a9e2aefa |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
70479d0e |
15 | |
88cb7938 |
16 | /* $Id$ */ |
a9e2aefa |
17 | |
18 | #include "AliMUONClusterFinderVS.h" |
19 | #include "AliMUONDigit.h" |
20 | #include "AliMUONRawCluster.h" |
a30a000f |
21 | #include "AliSegmentation.h" |
a9e2aefa |
22 | #include "AliMUONResponse.h" |
c1a185bf |
23 | #include "AliMUONClusterInput.h" |
a9e2aefa |
24 | #include "AliMUONHitMapA1.h" |
25 | #include "AliRun.h" |
26 | #include "AliMUON.h" |
27 | |
28 | #include <TTree.h> |
29 | #include <TCanvas.h> |
30 | #include <TH1.h> |
31 | #include <TPad.h> |
32 | #include <TGraph.h> |
33 | #include <TPostScript.h> |
34 | #include <TMinuit.h> |
ecfa008b |
35 | #include <TF1.h> |
36 | |
a9e2aefa |
37 | #include <stdio.h> |
70479d0e |
38 | #include <Riostream.h> |
a9e2aefa |
39 | |
40 | //_____________________________________________________________________ |
a9e2aefa |
41 | // This function is minimized in the double-Mathieson fit |
42 | void fcnS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); |
43 | void fcnS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); |
44 | void fcnCombiS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); |
45 | void fcnCombiS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); |
46 | |
47 | ClassImp(AliMUONClusterFinderVS) |
48 | |
4da78c65 |
49 | AliMUONClusterFinderVS::AliMUONClusterFinderVS() |
a9e2aefa |
50 | { |
51 | // Default constructor |
30aaba74 |
52 | fInput=AliMUONClusterInput::Instance(); |
53 | fHitMap[0] = 0; |
54 | fHitMap[1] = 0; |
a9e2aefa |
55 | fTrack[0]=fTrack[1]=-1; |
07cfabcf |
56 | fDebugLevel = 0; // make silent default |
57 | fGhostChi2Cut = 1e6; // nothing done by default |
3f5cf0b3 |
58 | fSeg[0] = 0; |
59 | fSeg[1] = 0; |
60 | for(Int_t i=0; i<100; i++) { |
61 | for (Int_t j=0; j<2; j++) { |
62 | fDig[i][j] = 0; |
63 | } |
4da78c65 |
64 | } |
65 | fRawClusters = new TClonesArray("AliMUONRawCluster",1000); |
66 | fNRawClusters = 0; |
67 | |
68 | |
69 | } |
70 | //____________________________________________________________________________ |
71 | AliMUONClusterFinderVS::~AliMUONClusterFinderVS() |
72 | { |
73 | // Reset tracks information |
74 | fNRawClusters = 0; |
86b48c39 |
75 | if (fRawClusters) { |
76 | fRawClusters->Delete(); |
77 | delete fRawClusters; |
78 | } |
a9e2aefa |
79 | } |
80 | |
e3cba86e |
81 | AliMUONClusterFinderVS::AliMUONClusterFinderVS(const AliMUONClusterFinderVS & clusterFinder):TObject(clusterFinder) |
a9e2aefa |
82 | { |
83 | // Dummy copy Constructor |
84 | ; |
85 | } |
4da78c65 |
86 | //____________________________________________________________________________ |
87 | void AliMUONClusterFinderVS::ResetRawClusters() |
88 | { |
89 | // Reset tracks information |
90 | fNRawClusters = 0; |
91 | if (fRawClusters) fRawClusters->Clear(); |
92 | } |
93 | //____________________________________________________________________________ |
a9e2aefa |
94 | void AliMUONClusterFinderVS::Decluster(AliMUONRawCluster *cluster) |
95 | { |
96 | // Decluster by local maxima |
97 | SplitByLocalMaxima(cluster); |
98 | } |
4da78c65 |
99 | //____________________________________________________________________________ |
a9e2aefa |
100 | void AliMUONClusterFinderVS::SplitByLocalMaxima(AliMUONRawCluster *c) |
101 | { |
102 | // Split complex cluster by local maxima |
a9e2aefa |
103 | Int_t cath, i; |
9825400f |
104 | |
30aaba74 |
105 | fInput->SetCluster(c); |
9825400f |
106 | |
a9e2aefa |
107 | fMul[0]=c->fMultiplicity[0]; |
108 | fMul[1]=c->fMultiplicity[1]; |
109 | |
110 | // |
111 | // dump digit information into arrays |
112 | // |
9825400f |
113 | |
f0d86bc4 |
114 | Float_t qtot; |
a9e2aefa |
115 | |
116 | for (cath=0; cath<2; cath++) { |
117 | qtot=0; |
118 | for (i=0; i<fMul[cath]; i++) |
119 | { |
120 | // pointer to digit |
30aaba74 |
121 | fDig[i][cath]=fInput->Digit(cath, c->fIndexMap[i][cath]); |
a9e2aefa |
122 | // pad coordinates |
08a636a8 |
123 | fIx[i][cath]= fDig[i][cath]->PadX(); |
124 | fIy[i][cath]= fDig[i][cath]->PadY(); |
a9e2aefa |
125 | // pad charge |
08a636a8 |
126 | fQ[i][cath] = fDig[i][cath]->Signal(); |
a9e2aefa |
127 | // pad centre coordinates |
f0d86bc4 |
128 | fSeg[cath]-> |
129 | GetPadC(fIx[i][cath], fIy[i][cath], fX[i][cath], fY[i][cath], fZ[i][cath]); |
a9e2aefa |
130 | } // loop over cluster digits |
a9e2aefa |
131 | } // loop over cathodes |
132 | |
133 | |
134 | FindLocalMaxima(c); |
135 | |
136 | // |
137 | // Initialise and perform mathieson fits |
138 | Float_t chi2, oldchi2; |
139 | // ++++++++++++++++++*************+++++++++++++++++++++ |
140 | // (1) No more than one local maximum per cathode plane |
141 | // +++++++++++++++++++++++++++++++*************++++++++ |
142 | if ((fNLocal[0]==1 && (fNLocal[1]==0 || fNLocal[1]==1)) || |
143 | (fNLocal[0]==0 && fNLocal[1]==1)) { |
a9e2aefa |
144 | // Perform combined single Mathieson fit |
145 | // Initial values for coordinates (x,y) |
146 | |
147 | // One local maximum on cathodes 1 and 2 (X->cathode 2, Y->cathode 1) |
148 | if (fNLocal[0]==1 && fNLocal[1]==1) { |
ba12c242 |
149 | fXInit[0]=c->GetX(1); |
150 | fYInit[0]=c->GetY(0); |
a9e2aefa |
151 | // One local maximum on cathode 1 (X,Y->cathode 1) |
152 | } else if (fNLocal[0]==1) { |
ba12c242 |
153 | fXInit[0]=c->GetX(0); |
154 | fYInit[0]=c->GetY(0); |
a9e2aefa |
155 | // One local maximum on cathode 2 (X,Y->cathode 2) |
156 | } else { |
ba12c242 |
157 | fXInit[0]=c->GetX(1); |
158 | fYInit[0]=c->GetY(1); |
a9e2aefa |
159 | } |
07cfabcf |
160 | if (fDebugLevel) |
161 | fprintf(stderr,"\n cas (1) CombiSingleMathiesonFit(c)\n"); |
a9e2aefa |
162 | chi2=CombiSingleMathiesonFit(c); |
163 | // Int_t ndf = fgNbins[0]+fgNbins[1]-2; |
164 | // Float_t prob = TMath::Prob(Double_t(chi2),ndf); |
165 | // prob1->Fill(prob); |
166 | // chi2_1->Fill(chi2); |
167 | oldchi2=chi2; |
07cfabcf |
168 | if (fDebugLevel) |
169 | fprintf(stderr," chi2 %f ",chi2); |
a9e2aefa |
170 | |
ba12c242 |
171 | c->SetX(0, fXFit[0]); |
172 | c->SetY(0, fYFit[0]); |
a9e2aefa |
173 | |
ba12c242 |
174 | c->SetX(1,fXFit[0]); |
175 | c->SetY(1,fYFit[0]); |
a9e2aefa |
176 | c->fChi2[0]=chi2; |
177 | c->fChi2[1]=chi2; |
07cfabcf |
178 | // Force on anod |
ba12c242 |
179 | c->SetX(0, fSeg[0]->GetAnod(c->GetX(0))); |
180 | c->SetX(1, fSeg[1]->GetAnod(c->GetX(1))); |
a9e2aefa |
181 | |
182 | // If reasonable chi^2 add result to the list of rawclusters |
a9e2aefa |
183 | if (chi2 < 0.3) { |
184 | AddRawCluster(*c); |
185 | // If not try combined double Mathieson Fit |
186 | } else { |
19dd5b2f |
187 | if (fDebugLevel) |
a9e2aefa |
188 | fprintf(stderr," MAUVAIS CHI2 !!!\n"); |
189 | if (fNLocal[0]==1 && fNLocal[1]==1) { |
190 | fXInit[0]=fX[fIndLocal[0][1]][1]; |
191 | fYInit[0]=fY[fIndLocal[0][0]][0]; |
192 | fXInit[1]=fX[fIndLocal[0][1]][1]; |
193 | fYInit[1]=fY[fIndLocal[0][0]][0]; |
194 | } else if (fNLocal[0]==1) { |
195 | fXInit[0]=fX[fIndLocal[0][0]][0]; |
196 | fYInit[0]=fY[fIndLocal[0][0]][0]; |
197 | fXInit[1]=fX[fIndLocal[0][0]][0]; |
198 | fYInit[1]=fY[fIndLocal[0][0]][0]; |
199 | } else { |
200 | fXInit[0]=fX[fIndLocal[0][1]][1]; |
201 | fYInit[0]=fY[fIndLocal[0][1]][1]; |
202 | fXInit[1]=fX[fIndLocal[0][1]][1]; |
203 | fYInit[1]=fY[fIndLocal[0][1]][1]; |
204 | } |
205 | |
206 | // Initial value for charge ratios |
207 | fQrInit[0]=0.5; |
208 | fQrInit[1]=0.5; |
07cfabcf |
209 | if (fDebugLevel) |
a9e2aefa |
210 | fprintf(stderr,"\n cas (1) CombiDoubleMathiesonFit(c)\n"); |
211 | chi2=CombiDoubleMathiesonFit(c); |
212 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
213 | // Float_t prob = TMath::Prob(chi2,ndf); |
214 | // prob2->Fill(prob); |
215 | // chi2_2->Fill(chi2); |
216 | |
217 | // Was this any better ?? |
19dd5b2f |
218 | if (fDebugLevel) |
219 | fprintf(stderr," Old and new chi2 %f %f ", oldchi2, chi2); |
a9e2aefa |
220 | if (fFitStat!=0 && chi2>0 && (2.*chi2 < oldchi2)) { |
19dd5b2f |
221 | if (fDebugLevel) |
a9e2aefa |
222 | fprintf(stderr," Split\n"); |
223 | // Split cluster into two according to fit result |
224 | Split(c); |
225 | } else { |
19dd5b2f |
226 | if (fDebugLevel) |
a9e2aefa |
227 | fprintf(stderr," Don't Split\n"); |
228 | // Don't split |
229 | AddRawCluster(*c); |
230 | } |
231 | } |
232 | |
233 | // +++++++++++++++++++++++++++++++++++++++ |
234 | // (2) Two local maxima per cathode plane |
235 | // +++++++++++++++++++++++++++++++++++++++ |
236 | } else if (fNLocal[0]==2 && fNLocal[1]==2) { |
237 | // |
238 | // Let's look for ghosts first |
05c39730 |
239 | |
a9e2aefa |
240 | Float_t xm[4][2], ym[4][2]; |
241 | Float_t dpx, dpy, dx, dy; |
242 | Int_t ixm[4][2], iym[4][2]; |
243 | Int_t isec, im1, im2, ico; |
244 | // |
245 | // Form the 2x2 combinations |
246 | // 0-0, 0-1, 1-0, 1-1 |
247 | ico=0; |
248 | for (im1=0; im1<2; im1++) { |
249 | for (im2=0; im2<2; im2++) { |
250 | xm[ico][0]=fX[fIndLocal[im1][0]][0]; |
251 | ym[ico][0]=fY[fIndLocal[im1][0]][0]; |
252 | xm[ico][1]=fX[fIndLocal[im2][1]][1]; |
253 | ym[ico][1]=fY[fIndLocal[im2][1]][1]; |
254 | |
255 | ixm[ico][0]=fIx[fIndLocal[im1][0]][0]; |
256 | iym[ico][0]=fIy[fIndLocal[im1][0]][0]; |
257 | ixm[ico][1]=fIx[fIndLocal[im2][1]][1]; |
258 | iym[ico][1]=fIy[fIndLocal[im2][1]][1]; |
259 | ico++; |
260 | } |
261 | } |
262 | // ico = 0 : first local maximum on cathodes 1 and 2 |
263 | // ico = 1 : fisrt local maximum on cathode 1 and second on cathode 2 |
264 | // ico = 2 : second local maximum on cathode 1 and first on cathode 1 |
265 | // ico = 3 : second local maximum on cathodes 1 and 2 |
266 | |
267 | // Analyse the combinations and keep those that are possible ! |
268 | // For each combination check consistency in x and y |
05c39730 |
269 | Int_t iacc; |
270 | Bool_t accepted[4]; |
271 | Float_t dr[4] = {1.e4, 1.e4, 1.e4, 1.e4}; |
a9e2aefa |
272 | iacc=0; |
05c39730 |
273 | |
274 | // In case of staggering maxima are displaced by exactly half the pad-size in y. |
275 | // We have to take into account the numerical precision in the consistency check; |
276 | Float_t eps = 1.e-5; |
277 | // |
a9e2aefa |
278 | for (ico=0; ico<4; ico++) { |
279 | accepted[ico]=kFALSE; |
