]>
Commit | Line | Data |
---|---|---|
a9e2aefa | 1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * | |
3 | * * | |
4 | * Author: The ALICE Off-line Project. * | |
5 | * Contributors are mentioned in the code where appropriate. * | |
6 | * * | |
7 | * Permission to use, copy, modify and distribute this software and its * | |
8 | * documentation strictly for non-commercial purposes is hereby granted * | |
9 | * without fee, provided that the above copyright notice appears in all * | |
10 | * copies and that both the copyright notice and this permission notice * | |
11 | * appear in the supporting documentation. The authors make no claims * | |
12 | * about the suitability of this software for any purpose. It is * | |
13 | * provided "as is" without express or implied warranty. * | |
14 | **************************************************************************/ | |
15 | /* | |
16 | $Log$ | |
39e6d319 | 17 | Revision 1.3 2000/06/22 14:02:45 morsch |
18 | Parameterised size of xm[], ym[], ixm[], iym[] correctly implemented (PH) | |
19 | Some HP scope problems corrected (PH) | |
20 | ||
f8ffca81 | 21 | Revision 1.2 2000/06/15 07:58:48 morsch |
22 | Code from MUON-dev joined | |
23 | ||
a9e2aefa | 24 | Revision 1.1.2.3 2000/06/09 21:58:33 morsch |
25 | Most coding rule violations corrected. | |
26 | ||
27 | Revision 1.1.2.2 2000/02/15 08:33:52 morsch | |
28 | Error in calculation of contribution map for double clusters (Split method) corrected (A.M.) | |
29 | Error in determination of track list for double cluster (FillCluster method) corrected (A.M.) | |
30 | Revised and extended SplitByLocalMaxima method (Isabelle Chevrot): | |
31 | - For clusters with more than 2 maxima on one of the cathode planes all valid | |
32 | combinations of maxima on the two cathodes are preserved. The position of the maxima is | |
33 | taken as the hit position. | |
34 | - New FillCluster method with 2 arguments to find tracks associated to the clusters | |
35 | defined above added. (Method destinction by argument list not very elegant in this case, | |
36 | should be revides (A.M.) | |
37 | - Bug in if-statement to handle maximum 1 maximum per plane corrected | |
38 | - Two cluster per cathode but only 1 combination valid is handled. | |
39 | - More rigerous treatment of 1-2 and 2-1 combinations of maxima. | |
40 | ||
41 | */ | |
42 | ||
43 | #include "AliMUONClusterFinderVS.h" | |
44 | #include "AliMUONDigit.h" | |
45 | #include "AliMUONRawCluster.h" | |
46 | #include "AliMUONSegmentation.h" | |
47 | #include "AliMUONResponse.h" | |
48 | #include "AliMUONHitMap.h" | |
49 | #include "AliMUONHitMapA1.h" | |
50 | #include "AliRun.h" | |
51 | #include "AliMUON.h" | |
52 | ||
53 | #include <TTree.h> | |
54 | #include <TCanvas.h> | |
55 | #include <TH1.h> | |
56 | #include <TPad.h> | |
57 | #include <TGraph.h> | |
58 | #include <TPostScript.h> | |
59 | #include <TMinuit.h> | |
60 | #include <stdio.h> | |
61 | #include <iostream.h> | |
62 | ||
63 | //_____________________________________________________________________ | |
64 | static AliMUONSegmentation* fgSegmentation[2]; | |
65 | static AliMUONResponse* fgResponse; | |
66 | static Int_t fgix[500][2]; | |
67 | static Int_t fgiy[500][2]; | |
68 | static Float_t fgCharge[500][2]; | |
69 | static Int_t fgNbins[2]; | |
70 | static Int_t fgFirst=kTRUE; | |
71 | static Int_t fgChargeTot[2]; | |
72 | static Float_t fgQtot[2]; | |
73 | static TMinuit* fgMyMinuit ; | |
74 | // This function is minimized in the double-Mathieson fit | |
75 | void fcnS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); | |
76 | void fcnS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); | |
77 | void fcnCombiS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); | |
78 | void fcnCombiS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); | |
79 | ||
80 | ClassImp(AliMUONClusterFinderVS) | |
81 | ||
82 | AliMUONClusterFinderVS::AliMUONClusterFinderVS | |
83 | (AliMUONSegmentation *seg1, AliMUONSegmentation *seg2, | |
84 | AliMUONResponse *response, | |
85 | TClonesArray *digits1, TClonesArray *digits2, | |
86 | Int_t chamber) | |
87 | :AliMUONClusterFinder(seg1, response, digits1, chamber) | |
88 | { | |
89 | // Constructor | |
90 | fSegmentation2=seg2; | |
91 | fDigits2=digits2; | |
92 | fNdigits2 = fDigits2->GetEntriesFast(); | |
93 | fHitMap2=0; | |
94 | fTrack[0]=fTrack[1]=-1; | |
95 | ||
96 | } | |
97 | ||
98 | AliMUONClusterFinderVS::AliMUONClusterFinderVS() | |
99 | :AliMUONClusterFinder() | |
100 | { | |
101 | // Default constructor | |
102 | fSegmentation2=0; | |
103 | fDigits2=0; | |
104 | fNdigits2 = 0; | |
105 | fHitMap2 = 0; | |
106 | fTrack[0]=fTrack[1]=-1; | |
107 | } | |
108 | ||
109 | AliMUONClusterFinderVS::AliMUONClusterFinderVS( | |
110 | const AliMUONClusterFinderVS & clusterFinder) | |
111 | { | |
112 | // Dummy copy Constructor | |
113 | ; | |
114 | } | |
115 | ||
116 | void AliMUONClusterFinderVS::SetDigits(TClonesArray *MUONdigits1, TClonesArray *MUONdigits2) { | |
117 | // Set pointers to digit lists | |
118 | ||
119 | fDigits=MUONdigits1; | |
120 | fNdigits = fDigits->GetEntriesFast(); | |
121 | fDigits2=MUONdigits2; | |
122 | fNdigits2 = fDigits2->GetEntriesFast(); | |
123 | } | |
124 | ||
125 | // Get Segmentation | |
126 | AliMUONSegmentation* AliMUONClusterFinderVS::Segmentation(Int_t i) | |
127 | { | |
128 | // Return pointer to segmentation of cathode plane number 1 (i=0) or 2 (i=1) | |
129 | return ((i==0)? fSegmentation : fSegmentation2); | |
130 | } | |
131 | ||
132 | // Get Number of Digits | |
133 | Int_t AliMUONClusterFinderVS::NDigits(Int_t i) | |
134 | { | |
135 | // Return number of digits for cathode plane i+1 | |
136 | return ((i==0)? fNdigits : fNdigits2); | |
137 | } | |
138 | ||
139 | // Get Digits | |
140 | TClonesArray* AliMUONClusterFinderVS::Digits(Int_t i) | |
141 | { | |
142 | // Return pointer to digits for cathode plane i+1 | |
143 | return ((i==0)? fDigits : fDigits2); | |
144 | } | |
145 | ||
146 | ||
147 | AliMUONHitMap* AliMUONClusterFinderVS::HitMap(Int_t i) | |
148 | { | |
149 | // Return pointer to HitMap | |
150 | return ((i==0)? fHitMap : fHitMap2); | |
151 | } | |
152 | ||
153 | void AliMUONClusterFinderVS::Decluster(AliMUONRawCluster *cluster) | |
154 | { | |
155 | // Decluster by local maxima | |
156 | SplitByLocalMaxima(cluster); | |
157 | } | |
158 | ||
159 | void AliMUONClusterFinderVS::SplitByLocalMaxima(AliMUONRawCluster *c) | |
160 | { | |
161 | // Split complex cluster by local maxima | |
162 | ||
163 | Int_t cath, i; | |
164 | ||
165 | fMul[0]=c->fMultiplicity[0]; | |
166 | fMul[1]=c->fMultiplicity[1]; | |
167 | ||
168 | // | |
169 | // dump digit information into arrays | |
170 | // | |
171 | fgSegmentation[0]=Segmentation(0); | |
172 | fgSegmentation[1]=Segmentation(1); | |
173 | fgResponse =fResponse; | |
174 | fgNbins[0]=fMul[0]; | |
175 | fgNbins[1]=fMul[1]; | |
176 | Float_t qtot; | |
177 | ||
178 | for (cath=0; cath<2; cath++) { | |
179 | qtot=0; | |
180 | for (i=0; i<fMul[cath]; i++) | |
181 | { | |
182 | // pointer to digit | |
183 | fDig[i][cath]=(AliMUONDigit*) | |
184 | (Digits(cath)->UncheckedAt(c->fIndexMap[i][cath])); | |
185 | // pad coordinates | |
186 | fIx[i][cath]= fDig[i][cath]->fPadX; | |
187 | fIy[i][cath]= fDig[i][cath]->fPadY; | |
188 | // pad charge | |
189 | fQ[i][cath] = fDig[i][cath]->fSignal; | |
190 | // pad centre coordinates | |
191 | Segmentation(cath)-> | |
192 | GetPadCxy(fIx[i][cath], fIy[i][cath], fX[i][cath], fY[i][cath]); | |
193 | // globals kUsed in fitting functions | |
194 | fgix[i][cath]=fIx[i][cath]; | |
195 | fgiy[i][cath]=fIy[i][cath]; | |
196 | fgCharge[i][cath]=Float_t(fQ[i][cath]); | |
197 | // total charge per cluster | |
198 | qtot+=fgCharge[i][cath]; | |
199 | } // loop over cluster digits | |
200 | fgQtot[cath]=qtot; | |
201 | fgChargeTot[cath]=Int_t(qtot); | |
202 | } // loop over cathodes | |
203 | ||
204 | ||
205 | FindLocalMaxima(c); | |
206 | ||
207 | // | |
208 | // Initialise and perform mathieson fits | |
209 | Float_t chi2, oldchi2; | |
210 | // ++++++++++++++++++*************+++++++++++++++++++++ | |
211 | // (1) No more than one local maximum per cathode plane | |
212 | // +++++++++++++++++++++++++++++++*************++++++++ | |
213 | if ((fNLocal[0]==1 && (fNLocal[1]==0 || fNLocal[1]==1)) || | |
214 | (fNLocal[0]==0 && fNLocal[1]==1)) { | |
215 | ||
216 | // Perform combined single Mathieson fit | |
217 | // Initial values for coordinates (x,y) | |
218 | ||
219 | // One local maximum on cathodes 1 and 2 (X->cathode 2, Y->cathode 1) | |
220 | if (fNLocal[0]==1 && fNLocal[1]==1) { | |
221 | fXInit[0]=c->fX[1]; | |
222 | fYInit[0]=c->fY[0]; | |
223 | // One local maximum on cathode 1 (X,Y->cathode 1) | |
224 | } else if (fNLocal[0]==1) { | |
225 | fXInit[0]=c->fX[0]; | |
226 | fYInit[0]=c->fY[0]; | |
227 | // One local maximum on cathode 2 (X,Y->cathode 2) | |
228 | } else { | |
229 | fXInit[0]=c->fX[1]; | |
230 | fYInit[0]=c->fY[1]; | |
231 | } | |
232 | fprintf(stderr,"\n cas (1) CombiSingleMathiesonFit(c)\n"); | |
233 | chi2=CombiSingleMathiesonFit(c); | |
234 | // Int_t ndf = fgNbins[0]+fgNbins[1]-2; | |
235 | // Float_t prob = TMath::Prob(Double_t(chi2),ndf); | |
236 | // prob1->Fill(prob); | |
237 | // chi2_1->Fill(chi2); | |
238 | oldchi2=chi2; | |
239 | fprintf(stderr," chi2 %f ",chi2); | |
240 | ||
241 | c->fX[0]=fXFit[0]; | |
242 | c->fY[0]=fYFit[0]; | |
243 | ||
