]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONClusterFinderVS.cxx
New definition of name ofobject in TMap tables. Fixing conding convention violations
[u/mrichter/AliRoot.git] / MUON / AliMUONClusterFinderVS.cxx
CommitLineData
a9e2aefa 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
70479d0e 15
88cb7938 16/* $Id$ */
a9e2aefa 17
30178c30 18#include <TMinuit.h>
19#include <TF1.h>
20
a9e2aefa 21#include "AliMUONClusterFinderVS.h"
22#include "AliMUONDigit.h"
23#include "AliMUONRawCluster.h"
a30a000f 24#include "AliSegmentation.h"
a9e2aefa 25#include "AliMUONResponse.h"
c1a185bf 26#include "AliMUONClusterInput.h"
a9e2aefa 27#include "AliMUONHitMapA1.h"
a9e2aefa 28
29//_____________________________________________________________________
a9e2aefa 30// This function is minimized in the double-Mathieson fit
31void fcnS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag);
32void fcnS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag);
33void fcnCombiS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag);
34void fcnCombiS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag);
35
36ClassImp(AliMUONClusterFinderVS)
37
4da78c65 38AliMUONClusterFinderVS::AliMUONClusterFinderVS()
30178c30 39 : TObject()
a9e2aefa 40{
41// Default constructor
30aaba74 42 fInput=AliMUONClusterInput::Instance();
43 fHitMap[0] = 0;
44 fHitMap[1] = 0;
a9e2aefa 45 fTrack[0]=fTrack[1]=-1;
07cfabcf 46 fDebugLevel = 0; // make silent default
47 fGhostChi2Cut = 1e6; // nothing done by default
3f5cf0b3 48 fSeg[0] = 0;
49 fSeg[1] = 0;
50 for(Int_t i=0; i<100; i++) {
51 for (Int_t j=0; j<2; j++) {
52 fDig[i][j] = 0;
53 }
4da78c65 54 }
55 fRawClusters = new TClonesArray("AliMUONRawCluster",1000);
56 fNRawClusters = 0;
4da78c65 57}
58 //____________________________________________________________________________
59AliMUONClusterFinderVS::~AliMUONClusterFinderVS()
60{
61 // Reset tracks information
62 fNRawClusters = 0;
86b48c39 63 if (fRawClusters) {
64 fRawClusters->Delete();
65 delete fRawClusters;
66 }
a9e2aefa 67}
68
e3cba86e 69AliMUONClusterFinderVS::AliMUONClusterFinderVS(const AliMUONClusterFinderVS & clusterFinder):TObject(clusterFinder)
a9e2aefa 70{
30178c30 71// Protected copy constructor
72
73 Fatal("AliMUONClusterFinderAZModule", "Not implemented.");
a9e2aefa 74}
4da78c65 75//____________________________________________________________________________
76void AliMUONClusterFinderVS::ResetRawClusters()
77{
78 // Reset tracks information
79 fNRawClusters = 0;
80 if (fRawClusters) fRawClusters->Clear();
81}
82//____________________________________________________________________________
a9e2aefa 83void AliMUONClusterFinderVS::Decluster(AliMUONRawCluster *cluster)
84{
85// Decluster by local maxima
86 SplitByLocalMaxima(cluster);
87}
4da78c65 88//____________________________________________________________________________
a9e2aefa 89void AliMUONClusterFinderVS::SplitByLocalMaxima(AliMUONRawCluster *c)
90{
91// Split complex cluster by local maxima
a9e2aefa 92 Int_t cath, i;
9825400f 93
30aaba74 94 fInput->SetCluster(c);
9825400f 95
9e993f2a 96 fMul[0]=c->GetMultiplicity(0);
97 fMul[1]=c->GetMultiplicity(1);
a9e2aefa 98
99//
100// dump digit information into arrays
101//
9825400f 102
f0d86bc4 103 Float_t qtot;
a9e2aefa 104
105 for (cath=0; cath<2; cath++) {
106 qtot=0;
107 for (i=0; i<fMul[cath]; i++)
108 {
109 // pointer to digit
0164904a 110 fDig[i][cath]=fInput->Digit(cath, c->GetIndex(i, cath));
a9e2aefa 111 // pad coordinates
08a636a8 112 fIx[i][cath]= fDig[i][cath]->PadX();
113 fIy[i][cath]= fDig[i][cath]->PadY();
a9e2aefa 114 // pad charge
08a636a8 115 fQ[i][cath] = fDig[i][cath]->Signal();
a9e2aefa 116 // pad centre coordinates
f0d86bc4 117 fSeg[cath]->
118 GetPadC(fIx[i][cath], fIy[i][cath], fX[i][cath], fY[i][cath], fZ[i][cath]);
a9e2aefa 119 } // loop over cluster digits
a9e2aefa 120 } // loop over cathodes
121
122
123 FindLocalMaxima(c);
124
125//
126// Initialise and perform mathieson fits
127 Float_t chi2, oldchi2;
128// ++++++++++++++++++*************+++++++++++++++++++++
129// (1) No more than one local maximum per cathode plane
130// +++++++++++++++++++++++++++++++*************++++++++
131 if ((fNLocal[0]==1 && (fNLocal[1]==0 || fNLocal[1]==1)) ||
132 (fNLocal[0]==0 && fNLocal[1]==1)) {
a9e2aefa 133// Perform combined single Mathieson fit
134// Initial values for coordinates (x,y)
135
136 // One local maximum on cathodes 1 and 2 (X->cathode 2, Y->cathode 1)
137 if (fNLocal[0]==1 && fNLocal[1]==1) {
ba12c242 138 fXInit[0]=c->GetX(1);
139 fYInit[0]=c->GetY(0);
a9e2aefa 140 // One local maximum on cathode 1 (X,Y->cathode 1)
141 } else if (fNLocal[0]==1) {
ba12c242 142 fXInit[0]=c->GetX(0);
143 fYInit[0]=c->GetY(0);
a9e2aefa 144 // One local maximum on cathode 2 (X,Y->cathode 2)
145 } else {
ba12c242 146 fXInit[0]=c->GetX(1);
147 fYInit[0]=c->GetY(1);
a9e2aefa 148 }
07cfabcf 149 if (fDebugLevel)
150 fprintf(stderr,"\n cas (1) CombiSingleMathiesonFit(c)\n");
a9e2aefa 151 chi2=CombiSingleMathiesonFit(c);
152// Int_t ndf = fgNbins[0]+fgNbins[1]-2;
153// Float_t prob = TMath::Prob(Double_t(chi2),ndf);
154// prob1->Fill(prob);
155// chi2_1->Fill(chi2);
156 oldchi2=chi2;
07cfabcf 157 if (fDebugLevel)
158 fprintf(stderr," chi2 %f ",chi2);
a9e2aefa 159
ba12c242 160 c->SetX(0, fXFit[0]);
161 c->SetY(0, fYFit[0]);
a9e2aefa 162
ba12c242 163 c->SetX(1,fXFit[0]);
164 c->SetY(1,fYFit[0]);
3b5272e3 165 c->SetChi2(0,chi2);
166 c->SetChi2(1,chi2);
07cfabcf 167 // Force on anod
ba12c242 168 c->SetX(0, fSeg[0]->GetAnod(c->GetX(0)));
169 c->SetX(1, fSeg[1]->GetAnod(c->GetX(1)));
a9e2aefa 170
171// If reasonable chi^2 add result to the list of rawclusters
a9e2aefa 172 if (chi2 < 0.3) {
173 AddRawCluster(*c);
174// If not try combined double Mathieson Fit
175 } else {
19dd5b2f 176 if (fDebugLevel)
a9e2aefa 177 fprintf(stderr," MAUVAIS CHI2 !!!\n");
178 if (fNLocal[0]==1 && fNLocal[1]==1) {
179 fXInit[0]=fX[fIndLocal[0][1]][1];
180 fYInit[0]=fY[fIndLocal[0][0]][0];
181 fXInit[1]=fX[fIndLocal[0][1]][1];
182 fYInit[1]=fY[fIndLocal[0][0]][0];
183 } else if (fNLocal[0]==1) {
184 fXInit[0]=fX[fIndLocal[0][0]][0];
185 fYInit[0]=fY[fIndLocal[0][0]][0];
186 fXInit[1]=fX[fIndLocal[0][0]][0];
187 fYInit[1]=fY[fIndLocal[0][0]][0];
188 } else {
189 fXInit[0]=fX[fIndLocal[0][1]][1];
190 fYInit[0]=fY[fIndLocal[0][1]][1];
191 fXInit[1]=fX[fIndLocal[0][1]][1];
192 fYInit[1]=fY[fIndLocal[0][1]][1];
193 }
194
195// Initial value for charge ratios
196 fQrInit[0]=0.5;
197 fQrInit[1]=0.5;
07cfabcf 198 if (fDebugLevel)
a9e2aefa 199 fprintf(stderr,"\n cas (1) CombiDoubleMathiesonFit(c)\n");
200 chi2=CombiDoubleMathiesonFit(c);
201// Int_t ndf = fgNbins[0]+fgNbins[1]-6;
202// Float_t prob = TMath::Prob(chi2,ndf);
203// prob2->Fill(prob);
204// chi2_2->Fill(chi2);
205
206// Was this any better ??
19dd5b2f 207 if (fDebugLevel)
208 fprintf(stderr," Old and new chi2 %f %f ", oldchi2, chi2);
a9e2aefa 209 if (fFitStat!=0 && chi2>0 && (2.*chi2 < oldchi2)) {
19dd5b2f 210 if (fDebugLevel)
a9e2aefa 211 fprintf(stderr," Split\n");
212 // Split cluster into two according to fit result
213 Split(c);
214 } else {
19dd5b2f 215 if (fDebugLevel)
a9e2aefa 216 fprintf(stderr," Don't Split\n");
217 // Don't split
218 AddRawCluster(*c);
219 }
220 }
221
222// +++++++++++++++++++++++++++++++++++++++
223// (2) Two local maxima per cathode plane
224// +++++++++++++++++++++++++++++++++++++++
225 } else if (fNLocal[0]==2 && fNLocal[1]==2) {
226//
227// Let's look for ghosts first
05c39730 228
a9e2aefa 229 Float_t xm[4][2], ym[4][2];
230 Float_t dpx, dpy, dx, dy;
231 Int_t ixm[4][2], iym[4][2];
232 Int_t isec, im1, im2, ico;
233//
234// Form the 2x2 combinations
235// 0-0, 0-1, 1-0, 1-1
236 ico=0;
237 for (im1=0; im1<2; im1++) {
238 for (im2=0; im2<2; im2++) {
239 xm[ico][0]=fX[fIndLocal[im1][0]][0];
240 ym[ico][0]=fY[fIndLocal[im1][0]][0];
241 xm[ico][1]=fX[fIndLocal[im2][1]][1];
242 ym[ico][1]=fY[fIndLocal[im2][1]][1];
243
244 ixm[ico][0]=fIx[fIndLocal[im1][0]][0];
245 iym[ico][0]=fIy[fIndLocal[im1][0]][0];
246 ixm[ico][1]=fIx[fIndLocal[im2][1]][1];
247 iym[ico][1]=fIy[fIndLocal[im2][1]][1];
248 ico++;
249 }
250 }
251// ico = 0 : first local maximum on cathodes 1 and 2
252// ico = 1 : fisrt local maximum on cathode 1 and second on cathode 2
253// ico = 2 : second local maximum on cathode 1 and first on cathode 1
254// ico = 3 : second local maximum on cathodes 1 and 2
255
256// Analyse the combinations and keep those that are possible !
257// For each combination check consistency in x and y
05c39730 258 Int_t iacc;
259 Bool_t accepted[4];
260 Float_t dr[4] = {1.e4, 1.e4, 1.e4, 1.e4};
a9e2aefa 261 iacc=0;
05c39730 262
263// In case of staggering maxima are displaced by exactly half the pad-size in y.