280 | // cathode one: x-coordinate |
f0d86bc4 |
281 | isec=fSeg[0]->Sector(ixm[ico][0], iym[ico][0]); |
282 | dpx=fSeg[0]->Dpx(isec)/2.; |
a9e2aefa |
283 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); |
284 | // cathode two: y-coordinate |
f0d86bc4 |
285 | isec=fSeg[1]->Sector(ixm[ico][1], iym[ico][1]); |
286 | dpy=fSeg[1]->Dpy(isec)/2.; |
a9e2aefa |
287 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); |
05c39730 |
288 | if (fDebugLevel>1) |
289 | printf("\n %i %f %f %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy, dx, dpx ); |
290 | if ((dx <= dpx) && (dy <= dpy+eps)) { |
a9e2aefa |
291 | // consistent |
292 | accepted[ico]=kTRUE; |
05c39730 |
293 | dr[ico] = TMath::Sqrt(dx*dx+dy*dy); |
a9e2aefa |
294 | iacc++; |
295 | } else { |
296 | // reject |
297 | accepted[ico]=kFALSE; |
298 | } |
299 | } |
19dd5b2f |
300 | if (fDebugLevel) |
301 | printf("\n iacc= %d:\n", iacc); |
05c39730 |
302 | if (iacc == 3) { |
303 | if (accepted[0] && accepted[1]) { |
304 | if (dr[0] >= dr[1]) { |
305 | accepted[0]=kFALSE; |
306 | } else { |
307 | accepted[1]=kFALSE; |
308 | } |
309 | } |
a9e2aefa |
310 | |
05c39730 |
311 | if (accepted[2] && accepted[3]) { |
312 | if (dr[2] >= dr[3]) { |
313 | accepted[2]=kFALSE; |
314 | } else { |
315 | accepted[3]=kFALSE; |
316 | } |
317 | } |
318 | /* |
319 | // eliminate one candidate |
320 | Float_t drmax = 0; |
321 | Int_t icobad = -1; |
322 | |
323 | for (ico=0; ico<4; ico++) { |
324 | if (accepted[ico] && dr[ico] > drmax) { |
325 | icobad = ico; |
326 | drmax = dr[ico]; |
327 | } |
328 | } |
329 | |
330 | accepted[icobad] = kFALSE; |
331 | */ |
332 | iacc = 2; |
333 | } |
334 | |
335 | |
07cfabcf |
336 | if (fDebugLevel) { |
19dd5b2f |
337 | printf("\n iacc= %d:\n", iacc); |
07cfabcf |
338 | if (iacc==2) { |
339 | fprintf(stderr,"\n iacc=2: No problem ! \n"); |
340 | } else if (iacc==4) { |
341 | fprintf(stderr,"\n iacc=4: Ok, but ghost problem !!! \n"); |
342 | } else if (iacc==0) { |
343 | fprintf(stderr,"\n iacc=0: I don't know what to do with this !!!!!!!!! \n"); |
344 | } |
a9e2aefa |
345 | } |
346 | |
347 | // Initial value for charge ratios |
348 | fQrInit[0]=Float_t(fQ[fIndLocal[0][0]][0])/ |
349 | Float_t(fQ[fIndLocal[0][0]][0]+fQ[fIndLocal[1][0]][0]); |
350 | fQrInit[1]=Float_t(fQ[fIndLocal[0][1]][1])/ |
351 | Float_t(fQ[fIndLocal[0][1]][1]+fQ[fIndLocal[1][1]][1]); |
352 | |
353 | // ******* iacc = 0 ******* |
354 | // No combinations found between the 2 cathodes |
355 | // We keep the center of gravity of the cluster |
356 | if (iacc==0) { |
357 | AddRawCluster(*c); |
358 | } |
359 | |
360 | // ******* iacc = 1 ******* |
361 | // Only one combination found between the 2 cathodes |
362 | if (iacc==1) { |
a9e2aefa |
363 | // Initial values for the 2 maxima (x,y) |
364 | |
365 | // 1 maximum is initialised with the maximum of the combination found (X->cathode 2, Y->cathode 1) |
366 | // 1 maximum is initialised with the other maximum of the first cathode |
367 | if (accepted[0]){ |
368 | fprintf(stderr,"ico=0\n"); |
369 | fXInit[0]=xm[0][1]; |
370 | fYInit[0]=ym[0][0]; |
371 | fXInit[1]=xm[3][0]; |
372 | fYInit[1]=ym[3][0]; |
373 | } else if (accepted[1]){ |
374 | fprintf(stderr,"ico=1\n"); |
375 | fXInit[0]=xm[1][1]; |
376 | fYInit[0]=ym[1][0]; |
377 | fXInit[1]=xm[2][0]; |
378 | fYInit[1]=ym[2][0]; |
379 | } else if (accepted[2]){ |
380 | fprintf(stderr,"ico=2\n"); |
381 | fXInit[0]=xm[2][1]; |
382 | fYInit[0]=ym[2][0]; |
383 | fXInit[1]=xm[1][0]; |
384 | fYInit[1]=ym[1][0]; |
385 | } else if (accepted[3]){ |
386 | fprintf(stderr,"ico=3\n"); |
387 | fXInit[0]=xm[3][1]; |
388 | fYInit[0]=ym[3][0]; |
389 | fXInit[1]=xm[0][0]; |
390 | fYInit[1]=ym[0][0]; |
391 | } |
07cfabcf |
392 | if (fDebugLevel) |
393 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
a9e2aefa |
394 | chi2=CombiDoubleMathiesonFit(c); |
395 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
396 | // Float_t prob = TMath::Prob(chi2,ndf); |
397 | // prob2->Fill(prob); |
398 | // chi2_2->Fill(chi2); |
07cfabcf |
399 | if (fDebugLevel) |
400 | fprintf(stderr," chi2 %f\n",chi2); |
a9e2aefa |
401 | |
402 | // If reasonable chi^2 add result to the list of rawclusters |
403 | if (chi2<10) { |
404 | Split(c); |
405 | |
406 | } else { |
407 | // 1 maximum is initialised with the maximum of the combination found (X->cathode 2, Y->cathode 1) |
408 | // 1 maximum is initialised with the other maximum of the second cathode |
409 | if (accepted[0]){ |
410 | fprintf(stderr,"ico=0\n"); |
411 | fXInit[0]=xm[0][1]; |
412 | fYInit[0]=ym[0][0]; |
413 | fXInit[1]=xm[3][1]; |
414 | fYInit[1]=ym[3][1]; |
415 | } else if (accepted[1]){ |
416 | fprintf(stderr,"ico=1\n"); |
417 | fXInit[0]=xm[1][1]; |
418 | fYInit[0]=ym[1][0]; |
419 | fXInit[1]=xm[2][1]; |
420 | fYInit[1]=ym[2][1]; |
421 | } else if (accepted[2]){ |
422 | fprintf(stderr,"ico=2\n"); |
423 | fXInit[0]=xm[2][1]; |
424 | fYInit[0]=ym[2][0]; |
425 | fXInit[1]=xm[1][1]; |
426 | fYInit[1]=ym[1][1]; |
427 | } else if (accepted[3]){ |
428 | fprintf(stderr,"ico=3\n"); |
429 | fXInit[0]=xm[3][1]; |
430 | fYInit[0]=ym[3][0]; |
431 | fXInit[1]=xm[0][1]; |
432 | fYInit[1]=ym[0][1]; |
433 | } |
07cfabcf |
434 | if (fDebugLevel) |
435 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
a9e2aefa |
436 | chi2=CombiDoubleMathiesonFit(c); |
437 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
438 | // Float_t prob = TMath::Prob(chi2,ndf); |
439 | // prob2->Fill(prob); |
440 | // chi2_2->Fill(chi2); |
07cfabcf |
441 | if (fDebugLevel) |
442 | fprintf(stderr," chi2 %f\n",chi2); |
a9e2aefa |
443 | |
444 | // If reasonable chi^2 add result to the list of rawclusters |
445 | if (chi2<10) { |
446 | Split(c); |
447 | } else { |
448 | //We keep only the combination found (X->cathode 2, Y->cathode 1) |
449 | for (Int_t ico=0; ico<2; ico++) { |
450 | if (accepted[ico]) { |
451 | AliMUONRawCluster cnew; |
452 | Int_t cath; |
453 | for (cath=0; cath<2; cath++) { |
ba12c242 |
454 | cnew.SetX(cath, Float_t(xm[ico][1])); |
455 | cnew.SetY(cath, Float_t(ym[ico][0])); |
456 | cnew.SetZ(cath, fZPlane); |
aadda617 |
457 | |
9825400f |
458 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; |
a9e2aefa |
459 | for (i=0; i<fMul[cath]; i++) { |
9825400f |
460 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; |
f0d86bc4 |
461 | fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
a9e2aefa |
462 | } |
9825400f |
463 | fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath); |
464 | fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]); |
465 | FillCluster(&cnew,cath); |
a9e2aefa |
466 | } |
467 | cnew.fClusterType=cnew.PhysicsContribution(); |
468 | AddRawCluster(cnew); |
469 | fNPeaks++; |
470 | } |
471 | } |
472 | } |
473 | } |
474 | } |
9825400f |
475 | |
a9e2aefa |
476 | // ******* iacc = 2 ******* |
477 | // Two combinations found between the 2 cathodes |
478 | if (iacc==2) { |
a9e2aefa |
479 | // Was the same maximum taken twice |
9825400f |
480 | if ((accepted[0]&&accepted[1]) || (accepted[2]&&accepted[3])) { |
481 | fprintf(stderr,"\n Maximum taken twice !!!\n"); |
a9e2aefa |
482 | |
05c39730 |
483 | // Have a try !! with that |
9825400f |
484 | if (accepted[0]&&accepted[3]) { |
485 | fXInit[0]=xm[0][1]; |
486 | fYInit[0]=ym[0][0]; |
487 | fXInit[1]=xm[1][1]; |
488 | fYInit[1]=ym[1][0]; |
489 | } else { |
490 | fXInit[0]=xm[2][1]; |
491 | fYInit[0]=ym[2][0]; |
492 | fXInit[1]=xm[3][1]; |
493 | fYInit[1]=ym[3][0]; |
494 | } |
07cfabcf |
495 | if (fDebugLevel) |
496 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
9825400f |
497 | chi2=CombiDoubleMathiesonFit(c); |
a9e2aefa |
498 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
499 | // Float_t prob = TMath::Prob(chi2,ndf); |
500 | // prob2->Fill(prob); |
501 | // chi2_2->Fill(chi2); |
9825400f |
502 | Split(c); |
503 | |
504 | } else { |
a9e2aefa |
505 | // No ghosts ! No Problems ! - Perform one fit only ! |
9825400f |
506 | if (accepted[0]&&accepted[3]) { |
507 | fXInit[0]=xm[0][1]; |
508 | fYInit[0]=ym[0][0]; |
509 | fXInit[1]=xm[3][1]; |
510 | fYInit[1]=ym[3][0]; |
511 | } else { |
512 | fXInit[0]=xm[1][1]; |
513 | fYInit[0]=ym[1][0]; |
514 | fXInit[1]=xm[2][1]; |
515 | fYInit[1]=ym[2][0]; |
516 | } |
07cfabcf |
517 | if (fDebugLevel) |
518 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
9825400f |
519 | chi2=CombiDoubleMathiesonFit(c); |
a9e2aefa |
520 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
521 | // Float_t prob = TMath::Prob(chi2,ndf); |
522 | // prob2->Fill(prob); |
523 | // chi2_2->Fill(chi2); |
07cfabcf |
524 | if (fDebugLevel) |
525 | fprintf(stderr," chi2 %f\n",chi2); |
9825400f |
526 | Split(c); |
527 | } |
528 | |
a9e2aefa |
529 | // ******* iacc = 4 ******* |
530 | // Four combinations found between the 2 cathodes |
531 | // Ghost !! |
9825400f |
532 | } else if (iacc==4) { |
a9e2aefa |
533 | // Perform fits for the two possibilities !! |
07cfabcf |
534 | // Accept if charges are compatible on both cathodes |
535 | // If none are compatible, keep everything |
9825400f |
536 | fXInit[0]=xm[0][1]; |
537 | fYInit[0]=ym[0][0]; |
538 | fXInit[1]=xm[3][1]; |
539 | fYInit[1]=ym[3][0]; |
07cfabcf |
540 | if (fDebugLevel) |
541 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
9825400f |
542 | chi2=CombiDoubleMathiesonFit(c); |
a9e2aefa |
543 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
544 | // Float_t prob = TMath::Prob(chi2,ndf); |
545 | // prob2->Fill(prob); |
546 | // chi2_2->Fill(chi2); |
07cfabcf |
547 | if (fDebugLevel) |
548 | fprintf(stderr," chi2 %f\n",chi2); |
549 | // store results of fit and postpone decision |
550 | Double_t sXFit[2],sYFit[2],sQrFit[2]; |
551 | Float_t sChi2[2]; |
552 | for (Int_t i=0;i<2;i++) { |
553 | sXFit[i]=fXFit[i]; |
554 | sYFit[i]=fYFit[i]; |
555 | sQrFit[i]=fQrFit[i]; |
556 | sChi2[i]=fChi2[i]; |
557 | } |
9825400f |
558 | fXInit[0]=xm[1][1]; |
559 | fYInit[0]=ym[1][0]; |
560 | fXInit[1]=xm[2][1]; |
561 | fYInit[1]=ym[2][0]; |
07cfabcf |
562 | if (fDebugLevel) |
563 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
9825400f |
564 | chi2=CombiDoubleMathiesonFit(c); |
a9e2aefa |
