a9e2aefa |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | /* |
16 | $Log$ |
07cfabcf |
17 | Revision 1.18 2001/01/26 21:37:53 morsch |
18 | Use access functions to AliMUONDigit member data. |
19 | |
08a636a8 |
20 | Revision 1.17 2001/01/23 18:58:19 hristov |
21 | Initialisation of some pointers |
22 | |
3f5cf0b3 |
23 | Revision 1.16 2000/12/21 23:27:30 morsch |
24 | Error in argument list of AddRawCluster corrected. |
25 | |
67aef06e |
26 | Revision 1.15 2000/12/21 22:14:38 morsch |
27 | Clean-up of coding rule violations. |
28 | |
6a9bc541 |
29 | Revision 1.14 2000/10/23 16:03:45 morsch |
30 | Correct z-position of all clusters created "on the flight". |
31 | |
aadda617 |
32 | Revision 1.13 2000/10/23 13:38:23 morsch |
33 | Set correct z-coordinate when cluster is split. |
34 | |
7382d3a4 |
35 | Revision 1.12 2000/10/18 11:42:06 morsch |
36 | - AliMUONRawCluster contains z-position. |
37 | - Some clean-up of useless print statements during initialisations. |
38 | |
3e1872ed |
39 | Revision 1.11 2000/10/06 09:04:05 morsch |
40 | - Dummy z-arguments in GetPadI, SetHit, FirstPad replaced by real z-coordinate |
41 | to make code work with slat chambers (AM) |
42 | - Replace GetPadI calls with unchecked x,y coordinates by pad iterator calls wherever possible. |
43 | |
f0d86bc4 |
44 | Revision 1.10 2000/10/03 13:51:57 egangler |
45 | Removal of useless dependencies via forward declarations |
46 | |
c1a185bf |
47 | Revision 1.9 2000/10/02 16:58:29 egangler |
48 | Cleaning of the code : |
49 | -> coding conventions |
50 | -> void Streamers |
51 | -> some useless includes removed or replaced by "class" statement |
52 | |
ecfa008b |
53 | Revision 1.8 2000/07/03 11:54:57 morsch |
54 | AliMUONSegmentation and AliMUONHitMap have been replaced by AliSegmentation and AliHitMap in STEER |
55 | The methods GetPadIxy and GetPadXxy of AliMUONSegmentation have changed name to GetPadI and GetPadC. |
56 | |
a30a000f |
57 | Revision 1.7 2000/06/28 15:16:35 morsch |
58 | (1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there) |
59 | to allow development of slat-muon chamber simulation and reconstruction code in the MUON |
60 | framework. The changes should have no side effects (mostly dummy arguments). |
61 | (2) Hit disintegration uses 3-dim hit coordinates to allow simulation |
62 | of chambers with overlapping modules (MakePadHits, Disintegration). |
63 | |
802a864d |
64 | Revision 1.6 2000/06/28 12:19:18 morsch |
65 | More consequent seperation of global input data services (AliMUONClusterInput singleton) and the |
66 | cluster and hit reconstruction algorithms in AliMUONClusterFinderVS. |
67 | AliMUONClusterFinderVS becomes the base class for clustering and hit reconstruction. |
68 | It requires two cathode planes. Small modifications in the code will make it usable for |
69 | one cathode plane and, hence, more general (for test beam data). |
70 | AliMUONClusterFinder is now obsolete. |
71 | |
30aaba74 |
72 | Revision 1.5 2000/06/28 08:06:10 morsch |
73 | Avoid global variables in AliMUONClusterFinderVS by seperating the input data for the fit from the |
74 | algorithmic part of the class. Input data resides inside the AliMUONClusterInput singleton. |
75 | It also naturally takes care of the TMinuit instance. |
76 | |
9825400f |
77 | Revision 1.4 2000/06/27 16:18:47 gosset |
78 | Finally correct implementation of xm, ym, ixm, iym sizes |
79 | when at least three local maxima on cathode 1 or on cathode 2 |
80 | |
39e6d319 |
81 | Revision 1.3 2000/06/22 14:02:45 morsch |
82 | Parameterised size of xm[], ym[], ixm[], iym[] correctly implemented (PH) |
83 | Some HP scope problems corrected (PH) |
84 | |
f8ffca81 |
85 | Revision 1.2 2000/06/15 07:58:48 morsch |
86 | Code from MUON-dev joined |
87 | |
a9e2aefa |
88 | Revision 1.1.2.3 2000/06/09 21:58:33 morsch |
89 | Most coding rule violations corrected. |
90 | |
91 | Revision 1.1.2.2 2000/02/15 08:33:52 morsch |
92 | Error in calculation of contribution map for double clusters (Split method) corrected (A.M.) |
93 | Error in determination of track list for double cluster (FillCluster method) corrected (A.M.) |
94 | Revised and extended SplitByLocalMaxima method (Isabelle Chevrot): |
95 | - For clusters with more than 2 maxima on one of the cathode planes all valid |
96 | combinations of maxima on the two cathodes are preserved. The position of the maxima is |
97 | taken as the hit position. |
98 | - New FillCluster method with 2 arguments to find tracks associated to the clusters |
99 | defined above added. (Method destinction by argument list not very elegant in this case, |
100 | should be revides (A.M.) |
101 | - Bug in if-statement to handle maximum 1 maximum per plane corrected |
102 | - Two cluster per cathode but only 1 combination valid is handled. |
103 | - More rigerous treatment of 1-2 and 2-1 combinations of maxima. |
104 | |
105 | */ |
106 | |
107 | #include "AliMUONClusterFinderVS.h" |
108 | #include "AliMUONDigit.h" |
109 | #include "AliMUONRawCluster.h" |
a30a000f |
110 | #include "AliSegmentation.h" |
a9e2aefa |
111 | #include "AliMUONResponse.h" |
c1a185bf |
112 | #include "AliMUONClusterInput.h" |
a9e2aefa |
113 | #include "AliMUONHitMapA1.h" |
114 | #include "AliRun.h" |
115 | #include "AliMUON.h" |
116 | |
117 | #include <TTree.h> |
118 | #include <TCanvas.h> |
119 | #include <TH1.h> |
120 | #include <TPad.h> |
121 | #include <TGraph.h> |
122 | #include <TPostScript.h> |
123 | #include <TMinuit.h> |
ecfa008b |
124 | #include <TF1.h> |
125 | |
a9e2aefa |
126 | #include <stdio.h> |
127 | #include <iostream.h> |
128 | |
129 | //_____________________________________________________________________ |
a9e2aefa |
130 | // This function is minimized in the double-Mathieson fit |
131 | void fcnS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); |
132 | void fcnS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); |
133 | void fcnCombiS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); |
134 | void fcnCombiS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); |
135 | |
136 | ClassImp(AliMUONClusterFinderVS) |
137 | |
a9e2aefa |
138 | AliMUONClusterFinderVS::AliMUONClusterFinderVS() |
a9e2aefa |
139 | { |
140 | // Default constructor |
30aaba74 |
141 | fInput=AliMUONClusterInput::Instance(); |
142 | fHitMap[0] = 0; |
143 | fHitMap[1] = 0; |
a9e2aefa |
144 | fTrack[0]=fTrack[1]=-1; |
07cfabcf |
145 | fDebugLevel = 0; // make silent default |
146 | fGhostChi2Cut = 1e6; // nothing done by default |
3f5cf0b3 |
147 | fSeg[0] = 0; |
148 | fSeg[1] = 0; |
149 | for(Int_t i=0; i<100; i++) { |
150 | for (Int_t j=0; j<2; j++) { |
151 | fDig[i][j] = 0; |
152 | } |
153 | } |
a9e2aefa |
154 | } |
155 | |
156 | AliMUONClusterFinderVS::AliMUONClusterFinderVS( |
157 | const AliMUONClusterFinderVS & clusterFinder) |
158 | { |
159 | // Dummy copy Constructor |
160 | ; |
161 | } |
162 | |
a9e2aefa |
163 | void AliMUONClusterFinderVS::Decluster(AliMUONRawCluster *cluster) |
164 | { |
165 | // Decluster by local maxima |
166 | SplitByLocalMaxima(cluster); |
167 | } |
168 | |
169 | void AliMUONClusterFinderVS::SplitByLocalMaxima(AliMUONRawCluster *c) |
170 | { |
171 | // Split complex cluster by local maxima |
a9e2aefa |
172 | Int_t cath, i; |
9825400f |
173 | |
30aaba74 |
174 | fInput->SetCluster(c); |
9825400f |
175 | |
a9e2aefa |
176 | fMul[0]=c->fMultiplicity[0]; |
177 | fMul[1]=c->fMultiplicity[1]; |
178 | |
179 | // |
180 | // dump digit information into arrays |
181 | // |
9825400f |
182 | |
f0d86bc4 |
183 | Float_t qtot; |
a9e2aefa |
184 | |
185 | for (cath=0; cath<2; cath++) { |
186 | qtot=0; |
187 | for (i=0; i<fMul[cath]; i++) |
188 | { |
189 | // pointer to digit |
30aaba74 |
190 | fDig[i][cath]=fInput->Digit(cath, c->fIndexMap[i][cath]); |
a9e2aefa |
191 | // pad coordinates |
08a636a8 |
192 | fIx[i][cath]= fDig[i][cath]->PadX(); |
193 | fIy[i][cath]= fDig[i][cath]->PadY(); |
a9e2aefa |
194 | // pad charge |
08a636a8 |
195 | fQ[i][cath] = fDig[i][cath]->Signal(); |
a9e2aefa |
196 | // pad centre coordinates |
f0d86bc4 |
197 | fSeg[cath]-> |
198 | GetPadC(fIx[i][cath], fIy[i][cath], fX[i][cath], fY[i][cath], fZ[i][cath]); |
a9e2aefa |
199 | } // loop over cluster digits |
a9e2aefa |
200 | } // loop over cathodes |
201 | |
202 | |
203 | FindLocalMaxima(c); |
204 | |
205 | // |
206 | // Initialise and perform mathieson fits |
207 | Float_t chi2, oldchi2; |
208 | // ++++++++++++++++++*************+++++++++++++++++++++ |
209 | // (1) No more than one local maximum per cathode plane |
210 | // +++++++++++++++++++++++++++++++*************++++++++ |
211 | if ((fNLocal[0]==1 && (fNLocal[1]==0 || fNLocal[1]==1)) || |
212 | (fNLocal[0]==0 && fNLocal[1]==1)) { |
a9e2aefa |
213 | // Perform combined single Mathieson fit |
214 | // Initial values for coordinates (x,y) |
215 | |
216 | // One local maximum on cathodes 1 and 2 (X->cathode 2, Y->cathode 1) |
217 | if (fNLocal[0]==1 && fNLocal[1]==1) { |
218 | fXInit[0]=c->fX[1]; |
219 | fYInit[0]=c->fY[0]; |
220 | // One local maximum on cathode 1 (X,Y->cathode 1) |
221 | } else if (fNLocal[0]==1) { |
222 | fXInit[0]=c->fX[0]; |
223 | fYInit[0]=c->fY[0]; |
224 | // One local maximum on cathode 2 (X,Y->cathode 2) |
225 | } else { |
226 | fXInit[0]=c->fX[1]; |
227 | fYInit[0]=c->fY[1]; |
228 | } |
07cfabcf |
229 | if (fDebugLevel) |
230 | fprintf(stderr,"\n cas (1) CombiSingleMathiesonFit(c)\n"); |
a9e2aefa |
231 | chi2=CombiSingleMathiesonFit(c); |
232 | // Int_t ndf = fgNbins[0]+fgNbins[1]-2; |
233 | // Float_t prob = TMath::Prob(Double_t(chi2),ndf); |
234 | // prob1->Fill(prob); |
235 | // chi2_1->Fill(chi2); |
236 | oldchi2=chi2; |
07cfabcf |
237 | if (fDebugLevel) |
238 | fprintf(stderr," chi2 %f ",chi2); |
a9e2aefa |
239 | |
240 | c->fX[0]=fXFit[0]; |
241 | c->fY[0]=fYFit[0]; |
242 | |
243 | c->fX[1]=fXFit[0]; |
244 | c->fY[1]=fYFit[0]; |
245 | c->fChi2[0]=chi2; |
246 | c->fChi2[1]=chi2; |
07cfabcf |