264// We have to take into account the numerical precision in the consistency check;
265 Float_t eps = 1.e-5;
266//
a9e2aefa 267 for (ico=0; ico<4; ico++) {
268 accepted[ico]=kFALSE;
269// cathode one: x-coordinate
f0d86bc4 270 isec=fSeg[0]->Sector(ixm[ico][0], iym[ico][0]);
271 dpx=fSeg[0]->Dpx(isec)/2.;
a9e2aefa 272 dx=TMath::Abs(xm[ico][0]-xm[ico][1]);
273// cathode two: y-coordinate
f0d86bc4 274 isec=fSeg[1]->Sector(ixm[ico][1], iym[ico][1]);
275 dpy=fSeg[1]->Dpy(isec)/2.;
a9e2aefa 276 dy=TMath::Abs(ym[ico][0]-ym[ico][1]);
05c39730 277 if (fDebugLevel>1)
278 printf("\n %i %f %f %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy, dx, dpx );
279 if ((dx <= dpx) && (dy <= dpy+eps)) {
a9e2aefa 280 // consistent
281 accepted[ico]=kTRUE;
05c39730 282 dr[ico] = TMath::Sqrt(dx*dx+dy*dy);
a9e2aefa 283 iacc++;
284 } else {
285 // reject
286 accepted[ico]=kFALSE;
287 }
288 }
19dd5b2f 289 if (fDebugLevel)
290 printf("\n iacc= %d:\n", iacc);
05c39730 291 if (iacc == 3) {
292 if (accepted[0] && accepted[1]) {
293 if (dr[0] >= dr[1]) {
294 accepted[0]=kFALSE;
295 } else {
296 accepted[1]=kFALSE;
297 }
298 }
a9e2aefa 299
05c39730 300 if (accepted[2] && accepted[3]) {
301 if (dr[2] >= dr[3]) {
302 accepted[2]=kFALSE;
303 } else {
304 accepted[3]=kFALSE;
305 }
306 }
307/*
308// eliminate one candidate
309 Float_t drmax = 0;
310 Int_t icobad = -1;
311
312 for (ico=0; ico<4; ico++) {
313 if (accepted[ico] && dr[ico] > drmax) {
314 icobad = ico;
315 drmax = dr[ico];
316 }
317 }
318
319 accepted[icobad] = kFALSE;
320*/
321 iacc = 2;
322 }
323
324
07cfabcf 325 if (fDebugLevel) {
19dd5b2f 326 printf("\n iacc= %d:\n", iacc);
07cfabcf 327 if (iacc==2) {
328 fprintf(stderr,"\n iacc=2: No problem ! \n");
329 } else if (iacc==4) {
330 fprintf(stderr,"\n iacc=4: Ok, but ghost problem !!! \n");
331 } else if (iacc==0) {
332 fprintf(stderr,"\n iacc=0: I don't know what to do with this !!!!!!!!! \n");
333 }
a9e2aefa 334 }
335
336// Initial value for charge ratios
337 fQrInit[0]=Float_t(fQ[fIndLocal[0][0]][0])/
338 Float_t(fQ[fIndLocal[0][0]][0]+fQ[fIndLocal[1][0]][0]);
339 fQrInit[1]=Float_t(fQ[fIndLocal[0][1]][1])/
340 Float_t(fQ[fIndLocal[0][1]][1]+fQ[fIndLocal[1][1]][1]);
341
342// ******* iacc = 0 *******
343// No combinations found between the 2 cathodes
344// We keep the center of gravity of the cluster
345 if (iacc==0) {
346 AddRawCluster(*c);
347 }
348
349// ******* iacc = 1 *******
350// Only one combination found between the 2 cathodes
351 if (iacc==1) {
a9e2aefa 352// Initial values for the 2 maxima (x,y)
353
354// 1 maximum is initialised with the maximum of the combination found (X->cathode 2, Y->cathode 1)
355// 1 maximum is initialised with the other maximum of the first cathode
356 if (accepted[0]){
357 fprintf(stderr,"ico=0\n");
358 fXInit[0]=xm[0][1];
359 fYInit[0]=ym[0][0];
360 fXInit[1]=xm[3][0];
361 fYInit[1]=ym[3][0];
362 } else if (accepted[1]){
363 fprintf(stderr,"ico=1\n");
364 fXInit[0]=xm[1][1];
365 fYInit[0]=ym[1][0];
366 fXInit[1]=xm[2][0];
367 fYInit[1]=ym[2][0];
368 } else if (accepted[2]){
369 fprintf(stderr,"ico=2\n");
370 fXInit[0]=xm[2][1];
371 fYInit[0]=ym[2][0];
372 fXInit[1]=xm[1][0];
373 fYInit[1]=ym[1][0];
374 } else if (accepted[3]){
375 fprintf(stderr,"ico=3\n");
376 fXInit[0]=xm[3][1];
377 fYInit[0]=ym[3][0];
378 fXInit[1]=xm[0][0];
379 fYInit[1]=ym[0][0];
380 }
07cfabcf 381 if (fDebugLevel)
382 fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n");
a9e2aefa 383 chi2=CombiDoubleMathiesonFit(c);
384// Int_t ndf = fgNbins[0]+fgNbins[1]-6;
385// Float_t prob = TMath::Prob(chi2,ndf);
386// prob2->Fill(prob);
387// chi2_2->Fill(chi2);
07cfabcf 388 if (fDebugLevel)
389 fprintf(stderr," chi2 %f\n",chi2);
a9e2aefa 390
391// If reasonable chi^2 add result to the list of rawclusters
392 if (chi2<10) {
393 Split(c);
394
395 } else {
396// 1 maximum is initialised with the maximum of the combination found (X->cathode 2, Y->cathode 1)
397// 1 maximum is initialised with the other maximum of the second cathode
398 if (accepted[0]){
399 fprintf(stderr,"ico=0\n");
400 fXInit[0]=xm[0][1];
401 fYInit[0]=ym[0][0];
402 fXInit[1]=xm[3][1];
403 fYInit[1]=ym[3][1];
404 } else if (accepted[1]){
405 fprintf(stderr,"ico=1\n");
406 fXInit[0]=xm[1][1];
407 fYInit[0]=ym[1][0];
408 fXInit[1]=xm[2][1];
409 fYInit[1]=ym[2][1];
410 } else if (accepted[2]){
411 fprintf(stderr,"ico=2\n");
412 fXInit[0]=xm[2][1];
413 fYInit[0]=ym[2][0];
414 fXInit[1]=xm[1][1];
415 fYInit[1]=ym[1][1];
416 } else if (accepted[3]){
417 fprintf(stderr,"ico=3\n");
418 fXInit[0]=xm[3][1];
419 fYInit[0]=ym[3][0];
420 fXInit[1]=xm[0][1];
421 fYInit[1]=ym[0][1];
422 }
07cfabcf 423 if (fDebugLevel)
424 fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n");
a9e2aefa 425 chi2=CombiDoubleMathiesonFit(c);
426// Int_t ndf = fgNbins[0]+fgNbins[1]-6;
427// Float_t prob = TMath::Prob(chi2,ndf);
428// prob2->Fill(prob);
429// chi2_2->Fill(chi2);
07cfabcf 430 if (fDebugLevel)
431 fprintf(stderr," chi2 %f\n",chi2);
a9e2aefa 432
433// If reasonable chi^2 add result to the list of rawclusters
434 if (chi2<10) {
435 Split(c);
436 } else {
437//We keep only the combination found (X->cathode 2, Y->cathode 1)
438 for (Int_t ico=0; ico<2; ico++) {
439 if (accepted[ico]) {
440 AliMUONRawCluster cnew;
441 Int_t cath;
442 for (cath=0; cath<2; cath++) {
ba12c242 443 cnew.SetX(cath, Float_t(xm[ico][1]));
444 cnew.SetY(cath, Float_t(ym[ico][0]));
445 cnew.SetZ(cath, fZPlane);
aadda617 446
9e993f2a 447 cnew.SetMultiplicity(cath,c->GetMultiplicity(cath));
a9e2aefa 448 for (i=0; i<fMul[cath]; i++) {
0164904a 449 cnew.SetIndex(i, cath, c->GetIndex(i,cath));
f0d86bc4 450 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
a9e2aefa 451 }
9825400f 452 fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath);
9e993f2a 453 fprintf(stderr,"mult_av %d\n",c->GetMultiplicity(cath));
9825400f 454 FillCluster(&cnew,cath);
a9e2aefa 455 }
9e993f2a 456 cnew.SetClusterType(cnew.PhysicsContribution());
a9e2aefa 457 AddRawCluster(cnew);
458 fNPeaks++;
459 }
460 }
461 }
462 }
463 }
9825400f 464
a9e2aefa 465// ******* iacc = 2 *******
466// Two combinations found between the 2 cathodes
467 if (iacc==2) {
a9e2aefa 468// Was the same maximum taken twice
9825400f 469 if ((accepted[0]&&accepted[1]) || (accepted[2]&&accepted[3])) {
470 fprintf(stderr,"\n Maximum taken twice !!!\n");
a9e2aefa 471
05c39730 472// Have a try !! with that
9825400f 473 if (accepted[0]&&accepted[3]) {
474 fXInit[0]=xm[0][1];
475 fYInit[0]=ym[0][0];
476 fXInit[1]=xm[1][1];
477 fYInit[1]=ym[1][0];
478 } else {
479 fXInit[0]=xm[2][1];
480 fYInit[0]=ym[2][0];
481 fXInit[1]=xm[3][1];
482 fYInit[1]=ym[3][0];
483 }
07cfabcf 484 if (fDebugLevel)
485 fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n");
9825400f 486 chi2=CombiDoubleMathiesonFit(c);
a9e2aefa 487// Int_t ndf = fgNbins[0]+fgNbins[1]-6;
488// Float_t prob = TMath::Prob(chi2,ndf);
489// prob2->Fill(prob);
490// chi2_2->Fill(chi2);
9825400f 491 Split(c);
492
493 } else {
a9e2aefa 494// No ghosts ! No Problems ! - Perform one fit only !
9825400f 495 if (accepted[0]&&accepted[3]) {
496 fXInit[0]=xm[0][1];
497 fYInit[0]=ym[0][0];
498 fXInit[1]=xm[3][1];
499 fYInit[1]=ym[3][0];
500 } else {
501 fXInit[0]=xm[1][1];
502 fYInit[0]=ym[1][0];
503 fXInit[1]=xm[2][1];
504 fYInit[1]=ym[2][0];
505 }
07cfabcf 506 if (fDebugLevel)
507 fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n");
9825400f 508 chi2=CombiDoubleMathiesonFit(c);
a9e2aefa 509// Int_t ndf = fgNbins[0]+fgNbins[1]-6;
510// Float_t prob = TMath::Prob(chi2,ndf);
511// prob2->Fill(prob);
512// chi2_2->Fill(chi2);
07cfabcf 513 if (fDebugLevel)
514 fprintf(stderr," chi2 %f\n",chi2);
9825400f 515 Split(c);
516 }
517
a9e2aefa 518// ******* iacc = 4 *******
519// Four combinations found between the 2 cathodes
520// Ghost !!
9825400f 521 } else if (iacc==4) {
a9e2aefa 522// Perform fits for the two possibilities !!
