a9e2aefa |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
12 | * about the suitability of this software for any purpose. It is * |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | /* |
16 | $Log$ |
9825400f |
17 | Revision 1.4 2000/06/27 16:18:47 gosset |
18 | Finally correct implementation of xm, ym, ixm, iym sizes |
19 | when at least three local maxima on cathode 1 or on cathode 2 |
20 | |
39e6d319 |
21 | Revision 1.3 2000/06/22 14:02:45 morsch |
22 | Parameterised size of xm[], ym[], ixm[], iym[] correctly implemented (PH) |
23 | Some HP scope problems corrected (PH) |
24 | |
f8ffca81 |
25 | Revision 1.2 2000/06/15 07:58:48 morsch |
26 | Code from MUON-dev joined |
27 | |
a9e2aefa |
28 | Revision 1.1.2.3 2000/06/09 21:58:33 morsch |
29 | Most coding rule violations corrected. |
30 | |
31 | Revision 1.1.2.2 2000/02/15 08:33:52 morsch |
32 | Error in calculation of contribution map for double clusters (Split method) corrected (A.M.) |
33 | Error in determination of track list for double cluster (FillCluster method) corrected (A.M.) |
34 | Revised and extended SplitByLocalMaxima method (Isabelle Chevrot): |
35 | - For clusters with more than 2 maxima on one of the cathode planes all valid |
36 | combinations of maxima on the two cathodes are preserved. The position of the maxima is |
37 | taken as the hit position. |
38 | - New FillCluster method with 2 arguments to find tracks associated to the clusters |
39 | defined above added. (Method destinction by argument list not very elegant in this case, |
40 | should be revides (A.M.) |
41 | - Bug in if-statement to handle maximum 1 maximum per plane corrected |
42 | - Two cluster per cathode but only 1 combination valid is handled. |
43 | - More rigerous treatment of 1-2 and 2-1 combinations of maxima. |
44 | |
45 | */ |
46 | |
47 | #include "AliMUONClusterFinderVS.h" |
48 | #include "AliMUONDigit.h" |
49 | #include "AliMUONRawCluster.h" |
50 | #include "AliMUONSegmentation.h" |
51 | #include "AliMUONResponse.h" |
52 | #include "AliMUONHitMap.h" |
53 | #include "AliMUONHitMapA1.h" |
54 | #include "AliRun.h" |
55 | #include "AliMUON.h" |
9825400f |
56 | #include "AliMUONClusterInput.h" |
a9e2aefa |
57 | |
58 | #include <TTree.h> |
59 | #include <TCanvas.h> |
60 | #include <TH1.h> |
61 | #include <TPad.h> |
62 | #include <TGraph.h> |
63 | #include <TPostScript.h> |
64 | #include <TMinuit.h> |
65 | #include <stdio.h> |
66 | #include <iostream.h> |
67 | |
68 | //_____________________________________________________________________ |
9825400f |
69 | /* |
a9e2aefa |
70 | static AliMUONSegmentation* fgSegmentation[2]; |
71 | static AliMUONResponse* fgResponse; |
72 | static Int_t fgix[500][2]; |
73 | static Int_t fgiy[500][2]; |
74 | static Float_t fgCharge[500][2]; |
75 | static Int_t fgNbins[2]; |
76 | static Int_t fgFirst=kTRUE; |
77 | static Int_t fgChargeTot[2]; |
78 | static Float_t fgQtot[2]; |
79 | static TMinuit* fgMyMinuit ; |
9825400f |
80 | */ |
a9e2aefa |
81 | // This function is minimized in the double-Mathieson fit |
82 | void fcnS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); |
83 | void fcnS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); |
84 | void fcnCombiS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); |
85 | void fcnCombiS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag); |
86 | |
87 | ClassImp(AliMUONClusterFinderVS) |
88 | |
89 | AliMUONClusterFinderVS::AliMUONClusterFinderVS |
90 | (AliMUONSegmentation *seg1, AliMUONSegmentation *seg2, |
