1127 } // for (Int_t ipix=0;
1128
1129 // MLEM algorithm
1130 Mlem(coef, probi);
1131
cd747ddb 1132 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 1133 for (Int_t ipix=0; ipix<nPix; ipix++) {
1134 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1135 for (Int_t i=0; i<4; i++)
1136 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1137 //cout << ipix+1; pixPtr->Print();
1138 }
1139 for (Int_t i=0; i<4; i++) {
1140 xylim[i] -= pixPtr->Size(i/2); cout << (i%2 ? -1 : 1)*xylim[i] << " "; }
1141 cout << endl;
1142
1143 // Ajust histogram to approximately the same limits as for the pads
1144 // (for good presentation)
1145 //*
1146 Float_t xypads[4];
1147 if (fHist[0]) {
1148 xypads[0] = fHist[0]->GetXaxis()->GetXmin();
1149 xypads[1] = -fHist[0]->GetXaxis()->GetXmax();
1150 xypads[2] = fHist[0]->GetYaxis()->GetXmin();
1151 xypads[3] = -fHist[0]->GetYaxis()->GetXmax();
1152 for (Int_t i=0; i<4; i++) {
1153 while(1) {
1154 if (xylim[i] < xypads[i]) break;
1155 xylim[i] -= 2*pixPtr->Size(i/2);
1156 }
1157 }
1158 } // if (fHist[0])
1159 //*/
1160
1161 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
1162 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
1163 mlem = new TH2D("mlem","mlem",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
1164 for (Int_t ipix=0; ipix<nPix; ipix++) {
1165 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1166 mlem->Fill(pixPtr->Coord(0),pixPtr->Coord(1),pixPtr->Charge());
1167 }
1168 //gPad->GetCanvas()->cd(3);
1169 if (fDraw) {
1170 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1171 gPad->SetTheta(55);
1172 gPad->SetPhi(30);
1173 mlem->Draw("lego1Fb");
1174 gPad->Update();
1175 gets((char*)&ix);
1176 }
1177
1178 // Check if the total charge of pixels is too low
1179 Double_t qTot = 0;
1180 for (Int_t i=0; i<nPix; i++) {
1181 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1182 qTot += pixPtr->Charge();
1183 }
1184 if (qTot < 1.e-4 || npadOK < 3 && qTot < 50) {
1185 delete [] coef; delete [] probi; coef = 0; probi = 0;
1186 fPixArray->Delete();
1187 return kFALSE;
1188 }
1189
1190 // Plot data - expectation
1191 /*
1192 Double_t x, y, cont;
1193 for (Int_t j=0; j<npadTot; j++) {
1194 Double_t sum1 = 0;
1195 for (Int_t i=0; i<nPix; i++) {
1196 // Caculate expectation
1197 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1198 sum1 += pixPtr->Charge()*coef[j*nPix+i];
1199 }
1200 sum1 = TMath::Min (sum1,(Double_t)fResponse->MaxAdc());
1201 x = fXyq[0][j];
1202 y = fXyq[1][j];
1203 cath = fPadIJ[0][j];
1204 Int_t ihist = cath*2;
1205 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1206 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1207 cont = fHist[ihist]->GetCellContent(ix,iy);
1208 if (cont == 0 && fHist[ihist+1]) {
1209 ihist += 1;
1210 ix = fHist[ihist]->GetXaxis()->FindBin(x);
1211 iy = fHist[ihist]->GetYaxis()->FindBin(y);
1212 }
1213 fHist[ihist]->SetBinContent(ix,iy,fXyq[2][j]-sum1);
1214 }
1215 ((TCanvas*)gROOT->FindObject("c1"))->cd(1);
1216 //gPad->SetTheta(55);
1217 //gPad->SetPhi(30);
1218 //mlem->Draw("lego1");
1219 gPad->Modified();
1220 ((TCanvas*)gROOT->FindObject("c1"))->cd(2);
1221 gPad->Modified();
1222 */
1223
1224 // Calculate position of the center-of-gravity around the maximum pixel
1225 Double_t xyCOG[2];
1226 FindCOG(mlem, xyCOG);
1227
1228 if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) < 0.07 && pixPtr->Size(0) > pixPtr->Size(1)) break;
1229 //if (TMath::Min(pixPtr->Size(0),pixPtr->Size(1)) >= 0.07 || pixPtr->Size(0) < pixPtr->Size(1)) {
1230 // Sort pixels according to the charge
1231 fPixArray->Sort();
1232 /*
1233 for (Int_t i=0; i<nPix; i++) {
1234 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1235 cout << i+1; pixPtr->Print();
1236 }
1237 */
1238 Double_t pixMin = 0.01*((AliMUONPixel*)fPixArray->UncheckedAt(0))->Charge();
1239 pixMin = TMath::Min (pixMin,50.);
1240
1241 // Decrease pixel size and shift pixels to make them centered at
1242 // the maximum one
1243 indx = (pixPtr->Size(0)>pixPtr->Size(1)) ? 0 : 1;
1244 Double_t width = 0, shift[2]={0};
1245 ix = 1;
1246 for (Int_t i=0; i<4; i++) xylim[i] = 999;
1247 Int_t nPix1 = nPix; nPix = 0;
1248 for (Int_t ipix=0; ipix<nPix1; ipix++) {
1249 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1250 if (nPix >= npadOK) { // too many pixels already
1251 fPixArray->RemoveAt(ipix);
1252 delete pixPtr;
1253 continue;
1254 }
1255 if (pixPtr->Charge() < pixMin) { // low charge
1256 fPixArray->RemoveAt(ipix);
1257 delete pixPtr;
1258 continue;
1259 }
1260 for (Int_t i=0; i<2; i++) {
1261 if (!i) {
1262 pixPtr->SetCharge(10);
1263 pixPtr->SetSize(indx, pixPtr->Size(indx)/2);
1264 width = -pixPtr->Size(indx);
1265 pixPtr->Shift(indx, width);
1266 // Shift pixel position
1267 if (ix) {
1268 ix = 0;
1269 for (Int_t j=0; j<2; j++) {
1270 shift[j] = pixPtr->Coord(j) - xyCOG[j];
1271 shift[j] -= ((Int_t)(shift[j]/pixPtr->Size(j)/2))*pixPtr->Size(j)*2;
1272 }
1273 //cout << ipix << " " << i << " " << shift[0] << " " << shift[1] << endl;
1274 } // if (ix)
1275 pixPtr->Shift(0, -shift[0]);
1276 pixPtr->Shift(1, -shift[1]);
1277 } else {
1278 pixPtr = new AliMUONPixel(*pixPtr);
1279 pixPtr->Shift(indx, -2*width);
1280 fPixArray->Add((TObject*)pixPtr);
1281 } // else
1282 //pixPtr->Print();
1283 for (Int_t i=0; i<4; i++)
1284 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
1285 } // for (Int_t i=0; i<2;
1286 nPix += 2;
1287 } // for (Int_t ipix=0;
1288
1289 fPixArray->Compress();
1290 nPix = fPixArray->GetEntriesFast();
1291
1292 // Remove excessive pixels
1293 if (nPix > npadOK) {
1294 for (Int_t ipix=npadOK; ipix<nPix; ipix++) {
1295 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1296 fPixArray->RemoveAt(ipix);
1297 delete pixPtr;
1298 }
1299 } else {
1300 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(0);
1301 // add pixels if the maximum is at the limit of pixel area
1302 // start from Y-direction
1303 Int_t j = 0;
1304 for (Int_t i=3; i>-1; i--) {
1305 if (nPix < npadOK &&
1306 TMath::Abs((i%2 ? -1 : 1)*xylim[i]-xyCOG[i/2]) < pixPtr->Size(i/2)) {
1307 pixPtr = new AliMUONPixel(*pixPtr);
1308 pixPtr->SetCoord(i/2, xyCOG[i/2]+(i%2 ? 2:-2)*pixPtr->Size(i/2));
1309 j = TMath::Even (i/2);
1310 pixPtr->SetCoord(j, xyCOG[j]);
1311 fPixArray->Add((TObject*)pixPtr);
1312 nPix++;
1313 }
1314 }
1315 } // else
1316
1317 fPixArray->Compress();
1318 nPix = fPixArray->GetEntriesFast();
1319 delete [] coef; delete [] probi; coef = 0; probi = 0;
1320 } // while (1)
1321
1322 // remove pixels with low signal or low visibility
1323 // Cuts are empirical !!!