565 | // ndf = fgNbins[0]+fgNbins[1]-6; |
566 | // prob = TMath::Prob(chi2,ndf); |
567 | // prob2->Fill(prob); |
568 | // chi2_2->Fill(chi2); |
07cfabcf |
569 | if (fDebugLevel) |
570 | fprintf(stderr," chi2 %f\n",chi2); |
571 | // We have all informations to perform the decision |
572 | // Compute the chi2 for the 2 possibilities |
573 | Float_t chi2fi,chi2si,chi2f,chi2s; |
574 | |
575 | chi2f = (TMath::Log(fInput->TotalCharge(0)*fQrFit[0] |
576 | / (fInput->TotalCharge(1)*fQrFit[1]) ) |
577 | / fInput->Response()->ChargeCorrel() ); |
578 | chi2f *=chi2f; |
579 | chi2fi = (TMath::Log(fInput->TotalCharge(0)*(1-fQrFit[0]) |
580 | / (fInput->TotalCharge(1)*(1-fQrFit[1])) ) |
581 | / fInput->Response()->ChargeCorrel() ); |
582 | chi2f += chi2fi*chi2fi; |
583 | |
584 | chi2s = (TMath::Log(fInput->TotalCharge(0)*sQrFit[0] |
585 | / (fInput->TotalCharge(1)*sQrFit[1]) ) |
586 | / fInput->Response()->ChargeCorrel() ); |
587 | chi2s *=chi2s; |
588 | chi2si = (TMath::Log(fInput->TotalCharge(0)*(1-sQrFit[0]) |
589 | / (fInput->TotalCharge(1)*(1-sQrFit[1])) ) |
590 | / fInput->Response()->ChargeCorrel() ); |
591 | chi2s += chi2si*chi2si; |
592 | |
593 | // usefull to store the charge matching chi2 in the cluster |
594 | // fChi2[0]=sChi2[1]=chi2f; |
595 | // fChi2[1]=sChi2[0]=chi2s; |
596 | |
597 | if (chi2f<=fGhostChi2Cut && chi2s<=fGhostChi2Cut) |
598 | c->fGhost=1; |
599 | if (chi2f>fGhostChi2Cut && chi2s>fGhostChi2Cut) { |
600 | // we keep the ghost |
601 | c->fGhost=2; |
602 | chi2s=-1; |
603 | chi2f=-1; |
604 | } |
605 | if (chi2f<=fGhostChi2Cut) |
606 | Split(c); |
607 | if (chi2s<=fGhostChi2Cut) { |
608 | // retreive saved values |
609 | for (Int_t i=0;i<2;i++) { |
610 | fXFit[i]=sXFit[i]; |
611 | fYFit[i]=sYFit[i]; |
612 | fQrFit[i]=sQrFit[i]; |
613 | fChi2[i]=sChi2[i]; |
614 | } |
615 | Split(c); |
616 | } |
617 | c->fGhost=0; |
9825400f |
618 | } |
a9e2aefa |
619 | |
9825400f |
620 | } else if (fNLocal[0]==2 && fNLocal[1]==1) { |
a9e2aefa |
621 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
622 | // (3) Two local maxima on cathode 1 and one maximum on cathode 2 |
623 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
624 | // |
625 | Float_t xm[4][2], ym[4][2]; |
626 | Float_t dpx, dpy, dx, dy; |
627 | Int_t ixm[4][2], iym[4][2]; |
628 | Int_t isec, im1, ico; |
629 | // |
630 | // Form the 2x2 combinations |
631 | // 0-0, 0-1, 1-0, 1-1 |
632 | ico=0; |
633 | for (im1=0; im1<2; im1++) { |
9825400f |
634 | xm[ico][0]=fX[fIndLocal[im1][0]][0]; |
635 | ym[ico][0]=fY[fIndLocal[im1][0]][0]; |
636 | xm[ico][1]=fX[fIndLocal[0][1]][1]; |
637 | ym[ico][1]=fY[fIndLocal[0][1]][1]; |
638 | |
639 | ixm[ico][0]=fIx[fIndLocal[im1][0]][0]; |
640 | iym[ico][0]=fIy[fIndLocal[im1][0]][0]; |
641 | ixm[ico][1]=fIx[fIndLocal[0][1]][1]; |
642 | iym[ico][1]=fIy[fIndLocal[0][1]][1]; |
643 | ico++; |
a9e2aefa |
644 | } |
645 | // ico = 0 : first local maximum on cathodes 1 and 2 |
646 | // ico = 1 : second local maximum on cathode 1 and first on cathode 2 |
647 | |
648 | // Analyse the combinations and keep those that are possible ! |
649 | // For each combination check consistency in x and y |
650 | Int_t iacc; |
651 | Bool_t accepted[4]; |
652 | iacc=0; |
05c39730 |
653 | // In case of staggering maxima are displaced by exactly half the pad-size in y. |
375c469b |
654 | // We have to take into account the numerical precision in the consistency check; |
655 | |
05c39730 |
656 | Float_t eps = 1.e-5; |
657 | |
a9e2aefa |
658 | for (ico=0; ico<2; ico++) { |
659 | accepted[ico]=kFALSE; |
f0d86bc4 |
660 | isec=fSeg[0]->Sector(ixm[ico][0], iym[ico][0]); |
661 | dpx=fSeg[0]->Dpx(isec)/2.; |
a9e2aefa |
662 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); |
f0d86bc4 |
663 | isec=fSeg[1]->Sector(ixm[ico][1], iym[ico][1]); |
664 | dpy=fSeg[1]->Dpy(isec)/2.; |
a9e2aefa |
665 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); |
05c39730 |
666 | if (fDebugLevel>1) |
07cfabcf |
667 | printf("\n %i %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy ); |
05c39730 |
668 | if ((dx <= dpx) && (dy <= dpy+eps)) { |
a9e2aefa |
669 | // consistent |
670 | accepted[ico]=kTRUE; |
671 | iacc++; |
672 | } else { |
673 | // reject |
674 | accepted[ico]=kFALSE; |
675 | } |
676 | } |
9825400f |
677 | |
a9e2aefa |
678 | Float_t chi21 = 100; |
679 | Float_t chi22 = 100; |
05c39730 |
680 | Float_t chi23 = 100; |
681 | |
682 | // Initial value for charge ratios |
683 | fQrInit[0]=Float_t(fQ[fIndLocal[0][0]][0])/ |
684 | Float_t(fQ[fIndLocal[0][0]][0]+fQ[fIndLocal[1][0]][0]); |
685 | fQrInit[1]=fQrInit[0]; |
9825400f |
686 | |
05c39730 |
687 | if (accepted[0] && accepted[1]) { |
688 | |
689 | fXInit[0]=0.5*(xm[0][1]+xm[0][0]); |
690 | fYInit[0]=ym[0][0]; |
691 | fXInit[1]=0.5*(xm[0][1]+xm[1][0]); |
692 | fYInit[1]=ym[1][0]; |
693 | fQrInit[0]=0.5; |
694 | fQrInit[1]=0.5; |
695 | chi23=CombiDoubleMathiesonFit(c); |
696 | if (chi23<10) { |
697 | Split(c); |
698 | Float_t yst; |
699 | yst = fYFit[0]; |
700 | fYFit[0] = fYFit[1]; |
701 | fYFit[1] = yst; |
702 | Split(c); |
703 | } |
704 | } else if (accepted[0]) { |
a9e2aefa |
705 | fXInit[0]=xm[0][1]; |
706 | fYInit[0]=ym[0][0]; |
707 | fXInit[1]=xm[1][0]; |
708 | fYInit[1]=ym[1][0]; |
709 | chi21=CombiDoubleMathiesonFit(c); |
710 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
711 | // Float_t prob = TMath::Prob(chi2,ndf); |
712 | // prob2->Fill(prob); |
713 | // chi2_2->Fill(chi21); |
07cfabcf |
714 | if (fDebugLevel) |
715 | fprintf(stderr," chi2 %f\n",chi21); |
a9e2aefa |
716 | if (chi21<10) Split(c); |
717 | } else if (accepted[1]) { |
718 | fXInit[0]=xm[1][1]; |
719 | fYInit[0]=ym[1][0]; |
720 | fXInit[1]=xm[0][0]; |
721 | fYInit[1]=ym[0][0]; |
722 | chi22=CombiDoubleMathiesonFit(c); |
723 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
724 | // Float_t prob = TMath::Prob(chi2,ndf); |
725 | // prob2->Fill(prob); |
726 | // chi2_2->Fill(chi22); |
07cfabcf |
727 | if (fDebugLevel) |
728 | fprintf(stderr," chi2 %f\n",chi22); |
a9e2aefa |
729 | if (chi22<10) Split(c); |
730 | } |
731 | |
375c469b |
732 | if (chi21 > 10 && chi22 > 10 && chi23 > 10) { |
a9e2aefa |
733 | // We keep only the combination found (X->cathode 2, Y->cathode 1) |
734 | for (Int_t ico=0; ico<2; ico++) { |
735 | if (accepted[ico]) { |
736 | AliMUONRawCluster cnew; |
737 | Int_t cath; |
738 | for (cath=0; cath<2; cath++) { |
ba12c242 |
739 | cnew.SetX(cath, Float_t(xm[ico][1])); |
740 | cnew.SetY(cath, Float_t(ym[ico][0])); |
741 | cnew.SetZ(cath, fZPlane); |
a9e2aefa |
742 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; |
743 | for (i=0; i<fMul[cath]; i++) { |
9825400f |
744 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; |
f0d86bc4 |
745 | fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
a9e2aefa |
746 | } |
747 | fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath); |
748 | fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]); |
749 | FillCluster(&cnew,cath); |
750 | } |
751 | cnew.fClusterType=cnew.PhysicsContribution(); |
752 | AddRawCluster(cnew); |
753 | fNPeaks++; |
754 | } |
755 | } |
756 | } |
9825400f |
757 | |
a9e2aefa |
758 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
759 | // (3') One local maximum on cathode 1 and two maxima on cathode 2 |
760 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
761 | } else if (fNLocal[0]==1 && fNLocal[1]==2) { |
a9e2aefa |
762 | Float_t xm[4][2], ym[4][2]; |
763 | Float_t dpx, dpy, dx, dy; |
764 | Int_t ixm[4][2], iym[4][2]; |
765 | Int_t isec, im1, ico; |
766 | // |
767 | // Form the 2x2 combinations |
768 | // 0-0, 0-1, 1-0, 1-1 |
769 | ico=0; |
770 | for (im1=0; im1<2; im1++) { |
9825400f |
771 | xm[ico][0]=fX[fIndLocal[0][0]][0]; |
772 | ym[ico][0]=fY[fIndLocal[0][0]][0]; |
773 | xm[ico][1]=fX[fIndLocal[im1][1]][1]; |
774 | ym[ico][1]=fY[fIndLocal[im1][1]][1]; |
775 | |
776 | ixm[ico][0]=fIx[fIndLocal[0][0]][0]; |
777 | iym[ico][0]=fIy[fIndLocal[0][0]][0]; |
778 | ixm[ico][1]=fIx[fIndLocal[im1][1]][1]; |
779 | iym[ico][1]=fIy[fIndLocal[im1][1]][1]; |
780 | ico++; |
a9e2aefa |
781 | } |
782 | // ico = 0 : first local maximum on cathodes 1 and 2 |
783 | // ico = 1 : first local maximum on cathode 1 and second on cathode 2 |
784 | |
785 | // Analyse the combinations and keep those that are possible ! |
786 | // For each combination check consistency in x and y |
787 | Int_t iacc; |
788 | Bool_t accepted[4]; |
789 | iacc=0; |
05c39730 |
790 | // In case of staggering maxima are displaced by exactly half the pad-size in y. |
791 | // We have to take into account the numerical precision in the consistency check; |
792 | Float_t eps = 1.e-5; |
793 | |
a9e2aefa |
794 | |
795 | for (ico=0; ico<2; ico++) { |
796 | accepted[ico]=kFALSE; |
f0d86bc4 |
797 | isec=fSeg[0]->Sector(ixm[ico][0], iym[ico][0]); |
798 | dpx=fSeg[0]->Dpx(isec)/2.; |
a9e2aefa |
799 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); |
f0d86bc4 |
800 | isec=fSeg[1]->Sector(ixm[ico][1], iym[ico][1]); |
801 | dpy=fSeg[1]->Dpy(isec)/2.; |
a9e2aefa |
802 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); |
05c39730 |
803 | if (fDebugLevel>0) |
07cfabcf |
804 | printf("\n %i %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy ); |
05c39730 |
805 | if ((dx <= dpx) && (dy <= dpy+eps)) { |
a9e2aefa |
806 | // consistent |
807 | accepted[ico]=kTRUE; |
808 | fprintf(stderr,"ico %d\n",ico); |
809 | iacc++; |
810 | } else { |
811 | // reject |
812 | accepted[ico]=kFALSE; |
813 | } |
814 | } |
815 | |
816 | Float_t chi21 = 100; |
817 | Float_t chi22 = 100; |
05c39730 |
818 | Float_t chi23 = 100; |
819 | |
820 | fQrInit[1]=Float_t(fQ[fIndLocal[0][1]][1])/ |
821 | Float_t(fQ[fIndLocal[0][1]][1]+fQ[fIndLocal[1][1]][1]); |
822 | |
823 | fQrInit[0]=fQrInit[1]; |
a9e2aefa |
824 | |
05c39730 |
825 | |
826 | if (accepted[0] && accepted[1]) { |
827 | fXInit[0]=xm[0][1]; |
828 | fYInit[0]=0.5*(ym[0][0]+ym[0][1]); |
829 | fXInit[1]=xm[1][1]; |
830 | fYInit[1]=0.5*(ym[0][0]+ym[1][1]); |
831 | fQrInit[0]=0.5; |
832 | fQrInit[1]=0.5; |
833 | chi23=CombiDoubleMathiesonFit(c); |
834 | if (chi23<10) { |
835 | Split(c); |
836 | Float_t yst; |
837 | yst = fYFit[0]; |