91 | AliMUONResponse *response, |
92 | TClonesArray *digits1, TClonesArray *digits2, |
93 | Int_t chamber) |
94 | :AliMUONClusterFinder(seg1, response, digits1, chamber) |
95 | { |
96 | // Constructor |
9825400f |
97 | fSegmentation[1]=seg2; |
a9e2aefa |
98 | fDigits2=digits2; |
99 | fNdigits2 = fDigits2->GetEntriesFast(); |
100 | fHitMap2=0; |
101 | fTrack[0]=fTrack[1]=-1; |
102 | |
103 | } |
104 | |
105 | AliMUONClusterFinderVS::AliMUONClusterFinderVS() |
106 | :AliMUONClusterFinder() |
107 | { |
108 | // Default constructor |
9825400f |
109 | fSegmentation[1]=0; |
a9e2aefa |
110 | fDigits2=0; |
111 | fNdigits2 = 0; |
112 | fHitMap2 = 0; |
113 | fTrack[0]=fTrack[1]=-1; |
114 | } |
115 | |
116 | AliMUONClusterFinderVS::AliMUONClusterFinderVS( |
117 | const AliMUONClusterFinderVS & clusterFinder) |
118 | { |
119 | // Dummy copy Constructor |
120 | ; |
121 | } |
122 | |
123 | void AliMUONClusterFinderVS::SetDigits(TClonesArray *MUONdigits1, TClonesArray *MUONdigits2) { |
124 | // Set pointers to digit lists |
a9e2aefa |
125 | fDigits=MUONdigits1; |
126 | fNdigits = fDigits->GetEntriesFast(); |
127 | fDigits2=MUONdigits2; |
128 | fNdigits2 = fDigits2->GetEntriesFast(); |
129 | } |
130 | |
131 | // Get Segmentation |
132 | AliMUONSegmentation* AliMUONClusterFinderVS::Segmentation(Int_t i) |
133 | { |
134 | // Return pointer to segmentation of cathode plane number 1 (i=0) or 2 (i=1) |
9825400f |
135 | return ((i==0)? fSegmentation[0] : fSegmentation[1]); |
a9e2aefa |
136 | } |
137 | |
138 | // Get Number of Digits |
139 | Int_t AliMUONClusterFinderVS::NDigits(Int_t i) |
140 | { |
141 | // Return number of digits for cathode plane i+1 |
142 | return ((i==0)? fNdigits : fNdigits2); |
143 | } |
144 | |
145 | // Get Digits |
146 | TClonesArray* AliMUONClusterFinderVS::Digits(Int_t i) |
147 | { |
148 | // Return pointer to digits for cathode plane i+1 |
149 | return ((i==0)? fDigits : fDigits2); |
150 | } |
151 | |
152 | |
153 | AliMUONHitMap* AliMUONClusterFinderVS::HitMap(Int_t i) |
154 | { |
155 | // Return pointer to HitMap |
156 | return ((i==0)? fHitMap : fHitMap2); |
157 | } |
158 | |
159 | void AliMUONClusterFinderVS::Decluster(AliMUONRawCluster *cluster) |
160 | { |
161 | // Decluster by local maxima |
162 | SplitByLocalMaxima(cluster); |
163 | } |
164 | |
165 | void AliMUONClusterFinderVS::SplitByLocalMaxima(AliMUONRawCluster *c) |
166 | { |
167 | // Split complex cluster by local maxima |
168 | |
169 | Int_t cath, i; |
9825400f |
170 | |
171 | AliMUONClusterInput::Instance()->SetCluster(c); |
172 | |
a9e2aefa |
173 | fMul[0]=c->fMultiplicity[0]; |
174 | fMul[1]=c->fMultiplicity[1]; |
175 | |
176 | // |
177 | // dump digit information into arrays |
178 | // |
9825400f |
179 | |
a9e2aefa |
180 | Float_t qtot; |
181 | |
182 | for (cath=0; cath<2; cath++) { |
183 | qtot=0; |
184 | for (i=0; i<fMul[cath]; i++) |
185 | { |
186 | // pointer to digit |
187 | fDig[i][cath]=(AliMUONDigit*) |
188 | (Digits(cath)->UncheckedAt(c->fIndexMap[i][cath])); |
189 | // pad coordinates |
190 | fIx[i][cath]= fDig[i][cath]->fPadX; |
191 | fIy[i][cath]= fDig[i][cath]->fPadY; |
192 | // pad charge |
193 | fQ[i][cath] = fDig[i][cath]->fSignal; |
194 | // pad centre coordinates |
195 | Segmentation(cath)-> |
196 | GetPadCxy(fIx[i][cath], fIy[i][cath], fX[i][cath], fY[i][cath]); |
a9e2aefa |
197 | } // loop over cluster digits |
a9e2aefa |
198 | } // loop over cathodes |
199 | |
200 | |
201 | FindLocalMaxima(c); |
202 | |
203 | // |