1324 Double_t thresh = TMath::Max (mlem->GetMaximum()/100.,1.);
1325 thresh = TMath::Min (thresh,50.);
1326 Double_t cmax = -1, charge = 0;
1327 for (Int_t i=0; i<nPix; i++) cmax = TMath::Max (cmax,probi[i]);
1328 // Mark pixels which should be removed
1329 for (Int_t i=0; i<nPix; i++) {
1330 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1331 charge = pixPtr->Charge();
1332 if (charge < thresh) pixPtr->SetCharge(-charge);
1333 else if (cmax > 1.91) {
1334 if (probi[i] < 1.9) pixPtr->SetCharge(-charge);
1335 }
1336 else if (probi[i] < cmax*0.9) pixPtr->SetCharge(-charge);
1337 }
1338 // Move charge of removed pixels to their nearest neighbour (to keep total charge the same)
1339 Int_t near = 0;
1340 for (Int_t i=0; i<nPix; i++) {
1341 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1342 charge = pixPtr->Charge();
1343 if (charge > 0) continue;
1344 near = FindNearest(pixPtr);
1345 pixPtr->SetCharge(0);
1346 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(near);
1347 pixPtr->SetCharge(pixPtr->Charge() - charge);
1348 }
1349 // Update histogram
1350 for (Int_t i=0; i<nPix; i++) {
1351 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1352 ix = mlem->GetXaxis()->FindBin(pixPtr->Coord(0));
1353 iy = mlem->GetYaxis()->FindBin(pixPtr->Coord(1));
1354 mlem->SetBinContent(ix, iy, pixPtr->Charge());
1355 }
1356 if (fDraw) {
1357 ((TCanvas*)gROOT->FindObject("c2"))->cd();
1358 gPad->SetTheta(55);
1359 gPad->SetPhi(30);
1360 mlem->Draw("lego1Fb");
1361 gPad->Update();
1362 }
1363
1364 fxyMu[0][6] = fxyMu[1][6] = 9999;
1365 // Try to split into clusters
1366 Bool_t ok = kTRUE;
1367 if (mlem->GetSum() < 1) ok = kFALSE;
1368 else Split(mlem, coef);
1369 delete [] coef; delete [] probi; coef = 0; probi = 0;
1370 fPixArray->Delete();
1371 return ok;
1372}
1373
1374//_____________________________________________________________________________
1375void AliMUONClusterFinderAZ::Mlem(Double_t *coef, Double_t *probi)
1376{
1377 // Use MLEM to find pixel charges
1378
1379 Int_t nPix = fPixArray->GetEntriesFast();
1380 Int_t npad = fnPads[0] + fnPads[1];
1381 Double_t *probi1 = new Double_t [nPix];
1382 Int_t indx, indx1;
1383 AliMUONPixel *pixPtr;
1384
1385 for (Int_t iter=0; iter<15; iter++) {
1386 // Do iterations
1387 for (Int_t ipix=0; ipix<nPix; ipix++) {
1388 // Correct each pixel
1389 if (probi[ipix] < 0.01) continue; // skip "invisible" pixel
1390 Double_t sum = 0;
1391 probi1[ipix] = probi[ipix];
1392 for (Int_t j=0; j<npad; j++) {
1393 if (fPadIJ[1][j] < 0) continue;
1394 Double_t sum1 = 0;
1395 indx1 = j*nPix;
1396 indx = indx1 + ipix;
1397 for (Int_t i=0; i<nPix; i++) {
1398 // Caculate expectation
1399 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1400 sum1 += pixPtr->Charge()*coef[indx1+i];
1401 } // for (Int_t i=0;
1402 if (fXyq[2][j] > fResponse->MaxAdc()-1 && sum1 > fResponse->MaxAdc()) { probi1[ipix] -= coef[indx]; continue; } // correct for pad charge overflows
1403 //cout << sum1 << " " << fXyq[2][j] << " " << coef[j*nPix+ipix] << endl;
1404 if (coef[indx] > 1.e-6) sum += fXyq[2][j]*coef[indx]/sum1;
1405 } // for (Int_t j=0;
1406 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
1407 if (probi1[ipix] > 1.e-6) pixPtr->SetCharge(pixPtr->Charge()*sum/probi1[ipix]);
1408 } // for (Int_t ipix=0;
1409 } // for (Int_t iter=0;
1410 delete [] probi1;
1411 return;
1412}
1413
1414//_____________________________________________________________________________
1415void AliMUONClusterFinderAZ::FindCOG(TH2D *mlem, Double_t *xyc)
1416{
1417 // Calculate position of the center-of-gravity around the maximum pixel
1418
1419 Int_t ixmax, iymax, ix, nsumx=0, nsumy=0, nsum=0;
1420 Int_t i1 = -9, j1 = -9;
1421 mlem->GetMaximumBin(ixmax,iymax,ix);
1422 Int_t nx = mlem->GetNbinsX();
1423 Int_t ny = mlem->GetNbinsY();
1424 Double_t thresh = mlem->GetMaximum()/10;
1425 Double_t x, y, cont, xq=0, yq=0, qq=0;
1426
1427 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1428 y = mlem->GetYaxis()->GetBinCenter(i);
1429 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1430 cont = mlem->GetCellContent(j,i);
1431 if (cont < thresh) continue;
1432 if (i != i1) {i1 = i; nsumy++;}
1433 if (j != j1) {j1 = j; nsumx++;}
1434 x = mlem->GetXaxis()->GetBinCenter(j);
1435 xq += x*cont;
1436 yq += y*cont;
1437 qq += cont;
1438 nsum++;
1439 }
1440 }
1441
1442 Double_t cmax = 0;
1443 Int_t i2 = 0, j2 = 0;
1444 x = y = 0;
1445 if (nsumy == 1) {
1446 // one bin in Y - add one more (with the largest signal)
1447 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1448 if (i == iymax) continue;
1449 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1450 cont = mlem->GetCellContent(j,i);
1451 if (cont > cmax) {
1452 cmax = cont;
1453 x = mlem->GetXaxis()->GetBinCenter(j);
1454 y = mlem->GetYaxis()->GetBinCenter(i);
1455 i2 = i;
1456 j2 = j;
1457 }
1458 }
1459 }
1460 xq += x*cmax;
1461 yq += y*cmax;
1462 qq += cmax;
1463 if (i2 != i1) nsumy++;
1464 if (j2 != j1) nsumx++;
1465 nsum++;
1466 } // if (nsumy == 1)
1467
1468 if (nsumx == 1) {
1469 // one bin in X - add one more (with the largest signal)
1470 cmax = x = y = 0;
1471 for (Int_t j=TMath::Max(1,ixmax-1); j<=TMath::Min(nx,ixmax+1); j++) {
1472 if (j == ixmax) continue;
1473 for (Int_t i=TMath::Max(1,iymax-1); i<=TMath::Min(ny,iymax+1); i++) {
1474 cont = mlem->GetCellContent(j,i);
1475 if (cont > cmax) {
1476 cmax = cont;
1477 x = mlem->GetXaxis()->GetBinCenter(j);
1478 y = mlem->GetYaxis()->GetBinCenter(i);
1479 i2 = i;
1480 j2 = j;
1481 }
1482 }
1483 }
1484 xq += x*cmax;
1485 yq += y*cmax;
1486 qq += cmax;
1487 if (i2 != i1) nsumy++;
1488 if (j2 != j1) nsumx++;