247 | // Force on anod |
f0d86bc4 |
248 | c->fX[0]=fSeg[0]->GetAnod(c->fX[0]); |
249 | c->fX[1]=fSeg[1]->GetAnod(c->fX[1]); |
a9e2aefa |
250 | |
251 | // If reasonable chi^2 add result to the list of rawclusters |
a9e2aefa |
252 | if (chi2 < 0.3) { |
253 | AddRawCluster(*c); |
254 | // If not try combined double Mathieson Fit |
255 | } else { |
256 | fprintf(stderr," MAUVAIS CHI2 !!!\n"); |
257 | if (fNLocal[0]==1 && fNLocal[1]==1) { |
258 | fXInit[0]=fX[fIndLocal[0][1]][1]; |
259 | fYInit[0]=fY[fIndLocal[0][0]][0]; |
260 | fXInit[1]=fX[fIndLocal[0][1]][1]; |
261 | fYInit[1]=fY[fIndLocal[0][0]][0]; |
262 | } else if (fNLocal[0]==1) { |
263 | fXInit[0]=fX[fIndLocal[0][0]][0]; |
264 | fYInit[0]=fY[fIndLocal[0][0]][0]; |
265 | fXInit[1]=fX[fIndLocal[0][0]][0]; |
266 | fYInit[1]=fY[fIndLocal[0][0]][0]; |
267 | } else { |
268 | fXInit[0]=fX[fIndLocal[0][1]][1]; |
269 | fYInit[0]=fY[fIndLocal[0][1]][1]; |
270 | fXInit[1]=fX[fIndLocal[0][1]][1]; |
271 | fYInit[1]=fY[fIndLocal[0][1]][1]; |
272 | } |
273 | |
274 | // Initial value for charge ratios |
275 | fQrInit[0]=0.5; |
276 | fQrInit[1]=0.5; |
07cfabcf |
277 | if (fDebugLevel) |
a9e2aefa |
278 | fprintf(stderr,"\n cas (1) CombiDoubleMathiesonFit(c)\n"); |
279 | chi2=CombiDoubleMathiesonFit(c); |
280 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
281 | // Float_t prob = TMath::Prob(chi2,ndf); |
282 | // prob2->Fill(prob); |
283 | // chi2_2->Fill(chi2); |
284 | |
285 | // Was this any better ?? |
286 | fprintf(stderr," Old and new chi2 %f %f ", oldchi2, chi2); |
287 | if (fFitStat!=0 && chi2>0 && (2.*chi2 < oldchi2)) { |
288 | fprintf(stderr," Split\n"); |
289 | // Split cluster into two according to fit result |
290 | Split(c); |
291 | } else { |
292 | fprintf(stderr," Don't Split\n"); |
293 | // Don't split |
294 | AddRawCluster(*c); |
295 | } |
296 | } |
297 | |
298 | // +++++++++++++++++++++++++++++++++++++++ |
299 | // (2) Two local maxima per cathode plane |
300 | // +++++++++++++++++++++++++++++++++++++++ |
301 | } else if (fNLocal[0]==2 && fNLocal[1]==2) { |
302 | // |
303 | // Let's look for ghosts first |
304 | // |
305 | Float_t xm[4][2], ym[4][2]; |
306 | Float_t dpx, dpy, dx, dy; |
307 | Int_t ixm[4][2], iym[4][2]; |
308 | Int_t isec, im1, im2, ico; |
309 | // |
310 | // Form the 2x2 combinations |
311 | // 0-0, 0-1, 1-0, 1-1 |
312 | ico=0; |
313 | for (im1=0; im1<2; im1++) { |
314 | for (im2=0; im2<2; im2++) { |
315 | xm[ico][0]=fX[fIndLocal[im1][0]][0]; |
316 | ym[ico][0]=fY[fIndLocal[im1][0]][0]; |
317 | xm[ico][1]=fX[fIndLocal[im2][1]][1]; |
318 | ym[ico][1]=fY[fIndLocal[im2][1]][1]; |
319 | |
320 | ixm[ico][0]=fIx[fIndLocal[im1][0]][0]; |
321 | iym[ico][0]=fIy[fIndLocal[im1][0]][0]; |
322 | ixm[ico][1]=fIx[fIndLocal[im2][1]][1]; |
323 | iym[ico][1]=fIy[fIndLocal[im2][1]][1]; |
324 | ico++; |
325 | } |
326 | } |
327 | // ico = 0 : first local maximum on cathodes 1 and 2 |
328 | // ico = 1 : fisrt local maximum on cathode 1 and second on cathode 2 |
329 | // ico = 2 : second local maximum on cathode 1 and first on cathode 1 |
330 | // ico = 3 : second local maximum on cathodes 1 and 2 |
331 | |
332 | // Analyse the combinations and keep those that are possible ! |
333 | // For each combination check consistency in x and y |
334 | Int_t iacc; |
335 | Bool_t accepted[4]; |
336 | iacc=0; |
337 | |
338 | for (ico=0; ico<4; ico++) { |
339 | accepted[ico]=kFALSE; |
340 | // cathode one: x-coordinate |
f0d86bc4 |
341 | isec=fSeg[0]->Sector(ixm[ico][0], iym[ico][0]); |
342 | dpx=fSeg[0]->Dpx(isec)/2.; |
a9e2aefa |
343 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); |
344 | // cathode two: y-coordinate |
f0d86bc4 |
345 | isec=fSeg[1]->Sector(ixm[ico][1], iym[ico][1]); |
346 | dpy=fSeg[1]->Dpy(isec)/2.; |
a9e2aefa |
347 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); |
07cfabcf |
348 | if (fDebugLevel) |
349 | printf("\n %i %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy ); |
a9e2aefa |
350 | if ((dx <= dpx) && (dy <= dpy)) { |
351 | // consistent |
352 | accepted[ico]=kTRUE; |
353 | iacc++; |
354 | } else { |
355 | // reject |
356 | accepted[ico]=kFALSE; |
357 | } |
358 | } |
359 | |
07cfabcf |
360 | if (fDebugLevel) { |
361 | if (iacc==2) { |
362 | fprintf(stderr,"\n iacc=2: No problem ! \n"); |
363 | } else if (iacc==4) { |
364 | fprintf(stderr,"\n iacc=4: Ok, but ghost problem !!! \n"); |
365 | } else if (iacc==0) { |
366 | fprintf(stderr,"\n iacc=0: I don't know what to do with this !!!!!!!!! \n"); |
367 | } |
a9e2aefa |
368 | } |
369 | |
370 | // Initial value for charge ratios |
371 | fQrInit[0]=Float_t(fQ[fIndLocal[0][0]][0])/ |
372 | Float_t(fQ[fIndLocal[0][0]][0]+fQ[fIndLocal[1][0]][0]); |
373 | fQrInit[1]=Float_t(fQ[fIndLocal[0][1]][1])/ |
374 | Float_t(fQ[fIndLocal[0][1]][1]+fQ[fIndLocal[1][1]][1]); |
375 | |
376 | // ******* iacc = 0 ******* |
377 | // No combinations found between the 2 cathodes |
378 | // We keep the center of gravity of the cluster |
379 | if (iacc==0) { |
380 | AddRawCluster(*c); |
381 | } |
382 | |
383 | // ******* iacc = 1 ******* |
384 | // Only one combination found between the 2 cathodes |
385 | if (iacc==1) { |
a9e2aefa |
386 | // Initial values for the 2 maxima (x,y) |
387 | |
388 | // 1 maximum is initialised with the maximum of the combination found (X->cathode 2, Y->cathode 1) |
389 | // 1 maximum is initialised with the other maximum of the first cathode |
390 | if (accepted[0]){ |
391 | fprintf(stderr,"ico=0\n"); |
392 | fXInit[0]=xm[0][1]; |
393 | fYInit[0]=ym[0][0]; |
394 | fXInit[1]=xm[3][0]; |
395 | fYInit[1]=ym[3][0]; |
396 | } else if (accepted[1]){ |
397 | fprintf(stderr,"ico=1\n"); |
398 | fXInit[0]=xm[1][1]; |
399 | fYInit[0]=ym[1][0]; |
400 | fXInit[1]=xm[2][0]; |
401 | fYInit[1]=ym[2][0]; |
402 | } else if (accepted[2]){ |
403 | fprintf(stderr,"ico=2\n"); |
404 | fXInit[0]=xm[2][1]; |
405 | fYInit[0]=ym[2][0]; |
406 | fXInit[1]=xm[1][0]; |
407 | fYInit[1]=ym[1][0]; |
408 | } else if (accepted[3]){ |
409 | fprintf(stderr,"ico=3\n"); |
410 | fXInit[0]=xm[3][1]; |
411 | fYInit[0]=ym[3][0]; |
412 | fXInit[1]=xm[0][0]; |
413 | fYInit[1]=ym[0][0]; |
414 | } |
07cfabcf |
415 | if (fDebugLevel) |
416 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
a9e2aefa |
417 | chi2=CombiDoubleMathiesonFit(c); |
418 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
419 | // Float_t prob = TMath::Prob(chi2,ndf); |
420 | // prob2->Fill(prob); |
421 | // chi2_2->Fill(chi2); |
07cfabcf |
422 | if (fDebugLevel) |
423 | fprintf(stderr," chi2 %f\n",chi2); |
a9e2aefa |
424 | |
425 | // If reasonable chi^2 add result to the list of rawclusters |
426 | if (chi2<10) { |
427 | Split(c); |
428 | |
429 | } else { |
430 | // 1 maximum is initialised with the maximum of the combination found (X->cathode 2, Y->cathode 1) |
431 | // 1 maximum is initialised with the other maximum of the second cathode |
432 | if (accepted[0]){ |
433 | fprintf(stderr,"ico=0\n"); |
434 | fXInit[0]=xm[0][1]; |
435 | fYInit[0]=ym[0][0]; |
436 | fXInit[1]=xm[3][1]; |
437 | fYInit[1]=ym[3][1]; |
438 | } else if (accepted[1]){ |
439 | fprintf(stderr,"ico=1\n"); |
440 | fXInit[0]=xm[1][1]; |
441 | fYInit[0]=ym[1][0]; |
442 | fXInit[1]=xm[2][1]; |
443 | fYInit[1]=ym[2][1]; |
444 | } else if (accepted[2]){ |
445 | fprintf(stderr,"ico=2\n"); |
446 | fXInit[0]=xm[2][1]; |
447 | fYInit[0]=ym[2][0]; |
448 | fXInit[1]=xm[1][1]; |
449 | fYInit[1]=ym[1][1]; |
450 | } else if (accepted[3]){ |
451 | fprintf(stderr,"ico=3\n"); |
452 | fXInit[0]=xm[3][1]; |
453 | fYInit[0]=ym[3][0]; |
454 | fXInit[1]=xm[0][1]; |
455 | fYInit[1]=ym[0][1]; |
456 | } |
07cfabcf |
457 | if (fDebugLevel) |
458 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
a9e2aefa |
459 | chi2=CombiDoubleMathiesonFit(c); |
460 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
461 | // Float_t prob = TMath::Prob(chi2,ndf); |
462 | // prob2->Fill(prob); |
463 | // chi2_2->Fill(chi2); |
07cfabcf |
464 | if (fDebugLevel) |
465 | fprintf(stderr," chi2 %f\n",chi2); |
a9e2aefa |
466 | |
467 | // If reasonable chi^2 add result to the list of rawclusters |
468 | if (chi2<10) { |
469 | Split(c); |
470 | } else { |
471 | //We keep only the combination found (X->cathode 2, Y->cathode 1) |
472 | for (Int_t ico=0; ico<2; ico++) { |
473 | if (accepted[ico]) { |
474 | AliMUONRawCluster cnew; |
475 | Int_t cath; |
476 | for (cath=0; cath<2; cath++) { |
9825400f |
477 | cnew.fX[cath]=Float_t(xm[ico][1]); |
478 | cnew.fY[cath]=Float_t(ym[ico][0]); |
aadda617 |
479 | cnew.fZ[cath]=fZPlane; |
480 | |
9825400f |
481 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; |
a9e2aefa |
482 | for (i=0; i<fMul[cath]; i++) { |
9825400f |
483 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; |
f0d86bc4 |
484 | fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
a9e2aefa |
485 | } |
9825400f |
486 | fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath); |
487 | fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]); |
488 | FillCluster(&cnew,cath); |
a9e2aefa |
489 | } |
490 | cnew.fClusterType=cnew.PhysicsContribution(); |
491 | AddRawCluster(cnew); |
492 | fNPeaks++; |
493 | } |
494 | } |
495 | } |
496 | } |
497 | } |
9825400f |
498 | |
a9e2aefa |
499 | // ******* iacc = 2 ******* |
500 | // Two combinations found between the 2 cathodes |
501 | if (iacc==2) { |
a9e2aefa |
502 | // Was the same maximum taken twice |
9825400f |
503 | if ((accepted[0]&&accepted[1]) || (accepted[2]&&accepted[3])) { |
504 | fprintf(stderr,"\n Maximum taken twice !!!\n"); |
a9e2aefa |
505 | |
506 | // Have a try !! with that |
9825400f |
507 | if (accepted[0]&&accepted[3]) { |
508 | fXInit[0]=xm[0][1]; |
509 | fYInit[0]=ym[0][0]; |
510 | fXInit[1]=xm[1][1]; |
511 | fYInit[1]=ym[1][0]; |
512 | } else { |
513 | fXInit[0]=xm[2][1]; |
514 | fYInit[0]=ym[2][0]; |
515 | fXInit[1]=xm[3][1]; |
516 | fYInit[1]=ym[3][0]; |
517 | } |
07cfabcf |
518 | if (fDebugLevel) |