204 | // Initialise and perform mathieson fits |
205 | Float_t chi2, oldchi2; |
206 | // ++++++++++++++++++*************+++++++++++++++++++++ |
207 | // (1) No more than one local maximum per cathode plane |
208 | // +++++++++++++++++++++++++++++++*************++++++++ |
209 | if ((fNLocal[0]==1 && (fNLocal[1]==0 || fNLocal[1]==1)) || |
210 | (fNLocal[0]==0 && fNLocal[1]==1)) { |
211 | |
212 | // Perform combined single Mathieson fit |
213 | // Initial values for coordinates (x,y) |
214 | |
215 | // One local maximum on cathodes 1 and 2 (X->cathode 2, Y->cathode 1) |
216 | if (fNLocal[0]==1 && fNLocal[1]==1) { |
217 | fXInit[0]=c->fX[1]; |
218 | fYInit[0]=c->fY[0]; |
219 | // One local maximum on cathode 1 (X,Y->cathode 1) |
220 | } else if (fNLocal[0]==1) { |
221 | fXInit[0]=c->fX[0]; |
222 | fYInit[0]=c->fY[0]; |
223 | // One local maximum on cathode 2 (X,Y->cathode 2) |
224 | } else { |
225 | fXInit[0]=c->fX[1]; |
226 | fYInit[0]=c->fY[1]; |
227 | } |
228 | fprintf(stderr,"\n cas (1) CombiSingleMathiesonFit(c)\n"); |
229 | chi2=CombiSingleMathiesonFit(c); |
230 | // Int_t ndf = fgNbins[0]+fgNbins[1]-2; |
231 | // Float_t prob = TMath::Prob(Double_t(chi2),ndf); |
232 | // prob1->Fill(prob); |
233 | // chi2_1->Fill(chi2); |
234 | oldchi2=chi2; |
235 | fprintf(stderr," chi2 %f ",chi2); |
236 | |
237 | c->fX[0]=fXFit[0]; |
238 | c->fY[0]=fYFit[0]; |
239 | |
240 | c->fX[1]=fXFit[0]; |
241 | c->fY[1]=fYFit[0]; |
242 | c->fChi2[0]=chi2; |
243 | c->fChi2[1]=chi2; |
244 | c->fX[0]=Segmentation(0)->GetAnod(c->fX[0]); |
245 | c->fX[1]=Segmentation(1)->GetAnod(c->fX[1]); |
246 | |
247 | // If reasonable chi^2 add result to the list of rawclusters |
248 | // if (chi2 < 50) { |
249 | if (chi2 < 0.3) { |
250 | AddRawCluster(*c); |
251 | // If not try combined double Mathieson Fit |
252 | } else { |
253 | fprintf(stderr," MAUVAIS CHI2 !!!\n"); |
254 | if (fNLocal[0]==1 && fNLocal[1]==1) { |
255 | fXInit[0]=fX[fIndLocal[0][1]][1]; |
256 | fYInit[0]=fY[fIndLocal[0][0]][0]; |
257 | fXInit[1]=fX[fIndLocal[0][1]][1]; |
258 | fYInit[1]=fY[fIndLocal[0][0]][0]; |
259 | } else if (fNLocal[0]==1) { |
260 | fXInit[0]=fX[fIndLocal[0][0]][0]; |
261 | fYInit[0]=fY[fIndLocal[0][0]][0]; |
262 | fXInit[1]=fX[fIndLocal[0][0]][0]; |
263 | fYInit[1]=fY[fIndLocal[0][0]][0]; |
264 | } else { |
265 | fXInit[0]=fX[fIndLocal[0][1]][1]; |
266 | fYInit[0]=fY[fIndLocal[0][1]][1]; |
267 | fXInit[1]=fX[fIndLocal[0][1]][1]; |
268 | fYInit[1]=fY[fIndLocal[0][1]][1]; |
269 | } |
270 | |
271 | // Initial value for charge ratios |
272 | fQrInit[0]=0.5; |
273 | fQrInit[1]=0.5; |
274 | fprintf(stderr,"\n cas (1) CombiDoubleMathiesonFit(c)\n"); |
275 | chi2=CombiDoubleMathiesonFit(c); |
276 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
277 | // Float_t prob = TMath::Prob(chi2,ndf); |
278 | // prob2->Fill(prob); |
279 | // chi2_2->Fill(chi2); |
280 | |
281 | // Was this any better ?? |
282 | fprintf(stderr," Old and new chi2 %f %f ", oldchi2, chi2); |
283 | if (fFitStat!=0 && chi2>0 && (2.*chi2 < oldchi2)) { |
284 | fprintf(stderr," Split\n"); |
285 | // Split cluster into two according to fit result |
286 | Split(c); |
287 | } else { |
288 | fprintf(stderr," Don't Split\n"); |
289 | // Don't split |
290 | AddRawCluster(*c); |
291 | } |
292 | } |
293 | |
294 | // +++++++++++++++++++++++++++++++++++++++ |
295 | // (2) Two local maxima per cathode plane |
296 | // +++++++++++++++++++++++++++++++++++++++ |
297 | } else if (fNLocal[0]==2 && fNLocal[1]==2) { |
298 | // |
299 | // Let's look for ghosts first |