07cfabcf 523// Accept if charges are compatible on both cathodes
524// If none are compatible, keep everything
9825400f 525 fXInit[0]=xm[0][1];
526 fYInit[0]=ym[0][0];
527 fXInit[1]=xm[3][1];
528 fYInit[1]=ym[3][0];
07cfabcf 529 if (fDebugLevel)
530 fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n");
9825400f 531 chi2=CombiDoubleMathiesonFit(c);
a9e2aefa 532// Int_t ndf = fgNbins[0]+fgNbins[1]-6;
533// Float_t prob = TMath::Prob(chi2,ndf);
534// prob2->Fill(prob);
535// chi2_2->Fill(chi2);
07cfabcf 536 if (fDebugLevel)
537 fprintf(stderr," chi2 %f\n",chi2);
538 // store results of fit and postpone decision
539 Double_t sXFit[2],sYFit[2],sQrFit[2];
540 Float_t sChi2[2];
541 for (Int_t i=0;i<2;i++) {
542 sXFit[i]=fXFit[i];
543 sYFit[i]=fYFit[i];
544 sQrFit[i]=fQrFit[i];
545 sChi2[i]=fChi2[i];
546 }
9825400f 547 fXInit[0]=xm[1][1];
548 fYInit[0]=ym[1][0];
549 fXInit[1]=xm[2][1];
550 fYInit[1]=ym[2][0];
07cfabcf 551 if (fDebugLevel)
552 fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n");
9825400f 553 chi2=CombiDoubleMathiesonFit(c);
a9e2aefa 554// ndf = fgNbins[0]+fgNbins[1]-6;
555// prob = TMath::Prob(chi2,ndf);
556// prob2->Fill(prob);
557// chi2_2->Fill(chi2);
07cfabcf 558 if (fDebugLevel)
559 fprintf(stderr," chi2 %f\n",chi2);
560 // We have all informations to perform the decision
561 // Compute the chi2 for the 2 possibilities
562 Float_t chi2fi,chi2si,chi2f,chi2s;
563
564 chi2f = (TMath::Log(fInput->TotalCharge(0)*fQrFit[0]
565 / (fInput->TotalCharge(1)*fQrFit[1]) )
566 / fInput->Response()->ChargeCorrel() );
567 chi2f *=chi2f;
568 chi2fi = (TMath::Log(fInput->TotalCharge(0)*(1-fQrFit[0])
569 / (fInput->TotalCharge(1)*(1-fQrFit[1])) )
570 / fInput->Response()->ChargeCorrel() );
571 chi2f += chi2fi*chi2fi;
572
573 chi2s = (TMath::Log(fInput->TotalCharge(0)*sQrFit[0]
574 / (fInput->TotalCharge(1)*sQrFit[1]) )
575 / fInput->Response()->ChargeCorrel() );
576 chi2s *=chi2s;
577 chi2si = (TMath::Log(fInput->TotalCharge(0)*(1-sQrFit[0])
578 / (fInput->TotalCharge(1)*(1-sQrFit[1])) )
579 / fInput->Response()->ChargeCorrel() );
580 chi2s += chi2si*chi2si;
581
582 // usefull to store the charge matching chi2 in the cluster
583 // fChi2[0]=sChi2[1]=chi2f;
584 // fChi2[1]=sChi2[0]=chi2s;
585
586 if (chi2f<=fGhostChi2Cut && chi2s<=fGhostChi2Cut)
3b5272e3 587 c->SetGhost(1);
07cfabcf 588 if (chi2f>fGhostChi2Cut && chi2s>fGhostChi2Cut) {
589 // we keep the ghost
3b5272e3 590 c->SetGhost(2);
07cfabcf 591 chi2s=-1;
592 chi2f=-1;
593 }
594 if (chi2f<=fGhostChi2Cut)
595 Split(c);
596 if (chi2s<=fGhostChi2Cut) {
597 // retreive saved values
598 for (Int_t i=0;i<2;i++) {
599 fXFit[i]=sXFit[i];
600 fYFit[i]=sYFit[i];
601 fQrFit[i]=sQrFit[i];
602 fChi2[i]=sChi2[i];
603 }
604 Split(c);
605 }
3b5272e3 606 c->SetGhost(0);
9825400f 607 }
a9e2aefa 608
9825400f 609 } else if (fNLocal[0]==2 && fNLocal[1]==1) {
a9e2aefa 610// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
611// (3) Two local maxima on cathode 1 and one maximum on cathode 2
612// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
613//
614 Float_t xm[4][2], ym[4][2];
615 Float_t dpx, dpy, dx, dy;
616 Int_t ixm[4][2], iym[4][2];
617 Int_t isec, im1, ico;
618//
619// Form the 2x2 combinations
620// 0-0, 0-1, 1-0, 1-1
621 ico=0;
622 for (im1=0; im1<2; im1++) {
9825400f 623 xm[ico][0]=fX[fIndLocal[im1][0]][0];
624 ym[ico][0]=fY[fIndLocal[im1][0]][0];
625 xm[ico][1]=fX[fIndLocal[0][1]][1];
626 ym[ico][1]=fY[fIndLocal[0][1]][1];
627
628 ixm[ico][0]=fIx[fIndLocal[im1][0]][0];
629 iym[ico][0]=fIy[fIndLocal[im1][0]][0];
630 ixm[ico][1]=fIx[fIndLocal[0][1]][1];
631 iym[ico][1]=fIy[fIndLocal[0][1]][1];
632 ico++;
a9e2aefa 633 }
634// ico = 0 : first local maximum on cathodes 1 and 2
635// ico = 1 : second local maximum on cathode 1 and first on cathode 2
636
637// Analyse the combinations and keep those that are possible !
638// For each combination check consistency in x and y
639 Int_t iacc;
640 Bool_t accepted[4];
641 iacc=0;
05c39730 642 // In case of staggering maxima are displaced by exactly half the pad-size in y.
375c469b 643 // We have to take into account the numerical precision in the consistency check;
644
05c39730 645 Float_t eps = 1.e-5;
646
a9e2aefa 647 for (ico=0; ico<2; ico++) {
648 accepted[ico]=kFALSE;
f0d86bc4 649 isec=fSeg[0]->Sector(ixm[ico][0], iym[ico][0]);
650 dpx=fSeg[0]->Dpx(isec)/2.;
a9e2aefa 651 dx=TMath::Abs(xm[ico][0]-xm[ico][1]);
f0d86bc4 652 isec=fSeg[1]->Sector(ixm[ico][1], iym[ico][1]);
653 dpy=fSeg[1]->Dpy(isec)/2.;
a9e2aefa 654 dy=TMath::Abs(ym[ico][0]-ym[ico][1]);
05c39730 655 if (fDebugLevel>1)
07cfabcf 656 printf("\n %i %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy );
05c39730 657 if ((dx <= dpx) && (dy <= dpy+eps)) {
a9e2aefa 658 // consistent
659 accepted[ico]=kTRUE;
660 iacc++;
661 } else {
662 // reject
663 accepted[ico]=kFALSE;
664 }
665 }
9825400f 666
a9e2aefa 667 Float_t chi21 = 100;
668 Float_t chi22 = 100;
05c39730 669 Float_t chi23 = 100;
670
671 // Initial value for charge ratios
672 fQrInit[0]=Float_t(fQ[fIndLocal[0][0]][0])/
673 Float_t(fQ[fIndLocal[0][0]][0]+fQ[fIndLocal[1][0]][0]);
674 fQrInit[1]=fQrInit[0];
9825400f 675
05c39730 676 if (accepted[0] && accepted[1]) {
677
678 fXInit[0]=0.5*(xm[0][1]+xm[0][0]);
679 fYInit[0]=ym[0][0];
680 fXInit[1]=0.5*(xm[0][1]+xm[1][0]);
681 fYInit[1]=ym[1][0];
682 fQrInit[0]=0.5;
683 fQrInit[1]=0.5;
684 chi23=CombiDoubleMathiesonFit(c);
685 if (chi23<10) {
686 Split(c);
687 Float_t yst;
688 yst = fYFit[0];
689 fYFit[0] = fYFit[1];
690 fYFit[1] = yst;
691 Split(c);
692 }
693 } else if (accepted[0]) {
a9e2aefa 694 fXInit[0]=xm[0][1];
695 fYInit[0]=ym[0][0];
696 fXInit[1]=xm[1][0];
697 fYInit[1]=ym[1][0];
698 chi21=CombiDoubleMathiesonFit(c);
699// Int_t ndf = fgNbins[0]+fgNbins[1]-6;
700// Float_t prob = TMath::Prob(chi2,ndf);
701// prob2->Fill(prob);
702// chi2_2->Fill(chi21);
07cfabcf 703 if (fDebugLevel)
704 fprintf(stderr," chi2 %f\n",chi21);
a9e2aefa 705 if (chi21<10) Split(c);
706 } else if (accepted[1]) {
707 fXInit[0]=xm[1][1];
708 fYInit[0]=ym[1][0];
709 fXInit[1]=xm[0][0];
710 fYInit[1]=ym[0][0];
711 chi22=CombiDoubleMathiesonFit(c);
712// Int_t ndf = fgNbins[0]+fgNbins[1]-6;
713// Float_t prob = TMath::Prob(chi2,ndf);
714// prob2->Fill(prob);
715// chi2_2->Fill(chi22);
07cfabcf 716 if (fDebugLevel)
717 fprintf(stderr," chi2 %f\n",chi22);
a9e2aefa 718 if (chi22<10) Split(c);
719 }
720
375c469b 721 if (chi21 > 10 && chi22 > 10 && chi23 > 10) {
a9e2aefa 722// We keep only the combination found (X->cathode 2, Y->cathode 1)
723 for (Int_t ico=0; ico<2; ico++) {
724 if (accepted[ico]) {
725 AliMUONRawCluster cnew;
726 Int_t cath;
727 for (cath=0; cath<2; cath++) {
ba12c242 728 cnew.SetX(cath, Float_t(xm[ico][1]));
729 cnew.SetY(cath, Float_t(ym[ico][0]));
730 cnew.SetZ(cath, fZPlane);
9e993f2a 731 cnew.SetMultiplicity(cath, c->GetMultiplicity(cath));
a9e2aefa 732 for (i=0; i<fMul[cath]; i++) {
0164904a 733 cnew.SetIndex(i, cath, c->GetIndex(i, cath));
f0d86bc4 734 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
a9e2aefa 735 }
736 fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath);
9e993f2a 737 fprintf(stderr,"mult_av %d\n",c->GetMultiplicity(cath));
a9e2aefa 738 FillCluster(&cnew,cath);
739 }
9e993f2a 740 cnew.SetClusterType(cnew.PhysicsContribution());
a9e2aefa 741 AddRawCluster(cnew);
742 fNPeaks++;
743 }
744 }
745 }
9825400f 746
a9e2aefa 747// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
748// (3') One local maximum on cathode 1 and two maxima on cathode 2
749// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
750 } else if (fNLocal[0]==1 && fNLocal[1]==2) {
a9e2aefa 751 Float_t xm[4][2], ym[4][2];
752 Float_t dpx, dpy, dx, dy;
753 Int_t ixm[4][2], iym[4][2];
754 Int_t isec, im1, ico;
755//
756// Form the 2x2 combinations
757// 0-0, 0-1, 1-0, 1-1
758 ico=0;
759 for (im1=0; im1<2; im1++) {
9825400f 760 xm[ico][0]=fX[fIndLocal[0][0]][0];
761 ym[ico][0]=fY[fIndLocal[0][0]][0];
762 xm[ico][1]=fX[fIndLocal[im1][1]][1];
763 ym[ico][1]=fY[fIndLocal[im1][1]][1];
764
765 ixm[ico][0]=fIx[fIndLocal[0][0]][0];
766 iym[ico][0]=fIy[fIndLocal[0][0]][0];
767 ixm[ico][1]=fIx[fIndLocal[im1][1]][1];
768 iym[ico][1]=fIy[fIndLocal[im1][1]][1];
769 ico++;
a9e2aefa 770 }
771// ico = 0 : first local maximum on cathodes 1 and 2
772// ico = 1 : first local maximum on cathode 1 and second on cathode 2
773
774// Analyse the combinations and keep those that are possible !
775// For each combination check consistency in x and y
776 Int_t iacc;
777 Bool_t accepted[4];
778 iacc=0;
05c39730 779 // In case of staggering maxima are displaced by exactly half the pad-size in y.