1489 nsum++;
1490 } // if (nsumx == 1)
1491
1492 xyc[0] = xq/qq; xyc[1] = yq/qq;
1493 cout << xyc[0] << " " << xyc[1] << " " << qq << " " << nsum << " " << nsumx << " " << nsumy << endl;
1494 return;
1495}
1496
1497//_____________________________________________________________________________
1498Int_t AliMUONClusterFinderAZ::FindNearest(AliMUONPixel *pixPtr0)
1499{
1500 // Find the pixel nearest to the given one
1501 // (algorithm may be not very efficient)
1502
1503 Int_t nPix = fPixArray->GetEntriesFast(), imin = 0;
1504 Double_t rmin = 99999, dx = 0, dy = 0, r = 0;
1505 Double_t xc = pixPtr0->Coord(0), yc = pixPtr0->Coord(1);
1506 AliMUONPixel *pixPtr;
1507
1508 for (Int_t i=0; i<nPix; i++) {
1509 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1510 if (pixPtr->Charge() < 0.5) continue;
1511 dx = (xc - pixPtr->Coord(0)) / pixPtr->Size(0);
1512 dy = (yc - pixPtr->Coord(1)) / pixPtr->Size(1);
1513 r = dx *dx + dy * dy;
1514 if (r < rmin) { rmin = r; imin = i; }
1515 }
1516 return imin;
1517}
1518
1519//_____________________________________________________________________________
1520void AliMUONClusterFinderAZ::Split(TH2D *mlem, Double_t *coef)
1521{
1522 // The main steering function to work with clusters of pixels in anode
1523 // plane (find clusters, decouple them from each other, merge them (if
1524 // necessary), pick up coupled pads, call the fitting function)
1525
1526 Int_t nx = mlem->GetNbinsX();
1527 Int_t ny = mlem->GetNbinsY();
1528 Int_t nPix = fPixArray->GetEntriesFast();
1529
1530 Bool_t *used = new Bool_t[ny*nx];
1531 Double_t cont;
1532 Int_t nclust = 0, indx, indx1;
1533
1534 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
1535
1536 TObjArray *clusters[200]={0};
1537 TObjArray *pix;
1538
1539 // Find clusters of histogram bins (easier to work in 2-D space)
1540 for (Int_t i=1; i<=ny; i++) {
1541 for (Int_t j=1; j<=nx; j++) {
1542 indx = (i-1)*nx + j - 1;
1543 if (used[indx]) continue;
1544 cont = mlem->GetCellContent(j,i);
1545 if (cont < 0.5) continue;
1546 pix = new TObjArray(20);
1547 used[indx] = 1;
1548 pix->Add(BinToPix(mlem,j,i));
1549 AddBin(mlem, i, j, 0, used, pix); // recursive call
1550 clusters[nclust++] = pix;
1551 if (nclust > 200) { cout << " Too many clusters " << endl; ::exit(0); }
1552 } // for (Int_t j=1; j<=nx; j++) {
1553 } // for (Int_t i=1; i<=ny;
1554 cout << nclust << endl;
1555 delete [] used; used = 0;
1556
1557 // Compute couplings between clusters and clusters to pads
1558 Int_t npad = fnPads[0] + fnPads[1];
1559
1560 // Exclude pads with overflows
1561 for (Int_t j=0; j<npad; j++) {
1562 if (fXyq[2][j] > fResponse->MaxAdc()-1) fPadIJ[1][j] = -9;
1563 else fPadIJ[1][j] = 0;
1564 }
1565
1566 // Compute couplings of clusters to pads
1567 TMatrixD *aij_clu_pad = new TMatrixD(nclust,npad);
1568 *aij_clu_pad = 0;
1569 Int_t npxclu;
1570 for (Int_t iclust=0; iclust<nclust; iclust++) {
1571 pix = clusters[iclust];
1572 npxclu = pix->GetEntriesFast();
1573 for (Int_t i=0; i<npxclu; i++) {
1574 indx = fPixArray->IndexOf(pix->UncheckedAt(i));
1575 for (Int_t j=0; j<npad; j++) {
1576 // Exclude overflows
1577 if (fPadIJ[1][j] < 0) continue;
1578 if (coef[j*nPix+indx] < kCouplMin) continue;
1579 (*aij_clu_pad)(iclust,j) += coef[j*nPix+indx];
1580 }
1581 }
1582 }
1583 // Compute couplings between clusters
1584 TMatrixD *aij_clu_clu = new TMatrixD(nclust,nclust);
1585 *aij_clu_clu = 0;
1586 for (Int_t iclust=0; iclust<nclust; iclust++) {
1587 for (Int_t j=0; j<npad; j++) {
1588 // Exclude overflows
1589 if (fPadIJ[1][j] < 0) continue;
1590 if ((*aij_clu_pad)(iclust,j) < kCouplMin) continue;
1591 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
1592 if ((*aij_clu_pad)(iclust1,j) < kCouplMin) continue;
1593 (*aij_clu_clu)(iclust,iclust1) +=
1594 TMath::Sqrt ((*aij_clu_pad)(iclust,j)*(*aij_clu_pad)(iclust1,j));
1595 }
1596 }
1597 }
1598 for (Int_t iclust=0; iclust<nclust; iclust++) {
1599 for (Int_t iclust1=iclust+1; iclust1<nclust; iclust1++) {
1600 (*aij_clu_clu)(iclust1,iclust) = (*aij_clu_clu)(iclust,iclust1);
1601 }
1602 }
1603
1604 if (nclust > 1) aij_clu_clu->Print();
1605
1606 // Find groups of coupled clusters
1607 used = new Bool_t[nclust];
1608 for (Int_t i=0; i<nclust; i++) used[i] = kFALSE;
1609 Int_t *clustNumb = new Int_t[nclust];
1610 Int_t nCoupled, nForFit, minGroup[3], clustFit[3], nfit = 0;
1611 Double_t parOk[8];
1612
1613 for (Int_t igroup=0; igroup<nclust; igroup++) {
1614 if (used[igroup]) continue;
1615 used[igroup] = kTRUE;
1616 clustNumb[0] = igroup;
1617 nCoupled = 1;
1618 // Find group of coupled clusters
1619 AddCluster(igroup, nclust, aij_clu_clu, used, clustNumb, nCoupled); // recursive
1620 cout << " nCoupled: " << nCoupled << endl;
1621 for (Int_t i=0; i<nCoupled; i++) cout << clustNumb[i] << " "; cout << endl;
1622
1623 while (nCoupled > 0) {
1624
1625 if (nCoupled < 4) {
1626 nForFit = nCoupled;
1627 for (Int_t i=0; i<nCoupled; i++) clustFit[i] = clustNumb[i];
1628 } else {
1629 // Too many coupled clusters to fit - try to decouple them
1630 // Find the lowest coupling of 1, 2, min(3,nLinks/2) pixels with
1631 // all the others in the group
1632 for (Int_t j=0; j<3; j++) minGroup[j] = -1;
1633 Double_t coupl = MinGroupCoupl(nCoupled, clustNumb, aij_clu_clu, minGroup);
1634
1635 // Flag clusters for fit
1636 nForFit = 0;
1637 while (minGroup[nForFit] >= 0 && nForFit < 3) {
1638 cout << clustNumb[minGroup[nForFit]] << " ";
1639 clustFit[nForFit] = clustNumb[minGroup[nForFit]];
1640 clustNumb[minGroup[nForFit]] -= 999;
1641 nForFit++;
1642 }
1643 cout << nForFit << " " << coupl << endl;
1644 } // else
1645
1646 // Select pads for fit.