300 | // |
301 | Float_t xm[4][2], ym[4][2]; |
302 | Float_t dpx, dpy, dx, dy; |
303 | Int_t ixm[4][2], iym[4][2]; |
304 | Int_t isec, im1, im2, ico; |
305 | // |
306 | // Form the 2x2 combinations |
307 | // 0-0, 0-1, 1-0, 1-1 |
308 | ico=0; |
309 | for (im1=0; im1<2; im1++) { |
310 | for (im2=0; im2<2; im2++) { |
311 | xm[ico][0]=fX[fIndLocal[im1][0]][0]; |
312 | ym[ico][0]=fY[fIndLocal[im1][0]][0]; |
313 | xm[ico][1]=fX[fIndLocal[im2][1]][1]; |
314 | ym[ico][1]=fY[fIndLocal[im2][1]][1]; |
315 | |
316 | ixm[ico][0]=fIx[fIndLocal[im1][0]][0]; |
317 | iym[ico][0]=fIy[fIndLocal[im1][0]][0]; |
318 | ixm[ico][1]=fIx[fIndLocal[im2][1]][1]; |
319 | iym[ico][1]=fIy[fIndLocal[im2][1]][1]; |
320 | ico++; |
321 | } |
322 | } |
323 | // ico = 0 : first local maximum on cathodes 1 and 2 |
324 | // ico = 1 : fisrt local maximum on cathode 1 and second on cathode 2 |
325 | // ico = 2 : second local maximum on cathode 1 and first on cathode 1 |
326 | // ico = 3 : second local maximum on cathodes 1 and 2 |
327 | |
328 | // Analyse the combinations and keep those that are possible ! |
329 | // For each combination check consistency in x and y |
330 | Int_t iacc; |
331 | Bool_t accepted[4]; |
332 | iacc=0; |
333 | |
334 | for (ico=0; ico<4; ico++) { |
335 | accepted[ico]=kFALSE; |
336 | // cathode one: x-coordinate |
337 | isec=Segmentation(0)->Sector(ixm[ico][0], iym[ico][0]); |
338 | dpx=Segmentation(0)->Dpx(isec)/2.; |
339 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); |
340 | // cathode two: y-coordinate |
341 | isec=Segmentation(1)->Sector(ixm[ico][1], iym[ico][1]); |
342 | dpy=Segmentation(1)->Dpy(isec)/2.; |
343 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); |
344 | // printf("\n %i %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy ); |
345 | if ((dx <= dpx) && (dy <= dpy)) { |
346 | // consistent |
347 | accepted[ico]=kTRUE; |
348 | iacc++; |
349 | } else { |
350 | // reject |
351 | accepted[ico]=kFALSE; |
352 | } |
353 | } |
354 | |
355 | if (iacc==2) { |
356 | fprintf(stderr,"\n iacc=2: No problem ! \n"); |
357 | } else if (iacc==4) { |
358 | fprintf(stderr,"\n iacc=4: Ok, but ghost problem !!! \n"); |
359 | } else if (iacc==0) { |
360 | fprintf(stderr,"\n iacc=0: I don't know what to do with this !!!!!!!!! \n"); |
361 | } |
362 | |
363 | // Initial value for charge ratios |
364 | fQrInit[0]=Float_t(fQ[fIndLocal[0][0]][0])/ |
365 | Float_t(fQ[fIndLocal[0][0]][0]+fQ[fIndLocal[1][0]][0]); |
366 | fQrInit[1]=Float_t(fQ[fIndLocal[0][1]][1])/ |
367 | Float_t(fQ[fIndLocal[0][1]][1]+fQ[fIndLocal[1][1]][1]); |
368 | |
369 | // ******* iacc = 0 ******* |
370 | // No combinations found between the 2 cathodes |
371 | // We keep the center of gravity of the cluster |
372 | if (iacc==0) { |
373 | AddRawCluster(*c); |
374 | } |
375 | |
376 | // ******* iacc = 1 ******* |
377 | // Only one combination found between the 2 cathodes |
378 | if (iacc==1) { |
379 | |
380 | // Initial values for the 2 maxima (x,y) |
381 | |
382 | // 1 maximum is initialised with the maximum of the combination found (X->cathode 2, Y->cathode 1) |
383 | // 1 maximum is initialised with the other maximum of the first cathode |
384 | if (accepted[0]){ |
385 | fprintf(stderr,"ico=0\n"); |
386 | fXInit[0]=xm[0][1]; |
387 | fYInit[0]=ym[0][0]; |
388 | fXInit[1]=xm[3][0]; |
389 | fYInit[1]=ym[3][0]; |
390 | } else if (accepted[1]){ |
391 | fprintf(stderr,"ico=1\n"); |
392 | fXInit[0]=xm[1][1]; |
393 | fYInit[0]=ym[1][0]; |
394 | fXInit[1]=xm[2][0]; |