244 | c->fX[1]=fXFit[0]; | |
245 | c->fY[1]=fYFit[0]; | |
246 | c->fChi2[0]=chi2; | |
247 | c->fChi2[1]=chi2; | |
248 | c->fX[0]=Segmentation(0)->GetAnod(c->fX[0]); | |
249 | c->fX[1]=Segmentation(1)->GetAnod(c->fX[1]); | |
250 | ||
251 | // If reasonable chi^2 add result to the list of rawclusters | |
252 | // if (chi2 < 50) { | |
253 | if (chi2 < 0.3) { | |
254 | AddRawCluster(*c); | |
255 | // If not try combined double Mathieson Fit | |
256 | } else { | |
257 | fprintf(stderr," MAUVAIS CHI2 !!!\n"); | |
258 | if (fNLocal[0]==1 && fNLocal[1]==1) { | |
259 | fXInit[0]=fX[fIndLocal[0][1]][1]; | |
260 | fYInit[0]=fY[fIndLocal[0][0]][0]; | |
261 | fXInit[1]=fX[fIndLocal[0][1]][1]; | |
262 | fYInit[1]=fY[fIndLocal[0][0]][0]; | |
263 | } else if (fNLocal[0]==1) { | |
264 | fXInit[0]=fX[fIndLocal[0][0]][0]; | |
265 | fYInit[0]=fY[fIndLocal[0][0]][0]; | |
266 | fXInit[1]=fX[fIndLocal[0][0]][0]; | |
267 | fYInit[1]=fY[fIndLocal[0][0]][0]; | |
268 | } else { | |
269 | fXInit[0]=fX[fIndLocal[0][1]][1]; | |
270 | fYInit[0]=fY[fIndLocal[0][1]][1]; | |
271 | fXInit[1]=fX[fIndLocal[0][1]][1]; | |
272 | fYInit[1]=fY[fIndLocal[0][1]][1]; | |
273 | } | |
274 | ||
275 | // Initial value for charge ratios | |
276 | fQrInit[0]=0.5; | |
277 | fQrInit[1]=0.5; | |
278 | fprintf(stderr,"\n cas (1) CombiDoubleMathiesonFit(c)\n"); | |
279 | chi2=CombiDoubleMathiesonFit(c); | |
280 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; | |
281 | // Float_t prob = TMath::Prob(chi2,ndf); | |
282 | // prob2->Fill(prob); | |
283 | // chi2_2->Fill(chi2); | |
284 | ||
285 | // Was this any better ?? | |
286 | fprintf(stderr," Old and new chi2 %f %f ", oldchi2, chi2); | |
287 | if (fFitStat!=0 && chi2>0 && (2.*chi2 < oldchi2)) { | |
288 | fprintf(stderr," Split\n"); | |
289 | // Split cluster into two according to fit result | |
290 | Split(c); | |
291 | } else { | |
292 | fprintf(stderr," Don't Split\n"); | |
293 | // Don't split | |
294 | AddRawCluster(*c); | |
295 | } | |
296 | } | |
297 | ||
298 | // +++++++++++++++++++++++++++++++++++++++ | |
299 | // (2) Two local maxima per cathode plane | |
300 | // +++++++++++++++++++++++++++++++++++++++ | |
301 | } else if (fNLocal[0]==2 && fNLocal[1]==2) { | |
302 | // | |
303 | // Let's look for ghosts first | |
304 | // | |
305 | Float_t xm[4][2], ym[4][2]; | |
306 | Float_t dpx, dpy, dx, dy; | |
307 | Int_t ixm[4][2], iym[4][2]; | |
308 | Int_t isec, im1, im2, ico; | |
309 | // | |
310 | // Form the 2x2 combinations | |
311 | // 0-0, 0-1, 1-0, 1-1 | |
312 | ico=0; | |
313 | for (im1=0; im1<2; im1++) { | |
314 | for (im2=0; im2<2; im2++) { | |
315 | xm[ico][0]=fX[fIndLocal[im1][0]][0]; | |
316 | ym[ico][0]=fY[fIndLocal[im1][0]][0]; | |
317 | xm[ico][1]=fX[fIndLocal[im2][1]][1]; | |
318 | ym[ico][1]=fY[fIndLocal[im2][1]][1]; | |
319 | ||
320 | ixm[ico][0]=fIx[fIndLocal[im1][0]][0]; | |
321 | iym[ico][0]=fIy[fIndLocal[im1][0]][0]; | |
322 | ixm[ico][1]=fIx[fIndLocal[im2][1]][1]; | |
323 | iym[ico][1]=fIy[fIndLocal[im2][1]][1]; | |
324 | ico++; | |
325 | } | |
326 | } | |
327 | // ico = 0 : first local maximum on cathodes 1 and 2 | |
328 | // ico = 1 : fisrt local maximum on cathode 1 and second on cathode 2 | |
329 | // ico = 2 : second local maximum on cathode 1 and first on cathode 1 | |
330 | // ico = 3 : second local maximum on cathodes 1 and 2 | |
331 | ||
332 | // Analyse the combinations and keep those that are possible ! | |
333 | // For each combination check consistency in x and y | |
334 | Int_t iacc; | |
335 | Bool_t accepted[4]; | |
336 | iacc=0; | |
337 | ||
338 | for (ico=0; ico<4; ico++) { | |
339 | accepted[ico]=kFALSE; | |
340 | // cathode one: x-coordinate | |
341 | isec=Segmentation(0)->Sector(ixm[ico][0], iym[ico][0]); | |
342 | dpx=Segmentation(0)->Dpx(isec)/2.; | |
343 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); | |
344 | // cathode two: y-coordinate | |
345 | isec=Segmentation(1)->Sector(ixm[ico][1], iym[ico][1]); | |
346 | dpy=Segmentation(1)->Dpy(isec)/2.; | |
347 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); | |
348 | // printf("\n %i %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy ); | |
349 | if ((dx <= dpx) && (dy <= dpy)) { | |
350 | // consistent | |
351 | accepted[ico]=kTRUE; | |
352 | iacc++; | |
353 | } else { | |
354 | // reject | |
355 | accepted[ico]=kFALSE; | |
356 | } | |
357 | } | |
358 | ||
359 | if (iacc==2) { | |
360 | fprintf(stderr,"\n iacc=2: No problem ! \n"); | |
361 | } else if (iacc==4) { | |
362 | fprintf(stderr,"\n iacc=4: Ok, but ghost problem !!! \n"); | |
363 | } else if (iacc==0) { | |
364 | fprintf(stderr,"\n iacc=0: I don't know what to do with this !!!!!!!!! \n"); | |
365 | } | |
366 | ||
367 | // Initial value for charge ratios | |
368 | fQrInit[0]=Float_t(fQ[fIndLocal[0][0]][0])/ | |
369 | Float_t(fQ[fIndLocal[0][0]][0]+fQ[fIndLocal[1][0]][0]); | |
370 | fQrInit[1]=Float_t(fQ[fIndLocal[0][1]][1])/ | |
371 | Float_t(fQ[fIndLocal[0][1]][1]+fQ[fIndLocal[1][1]][1]); | |
372 | ||
373 | // ******* iacc = 0 ******* | |
374 | // No combinations found between the 2 cathodes | |
375 | // We keep the center of gravity of the cluster | |
376 | if (iacc==0) { | |
377 | AddRawCluster(*c); | |
378 | } | |
379 | ||
380 | // ******* iacc = 1 ******* | |
381 | // Only one combination found between the 2 cathodes | |
382 | if (iacc==1) { | |
383 | ||
384 | // Initial values for the 2 maxima (x,y) | |
385 | ||
386 | // 1 maximum is initialised with the maximum of the combination found (X->cathode 2, Y->cathode 1) | |
387 | // 1 maximum is initialised with the other maximum of the first cathode | |
388 | if (accepted[0]){ | |
389 | fprintf(stderr,"ico=0\n"); | |
390 | fXInit[0]=xm[0][1]; | |
391 | fYInit[0]=ym[0][0]; | |
392 | fXInit[1]=xm[3][0]; | |
393 | fYInit[1]=ym[3][0]; | |
394 | } else if (accepted[1]){ | |
395 | fprintf(stderr,"ico=1\n"); | |
396 | fXInit[0]=xm[1][1]; | |
397 | fYInit[0]=ym[1][0]; | |
398 | fXInit[1]=xm[2][0]; | |
399 | fYInit[1]=ym[2][0]; | |
400 | } else if (accepted[2]){ | |
401 | fprintf(stderr,"ico=2\n"); | |
402 | fXInit[0]=xm[2][1]; | |
403 | fYInit[0]=ym[2][0]; | |
404 | fXInit[1]=xm[1][0]; | |
405 | fYInit[1]=ym[1][0]; | |
406 | } else if (accepted[3]){ | |
407 | fprintf(stderr,"ico=3\n"); | |
408 | fXInit[0]=xm[3][1]; | |
409 | fYInit[0]=ym[3][0]; | |
410 | fXInit[1]=xm[0][0]; | |
411 | fYInit[1]=ym[0][0]; | |
412 | } | |
413 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); | |
414 | chi2=CombiDoubleMathiesonFit(c); | |
415 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; | |
416 | // Float_t prob = TMath::Prob(chi2,ndf); | |
417 | // prob2->Fill(prob); | |
418 | // chi2_2->Fill(chi2); | |
419 | fprintf(stderr," chi2 %f\n",chi2); | |
420 | ||
421 | // If reasonable chi^2 add result to the list of rawclusters | |
422 | if (chi2<10) { | |
423 | Split(c); | |
424 | ||
425 | } else { | |
426 | // 1 maximum is initialised with the maximum of the combination found (X->cathode 2, Y->cathode 1) | |
427 | // 1 maximum is initialised with the other maximum of the second cathode | |
428 | if (accepted[0]){ | |
429 | fprintf(stderr,"ico=0\n"); | |
430 | fXInit[0]=xm[0][1]; | |
431 | fYInit[0]=ym[0][0]; | |
432 | fXInit[1]=xm[3][1]; | |
433 | fYInit[1]=ym[3][1]; | |
434 | } else if (accepted[1]){ | |
435 | fprintf(stderr,"ico=1\n"); | |
436 | fXInit[0]=xm[1][1]; | |
437 | fYInit[0]=ym[1][0]; | |
438 | fXInit[1]=xm[2][1]; | |
439 | fYInit[1]=ym[2][1]; | |
440 | } else if (accepted[2]){ | |
441 | fprintf(stderr,"ico=2\n"); | |
442 | fXInit[0]=xm[2][1]; | |
443 | fYInit[0]=ym[2][0]; | |
444 | fXInit[1]=xm[1][1]; | |
445 | fYInit[1]=ym[1][1]; | |
446 | } else if (accepted[3]){ | |
447 | fprintf(stderr,"ico=3\n"); | |
448 | fXInit[0]=xm[3][1]; | |
449 | fYInit[0]=ym[3][0]; | |
450 | fXInit[1]=xm[0][1]; | |
451 | fYInit[1]=ym[0][1]; | |
452 | } | |
453 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); | |
454 | chi2=CombiDoubleMathiesonFit(c); | |
455 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; | |
456 | // Float_t prob = TMath::Prob(chi2,ndf); | |
457 | // prob2->Fill(prob); | |
458 | // chi2_2->Fill(chi2); | |
459 | fprintf(stderr," chi2 %f\n",chi2); | |
460 | ||
461 | // If reasonable chi^2 add result to the list of rawclusters | |
462 | if (chi2<10) { | |
463 | Split(c); | |
464 | } else { | |
465 | //We keep only the combination found (X->cathode 2, Y->cathode 1) | |
466 | for (Int_t ico=0; ico<2; ico++) { | |
467 | if (accepted[ico]) { | |
468 | AliMUONRawCluster cnew; | |
469 | Int_t cath; | |
470 | for (cath=0; cath<2; cath++) { | |
471 | cnew.fX[cath]=Float_t(xm[ico][1]); | |
472 | cnew.fY[cath]=Float_t(ym[ico][0]); | |
473 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; | |
474 | for (i=0; i<fMul[cath]; i++) { | |
475 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; | |
476 | fgSegmentation[cath]->SetPad(fgix[i][cath], fgiy[i][cath]); | |
477 | } | |
478 | fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath); | |
479 | fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]); | |
480 | FillCluster(&cnew,cath); | |
481 | } | |
482 | cnew.fClusterType=cnew.PhysicsContribution(); | |
483 | AddRawCluster(cnew); | |
484 | fNPeaks++; | |
485 | } | |
486 | } | |
487 | } | |
488 | } | |
489 | } | |
490 | ||
491 | // ******* iacc = 2 ******* | |
492 | // Two combinations found between the 2 cathodes | |
493 | if (iacc==2) { | |
494 | ||
495 | // Was the same maximum taken twice | |