1647 if (SelectPad(nCoupled, nForFit, clustNumb, clustFit, aij_clu_pad) < 3 && nCoupled > 1) {
1648 // Deselect pads
1649 for (Int_t j=0; j<npad; j++) if (TMath::Abs(fPadIJ[1][j]) == 1) fPadIJ[1][j] = 0;
1650 // Merge the failed cluster candidates (with too few pads to fit) with
1651 // the one with the strongest coupling
1652 Merge(nForFit, nCoupled, clustNumb, clustFit, clusters, aij_clu_clu, aij_clu_pad);
1653 } else {
1654 // Do the fit
1655 nfit = Fit(nForFit, clustFit, clusters, parOk);
1656 }
1657
1658 // Subtract the fitted charges from pads with strong coupling and/or
1659 // return pads for further use
1660 UpdatePads(nfit, parOk);
1661
1662 // Mark used pads
1663 for (Int_t j=0; j<npad; j++) {if (fPadIJ[1][j] == 1) fPadIJ[1][j] = -1;}
1664
1665 // Sort the clusters (move to the right the used ones)
1666 Int_t beg = 0, end = nCoupled - 1;
1667 while (beg < end) {
1668 if (clustNumb[beg] >= 0) { beg++; continue; }
1669 for (Int_t j=end; j>beg; j--) {
1670 if (clustNumb[j] < 0) continue;
1671 end = j - 1;
1672 indx = clustNumb[beg];
1673 clustNumb[beg] = clustNumb[j];
1674 clustNumb[j] = indx;
1675 break;
1676 }
1677 beg++;
1678 }
1679
1680 nCoupled -= nForFit;
1681 if (nCoupled > 3) {
1682 // Remove couplings of used clusters
1683 for (Int_t iclust=nCoupled; iclust<nCoupled+nForFit; iclust++) {
1684 indx = clustNumb[iclust] + 999;
1685 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1686 indx1 = clustNumb[iclust1];
1687 (*aij_clu_clu)(indx,indx1) = (*aij_clu_clu)(indx1,indx) = 0;
1688 }
1689 }
1690
1691 // Update the remaining clusters couplings (exclude couplings from
1692 // the used pads)
1693 for (Int_t j=0; j<npad; j++) {
1694 if (fPadIJ[1][j] != -1) continue;
1695 for (Int_t iclust=0; iclust<nCoupled; iclust++) {
1696 indx = clustNumb[iclust];
1697 if ((*aij_clu_pad)(indx,j) < kCouplMin) continue;
1698 for (Int_t iclust1=iclust+1; iclust1<nCoupled; iclust1++) {
1699 indx1 = clustNumb[iclust1];
1700 if ((*aij_clu_pad)(indx1,j) < kCouplMin) continue;
1701 // Check this
1702 (*aij_clu_clu)(indx,indx1) -=
1703 TMath::Sqrt ((*aij_clu_pad)(indx,j)*(*aij_clu_pad)(indx1,j));
1704 (*aij_clu_clu)(indx1,indx) = (*aij_clu_clu)(indx,indx1);
1705 }
1706 }
1707 fPadIJ[1][j] = -9;
1708 } // for (Int_t j=0; j<npad;
1709 } // if (nCoupled > 3)
1710 } // while (nCoupled > 0)
1711 } // for (Int_t igroup=0; igroup<nclust;
1712
1713 //delete aij_clu; aij_clu = 0; delete aij_clu_pad; aij_clu_pad = 0;
1714 aij_clu_clu->Delete(); aij_clu_pad->Delete();
1715 for (Int_t iclust=0; iclust<nclust; iclust++) {
1716 pix = clusters[iclust];
1717 pix->Clear();
1718 delete pix; pix = 0;
1719 }
1720 delete [] clustNumb; clustNumb = 0; delete [] used; used = 0;
1721}
1722
1723//_____________________________________________________________________________
1724void AliMUONClusterFinderAZ::AddBin(TH2D *mlem, Int_t ic, Int_t jc, Int_t mode, Bool_t *used, TObjArray *pix)
1725{
1726 // Add a bin to the cluster
1727
1728 Int_t nx = mlem->GetNbinsX();
1729 Int_t ny = mlem->GetNbinsY();
1730 Double_t cont1, cont = mlem->GetCellContent(jc,ic);
1731 AliMUONPixel *pixPtr = 0;
1732
1733 for (Int_t i=TMath::Max(ic-1,1); i<=TMath::Min(ic+1,ny); i++) {
1734 for (Int_t j=TMath::Max(jc-1,1); j<=TMath::Min(jc+1,nx); j++) {
1735 if (i != ic && j != jc) continue;
1736 if (used[(i-1)*nx+j-1]) continue;
1737 cont1 = mlem->GetCellContent(j,i);
1738 if (mode && cont1 > cont) continue;
1739 used[(i-1)*nx+j-1] = kTRUE;
1740 if (cont1 < 0.5) continue;
1741 if (pix) pix->Add(BinToPix(mlem,j,i));
1742 else {
1743 pixPtr = new AliMUONPixel (mlem->GetXaxis()->GetBinCenter(j),
1744 mlem->GetYaxis()->GetBinCenter(i), 0, 0, cont1);
1745 fPixArray->Add((TObject*)pixPtr);
1746 }
1747 AddBin(mlem, i, j, mode, used, pix); // recursive call
1748 }
1749 }
1750}
1751
1752//_____________________________________________________________________________
1753TObject* AliMUONClusterFinderAZ::BinToPix(TH2D *mlem, Int_t jc, Int_t ic)
1754{
1755 // Translate histogram bin to pixel
1756
1757 Double_t yc = mlem->GetYaxis()->GetBinCenter(ic);
1758 Double_t xc = mlem->GetXaxis()->GetBinCenter(jc);
1759
1760 Int_t nPix = fPixArray->GetEntriesFast();
1761 AliMUONPixel *pixPtr;
1762
1763 // Compare pixel and bin positions
1764 for (Int_t i=0; i<nPix; i++) {
1765 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
1766 if (pixPtr->Charge() < 0.5) continue;
1767 if (TMath::Abs(pixPtr->Coord(0)-xc)<1.e-4 && TMath::Abs(pixPtr->Coord(1)-yc)<1.e-4) return (TObject*) pixPtr;
1768 }
1769 cout << " Something wrong ??? " << endl;
1770 return NULL;
1771}
1772
1773//_____________________________________________________________________________
1774void AliMUONClusterFinderAZ::AddCluster(Int_t ic, Int_t nclust, TMatrixD *aij_clu_clu, Bool_t *used, Int_t *clustNumb, Int_t &nCoupled)
1775{
1776 // Add a cluster to the group of coupled clusters
1777
1778 for (Int_t i=0; i<nclust; i++) {
1779 if (used[i]) continue;
1780 if ((*aij_clu_clu)(i,ic) < kCouplMin) continue;
1781 used[i] = kTRUE;
1782 clustNumb[nCoupled++] = i;
1783 AddCluster(i, nclust, aij_clu_clu, used, clustNumb, nCoupled);
1784 }
1785}
1786
1787//_____________________________________________________________________________
1788Double_t AliMUONClusterFinderAZ::MinGroupCoupl(Int_t nCoupled, Int_t *clustNumb, TMatrixD *aij_clu_clu, Int_t *minGroup)
1789{
1790 // Find group of clusters with minimum coupling to all the others
1791
1792 Int_t i123max = TMath::Min(3,nCoupled/2);
1793 Int_t indx, indx1, indx2, indx3, nTot = 0;
1794 Double_t *coupl1 = 0, *coupl2 = 0, *coupl3 = 0;
1795
1796 for (Int_t i123=1; i123<=i123max; i123++) {
1797
1798 if (i123 == 1) {
1799 coupl1 = new Double_t [nCoupled];
1800 for (Int_t i=0; i<nCoupled; i++) coupl1[i] = 0;
1801 }
1802 else if (i123 == 2) {
1803 nTot = nCoupled*nCoupled;
1804 coupl2 = new Double_t [nTot];
1805 for (Int_t i=0; i<nTot; i++) coupl2[i] = 9999;
1806 } else {
1807 nTot = nTot*nCoupled;
1808 coupl3 = new Double_t [nTot];
1809 for (Int_t i=0; i<nTot; i++) coupl3[i] = 9999;
1810 } // else
1811
1812 for (Int_t i=0; i<nCoupled; i++) {
1813 indx1 = clustNumb[i];
1814 for (Int_t j=i+1; j<nCoupled; j++) {
1815 indx2 = clustNumb[j];
1816 if (i123 == 1) {
1817 coupl1[i] += (*aij_clu_clu)(indx1,indx2);
1818 coupl1[j] += (*aij_clu_clu)(indx1,indx2);
1819 }
1820 else if (i123 == 2) {
1821 indx = i*nCoupled + j;
1822 coupl2[indx] = coupl1[i] + coupl1[j];
1823 coupl2[indx] -= 2 * ((*aij_clu_clu)(indx1,indx2));
1824 } else {
1825 for (Int_t k=j+1; k<nCoupled; k++) {
1826 indx3 = clustNumb[k];
1827 indx = i*nCoupled*nCoupled + j*nCoupled + k;
1828 coupl3[indx] = coupl2[i*nCoupled+j] + coupl1[k];
1829 coupl3[indx] -= 2 * ((*aij_clu_clu)(indx1,indx3)+(*aij_clu_clu)(indx2,indx3));
1830 }
1831 } // else
1832 } // for (Int_t j=i+1;
1833 } // for (Int_t i=0;
1834 } // for (Int_t i123=1;
1835
1836 // Find minimum coupling
1837 Double_t couplMin = 9999;
1838 Int_t locMin = 0;
1839
1840 for (Int_t i123=1; i123<=i123max; i123++) {
1841 if (i123 == 1) {
1842 locMin = TMath::LocMin(nCoupled, coupl1);
1843 couplMin = coupl1[locMin];
1844 minGroup[0] = locMin;
1845 delete [] coupl1; coupl1 = 0;
1846 }
1847 else if (i123 == 2) {
1848 locMin = TMath::LocMin(nCoupled*nCoupled, coupl2);
1849 if (coupl2[locMin] < couplMin) {
1850 couplMin = coupl2[locMin];
1851 minGroup[0] = locMin/nCoupled;
1852 minGroup[1] = locMin%nCoupled;
1853 }
1854 delete [] coupl2; coupl2 = 0;
1855 } else {
1856 locMin = TMath::LocMin(nTot, coupl3);
1857 if (coupl3[locMin] < couplMin) {
1858 couplMin = coupl3[locMin];
1859 minGroup[0] = locMin/nCoupled/nCoupled;
1860 minGroup[1] = locMin%(nCoupled*nCoupled)/nCoupled;
1861 minGroup[2] = locMin%nCoupled;
1862 }
1863 delete [] coupl3; coupl3 = 0;
1864 } // else
1865 } // for (Int_t i123=1;
1866 return couplMin;
1867}
1868
1869//_____________________________________________________________________________
1870Int_t AliMUONClusterFinderAZ::SelectPad(Int_t nCoupled, Int_t nForFit, Int_t *clustNumb, Int_t *clustFit, TMatrixD *aij_clu_pad)
1871{
1872 // Select pads for fit. If too many coupled clusters, find pads giving
1873 // the strongest coupling with the rest of clusters and exclude them from the fit.