780 // We have to take into account the numerical precision in the consistency check;
781 Float_t eps = 1.e-5;
782
a9e2aefa 783
784 for (ico=0; ico<2; ico++) {
785 accepted[ico]=kFALSE;
f0d86bc4 786 isec=fSeg[0]->Sector(ixm[ico][0], iym[ico][0]);
787 dpx=fSeg[0]->Dpx(isec)/2.;
a9e2aefa 788 dx=TMath::Abs(xm[ico][0]-xm[ico][1]);
f0d86bc4 789 isec=fSeg[1]->Sector(ixm[ico][1], iym[ico][1]);
790 dpy=fSeg[1]->Dpy(isec)/2.;
a9e2aefa 791 dy=TMath::Abs(ym[ico][0]-ym[ico][1]);
05c39730 792 if (fDebugLevel>0)
07cfabcf 793 printf("\n %i %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy );
05c39730 794 if ((dx <= dpx) && (dy <= dpy+eps)) {
a9e2aefa 795 // consistent
796 accepted[ico]=kTRUE;
797 fprintf(stderr,"ico %d\n",ico);
798 iacc++;
799 } else {
800 // reject
801 accepted[ico]=kFALSE;
802 }
803 }
804
805 Float_t chi21 = 100;
806 Float_t chi22 = 100;
05c39730 807 Float_t chi23 = 100;
808
809 fQrInit[1]=Float_t(fQ[fIndLocal[0][1]][1])/
810 Float_t(fQ[fIndLocal[0][1]][1]+fQ[fIndLocal[1][1]][1]);
811
812 fQrInit[0]=fQrInit[1];
a9e2aefa 813
05c39730 814
815 if (accepted[0] && accepted[1]) {
816 fXInit[0]=xm[0][1];
817 fYInit[0]=0.5*(ym[0][0]+ym[0][1]);
818 fXInit[1]=xm[1][1];
819 fYInit[1]=0.5*(ym[0][0]+ym[1][1]);
820 fQrInit[0]=0.5;
821 fQrInit[1]=0.5;
822 chi23=CombiDoubleMathiesonFit(c);
823 if (chi23<10) {
824 Split(c);
825 Float_t yst;
826 yst = fYFit[0];
827 fYFit[0] = fYFit[1];
828 fYFit[1] = yst;
829 Split(c);
830 }
831 } else if (accepted[0]) {
a9e2aefa 832 fXInit[0]=xm[0][0];
833 fYInit[0]=ym[0][1];
834 fXInit[1]=xm[1][1];
835 fYInit[1]=ym[1][1];
836 chi21=CombiDoubleMathiesonFit(c);
837// Int_t ndf = fgNbins[0]+fgNbins[1]-6;
838// Float_t prob = TMath::Prob(chi2,ndf);
839// prob2->Fill(prob);
840// chi2_2->Fill(chi21);
07cfabcf 841 if (fDebugLevel)
842 fprintf(stderr," chi2 %f\n",chi21);
a9e2aefa 843 if (chi21<10) Split(c);
844 } else if (accepted[1]) {
845 fXInit[0]=xm[1][0];
846 fYInit[0]=ym[1][1];
847 fXInit[1]=xm[0][1];
848 fYInit[1]=ym[0][1];
849 chi22=CombiDoubleMathiesonFit(c);
850// Int_t ndf = fgNbins[0]+fgNbins[1]-6;
851// Float_t prob = TMath::Prob(chi2,ndf);
852// prob2->Fill(prob);
853// chi2_2->Fill(chi22);
07cfabcf 854 if (fDebugLevel)
855 fprintf(stderr," chi2 %f\n",chi22);
a9e2aefa 856 if (chi22<10) Split(c);
857 }
858
05c39730 859 if (chi21 > 10 && chi22 > 10 && chi23 > 10) {
a9e2aefa 860//We keep only the combination found (X->cathode 2, Y->cathode 1)
861 for (Int_t ico=0; ico<2; ico++) {
862 if (accepted[ico]) {
863 AliMUONRawCluster cnew;
864 Int_t cath;
865 for (cath=0; cath<2; cath++) {
ba12c242 866 cnew.SetX(cath, Float_t(xm[ico][1]));
867 cnew.SetY(cath, Float_t(ym[ico][0]));
868 cnew.SetZ(cath, fZPlane);
9e993f2a 869 cnew.SetMultiplicity(cath, c->GetMultiplicity(cath));
a9e2aefa 870 for (i=0; i<fMul[cath]; i++) {
0164904a 871 cnew.SetIndex(i, cath, c->GetIndex(i, cath));
f0d86bc4 872 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
a9e2aefa 873 }
874 fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath);
9e993f2a 875 fprintf(stderr,"mult_av %d\n",c->GetMultiplicity(cath));
a9e2aefa 876 FillCluster(&cnew,cath);
877 }
9e993f2a 878 cnew.SetClusterType(cnew.PhysicsContribution());
a9e2aefa 879 AddRawCluster(cnew);
880 fNPeaks++;
881 }
882 }
883 }
884
885// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
886// (4) At least three local maxima on cathode 1 or on cathode 2
887// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
888 } else if (fNLocal[0]>2 || fNLocal[1]>2) {
a9e2aefa 889 Int_t param = fNLocal[0]*fNLocal[1];
f8ffca81 890 Int_t ii;
9825400f 891
39e6d319 892 Float_t ** xm = new Float_t * [param];
893 for (ii=0; ii<param; ii++) xm[ii]=new Float_t [2];
894 Float_t ** ym = new Float_t * [param];
895 for (ii=0; ii<param; ii++) ym[ii]=new Float_t [2];
896 Int_t ** ixm = new Int_t * [param];
897 for (ii=0; ii<param; ii++) ixm[ii]=new Int_t [2];
898 Int_t ** iym = new Int_t * [param];
899 for (ii=0; ii<param; ii++) iym[ii]=new Int_t [2];
f8ffca81 900
a9e2aefa 901 Int_t isec, ico;
902 Float_t dpx, dpy, dx, dy;
903
904 ico=0;
905 for (Int_t im1=0; im1<fNLocal[0]; im1++) {
906 for (Int_t im2=0; im2<fNLocal[1]; im2++) {
907 xm[ico][0]=fX[fIndLocal[im1][0]][0];
908 ym[ico][0]=fY[fIndLocal[im1][0]][0];
909 xm[ico][1]=fX[fIndLocal[im2][1]][1];
910 ym[ico][1]=fY[fIndLocal[im2][1]][1];
911
912 ixm[ico][0]=fIx[fIndLocal[im1][0]][0];
913 iym[ico][0]=fIy[fIndLocal[im1][0]][0];
914 ixm[ico][1]=fIx[fIndLocal[im2][1]][1];
915 iym[ico][1]=fIy[fIndLocal[im2][1]][1];
916 ico++;
917 }
918 }
9825400f 919
a9e2aefa 920 Int_t nIco = ico;
07cfabcf 921 if (fDebugLevel)
922 fprintf(stderr,"nIco %d\n",nIco);
a9e2aefa 923 for (ico=0; ico<nIco; ico++) {
07cfabcf 924 if (fDebugLevel)
925 fprintf(stderr,"ico = %d\n",ico);
f0d86bc4 926 isec=fSeg[0]->Sector(ixm[ico][0], iym[ico][0]);
927 dpx=fSeg[0]->Dpx(isec)/2.;
a9e2aefa 928 dx=TMath::Abs(xm[ico][0]-xm[ico][1]);
f0d86bc4 929 isec=fSeg[1]->Sector(ixm[ico][1], iym[ico][1]);
930 dpy=fSeg[1]->Dpy(isec)/2.;
a9e2aefa 931 dy=TMath::Abs(ym[ico][0]-ym[ico][1]);
07cfabcf 932 if (fDebugLevel) {
933 fprintf(stderr,"dx %f dpx %f dy %f dpy %f\n",dx,dpx,dy,dpy);
934 fprintf(stderr," X %f Y %f\n",xm[ico][1],ym[ico][0]);
935 }
a9e2aefa 936 if ((dx <= dpx) && (dy <= dpy)) {
07cfabcf 937 if (fDebugLevel)
938 fprintf(stderr,"ok\n");
a9e2aefa 939 Int_t cath;
940 AliMUONRawCluster cnew;
941 for (cath=0; cath<2; cath++) {
ba12c242 942 cnew.SetX(cath, Float_t(xm[ico][1]));
943 cnew.SetY(cath, Float_t(ym[ico][0]));
944 cnew.SetZ(cath, fZPlane);
9e993f2a 945 cnew.SetMultiplicity(cath, c->GetMultiplicity(cath));
a9e2aefa 946 for (i=0; i<fMul[cath]; i++) {
0164904a 947 cnew.SetIndex(i, cath, c->GetIndex(i, cath));
f0d86bc4 948 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
a9e2aefa 949 }
950 FillCluster(&cnew,cath);
951 }
9e993f2a 952 cnew.SetClusterType(cnew.PhysicsContribution());
a9e2aefa 953 AddRawCluster(cnew);
954 fNPeaks++;
955 }
956 }
f8ffca81 957 delete [] xm;
958 delete [] ym;
959 delete [] ixm;
960 delete [] iym;
a9e2aefa 961 }
962}
963
e3cba86e 964void AliMUONClusterFinderVS::FindLocalMaxima(AliMUONRawCluster* /*c*/)
a9e2aefa 965{
966// Find all local maxima of a cluster
07cfabcf 967 if (fDebugLevel)
968 printf("\n Find Local maxima !");
f0d86bc4 969
a9e2aefa 970 AliMUONDigit* digt;
971
972 Int_t cath, cath1; // loops over cathodes
973 Int_t i; // loops over digits
974 Int_t j; // loops over cathodes
975//
976// Find local maxima
977//
978// counters for number of local maxima
979 fNLocal[0]=fNLocal[1]=0;
980// flags digits as local maximum
981 Bool_t isLocal[100][2];
982 for (i=0; i<100;i++) {
983 isLocal[i][0]=isLocal[i][1]=kFALSE;
984 }
985// number of next neighbours and arrays to store them
986 Int_t nn;
30aaba74 987 Int_t x[10], y[10];
a9e2aefa 988// loop over cathodes
989 for (cath=0; cath<2; cath++) {
990// loop over cluster digits
991 for (i=0; i<fMul[cath]; i++) {
992// get neighbours for that digit and assume that it is local maximum
f0d86bc4 993 fSeg[cath]->Neighbours(fIx[i][cath], fIy[i][cath], &nn, x, y);
a9e2aefa 994 isLocal[i][cath]=kTRUE;
f0d86bc4 995 Int_t isec= fSeg[cath]->Sector(fIx[i][cath], fIy[i][cath]);
996 Float_t a0 = fSeg[cath]->Dpx(isec)*fSeg[cath]->Dpy(isec);
a9e2aefa 997// loop over next neighbours, if at least one neighbour has higher charger assumption
998// digit is not local maximum
999 for (j=0; j<nn; j++) {
30aaba74 1000 if (fHitMap[cath]->TestHit(x[j], y[j])==kEmpty) continue;
1001 digt=(AliMUONDigit*) fHitMap[cath]->GetHit(x[j], y[j]);
f0d86bc4 1002 isec=fSeg[cath]->Sector(x[j], y[j]);
1003 Float_t a1 = fSeg[cath]->Dpx(isec)*fSeg[cath]->Dpy(isec);
08a636a8 1004 if (digt->Signal()/a1 > fQ[i][cath]/a0) {
a9e2aefa 1005 isLocal[i][cath]=kFALSE;
1006 break;
1007//
1008// handle special case of neighbouring pads with equal signal
08a636a8 1009 } else if (digt->Signal() == fQ[i][cath]) {
a9e2aefa 1010 if (fNLocal[cath]>0) {
1011 for (Int_t k=0; k<fNLocal[cath]; k++) {
1012 if (x[j]==fIx[fIndLocal[k][cath]][cath]
1013 && y[j]==fIy[fIndLocal[k][cath]][cath])
1014 {
1015 isLocal[i][cath]=kFALSE;
1016 }
1017 } // loop over local maxima
1018 } // are there already local maxima
1019 } // same charge ?
1020 } // loop over next neighbours
1021 if (isLocal[i][cath]) {
1022 fIndLocal[fNLocal[cath]][cath]=i;
1023 fNLocal[cath]++;
1024 }
1025 } // loop over all digits
1026 } // loop over cathodes
07cfabcf 1027
1028 if (fDebugLevel) {
1029 printf("\n Found %d %d %d %d local Maxima\n",
1030 fNLocal[0], fNLocal[1], fMul[0], fMul[1]);
1031 fprintf(stderr,"\n Cathode 1 local Maxima %d Multiplicite %d\n",fNLocal[0], fMul[0]);
1032 fprintf(stderr," Cathode 2 local Maxima %d Multiplicite %d\n",fNLocal[1], fMul[1]);
1033 }
a9e2aefa 1034 Int_t ix, iy, isec;
1035 Float_t dpx, dpy;
1036
1037
1038 if (fNLocal[1]==2 && (fNLocal[0]==1 || fNLocal[0]==0)) {
1039 Int_t iback=fNLocal[0];
1040
1041// Two local maxima on cathode 2 and one maximum on cathode 1
1042// Look for local maxima considering up and down neighbours on the 1st cathode only
1043//
1044// Loop over cluster digits
1045 cath=0;
1046 cath1=1;
1047
1048 for (i=0; i<fMul[cath]; i++) {
f0d86bc4 1049 isec=fSeg[cath]->Sector(fIx[i][cath],fIy[i][cath]);
1050 dpy=fSeg[cath]->Dpy(isec);
1051 dpx=fSeg[cath]->Dpx(isec);
a9e2aefa 1052 if (isLocal[i][cath]) continue;
1053// Pad position should be consistent with position of local maxima on the opposite cathode
1054 if ((TMath::Abs(fX[i][cath]-fX[fIndLocal[0][cath1]][cath1]) > dpx/2.) &&
1055 (TMath::Abs(fX[i][cath]-fX[fIndLocal[1][cath1]][cath1]) > dpx/2.))