395 | fYInit[1]=ym[2][0]; |
396 | } else if (accepted[2]){ |
397 | fprintf(stderr,"ico=2\n"); |
398 | fXInit[0]=xm[2][1]; |
399 | fYInit[0]=ym[2][0]; |
400 | fXInit[1]=xm[1][0]; |
401 | fYInit[1]=ym[1][0]; |
402 | } else if (accepted[3]){ |
403 | fprintf(stderr,"ico=3\n"); |
404 | fXInit[0]=xm[3][1]; |
405 | fYInit[0]=ym[3][0]; |
406 | fXInit[1]=xm[0][0]; |
407 | fYInit[1]=ym[0][0]; |
408 | } |
409 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
410 | chi2=CombiDoubleMathiesonFit(c); |
411 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
412 | // Float_t prob = TMath::Prob(chi2,ndf); |
413 | // prob2->Fill(prob); |
414 | // chi2_2->Fill(chi2); |
415 | fprintf(stderr," chi2 %f\n",chi2); |
416 | |
417 | // If reasonable chi^2 add result to the list of rawclusters |
418 | if (chi2<10) { |
419 | Split(c); |
420 | |
421 | } else { |
422 | // 1 maximum is initialised with the maximum of the combination found (X->cathode 2, Y->cathode 1) |
423 | // 1 maximum is initialised with the other maximum of the second cathode |
424 | if (accepted[0]){ |
425 | fprintf(stderr,"ico=0\n"); |
426 | fXInit[0]=xm[0][1]; |
427 | fYInit[0]=ym[0][0]; |
428 | fXInit[1]=xm[3][1]; |
429 | fYInit[1]=ym[3][1]; |
430 | } else if (accepted[1]){ |
431 | fprintf(stderr,"ico=1\n"); |
432 | fXInit[0]=xm[1][1]; |
433 | fYInit[0]=ym[1][0]; |
434 | fXInit[1]=xm[2][1]; |
435 | fYInit[1]=ym[2][1]; |
436 | } else if (accepted[2]){ |
437 | fprintf(stderr,"ico=2\n"); |
438 | fXInit[0]=xm[2][1]; |
439 | fYInit[0]=ym[2][0]; |
440 | fXInit[1]=xm[1][1]; |
441 | fYInit[1]=ym[1][1]; |
442 | } else if (accepted[3]){ |
443 | fprintf(stderr,"ico=3\n"); |
444 | fXInit[0]=xm[3][1]; |
445 | fYInit[0]=ym[3][0]; |
446 | fXInit[1]=xm[0][1]; |
447 | fYInit[1]=ym[0][1]; |
448 | } |
449 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
450 | chi2=CombiDoubleMathiesonFit(c); |
451 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
452 | // Float_t prob = TMath::Prob(chi2,ndf); |
453 | // prob2->Fill(prob); |
454 | // chi2_2->Fill(chi2); |
455 | fprintf(stderr," chi2 %f\n",chi2); |
456 | |
457 | // If reasonable chi^2 add result to the list of rawclusters |
458 | if (chi2<10) { |
459 | Split(c); |
460 | } else { |
461 | //We keep only the combination found (X->cathode 2, Y->cathode 1) |
462 | for (Int_t ico=0; ico<2; ico++) { |
463 | if (accepted[ico]) { |
464 | AliMUONRawCluster cnew; |
465 | Int_t cath; |
466 | for (cath=0; cath<2; cath++) { |
9825400f |
467 | cnew.fX[cath]=Float_t(xm[ico][1]); |
468 | cnew.fY[cath]=Float_t(ym[ico][0]); |
469 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; |
a9e2aefa |
470 | for (i=0; i<fMul[cath]; i++) { |
9825400f |
471 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; |
472 | fSegmentation[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
a9e2aefa |
473 | } |
9825400f |
474 | fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath); |
475 | fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]); |
476 | FillCluster(&cnew,cath); |
a9e2aefa |
477 | } |
478 | cnew.fClusterType=cnew.PhysicsContribution(); |
479 | AddRawCluster(cnew); |
480 | fNPeaks++; |
481 | } |
482 | } |
483 | } |
484 | } |
485 | } |
9825400f |
486 | |
a9e2aefa |
487 | // ******* iacc = 2 ******* |
488 | // Two combinations found between the 2 cathodes |
489 | if (iacc==2) { |
490 | |
491 | // Was the same maximum taken twice |
9825400f |
492 | if ((accepted[0]&&accepted[1]) || (accepted[2]&&accepted[3])) { |
493 | fprintf(stderr,"\n Maximum taken twice !!!\n"); |