1874
1875 Int_t npad = fnPads[0] + fnPads[1];
1876 Double_t *pad_pix = 0;
1877
1878 if (nCoupled > 3) {
1879 pad_pix = new Double_t[npad];
1880 for (Int_t i=0; i<npad; i++) pad_pix[i] = 0;
1881 }
1882
1883 Int_t nOK = 0, indx, indx1;
1884 for (Int_t iclust=0; iclust<nForFit; iclust++) {
1885 indx = clustFit[iclust];
1886 for (Int_t j=0; j<npad; j++) {
1887 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
1888 if ((*aij_clu_pad)(indx,j) < kCouplMin) continue;
1889 fPadIJ[1][j] = 1; // pad to be used in fit
1890 nOK++;
1891 if (nCoupled > 3) {
1892 // Check other clusters
1893 for (Int_t iclust1=0; iclust1<nCoupled; iclust1++) {
1894 indx1 = clustNumb[iclust1];
1895 if (indx1 < 0) continue;
1896 if ((*aij_clu_pad)(indx1,j) < kCouplMin) continue;
1897 pad_pix[j] += (*aij_clu_pad)(indx1,j);
1898 }
1899 } // if (nCoupled > 3)
1900 } // for (Int_t j=0; j<npad;
1901 } // for (Int_t iclust=0; iclust<nForFit
1902 if (nCoupled < 4) return nOK;
1903
1904 Double_t aaa = 0;
1905 for (Int_t j=0; j<npad; j++) {
1906 if (pad_pix[j] < kCouplMin) continue;
1907 cout << j << " " << pad_pix[j] << " ";
1908 cout << fXyq[0][j] << " " << fXyq[1][j] << endl;
1909 aaa += pad_pix[j];
1910 fPadIJ[1][j] = -1; // exclude pads with strong coupling to the other clusters
1911 nOK--;
1912 }
1913 delete [] pad_pix; pad_pix = 0;
1914 return nOK;
1915}
1916
1917//_____________________________________________________________________________
1918void AliMUONClusterFinderAZ::Merge(Int_t nForFit, Int_t nCoupled, Int_t *clustNumb, Int_t *clustFit, TObjArray **clusters, TMatrixD *aij_clu_clu, TMatrixD *aij_clu_pad)
1919{
1920 // Merge the group of clusters with the one having the strongest coupling with them
1921
1922 Int_t indx, indx1, npxclu, npxclu1, imax=0;
1923 TObjArray *pix, *pix1;
1924 Double_t couplMax;
1925
1926 for (Int_t icl=0; icl<nForFit; icl++) {
1927 indx = clustFit[icl];
1928 pix = clusters[indx];
1929 npxclu = pix->GetEntriesFast();
1930 couplMax = -1;
1931 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1932 indx1 = clustNumb[icl1];
1933 if (indx1 < 0) continue;
1934 if ((*aij_clu_clu)(indx,indx1) > couplMax) {
1935 couplMax = (*aij_clu_clu)(indx,indx1);
1936 imax = indx1;
1937 }
1938 } // for (Int_t icl1=0;
1939 /*if (couplMax < kCouplMin) {
1940 cout << " Oops " << couplMax << endl;
1941 aij_clu_clu->Print();
1942 cout << icl << " " << indx << " " << npxclu << " " << nLinks << endl;
1943 ::exit(0);
1944 }*/
1945 // Add to it
1946 pix1 = clusters[imax];
1947 npxclu1 = pix1->GetEntriesFast();
1948 // Add pixels
1949 for (Int_t i=0; i<npxclu; i++) { pix1->Add(pix->UncheckedAt(i)); pix->RemoveAt(i); }
1950 cout << " New number of pixels: " << npxclu1 << " " << pix1->GetEntriesFast() << endl;
1951 //Add cluster-to-cluster couplings
1952 //aij_clu_clu->Print();
1953 for (Int_t icl1=0; icl1<nCoupled; icl1++) {
1954 indx1 = clustNumb[icl1];
1955 if (indx1 < 0 || indx1 == imax) continue;
1956 (*aij_clu_clu)(indx1,imax) += (*aij_clu_clu)(indx,indx1);
1957 (*aij_clu_clu)(imax,indx1) = (*aij_clu_clu)(indx1,imax);
1958 }
1959 (*aij_clu_clu)(indx,imax) = (*aij_clu_clu)(imax,indx) = 0;
1960 //aij_clu_clu->Print();
1961 //Add cluster-to-pad couplings
1962 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
1963 if (fPadIJ[1][j] < 0) continue; // exclude overflows and used pads
1964 (*aij_clu_pad)(imax,j) += (*aij_clu_pad)(indx,j);
1965 (*aij_clu_pad)(indx,j) = 0;
1966 }
1967 } // for (Int_t icl=0; icl<nForFit;
1968}
1969
1970//_____________________________________________________________________________
1971Int_t AliMUONClusterFinderAZ::Fit(Int_t nfit, Int_t *clustFit, TObjArray **clusters, Double_t *parOk)
1972{
1973 // Find selected clusters to selected pad charges
1974
1975 TH2D *mlem = (TH2D*) gROOT->FindObject("mlem");
1976 //Int_t nx = mlem->GetNbinsX();
1977 //Int_t ny = mlem->GetNbinsY();
1978 Double_t xmin = mlem->GetXaxis()->GetXmin() - mlem->GetXaxis()->GetBinWidth(1);
1979 Double_t xmax = mlem->GetXaxis()->GetXmax() + mlem->GetXaxis()->GetBinWidth(1);
1980 Double_t ymin = mlem->GetYaxis()->GetXmin() - mlem->GetYaxis()->GetBinWidth(1);
1981 Double_t ymax = mlem->GetYaxis()->GetXmax() + mlem->GetYaxis()->GetBinWidth(1);
1982 //Double_t qmin = 0, qmax = 1;
1983 Double_t step[3]={0.01,0.002,0.02};
1984
1985 Double_t cont, cmax = 0, xseed = 0, yseed = 0, errOk[8];
1986 TObjArray *pix;
1987 Int_t npxclu;
1988
1989 // Number of pads to use
1990 Int_t npads = 0;
1991 for (Int_t i=0; i<fnPads[0]+fnPads[1]; i++) {if (fPadIJ[1][i] == 1) npads++;}
1992 for (Int_t i=0; i<nfit; i++) {cout << i+1 << " " << clustFit[i] << " ";}
1993 cout << nfit << endl;
1994 cout << " Number of pads to fit: " << npads << endl;
1995 fNpar = 0;
1996 fQtot = 0;
1997 if (npads < 2) return 0;
1998
1999 // Take cluster maxima as fitting seeds
2000 AliMUONPixel *pixPtr;
2001 Double_t xyseed[3][2], qseed[3];
2002 for (Int_t ifit=1; ifit<=nfit; ifit++) {
2003 cmax = 0;
2004 pix = clusters[clustFit[ifit-1]];
2005 npxclu = pix->GetEntriesFast();
2006 for (Int_t clu=0; clu<npxclu; clu++) {
2007 pixPtr = (AliMUONPixel*) pix->UncheckedAt(clu);
2008 cont = pixPtr->Charge();
2009 fQtot += cont;
2010 if (cont > cmax) {
2011 cmax = cont;
2012 xseed = pixPtr->Coord(0);
2013 yseed = pixPtr->Coord(1);
2014 }
2015 }
2016 xyseed[ifit-1][0] = xseed;
2017 xyseed[ifit-1][1] = yseed;
2018 qseed[ifit-1] = cmax;
2019 } // for (Int_t ifit=1;
2020
2021 Int_t nDof, maxSeed[3];
2022 Double_t fmin, chi2o = 9999, chi2n;
2023
2024 // Try to fit with one-track hypothesis, then 2-track. If chi2/dof is
2025 // lower, try 3-track (if number of pads is sufficient).