838 | fYFit[0] = fYFit[1]; |
839 | fYFit[1] = yst; |
840 | Split(c); |
841 | } |
842 | } else if (accepted[0]) { |
a9e2aefa |
843 | fXInit[0]=xm[0][0]; |
844 | fYInit[0]=ym[0][1]; |
845 | fXInit[1]=xm[1][1]; |
846 | fYInit[1]=ym[1][1]; |
847 | chi21=CombiDoubleMathiesonFit(c); |
848 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
849 | // Float_t prob = TMath::Prob(chi2,ndf); |
850 | // prob2->Fill(prob); |
851 | // chi2_2->Fill(chi21); |
07cfabcf |
852 | if (fDebugLevel) |
853 | fprintf(stderr," chi2 %f\n",chi21); |
a9e2aefa |
854 | if (chi21<10) Split(c); |
855 | } else if (accepted[1]) { |
856 | fXInit[0]=xm[1][0]; |
857 | fYInit[0]=ym[1][1]; |
858 | fXInit[1]=xm[0][1]; |
859 | fYInit[1]=ym[0][1]; |
860 | chi22=CombiDoubleMathiesonFit(c); |
861 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
862 | // Float_t prob = TMath::Prob(chi2,ndf); |
863 | // prob2->Fill(prob); |
864 | // chi2_2->Fill(chi22); |
07cfabcf |
865 | if (fDebugLevel) |
866 | fprintf(stderr," chi2 %f\n",chi22); |
a9e2aefa |
867 | if (chi22<10) Split(c); |
868 | } |
869 | |
05c39730 |
870 | if (chi21 > 10 && chi22 > 10 && chi23 > 10) { |
a9e2aefa |
871 | //We keep only the combination found (X->cathode 2, Y->cathode 1) |
872 | for (Int_t ico=0; ico<2; ico++) { |
873 | if (accepted[ico]) { |
874 | AliMUONRawCluster cnew; |
875 | Int_t cath; |
876 | for (cath=0; cath<2; cath++) { |
ba12c242 |
877 | cnew.SetX(cath, Float_t(xm[ico][1])); |
878 | cnew.SetY(cath, Float_t(ym[ico][0])); |
879 | cnew.SetZ(cath, fZPlane); |
a9e2aefa |
880 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; |
881 | for (i=0; i<fMul[cath]; i++) { |
9825400f |
882 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; |
f0d86bc4 |
883 | fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
a9e2aefa |
884 | } |
885 | fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath); |
886 | fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]); |
887 | FillCluster(&cnew,cath); |
888 | } |
889 | cnew.fClusterType=cnew.PhysicsContribution(); |
890 | AddRawCluster(cnew); |
891 | fNPeaks++; |
892 | } |
893 | } |
894 | } |
895 | |
896 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
897 | // (4) At least three local maxima on cathode 1 or on cathode 2 |
898 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
899 | } else if (fNLocal[0]>2 || fNLocal[1]>2) { |
a9e2aefa |
900 | Int_t param = fNLocal[0]*fNLocal[1]; |
f8ffca81 |
901 | Int_t ii; |
9825400f |
902 | |
39e6d319 |
903 | Float_t ** xm = new Float_t * [param]; |
904 | for (ii=0; ii<param; ii++) xm[ii]=new Float_t [2]; |
905 | Float_t ** ym = new Float_t * [param]; |
906 | for (ii=0; ii<param; ii++) ym[ii]=new Float_t [2]; |
907 | Int_t ** ixm = new Int_t * [param]; |
908 | for (ii=0; ii<param; ii++) ixm[ii]=new Int_t [2]; |
909 | Int_t ** iym = new Int_t * [param]; |
910 | for (ii=0; ii<param; ii++) iym[ii]=new Int_t [2]; |
f8ffca81 |
911 | |
a9e2aefa |
912 | Int_t isec, ico; |
913 | Float_t dpx, dpy, dx, dy; |
914 | |
915 | ico=0; |
916 | for (Int_t im1=0; im1<fNLocal[0]; im1++) { |
917 | for (Int_t im2=0; im2<fNLocal[1]; im2++) { |
918 | xm[ico][0]=fX[fIndLocal[im1][0]][0]; |
919 | ym[ico][0]=fY[fIndLocal[im1][0]][0]; |
920 | xm[ico][1]=fX[fIndLocal[im2][1]][1]; |
921 | ym[ico][1]=fY[fIndLocal[im2][1]][1]; |
922 | |
923 | ixm[ico][0]=fIx[fIndLocal[im1][0]][0]; |
924 | iym[ico][0]=fIy[fIndLocal[im1][0]][0]; |
925 | ixm[ico][1]=fIx[fIndLocal[im2][1]][1]; |
926 | iym[ico][1]=fIy[fIndLocal[im2][1]][1]; |
927 | ico++; |
928 | } |
929 | } |
9825400f |
930 | |
a9e2aefa |
931 | Int_t nIco = ico; |
07cfabcf |
932 | if (fDebugLevel) |
933 | fprintf(stderr,"nIco %d\n",nIco); |
a9e2aefa |
934 | for (ico=0; ico<nIco; ico++) { |
07cfabcf |
935 | if (fDebugLevel) |
936 | fprintf(stderr,"ico = %d\n",ico); |
f0d86bc4 |
937 | isec=fSeg[0]->Sector(ixm[ico][0], iym[ico][0]); |
938 | dpx=fSeg[0]->Dpx(isec)/2.; |
a9e2aefa |
939 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); |
f0d86bc4 |
940 | isec=fSeg[1]->Sector(ixm[ico][1], iym[ico][1]); |
941 | dpy=fSeg[1]->Dpy(isec)/2.; |
a9e2aefa |
942 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); |
07cfabcf |
943 | if (fDebugLevel) { |
944 | fprintf(stderr,"dx %f dpx %f dy %f dpy %f\n",dx,dpx,dy,dpy); |
945 | fprintf(stderr," X %f Y %f\n",xm[ico][1],ym[ico][0]); |
946 | } |
a9e2aefa |
947 | if ((dx <= dpx) && (dy <= dpy)) { |
07cfabcf |
948 | if (fDebugLevel) |
949 | fprintf(stderr,"ok\n"); |
a9e2aefa |
950 | Int_t cath; |
951 | AliMUONRawCluster cnew; |
952 | for (cath=0; cath<2; cath++) { |
ba12c242 |
953 | cnew.SetX(cath, Float_t(xm[ico][1])); |
954 | cnew.SetY(cath, Float_t(ym[ico][0])); |
955 | cnew.SetZ(cath, fZPlane); |
a9e2aefa |
956 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; |
957 | for (i=0; i<fMul[cath]; i++) { |
9825400f |
958 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; |
f0d86bc4 |
959 | fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
a9e2aefa |
960 | } |
961 | FillCluster(&cnew,cath); |
962 | } |
963 | cnew.fClusterType=cnew.PhysicsContribution(); |
964 | AddRawCluster(cnew); |
965 | fNPeaks++; |
966 | } |
967 | } |
f8ffca81 |
968 | delete [] xm; |
969 | delete [] ym; |
970 | delete [] ixm; |
971 | delete [] iym; |
a9e2aefa |
972 | } |
973 | } |
974 | |
e3cba86e |
975 | void AliMUONClusterFinderVS::FindLocalMaxima(AliMUONRawCluster* /*c*/) |
a9e2aefa |
976 | { |
977 | // Find all local maxima of a cluster |
07cfabcf |
978 | if (fDebugLevel) |
979 | printf("\n Find Local maxima !"); |
f0d86bc4 |
980 | |
a9e2aefa |
981 | AliMUONDigit* digt; |
982 | |
983 | Int_t cath, cath1; // loops over cathodes |
984 | Int_t i; // loops over digits |
985 | Int_t j; // loops over cathodes |
986 | // |
987 | // Find local maxima |
988 | // |
989 | // counters for number of local maxima |
990 | fNLocal[0]=fNLocal[1]=0; |
991 | // flags digits as local maximum |
992 | Bool_t isLocal[100][2]; |
993 | for (i=0; i<100;i++) { |
994 | isLocal[i][0]=isLocal[i][1]=kFALSE; |
995 | } |
996 | // number of next neighbours and arrays to store them |
997 | Int_t nn; |
30aaba74 |
998 | Int_t x[10], y[10]; |
a9e2aefa |
999 | // loop over cathodes |
1000 | for (cath=0; cath<2; cath++) { |
1001 | // loop over cluster digits |
1002 | for (i=0; i<fMul[cath]; i++) { |
1003 | // get neighbours for that digit and assume that it is local maximum |
f0d86bc4 |
1004 | fSeg[cath]->Neighbours(fIx[i][cath], fIy[i][cath], &nn, x, y); |
a9e2aefa |
1005 | isLocal[i][cath]=kTRUE; |
f0d86bc4 |
1006 | Int_t isec= fSeg[cath]->Sector(fIx[i][cath], fIy[i][cath]); |
1007 | Float_t a0 = fSeg[cath]->Dpx(isec)*fSeg[cath]->Dpy(isec); |
a9e2aefa |
1008 | // loop over next neighbours, if at least one neighbour has higher charger assumption |
1009 | // digit is not local maximum |
1010 | for (j=0; j<nn; j++) { |
30aaba74 |
1011 | if (fHitMap[cath]->TestHit(x[j], y[j])==kEmpty) continue; |
1012 | digt=(AliMUONDigit*) fHitMap[cath]->GetHit(x[j], y[j]); |
f0d86bc4 |
1013 | isec=fSeg[cath]->Sector(x[j], y[j]); |
1014 | Float_t a1 = fSeg[cath]->Dpx(isec)*fSeg[cath]->Dpy(isec); |
08a636a8 |
1015 | if (digt->Signal()/a1 > fQ[i][cath]/a0) { |
a9e2aefa |
1016 | isLocal[i][cath]=kFALSE; |
1017 | break; |
1018 | // |
1019 | // handle special case of neighbouring pads with equal signal |
08a636a8 |
1020 | } else if (digt->Signal() == fQ[i][cath]) { |
a9e2aefa |
1021 | if (fNLocal[cath]>0) { |
1022 | for (Int_t k=0; k<fNLocal[cath]; k++) { |
1023 | if (x[j]==fIx[fIndLocal[k][cath]][cath] |
1024 | && y[j]==fIy[fIndLocal[k][cath]][cath]) |
1025 | { |
1026 | isLocal[i][cath]=kFALSE; |
1027 | } |
1028 | } // loop over local maxima |
1029 | } // are there already local maxima |
1030 | } // same charge ? |
1031 | } // loop over next neighbours |
1032 | if (isLocal[i][cath]) { |
1033 | fIndLocal[fNLocal[cath]][cath]=i; |
1034 | fNLocal[cath]++; |
1035 | } |
1036 | } // loop over all digits |
1037 | } // loop over cathodes |
07cfabcf |
1038 | |
1039 | if (fDebugLevel) { |
1040 | printf("\n Found %d %d %d %d local Maxima\n", |
1041 | fNLocal[0], fNLocal[1], fMul[0], fMul[1]); |
1042 | fprintf(stderr,"\n Cathode 1 local Maxima %d Multiplicite %d\n",fNLocal[0], fMul[0]); |
1043 | fprintf(stderr," Cathode 2 local Maxima %d Multiplicite %d\n",fNLocal[1], fMul[1]); |
1044 | } |
a9e2aefa |
1045 | Int_t ix, iy, isec; |
1046 | Float_t dpx, dpy; |
1047 | |
1048 | |
1049 | if (fNLocal[1]==2 && (fNLocal[0]==1 || fNLocal[0]==0)) { |
1050 | Int_t iback=fNLocal[0]; |
1051 | |
1052 | // Two local maxima on cathode 2 and one maximum on cathode 1 |
1053 | // Look for local maxima considering up and down neighbours on the 1st cathode only |
1054 | // |
1055 | // Loop over cluster digits |
1056 | cath=0; |
1057 | cath1=1; |
1058 | |
1059 | for (i=0; i<fMul[cath]; i++) { |
f0d86bc4 |
1060 | isec=fSeg[cath]->Sector(fIx[i][cath],fIy[i][cath]); |
1061 | dpy=fSeg[cath]->Dpy(isec); |
1062 | dpx=fSeg[cath]->Dpx(isec); |
a9e2aefa |
1063 | if (isLocal[i][cath]) continue; |
1064 | // Pad position should be consistent with position of local maxima on the opposite cathode |
1065 | if ((TMath::Abs(fX[i][cath]-fX[fIndLocal[0][cath1]][cath1]) > dpx/2.) && |
1066 | (TMath::Abs(fX[i][cath]-fX[fIndLocal[1][cath1]][cath1]) > dpx/2.)) |
1067 | continue; |
1068 | |
1069 | // get neighbours for that digit and assume that it is local maximum |
1070 | isLocal[i][cath]=kTRUE; |
1071 | // compare signal to that on the two neighbours on the left and on the right |
a9e2aefa |
1072 | // iNN counts the number of neighbours with signal, it should be 1 or 2 |
1073 | Int_t iNN=0; |
f0d86bc4 |
1074 | |
1075 | for (fSeg[cath] |
1076 | ->FirstPad(fX[i][cath], fY[i][cath], fZPlane, 0., dpy); |
1077 | fSeg[cath] |
1078 | ->MorePads(); |
1079 | fSeg[cath] |
1080 | ->NextPad()) |
1081 | { |
1082 | ix = fSeg[cath]->Ix(); |
1083 | iy = fSeg[cath]->Iy(); |
1084 | // skip the current pad |
1085 | if (iy == fIy[i][cath]) continue; |
1086 | |
1087 | if (fHitMap[cath]->TestHit(ix, iy)!=kEmpty) { |
1088 | iNN++; |
1089 | digt=(AliMUONDigit*) fHitMap[cath]->GetHit(ix,iy); |
08a636a8 |
1090 | if (digt->Signal() > fQ[i][cath]) isLocal[i][cath]=kFALSE; |