a9e2aefa |
494 | |
495 | // Have a try !! with that |
9825400f |
496 | if (accepted[0]&&accepted[3]) { |
497 | fXInit[0]=xm[0][1]; |
498 | fYInit[0]=ym[0][0]; |
499 | fXInit[1]=xm[1][1]; |
500 | fYInit[1]=ym[1][0]; |
501 | } else { |
502 | fXInit[0]=xm[2][1]; |
503 | fYInit[0]=ym[2][0]; |
504 | fXInit[1]=xm[3][1]; |
505 | fYInit[1]=ym[3][0]; |
506 | } |
507 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
508 | chi2=CombiDoubleMathiesonFit(c); |
a9e2aefa |
509 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
510 | // Float_t prob = TMath::Prob(chi2,ndf); |
511 | // prob2->Fill(prob); |
512 | // chi2_2->Fill(chi2); |
9825400f |
513 | Split(c); |
514 | |
515 | } else { |
a9e2aefa |
516 | // No ghosts ! No Problems ! - Perform one fit only ! |
9825400f |
517 | if (accepted[0]&&accepted[3]) { |
518 | fXInit[0]=xm[0][1]; |
519 | fYInit[0]=ym[0][0]; |
520 | fXInit[1]=xm[3][1]; |
521 | fYInit[1]=ym[3][0]; |
522 | } else { |
523 | fXInit[0]=xm[1][1]; |
524 | fYInit[0]=ym[1][0]; |
525 | fXInit[1]=xm[2][1]; |
526 | fYInit[1]=ym[2][0]; |
527 | } |
528 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
529 | chi2=CombiDoubleMathiesonFit(c); |
a9e2aefa |
530 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
531 | // Float_t prob = TMath::Prob(chi2,ndf); |
532 | // prob2->Fill(prob); |
533 | // chi2_2->Fill(chi2); |
9825400f |
534 | fprintf(stderr," chi2 %f\n",chi2); |
535 | Split(c); |
536 | } |
537 | |
a9e2aefa |
538 | // ******* iacc = 4 ******* |
539 | // Four combinations found between the 2 cathodes |
540 | // Ghost !! |
9825400f |
541 | } else if (iacc==4) { |
a9e2aefa |
542 | // Perform fits for the two possibilities !! |
9825400f |
543 | fXInit[0]=xm[0][1]; |
544 | fYInit[0]=ym[0][0]; |
545 | fXInit[1]=xm[3][1]; |
546 | fYInit[1]=ym[3][0]; |
547 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
548 | chi2=CombiDoubleMathiesonFit(c); |
a9e2aefa |
549 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
550 | // Float_t prob = TMath::Prob(chi2,ndf); |
551 | // prob2->Fill(prob); |
552 | // chi2_2->Fill(chi2); |
9825400f |
553 | fprintf(stderr," chi2 %f\n",chi2); |
554 | Split(c); |
555 | fXInit[0]=xm[1][1]; |
556 | fYInit[0]=ym[1][0]; |
557 | fXInit[1]=xm[2][1]; |
558 | fYInit[1]=ym[2][0]; |
559 | fprintf(stderr,"\n cas (2) CombiDoubleMathiesonFit(c)\n"); |
560 | chi2=CombiDoubleMathiesonFit(c); |
a9e2aefa |
561 | // ndf = fgNbins[0]+fgNbins[1]-6; |
562 | // prob = TMath::Prob(chi2,ndf); |
563 | // prob2->Fill(prob); |
564 | // chi2_2->Fill(chi2); |
9825400f |
565 | fprintf(stderr," chi2 %f\n",chi2); |
566 | Split(c); |
567 | } |
a9e2aefa |
568 | |
9825400f |
569 | } else if (fNLocal[0]==2 && fNLocal[1]==1) { |
a9e2aefa |
570 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
571 | // (3) Two local maxima on cathode 1 and one maximum on cathode 2 |
572 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
573 | // |
574 | Float_t xm[4][2], ym[4][2]; |
575 | Float_t dpx, dpy, dx, dy; |
576 | Int_t ixm[4][2], iym[4][2]; |
577 | Int_t isec, im1, ico; |
578 | // |
579 | // Form the 2x2 combinations |
580 | // 0-0, 0-1, 1-0, 1-1 |
581 | ico=0; |
582 | for (im1=0; im1<2; im1++) { |
9825400f |
583 | xm[ico][0]=fX[fIndLocal[im1][0]][0]; |
584 | ym[ico][0]=fY[fIndLocal[im1][0]][0]; |
585 | xm[ico][1]=fX[fIndLocal[0][1]][1]; |
586 | ym[ico][1]=fY[fIndLocal[0][1]][1]; |
587 | |
588 | ixm[ico][0]=fIx[fIndLocal[im1][0]][0]; |
589 | iym[ico][0]=fIy[fIndLocal[im1][0]][0]; |
590 | ixm[ico][1]=fIx[fIndLocal[0][1]][1]; |