2026
2027 TMath::Sort(nfit, qseed, maxSeed, kTRUE); // in decreasing order
2028 nfit = TMath::Min (nfit, (npads + 1) / 3);
2029
2030 Double_t *gin = 0, func0, func1, param[8], param0[2][8], deriv[2][8], step0[8];
2031 Double_t shift[8], stepMax, derMax, parmin[8], parmax[8], func2[2], shift0;
2032 Double_t delta[8], scMax, dder[8], estim, shiftSave = 0;
2033 Int_t min, max, nCall = 0, memory[8] = {0}, nLoop, idMax = 0, iestMax = 0, nFail;
2034
2035 for (Int_t iseed=0; iseed<nfit; iseed++) {
2036
2037 for (Int_t j=0; j<3; j++) step0[fNpar+j] = shift[fNpar+j] = step[j];
2038 param[fNpar] = xyseed[maxSeed[iseed]][0];
2039 parmin[fNpar] = xmin;
2040 parmax[fNpar++] = xmax;
2041 param[fNpar] = xyseed[maxSeed[iseed]][1];
2042 parmin[fNpar] = ymin;
2043 parmax[fNpar++] = ymax;
2044 if (fNpar > 2) {
2045 param[fNpar] = fNpar == 4 ? 0.5 : 0.3;
2046 parmin[fNpar] = 0;
2047 parmax[fNpar++] = 1;
2048 }
2049
2050 // Try new algorithm
2051 min = nLoop = 1; stepMax = func2[1] = derMax = 999999; nFail = 0;
2052
2053 while (1) {
2054 max = !min;
2055 fcn1(fNpar, gin, func0, param, 1); nCall++;
2056 //cout << " Func: " << func0 << endl;
2057
2058 func2[max] = func0;
2059 for (Int_t j=0; j<fNpar; j++) {
2060 param0[max][j] = param[j];
2061 delta[j] = step0[j];
2062 param[j] += delta[j] / 10;
2063 if (j > 0) param[j-1] -= delta[j-1] / 10;
2064 fcn1(fNpar, gin, func1, param, 1); nCall++;
2065 deriv[max][j] = (func1 - func0) / delta[j] * 10; // first derivative
2066 //cout << j << " " << deriv[max][j] << endl;
2067 dder[j] = param0[0][j] != param0[1][j] ? (deriv[0][j] - deriv[1][j]) /
2068 (param0[0][j] - param0[1][j]) : 0; // second derivative
2069 }
2070 param[fNpar-1] -= delta[fNpar-1] / 10;
2071 if (nCall > 2000) ::exit(0);
2072
2073 min = func2[0] < func2[1] ? 0 : 1;
2074 nFail = min == max ? 0 : nFail + 1;
2075
2076 stepMax = derMax = estim = 0;
2077 for (Int_t j=0; j<fNpar; j++) {
2078 // Estimated distance to minimum
2079 shift0 = shift[j];
2080 if (nLoop == 1) shift[j] = TMath::Sign (step0[j], -deriv[max][j]); // first step
2081 else if (TMath::Abs(deriv[0][j]) < 1.e-3 && TMath::Abs(deriv[1][j]) < 1.e-3) shift[j] = 0;
2082 else if (deriv[min][j]*deriv[!min][j] > 0 && TMath::Abs(deriv[min][j]) > TMath::Abs(deriv[!min][j])
2083 || TMath::Abs(deriv[0][j]-deriv[1][j]) < 1.e-3) {
2084 shift[j] = -TMath::Sign (shift[j], (func2[0]-func2[1]) * (param0[0][j]-param0[1][j]));
2085 if (min == max) {
2086 if (memory[j] > 1) { shift[j] *= 2; } //cout << " Memory " << memory[j] << " " << shift[j] << endl; }
2087 memory[j]++;
2088 }
2089 } else {
2090 shift[j] = -deriv[min][j] / dder[j];
2091 memory[j] = 0;
2092 }
2093 if (TMath::Abs(shift[j])/step0[j] > estim) {
2094 estim = TMath::Abs(shift[j])/step0[j];
2095 iestMax = j;
2096 }
2097
2098 // Too big step
2099 if (TMath::Abs(shift[j])/step0[j] > 10) shift[j] = TMath::Sign(10.,shift[j]) * step0[j]; //
2100
2101 // Failed to improve minimum
2102 if (min != max) {
2103 memory[j] = 0;
2104 param[j] = param0[min][j];
2105 if (TMath::Abs(shift[j]+shift0) > 0.1*step0[j]) shift[j] = (shift[j] + shift0) / 2;
2106 else shift[j] /= -2;
2107 }
2108
2109 // Too big step
2110 if (TMath::Abs(shift[j]*deriv[min][j]) > func2[min])
2111 shift[j] = TMath::Sign (func2[min]/deriv[min][j], shift[j]);
2112
2113 // Introduce step relaxation factor
2114 if (memory[j] < 3) {
2115 scMax = 1 + 4 / TMath::Max(nLoop/2.,1.);
2116 if (TMath::Abs(shift0) > 0 && TMath::Abs(shift[j]/shift0) > scMax)
2117 shift[j] = TMath::Sign (shift0*scMax, shift[j]);
2118 }
2119 param[j] += shift[j];
2120
2121 //cout << " xxx " << j << " " << shift[j] << " " << param[j] << endl;
2122 stepMax = TMath::Max (stepMax, TMath::Abs(shift[j]/step0[j]));
2123 if (TMath::Abs(deriv[min][j]) > derMax) {
2124 idMax = j;
2125 derMax = TMath::Abs (deriv[min][j]);
2126 }
2127 } // for (Int_t j=0; j<fNpar;
2128 //cout << max << " " << func2[min] << " " << derMax << " " << stepMax << " " << estim << " " << iestMax << " " << nCall << endl;
2129 if (estim < 1 && derMax < 2 || nLoop > 100) break; // minimum was found
2130
2131 nLoop++;
2132 // Check for small step
2133 if (shift[idMax] == 0) { shift[idMax] = step0[idMax]/10; param[idMax] += shift[idMax]; continue; }
2134 if (!memory[idMax] && derMax > 0.5 && nLoop > 10) {
2135 //cout << " ok " << deriv[min][idMax] << " " << deriv[!min][idMax] << " " << dder[idMax]*shift[idMax] << " " << shift[idMax] << endl;
2136 if (dder[idMax] != 0 && TMath::Abs(deriv[min][idMax]/dder[idMax]/shift[idMax]) > 10) {
2137 if (min == max) dder[idMax] = -dder[idMax];
2138 shift[idMax] = -deriv[min][idMax] / dder[idMax] / 10;
2139 param[idMax] += shift[idMax];
2140 stepMax = TMath::Max (stepMax, TMath::Abs(shift[idMax])/step0[idMax]);
2141 //cout << shift[idMax] << " " << param[idMax] << endl;
2142 if (min == max) shiftSave = shift[idMax];
2143 }
2144 if (nFail > 10) {
2145 param[idMax] -= shift[idMax];
2146 shift[idMax] = 4 * shiftSave * (gRandom->Rndm(0) - 0.5);
2147 param[idMax] += shift[idMax];
2148 //cout << shift[idMax] << endl;
2149 }
2150 }
2151 } // while (1)
2152 fmin = func2[min];
2153
2154 nDof = npads - fNpar;
2155 chi2n = nDof ? fmin/nDof : 0;
2156
2157 if (chi2n*1.2+1.e-6 > chi2o ) { fNpar -= 3; break; }
2158 // Save parameters and errors
2159 for (Int_t i=0; i<fNpar; i++) {
2160 parOk[i] = param0[min][i];
2161 errOk[i] = fmin;
2162 }
2163
2164 cout << chi2o << " " << chi2n << endl;
2165 chi2o = chi2n;
2166 if (fmin < 0.1) break; // !!!???