496 | if ((accepted[0]&&accepted[1]) || (accepted[2]&&accepted[3])) { | |
497 | fprintf(stderr,"\n Maximum taken twice !!!\n"); | |
498 | ||
499 | // Have a try !! with that | |
500 | if (accepted[0]&&accepted[3]) { | |
501 | fXInit[0]=xm[0][1]; | |
502 | fYInit[0]=ym[0][0]; | |
503 | fXInit[1]=xm[1][1]; | |
504 | fYInit[1]=ym[1][0]; | |
505 | } else { | |
506 | fXInit[0]=xm[2][1]; | |
507 | fYInit[0]=ym[2][0]; | |
508 | fXInit[1]=xm[3][1]; | |
509 | fYInit[1]=ym[3][0]; | |
510 | } | |
511 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); | |
512 | chi2=CombiDoubleMathiesonFit(c); | |
513 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; | |
514 | // Float_t prob = TMath::Prob(chi2,ndf); | |
515 | // prob2->Fill(prob); | |
516 | // chi2_2->Fill(chi2); | |
517 | Split(c); | |
518 | ||
519 | } else { | |
520 | // No ghosts ! No Problems ! - Perform one fit only ! | |
521 | if (accepted[0]&&accepted[3]) { | |
522 | fXInit[0]=xm[0][1]; | |
523 | fYInit[0]=ym[0][0]; | |
524 | fXInit[1]=xm[3][1]; | |
525 | fYInit[1]=ym[3][0]; | |
526 | } else { | |
527 | fXInit[0]=xm[1][1]; | |
528 | fYInit[0]=ym[1][0]; | |
529 | fXInit[1]=xm[2][1]; | |
530 | fYInit[1]=ym[2][0]; | |
531 | } | |
532 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); | |
533 | chi2=CombiDoubleMathiesonFit(c); | |
534 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; | |
535 | // Float_t prob = TMath::Prob(chi2,ndf); | |
536 | // prob2->Fill(prob); | |
537 | // chi2_2->Fill(chi2); | |
538 | fprintf(stderr," chi2 %f\n",chi2); | |
539 | Split(c); | |
540 | } | |
541 | ||
542 | // ******* iacc = 4 ******* | |
543 | // Four combinations found between the 2 cathodes | |
544 | // Ghost !! | |
545 | } else if (iacc==4) { | |
546 | // Perform fits for the two possibilities !! | |
547 | fXInit[0]=xm[0][1]; | |
548 | fYInit[0]=ym[0][0]; | |
549 | fXInit[1]=xm[3][1]; | |
550 | fYInit[1]=ym[3][0]; | |
551 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); | |
552 | chi2=CombiDoubleMathiesonFit(c); | |
553 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; | |
554 | // Float_t prob = TMath::Prob(chi2,ndf); | |
555 | // prob2->Fill(prob); | |
556 | // chi2_2->Fill(chi2); | |
557 | fprintf(stderr," chi2 %f\n",chi2); | |
558 | Split(c); | |
559 | fXInit[0]=xm[1][1]; | |
560 | fYInit[0]=ym[1][0]; | |
561 | fXInit[1]=xm[2][1]; | |
562 | fYInit[1]=ym[2][0]; | |
563 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); | |
564 | chi2=CombiDoubleMathiesonFit(c); | |
565 | // ndf = fgNbins[0]+fgNbins[1]-6; | |
566 | // prob = TMath::Prob(chi2,ndf); | |
567 | // prob2->Fill(prob); | |
568 | // chi2_2->Fill(chi2); | |
569 | fprintf(stderr," chi2 %f\n",chi2); | |
570 | Split(c); | |
571 | } | |
572 | ||
573 | } else if (fNLocal[0]==2 && fNLocal[1]==1) { | |
574 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
575 | // (3) Two local maxima on cathode 1 and one maximum on cathode 2 | |
576 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
577 | // | |
578 | Float_t xm[4][2], ym[4][2]; | |
579 | Float_t dpx, dpy, dx, dy; | |
580 | Int_t ixm[4][2], iym[4][2]; | |
581 | Int_t isec, im1, ico; | |
582 | // | |
583 | // Form the 2x2 combinations | |
584 | // 0-0, 0-1, 1-0, 1-1 | |
585 | ico=0; | |
586 | for (im1=0; im1<2; im1++) { | |
587 | xm[ico][0]=fX[fIndLocal[im1][0]][0]; | |
588 | ym[ico][0]=fY[fIndLocal[im1][0]][0]; | |
589 | xm[ico][1]=fX[fIndLocal[0][1]][1]; | |
590 | ym[ico][1]=fY[fIndLocal[0][1]][1]; | |
591 | ||
592 | ixm[ico][0]=fIx[fIndLocal[im1][0]][0]; | |
593 | iym[ico][0]=fIy[fIndLocal[im1][0]][0]; | |
594 | ixm[ico][1]=fIx[fIndLocal[0][1]][1]; | |
595 | iym[ico][1]=fIy[fIndLocal[0][1]][1]; | |
596 | ico++; | |
597 | } | |
598 | // ico = 0 : first local maximum on cathodes 1 and 2 | |
599 | // ico = 1 : second local maximum on cathode 1 and first on cathode 2 | |
600 | ||
601 | // Analyse the combinations and keep those that are possible ! | |
602 | // For each combination check consistency in x and y | |
603 | Int_t iacc; | |
604 | Bool_t accepted[4]; | |
605 | iacc=0; | |
606 | ||
607 | for (ico=0; ico<2; ico++) { | |
608 | accepted[ico]=kFALSE; | |
609 | isec=Segmentation(0)->Sector(ixm[ico][0], iym[ico][0]); | |
610 | dpx=Segmentation(0)->Dpx(isec)/2.; | |
611 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); | |
612 | isec=Segmentation(1)->Sector(ixm[ico][1], iym[ico][1]); | |
613 | dpy=Segmentation(1)->Dpy(isec)/2.; | |
614 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); | |
615 | // printf("\n %i %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy ); | |
616 | if ((dx <= dpx) && (dy <= dpy)) { | |
617 | // consistent | |
618 | accepted[ico]=kTRUE; | |
619 | iacc++; | |
620 | } else { | |
621 | // reject | |
622 | accepted[ico]=kFALSE; | |
623 | } | |
624 | } | |
625 | ||
626 | Float_t chi21 = 100; | |
627 | Float_t chi22 = 100; | |
628 | ||
629 | if (accepted[0]) { | |
630 | fXInit[0]=xm[0][1]; | |
631 | fYInit[0]=ym[0][0]; | |
632 | fXInit[1]=xm[1][0]; | |
633 | fYInit[1]=ym[1][0]; | |
634 | chi21=CombiDoubleMathiesonFit(c); | |
635 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; | |
636 | // Float_t prob = TMath::Prob(chi2,ndf); | |
637 | // prob2->Fill(prob); | |
638 | // chi2_2->Fill(chi21); | |
639 | fprintf(stderr," chi2 %f\n",chi21); | |
640 | if (chi21<10) Split(c); | |
641 | } else if (accepted[1]) { | |
642 | fXInit[0]=xm[1][1]; | |
643 | fYInit[0]=ym[1][0]; | |
644 | fXInit[1]=xm[0][0]; | |
645 | fYInit[1]=ym[0][0]; | |
646 | chi22=CombiDoubleMathiesonFit(c); | |
647 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; | |
648 | // Float_t prob = TMath::Prob(chi2,ndf); | |
649 | // prob2->Fill(prob); | |
650 | // chi2_2->Fill(chi22); | |
651 | fprintf(stderr," chi2 %f\n",chi22); | |
652 | if (chi22<10) Split(c); | |
653 | } | |
654 | ||
655 | if (chi21 > 10 && chi22 > 10) { | |
656 | // We keep only the combination found (X->cathode 2, Y->cathode 1) | |
657 | for (Int_t ico=0; ico<2; ico++) { | |
658 | if (accepted[ico]) { | |
659 | AliMUONRawCluster cnew; | |
660 | Int_t cath; | |
661 | for (cath=0; cath<2; cath++) { | |
662 | cnew.fX[cath]=Float_t(xm[ico][1]); | |
663 | cnew.fY[cath]=Float_t(ym[ico][0]); | |
664 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; | |
665 | for (i=0; i<fMul[cath]; i++) { | |
666 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; | |
667 | fgSegmentation[cath]->SetPad(fgix[i][cath], fgiy[i][cath]); | |
668 | } | |
669 | fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath); | |
670 | fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]); | |
671 | FillCluster(&cnew,cath); | |
672 | } | |
673 | cnew.fClusterType=cnew.PhysicsContribution(); | |
674 | AddRawCluster(cnew); | |
675 | fNPeaks++; | |
676 | } | |
677 | } | |
678 | } | |
679 | ||
680 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
681 | // (3') One local maximum on cathode 1 and two maxima on cathode 2 | |
682 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
683 | } else if (fNLocal[0]==1 && fNLocal[1]==2) { | |
684 | ||
685 | Float_t xm[4][2], ym[4][2]; | |
686 | Float_t dpx, dpy, dx, dy; | |
687 | Int_t ixm[4][2], iym[4][2]; | |
688 | Int_t isec, im1, ico; | |
689 | // | |
690 | // Form the 2x2 combinations | |
691 | // 0-0, 0-1, 1-0, 1-1 | |
692 | ico=0; | |
693 | for (im1=0; im1<2; im1++) { | |
694 | xm[ico][0]=fX[fIndLocal[0][0]][0]; | |
695 | ym[ico][0]=fY[fIndLocal[0][0]][0]; | |
696 | xm[ico][1]=fX[fIndLocal[im1][1]][1]; | |
697 | ym[ico][1]=fY[fIndLocal[im1][1]][1]; | |
698 | ||
699 | ixm[ico][0]=fIx[fIndLocal[0][0]][0]; | |
700 | iym[ico][0]=fIy[fIndLocal[0][0]][0]; | |
701 | ixm[ico][1]=fIx[fIndLocal[im1][1]][1]; | |
702 | iym[ico][1]=fIy[fIndLocal[im1][1]][1]; | |
703 | ico++; | |
704 | } | |
705 | // ico = 0 : first local maximum on cathodes 1 and 2 | |
706 | // ico = 1 : first local maximum on cathode 1 and second on cathode 2 | |
707 | ||
708 | // Analyse the combinations and keep those that are possible ! | |
709 | // For each combination check consistency in x and y | |
710 | Int_t iacc; | |
711 | Bool_t accepted[4]; | |
712 | iacc=0; | |
713 | ||
714 | for (ico=0; ico<2; ico++) { | |
715 | accepted[ico]=kFALSE; | |
716 | isec=Segmentation(0)->Sector(ixm[ico][0], iym[ico][0]); | |
717 | dpx=Segmentation(0)->Dpx(isec)/2.; | |
718 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); | |
719 | isec=Segmentation(1)->Sector(ixm[ico][1], iym[ico][1]); | |
720 | dpy=Segmentation(1)->Dpy(isec)/2.; | |
721 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); | |
722 | // printf("\n %i %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy ); | |
723 | if ((dx <= dpx) && (dy <= dpy)) { | |
724 | // consistent | |
725 | accepted[ico]=kTRUE; | |
726 | fprintf(stderr,"ico %d\n",ico); | |
727 | iacc++; | |
728 | } else { | |
729 | // reject | |
730 | accepted[ico]=kFALSE; | |
731 | } | |
732 | } | |
733 | ||
734 | Float_t chi21 = 100; | |
735 | Float_t chi22 = 100; | |
736 | ||
737 | if (accepted[0]) { | |
738 | fXInit[0]=xm[0][0]; | |
739 | fYInit[0]=ym[0][1]; | |
740 | fXInit[1]=xm[1][1]; | |
741 | fYInit[1]=ym[1][1]; | |
742 | chi21=CombiDoubleMathiesonFit(c); | |
743 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; | |
744 | // Float_t prob = TMath::Prob(chi2,ndf); | |
745 | // prob2->Fill(prob); | |
746 | // chi2_2->Fill(chi21); | |
747 | fprintf(stderr," chi2 %f\n",chi21); | |
748 | if (chi21<10) Split(c); | |
749 | } else if (accepted[1]) { | |
750 | fXInit[0]=xm[1][0]; | |