591 | iym[ico][1]=fIy[fIndLocal[0][1]][1]; |
592 | ico++; |
a9e2aefa |
593 | } |
594 | // ico = 0 : first local maximum on cathodes 1 and 2 |
595 | // ico = 1 : second local maximum on cathode 1 and first on cathode 2 |
596 | |
597 | // Analyse the combinations and keep those that are possible ! |
598 | // For each combination check consistency in x and y |
599 | Int_t iacc; |
600 | Bool_t accepted[4]; |
601 | iacc=0; |
602 | |
603 | for (ico=0; ico<2; ico++) { |
604 | accepted[ico]=kFALSE; |
605 | isec=Segmentation(0)->Sector(ixm[ico][0], iym[ico][0]); |
606 | dpx=Segmentation(0)->Dpx(isec)/2.; |
607 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); |
608 | isec=Segmentation(1)->Sector(ixm[ico][1], iym[ico][1]); |
609 | dpy=Segmentation(1)->Dpy(isec)/2.; |
610 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); |
611 | // printf("\n %i %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy ); |
612 | if ((dx <= dpx) && (dy <= dpy)) { |
613 | // consistent |
614 | accepted[ico]=kTRUE; |
615 | iacc++; |
616 | } else { |
617 | // reject |
618 | accepted[ico]=kFALSE; |
619 | } |
620 | } |
9825400f |
621 | |
a9e2aefa |
622 | Float_t chi21 = 100; |
623 | Float_t chi22 = 100; |
9825400f |
624 | |
a9e2aefa |
625 | if (accepted[0]) { |
626 | fXInit[0]=xm[0][1]; |
627 | fYInit[0]=ym[0][0]; |
628 | fXInit[1]=xm[1][0]; |
629 | fYInit[1]=ym[1][0]; |
630 | chi21=CombiDoubleMathiesonFit(c); |
631 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
632 | // Float_t prob = TMath::Prob(chi2,ndf); |
633 | // prob2->Fill(prob); |
634 | // chi2_2->Fill(chi21); |
635 | fprintf(stderr," chi2 %f\n",chi21); |
636 | if (chi21<10) Split(c); |
637 | } else if (accepted[1]) { |
638 | fXInit[0]=xm[1][1]; |
639 | fYInit[0]=ym[1][0]; |
640 | fXInit[1]=xm[0][0]; |
641 | fYInit[1]=ym[0][0]; |
642 | chi22=CombiDoubleMathiesonFit(c); |
643 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
644 | // Float_t prob = TMath::Prob(chi2,ndf); |
645 | // prob2->Fill(prob); |
646 | // chi2_2->Fill(chi22); |
647 | fprintf(stderr," chi2 %f\n",chi22); |
648 | if (chi22<10) Split(c); |
649 | } |
650 | |
651 | if (chi21 > 10 && chi22 > 10) { |
652 | // We keep only the combination found (X->cathode 2, Y->cathode 1) |
653 | for (Int_t ico=0; ico<2; ico++) { |
654 | if (accepted[ico]) { |
655 | AliMUONRawCluster cnew; |
656 | Int_t cath; |
657 | for (cath=0; cath<2; cath++) { |
658 | cnew.fX[cath]=Float_t(xm[ico][1]); |
659 | cnew.fY[cath]=Float_t(ym[ico][0]); |
660 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; |
661 | for (i=0; i<fMul[cath]; i++) { |
9825400f |
662 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; |
663 | fSegmentation[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
a9e2aefa |
664 | } |
665 | fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath); |
666 | fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]); |
667 | FillCluster(&cnew,cath); |
668 | } |
669 | cnew.fClusterType=cnew.PhysicsContribution(); |
670 | AddRawCluster(cnew); |
671 | fNPeaks++; |
672 | } |
673 | } |
674 | } |
9825400f |
675 | |
a9e2aefa |
676 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
677 | // (3') One local maximum on cathode 1 and two maxima on cathode 2 |
678 | // +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
679 | } else if (fNLocal[0]==1 && fNLocal[1]==2) { |
9825400f |
680 | |
a9e2aefa |
681 | Float_t xm[4][2], ym[4][2]; |
682 | Float_t dpx, dpy, dx, dy; |
683 | Int_t ixm[4][2], iym[4][2]; |
684 | Int_t isec, im1, ico; |