2167 } // for (Int_t iseed=0;
2168
2169 for (Int_t i=0; i<fNpar; i++) {
2170 if (i == 4 || i == 7) continue;
2171 cout << parOk[i] << " " << errOk[i] << endl;
2172 }
2173 nfit = (fNpar + 1) / 3;
2174 Double_t rad;
2175 Int_t indx, imax;
2176 if (fReco) {
2177 for (Int_t j=0; j<nfit; j++) {
2178 indx = j<2 ? j*2 : j*2+1;
2179 AddRawCluster (parOk[indx], parOk[indx+1], errOk[indx]);
2180 }
2181 return nfit;
2182 }
2183 for (Int_t i=0; i<fnMu; i++) {
2184 cmax = fxyMu[i][6];
2185 for (Int_t j=0; j<nfit; j++) {
2186 indx = j<2 ? j*2 : j*2+1;
2187 rad = (fxyMu[i][0]-parOk[indx])*(fxyMu[i][0]-parOk[indx]) +
2188 (fxyMu[i][1]-parOk[indx+1])*(fxyMu[i][1]-parOk[indx+1]);
2189 if (rad < cmax) {
2190 cmax = rad;
2191 imax = indx;
2192 fxyMu[i][6] = cmax;
2193 fxyMu[i][2] = parOk[imax] - fxyMu[i][0];
2194 fxyMu[i][4] = parOk[imax+1] - fxyMu[i][1];
2195 fxyMu[i][3] = errOk[imax];
2196 fxyMu[i][5] = errOk[imax+1];
2197 }
2198 }
2199 }
2200 return nfit;
2201}
2202
2203//_____________________________________________________________________________
6aaf81e6 2204void fcn1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
0df3ca52 2205{
2206 // Fit for one track
2207 AliMUONClusterFinderAZ& c = *(AliMUONClusterFinderAZ::fgClusterFinder);
2208
2209 Int_t cath, ix, iy, indx, npads=0;
2210 Double_t charge, delta, coef=0, chi2=0;
2211 for (Int_t j=0; j<c.fnPads[0]+c.fnPads[1]; j++) {
2212 if (c.fPadIJ[1][j] != 1) continue;
2213 cath = c.fPadIJ[0][j];
2214 npads++;
2215 c.fSegmentation[cath]->GetPadI(c.fXyq[0][j],c.fXyq[1][j],c.fZpad,ix,iy);
2216 c.fSegmentation[cath]->SetPad(ix,iy);
2217 charge = 0;
2218 for (Int_t i=c.fNpar/3; i>=0; i--) { // sum over tracks
2219 indx = i<2 ? 2*i : 2*i+1;
2220 c.fSegmentation[cath]->SetHit(par[indx],par[indx+1],c.fZpad);
2221 //charge += c.fResponse->IntXY(c.fSegmentation[cath])*par[icl*3+2];
2222 if (c.fNpar == 2) coef = 1;
2223 else coef = i==c.fNpar/3 ? par[indx+2] : 1-coef;
2224 //coef = TMath::Max (coef, 0.);
2225 if (c.fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2226 //coef = TMath::Max (coef, 0.);
2227 charge += c.fResponse->IntXY(c.fSegmentation[cath])*coef;
2228 }
2229 charge *= c.fQtot;
2230 //if (c.fXyq[2][j] > c.fResponse->MaxAdc()-1 && charge >
2231 // c.fResponse->MaxAdc()) charge = c.fResponse->MaxAdc();
2232 delta = charge - c.fXyq[2][j];
2233 delta /= TMath::Sqrt ((Double_t)c.fXyq[2][j]);
2234 //chi2 += TMath::Abs(delta);
2235 chi2 += delta*delta;
2236 } // for (Int_t j=0;
2237 f = chi2;
2238 Double_t qAver = c.fQtot/npads; //(c.fnPads[0]+c.fnPads[1]);
2239 f = chi2/qAver;
2240}
2241
2242//_____________________________________________________________________________
6aaf81e6 2243void AliMUONClusterFinderAZ::UpdatePads(Int_t /*nfit*/, Double_t *par)
0df3ca52 2244{
2245 // Subtract the fitted charges from pads with strong coupling
2246
2247 Int_t cath, ix, iy, indx;
2248 Double_t charge, coef=0;
2249 for (Int_t j=0; j<fnPads[0]+fnPads[1]; j++) {
2250 if (fPadIJ[1][j] != -1) continue;
2251 if (fNpar != 0) {
2252 cath = fPadIJ[0][j];
2253 fSegmentation[cath]->GetPadI(fXyq[0][j],fXyq[1][j],fZpad,ix,iy);
2254 fSegmentation[cath]->SetPad(ix,iy);
2255 charge = 0;
2256 for (Int_t i=fNpar/3; i>=0; i--) { // sum over tracks
2257 indx = i<2 ? 2*i : 2*i+1;
2258 fSegmentation[cath]->SetHit(par[indx],par[indx+1],fZpad);
2259 if (fNpar == 2) coef = 1;
2260 else coef = i==fNpar/3 ? par[indx+2] : 1-coef;
2261 if (fNpar == 8 && i < 2) coef = i==1 ? coef*par[indx+2] : coef - par[7];
2262 charge += fResponse->IntXY(fSegmentation[cath])*coef;
2263 }
2264 charge *= fQtot;
2265 fXyq[2][j] -= charge;
2266 } // if (fNpar != 0)
2267 if (fXyq[2][j] > fResponse->ZeroSuppression()) fPadIJ[1][j] = 0; // return pad for further using
2268 } // for (Int_t j=0;
2269}
2270
2271//_____________________________________________________________________________
6aaf81e6 2272Bool_t AliMUONClusterFinderAZ::TestTrack(Int_t /*t*/) {
0df3ca52 2273// Test if track was user selected
2274 return kTRUE;
2275 /*
2276 if (fTrack[0]==-1 || fTrack[1]==-1) {
2277 return kTRUE;
2278 } else if (t==fTrack[0] || t==fTrack[1]) {
2279 return kTRUE;
2280 } else {
2281 return kFALSE;
2282 }
2283 */
2284}
2285
2286//_____________________________________________________________________________
2287void AliMUONClusterFinderAZ::AddRawCluster(Double_t x, Double_t y, Double_t fmin)
2288{
2289 //
2290 // Add a raw cluster copy to the list
2291 //
2292 AliMUONRawCluster cnew;
2293 AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON");
2294 //pMUON->AddRawCluster(fInput->Chamber(),c);
2295
2296 Int_t cath;
2297 for (cath=0; cath<2; cath++) {
2298 cnew.fX[cath] = x;
2299 cnew.fY[cath] = y;
2300 cnew.fZ[cath] = fZpad;
2301 cnew.fQ[cath] = 100;
2302 cnew.fPeakSignal[cath] = 20;
2303 cnew.fMultiplicity[cath] = 5;
2304 cnew.fNcluster[cath] = 1;
2305 cnew.fChi2[cath] = fmin; //0.1;
2306 /*
2307 cnew.fMultiplicity[cath]=c->fMultiplicity[cath];
2308 for (i=0; i<fMul[cath]; i++) {
2309 cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath];
2310 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
2311 }
2312 fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath);
2313 fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]);
2314 FillCluster(&cnew,cath);
2315 */
2316 }
2317 //cnew.fClusterType=cnew.PhysicsContribution();
ce3f5e87 2318 pMUON->GetMUONData()->AddRawCluster(AliMUONClusterInput::Instance()->Chamber(),cnew);
0df3ca52 2319 //fNPeaks++;
2320}
2321