751 | fYInit[0]=ym[1][1]; | |
752 | fXInit[1]=xm[0][1]; | |
753 | fYInit[1]=ym[0][1]; | |
754 | chi22=CombiDoubleMathiesonFit(c); | |
755 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; | |
756 | // Float_t prob = TMath::Prob(chi2,ndf); | |
757 | // prob2->Fill(prob); | |
758 | // chi2_2->Fill(chi22); | |
759 | fprintf(stderr," chi2 %f\n",chi22); | |
760 | if (chi22<10) Split(c); | |
761 | } | |
762 | ||
763 | if (chi21 > 10 && chi22 > 10) { | |
764 | //We keep only the combination found (X->cathode 2, Y->cathode 1) | |
765 | for (Int_t ico=0; ico<2; ico++) { | |
766 | if (accepted[ico]) { | |
767 | AliMUONRawCluster cnew; | |
768 | Int_t cath; | |
769 | for (cath=0; cath<2; cath++) { | |
770 | cnew.fX[cath]=Float_t(xm[ico][1]); | |
771 | cnew.fY[cath]=Float_t(ym[ico][0]); | |
772 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; | |
773 | for (i=0; i<fMul[cath]; i++) { | |
774 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; | |
775 | fgSegmentation[cath]->SetPad(fgix[i][cath], fgiy[i][cath]); | |
776 | } | |
777 | fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath); | |
778 | fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]); | |
779 | FillCluster(&cnew,cath); | |
780 | } | |
781 | cnew.fClusterType=cnew.PhysicsContribution(); | |
782 | AddRawCluster(cnew); | |
783 | fNPeaks++; | |
784 | } | |
785 | } | |
786 | } | |
787 | ||
788 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
789 | // (4) At least three local maxima on cathode 1 or on cathode 2 | |
790 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | |
791 | } else if (fNLocal[0]>2 || fNLocal[1]>2) { | |
792 | ||
793 | Int_t param = fNLocal[0]*fNLocal[1]; | |
f8ffca81 | 794 | Int_t ii; |
795 | ||
39e6d319 | 796 | Float_t ** xm = new Float_t * [param]; |
797 | for (ii=0; ii<param; ii++) xm[ii]=new Float_t [2]; | |
798 | Float_t ** ym = new Float_t * [param]; | |
799 | for (ii=0; ii<param; ii++) ym[ii]=new Float_t [2]; | |
800 | Int_t ** ixm = new Int_t * [param]; | |
801 | for (ii=0; ii<param; ii++) ixm[ii]=new Int_t [2]; | |
802 | Int_t ** iym = new Int_t * [param]; | |
803 | for (ii=0; ii<param; ii++) iym[ii]=new Int_t [2]; | |
f8ffca81 | 804 | |
a9e2aefa | 805 | Int_t isec, ico; |
806 | Float_t dpx, dpy, dx, dy; | |
807 | ||
808 | ico=0; | |
809 | for (Int_t im1=0; im1<fNLocal[0]; im1++) { | |
810 | for (Int_t im2=0; im2<fNLocal[1]; im2++) { | |
811 | xm[ico][0]=fX[fIndLocal[im1][0]][0]; | |
812 | ym[ico][0]=fY[fIndLocal[im1][0]][0]; | |
813 | xm[ico][1]=fX[fIndLocal[im2][1]][1]; | |
814 | ym[ico][1]=fY[fIndLocal[im2][1]][1]; | |
815 | ||
816 | ixm[ico][0]=fIx[fIndLocal[im1][0]][0]; | |
817 | iym[ico][0]=fIy[fIndLocal[im1][0]][0]; | |
818 | ixm[ico][1]=fIx[fIndLocal[im2][1]][1]; | |
819 | iym[ico][1]=fIy[fIndLocal[im2][1]][1]; | |
820 | ico++; | |
821 | } | |
822 | } | |
823 | ||
824 | Int_t nIco = ico; | |
825 | ||
826 | fprintf(stderr,"nIco %d\n",nIco); | |
827 | for (ico=0; ico<nIco; ico++) { | |
828 | fprintf(stderr,"ico = %d\n",ico); | |
829 | isec=Segmentation(0)->Sector(ixm[ico][0], iym[ico][0]); | |
830 | dpx=Segmentation(0)->Dpx(isec)/2.; | |
831 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); | |
832 | isec=Segmentation(1)->Sector(ixm[ico][1], iym[ico][1]); | |
833 | dpy=Segmentation(1)->Dpy(isec)/2.; | |
834 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); | |
835 | ||
836 | fprintf(stderr,"dx %f dpx %f dy %f dpy %f\n",dx,dpx,dy,dpy); | |
837 | fprintf(stderr," X %f Y %f\n",xm[ico][1],ym[ico][0]); | |
838 | if ((dx <= dpx) && (dy <= dpy)) { | |
839 | fprintf(stderr,"ok\n"); | |
840 | Int_t cath; | |
841 | AliMUONRawCluster cnew; | |
842 | for (cath=0; cath<2; cath++) { | |
843 | cnew.fX[cath]=Float_t(xm[ico][1]); | |
844 | cnew.fY[cath]=Float_t(ym[ico][0]); | |
845 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; | |
846 | for (i=0; i<fMul[cath]; i++) { | |
847 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; | |
848 | fgSegmentation[cath]->SetPad(fgix[i][cath], fgiy[i][cath]); | |
849 | } | |
850 | FillCluster(&cnew,cath); | |
851 | } | |
852 | cnew.fClusterType=cnew.PhysicsContribution(); | |
853 | AddRawCluster(cnew); | |
854 | fNPeaks++; | |
855 | } | |
856 | } | |
f8ffca81 | 857 | delete [] xm; |
858 | delete [] ym; | |
859 | delete [] ixm; | |
860 | delete [] iym; | |
a9e2aefa | 861 | } |
862 | } | |
863 | ||
864 | void AliMUONClusterFinderVS::FindLocalMaxima(AliMUONRawCluster* c) | |
865 | { | |
866 | // Find all local maxima of a cluster | |
867 | ||
868 | AliMUONDigit* digt; | |
869 | ||
870 | Int_t cath, cath1; // loops over cathodes | |
871 | Int_t i; // loops over digits | |
872 | Int_t j; // loops over cathodes | |
873 | // | |
874 | // Find local maxima | |
875 | // | |
876 | // counters for number of local maxima | |
877 | fNLocal[0]=fNLocal[1]=0; | |
878 | // flags digits as local maximum | |
879 | Bool_t isLocal[100][2]; | |
880 | for (i=0; i<100;i++) { | |
881 | isLocal[i][0]=isLocal[i][1]=kFALSE; | |
882 | } | |
883 | // number of next neighbours and arrays to store them | |
884 | Int_t nn; | |
885 | Int_t x[kMaxNeighbours], y[kMaxNeighbours]; | |
886 | // loop over cathodes | |
887 | for (cath=0; cath<2; cath++) { | |
888 | // loop over cluster digits | |
889 | for (i=0; i<fMul[cath]; i++) { | |
890 | // get neighbours for that digit and assume that it is local maximum | |
891 | Segmentation(cath)->Neighbours(fIx[i][cath], fIy[i][cath], &nn, x, y); | |
892 | isLocal[i][cath]=kTRUE; | |
893 | Int_t isec= Segmentation(cath)->Sector(fIx[i][cath], fIy[i][cath]); | |
894 | Float_t a0 = Segmentation(cath)->Dpx(isec)*Segmentation(cath)->Dpy(isec); | |
895 | // loop over next neighbours, if at least one neighbour has higher charger assumption | |
896 | // digit is not local maximum | |
897 | for (j=0; j<nn; j++) { | |
898 | if (HitMap(cath)->TestHit(x[j], y[j])==kEmpty) continue; | |
899 | digt=(AliMUONDigit*) HitMap(cath)->GetHit(x[j], y[j]); | |
900 | isec=Segmentation(cath)->Sector(x[j], y[j]); | |
901 | Float_t a1 = Segmentation(cath)->Dpx(isec)*Segmentation(cath)->Dpy(isec); | |
902 | if (digt->fSignal/a1 > fQ[i][cath]/a0) { | |
903 | isLocal[i][cath]=kFALSE; | |
904 | break; | |
905 | // | |
906 | // handle special case of neighbouring pads with equal signal | |
907 | } else if (digt->fSignal == fQ[i][cath]) { | |
908 | if (fNLocal[cath]>0) { | |
909 | for (Int_t k=0; k<fNLocal[cath]; k++) { | |
910 | if (x[j]==fIx[fIndLocal[k][cath]][cath] | |
911 | && y[j]==fIy[fIndLocal[k][cath]][cath]) | |
912 | { | |
913 | isLocal[i][cath]=kFALSE; | |
914 | } | |
915 | } // loop over local maxima | |
916 | } // are there already local maxima | |
917 | } // same charge ? | |
918 | } // loop over next neighbours | |
919 | if (isLocal[i][cath]) { | |
920 | fIndLocal[fNLocal[cath]][cath]=i; | |
921 | fNLocal[cath]++; | |
922 | } | |
923 | } // loop over all digits | |
924 | } // loop over cathodes | |
925 | ||
926 | printf("\n Found %d %d %d %d local Maxima\n", | |
927 | fNLocal[0], fNLocal[1], fMul[0], fMul[1]); | |
928 | fprintf(stderr,"\n Cathode 1 local Maxima %d Multiplicite %d\n",fNLocal[0], fMul[0]); | |
929 | fprintf(stderr," Cathode 2 local Maxima %d Multiplicite %d\n",fNLocal[1], fMul[1]); | |
930 | Int_t ix, iy, isec; | |
931 | Float_t dpx, dpy; | |
932 | ||
933 | ||
934 | if (fNLocal[1]==2 && (fNLocal[0]==1 || fNLocal[0]==0)) { | |
935 | Int_t iback=fNLocal[0]; | |
936 | ||
937 | // Two local maxima on cathode 2 and one maximum on cathode 1 | |
938 | // Look for local maxima considering up and down neighbours on the 1st cathode only | |
939 | // | |
940 | // Loop over cluster digits | |
941 | cath=0; | |
942 | cath1=1; | |
943 | ||
944 | for (i=0; i<fMul[cath]; i++) { | |
945 | isec=Segmentation(cath)->Sector(fIx[i][cath],fIy[i][cath]); | |
946 | dpy=Segmentation(cath)->Dpy(isec); | |
947 | dpx=Segmentation(cath)->Dpx(isec); | |
948 | if (isLocal[i][cath]) continue; | |
949 | // Pad position should be consistent with position of local maxima on the opposite cathode | |
950 | if ((TMath::Abs(fX[i][cath]-fX[fIndLocal[0][cath1]][cath1]) > dpx/2.) && | |
951 | (TMath::Abs(fX[i][cath]-fX[fIndLocal[1][cath1]][cath1]) > dpx/2.)) | |
952 | continue; | |
953 | ||
954 | // get neighbours for that digit and assume that it is local maximum | |
955 | isLocal[i][cath]=kTRUE; | |
956 | // compare signal to that on the two neighbours on the left and on the right | |
957 | Segmentation(cath)->GetPadIxy(fX[i][cath],fY[i][cath]+dpy,ix,iy); | |
958 | // iNN counts the number of neighbours with signal, it should be 1 or 2 | |
959 | Int_t iNN=0; | |
960 | if (HitMap(cath)->TestHit(ix, iy)!=kEmpty) { | |
961 | iNN++; | |
962 | digt=(AliMUONDigit*) HitMap(cath)->GetHit(ix,iy); | |
963 | if (digt->fSignal > fQ[i][cath]) isLocal[i][cath]=kFALSE; | |
964 | } | |
965 | Segmentation(cath)->GetPadIxy(fX[i][cath],fY[i][cath]-dpy,ix,iy); | |
966 | if (HitMap(cath)->TestHit(ix, iy)!=kEmpty) { | |
967 | iNN++; | |
968 | digt=(AliMUONDigit*) HitMap(cath)->GetHit(ix,iy); | |
969 | if (digt->fSignal > fQ[i][cath]) isLocal[i][cath]=kFALSE; | |
970 | } | |
971 | if (isLocal[i][cath] && iNN>0) { | |
972 | fIndLocal[fNLocal[cath]][cath]=i; | |
973 | fNLocal[cath]++; | |
974 | } | |
975 | } // loop over all digits | |
976 | // if one additional maximum has been found we are happy | |
977 | // if more maxima have been found restore the previous situation | |
978 | fprintf(stderr,"\n New search gives %d local maxima for cathode 1 \n",fNLocal[0]); | |