1056 continue;
1057
1058// get neighbours for that digit and assume that it is local maximum
1059 isLocal[i][cath]=kTRUE;
1060// compare signal to that on the two neighbours on the left and on the right
a9e2aefa 1061// iNN counts the number of neighbours with signal, it should be 1 or 2
1062 Int_t iNN=0;
f0d86bc4 1063
1064 for (fSeg[cath]
1065 ->FirstPad(fX[i][cath], fY[i][cath], fZPlane, 0., dpy);
1066 fSeg[cath]
1067 ->MorePads();
1068 fSeg[cath]
1069 ->NextPad())
1070 {
1071 ix = fSeg[cath]->Ix();
1072 iy = fSeg[cath]->Iy();
1073 // skip the current pad
1074 if (iy == fIy[i][cath]) continue;
1075
1076 if (fHitMap[cath]->TestHit(ix, iy)!=kEmpty) {
1077 iNN++;
1078 digt=(AliMUONDigit*) fHitMap[cath]->GetHit(ix,iy);
08a636a8 1079 if (digt->Signal() > fQ[i][cath]) isLocal[i][cath]=kFALSE;
f0d86bc4 1080 }
1081 } // Loop over pad neighbours in y
a9e2aefa 1082 if (isLocal[i][cath] && iNN>0) {
1083 fIndLocal[fNLocal[cath]][cath]=i;
1084 fNLocal[cath]++;
1085 }
1086 } // loop over all digits
1087// if one additional maximum has been found we are happy
1088// if more maxima have been found restore the previous situation
07cfabcf 1089 if (fDebugLevel) {
1090 fprintf(stderr,
1091 "\n New search gives %d local maxima for cathode 1 \n",
1092 fNLocal[0]);
1093 fprintf(stderr,
1094 " %d local maxima for cathode 2 \n",
1095 fNLocal[1]);
1096 }
a9e2aefa 1097 if (fNLocal[cath]>2) {
1098 fNLocal[cath]=iback;
1099 }
1100
1101 } // 1,2 local maxima
1102
1103 if (fNLocal[0]==2 && (fNLocal[1]==1 || fNLocal[1]==0)) {
1104 Int_t iback=fNLocal[1];
1105
1106// Two local maxima on cathode 1 and one maximum on cathode 2
1107// Look for local maxima considering left and right neighbours on the 2nd cathode only
1108 cath=1;
05c39730 1109 Int_t cath1 = 0;
1110 Float_t eps = 1.e-5;
1111
a9e2aefa 1112//
1113// Loop over cluster digits
1114 for (i=0; i<fMul[cath]; i++) {
f0d86bc4 1115 isec=fSeg[cath]->Sector(fIx[i][cath],fIy[i][cath]);
1116 dpx=fSeg[cath]->Dpx(isec);
1117 dpy=fSeg[cath]->Dpy(isec);
a9e2aefa 1118 if (isLocal[i][cath]) continue;
1119// Pad position should be consistent with position of local maxima on the opposite cathode
05c39730 1120 if ((TMath::Abs(fY[i][cath]-fY[fIndLocal[0][cath1]][cath1]) > dpy/2.+eps) &&
1121 (TMath::Abs(fY[i][cath]-fY[fIndLocal[1][cath1]][cath1]) > dpy/2.+eps))
a9e2aefa 1122 continue;
05c39730 1123
a9e2aefa 1124//
1125// get neighbours for that digit and assume that it is local maximum
1126 isLocal[i][cath]=kTRUE;
1127// compare signal to that on the two neighbours on the left and on the right
f0d86bc4 1128
a9e2aefa 1129// iNN counts the number of neighbours with signal, it should be 1 or 2
1130 Int_t iNN=0;
f0d86bc4 1131 for (fSeg[cath]
05c39730 1132 ->FirstPad(fX[i][cath], fY[i][cath], fZPlane, dpx, 0.);
f0d86bc4 1133 fSeg[cath]
1134 ->MorePads();
1135 fSeg[cath]
1136 ->NextPad())
1137 {
05c39730 1138
f0d86bc4 1139 ix = fSeg[cath]->Ix();
1140 iy = fSeg[cath]->Iy();
05c39730 1141
f0d86bc4 1142 // skip the current pad
1143 if (ix == fIx[i][cath]) continue;
1144
1145 if (fHitMap[cath]->TestHit(ix, iy)!=kEmpty) {
1146 iNN++;
1147 digt=(AliMUONDigit*) fHitMap[cath]->GetHit(ix,iy);
08a636a8 1148 if (digt->Signal() > fQ[i][cath]) isLocal[i][cath]=kFALSE;
f0d86bc4 1149 }
1150 } // Loop over pad neighbours in x
a9e2aefa 1151 if (isLocal[i][cath] && iNN>0) {
1152 fIndLocal[fNLocal[cath]][cath]=i;
1153 fNLocal[cath]++;
1154 }
1155 } // loop over all digits
1156// if one additional maximum has been found we are happy
1157// if more maxima have been found restore the previous situation
07cfabcf 1158 if (fDebugLevel) {
1159 fprintf(stderr,"\n New search gives %d local maxima for cathode 1 \n",fNLocal[0]);
1160 fprintf(stderr,"\n %d local maxima for cathode 2 \n",fNLocal[1]);
1161 printf("\n New search gives %d %d \n",fNLocal[0],fNLocal[1]);
1162 }
a9e2aefa 1163 if (fNLocal[cath]>2) {
1164 fNLocal[cath]=iback;
1165 }
a9e2aefa 1166 } // 2,1 local maxima
1167}
1168
1169
1170void AliMUONClusterFinderVS::FillCluster(AliMUONRawCluster* c, Int_t flag, Int_t cath)
1171{
1172//
1173// Completes cluster information starting from list of digits
1174//
1175 AliMUONDigit* dig;
802a864d 1176 Float_t x, y, z;
a9e2aefa 1177 Int_t ix, iy;
1178
1179 if (cath==1) {
9e993f2a 1180 c->SetPeakSignal(cath,c->GetPeakSignal(0));
a9e2aefa 1181 } else {
9e993f2a 1182 c->SetPeakSignal(cath,0);
a9e2aefa 1183 }
1184
1185
1186 if (flag) {
ba12c242 1187 c->SetX(cath,0.);
1188 c->SetY(cath,0.);
1189 c->SetCharge(cath,0);
a9e2aefa 1190 }
1191
07cfabcf 1192 if (fDebugLevel)
9e993f2a 1193 fprintf(stderr,"\n fPeakSignal %d\n",c->GetPeakSignal(cath));
1194 for (Int_t i=0; i<c->GetMultiplicity(cath); i++)
a9e2aefa 1195 {
0164904a 1196 dig= fInput->Digit(cath,c->GetIndex(i,cath));
1197 ix=dig->PadX()+c->GetOffset(i,cath);
08a636a8 1198 iy=dig->PadY();
1199 Int_t q=dig->Signal();
0164904a 1200 if (!flag) q=Int_t(q*c->GetContrib(i,cath));
a9e2aefa 1201// fprintf(stderr,"q %d c->fPeakSignal[ %d ] %d\n",q,cath,c->fPeakSignal[cath]);
08a636a8 1202 if (dig->Physics() >= dig->Signal()) {
0164904a 1203 c->SetPhysics(i,2);
08a636a8 1204 } else if (dig->Physics() == 0) {
0164904a 1205 c->SetPhysics(i,0);
1206 } else c->SetPhysics(i,1);
a9e2aefa 1207//
1208//
05c39730 1209 if (fDebugLevel>1)
9e993f2a 1210 fprintf(stderr,"q %d c->fPeakSignal[cath] %d\n",q,c->GetPeakSignal(cath));
a9e2aefa 1211// peak signal and track list
9e993f2a 1212 if (q>c->GetPeakSignal(cath)) {
1213 c->SetPeakSignal(cath, q);
1214 c->SetTrack(0,dig->Hit());
1215 c->SetTrack(1,dig->Track(0));
1216 c->SetTrack(2,dig->Track(1));
a9e2aefa 1217// fprintf(stderr," c->fTracks[0] %d c->fTracks[1] %d\n",dig->fHit,dig->fTracks[0]);
1218 }
1219//
1220 if (flag) {
f0d86bc4 1221 fSeg[cath]->GetPadC(ix, iy, x, y, z);
ba12c242 1222 c->AddX(cath, q*x);
1223 c->AddY(cath, q*y);
1224 c->AddCharge(cath, q);
a9e2aefa 1225 }
1226 } // loop over digits
07cfabcf 1227 if (fDebugLevel)
1228 fprintf(stderr," fin du cluster c\n");
a9e2aefa 1229
1230
1231 if (flag) {
ba12c242 1232 c->SetX(cath, c->GetX(cath)/c->GetCharge(cath));
07cfabcf 1233// Force on anod
ba12c242 1234 c->SetX(cath, fSeg[cath]->GetAnod(c->GetX(cath)));
1235 c->SetY(cath, c->GetY(cath)/c->GetCharge(cath));
a9e2aefa 1236//
1237// apply correction to the coordinate along the anode wire
1238//
ba12c242 1239 x=c->GetX(cath);
1240 y=c->GetY(cath);
f0d86bc4 1241 fSeg[cath]->GetPadI(x, y, fZPlane, ix, iy);
1242 fSeg[cath]->GetPadC(ix, iy, x, y, z);
1243 Int_t isec=fSeg[cath]->Sector(ix,iy);
1244 TF1* cogCorr = fSeg[cath]->CorrFunc(isec-1);
a9e2aefa 1245
1246 if (cogCorr) {
ba12c242 1247 Float_t yOnPad=(c->GetY(cath)-y)/fSeg[cath]->Dpy(isec);
1248 c->SetY(cath, c->GetY(cath)-cogCorr->Eval(yOnPad, 0, 0));
a9e2aefa 1249 }
1250 }
1251}
1252
1253void AliMUONClusterFinderVS::FillCluster(AliMUONRawCluster* c, Int_t cath)
1254{
1255//
1256// Completes cluster information starting from list of digits
1257//
1258 static Float_t dr0;
1259
1260 AliMUONDigit* dig;
1261
1262 if (cath==0) {
1263 dr0 = 10000;
1264 }
1265
802a864d 1266 Float_t xpad, ypad, zpad;
a9e2aefa 1267 Float_t dx, dy, dr;
1268
9e993f2a 1269 for (Int_t i=0; i<c->GetMultiplicity(cath); i++)
a9e2aefa 1270 {
0164904a 1271 dig = fInput->Digit(cath,c->GetIndex(i,cath));
f0d86bc4 1272 fSeg[cath]->
08a636a8 1273 GetPadC(dig->PadX(),dig->PadY(),xpad,ypad, zpad);
07cfabcf 1274 if (fDebugLevel)
ba12c242 1275 fprintf(stderr,"x %f y %f cx %f cy %f\n",xpad,ypad,c->GetX(0),c->GetY(0));
1276 dx = xpad - c->GetX(0);
1277 dy = ypad - c->GetY(0);
a9e2aefa 1278 dr = TMath::Sqrt(dx*dx+dy*dy);
1279
1280 if (dr < dr0) {
1281 dr0 = dr;
07cfabcf 1282 if (fDebugLevel)
1283 fprintf(stderr," dr %f\n",dr);
08a636a8 1284 Int_t q=dig->Signal();
1285 if (dig->Physics() >= dig->Signal()) {
0164904a 1286 c->SetPhysics(i,2);
08a636a8 1287 } else if (dig->Physics() == 0) {
0164904a 1288 c->SetPhysics(i,0);
1289 } else c->SetPhysics(i,1);
9e993f2a 1290 c->SetPeakSignal(cath,q);
1291 c->SetTrack(0,dig->Hit());
1292 c->SetTrack(1,dig->Track(0));
1293 c->SetTrack(2,dig->Track(1));
07cfabcf 1294 if (fDebugLevel)
1295 fprintf(stderr," c->fTracks[0] %d c->fTracks[1] %d\n",dig->Hit(),
08a636a8 1296 dig->Track(0));
a9e2aefa 1297 }
1298//
1299 } // loop over digits
1300
1301// apply correction to the coordinate along the anode wire
07cfabcf 1302// Force on anod
ba12c242 1303 c->SetX(cath,fSeg[cath]->GetAnod(c->GetX(cath)));
a9e2aefa 1304}
1305
1306void AliMUONClusterFinderVS::FindCluster(Int_t i, Int_t j, Int_t cath, AliMUONRawCluster &c){
f0d86bc4 1307
1308
a9e2aefa 1309//
f0d86bc4 1310// Find a super cluster on both cathodes
a9e2aefa 1311//
1312//
1313// Add i,j as element of the cluster
1314//
f0d86bc4 1315
30aaba74 1316 Int_t idx = fHitMap[cath]->GetHitIndex(i,j);
1317 AliMUONDigit* dig = (AliMUONDigit*) fHitMap[cath]->GetHit(i,j);
08a636a8 1318 Int_t q=dig->Signal();
1319 Int_t theX=dig->PadX();
1320 Int_t theY=dig->PadY();
f0d86bc4 1321
9e993f2a 1322 if (q > TMath::Abs(c.GetPeakSignal(0)) && q > TMath::Abs(c.GetPeakSignal(1))) {
1323 c.SetPeakSignal(cath,q);
1324 c.SetTrack(0,dig->Hit());
1325 c.SetTrack(1,dig->Track(0));
1326 c.SetTrack(2,dig->Track(1));
a9e2aefa 1327 }
1328
1329//
1330// Make sure that list of digits is ordered
1331//