f0d86bc4 |
1091 | } |
1092 | } // Loop over pad neighbours in y |
a9e2aefa |
1093 | if (isLocal[i][cath] && iNN>0) { |
1094 | fIndLocal[fNLocal[cath]][cath]=i; |
1095 | fNLocal[cath]++; |
1096 | } |
1097 | } // loop over all digits |
1098 | // if one additional maximum has been found we are happy |
1099 | // if more maxima have been found restore the previous situation |
07cfabcf |
1100 | if (fDebugLevel) { |
1101 | fprintf(stderr, |
1102 | "\n New search gives %d local maxima for cathode 1 \n", |
1103 | fNLocal[0]); |
1104 | fprintf(stderr, |
1105 | " %d local maxima for cathode 2 \n", |
1106 | fNLocal[1]); |
1107 | } |
a9e2aefa |
1108 | if (fNLocal[cath]>2) { |
1109 | fNLocal[cath]=iback; |
1110 | } |
1111 | |
1112 | } // 1,2 local maxima |
1113 | |
1114 | if (fNLocal[0]==2 && (fNLocal[1]==1 || fNLocal[1]==0)) { |
1115 | Int_t iback=fNLocal[1]; |
1116 | |
1117 | // Two local maxima on cathode 1 and one maximum on cathode 2 |
1118 | // Look for local maxima considering left and right neighbours on the 2nd cathode only |
1119 | cath=1; |
05c39730 |
1120 | Int_t cath1 = 0; |
1121 | Float_t eps = 1.e-5; |
1122 | |
a9e2aefa |
1123 | // |
1124 | // Loop over cluster digits |
1125 | for (i=0; i<fMul[cath]; i++) { |
f0d86bc4 |
1126 | isec=fSeg[cath]->Sector(fIx[i][cath],fIy[i][cath]); |
1127 | dpx=fSeg[cath]->Dpx(isec); |
1128 | dpy=fSeg[cath]->Dpy(isec); |
a9e2aefa |
1129 | if (isLocal[i][cath]) continue; |
1130 | // Pad position should be consistent with position of local maxima on the opposite cathode |
05c39730 |
1131 | if ((TMath::Abs(fY[i][cath]-fY[fIndLocal[0][cath1]][cath1]) > dpy/2.+eps) && |
1132 | (TMath::Abs(fY[i][cath]-fY[fIndLocal[1][cath1]][cath1]) > dpy/2.+eps)) |
a9e2aefa |
1133 | continue; |
05c39730 |
1134 | |
a9e2aefa |
1135 | // |
1136 | // get neighbours for that digit and assume that it is local maximum |
1137 | isLocal[i][cath]=kTRUE; |
1138 | // compare signal to that on the two neighbours on the left and on the right |
f0d86bc4 |
1139 | |
a9e2aefa |
1140 | // iNN counts the number of neighbours with signal, it should be 1 or 2 |
1141 | Int_t iNN=0; |
f0d86bc4 |
1142 | for (fSeg[cath] |
05c39730 |
1143 | ->FirstPad(fX[i][cath], fY[i][cath], fZPlane, dpx, 0.); |
f0d86bc4 |
1144 | fSeg[cath] |
1145 | ->MorePads(); |
1146 | fSeg[cath] |
1147 | ->NextPad()) |
1148 | { |
05c39730 |
1149 | |
f0d86bc4 |
1150 | ix = fSeg[cath]->Ix(); |
1151 | iy = fSeg[cath]->Iy(); |
05c39730 |
1152 | |
f0d86bc4 |
1153 | // skip the current pad |
1154 | if (ix == fIx[i][cath]) continue; |
1155 | |
1156 | if (fHitMap[cath]->TestHit(ix, iy)!=kEmpty) { |
1157 | iNN++; |
1158 | digt=(AliMUONDigit*) fHitMap[cath]->GetHit(ix,iy); |
08a636a8 |
1159 | if (digt->Signal() > fQ[i][cath]) isLocal[i][cath]=kFALSE; |
f0d86bc4 |
1160 | } |
1161 | } // Loop over pad neighbours in x |
a9e2aefa |
1162 | if (isLocal[i][cath] && iNN>0) { |
1163 | fIndLocal[fNLocal[cath]][cath]=i; |
1164 | fNLocal[cath]++; |
1165 | } |
1166 | } // loop over all digits |
1167 | // if one additional maximum has been found we are happy |
1168 | // if more maxima have been found restore the previous situation |
07cfabcf |
1169 | if (fDebugLevel) { |
1170 | fprintf(stderr,"\n New search gives %d local maxima for cathode 1 \n",fNLocal[0]); |
1171 | fprintf(stderr,"\n %d local maxima for cathode 2 \n",fNLocal[1]); |
1172 | printf("\n New search gives %d %d \n",fNLocal[0],fNLocal[1]); |
1173 | } |
a9e2aefa |
1174 | if (fNLocal[cath]>2) { |
1175 | fNLocal[cath]=iback; |
1176 | } |
a9e2aefa |
1177 | } // 2,1 local maxima |
1178 | } |
1179 | |
1180 | |
1181 | void AliMUONClusterFinderVS::FillCluster(AliMUONRawCluster* c, Int_t flag, Int_t cath) |
1182 | { |
1183 | // |
1184 | // Completes cluster information starting from list of digits |
1185 | // |
1186 | AliMUONDigit* dig; |
802a864d |
1187 | Float_t x, y, z; |
a9e2aefa |
1188 | Int_t ix, iy; |
1189 | |
1190 | if (cath==1) { |
1191 | c->fPeakSignal[cath]=c->fPeakSignal[0]; |
1192 | } else { |
1193 | c->fPeakSignal[cath]=0; |
1194 | } |
1195 | |
1196 | |
1197 | if (flag) { |
ba12c242 |
1198 | c->SetX(cath,0.); |
1199 | c->SetY(cath,0.); |
1200 | c->SetCharge(cath,0); |
a9e2aefa |
1201 | } |
1202 | |
07cfabcf |
1203 | if (fDebugLevel) |
1204 | fprintf(stderr,"\n fPeakSignal %d\n",c->fPeakSignal[cath]); |
a9e2aefa |
1205 | for (Int_t i=0; i<c->fMultiplicity[cath]; i++) |
1206 | { |
30aaba74 |
1207 | dig= fInput->Digit(cath,c->fIndexMap[i][cath]); |
08a636a8 |
1208 | ix=dig->PadX()+c->fOffsetMap[i][cath]; |
1209 | iy=dig->PadY(); |
1210 | Int_t q=dig->Signal(); |
a9e2aefa |
1211 | if (!flag) q=Int_t(q*c->fContMap[i][cath]); |
1212 | // fprintf(stderr,"q %d c->fPeakSignal[ %d ] %d\n",q,cath,c->fPeakSignal[cath]); |
08a636a8 |
1213 | if (dig->Physics() >= dig->Signal()) { |
a9e2aefa |
1214 | c->fPhysicsMap[i]=2; |
08a636a8 |
1215 | } else if (dig->Physics() == 0) { |
a9e2aefa |
1216 | c->fPhysicsMap[i]=0; |
1217 | } else c->fPhysicsMap[i]=1; |
1218 | // |
1219 | // |
05c39730 |
1220 | if (fDebugLevel>1) |
07cfabcf |
1221 | fprintf(stderr,"q %d c->fPeakSignal[cath] %d\n",q,c->fPeakSignal[cath]); |
a9e2aefa |
1222 | // peak signal and track list |
1223 | if (q>c->fPeakSignal[cath]) { |
1224 | c->fPeakSignal[cath]=q; |
08a636a8 |
1225 | c->fTracks[0]=dig->Hit(); |
1226 | c->fTracks[1]=dig->Track(0); |
1227 | c->fTracks[2]=dig->Track(1); |
a9e2aefa |
1228 | // fprintf(stderr," c->fTracks[0] %d c->fTracks[1] %d\n",dig->fHit,dig->fTracks[0]); |
1229 | } |
1230 | // |
1231 | if (flag) { |
f0d86bc4 |
1232 | fSeg[cath]->GetPadC(ix, iy, x, y, z); |
ba12c242 |
1233 | c->AddX(cath, q*x); |
1234 | c->AddY(cath, q*y); |
1235 | c->AddCharge(cath, q); |
a9e2aefa |
1236 | } |
1237 | } // loop over digits |
07cfabcf |
1238 | if (fDebugLevel) |
1239 | fprintf(stderr," fin du cluster c\n"); |
a9e2aefa |
1240 | |
1241 | |
1242 | if (flag) { |
ba12c242 |
1243 | c->SetX(cath, c->GetX(cath)/c->GetCharge(cath)); |
07cfabcf |
1244 | // Force on anod |
ba12c242 |
1245 | c->SetX(cath, fSeg[cath]->GetAnod(c->GetX(cath))); |
1246 | c->SetY(cath, c->GetY(cath)/c->GetCharge(cath)); |
a9e2aefa |
1247 | // |
1248 | // apply correction to the coordinate along the anode wire |
1249 | // |
ba12c242 |
1250 | x=c->GetX(cath); |
1251 | y=c->GetY(cath); |
f0d86bc4 |
1252 | fSeg[cath]->GetPadI(x, y, fZPlane, ix, iy); |
1253 | fSeg[cath]->GetPadC(ix, iy, x, y, z); |
1254 | Int_t isec=fSeg[cath]->Sector(ix,iy); |
1255 | TF1* cogCorr = fSeg[cath]->CorrFunc(isec-1); |
a9e2aefa |
1256 | |
1257 | if (cogCorr) { |
ba12c242 |
1258 | Float_t yOnPad=(c->GetY(cath)-y)/fSeg[cath]->Dpy(isec); |
1259 | c->SetY(cath, c->GetY(cath)-cogCorr->Eval(yOnPad, 0, 0)); |
a9e2aefa |
1260 | } |
1261 | } |
1262 | } |
1263 | |
1264 | void AliMUONClusterFinderVS::FillCluster(AliMUONRawCluster* c, Int_t cath) |
1265 | { |
1266 | // |
1267 | // Completes cluster information starting from list of digits |
1268 | // |
1269 | static Float_t dr0; |
1270 | |
1271 | AliMUONDigit* dig; |
1272 | |
1273 | if (cath==0) { |
1274 | dr0 = 10000; |
1275 | } |
1276 | |
802a864d |
1277 | Float_t xpad, ypad, zpad; |
a9e2aefa |
1278 | Float_t dx, dy, dr; |
1279 | |
1280 | for (Int_t i=0; i<c->fMultiplicity[cath]; i++) |
1281 | { |
30aaba74 |
1282 | dig = fInput->Digit(cath,c->fIndexMap[i][cath]); |
f0d86bc4 |
1283 | fSeg[cath]-> |
08a636a8 |
1284 | GetPadC(dig->PadX(),dig->PadY(),xpad,ypad, zpad); |
07cfabcf |
1285 | if (fDebugLevel) |
ba12c242 |
1286 | fprintf(stderr,"x %f y %f cx %f cy %f\n",xpad,ypad,c->GetX(0),c->GetY(0)); |
1287 | dx = xpad - c->GetX(0); |
1288 | dy = ypad - c->GetY(0); |
a9e2aefa |
1289 | dr = TMath::Sqrt(dx*dx+dy*dy); |
1290 | |
1291 | if (dr < dr0) { |
1292 | dr0 = dr; |
07cfabcf |
1293 | if (fDebugLevel) |
1294 | fprintf(stderr," dr %f\n",dr); |
08a636a8 |
1295 | Int_t q=dig->Signal(); |
1296 | if (dig->Physics() >= dig->Signal()) { |
a9e2aefa |
1297 | c->fPhysicsMap[i]=2; |
08a636a8 |
1298 | } else if (dig->Physics() == 0) { |
a9e2aefa |
1299 | c->fPhysicsMap[i]=0; |
1300 | } else c->fPhysicsMap[i]=1; |
1301 | c->fPeakSignal[cath]=q; |
08a636a8 |
1302 | c->fTracks[0]=dig->Hit(); |
1303 | c->fTracks[1]=dig->Track(0); |
1304 | c->fTracks[2]=dig->Track(1); |
07cfabcf |
1305 | if (fDebugLevel) |
1306 | fprintf(stderr," c->fTracks[0] %d c->fTracks[1] %d\n",dig->Hit(), |
08a636a8 |
1307 | dig->Track(0)); |
a9e2aefa |
1308 | } |
1309 | // |
1310 | } // loop over digits |
1311 | |
1312 | // apply correction to the coordinate along the anode wire |
07cfabcf |
1313 | // Force on anod |
ba12c242 |
1314 | c->SetX(cath,fSeg[cath]->GetAnod(c->GetX(cath))); |
a9e2aefa |
1315 | } |
1316 | |
1317 | void AliMUONClusterFinderVS::FindCluster(Int_t i, Int_t j, Int_t cath, AliMUONRawCluster &c){ |
f0d86bc4 |
1318 | |
1319 | |
a9e2aefa |
1320 | // |
f0d86bc4 |
1321 | // Find a super cluster on both cathodes |
a9e2aefa |
1322 | // |
1323 | // |
1324 | // Add i,j as element of the cluster |
1325 | // |
f0d86bc4 |
1326 | |
30aaba74 |
1327 | Int_t idx = fHitMap[cath]->GetHitIndex(i,j); |
1328 | AliMUONDigit* dig = (AliMUONDigit*) fHitMap[cath]->GetHit(i,j); |
08a636a8 |
1329 | Int_t q=dig->Signal(); |
1330 | Int_t theX=dig->PadX(); |
1331 | Int_t theY=dig->PadY(); |
f0d86bc4 |
1332 | |
a9e2aefa |
1333 | if (q > TMath::Abs(c.fPeakSignal[0]) && q > TMath::Abs(c.fPeakSignal[1])) { |
1334 | c.fPeakSignal[cath]=q; |
08a636a8 |
1335 | c.fTracks[0]=dig->Hit(); |
1336 | c.fTracks[1]=dig->Track(0); |
1337 | c.fTracks[2]=dig->Track(1); |
a9e2aefa |
1338 | } |
1339 | |
1340 | // |
1341 | // Make sure that list of digits is ordered |
1342 | // |
1343 | Int_t mu=c.fMultiplicity[cath]; |
1344 | c.fIndexMap[mu][cath]=idx; |
1345 | |
08a636a8 |
1346 | if (dig->Physics() >= dig->Signal()) { |
a9e2aefa |
1347 | c.fPhysicsMap[mu]=2; |
08a636a8 |
1348 | } else if (dig->Physics() == 0) { |
a9e2aefa |
1349 | c.fPhysicsMap[mu]=0; |
1350 | } else c.fPhysicsMap[mu]=1; |
f0d86bc4 |
1351 | |
1352 | |
a9e2aefa |
1353 | if (mu > 0) { |
f0d86bc4 |
1354 | for (Int_t ind = mu-1; ind >= 0; ind--) { |
a9e2aefa |
1355 | Int_t ist=(c.fIndexMap)[ind][cath]; |
08a636a8 |
1356 | Int_t ql=fInput->Digit(cath, ist)->Signal(); |