979 | fprintf(stderr," %d local maxima for cathode 2 \n",fNLocal[1]); | |
980 | if (fNLocal[cath]>2) { | |
981 | fNLocal[cath]=iback; | |
982 | } | |
983 | ||
984 | } // 1,2 local maxima | |
985 | ||
986 | if (fNLocal[0]==2 && (fNLocal[1]==1 || fNLocal[1]==0)) { | |
987 | Int_t iback=fNLocal[1]; | |
988 | ||
989 | // Two local maxima on cathode 1 and one maximum on cathode 2 | |
990 | // Look for local maxima considering left and right neighbours on the 2nd cathode only | |
991 | cath=1; | |
992 | Int_t cath1=0; | |
993 | ||
994 | ||
995 | // | |
996 | // Loop over cluster digits | |
997 | for (i=0; i<fMul[cath]; i++) { | |
998 | isec=Segmentation(cath)->Sector(fIx[i][cath],fIy[i][cath]); | |
999 | dpx=Segmentation(cath)->Dpx(isec); | |
1000 | dpy=Segmentation(cath)->Dpy(isec); | |
1001 | if (isLocal[i][cath]) continue; | |
1002 | // Pad position should be consistent with position of local maxima on the opposite cathode | |
1003 | if ((TMath::Abs(fY[i][cath]-fY[fIndLocal[0][cath1]][cath1]) > dpy/2.) && | |
1004 | (TMath::Abs(fY[i][cath]-fY[fIndLocal[1][cath1]][cath1]) > dpy/2.)) | |
1005 | continue; | |
1006 | // | |
1007 | // get neighbours for that digit and assume that it is local maximum | |
1008 | isLocal[i][cath]=kTRUE; | |
1009 | // compare signal to that on the two neighbours on the left and on the right | |
1010 | Segmentation(cath)->GetPadIxy(fX[i][cath]+dpx,fY[i][cath],ix,iy); | |
1011 | // iNN counts the number of neighbours with signal, it should be 1 or 2 | |
1012 | Int_t iNN=0; | |
1013 | if (HitMap(cath)->TestHit(ix, iy)!=kEmpty) { | |
1014 | iNN++; | |
1015 | digt=(AliMUONDigit*) HitMap(cath)->GetHit(ix,iy); | |
1016 | if (digt->fSignal > fQ[i][cath]) isLocal[i][cath]=kFALSE; | |
1017 | } | |
1018 | Segmentation(cath)->GetPadIxy(fX[i][cath]-dpx,fY[i][cath],ix,iy); | |
1019 | if (HitMap(cath)->TestHit(ix, iy)!=kEmpty) { | |
1020 | iNN++; | |
1021 | digt=(AliMUONDigit*) HitMap(cath)->GetHit(ix,iy); | |
1022 | if (digt->fSignal > fQ[i][cath]) isLocal[i][cath]=kFALSE; | |
1023 | } | |
1024 | if (isLocal[i][cath] && iNN>0) { | |
1025 | fIndLocal[fNLocal[cath]][cath]=i; | |
1026 | fNLocal[cath]++; | |
1027 | } | |
1028 | } // loop over all digits | |
1029 | // if one additional maximum has been found we are happy | |
1030 | // if more maxima have been found restore the previous situation | |
1031 | fprintf(stderr,"\n New search gives %d local maxima for cathode 1 \n",fNLocal[0]); | |
1032 | fprintf(stderr,"\n %d local maxima for cathode 2 \n",fNLocal[1]); | |
1033 | // printf("\n New search gives %d %d \n",fNLocal[0],fNLocal[1]); | |
1034 | if (fNLocal[cath]>2) { | |
1035 | fNLocal[cath]=iback; | |
1036 | } | |
1037 | ||
1038 | ||
1039 | ||
1040 | } // 2,1 local maxima | |
1041 | } | |
1042 | ||
1043 | ||
1044 | void AliMUONClusterFinderVS::FillCluster(AliMUONRawCluster* c, Int_t flag, Int_t cath) | |
1045 | { | |
1046 | // | |
1047 | // Completes cluster information starting from list of digits | |
1048 | // | |
1049 | AliMUONDigit* dig; | |
1050 | Float_t x, y; | |
1051 | Int_t ix, iy; | |
1052 | ||
1053 | if (cath==1) { | |
1054 | c->fPeakSignal[cath]=c->fPeakSignal[0]; | |
1055 | } else { | |
1056 | c->fPeakSignal[cath]=0; | |
1057 | } | |
1058 | ||
1059 | ||
1060 | if (flag) { | |
1061 | c->fX[cath]=0; | |
1062 | c->fY[cath]=0; | |
1063 | c->fQ[cath]=0; | |
1064 | } | |
1065 | ||
1066 | // fprintf(stderr,"\n fPeakSignal %d\n",c->fPeakSignal[cath]); | |
1067 | for (Int_t i=0; i<c->fMultiplicity[cath]; i++) | |
1068 | { | |
1069 | dig= (AliMUONDigit*)Digits(cath)->UncheckedAt(c->fIndexMap[i][cath]); | |
1070 | ix=dig->fPadX+c->fOffsetMap[i][cath]; | |
1071 | iy=dig->fPadY; | |
1072 | Int_t q=dig->fSignal; | |
1073 | if (!flag) q=Int_t(q*c->fContMap[i][cath]); | |
1074 | // fprintf(stderr,"q %d c->fPeakSignal[ %d ] %d\n",q,cath,c->fPeakSignal[cath]); | |
1075 | if (dig->fPhysics >= dig->fSignal) { | |
1076 | c->fPhysicsMap[i]=2; | |
1077 | } else if (dig->fPhysics == 0) { | |
1078 | c->fPhysicsMap[i]=0; | |
1079 | } else c->fPhysicsMap[i]=1; | |
1080 | // | |
1081 | // | |
1082 | // fprintf(stderr,"q %d c->fPeakSignal[cath] %d\n",q,c->fPeakSignal[cath]); | |
1083 | // peak signal and track list | |
1084 | if (q>c->fPeakSignal[cath]) { | |
1085 | c->fPeakSignal[cath]=q; | |
1086 | c->fTracks[0]=dig->fHit; | |
1087 | c->fTracks[1]=dig->fTracks[0]; | |
1088 | c->fTracks[2]=dig->fTracks[1]; | |
1089 | // fprintf(stderr," c->fTracks[0] %d c->fTracks[1] %d\n",dig->fHit,dig->fTracks[0]); | |
1090 | } | |
1091 | // | |
1092 | if (flag) { | |
1093 | Segmentation(cath)->GetPadCxy(ix, iy, x, y); | |
1094 | c->fX[cath] += q*x; | |
1095 | c->fY[cath] += q*y; | |
1096 | c->fQ[cath] += q; | |
1097 | } | |
1098 | } // loop over digits | |
1099 | // fprintf(stderr," fin du cluster c\n"); | |
1100 | ||
1101 | ||
1102 | if (flag) { | |
1103 | c->fX[cath]/=c->fQ[cath]; | |
1104 | c->fX[cath]=Segmentation(cath)->GetAnod(c->fX[cath]); | |
1105 | c->fY[cath]/=c->fQ[cath]; | |
1106 | // | |
1107 | // apply correction to the coordinate along the anode wire | |
1108 | // | |
1109 | x=c->fX[cath]; | |
1110 | y=c->fY[cath]; | |
1111 | Segmentation(cath)->GetPadIxy(x, y, ix, iy); | |
1112 | Segmentation(cath)->GetPadCxy(ix, iy, x, y); | |
1113 | Int_t isec=Segmentation(cath)->Sector(ix,iy); | |
1114 | TF1* cogCorr = Segmentation(cath)->CorrFunc(isec-1); | |
1115 | ||
1116 | if (cogCorr) { | |
1117 | Float_t yOnPad=(c->fY[cath]-y)/Segmentation(cath)->Dpy(isec); | |
1118 | c->fY[cath]=c->fY[cath]-cogCorr->Eval(yOnPad, 0, 0); | |
1119 | } | |
1120 | } | |
1121 | } | |
1122 | ||
1123 | void AliMUONClusterFinderVS::FillCluster(AliMUONRawCluster* c, Int_t cath) | |
1124 | { | |
1125 | // | |
1126 | // Completes cluster information starting from list of digits | |
1127 | // | |
1128 | static Float_t dr0; | |
1129 | ||
1130 | AliMUONDigit* dig; | |
1131 | ||
1132 | if (cath==0) { | |
1133 | dr0 = 10000; | |
1134 | } | |
1135 | ||
1136 | Float_t xpad, ypad; | |
1137 | Float_t dx, dy, dr; | |
1138 | ||
1139 | for (Int_t i=0; i<c->fMultiplicity[cath]; i++) | |
1140 | { | |
1141 | dig= (AliMUONDigit*)Digits(cath)->UncheckedAt(c->fIndexMap[i][cath]); | |
1142 | Segmentation(cath)-> | |
1143 | GetPadCxy(dig->fPadX,dig->fPadY,xpad,ypad); | |
1144 | fprintf(stderr,"x %f y %f cx %f cy %f\n",xpad,ypad,c->fX[0],c->fY[0]); | |
1145 | dx = xpad - c->fX[0]; | |
1146 | dy = ypad - c->fY[0]; | |
1147 | dr = TMath::Sqrt(dx*dx+dy*dy); | |
1148 | ||
1149 | if (dr < dr0) { | |
1150 | dr0 = dr; | |
1151 | fprintf(stderr," dr %f\n",dr); | |
1152 | Int_t q=dig->fSignal; | |
1153 | if (dig->fPhysics >= dig->fSignal) { | |
1154 | c->fPhysicsMap[i]=2; | |
1155 | } else if (dig->fPhysics == 0) { | |
1156 | c->fPhysicsMap[i]=0; | |
1157 | } else c->fPhysicsMap[i]=1; | |
1158 | c->fPeakSignal[cath]=q; | |
1159 | c->fTracks[0]=dig->fHit; | |
1160 | c->fTracks[1]=dig->fTracks[0]; | |
1161 | c->fTracks[2]=dig->fTracks[1]; | |
1162 | fprintf(stderr," c->fTracks[0] %d c->fTracks[1] %d\n",dig->fHit,dig->fTracks[0]); | |
1163 | } | |
1164 | // | |
1165 | } // loop over digits | |
1166 | ||
1167 | // apply correction to the coordinate along the anode wire | |
1168 | c->fX[cath]=Segmentation(cath)->GetAnod(c->fX[cath]); | |
1169 | } | |
1170 | ||
1171 | void AliMUONClusterFinderVS::FindCluster(Int_t i, Int_t j, Int_t cath, AliMUONRawCluster &c){ | |
1172 | // | |
1173 | // Find clusterset | |
1174 | // | |
1175 | // | |
1176 | // Add i,j as element of the cluster | |
1177 | // | |
1178 | ||
1179 | Int_t idx = HitMap(cath)->GetHitIndex(i,j); | |
1180 | AliMUONDigit* dig = (AliMUONDigit*) HitMap(cath)->GetHit(i,j); | |
1181 | Int_t q=dig->fSignal; | |
1182 | Int_t theX=dig->fPadX; | |
1183 | Int_t theY=dig->fPadY; | |
1184 | if (q > TMath::Abs(c.fPeakSignal[0]) && q > TMath::Abs(c.fPeakSignal[1])) { | |
1185 | c.fPeakSignal[cath]=q; | |
1186 | c.fTracks[0]=dig->fHit; | |
1187 | c.fTracks[1]=dig->fTracks[0]; | |
1188 | c.fTracks[2]=dig->fTracks[1]; | |
1189 | } | |
1190 | ||
1191 | // | |
1192 | // Make sure that list of digits is ordered | |
1193 | // | |
1194 | Int_t mu=c.fMultiplicity[cath]; | |
1195 | c.fIndexMap[mu][cath]=idx; | |
1196 | ||
1197 | if (dig->fPhysics >= dig->fSignal) { | |
1198 | c.fPhysicsMap[mu]=2; | |
1199 | } else if (dig->fPhysics == 0) { | |
1200 | c.fPhysicsMap[mu]=0; | |
1201 | } else c.fPhysicsMap[mu]=1; | |
1202 | if (mu > 0) { | |
1203 | for (Int_t ind=mu-1; ind>=0; ind--) { | |
1204 | Int_t ist=(c.fIndexMap)[ind][cath]; | |
1205 | Int_t ql=((AliMUONDigit*)Digits(cath) | |
1206 | ->UncheckedAt(ist))->fSignal; | |
1207 | Int_t ix=((AliMUONDigit*)Digits(cath) | |
1208 | ->UncheckedAt(ist))->fPadX; | |
1209 | Int_t iy=((AliMUONDigit*)Digits(cath) | |
1210 | ->UncheckedAt(ist))->fPadY; | |
1211 | ||
1212 | if (q>ql || (q==ql && theX > ix && theY < iy)) { | |
1213 | c.fIndexMap[ind][cath]=idx; | |
1214 | c.fIndexMap[ind+1][cath]=ist; | |
1215 | } else { | |
1216 | break; | |
1217 | } | |
1218 | } | |
1219 | } | |
1220 | ||
1221 | c.fMultiplicity[cath]++; | |
1222 | if (c.fMultiplicity[cath] >= 50 ) { | |
1223 | printf("FindCluster - multiplicity >50 %d \n",c.fMultiplicity[0]); | |
1224 | c.fMultiplicity[cath]=49; | |
1225 | } | |
1226 | ||
1227 | // Prepare center of gravity calculation | |
1228 | Float_t x, y; | |
1229 | Segmentation(cath)->GetPadCxy(i, j, x, y); | |
1230 | ||
1231 | c.fX[cath] += q*x; | |
1232 | c.fY[cath] += q*y; | |
1233 | c.fQ[cath] += q; | |