519 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
9825400f |
520 | chi2=CombiDoubleMathiesonFit(c); |
a9e2aefa |
521 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
522 | // Float_t prob = TMath::Prob(chi2,ndf); |
523 | // prob2->Fill(prob); |
524 | // chi2_2->Fill(chi2); |
9825400f |
525 | Split(c); |
526 | |
527 | } else { |
a9e2aefa |
528 | // No ghosts ! No Problems ! - Perform one fit only ! |
9825400f |
529 | if (accepted[0]&&accepted[3]) { |
530 | fXInit[0]=xm[0][1]; |
531 | fYInit[0]=ym[0][0]; |
532 | fXInit[1]=xm[3][1]; |
533 | fYInit[1]=ym[3][0]; |
534 | } else { |
535 | fXInit[0]=xm[1][1]; |
536 | fYInit[0]=ym[1][0]; |
537 | fXInit[1]=xm[2][1]; |
538 | fYInit[1]=ym[2][0]; |
539 | } |
07cfabcf |
540 | if (fDebugLevel) |
541 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
9825400f |
542 | chi2=CombiDoubleMathiesonFit(c); |
a9e2aefa |
543 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
544 | // Float_t prob = TMath::Prob(chi2,ndf); |
545 | // prob2->Fill(prob); |
546 | // chi2_2->Fill(chi2); |
07cfabcf |
547 | if (fDebugLevel) |
548 | fprintf(stderr," chi2 %f\n",chi2); |
9825400f |
549 | Split(c); |
550 | } |
551 | |
a9e2aefa |
552 | // ******* iacc = 4 ******* |
553 | // Four combinations found between the 2 cathodes |
554 | // Ghost !! |
9825400f |
555 | } else if (iacc==4) { |
a9e2aefa |
556 | // Perform fits for the two possibilities !! |
07cfabcf |
557 | // Accept if charges are compatible on both cathodes |
558 | // If none are compatible, keep everything |
9825400f |
559 | fXInit[0]=xm[0][1]; |
560 | fYInit[0]=ym[0][0]; |
561 | fXInit[1]=xm[3][1]; |
562 | fYInit[1]=ym[3][0]; |
07cfabcf |
563 | if (fDebugLevel) |
564 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
9825400f |
565 | chi2=CombiDoubleMathiesonFit(c); |
a9e2aefa |
566 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
567 | // Float_t prob = TMath::Prob(chi2,ndf); |
568 | // prob2->Fill(prob); |
569 | // chi2_2->Fill(chi2); |
07cfabcf |
570 | if (fDebugLevel) |
571 | fprintf(stderr," chi2 %f\n",chi2); |
572 | // store results of fit and postpone decision |
573 | Double_t sXFit[2],sYFit[2],sQrFit[2]; |
574 | Float_t sChi2[2]; |
575 | for (Int_t i=0;i<2;i++) { |
576 | sXFit[i]=fXFit[i]; |
577 | sYFit[i]=fYFit[i]; |
578 | sQrFit[i]=fQrFit[i]; |
579 | sChi2[i]=fChi2[i]; |
580 | } |
9825400f |
581 | fXInit[0]=xm[1][1]; |
582 | fYInit[0]=ym[1][0]; |
583 | fXInit[1]=xm[2][1]; |
584 | fYInit[1]=ym[2][0]; |
07cfabcf |
585 | if (fDebugLevel) |
586 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
9825400f |
587 | chi2=CombiDoubleMathiesonFit(c); |
a9e2aefa |
588 | // ndf = fgNbins[0]+fgNbins[1]-6; |
589 | // prob = TMath::Prob(chi2,ndf); |
590 | // prob2->Fill(prob); |
591 | // chi2_2->Fill(chi2); |
07cfabcf |
592 | if (fDebugLevel) |
593 | fprintf(stderr," chi2 %f\n",chi2); |
594 | // We have all informations to perform the decision |
595 | // Compute the chi2 for the 2 possibilities |
596 | Float_t chi2fi,chi2si,chi2f,chi2s; |
597 | |
598 | chi2f = (TMath::Log(fInput->TotalCharge(0)*fQrFit[0] |
599 | / (fInput->TotalCharge(1)*fQrFit[1]) ) |
600 | / fInput->Response()->ChargeCorrel() ); |
601 | chi2f *=chi2f; |
602 | chi2fi = (TMath::Log(fInput->TotalCharge(0)*(1-fQrFit[0]) |
603 | / (fInput->TotalCharge(1)*(1-fQrFit[1])) ) |
604 | / fInput->Response()->ChargeCorrel() ); |
605 | chi2f += chi2fi*chi2fi; |
606 | |
607 | chi2s = (TMath::Log(fInput->TotalCharge(0)*sQrFit[0] |
608 | / (fInput->TotalCharge(1)*sQrFit[1]) ) |
609 | / fInput->Response()->ChargeCorrel() ); |
610 | chi2s *=chi2s; |
611 | chi2si = (TMath::Log(fInput->TotalCharge(0)*(1-sQrFit[0]) |
612 | / (fInput->TotalCharge(1)*(1-sQrFit[1])) ) |
613 | / fInput->Response()->ChargeCorrel() ); |
614 | chi2s += chi2si*chi2si; |
615 | |
616 | // usefull to store the charge matching chi2 in the cluster |
617 | // fChi2[0]=sChi2[1]=chi2f; |
618 | // fChi2[1]=sChi2[0]=chi2s; |
619 | |
620 | if (chi2f<=fGhostChi2Cut && chi2s<=fGhostChi2Cut) |
621 | c->fGhost=1; |
622 | if (chi2f>fGhostChi2Cut && chi2s>fGhostChi2Cut) { |
623 | // we keep the ghost |
624 | c->fGhost=2; |
625 | chi2s=-1; |
626 | chi2f=-1; |
627 | } |
628 | if (chi2f<=fGhostChi2Cut) |
629 | Split(c); |
630 | if (chi2s<=fGhostChi2Cut) { |
631 | // retreive saved values |
632 | for (Int_t i=0;i<2;i++) { |
633 | fXFit[i]=sXFit[i]; |
634 | fYFit[i]=sYFit[i]; |
635 | fQrFit[i]=sQrFit[i]; |
636 | fChi2[i]=sChi2[i]; |
637 | } |
638 | Split(c); |
639 | } |
640 | c->fGhost=0; |
9825400f |
641 | } |
a9e2aefa |
642 | |
9825400f |
643 | } else if (fNLocal[0]==2 && fNLocal[1]==1) { |
a9e2aefa |
644 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
645 | // (3) Two local maxima on cathode 1 and one maximum on cathode 2 |
646 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
647 | // |
648 | Float_t xm[4][2], ym[4][2]; |
649 | Float_t dpx, dpy, dx, dy; |
650 | Int_t ixm[4][2], iym[4][2]; |
651 | Int_t isec, im1, ico; |
652 | // |
653 | // Form the 2x2 combinations |
654 | // 0-0, 0-1, 1-0, 1-1 |
655 | ico=0; |
656 | for (im1=0; im1<2; im1++) { |
9825400f |
657 | xm[ico][0]=fX[fIndLocal[im1][0]][0]; |
658 | ym[ico][0]=fY[fIndLocal[im1][0]][0]; |
659 | xm[ico][1]=fX[fIndLocal[0][1]][1]; |
660 | ym[ico][1]=fY[fIndLocal[0][1]][1]; |
661 | |
662 | ixm[ico][0]=fIx[fIndLocal[im1][0]][0]; |
663 | iym[ico][0]=fIy[fIndLocal[im1][0]][0]; |
664 | ixm[ico][1]=fIx[fIndLocal[0][1]][1]; |
665 | iym[ico][1]=fIy[fIndLocal[0][1]][1]; |
666 | ico++; |
a9e2aefa |
667 | } |
668 | // ico = 0 : first local maximum on cathodes 1 and 2 |
669 | // ico = 1 : second local maximum on cathode 1 and first on cathode 2 |
670 | |
671 | // Analyse the combinations and keep those that are possible ! |
672 | // For each combination check consistency in x and y |
673 | Int_t iacc; |
674 | Bool_t accepted[4]; |
675 | iacc=0; |
676 | |
677 | for (ico=0; ico<2; ico++) { |
678 | accepted[ico]=kFALSE; |
f0d86bc4 |
679 | isec=fSeg[0]->Sector(ixm[ico][0], iym[ico][0]); |
680 | dpx=fSeg[0]->Dpx(isec)/2.; |
a9e2aefa |
681 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); |
f0d86bc4 |
682 | isec=fSeg[1]->Sector(ixm[ico][1], iym[ico][1]); |
683 | dpy=fSeg[1]->Dpy(isec)/2.; |
a9e2aefa |
684 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); |
07cfabcf |
685 | if (fDebugLevel) |
686 | printf("\n %i %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy ); |
a9e2aefa |
687 | if ((dx <= dpx) && (dy <= dpy)) { |
688 | // consistent |
689 | accepted[ico]=kTRUE; |
690 | iacc++; |
691 | } else { |
692 | // reject |
693 | accepted[ico]=kFALSE; |
694 | } |
695 | } |
9825400f |
696 | |
a9e2aefa |
697 | Float_t chi21 = 100; |
698 | Float_t chi22 = 100; |
9825400f |
699 | |
a9e2aefa |
700 | if (accepted[0]) { |
701 | fXInit[0]=xm[0][1]; |
702 | fYInit[0]=ym[0][0]; |
703 | fXInit[1]=xm[1][0]; |
704 | fYInit[1]=ym[1][0]; |
705 | chi21=CombiDoubleMathiesonFit(c); |
706 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
707 | // Float_t prob = TMath::Prob(chi2,ndf); |
708 | // prob2->Fill(prob); |
709 | // chi2_2->Fill(chi21); |
07cfabcf |
710 | if (fDebugLevel) |
711 | fprintf(stderr," chi2 %f\n",chi21); |
a9e2aefa |
712 | if (chi21<10) Split(c); |
713 | } else if (accepted[1]) { |
714 | fXInit[0]=xm[1][1]; |
715 | fYInit[0]=ym[1][0]; |
716 | fXInit[1]=xm[0][0]; |
717 | fYInit[1]=ym[0][0]; |
718 | chi22=CombiDoubleMathiesonFit(c); |
719 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
720 | // Float_t prob = TMath::Prob(chi2,ndf); |
721 | // prob2->Fill(prob); |
722 | // chi2_2->Fill(chi22); |
07cfabcf |
723 | if (fDebugLevel) |
724 | fprintf(stderr," chi2 %f\n",chi22); |
a9e2aefa |
725 | if (chi22<10) Split(c); |
726 | } |
727 | |
728 | if (chi21 > 10 && chi22 > 10) { |
729 | // We keep only the combination found (X->cathode 2, Y->cathode 1) |
730 | for (Int_t ico=0; ico<2; ico++) { |
731 | if (accepted[ico]) { |
732 | AliMUONRawCluster cnew; |
733 | Int_t cath; |
734 | for (cath=0; cath<2; cath++) { |
735 | cnew.fX[cath]=Float_t(xm[ico][1]); |
736 | cnew.fY[cath]=Float_t(ym[ico][0]); |
aadda617 |
737 | cnew.fZ[cath]=fZPlane; |
a9e2aefa |
738 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; |
739 | for (i=0; i<fMul[cath]; i++) { |
9825400f |
740 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; |
f0d86bc4 |
741 | fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
a9e2aefa |
742 | } |
743 | fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath); |
744 | fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]); |
745 | FillCluster(&cnew,cath); |
746 | } |
747 | cnew.fClusterType=cnew.PhysicsContribution(); |
748 | AddRawCluster(cnew); |
749 | fNPeaks++; |
750 | } |
751 | } |
752 | } |
9825400f |
753 | |
a9e2aefa |
754 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
755 | // (3') One local maximum on cathode 1 and two maxima on cathode 2 |
756 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
757 | } else if (fNLocal[0]==1 && fNLocal[1]==2) { |
a9e2aefa |
758 | Float_t xm[4][2], ym[4][2]; |
759 | Float_t dpx, dpy, dx, dy; |
760 | Int_t ixm[4][2], iym[4][2]; |
761 | Int_t isec, im1, ico; |
762 | // |
763 | // Form the 2x2 combinations |
764 | // 0-0, 0-1, 1-0, 1-1 |
765 | ico=0; |
766 | for (im1=0; im1<2; im1++) { |
9825400f |
767 | xm[ico][0]=fX[fIndLocal[0][0]][0]; |
768 | ym[ico][0]=fY[fIndLocal[0][0]][0]; |
769 | xm[ico][1]=fX[fIndLocal[im1][1]][1]; |
770 | ym[ico][1]=fY[fIndLocal[im1][1]][1]; |
771 | |
772 | ixm[ico][0]=fIx[fIndLocal[0][0]][0]; |
773 | iym[ico][0]=fIy[fIndLocal[0][0]][0]; |
774 | ixm[ico][1]=fIx[fIndLocal[im1][1]][1]; |
775 | iym[ico][1]=fIy[fIndLocal[im1][1]][1]; |
776 | ico++; |
a9e2aefa |
777 | } |
778 | // ico = 0 : first local maximum on cathodes 1 and 2 |
779 | // ico = 1 : first local maximum on cathode 1 and second on cathode 2 |
780 | |
781 | // Analyse the combinations and keep those that are possible ! |
782 | // For each combination check consistency in x and y |
783 | Int_t iacc; |