1357 | Int_t ix=fInput->Digit(cath, ist)->PadX(); |
1358 | Int_t iy=fInput->Digit(cath, ist)->PadY(); |
f0d86bc4 |
1359 | |
a9e2aefa |
1360 | if (q>ql || (q==ql && theX > ix && theY < iy)) { |
1361 | c.fIndexMap[ind][cath]=idx; |
1362 | c.fIndexMap[ind+1][cath]=ist; |
1363 | } else { |
f0d86bc4 |
1364 | |
a9e2aefa |
1365 | break; |
1366 | } |
1367 | } |
1368 | } |
f0d86bc4 |
1369 | |
a9e2aefa |
1370 | c.fMultiplicity[cath]++; |
1371 | if (c.fMultiplicity[cath] >= 50 ) { |
1372 | printf("FindCluster - multiplicity >50 %d \n",c.fMultiplicity[0]); |
1373 | c.fMultiplicity[cath]=49; |
1374 | } |
1375 | |
1376 | // Prepare center of gravity calculation |
802a864d |
1377 | Float_t x, y, z; |
f0d86bc4 |
1378 | fSeg[cath]->GetPadC(i, j, x, y, z); |
1379 | |
ba12c242 |
1380 | c.AddX(cath,q*x); |
1381 | c.AddY(cath,q*y); |
1382 | c.AddCharge(cath,q); |
f0d86bc4 |
1383 | // |
1384 | // Flag hit as "taken" |
30aaba74 |
1385 | fHitMap[cath]->FlagHit(i,j); |
a9e2aefa |
1386 | // |
1387 | // Now look recursively for all neighbours and pad hit on opposite cathode |
1388 | // |
1389 | // Loop over neighbours |
1390 | Int_t ix,iy; |
f0d86bc4 |
1391 | ix=iy=0; |
a9e2aefa |
1392 | Int_t nn; |
30aaba74 |
1393 | Int_t xList[10], yList[10]; |
f0d86bc4 |
1394 | fSeg[cath]->Neighbours(i,j,&nn,xList,yList); |
a9e2aefa |
1395 | for (Int_t in=0; in<nn; in++) { |
1396 | ix=xList[in]; |
1397 | iy=yList[in]; |
f0d86bc4 |
1398 | |
1399 | if (fHitMap[cath]->TestHit(ix,iy)==kUnused) { |
05c39730 |
1400 | if (fDebugLevel>1) |
07cfabcf |
1401 | printf("\n Neighbours %d %d %d", cath, ix, iy); |
f0d86bc4 |
1402 | FindCluster(ix, iy, cath, c); |
1403 | } |
1404 | |
1405 | } |
1406 | Int_t nOpp=0; |
1407 | Int_t iXopp[50], iYopp[50]; |
1408 | |
a9e2aefa |
1409 | // Neighbours on opposite cathode |
1410 | // Take into account that several pads can overlap with the present pad |
f0d86bc4 |
1411 | Int_t isec=fSeg[cath]->Sector(i,j); |
a9e2aefa |
1412 | Int_t iop; |
f0d86bc4 |
1413 | Float_t dx, dy; |
1414 | |
a9e2aefa |
1415 | if (cath==0) { |
f0d86bc4 |
1416 | iop = 1; |
1417 | dx = (fSeg[cath]->Dpx(isec))/2.; |
1418 | dy = 0.; |
a9e2aefa |
1419 | } else { |
f0d86bc4 |
1420 | iop = 0; |
1421 | dx = 0.; |
1422 | dy = (fSeg[cath]->Dpy(isec))/2; |
1423 | } |
1424 | // loop over pad neighbours on opposite cathode |
1425 | for (fSeg[iop]->FirstPad(x, y, fZPlane, dx, dy); |
1426 | fSeg[iop]->MorePads(); |
1427 | fSeg[iop]->NextPad()) |
1428 | { |
1429 | |
1430 | ix = fSeg[iop]->Ix(); iy = fSeg[iop]->Iy(); |
05c39730 |
1431 | if (fDebugLevel > 1) |
07cfabcf |
1432 | printf("\n ix, iy: %f %f %f %d %d %d", x,y,z,ix, iy, fSector); |
f0d86bc4 |
1433 | if (fHitMap[iop]->TestHit(ix,iy)==kUnused){ |
1434 | iXopp[nOpp]=ix; |
1435 | iYopp[nOpp++]=iy; |
05c39730 |
1436 | if (fDebugLevel > 1) |
07cfabcf |
1437 | printf("\n Opposite %d %d %d", iop, ix, iy); |
a9e2aefa |
1438 | } |
f0d86bc4 |
1439 | |
1440 | } // Loop over pad neighbours |
1441 | // This had to go outside the loop since recursive calls inside the iterator are not possible |
1442 | // |
1443 | Int_t jopp; |
1444 | for (jopp=0; jopp<nOpp; jopp++) { |
1445 | if (fHitMap[iop]->TestHit(iXopp[jopp],iYopp[jopp]) == kUnused) |
1446 | FindCluster(iXopp[jopp], iYopp[jopp], iop, c); |
a9e2aefa |
1447 | } |
1448 | } |
1449 | |
1450 | //_____________________________________________________________________________ |
1451 | |
1452 | void AliMUONClusterFinderVS::FindRawClusters() |
1453 | { |
1454 | // |
1455 | // MUON cluster finder from digits -- finds neighbours on both cathodes and |
1456 | // fills the tree with raw clusters |
1457 | // |
1458 | |
4da78c65 |
1459 | ResetRawClusters(); |
f0d86bc4 |
1460 | // Return if no input datad available |
30aaba74 |
1461 | if (!fInput->NDigits(0) && !fInput->NDigits(1)) return; |
a9e2aefa |
1462 | |
f0d86bc4 |
1463 | fSeg[0] = fInput->Segmentation(0); |
1464 | fSeg[1] = fInput->Segmentation(1); |
1465 | |
1466 | fHitMap[0] = new AliMUONHitMapA1(fSeg[0], fInput->Digits(0)); |
1467 | fHitMap[1] = new AliMUONHitMapA1(fSeg[1], fInput->Digits(1)); |
a9e2aefa |
1468 | |
f0d86bc4 |
1469 | |
a9e2aefa |
1470 | AliMUONDigit *dig; |
1471 | |
1472 | Int_t ndig, cath; |
1473 | Int_t nskip=0; |
1474 | Int_t ncls=0; |
30aaba74 |
1475 | fHitMap[0]->FillHits(); |
1476 | fHitMap[1]->FillHits(); |
a9e2aefa |
1477 | // |
1478 | // Outer Loop over Cathodes |
1479 | for (cath=0; cath<2; cath++) { |
30aaba74 |
1480 | for (ndig=0; ndig<fInput->NDigits(cath); ndig++) { |
1481 | dig = fInput->Digit(cath, ndig); |
08a636a8 |
1482 | Int_t i=dig->PadX(); |
1483 | Int_t j=dig->PadY(); |
30aaba74 |
1484 | if (fHitMap[cath]->TestHit(i,j)==kUsed ||fHitMap[0]->TestHit(i,j)==kEmpty) { |
a9e2aefa |
1485 | nskip++; |
1486 | continue; |
1487 | } |
07cfabcf |
1488 | if (fDebugLevel) |
1489 | fprintf(stderr,"\n CATHODE %d CLUSTER %d\n",cath,ncls); |
a9e2aefa |
1490 | AliMUONRawCluster c; |
1491 | c.fMultiplicity[0]=0; |
1492 | c.fMultiplicity[1]=0; |
08a636a8 |
1493 | c.fPeakSignal[cath]=dig->Signal(); |
1494 | c.fTracks[0]=dig->Hit(); |
1495 | c.fTracks[1]=dig->Track(0); |
1496 | c.fTracks[2]=dig->Track(1); |
a9e2aefa |
1497 | // tag the beginning of cluster list in a raw cluster |
1498 | c.fNcluster[0]=-1; |
f0d86bc4 |
1499 | Float_t xcu, ycu; |
1500 | fSeg[cath]->GetPadC(i,j,xcu, ycu, fZPlane); |
1501 | fSector= fSeg[cath]->Sector(i,j)/100; |
07cfabcf |
1502 | if (fDebugLevel) |
1503 | printf("\n New Seed %d %d ", i,j); |
f36a6c8b |
1504 | |
1505 | |
a9e2aefa |
1506 | FindCluster(i,j,cath,c); |
f0d86bc4 |
1507 | // ^^^^^^^^^^^^^^^^^^^^^^^^ |
a9e2aefa |
1508 | // center of gravity |
ba12c242 |
1509 | if (c.GetX(0)!=0.) c.SetX(0, c.GetX(0)/c.GetCharge(0)); // c.fX[0] /= c.fQ[0]; |
07cfabcf |
1510 | // Force on anod |
ba12c242 |
1511 | c.SetX(0,fSeg[0]->GetAnod(c.GetX(0))); |
1512 | if (c.GetY(0)!=0.) c.SetY(0, c.GetY(0)/c.GetCharge(0)); // c.fY[0] /= c.fQ[0]; |
f36a6c8b |
1513 | |
ba12c242 |
1514 | if(c.GetCharge(1)!=0.) c.SetX(1, c.GetX(1)/c.GetCharge(1)); // c.fX[1] /= c.fQ[1]; |
f36a6c8b |
1515 | |
1516 | // Force on anod |
ba12c242 |
1517 | c.SetX(1, fSeg[0]->GetAnod(c.GetX(1))); |
1518 | if(c.GetCharge(1)!=0.) c.SetY(1, c.GetY(1)/c.GetCharge(1));// c.fY[1] /= c.fQ[1]; |
3e1872ed |
1519 | |
ba12c242 |
1520 | c.SetZ(0, fZPlane); |
1521 | c.SetZ(1, fZPlane); |
3e1872ed |
1522 | |
07cfabcf |
1523 | if (fDebugLevel) { |
1524 | fprintf(stderr,"\n Cathode 1 multiplicite %d X(CG) %f Y(CG) %f\n", |
ba12c242 |
1525 | c.fMultiplicity[0],c.GetX(0),c.GetY(0)); |
07cfabcf |
1526 | fprintf(stderr," Cathode 2 multiplicite %d X(CG) %f Y(CG) %f\n", |
ba12c242 |
1527 | c.fMultiplicity[1],c.GetX(1),c.GetY(1)); |
07cfabcf |
1528 | } |
a9e2aefa |
1529 | // Analyse cluster and decluster if necessary |
1530 | // |
1531 | ncls++; |
1532 | c.fNcluster[1]=fNRawClusters; |
1533 | c.fClusterType=c.PhysicsContribution(); |
1534 | |
1535 | fNPeaks=0; |
1536 | // |
1537 | // |
1538 | Decluster(&c); |
a9e2aefa |
1539 | // |
1540 | // reset Cluster object |
f8ffca81 |
1541 | { // begin local scope |
1542 | for (int k=0;k<c.fMultiplicity[0];k++) c.fIndexMap[k][0]=0; |
1543 | } // end local scope |
a9e2aefa |
1544 | |
f8ffca81 |
1545 | { // begin local scope |
1546 | for (int k=0;k<c.fMultiplicity[1];k++) c.fIndexMap[k][1]=0; |
1547 | } // end local scope |
1548 | |
a9e2aefa |
1549 | c.fMultiplicity[0]=c.fMultiplicity[0]=0; |
1550 | |
1551 | |
1552 | } // end loop ndig |
1553 | } // end loop cathodes |
30aaba74 |
1554 | delete fHitMap[0]; |
1555 | delete fHitMap[1]; |
a9e2aefa |
1556 | } |
1557 | |
1558 | Float_t AliMUONClusterFinderVS::SingleMathiesonFit(AliMUONRawCluster *c, Int_t cath) |
1559 | { |
f0d86bc4 |
1560 | // Performs a single Mathieson fit on one cathode |
1561 | // |
19dd5b2f |
1562 | Double_t arglist[20]; |
1563 | Int_t ierflag=0; |
9825400f |
1564 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1565 | |
9825400f |
1566 | clusterInput.Fitter()->SetFCN(fcnS1); |
1567 | clusterInput.Fitter()->mninit(2,10,7); |
19dd5b2f |
1568 | clusterInput.Fitter()->SetPrintLevel(-1+fDebugLevel); |
1569 | arglist[0]=-1; |
1570 | clusterInput.Fitter()->mnexcm("SET NOW", arglist, 0, ierflag); |
a9e2aefa |
1571 | // Set starting values |
1572 | static Double_t vstart[2]; |
ba12c242 |
1573 | vstart[0]=c->GetX(1); |
1574 | vstart[1]=c->GetY(0); |
a9e2aefa |
1575 | |
1576 | |
1577 | // lower and upper limits |
1578 | static Double_t lower[2], upper[2]; |
1579 | Int_t ix,iy; |
ba12c242 |
1580 | fSeg[cath]->GetPadI(c->GetX(cath), c->GetY(cath), fZPlane, ix, iy); |
f0d86bc4 |
1581 | Int_t isec=fSeg[cath]->Sector(ix, iy); |
1582 | lower[0]=vstart[0]-fSeg[cath]->Dpx(isec)/2; |
1583 | lower[1]=vstart[1]-fSeg[cath]->Dpy(isec)/2; |
a9e2aefa |
1584 | |
f0d86bc4 |
1585 | upper[0]=lower[0]+fSeg[cath]->Dpx(isec); |
1586 | upper[1]=lower[1]+fSeg[cath]->Dpy(isec); |
a9e2aefa |
1587 | |
1588 | // step sizes |
1589 | static Double_t step[2]={0.0005, 0.0005}; |
1590 | |
9825400f |
1591 | clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); |
1592 | clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); |
a9e2aefa |
1593 | // ready for minimisation |
a9e2aefa |
1594 | arglist[0]= -1; |
1595 | arglist[1]= 0; |
1596 | |
9825400f |
1597 | clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag); |
1598 | clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag); |
4da78c65 |
1599 | // clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag); |
a9e2aefa |
1600 | Double_t fmin, fedm, errdef; |
1601 | Int_t npari, nparx, istat; |
1602 | |
9825400f |
1603 | clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat); |
a9e2aefa |
1604 | fFitStat=istat; |
1605 | |
1606 | // Print results |
1607 | // Get fitted parameters |
1608 | Double_t xrec, yrec; |
1609 | TString chname; |
1610 | Double_t epxz, b1, b2; |
1611 | Int_t ierflg; |
9825400f |
1612 | clusterInput.Fitter()->mnpout(0, chname, xrec, epxz, b1, b2, ierflg); |
1613 | clusterInput.Fitter()->mnpout(1, chname, yrec, epxz, b1, b2, ierflg); |
a9e2aefa |
1614 | fXFit[cath]=xrec; |
1615 | fYFit[cath]=yrec; |
1616 | return fmin; |
1617 | } |
1618 | |
e3cba86e |