1234 | // Flag hit as taken | |
1235 | HitMap(cath)->FlagHit(i,j); | |
1236 | // | |
1237 | // Now look recursively for all neighbours and pad hit on opposite cathode | |
1238 | // | |
1239 | // Loop over neighbours | |
1240 | Int_t ix,iy; | |
1241 | Int_t nn; | |
1242 | Int_t xList[kMaxNeighbours], yList[kMaxNeighbours]; | |
1243 | Segmentation(cath)->Neighbours(i,j,&nn,xList,yList); | |
1244 | for (Int_t in=0; in<nn; in++) { | |
1245 | ix=xList[in]; | |
1246 | iy=yList[in]; | |
1247 | if (HitMap(cath)->TestHit(ix,iy)==kUnused) FindCluster(ix, iy, cath, c); | |
1248 | } | |
1249 | // Neighbours on opposite cathode | |
1250 | // Take into account that several pads can overlap with the present pad | |
1251 | Float_t xmin, xmax, ymin, ymax, xc, yc; | |
1252 | Int_t iop; | |
1253 | Int_t isec=Segmentation(cath)->Sector(i,j); | |
1254 | if (cath==0) { | |
1255 | iop=1; | |
1256 | xmin=x-Segmentation(cath)->Dpx(isec); | |
1257 | xmax=x+Segmentation(cath)->Dpx(isec); | |
1258 | xc=xmin+.001; | |
1259 | while (xc < xmax) { | |
1260 | xc+=Segmentation(iop)->Dpx(isec); | |
1261 | Segmentation(iop)->GetPadIxy(xc,y,ix,iy); | |
1262 | if (ix>=(Segmentation(iop)->Npx()) || (iy>=Segmentation(iop)->Npy())) continue; | |
1263 | if (HitMap(iop)->TestHit(ix,iy)==kUnused) FindCluster(ix, iy, iop, c); | |
1264 | } | |
1265 | } else { | |
1266 | iop=0; | |
1267 | ymin=y-Segmentation(cath)->Dpy(isec); | |
1268 | ymax=y+Segmentation(cath)->Dpy(isec); | |
1269 | yc=ymin+.001; | |
1270 | while (yc < ymax) { | |
1271 | yc+=Segmentation(iop)->Dpy(isec); | |
1272 | Segmentation(iop)->GetPadIxy(x,yc,ix,iy); | |
1273 | if (ix>=(Segmentation(iop)->Npx()) || (iy>=Segmentation(iop)->Npy())) continue; | |
1274 | if (HitMap(iop)->TestHit(ix,iy)==kUnused) FindCluster(ix, iy, iop, c); | |
1275 | } | |
1276 | } | |
1277 | } | |
1278 | ||
1279 | //_____________________________________________________________________________ | |
1280 | ||
1281 | void AliMUONClusterFinderVS::FindRawClusters() | |
1282 | { | |
1283 | // | |
1284 | // MUON cluster finder from digits -- finds neighbours on both cathodes and | |
1285 | // fills the tree with raw clusters | |
1286 | // | |
1287 | ||
1288 | if (!NDigits(0) && !NDigits(1)) return; | |
1289 | ||
1290 | fHitMap = new AliMUONHitMapA1(fSegmentation , fDigits); | |
1291 | fHitMap2 = new AliMUONHitMapA1(fSegmentation2, fDigits2); | |
1292 | ||
1293 | AliMUONDigit *dig; | |
1294 | ||
1295 | Int_t ndig, cath; | |
1296 | Int_t nskip=0; | |
1297 | Int_t ncls=0; | |
1298 | HitMap(0)->FillHits(); | |
1299 | HitMap(1)->FillHits(); | |
1300 | // | |
1301 | // Outer Loop over Cathodes | |
1302 | for (cath=0; cath<2; cath++) { | |
1303 | for (ndig=0; ndig<NDigits(cath); ndig++) { | |
1304 | dig = (AliMUONDigit*)Digits(cath)->UncheckedAt(ndig); | |
1305 | Int_t i=dig->fPadX; | |
1306 | Int_t j=dig->fPadY; | |
1307 | if (HitMap(cath)->TestHit(i,j)==kUsed ||fHitMap->TestHit(i,j)==kEmpty) { | |
1308 | nskip++; | |
1309 | continue; | |
1310 | } | |
1311 | fprintf(stderr,"\n CATHODE %d CLUSTER %d\n",cath,ncls); | |
1312 | AliMUONRawCluster c; | |
1313 | c.fMultiplicity[0]=0; | |
1314 | c.fMultiplicity[1]=0; | |
1315 | c.fPeakSignal[cath]=dig->fSignal; | |
1316 | c.fTracks[0]=dig->fHit; | |
1317 | c.fTracks[1]=dig->fTracks[0]; | |
1318 | c.fTracks[2]=dig->fTracks[1]; | |
1319 | // tag the beginning of cluster list in a raw cluster | |
1320 | c.fNcluster[0]=-1; | |
1321 | ||
1322 | FindCluster(i,j,cath,c); | |
1323 | ||
1324 | // center of gravity | |
1325 | c.fX[0] /= c.fQ[0]; | |
1326 | c.fX[0]=Segmentation(0)->GetAnod(c.fX[0]); | |
1327 | c.fY[0] /= c.fQ[0]; | |
1328 | c.fX[1] /= c.fQ[1]; | |
1329 | c.fX[1]=Segmentation(0)->GetAnod(c.fX[1]); | |
1330 | c.fY[1] /= c.fQ[1]; | |
1331 | fprintf(stderr,"\n Cathode 1 multiplicite %d X(CG) %f Y(CG) %f\n",c.fMultiplicity[0],c.fX[0],c.fY[0]); | |
1332 | fprintf(stderr," Cathode 2 multiplicite %d X(CG) %f Y(CG) %f\n",c.fMultiplicity[1],c.fX[1],c.fY[1]); | |
1333 | ||
1334 | // Mathieson Fit | |
1335 | /* | |
1336 | Bool_t fitted; | |
1337 | ||
1338 | fitted=SingleMathiesonFit(&c, 0); | |
1339 | c.fX[0]=Segmentation(0)->GetAnod(c.fX[0]); | |
1340 | fitted=SingleMathiesonFit(&c, 1); | |
1341 | c.fX[1]=Segmentation(1)->GetAnod(c.fX[1]); | |
1342 | */ | |
1343 | // | |
1344 | // Analyse cluster and decluster if necessary | |
1345 | // | |
1346 | ncls++; | |
1347 | c.fNcluster[1]=fNRawClusters; | |
1348 | c.fClusterType=c.PhysicsContribution(); | |
1349 | ||
1350 | fNPeaks=0; | |
1351 | // | |
1352 | // | |
1353 | Decluster(&c); | |
1354 | // AddRawCluster(c); | |
1355 | ||
1356 | // | |
1357 | // reset Cluster object | |
f8ffca81 | 1358 | { // begin local scope |
1359 | for (int k=0;k<c.fMultiplicity[0];k++) c.fIndexMap[k][0]=0; | |
1360 | } // end local scope | |
a9e2aefa | 1361 | |
f8ffca81 | 1362 | { // begin local scope |
1363 | for (int k=0;k<c.fMultiplicity[1];k++) c.fIndexMap[k][1]=0; | |
1364 | } // end local scope | |
1365 | ||
a9e2aefa | 1366 | c.fMultiplicity[0]=c.fMultiplicity[0]=0; |
1367 | ||
1368 | ||
1369 | } // end loop ndig | |
1370 | } // end loop cathodes | |
1371 | delete fHitMap; | |
1372 | delete fHitMap2; | |
1373 | } | |
1374 | ||
1375 | Float_t AliMUONClusterFinderVS::SingleMathiesonFit(AliMUONRawCluster *c, Int_t cath) | |
1376 | { | |
1377 | // | |
1378 | // Initialise global variables for fit | |
1379 | Int_t i; | |
1380 | fMul[cath]=c->fMultiplicity[cath]; | |
1381 | fgSegmentation[0]=Segmentation(cath); | |
1382 | fgResponse =fResponse; | |
1383 | fgNbins[0]=fMul[cath]; | |
1384 | Float_t qtot=0; | |
1385 | // | |
1386 | // dump digit information into arrays | |
1387 | // | |
1388 | for (i=0; i<fMul[cath]; i++) | |
1389 | { | |
1390 | fDig[i][cath]= (AliMUONDigit*)Digits(cath)->UncheckedAt(c->fIndexMap[i][cath]); | |
1391 | fIx[i][cath]= fDig[i][cath]->fPadX; | |
1392 | fIy[i][cath]= fDig[i][cath]->fPadY; | |
1393 | fQ[i][cath] = fDig[i][cath]->fSignal; | |
1394 | Segmentation(cath)->GetPadCxy(fIx[i][cath], fIy[i][cath], fX[i][cath], fY[i][cath]); | |
1395 | fgix[i][0]=fIx[i][cath]; | |
1396 | fgiy[i][0]=fIy[i][cath]; | |
1397 | fgCharge[i][0]=Float_t(fQ[i][cath]); | |
1398 | qtot+=fgCharge[i][0]; | |
1399 | } | |
1400 | ||
1401 | fgQtot[0]=qtot; | |
1402 | fgChargeTot[0]=Int_t(qtot); | |
1403 | ||
1404 | // | |
1405 | if (fgFirst) { | |
1406 | fgFirst=kFALSE; | |
1407 | fgMyMinuit = new TMinuit(5); | |
1408 | } | |
1409 | ||
1410 | fgMyMinuit->SetFCN(fcnS1); | |
1411 | fgMyMinuit->mninit(2,10,7); | |
1412 | Double_t arglist[20]; | |
1413 | Int_t ierflag=0; | |
1414 | arglist[0]=1; | |
1415 | // fgMyMinuit->mnexcm("SET ERR",arglist,1,ierflag); | |
1416 | // Set starting values | |
1417 | static Double_t vstart[2]; | |
1418 | vstart[0]=c->fX[1]; | |
1419 | vstart[1]=c->fY[0]; | |
1420 | ||
1421 | ||
1422 | // lower and upper limits | |
1423 | static Double_t lower[2], upper[2]; | |
1424 | Int_t ix,iy; | |
1425 | Segmentation(cath)->GetPadIxy(c->fX[cath], c->fY[cath], ix, iy); | |
1426 | Int_t isec=Segmentation(cath)->Sector(ix, iy); | |
1427 | lower[0]=vstart[0]-Segmentation(cath)->Dpx(isec)/2; | |
1428 | lower[1]=vstart[1]-Segmentation(cath)->Dpy(isec)/2; | |
1429 | ||
1430 | upper[0]=lower[0]+Segmentation(cath)->Dpx(isec); | |
1431 | upper[1]=lower[1]+Segmentation(cath)->Dpy(isec); | |
1432 | ||
1433 | // step sizes | |
1434 | static Double_t step[2]={0.0005, 0.0005}; | |
1435 | ||
1436 | fgMyMinuit->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); | |
1437 | fgMyMinuit->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); | |
1438 | // ready for minimisation | |
1439 | fgMyMinuit->SetPrintLevel(1); | |
1440 | fgMyMinuit->mnexcm("SET OUT", arglist, 0, ierflag); | |
1441 | arglist[0]= -1; | |
1442 | arglist[1]= 0; | |
1443 | ||
1444 | fgMyMinuit->mnexcm("SET NOGR", arglist, 0, ierflag); | |
1445 | fgMyMinuit->mnexcm("MIGRAD", arglist, 0, ierflag); | |
1446 | fgMyMinuit->mnexcm("EXIT" , arglist, 0, ierflag); | |
1447 | Double_t fmin, fedm, errdef; | |
1448 | Int_t npari, nparx, istat; | |
1449 | ||
1450 | fgMyMinuit->mnstat(fmin, fedm, errdef, npari, nparx, istat); | |
1451 | fFitStat=istat; | |
1452 | ||
1453 | // Print results | |
1454 | // Get fitted parameters | |
1455 | Double_t xrec, yrec; | |
1456 | TString chname; | |
1457 | Double_t epxz, b1, b2; | |
1458 | Int_t ierflg; | |
1459 | fgMyMinuit->mnpout(0, chname, xrec, epxz, b1, b2, ierflg); | |
1460 | fgMyMinuit->mnpout(1, chname, yrec, epxz, b1, b2, ierflg); | |
1461 | fXFit[cath]=xrec; | |
1462 | fYFit[cath]=yrec; | |
1463 | return fmin; | |
1464 | } | |
1465 | ||
1466 | Float_t AliMUONClusterFinderVS::CombiSingleMathiesonFit(AliMUONRawCluster *c) | |
1467 | { | |
1468 | // Perform combined Mathieson fit on both cathode planes | |
1469 | // | |
1470 | if (fgFirst) { | |
1471 | fgFirst=kFALSE; | |
1472 | fgMyMinuit = new TMinuit(5); | |
1473 | } | |
1474 | ||
1475 | fgMyMinuit->SetFCN(fcnCombiS1); | |
1476 | fgMyMinuit->mninit(2,10,7); | |
1477 | Double_t arglist[20]; | |
1478 | Int_t ierflag=0; | |
1479 | arglist[0]=1; | |
1480 | static Double_t vstart[2]; | |
1481 | vstart[0]=fXInit[0]; | |
1482 | vstart[1]=fYInit[0]; | |
1483 | ||
1484 | ||
1485 | // lower and upper limits | |
1486 | static Double_t lower[2], upper[2]; | |
1487 | Int_t ix,iy,isec; | |
1488 | Segmentation(0)->GetPadIxy(fXInit[0], fYInit[0], ix, iy); | |
1489 | isec=Segmentation(0)->Sector(ix, iy); | |
1490 | Float_t dpy=Segmentation(0)->Dpy(isec)/2; | |