784 | Bool_t accepted[4]; |
785 | iacc=0; |
786 | |
787 | for (ico=0; ico<2; ico++) { |
788 | accepted[ico]=kFALSE; |
f0d86bc4 |
789 | isec=fSeg[0]->Sector(ixm[ico][0], iym[ico][0]); |
790 | dpx=fSeg[0]->Dpx(isec)/2.; |
a9e2aefa |
791 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); |
f0d86bc4 |
792 | isec=fSeg[1]->Sector(ixm[ico][1], iym[ico][1]); |
793 | dpy=fSeg[1]->Dpy(isec)/2.; |
a9e2aefa |
794 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); |
07cfabcf |
795 | if (fDebugLevel) |
796 | printf("\n %i %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy ); |
a9e2aefa |
797 | if ((dx <= dpx) && (dy <= dpy)) { |
798 | // consistent |
799 | accepted[ico]=kTRUE; |
800 | fprintf(stderr,"ico %d\n",ico); |
801 | iacc++; |
802 | } else { |
803 | // reject |
804 | accepted[ico]=kFALSE; |
805 | } |
806 | } |
807 | |
808 | Float_t chi21 = 100; |
809 | Float_t chi22 = 100; |
810 | |
811 | if (accepted[0]) { |
812 | fXInit[0]=xm[0][0]; |
813 | fYInit[0]=ym[0][1]; |
814 | fXInit[1]=xm[1][1]; |
815 | fYInit[1]=ym[1][1]; |
816 | chi21=CombiDoubleMathiesonFit(c); |
817 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
818 | // Float_t prob = TMath::Prob(chi2,ndf); |
819 | // prob2->Fill(prob); |
820 | // chi2_2->Fill(chi21); |
07cfabcf |
821 | if (fDebugLevel) |
822 | fprintf(stderr," chi2 %f\n",chi21); |
a9e2aefa |
823 | if (chi21<10) Split(c); |
824 | } else if (accepted[1]) { |
825 | fXInit[0]=xm[1][0]; |
826 | fYInit[0]=ym[1][1]; |
827 | fXInit[1]=xm[0][1]; |
828 | fYInit[1]=ym[0][1]; |
829 | chi22=CombiDoubleMathiesonFit(c); |
830 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
831 | // Float_t prob = TMath::Prob(chi2,ndf); |
832 | // prob2->Fill(prob); |
833 | // chi2_2->Fill(chi22); |
07cfabcf |
834 | if (fDebugLevel) |
835 | fprintf(stderr," chi2 %f\n",chi22); |
a9e2aefa |
836 | if (chi22<10) Split(c); |
837 | } |
838 | |
839 | if (chi21 > 10 && chi22 > 10) { |
840 | //We keep only the combination found (X->cathode 2, Y->cathode 1) |
841 | for (Int_t ico=0; ico<2; ico++) { |
842 | if (accepted[ico]) { |
843 | AliMUONRawCluster cnew; |
844 | Int_t cath; |
845 | for (cath=0; cath<2; cath++) { |
846 | cnew.fX[cath]=Float_t(xm[ico][1]); |
847 | cnew.fY[cath]=Float_t(ym[ico][0]); |
aadda617 |
848 | cnew.fZ[cath]=fZPlane; |
a9e2aefa |
849 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; |
850 | for (i=0; i<fMul[cath]; i++) { |
9825400f |
851 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; |
f0d86bc4 |
852 | fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
a9e2aefa |
853 | } |
854 | fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath); |
855 | fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]); |
856 | FillCluster(&cnew,cath); |
857 | } |
858 | cnew.fClusterType=cnew.PhysicsContribution(); |
859 | AddRawCluster(cnew); |
860 | fNPeaks++; |
861 | } |
862 | } |
863 | } |
864 | |
865 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
866 | // (4) At least three local maxima on cathode 1 or on cathode 2 |
867 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
868 | } else if (fNLocal[0]>2 || fNLocal[1]>2) { |
a9e2aefa |
869 | Int_t param = fNLocal[0]*fNLocal[1]; |
f8ffca81 |
870 | Int_t ii; |
9825400f |
871 | |
39e6d319 |
872 | Float_t ** xm = new Float_t * [param]; |
873 | for (ii=0; ii<param; ii++) xm[ii]=new Float_t [2]; |
874 | Float_t ** ym = new Float_t * [param]; |
875 | for (ii=0; ii<param; ii++) ym[ii]=new Float_t [2]; |
876 | Int_t ** ixm = new Int_t * [param]; |
877 | for (ii=0; ii<param; ii++) ixm[ii]=new Int_t [2]; |
878 | Int_t ** iym = new Int_t * [param]; |
879 | for (ii=0; ii<param; ii++) iym[ii]=new Int_t [2]; |
f8ffca81 |
880 | |
a9e2aefa |
881 | Int_t isec, ico; |
882 | Float_t dpx, dpy, dx, dy; |
883 | |
884 | ico=0; |
885 | for (Int_t im1=0; im1<fNLocal[0]; im1++) { |
886 | for (Int_t im2=0; im2<fNLocal[1]; im2++) { |
887 | xm[ico][0]=fX[fIndLocal[im1][0]][0]; |
888 | ym[ico][0]=fY[fIndLocal[im1][0]][0]; |
889 | xm[ico][1]=fX[fIndLocal[im2][1]][1]; |
890 | ym[ico][1]=fY[fIndLocal[im2][1]][1]; |
891 | |
892 | ixm[ico][0]=fIx[fIndLocal[im1][0]][0]; |
893 | iym[ico][0]=fIy[fIndLocal[im1][0]][0]; |
894 | ixm[ico][1]=fIx[fIndLocal[im2][1]][1]; |
895 | iym[ico][1]=fIy[fIndLocal[im2][1]][1]; |
896 | ico++; |
897 | } |
898 | } |
9825400f |
899 | |
a9e2aefa |
900 | Int_t nIco = ico; |
07cfabcf |
901 | if (fDebugLevel) |
902 | fprintf(stderr,"nIco %d\n",nIco); |
a9e2aefa |
903 | for (ico=0; ico<nIco; ico++) { |
07cfabcf |
904 | if (fDebugLevel) |
905 | fprintf(stderr,"ico = %d\n",ico); |
f0d86bc4 |
906 | isec=fSeg[0]->Sector(ixm[ico][0], iym[ico][0]); |
907 | dpx=fSeg[0]->Dpx(isec)/2.; |
a9e2aefa |
908 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); |
f0d86bc4 |
909 | isec=fSeg[1]->Sector(ixm[ico][1], iym[ico][1]); |
910 | dpy=fSeg[1]->Dpy(isec)/2.; |
a9e2aefa |
911 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); |
07cfabcf |
912 | if (fDebugLevel) { |
913 | fprintf(stderr,"dx %f dpx %f dy %f dpy %f\n",dx,dpx,dy,dpy); |
914 | fprintf(stderr," X %f Y %f\n",xm[ico][1],ym[ico][0]); |
915 | } |
a9e2aefa |
916 | if ((dx <= dpx) && (dy <= dpy)) { |
07cfabcf |
917 | if (fDebugLevel) |
918 | fprintf(stderr,"ok\n"); |
a9e2aefa |
919 | Int_t cath; |
920 | AliMUONRawCluster cnew; |
921 | for (cath=0; cath<2; cath++) { |
922 | cnew.fX[cath]=Float_t(xm[ico][1]); |
923 | cnew.fY[cath]=Float_t(ym[ico][0]); |
aadda617 |
924 | cnew.fZ[cath]=fZPlane; |
a9e2aefa |
925 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; |
926 | for (i=0; i<fMul[cath]; i++) { |
9825400f |
927 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; |
f0d86bc4 |
928 | fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
a9e2aefa |
929 | } |
930 | FillCluster(&cnew,cath); |
931 | } |
932 | cnew.fClusterType=cnew.PhysicsContribution(); |
933 | AddRawCluster(cnew); |
934 | fNPeaks++; |
935 | } |
936 | } |
f8ffca81 |
937 | delete [] xm; |
938 | delete [] ym; |
939 | delete [] ixm; |
940 | delete [] iym; |
a9e2aefa |
941 | } |
942 | } |
943 | |
944 | void AliMUONClusterFinderVS::FindLocalMaxima(AliMUONRawCluster* c) |
945 | { |
946 | // Find all local maxima of a cluster |
07cfabcf |
947 | if (fDebugLevel) |
948 | printf("\n Find Local maxima !"); |
f0d86bc4 |
949 | |
a9e2aefa |
950 | AliMUONDigit* digt; |
951 | |
952 | Int_t cath, cath1; // loops over cathodes |
953 | Int_t i; // loops over digits |
954 | Int_t j; // loops over cathodes |
955 | // |
956 | // Find local maxima |
957 | // |
958 | // counters for number of local maxima |
959 | fNLocal[0]=fNLocal[1]=0; |
960 | // flags digits as local maximum |
961 | Bool_t isLocal[100][2]; |
962 | for (i=0; i<100;i++) { |
963 | isLocal[i][0]=isLocal[i][1]=kFALSE; |
964 | } |
965 | // number of next neighbours and arrays to store them |
966 | Int_t nn; |
30aaba74 |
967 | Int_t x[10], y[10]; |
a9e2aefa |
968 | // loop over cathodes |
969 | for (cath=0; cath<2; cath++) { |
970 | // loop over cluster digits |
971 | for (i=0; i<fMul[cath]; i++) { |
972 | // get neighbours for that digit and assume that it is local maximum |
f0d86bc4 |
973 | fSeg[cath]->Neighbours(fIx[i][cath], fIy[i][cath], &nn, x, y); |
a9e2aefa |
974 | isLocal[i][cath]=kTRUE; |
f0d86bc4 |
975 | Int_t isec= fSeg[cath]->Sector(fIx[i][cath], fIy[i][cath]); |
976 | Float_t a0 = fSeg[cath]->Dpx(isec)*fSeg[cath]->Dpy(isec); |
a9e2aefa |
977 | // loop over next neighbours, if at least one neighbour has higher charger assumption |
978 | // digit is not local maximum |
979 | for (j=0; j<nn; j++) { |
30aaba74 |
980 | if (fHitMap[cath]->TestHit(x[j], y[j])==kEmpty) continue; |
981 | digt=(AliMUONDigit*) fHitMap[cath]->GetHit(x[j], y[j]); |
f0d86bc4 |
982 | isec=fSeg[cath]->Sector(x[j], y[j]); |
983 | Float_t a1 = fSeg[cath]->Dpx(isec)*fSeg[cath]->Dpy(isec); |
08a636a8 |
984 | if (digt->Signal()/a1 > fQ[i][cath]/a0) { |
a9e2aefa |
985 | isLocal[i][cath]=kFALSE; |
986 | break; |
987 | // |
988 | // handle special case of neighbouring pads with equal signal |
08a636a8 |
989 | } else if (digt->Signal() == fQ[i][cath]) { |
a9e2aefa |
990 | if (fNLocal[cath]>0) { |
991 | for (Int_t k=0; k<fNLocal[cath]; k++) { |
992 | if (x[j]==fIx[fIndLocal[k][cath]][cath] |
993 | && y[j]==fIy[fIndLocal[k][cath]][cath]) |
994 | { |
995 | isLocal[i][cath]=kFALSE; |
996 | } |
997 | } // loop over local maxima |
998 | } // are there already local maxima |
999 | } // same charge ? |
1000 | } // loop over next neighbours |
1001 | if (isLocal[i][cath]) { |
1002 | fIndLocal[fNLocal[cath]][cath]=i; |
1003 | fNLocal[cath]++; |
1004 | } |
1005 | } // loop over all digits |
1006 | } // loop over cathodes |
07cfabcf |
1007 | |
1008 | if (fDebugLevel) { |
1009 | printf("\n Found %d %d %d %d local Maxima\n", |
1010 | fNLocal[0], fNLocal[1], fMul[0], fMul[1]); |
1011 | fprintf(stderr,"\n Cathode 1 local Maxima %d Multiplicite %d\n",fNLocal[0], fMul[0]); |
1012 | fprintf(stderr," Cathode 2 local Maxima %d Multiplicite %d\n",fNLocal[1], fMul[1]); |
1013 | } |
a9e2aefa |
1014 | Int_t ix, iy, isec; |
1015 | Float_t dpx, dpy; |
1016 | |
1017 | |
1018 | if (fNLocal[1]==2 && (fNLocal[0]==1 || fNLocal[0]==0)) { |
1019 | Int_t iback=fNLocal[0]; |
1020 | |
1021 | // Two local maxima on cathode 2 and one maximum on cathode 1 |
1022 | // Look for local maxima considering up and down neighbours on the 1st cathode only |
1023 | // |
1024 | // Loop over cluster digits |
1025 | cath=0; |
1026 | cath1=1; |
1027 | |
1028 | for (i=0; i<fMul[cath]; i++) { |
f0d86bc4 |
1029 | isec=fSeg[cath]->Sector(fIx[i][cath],fIy[i][cath]); |
1030 | dpy=fSeg[cath]->Dpy(isec); |
1031 | dpx=fSeg[cath]->Dpx(isec); |
a9e2aefa |
1032 | if (isLocal[i][cath]) continue; |
1033 | // Pad position should be consistent with position of local maxima on the opposite cathode |
1034 | if ((TMath::Abs(fX[i][cath]-fX[fIndLocal[0][cath1]][cath1]) > dpx/2.) && |
1035 | (TMath::Abs(fX[i][cath]-fX[fIndLocal[1][cath1]][cath1]) > dpx/2.)) |