1619 | Float_t AliMUONClusterFinderVS::CombiSingleMathiesonFit(AliMUONRawCluster * /*c*/) |
a9e2aefa |
1620 | { |
1621 | // Perform combined Mathieson fit on both cathode planes |
1622 | // |
19dd5b2f |
1623 | Double_t arglist[20]; |
1624 | Int_t ierflag=0; |
9825400f |
1625 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
1626 | clusterInput.Fitter()->SetFCN(fcnCombiS1); |
1627 | clusterInput.Fitter()->mninit(2,10,7); |
19dd5b2f |
1628 | clusterInput.Fitter()->SetPrintLevel(-1+fDebugLevel); |
1629 | arglist[0]=-1; |
1630 | clusterInput.Fitter()->mnexcm("SET NOW", arglist, 0, ierflag); |
a9e2aefa |
1631 | static Double_t vstart[2]; |
1632 | vstart[0]=fXInit[0]; |
1633 | vstart[1]=fYInit[0]; |
1634 | |
1635 | |
1636 | // lower and upper limits |
f0d86bc4 |
1637 | static Float_t lower[2], upper[2]; |
a9e2aefa |
1638 | Int_t ix,iy,isec; |
f0d86bc4 |
1639 | fSeg[0]->GetPadI(fXInit[0], fYInit[0], fZPlane, ix, iy); |
1640 | isec=fSeg[0]->Sector(ix, iy); |
1641 | Float_t dpy=fSeg[0]->Dpy(isec); |
1642 | fSeg[1]->GetPadI(fXInit[0], fYInit[0], fZPlane, ix, iy); |
1643 | isec=fSeg[1]->Sector(ix, iy); |
1644 | Float_t dpx=fSeg[1]->Dpx(isec); |
a9e2aefa |
1645 | |
f0d86bc4 |
1646 | Int_t icount; |
1647 | Float_t xdum, ydum, zdum; |
a9e2aefa |
1648 | |
f0d86bc4 |
1649 | // Find save upper and lower limits |
a9e2aefa |
1650 | |
f0d86bc4 |
1651 | icount = 0; |
a9e2aefa |
1652 | |
f0d86bc4 |
1653 | for (fSeg[1]->FirstPad(fXInit[0], fYInit[0], fZPlane, dpx, 0.); |
1654 | fSeg[1]->MorePads(); fSeg[1]->NextPad()) |
1655 | { |
1656 | ix=fSeg[1]->Ix(); iy=fSeg[1]->Iy(); |
1657 | fSeg[1]->GetPadC(ix,iy, upper[0], ydum, zdum); |
1658 | if (icount ==0) lower[0]=upper[0]; |
1659 | icount++; |
1660 | } |
1661 | |
1662 | if (lower[0]>upper[0]) {xdum=lower[0]; lower[0]=upper[0]; upper[0]=xdum;} |
1663 | |
1664 | icount=0; |
07cfabcf |
1665 | if (fDebugLevel) |
1666 | printf("\n single y %f %f", fXInit[0], fYInit[0]); |
f0d86bc4 |
1667 | |
1668 | for (fSeg[0]->FirstPad(fXInit[0], fYInit[0], fZPlane, 0., dpy); |
1669 | fSeg[0]->MorePads(); fSeg[0]->NextPad()) |
1670 | { |
1671 | ix=fSeg[0]->Ix(); iy=fSeg[0]->Iy(); |
1672 | fSeg[0]->GetPadC(ix,iy,xdum,upper[1],zdum); |
1673 | if (icount ==0) lower[1]=upper[1]; |
1674 | icount++; |
07cfabcf |
1675 | if (fDebugLevel) |
1676 | printf("\n upper lower %d %f %f", icount, upper[1], lower[1]); |
f0d86bc4 |
1677 | } |
1678 | |
1679 | if (lower[1]>upper[1]) {xdum=lower[1]; lower[1]=upper[1]; upper[1]=xdum;} |
1680 | |
a9e2aefa |
1681 | // step sizes |
1682 | static Double_t step[2]={0.00001, 0.0001}; |
1683 | |
9825400f |
1684 | clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); |
1685 | clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); |
a9e2aefa |
1686 | // ready for minimisation |
a9e2aefa |
1687 | arglist[0]= -1; |
1688 | arglist[1]= 0; |
1689 | |
9825400f |
1690 | clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag); |
1691 | clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag); |
4da78c65 |
1692 | // clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag); |
a9e2aefa |
1693 | Double_t fmin, fedm, errdef; |
1694 | Int_t npari, nparx, istat; |
1695 | |
9825400f |
1696 | clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat); |
a9e2aefa |
1697 | fFitStat=istat; |
1698 | |
1699 | // Print results |
1700 | // Get fitted parameters |
1701 | Double_t xrec, yrec; |
1702 | TString chname; |
1703 | Double_t epxz, b1, b2; |
1704 | Int_t ierflg; |
9825400f |
1705 | clusterInput.Fitter()->mnpout(0, chname, xrec, epxz, b1, b2, ierflg); |
1706 | clusterInput.Fitter()->mnpout(1, chname, yrec, epxz, b1, b2, ierflg); |
a9e2aefa |
1707 | fXFit[0]=xrec; |
1708 | fYFit[0]=yrec; |
1709 | return fmin; |
1710 | } |
1711 | |
e3cba86e |
1712 | Bool_t AliMUONClusterFinderVS::DoubleMathiesonFit(AliMUONRawCluster * /*c*/, Int_t cath) |
a9e2aefa |
1713 | { |
f0d86bc4 |
1714 | // Performs a double Mathieson fit on one cathode |
1715 | // |
1716 | |
a9e2aefa |
1717 | // |
1718 | // Initialise global variables for fit |
19dd5b2f |
1719 | Double_t arglist[20]; |
1720 | Int_t ierflag=0; |
9825400f |
1721 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
1722 | clusterInput.Fitter()->SetFCN(fcnS2); |
1723 | clusterInput.Fitter()->mninit(5,10,7); |
19dd5b2f |
1724 | clusterInput.Fitter()->SetPrintLevel(-1+fDebugLevel); |
1725 | arglist[0]=-1; |
1726 | clusterInput.Fitter()->mnexcm("SET NOW", arglist, 0, ierflag); |
a9e2aefa |
1727 | // Set starting values |
1728 | static Double_t vstart[5]; |
1729 | vstart[0]=fX[fIndLocal[0][cath]][cath]; |
1730 | vstart[1]=fY[fIndLocal[0][cath]][cath]; |
1731 | vstart[2]=fX[fIndLocal[1][cath]][cath]; |
1732 | vstart[3]=fY[fIndLocal[1][cath]][cath]; |
1733 | vstart[4]=Float_t(fQ[fIndLocal[0][cath]][cath])/ |
1734 | Float_t(fQ[fIndLocal[0][cath]][cath]+fQ[fIndLocal[1][cath]][cath]); |
1735 | // lower and upper limits |
f0d86bc4 |
1736 | static Float_t lower[5], upper[5]; |
1737 | Int_t isec=fSeg[cath]->Sector(fIx[fIndLocal[0][cath]][cath], fIy[fIndLocal[0][cath]][cath]); |
1738 | lower[0]=vstart[0]-fSeg[cath]->Dpx(isec); |
1739 | lower[1]=vstart[1]-fSeg[cath]->Dpy(isec); |
a9e2aefa |
1740 | |
f0d86bc4 |
1741 | upper[0]=lower[0]+2.*fSeg[cath]->Dpx(isec); |
1742 | upper[1]=lower[1]+2.*fSeg[cath]->Dpy(isec); |
a9e2aefa |
1743 | |
f0d86bc4 |
1744 | isec=fSeg[cath]->Sector(fIx[fIndLocal[1][cath]][cath], fIy[fIndLocal[1][cath]][cath]); |
1745 | lower[2]=vstart[2]-fSeg[cath]->Dpx(isec)/2; |
1746 | lower[3]=vstart[3]-fSeg[cath]->Dpy(isec)/2; |
a9e2aefa |
1747 | |
f0d86bc4 |
1748 | upper[2]=lower[2]+fSeg[cath]->Dpx(isec); |
1749 | upper[3]=lower[3]+fSeg[cath]->Dpy(isec); |
a9e2aefa |
1750 | |
1751 | lower[4]=0.; |
1752 | upper[4]=1.; |
1753 | // step sizes |
1754 | static Double_t step[5]={0.0005, 0.0005, 0.0005, 0.0005, 0.0001}; |
1755 | |
9825400f |
1756 | clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); |
1757 | clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); |
1758 | clusterInput.Fitter()->mnparm(2,"x2",vstart[2],step[2],lower[2],upper[2],ierflag); |
1759 | clusterInput.Fitter()->mnparm(3,"y2",vstart[3],step[3],lower[3],upper[3],ierflag); |
1760 | clusterInput.Fitter()->mnparm(4,"a0",vstart[4],step[4],lower[4],upper[4],ierflag); |
a9e2aefa |
1761 | // ready for minimisation |
a9e2aefa |
1762 | arglist[0]= -1; |
1763 | arglist[1]= 0; |
1764 | |
9825400f |
1765 | clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag); |
1766 | clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag); |
4da78c65 |
1767 | // clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag); |
a9e2aefa |
1768 | // Get fitted parameters |
1769 | Double_t xrec[2], yrec[2], qfrac; |
1770 | TString chname; |
1771 | Double_t epxz, b1, b2; |
1772 | Int_t ierflg; |
9825400f |
1773 | clusterInput.Fitter()->mnpout(0, chname, xrec[0], epxz, b1, b2, ierflg); |
1774 | clusterInput.Fitter()->mnpout(1, chname, yrec[0], epxz, b1, b2, ierflg); |
1775 | clusterInput.Fitter()->mnpout(2, chname, xrec[1], epxz, b1, b2, ierflg); |
1776 | clusterInput.Fitter()->mnpout(3, chname, yrec[1], epxz, b1, b2, ierflg); |
1777 | clusterInput.Fitter()->mnpout(4, chname, qfrac, epxz, b1, b2, ierflg); |
a9e2aefa |
1778 | |
1779 | Double_t fmin, fedm, errdef; |
1780 | Int_t npari, nparx, istat; |
1781 | |
9825400f |
1782 | clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat); |
a9e2aefa |
1783 | fFitStat=istat; |
a9e2aefa |
1784 | return kTRUE; |
1785 | } |
1786 | |
e3cba86e |
1787 | Float_t AliMUONClusterFinderVS::CombiDoubleMathiesonFit(AliMUONRawCluster * /*c*/) |
a9e2aefa |
1788 | { |
1789 | // |
1790 | // Perform combined double Mathieson fit on both cathode planes |
1791 | // |
19dd5b2f |
1792 | Double_t arglist[20]; |
1793 | Int_t ierflag=0; |
9825400f |
1794 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
1795 | clusterInput.Fitter()->SetFCN(fcnCombiS2); |
1796 | clusterInput.Fitter()->mninit(6,10,7); |
19dd5b2f |
1797 | clusterInput.Fitter()->SetPrintLevel(-1+fDebugLevel); |
1798 | arglist[0]=-1; |
1799 | clusterInput.Fitter()->mnexcm("SET NOW", arglist, 0, ierflag); |
a9e2aefa |
1800 | // Set starting values |
1801 | static Double_t vstart[6]; |
1802 | vstart[0]=fXInit[0]; |
1803 | vstart[1]=fYInit[0]; |
1804 | vstart[2]=fXInit[1]; |
1805 | vstart[3]=fYInit[1]; |
1806 | vstart[4]=fQrInit[0]; |
1807 | vstart[5]=fQrInit[1]; |
1808 | // lower and upper limits |
f0d86bc4 |
1809 | static Float_t lower[6], upper[6]; |
a9e2aefa |
1810 | Int_t ix,iy,isec; |
1811 | Float_t dpx, dpy; |
1812 | |
f0d86bc4 |
1813 | fSeg[1]->GetPadI(fXInit[0], fYInit[0], fZPlane, ix, iy); |
1814 | isec=fSeg[1]->Sector(ix, iy); |
1815 | dpx=fSeg[1]->Dpx(isec); |
a9e2aefa |
1816 | |
f0d86bc4 |
1817 | fSeg[0]->GetPadI(fXInit[0], fYInit[0], fZPlane, ix, iy); |
1818 | isec=fSeg[0]->Sector(ix, iy); |
1819 | dpy=fSeg[0]->Dpy(isec); |
a9e2aefa |
1820 | |
a9e2aefa |
1821 | |
f0d86bc4 |
1822 | Int_t icount; |
1823 | Float_t xdum, ydum, zdum; |
07cfabcf |
1824 | if (fDebugLevel) |
1825 | printf("\n Cluster Finder: %f %f %f %f ", fXInit[0], fXInit[1],fYInit[0], fYInit[1] ); |
f0d86bc4 |
1826 | |
1827 | // Find save upper and lower limits |
1828 | icount = 0; |
1829 | |
1830 | for (fSeg[1]->FirstPad(fXInit[0], fYInit[0], fZPlane, dpx, 0.); |
1831 | fSeg[1]->MorePads(); fSeg[1]->NextPad()) |
1832 | { |
1833 | ix=fSeg[1]->Ix(); iy=fSeg[1]->Iy(); |
05c39730 |
1834 | // if (fHitMap[1]->TestHit(ix, iy) == kEmpty) continue; |
f0d86bc4 |
1835 | fSeg[1]->GetPadC(ix,iy,upper[0],ydum,zdum); |
1836 | if (icount ==0) lower[0]=upper[0]; |
1837 | icount++; |
1838 | } |
1839 | if (lower[0]>upper[0]) {xdum=lower[0]; lower[0]=upper[0]; upper[0]=xdum;} |
05c39730 |
1840 | // vstart[0] = 0.5*(lower[0]+upper[0]); |
1841 | |
1842 | |
f0d86bc4 |
1843 | icount=0; |
1844 | |
1845 | for (fSeg[0]->FirstPad(fXInit[0], fYInit[0], fZPlane, 0., dpy); |
1846 | fSeg[0]->MorePads(); fSeg[0]->NextPad()) |
1847 | { |
1848 | ix=fSeg[0]->Ix(); iy=fSeg[0]->Iy(); |
05c39730 |
1849 | // if (fHitMap[0]->TestHit(ix, iy) == kEmpty) continue; |
f0d86bc4 |
1850 | fSeg[0]->GetPadC(ix,iy,xdum,upper[1],zdum); |
1851 | if (icount ==0) lower[1]=upper[1]; |