1491 | Segmentation(1)->GetPadIxy(fXInit[0], fYInit[0], ix, iy); | |
1492 | isec=Segmentation(1)->Sector(ix, iy); | |
1493 | Float_t dpx=Segmentation(1)->Dpx(isec)/2; | |
1494 | ||
1495 | ||
1496 | lower[0]=vstart[0]-dpx; | |
1497 | lower[1]=vstart[1]-dpy; | |
1498 | ||
1499 | upper[0]=vstart[0]+dpx; | |
1500 | upper[1]=vstart[1]+dpy; | |
1501 | ||
1502 | // step sizes | |
1503 | static Double_t step[2]={0.00001, 0.0001}; | |
1504 | ||
1505 | fgMyMinuit->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); | |
1506 | fgMyMinuit->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); | |
1507 | // ready for minimisation | |
1508 | fgMyMinuit->SetPrintLevel(1); | |
1509 | fgMyMinuit->mnexcm("SET OUT", arglist, 0, ierflag); | |
1510 | arglist[0]= -1; | |
1511 | arglist[1]= 0; | |
1512 | ||
1513 | fgMyMinuit->mnexcm("SET NOGR", arglist, 0, ierflag); | |
1514 | fgMyMinuit->mnexcm("MIGRAD", arglist, 0, ierflag); | |
1515 | fgMyMinuit->mnexcm("EXIT" , arglist, 0, ierflag); | |
1516 | Double_t fmin, fedm, errdef; | |
1517 | Int_t npari, nparx, istat; | |
1518 | ||
1519 | fgMyMinuit->mnstat(fmin, fedm, errdef, npari, nparx, istat); | |
1520 | fFitStat=istat; | |
1521 | ||
1522 | // Print results | |
1523 | // Get fitted parameters | |
1524 | Double_t xrec, yrec; | |
1525 | TString chname; | |
1526 | Double_t epxz, b1, b2; | |
1527 | Int_t ierflg; | |
1528 | fgMyMinuit->mnpout(0, chname, xrec, epxz, b1, b2, ierflg); | |
1529 | fgMyMinuit->mnpout(1, chname, yrec, epxz, b1, b2, ierflg); | |
1530 | fXFit[0]=xrec; | |
1531 | fYFit[0]=yrec; | |
1532 | return fmin; | |
1533 | } | |
1534 | ||
1535 | Bool_t AliMUONClusterFinderVS::DoubleMathiesonFit(AliMUONRawCluster *c, Int_t cath) | |
1536 | { | |
1537 | // | |
1538 | // Initialise global variables for fit | |
1539 | Int_t i,j; | |
1540 | ||
1541 | fgSegmentation[0]=Segmentation(cath); | |
1542 | fgResponse =fResponse; | |
1543 | fgNbins[0]=fMul[cath]; | |
1544 | Float_t qtot=0; | |
1545 | ||
1546 | for (i=0; i<fMul[cath]; i++) { | |
1547 | fgix[i][0]=fIx[i][cath]; | |
1548 | fgiy[i][0]=fIy[i][cath]; | |
1549 | fgCharge[i][0]=Float_t(fQ[i][cath]); | |
1550 | qtot+=fgCharge[i][0]; | |
1551 | } | |
1552 | fgQtot[0]=qtot; | |
1553 | fgChargeTot[0]=Int_t(qtot); | |
1554 | ||
1555 | // | |
1556 | if (fgFirst) { | |
1557 | fgFirst=kFALSE; | |
1558 | fgMyMinuit = new TMinuit(5); | |
1559 | } | |
1560 | fgMyMinuit->SetFCN(fcnS2); | |
1561 | fgMyMinuit->mninit(5,10,7); | |
1562 | Double_t arglist[20]; | |
1563 | Int_t ierflag=0; | |
1564 | arglist[0]=1; | |
1565 | // Set starting values | |
1566 | static Double_t vstart[5]; | |
1567 | vstart[0]=fX[fIndLocal[0][cath]][cath]; | |
1568 | vstart[1]=fY[fIndLocal[0][cath]][cath]; | |
1569 | vstart[2]=fX[fIndLocal[1][cath]][cath]; | |
1570 | vstart[3]=fY[fIndLocal[1][cath]][cath]; | |
1571 | vstart[4]=Float_t(fQ[fIndLocal[0][cath]][cath])/ | |
1572 | Float_t(fQ[fIndLocal[0][cath]][cath]+fQ[fIndLocal[1][cath]][cath]); | |
1573 | // lower and upper limits | |
1574 | static Double_t lower[5], upper[5]; | |
1575 | Int_t isec=Segmentation(cath)->Sector(fIx[fIndLocal[0][cath]][cath], fIy[fIndLocal[0][cath]][cath]); | |
1576 | lower[0]=vstart[0]-Segmentation(cath)->Dpx(isec); | |
1577 | lower[1]=vstart[1]-Segmentation(cath)->Dpy(isec); | |
1578 | ||
1579 | upper[0]=lower[0]+2.*Segmentation(cath)->Dpx(isec); | |
1580 | upper[1]=lower[1]+2.*Segmentation(cath)->Dpy(isec); | |
1581 | ||
1582 | isec=Segmentation(cath)->Sector(fIx[fIndLocal[1][cath]][cath], fIy[fIndLocal[1][cath]][cath]); | |
1583 | lower[2]=vstart[2]-Segmentation(cath)->Dpx(isec)/2; | |
1584 | lower[3]=vstart[3]-Segmentation(cath)->Dpy(isec)/2; | |
1585 | ||
1586 | upper[2]=lower[2]+Segmentation(cath)->Dpx(isec); | |
1587 | upper[3]=lower[3]+Segmentation(cath)->Dpy(isec); | |
1588 | ||
1589 | lower[4]=0.; | |
1590 | upper[4]=1.; | |
1591 | // step sizes | |
1592 | static Double_t step[5]={0.0005, 0.0005, 0.0005, 0.0005, 0.0001}; | |
1593 | ||
1594 | fgMyMinuit->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); | |
1595 | fgMyMinuit->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); | |
1596 | fgMyMinuit->mnparm(2,"x2",vstart[2],step[2],lower[2],upper[2],ierflag); | |
1597 | fgMyMinuit->mnparm(3,"y2",vstart[3],step[3],lower[3],upper[3],ierflag); | |
1598 | fgMyMinuit->mnparm(4,"a0",vstart[4],step[4],lower[4],upper[4],ierflag); | |
1599 | // ready for minimisation | |
1600 | fgMyMinuit->SetPrintLevel(-1); | |
1601 | fgMyMinuit->mnexcm("SET OUT", arglist, 0, ierflag); | |
1602 | arglist[0]= -1; | |
1603 | arglist[1]= 0; | |
1604 | ||
1605 | fgMyMinuit->mnexcm("SET NOGR", arglist, 0, ierflag); | |
1606 | fgMyMinuit->mnexcm("MIGRAD", arglist, 0, ierflag); | |
1607 | fgMyMinuit->mnexcm("EXIT" , arglist, 0, ierflag); | |
1608 | // Get fitted parameters | |
1609 | Double_t xrec[2], yrec[2], qfrac; | |
1610 | TString chname; | |
1611 | Double_t epxz, b1, b2; | |
1612 | Int_t ierflg; | |
1613 | fgMyMinuit->mnpout(0, chname, xrec[0], epxz, b1, b2, ierflg); | |
1614 | fgMyMinuit->mnpout(1, chname, yrec[0], epxz, b1, b2, ierflg); | |
1615 | fgMyMinuit->mnpout(2, chname, xrec[1], epxz, b1, b2, ierflg); | |
1616 | fgMyMinuit->mnpout(3, chname, yrec[1], epxz, b1, b2, ierflg); | |
1617 | fgMyMinuit->mnpout(4, chname, qfrac, epxz, b1, b2, ierflg); | |
1618 | ||
1619 | Double_t fmin, fedm, errdef; | |
1620 | Int_t npari, nparx, istat; | |
1621 | ||
1622 | fgMyMinuit->mnstat(fmin, fedm, errdef, npari, nparx, istat); | |
1623 | fFitStat=istat; | |
1624 | ||
1625 | ||
1626 | // | |
1627 | // One cluster for each maximum | |
1628 | // | |
1629 | for (j=0; j<2; j++) { | |
1630 | AliMUONRawCluster cnew; | |
1631 | cnew.fChi2[0]=Float_t(fmin); | |
1632 | ||
1633 | if (fNPeaks == 0) { | |
1634 | cnew.fNcluster[0]=-1; | |
1635 | cnew.fNcluster[1]=fNRawClusters; | |
1636 | } else { | |
1637 | cnew.fNcluster[0]=fNPeaks; | |
1638 | cnew.fNcluster[1]=0; | |
1639 | } | |
1640 | cnew.fMultiplicity[0]=0; | |
1641 | cnew.fX[0]=Float_t(xrec[j]); | |
1642 | cnew.fY[0]=Float_t(yrec[j]); | |
1643 | if (j==0) { | |
1644 | cnew.fQ[0]=Int_t(fgChargeTot[0]*qfrac); | |
1645 | } else { | |
1646 | cnew.fQ[0]=Int_t(fgChargeTot[0]*(1-qfrac)); | |
1647 | } | |
1648 | fgSegmentation[0]->SetHit(xrec[j],yrec[j]); | |
1649 | for (i=0; i<fMul[cath]; i++) { | |
1650 | cnew.fIndexMap[cnew.fMultiplicity[0]][cath]=c->fIndexMap[i][cath]; | |
1651 | fgSegmentation[0]->SetPad(fgix[i][0], fgiy[i][0]); | |
1652 | Float_t q1=fgResponse->IntXY(fgSegmentation[0]); | |
1653 | cnew.fContMap[cnew.fMultiplicity[0]][0]=(q1*cnew.fQ[0])/Float_t(fQ[i][cath]); | |
1654 | cnew.fMultiplicity[0]++; | |
1655 | } | |
1656 | FillCluster(&cnew,0,0); | |
1657 | cnew.fClusterType=cnew.PhysicsContribution(); | |
1658 | AddRawCluster(cnew); | |
1659 | fNPeaks++; | |
1660 | } | |
1661 | return kTRUE; | |
1662 | } | |
1663 | ||
1664 | Float_t AliMUONClusterFinderVS::CombiDoubleMathiesonFit(AliMUONRawCluster *c) | |
1665 | { | |
1666 | // | |
1667 | // Perform combined double Mathieson fit on both cathode planes | |
1668 | // | |
1669 | if (fgFirst) { | |
1670 | fgFirst=kFALSE; | |
1671 | fgMyMinuit = new TMinuit(5); | |
1672 | } | |
1673 | fgMyMinuit->SetFCN(fcnCombiS2); | |
1674 | fgMyMinuit->mninit(6,10,7); | |
1675 | Double_t arglist[20]; | |
1676 | Int_t ierflag=0; | |
1677 | arglist[0]=1; | |
1678 | // Set starting values | |
1679 | static Double_t vstart[6]; | |
1680 | vstart[0]=fXInit[0]; | |
1681 | vstart[1]=fYInit[0]; | |
1682 | vstart[2]=fXInit[1]; | |
1683 | vstart[3]=fYInit[1]; | |
1684 | vstart[4]=fQrInit[0]; | |
1685 | vstart[5]=fQrInit[1]; | |
1686 | // lower and upper limits | |
1687 | static Double_t lower[6], upper[6]; | |
1688 | Int_t ix,iy,isec; | |
1689 | Float_t dpx, dpy; | |
1690 | ||
1691 | Segmentation(1)->GetPadIxy(fXInit[0], fYInit[0], ix, iy); | |
1692 | isec=Segmentation(1)->Sector(ix, iy); | |
1693 | dpx=Segmentation(1)->Dpx(isec); | |
1694 | ||
1695 | Segmentation(0)->GetPadIxy(fXInit[0], fYInit[0], ix, iy); | |
1696 | isec=Segmentation(0)->Sector(ix, iy); | |
1697 | dpy=Segmentation(0)->Dpy(isec); | |
1698 | ||
1699 | lower[0]=vstart[0]-dpx; | |
1700 | lower[1]=vstart[1]-dpy; | |
1701 | upper[0]=vstart[0]+dpx; | |
1702 | upper[1]=vstart[1]+dpy; | |
1703 | ||
1704 | ||
1705 | Segmentation(1)->GetPadIxy(fXInit[1], fYInit[1], ix, iy); | |
1706 | isec=Segmentation(1)->Sector(ix, iy); | |
1707 | dpx=Segmentation(1)->Dpx(isec); | |
1708 | Segmentation(0)->GetPadIxy(fXInit[1], fYInit[1], ix, iy); | |
1709 | isec=Segmentation(0)->Sector(ix, iy); | |
1710 | dpy=Segmentation(0)->Dpy(isec); | |
1711 | ||
1712 | lower[2]=vstart[2]-dpx; | |
1713 | lower[3]=vstart[3]-dpy; | |
1714 | upper[2]=vstart[2]+dpx; | |
1715 | upper[3]=vstart[3]+dpy; | |
1716 | ||
1717 | ||
1718 | lower[4]=0.; | |
1719 | upper[4]=1.; | |
1720 | lower[5]=0.; | |
1721 | upper[5]=1.; | |
1722 | ||
1723 | // step sizes | |
1724 | static Double_t step[6]={0.0005, 0.0005, 0.0005, 0.0005, 0.001, 0.001}; | |
1725 | ||
1726 | fgMyMinuit->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); | |
1727 | fgMyMinuit->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); | |
1728 | fgMyMinuit->mnparm(2,"x2",vstart[2],step[2],lower[2],upper[2],ierflag); | |
1729 | fgMyMinuit->mnparm(3,"y2",vstart[3],step[3],lower[3],upper[3],ierflag); | |
1730 | fgMyMinuit->mnparm(4,"a0",vstart[4],step[4],lower[4],upper[4],ierflag); | |
1731 | fgMyMinuit->mnparm(5,"a1",vstart[5],step[5],lower[5],upper[5],ierflag); | |