1036 | continue; |
1037 | |
1038 | // get neighbours for that digit and assume that it is local maximum |
1039 | isLocal[i][cath]=kTRUE; |
1040 | // compare signal to that on the two neighbours on the left and on the right |
a9e2aefa |
1041 | // iNN counts the number of neighbours with signal, it should be 1 or 2 |
1042 | Int_t iNN=0; |
f0d86bc4 |
1043 | |
1044 | for (fSeg[cath] |
1045 | ->FirstPad(fX[i][cath], fY[i][cath], fZPlane, 0., dpy); |
1046 | fSeg[cath] |
1047 | ->MorePads(); |
1048 | fSeg[cath] |
1049 | ->NextPad()) |
1050 | { |
1051 | ix = fSeg[cath]->Ix(); |
1052 | iy = fSeg[cath]->Iy(); |
1053 | // skip the current pad |
1054 | if (iy == fIy[i][cath]) continue; |
1055 | |
1056 | if (fHitMap[cath]->TestHit(ix, iy)!=kEmpty) { |
1057 | iNN++; |
1058 | digt=(AliMUONDigit*) fHitMap[cath]->GetHit(ix,iy); |
08a636a8 |
1059 | if (digt->Signal() > fQ[i][cath]) isLocal[i][cath]=kFALSE; |
f0d86bc4 |
1060 | } |
1061 | } // Loop over pad neighbours in y |
a9e2aefa |
1062 | if (isLocal[i][cath] && iNN>0) { |
1063 | fIndLocal[fNLocal[cath]][cath]=i; |
1064 | fNLocal[cath]++; |
1065 | } |
1066 | } // loop over all digits |
1067 | // if one additional maximum has been found we are happy |
1068 | // if more maxima have been found restore the previous situation |
07cfabcf |
1069 | if (fDebugLevel) { |
1070 | fprintf(stderr, |
1071 | "\n New search gives %d local maxima for cathode 1 \n", |
1072 | fNLocal[0]); |
1073 | fprintf(stderr, |
1074 | " %d local maxima for cathode 2 \n", |
1075 | fNLocal[1]); |
1076 | } |
a9e2aefa |
1077 | if (fNLocal[cath]>2) { |
1078 | fNLocal[cath]=iback; |
1079 | } |
1080 | |
1081 | } // 1,2 local maxima |
1082 | |
1083 | if (fNLocal[0]==2 && (fNLocal[1]==1 || fNLocal[1]==0)) { |
1084 | Int_t iback=fNLocal[1]; |
1085 | |
1086 | // Two local maxima on cathode 1 and one maximum on cathode 2 |
1087 | // Look for local maxima considering left and right neighbours on the 2nd cathode only |
1088 | cath=1; |
1089 | Int_t cath1=0; |
a9e2aefa |
1090 | // |
1091 | // Loop over cluster digits |
1092 | for (i=0; i<fMul[cath]; i++) { |
f0d86bc4 |
1093 | isec=fSeg[cath]->Sector(fIx[i][cath],fIy[i][cath]); |
1094 | dpx=fSeg[cath]->Dpx(isec); |
1095 | dpy=fSeg[cath]->Dpy(isec); |
a9e2aefa |
1096 | if (isLocal[i][cath]) continue; |
1097 | // Pad position should be consistent with position of local maxima on the opposite cathode |
1098 | if ((TMath::Abs(fY[i][cath]-fY[fIndLocal[0][cath1]][cath1]) > dpy/2.) && |
1099 | (TMath::Abs(fY[i][cath]-fY[fIndLocal[1][cath1]][cath1]) > dpy/2.)) |
1100 | continue; |
1101 | // |
1102 | // get neighbours for that digit and assume that it is local maximum |
1103 | isLocal[i][cath]=kTRUE; |
1104 | // compare signal to that on the two neighbours on the left and on the right |
f0d86bc4 |
1105 | |
a9e2aefa |
1106 | // iNN counts the number of neighbours with signal, it should be 1 or 2 |
1107 | Int_t iNN=0; |
f0d86bc4 |
1108 | for (fSeg[cath] |
1109 | ->FirstPad(fX[i][cath], fY[i][cath], fZPlane, 0., dpx); |
1110 | fSeg[cath] |
1111 | ->MorePads(); |
1112 | fSeg[cath] |
1113 | ->NextPad()) |
1114 | { |
1115 | ix = fSeg[cath]->Ix(); |
1116 | iy = fSeg[cath]->Iy(); |
1117 | |
1118 | // skip the current pad |
1119 | if (ix == fIx[i][cath]) continue; |
1120 | |
1121 | if (fHitMap[cath]->TestHit(ix, iy)!=kEmpty) { |
1122 | iNN++; |
1123 | digt=(AliMUONDigit*) fHitMap[cath]->GetHit(ix,iy); |
08a636a8 |
1124 | if (digt->Signal() > fQ[i][cath]) isLocal[i][cath]=kFALSE; |
f0d86bc4 |
1125 | } |
1126 | } // Loop over pad neighbours in x |
a9e2aefa |
1127 | if (isLocal[i][cath] && iNN>0) { |
1128 | fIndLocal[fNLocal[cath]][cath]=i; |
1129 | fNLocal[cath]++; |
1130 | } |
1131 | } // loop over all digits |
1132 | // if one additional maximum has been found we are happy |
1133 | // if more maxima have been found restore the previous situation |
07cfabcf |
1134 | if (fDebugLevel) { |
1135 | fprintf(stderr,"\n New search gives %d local maxima for cathode 1 \n",fNLocal[0]); |
1136 | fprintf(stderr,"\n %d local maxima for cathode 2 \n",fNLocal[1]); |
1137 | printf("\n New search gives %d %d \n",fNLocal[0],fNLocal[1]); |
1138 | } |
a9e2aefa |
1139 | if (fNLocal[cath]>2) { |
1140 | fNLocal[cath]=iback; |
1141 | } |
a9e2aefa |
1142 | } // 2,1 local maxima |
1143 | } |
1144 | |
1145 | |
1146 | void AliMUONClusterFinderVS::FillCluster(AliMUONRawCluster* c, Int_t flag, Int_t cath) |
1147 | { |
1148 | // |
1149 | // Completes cluster information starting from list of digits |
1150 | // |
1151 | AliMUONDigit* dig; |
802a864d |
1152 | Float_t x, y, z; |
a9e2aefa |
1153 | Int_t ix, iy; |
1154 | |
1155 | if (cath==1) { |
1156 | c->fPeakSignal[cath]=c->fPeakSignal[0]; |
1157 | } else { |
1158 | c->fPeakSignal[cath]=0; |
1159 | } |
1160 | |
1161 | |
1162 | if (flag) { |
1163 | c->fX[cath]=0; |
1164 | c->fY[cath]=0; |
1165 | c->fQ[cath]=0; |
1166 | } |
1167 | |
07cfabcf |
1168 | if (fDebugLevel) |
1169 | fprintf(stderr,"\n fPeakSignal %d\n",c->fPeakSignal[cath]); |
a9e2aefa |
1170 | for (Int_t i=0; i<c->fMultiplicity[cath]; i++) |
1171 | { |
30aaba74 |
1172 | dig= fInput->Digit(cath,c->fIndexMap[i][cath]); |
08a636a8 |
1173 | ix=dig->PadX()+c->fOffsetMap[i][cath]; |
1174 | iy=dig->PadY(); |
1175 | Int_t q=dig->Signal(); |
a9e2aefa |
1176 | if (!flag) q=Int_t(q*c->fContMap[i][cath]); |
1177 | // fprintf(stderr,"q %d c->fPeakSignal[ %d ] %d\n",q,cath,c->fPeakSignal[cath]); |
08a636a8 |
1178 | if (dig->Physics() >= dig->Signal()) { |
a9e2aefa |
1179 | c->fPhysicsMap[i]=2; |
08a636a8 |
1180 | } else if (dig->Physics() == 0) { |
a9e2aefa |
1181 | c->fPhysicsMap[i]=0; |
1182 | } else c->fPhysicsMap[i]=1; |
1183 | // |
1184 | // |
07cfabcf |
1185 | if (fDebugLevel) |
1186 | fprintf(stderr,"q %d c->fPeakSignal[cath] %d\n",q,c->fPeakSignal[cath]); |
a9e2aefa |
1187 | // peak signal and track list |
1188 | if (q>c->fPeakSignal[cath]) { |
1189 | c->fPeakSignal[cath]=q; |
08a636a8 |
1190 | c->fTracks[0]=dig->Hit(); |
1191 | c->fTracks[1]=dig->Track(0); |
1192 | c->fTracks[2]=dig->Track(1); |
a9e2aefa |
1193 | // fprintf(stderr," c->fTracks[0] %d c->fTracks[1] %d\n",dig->fHit,dig->fTracks[0]); |
1194 | } |
1195 | // |
1196 | if (flag) { |
f0d86bc4 |
1197 | fSeg[cath]->GetPadC(ix, iy, x, y, z); |
a9e2aefa |
1198 | c->fX[cath] += q*x; |
1199 | c->fY[cath] += q*y; |
1200 | c->fQ[cath] += q; |
1201 | } |
1202 | } // loop over digits |
07cfabcf |
1203 | if (fDebugLevel) |
1204 | fprintf(stderr," fin du cluster c\n"); |
a9e2aefa |
1205 | |
1206 | |
1207 | if (flag) { |
1208 | c->fX[cath]/=c->fQ[cath]; |
07cfabcf |
1209 | // Force on anod |
f0d86bc4 |
1210 | c->fX[cath]=fSeg[cath]->GetAnod(c->fX[cath]); |
a9e2aefa |
1211 | c->fY[cath]/=c->fQ[cath]; |
1212 | // |
1213 | // apply correction to the coordinate along the anode wire |
1214 | // |
1215 | x=c->fX[cath]; |
1216 | y=c->fY[cath]; |
f0d86bc4 |
1217 | fSeg[cath]->GetPadI(x, y, fZPlane, ix, iy); |
1218 | fSeg[cath]->GetPadC(ix, iy, x, y, z); |
1219 | Int_t isec=fSeg[cath]->Sector(ix,iy); |
1220 | TF1* cogCorr = fSeg[cath]->CorrFunc(isec-1); |
a9e2aefa |
1221 | |
1222 | if (cogCorr) { |
f0d86bc4 |
1223 | Float_t yOnPad=(c->fY[cath]-y)/fSeg[cath]->Dpy(isec); |
a9e2aefa |
1224 | c->fY[cath]=c->fY[cath]-cogCorr->Eval(yOnPad, 0, 0); |
1225 | } |
1226 | } |
1227 | } |
1228 | |
1229 | void AliMUONClusterFinderVS::FillCluster(AliMUONRawCluster* c, Int_t cath) |
1230 | { |
1231 | // |
1232 | // Completes cluster information starting from list of digits |
1233 | // |
1234 | static Float_t dr0; |
1235 | |
1236 | AliMUONDigit* dig; |
1237 | |
1238 | if (cath==0) { |
1239 | dr0 = 10000; |
1240 | } |
1241 | |
802a864d |
1242 | Float_t xpad, ypad, zpad; |
a9e2aefa |
1243 | Float_t dx, dy, dr; |
1244 | |
1245 | for (Int_t i=0; i<c->fMultiplicity[cath]; i++) |
1246 | { |
30aaba74 |
1247 | dig = fInput->Digit(cath,c->fIndexMap[i][cath]); |
f0d86bc4 |
1248 | fSeg[cath]-> |
08a636a8 |
1249 | GetPadC(dig->PadX(),dig->PadY(),xpad,ypad, zpad); |
07cfabcf |
1250 | if (fDebugLevel) |
1251 | fprintf(stderr,"x %f y %f cx %f cy %f\n",xpad,ypad,c->fX[0],c->fY[0]); |
a9e2aefa |
1252 | dx = xpad - c->fX[0]; |
1253 | dy = ypad - c->fY[0]; |
1254 | dr = TMath::Sqrt(dx*dx+dy*dy); |
1255 | |
1256 | if (dr < dr0) { |
1257 | dr0 = dr; |
07cfabcf |
1258 | if (fDebugLevel) |
1259 | fprintf(stderr," dr %f\n",dr); |
08a636a8 |
1260 | Int_t q=dig->Signal(); |
1261 | if (dig->Physics() >= dig->Signal()) { |
a9e2aefa |
1262 | c->fPhysicsMap[i]=2; |
08a636a8 |
1263 | } else if (dig->Physics() == 0) { |
a9e2aefa |
1264 | c->fPhysicsMap[i]=0; |
1265 | } else c->fPhysicsMap[i]=1; |
1266 | c->fPeakSignal[cath]=q; |
08a636a8 |
1267 | c->fTracks[0]=dig->Hit(); |
1268 | c->fTracks[1]=dig->Track(0); |
1269 | c->fTracks[2]=dig->Track(1); |
07cfabcf |
1270 | if (fDebugLevel) |
1271 | fprintf(stderr," c->fTracks[0] %d c->fTracks[1] %d\n",dig->Hit(), |
08a636a8 |
1272 | dig->Track(0)); |
a9e2aefa |
1273 | } |
1274 | // |
1275 | } // loop over digits |
1276 | |
1277 | // apply correction to the coordinate along the anode wire |
07cfabcf |
1278 | // Force on anod |
f0d86bc4 |
1279 | c->fX[cath]=fSeg[cath]->GetAnod(c->fX[cath]); |
a9e2aefa |
1280 | } |
1281 | |
1282 | void AliMUONClusterFinderVS::FindCluster(Int_t i, Int_t j, Int_t cath, AliMUONRawCluster &c){ |
f0d86bc4 |
1283 | |
1284 | |
a9e2aefa |
1285 | // |
f0d86bc4 |
1286 | // Find a super cluster on both cathodes |
a9e2aefa |
1287 | // |
1288 | // |
1289 | // Add i,j as element of the cluster |
1290 | // |
f0d86bc4 |
1291 | |
30aaba74 |
1292 | Int_t idx = fHitMap[cath]->GetHitIndex(i,j); |
1293 | AliMUONDigit* dig = (AliMUONDigit*) fHitMap[cath]->GetHit(i,j); |
08a636a8 |
1294 | Int_t q=dig->Signal(); |
1295 | Int_t theX=dig->PadX(); |
1296 | Int_t theY=dig->PadY(); |
f0d86bc4 |
1297 | |
a9e2aefa |
1298 | if (q > TMath::Abs(c.fPeakSignal[0]) && q > TMath::Abs(c.fPeakSignal[1])) { |
1299 | c.fPeakSignal[cath]=q; |
08a636a8 |
1300 | c.fTracks[0]=dig->Hit(); |