9e993f2a 1332 Int_t mu=c.GetMultiplicity(cath);
0164904a 1333 c.SetIndex(mu, cath, idx);
a9e2aefa 1334
08a636a8 1335 if (dig->Physics() >= dig->Signal()) {
0164904a 1336 c.SetPhysics(mu,2);
08a636a8 1337 } else if (dig->Physics() == 0) {
0164904a 1338 c.SetPhysics(mu,0);
1339 } else c.SetPhysics(mu,1);
f0d86bc4 1340
1341
a9e2aefa 1342 if (mu > 0) {
f0d86bc4 1343 for (Int_t ind = mu-1; ind >= 0; ind--) {
0164904a 1344 Int_t ist=c.GetIndex(ind,cath);
08a636a8 1345 Int_t ql=fInput->Digit(cath, ist)->Signal();
1346 Int_t ix=fInput->Digit(cath, ist)->PadX();
1347 Int_t iy=fInput->Digit(cath, ist)->PadY();
f0d86bc4 1348
a9e2aefa 1349 if (q>ql || (q==ql && theX > ix && theY < iy)) {
0164904a 1350 c.SetIndex(ind, cath, idx);
1351 c.SetIndex(ind+1, cath, ist);
a9e2aefa 1352 } else {
f0d86bc4 1353
a9e2aefa 1354 break;
1355 }
1356 }
1357 }
f0d86bc4 1358
9e993f2a 1359 c.SetMultiplicity(cath, c.GetMultiplicity(cath)+1);
1360 if (c.GetMultiplicity(cath) >= 50 ) {
1361 printf("FindCluster - multiplicity >50 %d \n",c.GetMultiplicity(0));
1362 c.SetMultiplicity(cath, 49);
a9e2aefa 1363 }
1364
1365// Prepare center of gravity calculation
802a864d 1366 Float_t x, y, z;
f0d86bc4 1367 fSeg[cath]->GetPadC(i, j, x, y, z);
1368
ba12c242 1369 c.AddX(cath,q*x);
1370 c.AddY(cath,q*y);
1371 c.AddCharge(cath,q);
f0d86bc4 1372//
1373// Flag hit as "taken"
30aaba74 1374 fHitMap[cath]->FlagHit(i,j);
a9e2aefa 1375//
1376// Now look recursively for all neighbours and pad hit on opposite cathode
1377//
1378// Loop over neighbours
1379 Int_t ix,iy;
f0d86bc4 1380 ix=iy=0;
a9e2aefa 1381 Int_t nn;
30aaba74 1382 Int_t xList[10], yList[10];
f0d86bc4 1383 fSeg[cath]->Neighbours(i,j,&nn,xList,yList);
a9e2aefa 1384 for (Int_t in=0; in<nn; in++) {
1385 ix=xList[in];
1386 iy=yList[in];
f0d86bc4 1387
1388 if (fHitMap[cath]->TestHit(ix,iy)==kUnused) {
05c39730 1389 if (fDebugLevel>1)
07cfabcf 1390 printf("\n Neighbours %d %d %d", cath, ix, iy);
f0d86bc4 1391 FindCluster(ix, iy, cath, c);
1392 }
1393
1394 }
1395 Int_t nOpp=0;
1396 Int_t iXopp[50], iYopp[50];
1397
a9e2aefa 1398// Neighbours on opposite cathode
1399// Take into account that several pads can overlap with the present pad
f0d86bc4 1400 Int_t isec=fSeg[cath]->Sector(i,j);
a9e2aefa 1401 Int_t iop;
f0d86bc4 1402 Float_t dx, dy;
1403
a9e2aefa 1404 if (cath==0) {
f0d86bc4 1405 iop = 1;
1406 dx = (fSeg[cath]->Dpx(isec))/2.;
1407 dy = 0.;
a9e2aefa 1408 } else {
f0d86bc4 1409 iop = 0;
1410 dx = 0.;
1411 dy = (fSeg[cath]->Dpy(isec))/2;
1412 }
1413// loop over pad neighbours on opposite cathode
1414 for (fSeg[iop]->FirstPad(x, y, fZPlane, dx, dy);
1415 fSeg[iop]->MorePads();
1416 fSeg[iop]->NextPad())
1417 {
1418
1419 ix = fSeg[iop]->Ix(); iy = fSeg[iop]->Iy();
05c39730 1420 if (fDebugLevel > 1)
07cfabcf 1421 printf("\n ix, iy: %f %f %f %d %d %d", x,y,z,ix, iy, fSector);
f0d86bc4 1422 if (fHitMap[iop]->TestHit(ix,iy)==kUnused){
1423 iXopp[nOpp]=ix;
1424 iYopp[nOpp++]=iy;
05c39730 1425 if (fDebugLevel > 1)
07cfabcf 1426 printf("\n Opposite %d %d %d", iop, ix, iy);
a9e2aefa 1427 }
f0d86bc4 1428
1429 } // Loop over pad neighbours
1430// This had to go outside the loop since recursive calls inside the iterator are not possible
1431//
1432 Int_t jopp;
1433 for (jopp=0; jopp<nOpp; jopp++) {
1434 if (fHitMap[iop]->TestHit(iXopp[jopp],iYopp[jopp]) == kUnused)
1435 FindCluster(iXopp[jopp], iYopp[jopp], iop, c);
a9e2aefa 1436 }
1437}
1438
1439//_____________________________________________________________________________
1440
1441void AliMUONClusterFinderVS::FindRawClusters()
1442{
1443 //
1444 // MUON cluster finder from digits -- finds neighbours on both cathodes and
1445 // fills the tree with raw clusters
1446 //
1447
4da78c65 1448 ResetRawClusters();
f0d86bc4 1449// Return if no input datad available
30aaba74 1450 if (!fInput->NDigits(0) && !fInput->NDigits(1)) return;
a9e2aefa 1451
f0d86bc4 1452 fSeg[0] = fInput->Segmentation(0);
1453 fSeg[1] = fInput->Segmentation(1);
1454
1455 fHitMap[0] = new AliMUONHitMapA1(fSeg[0], fInput->Digits(0));
1456 fHitMap[1] = new AliMUONHitMapA1(fSeg[1], fInput->Digits(1));
a9e2aefa 1457
f0d86bc4 1458
a9e2aefa 1459 AliMUONDigit *dig;
1460
1461 Int_t ndig, cath;
1462 Int_t nskip=0;
1463 Int_t ncls=0;
30aaba74 1464 fHitMap[0]->FillHits();
1465 fHitMap[1]->FillHits();
a9e2aefa 1466//
1467// Outer Loop over Cathodes
1468 for (cath=0; cath<2; cath++) {
30aaba74 1469 for (ndig=0; ndig<fInput->NDigits(cath); ndig++) {
1470 dig = fInput->Digit(cath, ndig);
08a636a8 1471 Int_t i=dig->PadX();
1472 Int_t j=dig->PadY();
30aaba74 1473 if (fHitMap[cath]->TestHit(i,j)==kUsed ||fHitMap[0]->TestHit(i,j)==kEmpty) {
a9e2aefa 1474 nskip++;
1475 continue;
1476 }
07cfabcf 1477 if (fDebugLevel)
1478 fprintf(stderr,"\n CATHODE %d CLUSTER %d\n",cath,ncls);
a9e2aefa 1479 AliMUONRawCluster c;
9e993f2a 1480 c.SetMultiplicity(0, 0);
1481 c.SetMultiplicity(1, 0);
1482 c.SetPeakSignal(cath,dig->Signal());
1483 c.SetTrack(0, dig->Hit());
1484 c.SetTrack(1, dig->Track(0));
1485 c.SetTrack(2, dig->Track(1));
a9e2aefa 1486 // tag the beginning of cluster list in a raw cluster
3b5272e3 1487 c.SetNcluster(0,-1);
f0d86bc4 1488 Float_t xcu, ycu;
1489 fSeg[cath]->GetPadC(i,j,xcu, ycu, fZPlane);
1490 fSector= fSeg[cath]->Sector(i,j)/100;
07cfabcf 1491 if (fDebugLevel)
1492 printf("\n New Seed %d %d ", i,j);
f36a6c8b 1493
1494
a9e2aefa 1495 FindCluster(i,j,cath,c);
f0d86bc4 1496// ^^^^^^^^^^^^^^^^^^^^^^^^
a9e2aefa 1497 // center of gravity
ba12c242 1498 if (c.GetX(0)!=0.) c.SetX(0, c.GetX(0)/c.GetCharge(0)); // c.fX[0] /= c.fQ[0];
07cfabcf 1499// Force on anod
ba12c242 1500 c.SetX(0,fSeg[0]->GetAnod(c.GetX(0)));
1501 if (c.GetY(0)!=0.) c.SetY(0, c.GetY(0)/c.GetCharge(0)); // c.fY[0] /= c.fQ[0];
f36a6c8b 1502
ba12c242 1503 if(c.GetCharge(1)!=0.) c.SetX(1, c.GetX(1)/c.GetCharge(1)); // c.fX[1] /= c.fQ[1];
f36a6c8b 1504
1505 // Force on anod
ba12c242 1506 c.SetX(1, fSeg[0]->GetAnod(c.GetX(1)));
1507 if(c.GetCharge(1)!=0.) c.SetY(1, c.GetY(1)/c.GetCharge(1));// c.fY[1] /= c.fQ[1];
3e1872ed 1508
ba12c242 1509 c.SetZ(0, fZPlane);
1510 c.SetZ(1, fZPlane);
3e1872ed 1511
07cfabcf 1512 if (fDebugLevel) {
1513 fprintf(stderr,"\n Cathode 1 multiplicite %d X(CG) %f Y(CG) %f\n",
9e993f2a 1514 c.GetMultiplicity(0),c.GetX(0),c.GetY(0));
07cfabcf 1515 fprintf(stderr," Cathode 2 multiplicite %d X(CG) %f Y(CG) %f\n",
9e993f2a 1516 c.GetMultiplicity(1),c.GetX(1),c.GetY(1));
07cfabcf 1517 }
a9e2aefa 1518// Analyse cluster and decluster if necessary
1519//
1520 ncls++;
3b5272e3 1521 c.SetNcluster(1,fNRawClusters);
9e993f2a 1522 c.SetClusterType(c.PhysicsContribution());
a9e2aefa 1523
1524 fNPeaks=0;
1525//
1526//
1527 Decluster(&c);
a9e2aefa 1528//
1529// reset Cluster object
f8ffca81 1530 { // begin local scope
0164904a 1531 for (int k=0;k<c.GetMultiplicity(0);k++) c.SetIndex(k, 0, 0);
f8ffca81 1532 } // end local scope
a9e2aefa 1533
f8ffca81 1534 { // begin local scope
0164904a 1535 for (int k=0;k<c.GetMultiplicity(1);k++) c.SetIndex(k, 1, 0);
f8ffca81 1536 } // end local scope
1537
9e993f2a 1538 c.SetMultiplicity(0,0);
1539 c.SetMultiplicity(1,0);
a9e2aefa 1540
1541
1542 } // end loop ndig
1543 } // end loop cathodes
30aaba74 1544 delete fHitMap[0];
1545 delete fHitMap[1];
a9e2aefa 1546}
1547
1548Float_t AliMUONClusterFinderVS::SingleMathiesonFit(AliMUONRawCluster *c, Int_t cath)
1549{
f0d86bc4 1550// Performs a single Mathieson fit on one cathode
1551//
19dd5b2f 1552 Double_t arglist[20];
1553 Int_t ierflag=0;
9825400f 1554 AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance());
a9e2aefa 1555
9825400f 1556 clusterInput.Fitter()->SetFCN(fcnS1);
1557 clusterInput.Fitter()->mninit(2,10,7);
19dd5b2f 1558 clusterInput.Fitter()->SetPrintLevel(-1+fDebugLevel);
1559 arglist[0]=-1;
1560 clusterInput.Fitter()->mnexcm("SET NOW", arglist, 0, ierflag);
a9e2aefa 1561// Set starting values
1562 static Double_t vstart[2];
ba12c242 1563 vstart[0]=c->GetX(1);
1564 vstart[1]=c->GetY(0);
a9e2aefa 1565
1566
1567// lower and upper limits
1568 static Double_t lower[2], upper[2];
1569 Int_t ix,iy;
ba12c242 1570 fSeg[cath]->GetPadI(c->GetX(cath), c->GetY(cath), fZPlane, ix, iy);
f0d86bc4 1571 Int_t isec=fSeg[cath]->Sector(ix, iy);
1572 lower[0]=vstart[0]-fSeg[cath]->Dpx(isec)/2;
1573 lower[1]=vstart[1]-fSeg[cath]->Dpy(isec)/2;
a9e2aefa 1574
f0d86bc4 1575 upper[0]=lower[0]+fSeg[cath]->Dpx(isec);
1576 upper[1]=lower[1]+fSeg[cath]->Dpy(isec);
a9e2aefa 1577
1578// step sizes
1579 static Double_t step[2]={0.0005, 0.0005};
1580
9825400f 1581 clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag);
1582 clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag);
a9e2aefa 1583// ready for minimisation
a9e2aefa 1584 arglist[0]= -1;
1585 arglist[1]= 0;
1586
9825400f 1587 clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag);
1588 clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag);
4da78c65 1589 // clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag);
a9e2aefa 1590 Double_t fmin, fedm, errdef;
1591 Int_t npari, nparx, istat;
1592
9825400f 1593 clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat);
a9e2aefa 1594 fFitStat=istat;
1595
1596// Print results
1597// Get fitted parameters
1598 Double_t xrec, yrec;
1599 TString chname;