1732 | // ready for minimisation | |
1733 | fgMyMinuit->SetPrintLevel(-1); | |
1734 | fgMyMinuit->mnexcm("SET OUT", arglist, 0, ierflag); | |
1735 | arglist[0]= -1; | |
1736 | arglist[1]= 0; | |
1737 | ||
1738 | fgMyMinuit->mnexcm("SET NOGR", arglist, 0, ierflag); | |
1739 | fgMyMinuit->mnexcm("MIGRAD", arglist, 0, ierflag); | |
1740 | fgMyMinuit->mnexcm("EXIT" , arglist, 0, ierflag); | |
1741 | // Get fitted parameters | |
1742 | TString chname; | |
1743 | Double_t epxz, b1, b2; | |
1744 | Int_t ierflg; | |
1745 | fgMyMinuit->mnpout(0, chname, fXFit[0], epxz, b1, b2, ierflg); | |
1746 | fgMyMinuit->mnpout(1, chname, fYFit[0], epxz, b1, b2, ierflg); | |
1747 | fgMyMinuit->mnpout(2, chname, fXFit[1], epxz, b1, b2, ierflg); | |
1748 | fgMyMinuit->mnpout(3, chname, fYFit[1], epxz, b1, b2, ierflg); | |
1749 | fgMyMinuit->mnpout(4, chname, fQrFit[0], epxz, b1, b2, ierflg); | |
1750 | fgMyMinuit->mnpout(5, chname, fQrFit[1], epxz, b1, b2, ierflg); | |
1751 | ||
1752 | Double_t fmin, fedm, errdef; | |
1753 | Int_t npari, nparx, istat; | |
1754 | ||
1755 | fgMyMinuit->mnstat(fmin, fedm, errdef, npari, nparx, istat); | |
1756 | fFitStat=istat; | |
1757 | ||
1758 | fChi2[0]=fmin; | |
1759 | fChi2[1]=fmin; | |
1760 | return fmin; | |
1761 | } | |
1762 | ||
1763 | void AliMUONClusterFinderVS::Split(AliMUONRawCluster* c) | |
1764 | { | |
1765 | // | |
1766 | // One cluster for each maximum | |
1767 | // | |
1768 | Int_t i, j, cath; | |
1769 | ||
1770 | for (j=0; j<2; j++) { | |
1771 | AliMUONRawCluster cnew; | |
1772 | for (cath=0; cath<2; cath++) { | |
1773 | cnew.fChi2[cath]=fChi2[0]; | |
1774 | ||
1775 | if (fNPeaks == 0) { | |
1776 | cnew.fNcluster[0]=-1; | |
1777 | cnew.fNcluster[1]=fNRawClusters; | |
1778 | } else { | |
1779 | cnew.fNcluster[0]=fNPeaks; | |
1780 | cnew.fNcluster[1]=0; | |
1781 | } | |
1782 | cnew.fMultiplicity[cath]=0; | |
1783 | cnew.fX[cath]=Float_t(fXFit[j]); | |
1784 | cnew.fY[cath]=Float_t(fYFit[j]); | |
1785 | if (j==0) { | |
1786 | cnew.fQ[cath]=Int_t(fgChargeTot[cath]*fQrFit[cath]); | |
1787 | } else { | |
1788 | cnew.fQ[cath]=Int_t(fgChargeTot[cath]*(1-fQrFit[cath])); | |
1789 | } | |
1790 | fgSegmentation[cath]->SetHit(fXFit[j],fYFit[j]); | |
1791 | for (i=0; i<fMul[cath]; i++) { | |
1792 | cnew.fIndexMap[cnew.fMultiplicity[cath]][cath]= | |
1793 | c->fIndexMap[i][cath]; | |
1794 | fgSegmentation[cath]->SetPad(fgix[i][cath], fgiy[i][cath]); | |
1795 | Float_t q1=fgResponse->IntXY(fgSegmentation[cath]); | |
1796 | cnew.fContMap[i][cath] | |
1797 | =(q1*Float_t(cnew.fQ[cath]))/Float_t(fQ[i][cath]); | |
1798 | cnew.fMultiplicity[cath]++; | |
1799 | // printf(" fXFIT %f fYFIT %f Multiplicite %d\n",cnew.fX[cath],cnew.fY[cath],cnew.fMultiplicity[cath]); | |
1800 | } | |
1801 | FillCluster(&cnew,0,cath); | |
1802 | } // cathode loop | |
1803 | ||
1804 | cnew.fClusterType=cnew.PhysicsContribution(); | |
1805 | if (cnew.fQ[0]>0 && cnew.fQ[1]>0) AddRawCluster(cnew); | |
1806 | fNPeaks++; | |
1807 | } | |
1808 | } | |
1809 | ||
1810 | ||
1811 | Float_t DiscrChargeS1(Int_t i,Double_t *par) | |
1812 | { | |
1813 | // par[0] x-position of cluster | |
1814 | // par[1] y-position of cluster | |
1815 | ||
1816 | fgSegmentation[0]->SetPad(fgix[i][0], fgiy[i][0]); | |
1817 | // First Cluster | |
1818 | fgSegmentation[0]->SetHit(par[0],par[1]); | |
1819 | Float_t q1=fgResponse->IntXY(fgSegmentation[0]); | |
1820 | ||
1821 | Float_t value = fgQtot[0]*q1; | |
1822 | return value; | |
1823 | } | |
1824 | ||
1825 | Float_t DiscrChargeCombiS1(Int_t i,Double_t *par, Int_t cath) | |
1826 | { | |
1827 | // par[0] x-position of cluster | |
1828 | // par[1] y-position of cluster | |
1829 | ||
1830 | fgSegmentation[cath]->SetPad(fgix[i][cath], fgiy[i][cath]); | |
1831 | // First Cluster | |
1832 | fgSegmentation[cath]->SetHit(par[0],par[1]); | |
1833 | Float_t q1=fgResponse->IntXY(fgSegmentation[cath]); | |
1834 | ||
1835 | Float_t value = fgQtot[cath]*q1; | |
1836 | return value; | |
1837 | } | |
1838 | ||
1839 | ||
1840 | Float_t DiscrChargeS2(Int_t i,Double_t *par) | |
1841 | { | |
1842 | // par[0] x-position of first cluster | |
1843 | // par[1] y-position of first cluster | |
1844 | // par[2] x-position of second cluster | |
1845 | // par[3] y-position of second cluster | |
1846 | // par[4] charge fraction of first cluster | |
1847 | // 1-par[4] charge fraction of second cluster | |
1848 | ||
1849 | fgSegmentation[0]->SetPad(fgix[i][0], fgiy[i][0]); | |
1850 | // First Cluster | |
1851 | fgSegmentation[0]->SetHit(par[0],par[1]); | |
1852 | Float_t q1=fgResponse->IntXY(fgSegmentation[0]); | |
1853 | ||
1854 | // Second Cluster | |
1855 | fgSegmentation[0]->SetHit(par[2],par[3]); | |
1856 | Float_t q2=fgResponse->IntXY(fgSegmentation[0]); | |
1857 | ||
1858 | Float_t value = fgQtot[0]*(par[4]*q1+(1.-par[4])*q2); | |
1859 | return value; | |
1860 | } | |
1861 | ||
1862 | Float_t DiscrChargeCombiS2(Int_t i,Double_t *par, Int_t cath) | |
1863 | { | |
1864 | // par[0] x-position of first cluster | |
1865 | // par[1] y-position of first cluster | |
1866 | // par[2] x-position of second cluster | |
1867 | // par[3] y-position of second cluster | |
1868 | // par[4] charge fraction of first cluster | |
1869 | // 1-par[4] charge fraction of second cluster | |
1870 | ||
1871 | fgSegmentation[cath]->SetPad(fgix[i][cath], fgiy[i][cath]); | |
1872 | // First Cluster | |
1873 | fgSegmentation[cath]->SetHit(par[0],par[1]); | |
1874 | Float_t q1=fgResponse->IntXY(fgSegmentation[cath]); | |
1875 | ||
1876 | // Second Cluster | |
1877 | fgSegmentation[cath]->SetHit(par[2],par[3]); | |
1878 | Float_t q2=fgResponse->IntXY(fgSegmentation[cath]); | |
1879 | Float_t value; | |
1880 | if (cath==0) { | |
1881 | value = fgQtot[0]*(par[4]*q1+(1.-par[4])*q2); | |
1882 | } else { | |
1883 | value = fgQtot[1]*(par[5]*q1+(1.-par[5])*q2); | |
1884 | } | |
1885 | return value; | |
1886 | } | |
1887 | ||
1888 | // | |
1889 | // Minimisation functions | |
1890 | // Single Mathieson | |
1891 | void fcnS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag) | |
1892 | { | |
1893 | Int_t i; | |
1894 | Float_t delta; | |
1895 | Float_t chisq=0; | |
1896 | Float_t qcont=0; | |
1897 | Float_t qtot=0; | |
1898 | ||
1899 | for (i=0; i<fgNbins[0]; i++) { | |
1900 | Float_t q0=fgCharge[i][0]; | |
1901 | Float_t q1=DiscrChargeS1(i,par); | |
1902 | delta=(q0-q1)/q0; | |
1903 | chisq+=delta*delta; | |
1904 | qcont+=q1; | |
1905 | qtot+=q0; | |
1906 | } | |
1907 | f=chisq; | |
1908 | } | |
1909 | ||
1910 | void fcnCombiS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag) | |
1911 | { | |
1912 | Int_t i, cath; | |
1913 | Float_t delta; | |
1914 | Float_t chisq=0; | |
1915 | Float_t qcont=0; | |
1916 | Float_t qtot=0; | |
1917 | // Float_t chi2temp=0; | |
1918 | ||
1919 | for (cath=0; cath<2; cath++) { | |
1920 | // chisq=0; | |
1921 | for (i=0; i<fgNbins[cath]; i++) { | |
1922 | Float_t q0=fgCharge[i][cath]; | |
1923 | Float_t q1=DiscrChargeCombiS1(i,par,cath); | |
1924 | // delta=(q0-q1); | |
1925 | delta=(q0-q1)/q0; | |
1926 | chisq+=delta*delta; | |
1927 | qcont+=q1; | |
1928 | qtot+=q0; | |
1929 | } | |
1930 | // if (cath == 0) chi2temp=chisq/fgNbins[cath]; | |
1931 | } | |
1932 | // chisq = chisq/fgNbins[1]+chi2temp; | |
1933 | ||
1934 | f=chisq; | |
1935 | } | |
1936 | ||
1937 | // Double Mathieson | |
1938 | void fcnS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag) | |
1939 | { | |
1940 | Int_t i; | |
1941 | Float_t delta; | |
1942 | Float_t chisq=0; | |
1943 | Float_t qcont=0; | |
1944 | Float_t qtot=0; | |
1945 | ||
1946 | for (i=0; i<fgNbins[0]; i++) { | |
1947 | ||
1948 | Float_t q0=fgCharge[i][0]; | |
1949 | Float_t q1=DiscrChargeS2(i,par); | |
1950 | delta=(q0-q1)/q0; | |
1951 | chisq+=delta*delta; | |
1952 | qcont+=q1; | |
1953 | qtot+=q0; | |
1954 | } | |
1955 | // chisq=chisq+=(qtot-qcont)*(qtot-qcont)*0.5; | |
1956 | f=chisq; | |
1957 | } | |
1958 | ||
1959 | // Double Mathieson | |
1960 | void fcnCombiS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag) | |
1961 | { | |
1962 | Int_t i, cath; | |
1963 | Float_t delta; | |
1964 | Float_t chisq=0; | |
1965 | Float_t qcont=0; | |
1966 | Float_t qtot=0; | |
1967 | // Float_t chi2temp=0; | |
1968 | ||
1969 | for (cath=0; cath<2; cath++) { | |
1970 | // chisq=0; | |
1971 | for (i=0; i<fgNbins[cath]; i++) { | |
1972 | Float_t q0=fgCharge[i][cath]; | |
1973 | Float_t q1=DiscrChargeCombiS2(i,par,cath); | |
1974 | // delta=(q0-q1); | |
1975 | delta=(q0-q1)/q0; | |
1976 | chisq+=delta*delta; | |
1977 | qcont+=q1; | |
1978 | qtot+=q0; | |
1979 | } | |
1980 | // if (cath == 0) chi2temp=chisq/fgNbins[cath]; | |
1981 | } | |
1982 | // chisq = chisq/fgNbins[1]+chi2temp; | |
1983 | f=chisq; | |
1984 | } | |
1985 | ||
1986 | void AliMUONClusterFinderVS::AddRawCluster(const AliMUONRawCluster c) | |
1987 | { | |
1988 | // | |
1989 | // Add a raw cluster copy to the list | |
1990 | // | |
1991 | AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON"); | |
1992 | pMUON->AddRawCluster(fChamber,c); | |
1993 | fNRawClusters++; | |
1994 | fprintf(stderr,"\nfNRawClusters %d\n",fNRawClusters); | |
1995 | } | |
1996 | ||
1997 | ||
1998 | AliMUONClusterFinderVS& AliMUONClusterFinderVS | |
1999 | ::operator = (const AliMUONClusterFinderVS& rhs) | |
2000 | { | |
2001 | // Dummy assignment operator | |
2002 | return *this; | |
2003 | } | |
2004 | ||
2005 | ||
2006 | ||
2007 | ||
2008 | ||
2009 | ||
2010 | ||
2011 | ||
2012 |