1301 | c.fTracks[1]=dig->Track(0); |
1302 | c.fTracks[2]=dig->Track(1); |
a9e2aefa |
1303 | } |
1304 | |
1305 | // |
1306 | // Make sure that list of digits is ordered |
1307 | // |
1308 | Int_t mu=c.fMultiplicity[cath]; |
1309 | c.fIndexMap[mu][cath]=idx; |
1310 | |
08a636a8 |
1311 | if (dig->Physics() >= dig->Signal()) { |
a9e2aefa |
1312 | c.fPhysicsMap[mu]=2; |
08a636a8 |
1313 | } else if (dig->Physics() == 0) { |
a9e2aefa |
1314 | c.fPhysicsMap[mu]=0; |
1315 | } else c.fPhysicsMap[mu]=1; |
f0d86bc4 |
1316 | |
1317 | |
a9e2aefa |
1318 | if (mu > 0) { |
f0d86bc4 |
1319 | for (Int_t ind = mu-1; ind >= 0; ind--) { |
a9e2aefa |
1320 | Int_t ist=(c.fIndexMap)[ind][cath]; |
08a636a8 |
1321 | Int_t ql=fInput->Digit(cath, ist)->Signal(); |
1322 | Int_t ix=fInput->Digit(cath, ist)->PadX(); |
1323 | Int_t iy=fInput->Digit(cath, ist)->PadY(); |
f0d86bc4 |
1324 | |
a9e2aefa |
1325 | if (q>ql || (q==ql && theX > ix && theY < iy)) { |
1326 | c.fIndexMap[ind][cath]=idx; |
1327 | c.fIndexMap[ind+1][cath]=ist; |
1328 | } else { |
f0d86bc4 |
1329 | |
a9e2aefa |
1330 | break; |
1331 | } |
1332 | } |
1333 | } |
f0d86bc4 |
1334 | |
a9e2aefa |
1335 | c.fMultiplicity[cath]++; |
1336 | if (c.fMultiplicity[cath] >= 50 ) { |
1337 | printf("FindCluster - multiplicity >50 %d \n",c.fMultiplicity[0]); |
1338 | c.fMultiplicity[cath]=49; |
1339 | } |
1340 | |
1341 | // Prepare center of gravity calculation |
802a864d |
1342 | Float_t x, y, z; |
f0d86bc4 |
1343 | fSeg[cath]->GetPadC(i, j, x, y, z); |
1344 | |
a9e2aefa |
1345 | c.fX[cath] += q*x; |
1346 | c.fY[cath] += q*y; |
1347 | c.fQ[cath] += q; |
f0d86bc4 |
1348 | // |
1349 | // Flag hit as "taken" |
30aaba74 |
1350 | fHitMap[cath]->FlagHit(i,j); |
a9e2aefa |
1351 | // |
1352 | // Now look recursively for all neighbours and pad hit on opposite cathode |
1353 | // |
1354 | // Loop over neighbours |
1355 | Int_t ix,iy; |
f0d86bc4 |
1356 | ix=iy=0; |
a9e2aefa |
1357 | Int_t nn; |
30aaba74 |
1358 | Int_t xList[10], yList[10]; |
f0d86bc4 |
1359 | fSeg[cath]->Neighbours(i,j,&nn,xList,yList); |
a9e2aefa |
1360 | for (Int_t in=0; in<nn; in++) { |
1361 | ix=xList[in]; |
1362 | iy=yList[in]; |
f0d86bc4 |
1363 | |
1364 | if (fHitMap[cath]->TestHit(ix,iy)==kUnused) { |
07cfabcf |
1365 | if (fDebugLevel) |
1366 | printf("\n Neighbours %d %d %d", cath, ix, iy); |
f0d86bc4 |
1367 | FindCluster(ix, iy, cath, c); |
1368 | } |
1369 | |
1370 | } |
1371 | Int_t nOpp=0; |
1372 | Int_t iXopp[50], iYopp[50]; |
1373 | |
a9e2aefa |
1374 | // Neighbours on opposite cathode |
1375 | // Take into account that several pads can overlap with the present pad |
f0d86bc4 |
1376 | Int_t isec=fSeg[cath]->Sector(i,j); |
a9e2aefa |
1377 | Int_t iop; |
f0d86bc4 |
1378 | Float_t dx, dy; |
1379 | |
a9e2aefa |
1380 | if (cath==0) { |
f0d86bc4 |
1381 | iop = 1; |
1382 | dx = (fSeg[cath]->Dpx(isec))/2.; |
1383 | dy = 0.; |
a9e2aefa |
1384 | } else { |
f0d86bc4 |
1385 | iop = 0; |
1386 | dx = 0.; |
1387 | dy = (fSeg[cath]->Dpy(isec))/2; |
1388 | } |
1389 | // loop over pad neighbours on opposite cathode |
1390 | for (fSeg[iop]->FirstPad(x, y, fZPlane, dx, dy); |
1391 | fSeg[iop]->MorePads(); |
1392 | fSeg[iop]->NextPad()) |
1393 | { |
1394 | |
1395 | ix = fSeg[iop]->Ix(); iy = fSeg[iop]->Iy(); |
07cfabcf |
1396 | if (fDebugLevel) |
1397 | printf("\n ix, iy: %f %f %f %d %d %d", x,y,z,ix, iy, fSector); |
f0d86bc4 |
1398 | if (fHitMap[iop]->TestHit(ix,iy)==kUnused){ |
1399 | iXopp[nOpp]=ix; |
1400 | iYopp[nOpp++]=iy; |
07cfabcf |
1401 | if (fDebugLevel) |
1402 | printf("\n Opposite %d %d %d", iop, ix, iy); |
a9e2aefa |
1403 | } |
f0d86bc4 |
1404 | |
1405 | } // Loop over pad neighbours |
1406 | // This had to go outside the loop since recursive calls inside the iterator are not possible |
1407 | // |
1408 | Int_t jopp; |
1409 | for (jopp=0; jopp<nOpp; jopp++) { |
1410 | if (fHitMap[iop]->TestHit(iXopp[jopp],iYopp[jopp]) == kUnused) |
1411 | FindCluster(iXopp[jopp], iYopp[jopp], iop, c); |
a9e2aefa |
1412 | } |
1413 | } |
1414 | |
1415 | //_____________________________________________________________________________ |
1416 | |
1417 | void AliMUONClusterFinderVS::FindRawClusters() |
1418 | { |
1419 | // |
1420 | // MUON cluster finder from digits -- finds neighbours on both cathodes and |
1421 | // fills the tree with raw clusters |
1422 | // |
1423 | |
f0d86bc4 |
1424 | // Return if no input datad available |
30aaba74 |
1425 | if (!fInput->NDigits(0) && !fInput->NDigits(1)) return; |
a9e2aefa |
1426 | |
f0d86bc4 |
1427 | fSeg[0] = fInput->Segmentation(0); |
1428 | fSeg[1] = fInput->Segmentation(1); |
1429 | |
1430 | fHitMap[0] = new AliMUONHitMapA1(fSeg[0], fInput->Digits(0)); |
1431 | fHitMap[1] = new AliMUONHitMapA1(fSeg[1], fInput->Digits(1)); |
a9e2aefa |
1432 | |
f0d86bc4 |
1433 | |
a9e2aefa |
1434 | AliMUONDigit *dig; |
1435 | |
1436 | Int_t ndig, cath; |
1437 | Int_t nskip=0; |
1438 | Int_t ncls=0; |
30aaba74 |
1439 | fHitMap[0]->FillHits(); |
1440 | fHitMap[1]->FillHits(); |
a9e2aefa |
1441 | // |
1442 | // Outer Loop over Cathodes |
1443 | for (cath=0; cath<2; cath++) { |
30aaba74 |
1444 | for (ndig=0; ndig<fInput->NDigits(cath); ndig++) { |
1445 | dig = fInput->Digit(cath, ndig); |
08a636a8 |
1446 | Int_t i=dig->PadX(); |
1447 | Int_t j=dig->PadY(); |
30aaba74 |
1448 | if (fHitMap[cath]->TestHit(i,j)==kUsed ||fHitMap[0]->TestHit(i,j)==kEmpty) { |
a9e2aefa |
1449 | nskip++; |
1450 | continue; |
1451 | } |
07cfabcf |
1452 | if (fDebugLevel) |
1453 | fprintf(stderr,"\n CATHODE %d CLUSTER %d\n",cath,ncls); |
a9e2aefa |
1454 | AliMUONRawCluster c; |
1455 | c.fMultiplicity[0]=0; |
1456 | c.fMultiplicity[1]=0; |
08a636a8 |
1457 | c.fPeakSignal[cath]=dig->Signal(); |
1458 | c.fTracks[0]=dig->Hit(); |
1459 | c.fTracks[1]=dig->Track(0); |
1460 | c.fTracks[2]=dig->Track(1); |
a9e2aefa |
1461 | // tag the beginning of cluster list in a raw cluster |
1462 | c.fNcluster[0]=-1; |
f0d86bc4 |
1463 | Float_t xcu, ycu; |
1464 | fSeg[cath]->GetPadC(i,j,xcu, ycu, fZPlane); |
1465 | fSector= fSeg[cath]->Sector(i,j)/100; |
07cfabcf |
1466 | if (fDebugLevel) |
1467 | printf("\n New Seed %d %d ", i,j); |
f0d86bc4 |
1468 | |
a9e2aefa |
1469 | FindCluster(i,j,cath,c); |
f0d86bc4 |
1470 | // ^^^^^^^^^^^^^^^^^^^^^^^^ |
a9e2aefa |
1471 | // center of gravity |
1472 | c.fX[0] /= c.fQ[0]; |
07cfabcf |
1473 | // Force on anod |
f0d86bc4 |
1474 | c.fX[0]=fSeg[0]->GetAnod(c.fX[0]); |
a9e2aefa |
1475 | c.fY[0] /= c.fQ[0]; |
1476 | c.fX[1] /= c.fQ[1]; |
07cfabcf |
1477 | // Force on anod |
f0d86bc4 |
1478 | c.fX[1]=fSeg[0]->GetAnod(c.fX[1]); |
a9e2aefa |
1479 | c.fY[1] /= c.fQ[1]; |
3e1872ed |
1480 | |
1481 | c.fZ[0] = fZPlane; |
1482 | c.fZ[1] = fZPlane; |
1483 | |
07cfabcf |
1484 | if (fDebugLevel) { |
1485 | fprintf(stderr,"\n Cathode 1 multiplicite %d X(CG) %f Y(CG) %f\n", |
1486 | c.fMultiplicity[0],c.fX[0],c.fY[0]); |
1487 | fprintf(stderr," Cathode 2 multiplicite %d X(CG) %f Y(CG) %f\n", |
1488 | c.fMultiplicity[1],c.fX[1],c.fY[1]); |
1489 | } |
a9e2aefa |
1490 | // Analyse cluster and decluster if necessary |
1491 | // |
1492 | ncls++; |
1493 | c.fNcluster[1]=fNRawClusters; |
1494 | c.fClusterType=c.PhysicsContribution(); |
1495 | |
1496 | fNPeaks=0; |
1497 | // |
1498 | // |
1499 | Decluster(&c); |
a9e2aefa |
1500 | // |
1501 | // reset Cluster object |
f8ffca81 |
1502 | { // begin local scope |
1503 | for (int k=0;k<c.fMultiplicity[0];k++) c.fIndexMap[k][0]=0; |
1504 | } // end local scope |
a9e2aefa |
1505 | |
f8ffca81 |
1506 | { // begin local scope |
1507 | for (int k=0;k<c.fMultiplicity[1];k++) c.fIndexMap[k][1]=0; |
1508 | } // end local scope |
1509 | |
a9e2aefa |
1510 | c.fMultiplicity[0]=c.fMultiplicity[0]=0; |
1511 | |
1512 | |
1513 | } // end loop ndig |
1514 | } // end loop cathodes |
30aaba74 |
1515 | delete fHitMap[0]; |
1516 | delete fHitMap[1]; |
a9e2aefa |
1517 | } |
1518 | |
1519 | Float_t AliMUONClusterFinderVS::SingleMathiesonFit(AliMUONRawCluster *c, Int_t cath) |
1520 | { |
f0d86bc4 |
1521 | // Performs a single Mathieson fit on one cathode |
1522 | // |
9825400f |
1523 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1524 | |
9825400f |
1525 | clusterInput.Fitter()->SetFCN(fcnS1); |
1526 | clusterInput.Fitter()->mninit(2,10,7); |
a9e2aefa |
1527 | Double_t arglist[20]; |
1528 | Int_t ierflag=0; |
1529 | arglist[0]=1; |
a9e2aefa |
1530 | // Set starting values |
1531 | static Double_t vstart[2]; |
1532 | vstart[0]=c->fX[1]; |
1533 | vstart[1]=c->fY[0]; |
1534 | |
1535 | |
1536 | // lower and upper limits |
1537 | static Double_t lower[2], upper[2]; |
1538 | Int_t ix,iy; |
f0d86bc4 |
1539 | fSeg[cath]->GetPadI(c->fX[cath], c->fY[cath], fZPlane, ix, iy); |
1540 | Int_t isec=fSeg[cath]->Sector(ix, iy); |
1541 | lower[0]=vstart[0]-fSeg[cath]->Dpx(isec)/2; |
1542 | lower[1]=vstart[1]-fSeg[cath]->Dpy(isec)/2; |
a9e2aefa |
1543 | |
f0d86bc4 |
1544 | upper[0]=lower[0]+fSeg[cath]->Dpx(isec); |
1545 | upper[1]=lower[1]+fSeg[cath]->Dpy(isec); |
a9e2aefa |
1546 | |
1547 | // step sizes |
1548 | static Double_t step[2]={0.0005, 0.0005}; |
1549 | |
9825400f |
1550 | clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); |
1551 | clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); |
a9e2aefa |
1552 | // ready for minimisation |
07cfabcf |
1553 | clusterInput.Fitter()->SetPrintLevel(-1+fDebugLevel); |
1554 | if (fDebugLevel==0) |
1555 | clusterInput.Fitter()->mnexcm("SET NOW", arglist, 0, ierflag); |
9825400f |
1556 | clusterInput.Fitter()->mnexcm("SET OUT", arglist, 0, ierflag); |
a9e2aefa |
1557 | arglist[0]= -1; |
1558 | arglist[1]= 0; |
1559 | |
9825400f |
1560 | clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag); |
1561 | clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag); |
1562 | clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag); |
a9e2aefa |
1563 | Double_t fmin, fedm, errdef; |
1564 | Int_t npari, nparx, istat; |
1565 | |
9825400f |
1566 | clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat); |