1600 Double_t epxz, b1, b2;
1601 Int_t ierflg;
9825400f 1602 clusterInput.Fitter()->mnpout(0, chname, xrec, epxz, b1, b2, ierflg);
1603 clusterInput.Fitter()->mnpout(1, chname, yrec, epxz, b1, b2, ierflg);
a9e2aefa 1604 fXFit[cath]=xrec;
1605 fYFit[cath]=yrec;
1606 return fmin;
1607}
1608
e3cba86e 1609Float_t AliMUONClusterFinderVS::CombiSingleMathiesonFit(AliMUONRawCluster * /*c*/)
a9e2aefa 1610{
1611// Perform combined Mathieson fit on both cathode planes
1612//
19dd5b2f 1613 Double_t arglist[20];
1614 Int_t ierflag=0;
9825400f 1615 AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance());
1616 clusterInput.Fitter()->SetFCN(fcnCombiS1);
1617 clusterInput.Fitter()->mninit(2,10,7);
19dd5b2f 1618 clusterInput.Fitter()->SetPrintLevel(-1+fDebugLevel);
1619 arglist[0]=-1;
1620 clusterInput.Fitter()->mnexcm("SET NOW", arglist, 0, ierflag);
a9e2aefa 1621 static Double_t vstart[2];
1622 vstart[0]=fXInit[0];
1623 vstart[1]=fYInit[0];
1624
1625
1626// lower and upper limits
f0d86bc4 1627 static Float_t lower[2], upper[2];
a9e2aefa 1628 Int_t ix,iy,isec;
f0d86bc4 1629 fSeg[0]->GetPadI(fXInit[0], fYInit[0], fZPlane, ix, iy);
1630 isec=fSeg[0]->Sector(ix, iy);
1631 Float_t dpy=fSeg[0]->Dpy(isec);
1632 fSeg[1]->GetPadI(fXInit[0], fYInit[0], fZPlane, ix, iy);
1633 isec=fSeg[1]->Sector(ix, iy);
1634 Float_t dpx=fSeg[1]->Dpx(isec);
a9e2aefa 1635
f0d86bc4 1636 Int_t icount;
1637 Float_t xdum, ydum, zdum;
a9e2aefa 1638
f0d86bc4 1639// Find save upper and lower limits
a9e2aefa 1640
f0d86bc4 1641 icount = 0;
a9e2aefa 1642
f0d86bc4 1643 for (fSeg[1]->FirstPad(fXInit[0], fYInit[0], fZPlane, dpx, 0.);
1644 fSeg[1]->MorePads(); fSeg[1]->NextPad())
1645 {
1646 ix=fSeg[1]->Ix(); iy=fSeg[1]->Iy();
1647 fSeg[1]->GetPadC(ix,iy, upper[0], ydum, zdum);
1648 if (icount ==0) lower[0]=upper[0];
1649 icount++;
1650 }
1651
1652 if (lower[0]>upper[0]) {xdum=lower[0]; lower[0]=upper[0]; upper[0]=xdum;}
1653
1654 icount=0;
07cfabcf 1655 if (fDebugLevel)
1656 printf("\n single y %f %f", fXInit[0], fYInit[0]);
f0d86bc4 1657
1658 for (fSeg[0]->FirstPad(fXInit[0], fYInit[0], fZPlane, 0., dpy);
1659 fSeg[0]->MorePads(); fSeg[0]->NextPad())
1660 {
1661 ix=fSeg[0]->Ix(); iy=fSeg[0]->Iy();
1662 fSeg[0]->GetPadC(ix,iy,xdum,upper[1],zdum);
1663 if (icount ==0) lower[1]=upper[1];
1664 icount++;
07cfabcf 1665 if (fDebugLevel)
1666 printf("\n upper lower %d %f %f", icount, upper[1], lower[1]);
f0d86bc4 1667 }
1668
1669 if (lower[1]>upper[1]) {xdum=lower[1]; lower[1]=upper[1]; upper[1]=xdum;}
1670
a9e2aefa 1671// step sizes
1672 static Double_t step[2]={0.00001, 0.0001};
1673
9825400f 1674 clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag);
1675 clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag);
a9e2aefa 1676// ready for minimisation
a9e2aefa 1677 arglist[0]= -1;
1678 arglist[1]= 0;
1679
9825400f 1680 clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag);
1681 clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag);
4da78c65 1682 // clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag);
a9e2aefa 1683 Double_t fmin, fedm, errdef;
1684 Int_t npari, nparx, istat;
1685
9825400f 1686 clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat);
a9e2aefa 1687 fFitStat=istat;
1688
1689// Print results
1690// Get fitted parameters
1691 Double_t xrec, yrec;
1692 TString chname;
1693 Double_t epxz, b1, b2;
1694 Int_t ierflg;
9825400f 1695 clusterInput.Fitter()->mnpout(0, chname, xrec, epxz, b1, b2, ierflg);
1696 clusterInput.Fitter()->mnpout(1, chname, yrec, epxz, b1, b2, ierflg);
a9e2aefa 1697 fXFit[0]=xrec;
1698 fYFit[0]=yrec;
1699 return fmin;
1700}
1701
e3cba86e 1702Bool_t AliMUONClusterFinderVS::DoubleMathiesonFit(AliMUONRawCluster * /*c*/, Int_t cath)
a9e2aefa 1703{
f0d86bc4 1704// Performs a double Mathieson fit on one cathode
1705//
1706
a9e2aefa 1707//
1708// Initialise global variables for fit
19dd5b2f 1709 Double_t arglist[20];
1710 Int_t ierflag=0;
9825400f 1711 AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance());
1712 clusterInput.Fitter()->SetFCN(fcnS2);
1713 clusterInput.Fitter()->mninit(5,10,7);
19dd5b2f 1714 clusterInput.Fitter()->SetPrintLevel(-1+fDebugLevel);
1715 arglist[0]=-1;
1716 clusterInput.Fitter()->mnexcm("SET NOW", arglist, 0, ierflag);
a9e2aefa 1717// Set starting values
1718 static Double_t vstart[5];
1719 vstart[0]=fX[fIndLocal[0][cath]][cath];
1720 vstart[1]=fY[fIndLocal[0][cath]][cath];
1721 vstart[2]=fX[fIndLocal[1][cath]][cath];
1722 vstart[3]=fY[fIndLocal[1][cath]][cath];
1723 vstart[4]=Float_t(fQ[fIndLocal[0][cath]][cath])/
1724 Float_t(fQ[fIndLocal[0][cath]][cath]+fQ[fIndLocal[1][cath]][cath]);
1725// lower and upper limits
f0d86bc4 1726 static Float_t lower[5], upper[5];
1727 Int_t isec=fSeg[cath]->Sector(fIx[fIndLocal[0][cath]][cath], fIy[fIndLocal[0][cath]][cath]);
1728 lower[0]=vstart[0]-fSeg[cath]->Dpx(isec);
1729 lower[1]=vstart[1]-fSeg[cath]->Dpy(isec);
a9e2aefa 1730
f0d86bc4 1731 upper[0]=lower[0]+2.*fSeg[cath]->Dpx(isec);
1732 upper[1]=lower[1]+2.*fSeg[cath]->Dpy(isec);
a9e2aefa 1733
f0d86bc4 1734 isec=fSeg[cath]->Sector(fIx[fIndLocal[1][cath]][cath], fIy[fIndLocal[1][cath]][cath]);
1735 lower[2]=vstart[2]-fSeg[cath]->Dpx(isec)/2;
1736 lower[3]=vstart[3]-fSeg[cath]->Dpy(isec)/2;
a9e2aefa 1737
f0d86bc4 1738 upper[2]=lower[2]+fSeg[cath]->Dpx(isec);
1739 upper[3]=lower[3]+fSeg[cath]->Dpy(isec);
a9e2aefa 1740
1741 lower[4]=0.;
1742 upper[4]=1.;
1743// step sizes
1744 static Double_t step[5]={0.0005, 0.0005, 0.0005, 0.0005, 0.0001};
1745
9825400f 1746 clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag);
1747 clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag);
1748 clusterInput.Fitter()->mnparm(2,"x2",vstart[2],step[2],lower[2],upper[2],ierflag);
1749 clusterInput.Fitter()->mnparm(3,"y2",vstart[3],step[3],lower[3],upper[3],ierflag);
1750 clusterInput.Fitter()->mnparm(4,"a0",vstart[4],step[4],lower[4],upper[4],ierflag);
a9e2aefa 1751// ready for minimisation
a9e2aefa 1752 arglist[0]= -1;
1753 arglist[1]= 0;
1754
9825400f 1755 clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag);
1756 clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag);
4da78c65 1757 // clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag);
a9e2aefa 1758// Get fitted parameters
1759 Double_t xrec[2], yrec[2], qfrac;
1760 TString chname;
1761 Double_t epxz, b1, b2;
1762 Int_t ierflg;
9825400f 1763 clusterInput.Fitter()->mnpout(0, chname, xrec[0], epxz, b1, b2, ierflg);
1764 clusterInput.Fitter()->mnpout(1, chname, yrec[0], epxz, b1, b2, ierflg);
1765 clusterInput.Fitter()->mnpout(2, chname, xrec[1], epxz, b1, b2, ierflg);
1766 clusterInput.Fitter()->mnpout(3, chname, yrec[1], epxz, b1, b2, ierflg);
1767 clusterInput.Fitter()->mnpout(4, chname, qfrac, epxz, b1, b2, ierflg);
a9e2aefa 1768
1769 Double_t fmin, fedm, errdef;
1770 Int_t npari, nparx, istat;
1771
9825400f 1772 clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat);
a9e2aefa 1773 fFitStat=istat;
a9e2aefa 1774 return kTRUE;
1775}
1776
e3cba86e 1777Float_t AliMUONClusterFinderVS::CombiDoubleMathiesonFit(AliMUONRawCluster * /*c*/)
a9e2aefa 1778{
1779//
1780// Perform combined double Mathieson fit on both cathode planes
1781//
19dd5b2f 1782 Double_t arglist[20];
1783 Int_t ierflag=0;
9825400f 1784 AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance());
1785 clusterInput.Fitter()->SetFCN(fcnCombiS2);
1786 clusterInput.Fitter()->mninit(6,10,7);
19dd5b2f 1787 clusterInput.Fitter()->SetPrintLevel(-1+fDebugLevel);
1788 arglist[0]=-1;
1789 clusterInput.Fitter()->mnexcm("SET NOW", arglist, 0, ierflag);
a9e2aefa 1790// Set starting values
1791 static Double_t vstart[6];
1792 vstart[0]=fXInit[0];
1793 vstart[1]=fYInit[0];
1794 vstart[2]=fXInit[1];
1795 vstart[3]=fYInit[1];
1796 vstart[4]=fQrInit[0];
1797 vstart[5]=fQrInit[1];
1798// lower and upper limits
f0d86bc4 1799 static Float_t lower[6], upper[6];
a9e2aefa 1800 Int_t ix,iy,isec;
1801 Float_t dpx, dpy;
1802
f0d86bc4 1803 fSeg[1]->GetPadI(fXInit[0], fYInit[0], fZPlane, ix, iy);
1804 isec=fSeg[1]->Sector(ix, iy);
1805 dpx=fSeg[1]->Dpx(isec);
a9e2aefa 1806
f0d86bc4 1807 fSeg[0]->GetPadI(fXInit[0], fYInit[0], fZPlane, ix, iy);
1808 isec=fSeg[0]->Sector(ix, iy);
1809 dpy=fSeg[0]->Dpy(isec);
a9e2aefa 1810
a9e2aefa 1811
f0d86bc4 1812 Int_t icount;
1813 Float_t xdum, ydum, zdum;
07cfabcf 1814 if (fDebugLevel)
1815 printf("\n Cluster Finder: %f %f %f %f ", fXInit[0], fXInit[1],fYInit[0], fYInit[1] );
f0d86bc4 1816
1817// Find save upper and lower limits
1818 icount = 0;
1819
1820 for (fSeg[1]->FirstPad(fXInit[0], fYInit[0], fZPlane, dpx, 0.);
1821 fSeg[1]->MorePads(); fSeg[1]->NextPad())
1822 {
1823 ix=fSeg[1]->Ix(); iy=fSeg[1]->Iy();
05c39730 1824// if (fHitMap[1]->TestHit(ix, iy) == kEmpty) continue;
f0d86bc4 1825 fSeg[1]->GetPadC(ix,iy,upper[0],ydum,zdum);
1826 if (icount ==0) lower[0]=upper[0];
1827 icount++;
1828 }
1829 if (lower[0]>upper[0]) {xdum=lower[0]; lower[0]=upper[0]; upper[0]=xdum;}
05c39730 1830// vstart[0] = 0.5*(lower[0]+upper[0]);
1831
1832
f0d86bc4 1833 icount=0;
1834
1835 for (fSeg[0]->FirstPad(fXInit[0], fYInit[0], fZPlane, 0., dpy);
1836 fSeg[0]->MorePads(); fSeg[0]->NextPad())
1837 {
1838 ix=fSeg[0]->Ix(); iy=fSeg[0]->Iy();
05c39730 1839// if (fHitMap[0]->TestHit(ix, iy) == kEmpty) continue;