2322//_____________________________________________________________________________
2323Int_t AliMUONClusterFinderAZ::FindLocalMaxima(Int_t *localMax, Double_t *maxVal)
2324{
2325 // Find local maxima in pixel space for large preclusters in order to
2326 // try to split them into smaller pieces (to speed up the MLEM procedure)
2327
2328 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2329 if (hist) hist->Delete();
2330
cd747ddb 2331 Double_t xylim[4] = {999, 999, 999, 999};
0df3ca52 2332 Int_t nPix = fPixArray->GetEntriesFast();
2333 AliMUONPixel *pixPtr = 0;
2334 for (Int_t ipix=0; ipix<nPix; ipix++) {
2335 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2336 for (Int_t i=0; i<4; i++)
2337 xylim[i] = TMath::Min (xylim[i], (i%2 ? -1 : 1)*pixPtr->Coord(i/2));
2338 }
2339 for (Int_t i=0; i<4; i++) xylim[i] -= pixPtr->Size(i/2);
2340
2341 Int_t nx = TMath::Nint ((-xylim[1]-xylim[0])/pixPtr->Size(0)/2);
2342 Int_t ny = TMath::Nint ((-xylim[3]-xylim[2])/pixPtr->Size(1)/2);
2343 hist = new TH2D("anode","anode",nx,xylim[0],-xylim[1],ny,xylim[2],-xylim[3]);
2344 for (Int_t ipix=0; ipix<nPix; ipix++) {
2345 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(ipix);
2346 hist->Fill(pixPtr->Coord(0), pixPtr->Coord(1), pixPtr->Charge());
2347 }
2348 if (fDraw) {
2349 ((TCanvas*)gROOT->FindObject("c2"))->cd();
2350 gPad->SetTheta(55);
2351 gPad->SetPhi(30);
2352 hist->Draw("lego1Fb");
2353 gPad->Update();
2354 int ia;
2355 cin >> ia;
2356 }
2357
2358 Int_t nMax = 0, indx;
2359 Int_t *isLocalMax = new Int_t[ny*nx];
2360 for (Int_t i=0; i<ny*nx; i++) isLocalMax[i] = 0;
2361
2362 for (Int_t i=1; i<=ny; i++) {
2363 indx = (i-1) * nx;
2364 for (Int_t j=1; j<=nx; j++) {
2365 if (hist->GetCellContent(j,i) < 0.5) continue;
2366 //if (isLocalMax[indx+j-1] < 0) continue;
2367 if (isLocalMax[indx+j-1] != 0) continue;
2368 FlagLocalMax(hist, i, j, isLocalMax);
2369 }
2370 }
2371
2372 for (Int_t i=1; i<=ny; i++) {
2373 indx = (i-1) * nx;
2374 for (Int_t j=1; j<=nx; j++) {
2375 if (isLocalMax[indx+j-1] > 0) {
2376 localMax[nMax] = indx + j - 1;
2377 maxVal[nMax++] = hist->GetCellContent(j,i);
2378 }
2379 if (nMax > 99) { cout << " Too many local maxima !!!" << endl; ::exit(0); }
2380 }
2381 }
2382 cout << " Local max: " << nMax << endl;
2383 delete [] isLocalMax; isLocalMax = 0;
2384 return nMax;
2385}
2386
2387//_____________________________________________________________________________
2388void AliMUONClusterFinderAZ::FlagLocalMax(TH2D *hist, Int_t i, Int_t j, Int_t *isLocalMax)
2389{
2390 // Flag pixels (whether or not local maxima)
2391
2392 Int_t nx = hist->GetNbinsX();
2393 Int_t ny = hist->GetNbinsY();
2394 Int_t cont = TMath::Nint (hist->GetCellContent(j,i));
2395 Int_t cont1 = 0;
2396
2397 for (Int_t i1=i-1; i1<i+2; i1++) {
2398 if (i1 < 1 || i1 > ny) continue;
2399 for (Int_t j1=j-1; j1<j+2; j1++) {
2400 if (j1 < 1 || j1 > nx) continue;
2401 if (i == i1 && j == j1) continue;
2402 cont1 = TMath::Nint (hist->GetCellContent(j1,i1));
2403 if (cont < cont1) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2404 else if (cont > cont1) isLocalMax[(i1-1)*nx+j1-1] = -1;
2405 else { // the same charge
2406 isLocalMax[(i-1)*nx+j-1] = 1;
2407 if (isLocalMax[(i1-1)*nx+j1-1] == 0) {
2408 FlagLocalMax(hist, i1, j1, isLocalMax);
2409 if (isLocalMax[(i1-1)*nx+j1-1] < 0) { isLocalMax[(i-1)*nx+j-1] = -1; return; }
2410 else isLocalMax[(i1-1)*nx+j1-1] = -1;
2411 }
2412 }
2413 }
2414 }
2415 isLocalMax[(i-1)*nx+j-1] = 1; // local maximum
2416}
2417
2418//_____________________________________________________________________________
2419void AliMUONClusterFinderAZ::FindCluster(Int_t *localMax, Int_t iMax)
2420{
2421 // Find pixel cluster around local maximum #iMax and pick up pads
2422 // overlapping with it
2423
2424 TH2D *hist = (TH2D*) gROOT->FindObject("anode");
2425 Int_t nx = hist->GetNbinsX();
2426 Int_t ny = hist->GetNbinsY();
2427 Int_t ic = localMax[iMax] / nx + 1;
2428 Int_t jc = localMax[iMax] % nx + 1;
2429 Bool_t *used = new Bool_t[ny*nx];
2430 for (Int_t i=0; i<ny*nx; i++) used[i] = kFALSE;
2431
2432 // Drop all pixels from the array - pick up only the ones from the cluster
2433 fPixArray->Delete();
2434
2435 Double_t wx = hist->GetXaxis()->GetBinWidth(1)/2;
2436 Double_t wy = hist->GetYaxis()->GetBinWidth(1)/2;
2437 Double_t yc = hist->GetYaxis()->GetBinCenter(ic);
2438 Double_t xc = hist->GetXaxis()->GetBinCenter(jc);
2439 Double_t cont = hist->GetCellContent(jc,ic);
2440 AliMUONPixel *pixPtr = new AliMUONPixel (xc, yc, wx, wy, cont);
2441 fPixArray->Add((TObject*)pixPtr);
2442 used[(ic-1)*nx+jc-1] = kTRUE;
2443 AddBin(hist, ic, jc, 1, used, (TObjArray*)0); // recursive call
2444
2445 Int_t nPix = fPixArray->GetEntriesFast(), npad = fnPads[0] + fnPads[1];
2446 for (Int_t i=0; i<nPix; i++) {
2447 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(0,wx);
2448 ((AliMUONPixel*)fPixArray->UncheckedAt(i))->SetSize(1,wy);
2449 }
2450 cout << iMax << " " << nPix << endl;
2451
2452 Float_t xy[4], xy12[4];
2453 // Pick up pads which overlap with found pixels
2454 for (Int_t i=0; i<npad; i++) fPadIJ[1][i] = -1;
2455 for (Int_t i=0; i<nPix; i++) {
2456 pixPtr = (AliMUONPixel*) fPixArray->UncheckedAt(i);
2457 for (Int_t j=0; j<4; j++)
2458 xy[j] = pixPtr->Coord(j/2) + (j%2 ? 1 : -1)*pixPtr->Size(j/2);
2459 for (Int_t j=0; j<npad; j++)
2460 if (Overlap(xy, j, xy12, 0)) fPadIJ[1][j] = 0; // flag for use
2461 }
2462
2463 delete [] used; used = 0;
2464}