a9e2aefa |
1567 | fFitStat=istat; |
1568 | |
1569 | // Print results |
1570 | // Get fitted parameters |
1571 | Double_t xrec, yrec; |
1572 | TString chname; |
1573 | Double_t epxz, b1, b2; |
1574 | Int_t ierflg; |
9825400f |
1575 | clusterInput.Fitter()->mnpout(0, chname, xrec, epxz, b1, b2, ierflg); |
1576 | clusterInput.Fitter()->mnpout(1, chname, yrec, epxz, b1, b2, ierflg); |
a9e2aefa |
1577 | fXFit[cath]=xrec; |
1578 | fYFit[cath]=yrec; |
1579 | return fmin; |
1580 | } |
1581 | |
1582 | Float_t AliMUONClusterFinderVS::CombiSingleMathiesonFit(AliMUONRawCluster *c) |
1583 | { |
1584 | // Perform combined Mathieson fit on both cathode planes |
1585 | // |
9825400f |
1586 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
1587 | clusterInput.Fitter()->SetFCN(fcnCombiS1); |
1588 | clusterInput.Fitter()->mninit(2,10,7); |
a9e2aefa |
1589 | Double_t arglist[20]; |
1590 | Int_t ierflag=0; |
1591 | arglist[0]=1; |
1592 | static Double_t vstart[2]; |
1593 | vstart[0]=fXInit[0]; |
1594 | vstart[1]=fYInit[0]; |
1595 | |
1596 | |
1597 | // lower and upper limits |
f0d86bc4 |
1598 | static Float_t lower[2], upper[2]; |
a9e2aefa |
1599 | Int_t ix,iy,isec; |
f0d86bc4 |
1600 | fSeg[0]->GetPadI(fXInit[0], fYInit[0], fZPlane, ix, iy); |
1601 | isec=fSeg[0]->Sector(ix, iy); |
1602 | Float_t dpy=fSeg[0]->Dpy(isec); |
1603 | fSeg[1]->GetPadI(fXInit[0], fYInit[0], fZPlane, ix, iy); |
1604 | isec=fSeg[1]->Sector(ix, iy); |
1605 | Float_t dpx=fSeg[1]->Dpx(isec); |
a9e2aefa |
1606 | |
f0d86bc4 |
1607 | Int_t icount; |
1608 | Float_t xdum, ydum, zdum; |
a9e2aefa |
1609 | |
f0d86bc4 |
1610 | // Find save upper and lower limits |
a9e2aefa |
1611 | |
f0d86bc4 |
1612 | icount = 0; |
a9e2aefa |
1613 | |
f0d86bc4 |
1614 | for (fSeg[1]->FirstPad(fXInit[0], fYInit[0], fZPlane, dpx, 0.); |
1615 | fSeg[1]->MorePads(); fSeg[1]->NextPad()) |
1616 | { |
1617 | ix=fSeg[1]->Ix(); iy=fSeg[1]->Iy(); |
1618 | fSeg[1]->GetPadC(ix,iy, upper[0], ydum, zdum); |
1619 | if (icount ==0) lower[0]=upper[0]; |
1620 | icount++; |
1621 | } |
1622 | |
1623 | if (lower[0]>upper[0]) {xdum=lower[0]; lower[0]=upper[0]; upper[0]=xdum;} |
1624 | |
1625 | icount=0; |
07cfabcf |
1626 | if (fDebugLevel) |
1627 | printf("\n single y %f %f", fXInit[0], fYInit[0]); |
f0d86bc4 |
1628 | |
1629 | for (fSeg[0]->FirstPad(fXInit[0], fYInit[0], fZPlane, 0., dpy); |
1630 | fSeg[0]->MorePads(); fSeg[0]->NextPad()) |
1631 | { |
1632 | ix=fSeg[0]->Ix(); iy=fSeg[0]->Iy(); |
1633 | fSeg[0]->GetPadC(ix,iy,xdum,upper[1],zdum); |
1634 | if (icount ==0) lower[1]=upper[1]; |
1635 | icount++; |
07cfabcf |
1636 | if (fDebugLevel) |
1637 | printf("\n upper lower %d %f %f", icount, upper[1], lower[1]); |
f0d86bc4 |
1638 | } |
1639 | |
1640 | if (lower[1]>upper[1]) {xdum=lower[1]; lower[1]=upper[1]; upper[1]=xdum;} |
1641 | |
a9e2aefa |
1642 | // step sizes |
1643 | static Double_t step[2]={0.00001, 0.0001}; |
1644 | |
9825400f |
1645 | clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); |
1646 | clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); |
a9e2aefa |
1647 | // ready for minimisation |
07cfabcf |
1648 | clusterInput.Fitter()->SetPrintLevel(-1+fDebugLevel); |
1649 | if (fDebugLevel==0) |
1650 | clusterInput.Fitter()->mnexcm("SET NOW", arglist, 0, ierflag); |
9825400f |
1651 | clusterInput.Fitter()->mnexcm("SET OUT", arglist, 0, ierflag); |
a9e2aefa |
1652 | arglist[0]= -1; |
1653 | arglist[1]= 0; |
1654 | |
9825400f |
1655 | clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag); |
1656 | clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag); |
1657 | clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag); |
a9e2aefa |
1658 | Double_t fmin, fedm, errdef; |
1659 | Int_t npari, nparx, istat; |
1660 | |
9825400f |
1661 | clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat); |
a9e2aefa |
1662 | fFitStat=istat; |
1663 | |
1664 | // Print results |
1665 | // Get fitted parameters |
1666 | Double_t xrec, yrec; |
1667 | TString chname; |
1668 | Double_t epxz, b1, b2; |
1669 | Int_t ierflg; |
9825400f |
1670 | clusterInput.Fitter()->mnpout(0, chname, xrec, epxz, b1, b2, ierflg); |
1671 | clusterInput.Fitter()->mnpout(1, chname, yrec, epxz, b1, b2, ierflg); |
a9e2aefa |
1672 | fXFit[0]=xrec; |
1673 | fYFit[0]=yrec; |
1674 | return fmin; |
1675 | } |
1676 | |
1677 | Bool_t AliMUONClusterFinderVS::DoubleMathiesonFit(AliMUONRawCluster *c, Int_t cath) |
1678 | { |
f0d86bc4 |
1679 | // Performs a double Mathieson fit on one cathode |
1680 | // |
1681 | |
a9e2aefa |
1682 | // |
1683 | // Initialise global variables for fit |
9825400f |
1684 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
1685 | clusterInput.Fitter()->SetFCN(fcnS2); |
1686 | clusterInput.Fitter()->mninit(5,10,7); |
a9e2aefa |
1687 | Double_t arglist[20]; |
1688 | Int_t ierflag=0; |
1689 | arglist[0]=1; |
1690 | // Set starting values |
1691 | static Double_t vstart[5]; |
1692 | vstart[0]=fX[fIndLocal[0][cath]][cath]; |
1693 | vstart[1]=fY[fIndLocal[0][cath]][cath]; |
1694 | vstart[2]=fX[fIndLocal[1][cath]][cath]; |
1695 | vstart[3]=fY[fIndLocal[1][cath]][cath]; |
1696 | vstart[4]=Float_t(fQ[fIndLocal[0][cath]][cath])/ |
1697 | Float_t(fQ[fIndLocal[0][cath]][cath]+fQ[fIndLocal[1][cath]][cath]); |
1698 | // lower and upper limits |
f0d86bc4 |
1699 | static Float_t lower[5], upper[5]; |
1700 | Int_t isec=fSeg[cath]->Sector(fIx[fIndLocal[0][cath]][cath], fIy[fIndLocal[0][cath]][cath]); |
1701 | lower[0]=vstart[0]-fSeg[cath]->Dpx(isec); |
1702 | lower[1]=vstart[1]-fSeg[cath]->Dpy(isec); |
a9e2aefa |
1703 | |
f0d86bc4 |
1704 | upper[0]=lower[0]+2.*fSeg[cath]->Dpx(isec); |
1705 | upper[1]=lower[1]+2.*fSeg[cath]->Dpy(isec); |
a9e2aefa |
1706 | |
f0d86bc4 |
1707 | isec=fSeg[cath]->Sector(fIx[fIndLocal[1][cath]][cath], fIy[fIndLocal[1][cath]][cath]); |
1708 | lower[2]=vstart[2]-fSeg[cath]->Dpx(isec)/2; |
1709 | lower[3]=vstart[3]-fSeg[cath]->Dpy(isec)/2; |
a9e2aefa |
1710 | |
f0d86bc4 |
1711 | upper[2]=lower[2]+fSeg[cath]->Dpx(isec); |
1712 | upper[3]=lower[3]+fSeg[cath]->Dpy(isec); |
a9e2aefa |
1713 | |
1714 | lower[4]=0.; |
1715 | upper[4]=1.; |
1716 | // step sizes |
1717 | static Double_t step[5]={0.0005, 0.0005, 0.0005, 0.0005, 0.0001}; |
1718 | |
9825400f |
1719 | clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); |
1720 | clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); |
1721 | clusterInput.Fitter()->mnparm(2,"x2",vstart[2],step[2],lower[2],upper[2],ierflag); |
1722 | clusterInput.Fitter()->mnparm(3,"y2",vstart[3],step[3],lower[3],upper[3],ierflag); |
1723 | clusterInput.Fitter()->mnparm(4,"a0",vstart[4],step[4],lower[4],upper[4],ierflag); |
a9e2aefa |
1724 | // ready for minimisation |
07cfabcf |
1725 | clusterInput.Fitter()->SetPrintLevel(-1+fDebugLevel); |
1726 | if (fDebugLevel==0) |
1727 | clusterInput.Fitter()->mnexcm("SET NOW", arglist, 0, ierflag); |
9825400f |
1728 | clusterInput.Fitter()->mnexcm("SET OUT", arglist, 0, ierflag); |
a9e2aefa |
1729 | arglist[0]= -1; |
1730 | arglist[1]= 0; |
1731 | |
9825400f |
1732 | clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag); |
1733 | clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag); |
1734 | clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag); |
a9e2aefa |
1735 | // Get fitted parameters |
1736 | Double_t xrec[2], yrec[2], qfrac; |
1737 | TString chname; |
1738 | Double_t epxz, b1, b2; |
1739 | Int_t ierflg; |
9825400f |
1740 | clusterInput.Fitter()->mnpout(0, chname, xrec[0], epxz, b1, b2, ierflg); |
1741 | clusterInput.Fitter()->mnpout(1, chname, yrec[0], epxz, b1, b2, ierflg); |
1742 | clusterInput.Fitter()->mnpout(2, chname, xrec[1], epxz, b1, b2, ierflg); |
1743 | clusterInput.Fitter()->mnpout(3, chname, yrec[1], epxz, b1, b2, ierflg); |
1744 | clusterInput.Fitter()->mnpout(4, chname, qfrac, epxz, b1, b2, ierflg); |
a9e2aefa |
1745 | |
1746 | Double_t fmin, fedm, errdef; |
1747 | Int_t npari, nparx, istat; |
1748 | |
9825400f |
1749 | clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat); |
a9e2aefa |
1750 | fFitStat=istat; |
a9e2aefa |
1751 | return kTRUE; |
1752 | } |
1753 | |
1754 | Float_t AliMUONClusterFinderVS::CombiDoubleMathiesonFit(AliMUONRawCluster *c) |
1755 | { |
1756 | // |
1757 | // Perform combined double Mathieson fit on both cathode planes |
1758 | // |
9825400f |
1759 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
1760 | clusterInput.Fitter()->SetFCN(fcnCombiS2); |
1761 | clusterInput.Fitter()->mninit(6,10,7); |
a9e2aefa |
1762 | Double_t arglist[20]; |
1763 | Int_t ierflag=0; |
1764 | arglist[0]=1; |
1765 | // Set starting values |
1766 | static Double_t vstart[6]; |
1767 | vstart[0]=fXInit[0]; |
1768 | vstart[1]=fYInit[0]; |
1769 | vstart[2]=fXInit[1]; |
1770 | vstart[3]=fYInit[1]; |
1771 | vstart[4]=fQrInit[0]; |
1772 | vstart[5]=fQrInit[1]; |
1773 | // lower and upper limits |
f0d86bc4 |
1774 | static Float_t lower[6], upper[6]; |
a9e2aefa |
1775 | Int_t ix,iy,isec; |
1776 | Float_t dpx, dpy; |
1777 | |
f0d86bc4 |
1778 | fSeg[1]->GetPadI(fXInit[0], fYInit[0], fZPlane, ix, iy); |
1779 | isec=fSeg[1]->Sector(ix, iy); |
1780 | dpx=fSeg[1]->Dpx(isec); |
a9e2aefa |
1781 | |
f0d86bc4 |
1782 | fSeg[0]->GetPadI(fXInit[0], fYInit[0], fZPlane, ix, iy); |
1783 | isec=fSeg[0]->Sector(ix, iy); |
1784 | dpy=fSeg[0]->Dpy(isec); |
a9e2aefa |
1785 | |
a9e2aefa |
1786 | |
f0d86bc4 |
1787 | Int_t icount; |
1788 | Float_t xdum, ydum, zdum; |
07cfabcf |
1789 | if (fDebugLevel) |
1790 | printf("\n Cluster Finder: %f %f %f %f ", fXInit[0], fXInit[1],fYInit[0], fYInit[1] ); |
f0d86bc4 |
1791 | |
1792 | // Find save upper and lower limits |
1793 | icount = 0; |
1794 | |
1795 | for (fSeg[1]->FirstPad(fXInit[0], fYInit[0], fZPlane, dpx, 0.); |
1796 | fSeg[1]->MorePads(); fSeg[1]->NextPad()) |
1797 | { |
1798 | ix=fSeg[1]->Ix(); iy=fSeg[1]->Iy(); |
1799 | fSeg[1]->GetPadC(ix,iy,upper[0],ydum,zdum); |
1800 | if (icount ==0) lower[0]=upper[0]; |