f0d86bc4 1840 fSeg[0]->GetPadC(ix,iy,xdum,upper[1],zdum);
1841 if (icount ==0) lower[1]=upper[1];
1842 icount++;
1843 }
05c39730 1844
f0d86bc4 1845 if (lower[1]>upper[1]) {xdum=lower[1]; lower[1]=upper[1]; upper[1]=xdum;}
05c39730 1846// vstart[1] = 0.5*(lower[1]+upper[1]);
1847
a9e2aefa 1848
f0d86bc4 1849 fSeg[1]->GetPadI(fXInit[1], fYInit[1], fZPlane, ix, iy);
1850 isec=fSeg[1]->Sector(ix, iy);
1851 dpx=fSeg[1]->Dpx(isec);
1852 fSeg[0]->GetPadI(fXInit[1], fYInit[1], fZPlane, ix, iy);
1853 isec=fSeg[0]->Sector(ix, iy);
1854 dpy=fSeg[0]->Dpy(isec);
a9e2aefa 1855
a9e2aefa 1856
f0d86bc4 1857// Find save upper and lower limits
1858
1859 icount=0;
1860
1861 for (fSeg[1]->FirstPad(fXInit[1], fYInit[1], fZPlane, dpx, 0);
1862 fSeg[1]->MorePads(); fSeg[1]->NextPad())
1863 {
1864 ix=fSeg[1]->Ix(); iy=fSeg[1]->Iy();
05c39730 1865// if (fHitMap[1]->TestHit(ix, iy) == kEmpty) continue;
f0d86bc4 1866 fSeg[1]->GetPadC(ix,iy,upper[2],ydum,zdum);
1867 if (icount ==0) lower[2]=upper[2];
1868 icount++;
1869 }
1870 if (lower[2]>upper[2]) {xdum=lower[2]; lower[2]=upper[2]; upper[2]=xdum;}
05c39730 1871 // vstart[2] = 0.5*(lower[2]+upper[2]);
f0d86bc4 1872
1873 icount=0;
1874
1875 for (fSeg[0]->FirstPad(fXInit[1], fYInit[1], fZPlane, 0, dpy);
1876 fSeg[0]-> MorePads(); fSeg[0]->NextPad())
1877 {
1878 ix=fSeg[0]->Ix(); iy=fSeg[0]->Iy();
05c39730 1879// if (fHitMap[0]->TestHit(ix, iy) != kEmpty) continue;
1880
f0d86bc4 1881 fSeg[0]->GetPadC(ix,iy,xdum,upper[3],zdum);
1882 if (icount ==0) lower[3]=upper[3];
1883 icount++;
05c39730 1884
f0d86bc4 1885 }
1886 if (lower[3]>upper[3]) {xdum=lower[3]; lower[3]=upper[3]; upper[3]=xdum;}
05c39730 1887
1888// vstart[3] = 0.5*(lower[3]+upper[3]);
1889
a9e2aefa 1890 lower[4]=0.;
1891 upper[4]=1.;
1892 lower[5]=0.;
1893 upper[5]=1.;
1894
1895// step sizes
1896 static Double_t step[6]={0.0005, 0.0005, 0.0005, 0.0005, 0.001, 0.001};
9825400f 1897 clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag);
1898 clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag);
1899 clusterInput.Fitter()->mnparm(2,"x2",vstart[2],step[2],lower[2],upper[2],ierflag);
1900 clusterInput.Fitter()->mnparm(3,"y2",vstart[3],step[3],lower[3],upper[3],ierflag);
1901 clusterInput.Fitter()->mnparm(4,"a0",vstart[4],step[4],lower[4],upper[4],ierflag);
1902 clusterInput.Fitter()->mnparm(5,"a1",vstart[5],step[5],lower[5],upper[5],ierflag);
a9e2aefa 1903// ready for minimisation
a9e2aefa 1904 arglist[0]= -1;
1905 arglist[1]= 0;
1906
9825400f 1907 clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag);
1908 clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag);
4da78c65 1909 // clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag);
a9e2aefa 1910// Get fitted parameters
1911 TString chname;
1912 Double_t epxz, b1, b2;
1913 Int_t ierflg;
9825400f 1914 clusterInput.Fitter()->mnpout(0, chname, fXFit[0], epxz, b1, b2, ierflg);
1915 clusterInput.Fitter()->mnpout(1, chname, fYFit[0], epxz, b1, b2, ierflg);
1916 clusterInput.Fitter()->mnpout(2, chname, fXFit[1], epxz, b1, b2, ierflg);
1917 clusterInput.Fitter()->mnpout(3, chname, fYFit[1], epxz, b1, b2, ierflg);
1918 clusterInput.Fitter()->mnpout(4, chname, fQrFit[0], epxz, b1, b2, ierflg);
1919 clusterInput.Fitter()->mnpout(5, chname, fQrFit[1], epxz, b1, b2, ierflg);
a9e2aefa 1920
1921 Double_t fmin, fedm, errdef;
1922 Int_t npari, nparx, istat;
1923
9825400f 1924 clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat);
a9e2aefa 1925 fFitStat=istat;
1926
1927 fChi2[0]=fmin;
1928 fChi2[1]=fmin;
1929 return fmin;
1930}
1931
1932void AliMUONClusterFinderVS::Split(AliMUONRawCluster* c)
1933{
1934//
1935// One cluster for each maximum
1936//
1937 Int_t i, j, cath;
9825400f 1938 AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance());
a9e2aefa 1939 for (j=0; j<2; j++) {
1940 AliMUONRawCluster cnew;
3b5272e3 1941 cnew.SetGhost(c->GetGhost());
a9e2aefa 1942 for (cath=0; cath<2; cath++) {
3b5272e3 1943 cnew.SetChi2(cath,fChi2[0]);
07cfabcf 1944 // ?? why not cnew.fChi2[cath]=fChi2[cath];
a9e2aefa 1945
1946 if (fNPeaks == 0) {
3b5272e3 1947 cnew.SetNcluster(0,-1);
1948 cnew.SetNcluster(1,fNRawClusters);
a9e2aefa 1949 } else {
3b5272e3 1950 cnew.SetNcluster(0,fNPeaks);
1951 cnew.SetNcluster(1,0);
a9e2aefa 1952 }
9e993f2a 1953 cnew.SetMultiplicity(cath,0);
ba12c242 1954 cnew.SetX(cath, Float_t(fXFit[j]));
1955 cnew.SetY(cath, Float_t(fYFit[j]));
1956 cnew.SetZ(cath, fZPlane);
a9e2aefa 1957 if (j==0) {
ba12c242 1958 cnew.SetCharge(cath, Int_t(clusterInput.TotalCharge(cath)*fQrFit[cath]));
a9e2aefa 1959 } else {
ba12c242 1960 cnew.SetCharge(cath, Int_t(clusterInput.TotalCharge(cath)*(1-fQrFit[cath])));
a9e2aefa 1961 }
f0d86bc4 1962 fSeg[cath]->SetHit(fXFit[j],fYFit[j],fZPlane);
a9e2aefa 1963 for (i=0; i<fMul[cath]; i++) {
0164904a 1964 cnew.SetIndex(cnew.GetMultiplicity(cath), cath, c->GetIndex(i,cath));
f0d86bc4 1965 fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]);
1966 Float_t q1=fInput->Response()->IntXY(fSeg[cath]);
0164904a 1967 cnew.SetContrib(i, cath, q1*Float_t(cnew.GetCharge(cath))/Float_t(fQ[i][cath]));
9e993f2a 1968 cnew.SetMultiplicity(cath, cnew.GetMultiplicity(cath)+1 );
a9e2aefa 1969 }
1970 FillCluster(&cnew,0,cath);
1971 } // cathode loop
1972
9e993f2a 1973 cnew.SetClusterType(cnew.PhysicsContribution());
ba12c242 1974 if (cnew.GetCharge(0)>0 && cnew.GetCharge(1)>0) AddRawCluster(cnew);
a9e2aefa 1975 fNPeaks++;
1976 }
1977}
1978
1979
a9e2aefa 1980//
1981// Minimisation functions
1982// Single Mathieson
e3cba86e 1983void fcnS1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
a9e2aefa 1984{
9825400f 1985 AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance());
a9e2aefa 1986 Int_t i;
1987 Float_t delta;
1988 Float_t chisq=0;
1989 Float_t qcont=0;
1990 Float_t qtot=0;
9825400f 1991
1992 for (i=0; i<clusterInput.Nmul(0); i++) {
1993 Float_t q0=clusterInput.Charge(i,0);
1994 Float_t q1=clusterInput.DiscrChargeS1(i,par);
a9e2aefa 1995 delta=(q0-q1)/q0;
1996 chisq+=delta*delta;
1997 qcont+=q1;
1998 qtot+=q0;
1999 }
2000 f=chisq;
2001}
2002
e3cba86e 2003void fcnCombiS1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
a9e2aefa 2004{
9825400f 2005 AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance());
a9e2aefa 2006 Int_t i, cath;
2007 Float_t delta;
2008 Float_t chisq=0;
2009 Float_t qcont=0;
2010 Float_t qtot=0;
a9e2aefa 2011
2012 for (cath=0; cath<2; cath++) {
9825400f 2013 for (i=0; i<clusterInput.Nmul(cath); i++) {
2014 Float_t q0=clusterInput.Charge(i,cath);
2015 Float_t q1=clusterInput.DiscrChargeCombiS1(i,par,cath);
a9e2aefa 2016 delta=(q0-q1)/q0;
2017 chisq+=delta*delta;
2018 qcont+=q1;
2019 qtot+=q0;
2020 }
a9e2aefa 2021 }
a9e2aefa 2022 f=chisq;
2023}
2024
2025// Double Mathieson
e3cba86e 2026void fcnS2(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
a9e2aefa 2027{
9825400f 2028 AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance());
a9e2aefa 2029 Int_t i;
2030 Float_t delta;
2031 Float_t chisq=0;
2032 Float_t qcont=0;
2033 Float_t qtot=0;
2034
9825400f 2035 for (i=0; i<clusterInput.Nmul(0); i++) {
a9e2aefa 2036
9825400f 2037 Float_t q0=clusterInput.Charge(i,0);
2038 Float_t q1=clusterInput.DiscrChargeS2(i,par);
a9e2aefa 2039 delta=(q0-q1)/q0;
2040 chisq+=delta*delta;
2041 qcont+=q1;
2042 qtot+=q0;
2043 }
a9e2aefa 2044 f=chisq;
2045}
2046
2047// Double Mathieson
e3cba86e 2048void fcnCombiS2(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/)
a9e2aefa 2049{
9825400f 2050 AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance());
a9e2aefa 2051 Int_t i, cath;
2052 Float_t delta;
2053 Float_t chisq=0;
2054 Float_t qcont=0;
2055 Float_t qtot=0;
a9e2aefa 2056 for (cath=0; cath<2; cath++) {
9825400f 2057 for (i=0; i<clusterInput.Nmul(cath); i++) {
2058 Float_t q0=clusterInput.Charge(i,cath);
2059 Float_t q1=clusterInput.DiscrChargeCombiS2(i,par,cath);
a9e2aefa 2060 delta=(q0-q1)/q0;
2061 chisq+=delta*delta;
2062 qcont+=q1;
2063 qtot+=q0;
2064 }
a9e2aefa 2065 }
a9e2aefa 2066 f=chisq;
2067}
2068
4da78c65 2069void AliMUONClusterFinderVS::AddRawCluster(const AliMUONRawCluster& c)
a9e2aefa 2070{
2071 //
2072 // Add a raw cluster copy to the list
2073 //
4da78c65 2074
2075// AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON");
2076// pMUON->GetMUONData()->AddRawCluster(fInput->Chamber(),c);
2077// fNRawClusters++;
2078
2079
2080 TClonesArray &lrawcl = *fRawClusters;
2081 new(lrawcl[fNRawClusters++]) AliMUONRawCluster(c);
19dd5b2f 2082 if (fDebugLevel)
07cfabcf 2083 fprintf(stderr,"\nfNRawClusters %d\n",fNRawClusters);
a9e2aefa 2084}
2085
30178c30 2086Bool_t AliMUONClusterFinderVS::TestTrack(Int_t t) const {
6a9bc541 2087// Test if track was user selected
30aaba74 2088 if (fTrack[0]==-1 || fTrack[1]==-1) {
2089 return kTRUE;
2090 } else if (t==fTrack[0] || t==fTrack[1]) {
2091 return kTRUE;
2092 } else {
2093 return kFALSE;
2094 }
2095}
a9e2aefa 2096
2097AliMUONClusterFinderVS& AliMUONClusterFinderVS
30178c30 2098::operator = (const AliMUONClusterFinderVS& rhs)
a9e2aefa 2099{
30178c30 2100// Protected assignement operator
2101
2102 if (this == &rhs) return *this;
2103
2104 Fatal("operator=", "Not implemented.");
2105
2106 return *this;
a9e2aefa 2107}
2108
2109
2110
2111
2112
2113
2114
2115
2116