1852 | icount++; |
1853 | } |
05c39730 |
1854 | |
f0d86bc4 |
1855 | if (lower[1]>upper[1]) {xdum=lower[1]; lower[1]=upper[1]; upper[1]=xdum;} |
05c39730 |
1856 | // vstart[1] = 0.5*(lower[1]+upper[1]); |
1857 | |
a9e2aefa |
1858 | |
f0d86bc4 |
1859 | fSeg[1]->GetPadI(fXInit[1], fYInit[1], fZPlane, ix, iy); |
1860 | isec=fSeg[1]->Sector(ix, iy); |
1861 | dpx=fSeg[1]->Dpx(isec); |
1862 | fSeg[0]->GetPadI(fXInit[1], fYInit[1], fZPlane, ix, iy); |
1863 | isec=fSeg[0]->Sector(ix, iy); |
1864 | dpy=fSeg[0]->Dpy(isec); |
a9e2aefa |
1865 | |
a9e2aefa |
1866 | |
f0d86bc4 |
1867 | // Find save upper and lower limits |
1868 | |
1869 | icount=0; |
1870 | |
1871 | for (fSeg[1]->FirstPad(fXInit[1], fYInit[1], fZPlane, dpx, 0); |
1872 | fSeg[1]->MorePads(); fSeg[1]->NextPad()) |
1873 | { |
1874 | ix=fSeg[1]->Ix(); iy=fSeg[1]->Iy(); |
05c39730 |
1875 | // if (fHitMap[1]->TestHit(ix, iy) == kEmpty) continue; |
f0d86bc4 |
1876 | fSeg[1]->GetPadC(ix,iy,upper[2],ydum,zdum); |
1877 | if (icount ==0) lower[2]=upper[2]; |
1878 | icount++; |
1879 | } |
1880 | if (lower[2]>upper[2]) {xdum=lower[2]; lower[2]=upper[2]; upper[2]=xdum;} |
05c39730 |
1881 | // vstart[2] = 0.5*(lower[2]+upper[2]); |
f0d86bc4 |
1882 | |
1883 | icount=0; |
1884 | |
1885 | for (fSeg[0]->FirstPad(fXInit[1], fYInit[1], fZPlane, 0, dpy); |
1886 | fSeg[0]-> MorePads(); fSeg[0]->NextPad()) |
1887 | { |
1888 | ix=fSeg[0]->Ix(); iy=fSeg[0]->Iy(); |
05c39730 |
1889 | // if (fHitMap[0]->TestHit(ix, iy) != kEmpty) continue; |
1890 | |
f0d86bc4 |
1891 | fSeg[0]->GetPadC(ix,iy,xdum,upper[3],zdum); |
1892 | if (icount ==0) lower[3]=upper[3]; |
1893 | icount++; |
05c39730 |
1894 | |
f0d86bc4 |
1895 | } |
1896 | if (lower[3]>upper[3]) {xdum=lower[3]; lower[3]=upper[3]; upper[3]=xdum;} |
05c39730 |
1897 | |
1898 | // vstart[3] = 0.5*(lower[3]+upper[3]); |
1899 | |
a9e2aefa |
1900 | lower[4]=0.; |
1901 | upper[4]=1.; |
1902 | lower[5]=0.; |
1903 | upper[5]=1.; |
1904 | |
1905 | // step sizes |
1906 | static Double_t step[6]={0.0005, 0.0005, 0.0005, 0.0005, 0.001, 0.001}; |
9825400f |
1907 | clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); |
1908 | clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); |
1909 | clusterInput.Fitter()->mnparm(2,"x2",vstart[2],step[2],lower[2],upper[2],ierflag); |
1910 | clusterInput.Fitter()->mnparm(3,"y2",vstart[3],step[3],lower[3],upper[3],ierflag); |
1911 | clusterInput.Fitter()->mnparm(4,"a0",vstart[4],step[4],lower[4],upper[4],ierflag); |
1912 | clusterInput.Fitter()->mnparm(5,"a1",vstart[5],step[5],lower[5],upper[5],ierflag); |
a9e2aefa |
1913 | // ready for minimisation |
a9e2aefa |
1914 | arglist[0]= -1; |
1915 | arglist[1]= 0; |
1916 | |
9825400f |
1917 | clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag); |
1918 | clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag); |
4da78c65 |
1919 | // clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag); |
a9e2aefa |
1920 | // Get fitted parameters |
1921 | TString chname; |
1922 | Double_t epxz, b1, b2; |
1923 | Int_t ierflg; |
9825400f |
1924 | clusterInput.Fitter()->mnpout(0, chname, fXFit[0], epxz, b1, b2, ierflg); |
1925 | clusterInput.Fitter()->mnpout(1, chname, fYFit[0], epxz, b1, b2, ierflg); |
1926 | clusterInput.Fitter()->mnpout(2, chname, fXFit[1], epxz, b1, b2, ierflg); |
1927 | clusterInput.Fitter()->mnpout(3, chname, fYFit[1], epxz, b1, b2, ierflg); |
1928 | clusterInput.Fitter()->mnpout(4, chname, fQrFit[0], epxz, b1, b2, ierflg); |
1929 | clusterInput.Fitter()->mnpout(5, chname, fQrFit[1], epxz, b1, b2, ierflg); |
a9e2aefa |
1930 | |
1931 | Double_t fmin, fedm, errdef; |
1932 | Int_t npari, nparx, istat; |
1933 | |
9825400f |
1934 | clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat); |
a9e2aefa |
1935 | fFitStat=istat; |
1936 | |
1937 | fChi2[0]=fmin; |
1938 | fChi2[1]=fmin; |
1939 | return fmin; |
1940 | } |
1941 | |
1942 | void AliMUONClusterFinderVS::Split(AliMUONRawCluster* c) |
1943 | { |
1944 | // |
1945 | // One cluster for each maximum |
1946 | // |
1947 | Int_t i, j, cath; |
9825400f |
1948 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1949 | for (j=0; j<2; j++) { |
1950 | AliMUONRawCluster cnew; |
07cfabcf |
1951 | cnew.fGhost=c->fGhost; |
a9e2aefa |
1952 | for (cath=0; cath<2; cath++) { |
1953 | cnew.fChi2[cath]=fChi2[0]; |
07cfabcf |
1954 | // ?? why not cnew.fChi2[cath]=fChi2[cath]; |
a9e2aefa |
1955 | |
1956 | if (fNPeaks == 0) { |
1957 | cnew.fNcluster[0]=-1; |
1958 | cnew.fNcluster[1]=fNRawClusters; |
1959 | } else { |
1960 | cnew.fNcluster[0]=fNPeaks; |
1961 | cnew.fNcluster[1]=0; |
1962 | } |
1963 | cnew.fMultiplicity[cath]=0; |
ba12c242 |
1964 | cnew.SetX(cath, Float_t(fXFit[j])); |
1965 | cnew.SetY(cath, Float_t(fYFit[j])); |
1966 | cnew.SetZ(cath, fZPlane); |
a9e2aefa |
1967 | if (j==0) { |
ba12c242 |
1968 | cnew.SetCharge(cath, Int_t(clusterInput.TotalCharge(cath)*fQrFit[cath])); |
a9e2aefa |
1969 | } else { |
ba12c242 |
1970 | cnew.SetCharge(cath, Int_t(clusterInput.TotalCharge(cath)*(1-fQrFit[cath]))); |
a9e2aefa |
1971 | } |
f0d86bc4 |
1972 | fSeg[cath]->SetHit(fXFit[j],fYFit[j],fZPlane); |
a9e2aefa |
1973 | for (i=0; i<fMul[cath]; i++) { |
1974 | cnew.fIndexMap[cnew.fMultiplicity[cath]][cath]= |
1975 | c->fIndexMap[i][cath]; |
f0d86bc4 |
1976 | fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
1977 | Float_t q1=fInput->Response()->IntXY(fSeg[cath]); |
a9e2aefa |
1978 | cnew.fContMap[i][cath] |
ba12c242 |
1979 | =(q1*Float_t(cnew.GetCharge(cath)))/Float_t(fQ[i][cath]); |
a9e2aefa |
1980 | cnew.fMultiplicity[cath]++; |
a9e2aefa |
1981 | } |
1982 | FillCluster(&cnew,0,cath); |
1983 | } // cathode loop |
1984 | |
1985 | cnew.fClusterType=cnew.PhysicsContribution(); |
ba12c242 |
1986 | if (cnew.GetCharge(0)>0 && cnew.GetCharge(1)>0) AddRawCluster(cnew); |
a9e2aefa |
1987 | fNPeaks++; |
1988 | } |
1989 | } |
1990 | |
1991 | |
a9e2aefa |
1992 | // |
1993 | // Minimisation functions |
1994 | // Single Mathieson |
e3cba86e |
1995 | void fcnS1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/) |
a9e2aefa |
1996 | { |
9825400f |
1997 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1998 | Int_t i; |
1999 | Float_t delta; |
2000 | Float_t chisq=0; |
2001 | Float_t qcont=0; |
2002 | Float_t qtot=0; |
9825400f |
2003 | |
2004 | for (i=0; i<clusterInput.Nmul(0); i++) { |
2005 | Float_t q0=clusterInput.Charge(i,0); |
2006 | Float_t q1=clusterInput.DiscrChargeS1(i,par); |
a9e2aefa |
2007 | delta=(q0-q1)/q0; |
2008 | chisq+=delta*delta; |
2009 | qcont+=q1; |
2010 | qtot+=q0; |
2011 | } |
2012 | f=chisq; |
2013 | } |
2014 | |
e3cba86e |
2015 | void fcnCombiS1(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/) |
a9e2aefa |
2016 | { |
9825400f |
2017 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
2018 | Int_t i, cath; |
2019 | Float_t delta; |
2020 | Float_t chisq=0; |
2021 | Float_t qcont=0; |
2022 | Float_t qtot=0; |
a9e2aefa |
2023 | |
2024 | for (cath=0; cath<2; cath++) { |
9825400f |
2025 | for (i=0; i<clusterInput.Nmul(cath); i++) { |
2026 | Float_t q0=clusterInput.Charge(i,cath); |
2027 | Float_t q1=clusterInput.DiscrChargeCombiS1(i,par,cath); |
a9e2aefa |
2028 | delta=(q0-q1)/q0; |
2029 | chisq+=delta*delta; |
2030 | qcont+=q1; |
2031 | qtot+=q0; |
2032 | } |
a9e2aefa |
2033 | } |
a9e2aefa |
2034 | f=chisq; |
2035 | } |
2036 | |
2037 | // Double Mathieson |
e3cba86e |
2038 | void fcnS2(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/) |
a9e2aefa |
2039 | { |
9825400f |
2040 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
2041 | Int_t i; |
2042 | Float_t delta; |
2043 | Float_t chisq=0; |
2044 | Float_t qcont=0; |
2045 | Float_t qtot=0; |
2046 | |
9825400f |
2047 | for (i=0; i<clusterInput.Nmul(0); i++) { |
a9e2aefa |
2048 | |
9825400f |
2049 | Float_t q0=clusterInput.Charge(i,0); |
2050 | Float_t q1=clusterInput.DiscrChargeS2(i,par); |
a9e2aefa |
2051 | delta=(q0-q1)/q0; |
2052 | chisq+=delta*delta; |
2053 | qcont+=q1; |
2054 | qtot+=q0; |
2055 | } |
a9e2aefa |
2056 | f=chisq; |
2057 | } |
2058 | |
2059 | // Double Mathieson |
e3cba86e |
2060 | void fcnCombiS2(Int_t & /*npar*/, Double_t * /*gin*/, Double_t &f, Double_t *par, Int_t /*iflag*/) |
a9e2aefa |
2061 | { |
9825400f |
2062 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
2063 | Int_t i, cath; |
2064 | Float_t delta; |
2065 | Float_t chisq=0; |
2066 | Float_t qcont=0; |
2067 | Float_t qtot=0; |
a9e2aefa |
2068 | for (cath=0; cath<2; cath++) { |
9825400f |
2069 | for (i=0; i<clusterInput.Nmul(cath); i++) { |
2070 | Float_t q0=clusterInput.Charge(i,cath); |
2071 | Float_t q1=clusterInput.DiscrChargeCombiS2(i,par,cath); |
a9e2aefa |
2072 | delta=(q0-q1)/q0; |
2073 | chisq+=delta*delta; |
2074 | qcont+=q1; |
2075 | qtot+=q0; |
2076 | } |
a9e2aefa |
2077 | } |
a9e2aefa |
2078 | f=chisq; |
2079 | } |
2080 | |
4da78c65 |
2081 | void AliMUONClusterFinderVS::AddRawCluster(const AliMUONRawCluster& c) |
a9e2aefa |
2082 | { |
2083 | // |
2084 | // Add a raw cluster copy to the list |
2085 | // |
4da78c65 |
2086 | |
2087 | // AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON"); |
2088 | // pMUON->GetMUONData()->AddRawCluster(fInput->Chamber(),c); |
2089 | // fNRawClusters++; |
2090 | |
2091 | |
2092 | TClonesArray &lrawcl = *fRawClusters; |
2093 | new(lrawcl[fNRawClusters++]) AliMUONRawCluster(c); |
19dd5b2f |
2094 | if (fDebugLevel) |
07cfabcf |
2095 | fprintf(stderr,"\nfNRawClusters %d\n",fNRawClusters); |
a9e2aefa |
2096 | } |
2097 | |
30aaba74 |
2098 | Bool_t AliMUONClusterFinderVS::TestTrack(Int_t t) { |
6a9bc541 |
2099 | // Test if track was user selected |
30aaba74 |
2100 | if (fTrack[0]==-1 || fTrack[1]==-1) { |
2101 | return kTRUE; |
2102 | } else if (t==fTrack[0] || t==fTrack[1]) { |
2103 | return kTRUE; |
2104 | } else { |
2105 | return kFALSE; |
2106 | } |
2107 | } |
a9e2aefa |
2108 | |
2109 | AliMUONClusterFinderVS& AliMUONClusterFinderVS |
e3cba86e |
2110 | ::operator = (const AliMUONClusterFinderVS& /*rhs*/) |
a9e2aefa |
2111 | { |
2112 | // Dummy assignment operator |
2113 | return *this; |
2114 | } |
2115 | |
2116 | |
2117 | |
2118 | |
2119 | |
2120 | |
2121 | |
2122 | |
2123 | |