1801 | icount++; |
1802 | } |
1803 | if (lower[0]>upper[0]) {xdum=lower[0]; lower[0]=upper[0]; upper[0]=xdum;} |
1804 | icount=0; |
1805 | |
1806 | for (fSeg[0]->FirstPad(fXInit[0], fYInit[0], fZPlane, 0., dpy); |
1807 | fSeg[0]->MorePads(); fSeg[0]->NextPad()) |
1808 | { |
1809 | ix=fSeg[0]->Ix(); iy=fSeg[0]->Iy(); |
1810 | fSeg[0]->GetPadC(ix,iy,xdum,upper[1],zdum); |
1811 | if (icount ==0) lower[1]=upper[1]; |
1812 | icount++; |
1813 | } |
1814 | if (lower[1]>upper[1]) {xdum=lower[1]; lower[1]=upper[1]; upper[1]=xdum;} |
a9e2aefa |
1815 | |
f0d86bc4 |
1816 | fSeg[1]->GetPadI(fXInit[1], fYInit[1], fZPlane, ix, iy); |
1817 | isec=fSeg[1]->Sector(ix, iy); |
1818 | dpx=fSeg[1]->Dpx(isec); |
1819 | fSeg[0]->GetPadI(fXInit[1], fYInit[1], fZPlane, ix, iy); |
1820 | isec=fSeg[0]->Sector(ix, iy); |
1821 | dpy=fSeg[0]->Dpy(isec); |
a9e2aefa |
1822 | |
a9e2aefa |
1823 | |
f0d86bc4 |
1824 | // Find save upper and lower limits |
1825 | |
1826 | icount=0; |
1827 | |
1828 | for (fSeg[1]->FirstPad(fXInit[1], fYInit[1], fZPlane, dpx, 0); |
1829 | fSeg[1]->MorePads(); fSeg[1]->NextPad()) |
1830 | { |
1831 | ix=fSeg[1]->Ix(); iy=fSeg[1]->Iy(); |
1832 | fSeg[1]->GetPadC(ix,iy,upper[2],ydum,zdum); |
1833 | if (icount ==0) lower[2]=upper[2]; |
1834 | icount++; |
1835 | } |
1836 | if (lower[2]>upper[2]) {xdum=lower[2]; lower[2]=upper[2]; upper[2]=xdum;} |
1837 | |
1838 | icount=0; |
1839 | |
1840 | for (fSeg[0]->FirstPad(fXInit[1], fYInit[1], fZPlane, 0, dpy); |
1841 | fSeg[0]-> MorePads(); fSeg[0]->NextPad()) |
1842 | { |
1843 | ix=fSeg[0]->Ix(); iy=fSeg[0]->Iy(); |
1844 | fSeg[0]->GetPadC(ix,iy,xdum,upper[3],zdum); |
1845 | if (icount ==0) lower[3]=upper[3]; |
1846 | icount++; |
1847 | } |
1848 | if (lower[3]>upper[3]) {xdum=lower[3]; lower[3]=upper[3]; upper[3]=xdum;} |
a9e2aefa |
1849 | |
1850 | lower[4]=0.; |
1851 | upper[4]=1.; |
1852 | lower[5]=0.; |
1853 | upper[5]=1.; |
1854 | |
1855 | // step sizes |
1856 | static Double_t step[6]={0.0005, 0.0005, 0.0005, 0.0005, 0.001, 0.001}; |
9825400f |
1857 | clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); |
1858 | clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); |
1859 | clusterInput.Fitter()->mnparm(2,"x2",vstart[2],step[2],lower[2],upper[2],ierflag); |
1860 | clusterInput.Fitter()->mnparm(3,"y2",vstart[3],step[3],lower[3],upper[3],ierflag); |
1861 | clusterInput.Fitter()->mnparm(4,"a0",vstart[4],step[4],lower[4],upper[4],ierflag); |
1862 | clusterInput.Fitter()->mnparm(5,"a1",vstart[5],step[5],lower[5],upper[5],ierflag); |
a9e2aefa |
1863 | // ready for minimisation |
07cfabcf |
1864 | clusterInput.Fitter()->SetPrintLevel(-1+fDebugLevel); |
1865 | if (fDebugLevel) |
1866 | clusterInput.Fitter()->mnexcm("SET NOW", arglist, 0, ierflag); |
9825400f |
1867 | clusterInput.Fitter()->mnexcm("SET OUT", arglist, 0, ierflag); |
a9e2aefa |
1868 | arglist[0]= -1; |
1869 | arglist[1]= 0; |
1870 | |
9825400f |
1871 | clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag); |
1872 | clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag); |
1873 | clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag); |
a9e2aefa |
1874 | // Get fitted parameters |
1875 | TString chname; |
1876 | Double_t epxz, b1, b2; |
1877 | Int_t ierflg; |
9825400f |
1878 | clusterInput.Fitter()->mnpout(0, chname, fXFit[0], epxz, b1, b2, ierflg); |
1879 | clusterInput.Fitter()->mnpout(1, chname, fYFit[0], epxz, b1, b2, ierflg); |
1880 | clusterInput.Fitter()->mnpout(2, chname, fXFit[1], epxz, b1, b2, ierflg); |
1881 | clusterInput.Fitter()->mnpout(3, chname, fYFit[1], epxz, b1, b2, ierflg); |
1882 | clusterInput.Fitter()->mnpout(4, chname, fQrFit[0], epxz, b1, b2, ierflg); |
1883 | clusterInput.Fitter()->mnpout(5, chname, fQrFit[1], epxz, b1, b2, ierflg); |
a9e2aefa |
1884 | |
1885 | Double_t fmin, fedm, errdef; |
1886 | Int_t npari, nparx, istat; |
1887 | |
9825400f |
1888 | clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat); |
a9e2aefa |
1889 | fFitStat=istat; |
1890 | |
1891 | fChi2[0]=fmin; |
1892 | fChi2[1]=fmin; |
1893 | return fmin; |
1894 | } |
1895 | |
1896 | void AliMUONClusterFinderVS::Split(AliMUONRawCluster* c) |
1897 | { |
1898 | // |
1899 | // One cluster for each maximum |
1900 | // |
1901 | Int_t i, j, cath; |
9825400f |
1902 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1903 | for (j=0; j<2; j++) { |
1904 | AliMUONRawCluster cnew; |
07cfabcf |
1905 | cnew.fGhost=c->fGhost; |
a9e2aefa |
1906 | for (cath=0; cath<2; cath++) { |
1907 | cnew.fChi2[cath]=fChi2[0]; |
07cfabcf |
1908 | // ?? why not cnew.fChi2[cath]=fChi2[cath]; |
a9e2aefa |
1909 | |
1910 | if (fNPeaks == 0) { |
1911 | cnew.fNcluster[0]=-1; |
1912 | cnew.fNcluster[1]=fNRawClusters; |
1913 | } else { |
1914 | cnew.fNcluster[0]=fNPeaks; |
1915 | cnew.fNcluster[1]=0; |
1916 | } |
1917 | cnew.fMultiplicity[cath]=0; |
1918 | cnew.fX[cath]=Float_t(fXFit[j]); |
1919 | cnew.fY[cath]=Float_t(fYFit[j]); |
7382d3a4 |
1920 | cnew.fZ[cath]=fZPlane; |
a9e2aefa |
1921 | if (j==0) { |
9825400f |
1922 | cnew.fQ[cath]=Int_t(clusterInput.TotalCharge(cath)*fQrFit[cath]); |
a9e2aefa |
1923 | } else { |
9825400f |
1924 | cnew.fQ[cath]=Int_t(clusterInput.TotalCharge(cath)*(1-fQrFit[cath])); |
a9e2aefa |
1925 | } |
f0d86bc4 |
1926 | fSeg[cath]->SetHit(fXFit[j],fYFit[j],fZPlane); |
a9e2aefa |
1927 | for (i=0; i<fMul[cath]; i++) { |
1928 | cnew.fIndexMap[cnew.fMultiplicity[cath]][cath]= |
1929 | c->fIndexMap[i][cath]; |
f0d86bc4 |
1930 | fSeg[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
1931 | Float_t q1=fInput->Response()->IntXY(fSeg[cath]); |
a9e2aefa |
1932 | cnew.fContMap[i][cath] |
1933 | =(q1*Float_t(cnew.fQ[cath]))/Float_t(fQ[i][cath]); |
1934 | cnew.fMultiplicity[cath]++; |
a9e2aefa |
1935 | } |
1936 | FillCluster(&cnew,0,cath); |
1937 | } // cathode loop |
1938 | |
1939 | cnew.fClusterType=cnew.PhysicsContribution(); |
1940 | if (cnew.fQ[0]>0 && cnew.fQ[1]>0) AddRawCluster(cnew); |
1941 | fNPeaks++; |
1942 | } |
1943 | } |
1944 | |
1945 | |
a9e2aefa |
1946 | // |
1947 | // Minimisation functions |
1948 | // Single Mathieson |
1949 | void fcnS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag) |
1950 | { |
9825400f |
1951 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1952 | Int_t i; |
1953 | Float_t delta; |
1954 | Float_t chisq=0; |
1955 | Float_t qcont=0; |
1956 | Float_t qtot=0; |
9825400f |
1957 | |
1958 | for (i=0; i<clusterInput.Nmul(0); i++) { |
1959 | Float_t q0=clusterInput.Charge(i,0); |
1960 | Float_t q1=clusterInput.DiscrChargeS1(i,par); |
a9e2aefa |
1961 | delta=(q0-q1)/q0; |
1962 | chisq+=delta*delta; |
1963 | qcont+=q1; |
1964 | qtot+=q0; |
1965 | } |
1966 | f=chisq; |
1967 | } |
1968 | |
1969 | void fcnCombiS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag) |
1970 | { |
9825400f |
1971 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1972 | Int_t i, cath; |
1973 | Float_t delta; |
1974 | Float_t chisq=0; |
1975 | Float_t qcont=0; |
1976 | Float_t qtot=0; |
a9e2aefa |
1977 | |
1978 | for (cath=0; cath<2; cath++) { |
9825400f |
1979 | for (i=0; i<clusterInput.Nmul(cath); i++) { |
1980 | Float_t q0=clusterInput.Charge(i,cath); |
1981 | Float_t q1=clusterInput.DiscrChargeCombiS1(i,par,cath); |
a9e2aefa |
1982 | delta=(q0-q1)/q0; |
1983 | chisq+=delta*delta; |
1984 | qcont+=q1; |
1985 | qtot+=q0; |
1986 | } |
a9e2aefa |
1987 | } |
a9e2aefa |
1988 | f=chisq; |
1989 | } |
1990 | |
1991 | // Double Mathieson |
1992 | void fcnS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag) |
1993 | { |
9825400f |
1994 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1995 | Int_t i; |
1996 | Float_t delta; |
1997 | Float_t chisq=0; |
1998 | Float_t qcont=0; |
1999 | Float_t qtot=0; |
2000 | |
9825400f |
2001 | for (i=0; i<clusterInput.Nmul(0); i++) { |
a9e2aefa |
2002 | |
9825400f |
2003 | Float_t q0=clusterInput.Charge(i,0); |
2004 | Float_t q1=clusterInput.DiscrChargeS2(i,par); |
a9e2aefa |
2005 | delta=(q0-q1)/q0; |
2006 | chisq+=delta*delta; |
2007 | qcont+=q1; |
2008 | qtot+=q0; |
2009 | } |
a9e2aefa |
2010 | f=chisq; |
2011 | } |
2012 | |
2013 | // Double Mathieson |
2014 | void fcnCombiS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag) |
2015 | { |
9825400f |
2016 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
2017 | Int_t i, cath; |
2018 | Float_t delta; |
2019 | Float_t chisq=0; |
2020 | Float_t qcont=0; |
2021 | Float_t qtot=0; |
a9e2aefa |
2022 | for (cath=0; cath<2; cath++) { |
9825400f |
2023 | for (i=0; i<clusterInput.Nmul(cath); i++) { |
2024 | Float_t q0=clusterInput.Charge(i,cath); |
2025 | Float_t q1=clusterInput.DiscrChargeCombiS2(i,par,cath); |
a9e2aefa |
2026 | delta=(q0-q1)/q0; |
2027 | chisq+=delta*delta; |
2028 | qcont+=q1; |
2029 | qtot+=q0; |
2030 | } |
a9e2aefa |
2031 | } |
a9e2aefa |
2032 | f=chisq; |
2033 | } |
2034 | |
67aef06e |
2035 | void AliMUONClusterFinderVS::AddRawCluster(const AliMUONRawCluster c) |
a9e2aefa |
2036 | { |
2037 | // |
2038 | // Add a raw cluster copy to the list |
2039 | // |
2040 | AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON"); |
30aaba74 |
2041 | pMUON->AddRawCluster(fInput->Chamber(),c); |
a9e2aefa |
2042 | fNRawClusters++; |
07cfabcf |
2043 | // if (fDebugLevel) |
2044 | fprintf(stderr,"\nfNRawClusters %d\n",fNRawClusters); |
a9e2aefa |
2045 | } |
2046 | |
30aaba74 |
2047 | Bool_t AliMUONClusterFinderVS::TestTrack(Int_t t) { |
6a9bc541 |
2048 | // Test if track was user selected |
30aaba74 |
2049 | if (fTrack[0]==-1 || fTrack[1]==-1) { |
2050 | return kTRUE; |
2051 | } else if (t==fTrack[0] || t==fTrack[1]) { |
2052 | return kTRUE; |
2053 | } else { |
2054 | return kFALSE; |
2055 | } |
2056 | } |
a9e2aefa |
2057 | |
2058 | AliMUONClusterFinderVS& AliMUONClusterFinderVS |
2059 | ::operator = (const AliMUONClusterFinderVS& rhs) |
2060 | { |
2061 | // Dummy assignment operator |
2062 | return *this; |
2063 | } |
2064 | |
2065 | |
2066 | |
2067 | |
2068 | |
2069 | |
2070 | |
2071 | |
2072 | |