685 | // |
686 | // Form the 2x2 combinations |
687 | // 0-0, 0-1, 1-0, 1-1 |
688 | ico=0; |
689 | for (im1=0; im1<2; im1++) { |
9825400f |
690 | xm[ico][0]=fX[fIndLocal[0][0]][0]; |
691 | ym[ico][0]=fY[fIndLocal[0][0]][0]; |
692 | xm[ico][1]=fX[fIndLocal[im1][1]][1]; |
693 | ym[ico][1]=fY[fIndLocal[im1][1]][1]; |
694 | |
695 | ixm[ico][0]=fIx[fIndLocal[0][0]][0]; |
696 | iym[ico][0]=fIy[fIndLocal[0][0]][0]; |
697 | ixm[ico][1]=fIx[fIndLocal[im1][1]][1]; |
698 | iym[ico][1]=fIy[fIndLocal[im1][1]][1]; |
699 | ico++; |
a9e2aefa |
700 | } |
701 | // ico = 0 : first local maximum on cathodes 1 and 2 |
702 | // ico = 1 : first local maximum on cathode 1 and second on cathode 2 |
703 | |
704 | // Analyse the combinations and keep those that are possible ! |
705 | // For each combination check consistency in x and y |
706 | Int_t iacc; |
707 | Bool_t accepted[4]; |
708 | iacc=0; |
709 | |
710 | for (ico=0; ico<2; ico++) { |
711 | accepted[ico]=kFALSE; |
712 | isec=Segmentation(0)->Sector(ixm[ico][0], iym[ico][0]); |
713 | dpx=Segmentation(0)->Dpx(isec)/2.; |
714 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); |
715 | isec=Segmentation(1)->Sector(ixm[ico][1], iym[ico][1]); |
716 | dpy=Segmentation(1)->Dpy(isec)/2.; |
717 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); |
718 | // printf("\n %i %f %f %f %f \n", ico, ym[ico][0], ym[ico][1], dy, dpy ); |
719 | if ((dx <= dpx) && (dy <= dpy)) { |
720 | // consistent |
721 | accepted[ico]=kTRUE; |
722 | fprintf(stderr,"ico %d\n",ico); |
723 | iacc++; |
724 | } else { |
725 | // reject |
726 | accepted[ico]=kFALSE; |
727 | } |
728 | } |
729 | |
730 | Float_t chi21 = 100; |
731 | Float_t chi22 = 100; |
732 | |
733 | if (accepted[0]) { |
734 | fXInit[0]=xm[0][0]; |
735 | fYInit[0]=ym[0][1]; |
736 | fXInit[1]=xm[1][1]; |
737 | fYInit[1]=ym[1][1]; |
738 | chi21=CombiDoubleMathiesonFit(c); |
739 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
740 | // Float_t prob = TMath::Prob(chi2,ndf); |
741 | // prob2->Fill(prob); |
742 | // chi2_2->Fill(chi21); |
743 | fprintf(stderr," chi2 %f\n",chi21); |
744 | if (chi21<10) Split(c); |
745 | } else if (accepted[1]) { |
746 | fXInit[0]=xm[1][0]; |
747 | fYInit[0]=ym[1][1]; |
748 | fXInit[1]=xm[0][1]; |
749 | fYInit[1]=ym[0][1]; |
750 | chi22=CombiDoubleMathiesonFit(c); |
751 | // Int_t ndf = fgNbins[0]+fgNbins[1]-6; |
752 | // Float_t prob = TMath::Prob(chi2,ndf); |
753 | // prob2->Fill(prob); |
754 | // chi2_2->Fill(chi22); |
755 | fprintf(stderr," chi2 %f\n",chi22); |
756 | if (chi22<10) Split(c); |
757 | } |
758 | |
759 | if (chi21 > 10 && chi22 > 10) { |
760 | //We keep only the combination found (X->cathode 2, Y->cathode 1) |
761 | for (Int_t ico=0; ico<2; ico++) { |
762 | if (accepted[ico]) { |
763 | AliMUONRawCluster cnew; |
764 | Int_t cath; |
765 | for (cath=0; cath<2; cath++) { |
766 | cnew.fX[cath]=Float_t(xm[ico][1]); |
767 | cnew.fY[cath]=Float_t(ym[ico][0]); |
768 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; |
769 | for (i=0; i<fMul[cath]; i++) { |
9825400f |
770 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; |
771 | fSegmentation[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
a9e2aefa |
772 | } |
773 | fprintf(stderr,"\nRawCluster %d cath %d\n",ico,cath); |
774 | fprintf(stderr,"mult_av %d\n",c->fMultiplicity[cath]); |
775 | FillCluster(&cnew,cath); |
776 | } |
777 | cnew.fClusterType=cnew.PhysicsContribution(); |
778 | AddRawCluster(cnew); |
779 | fNPeaks++; |
780 | } |
781 | } |
782 | } |
783 | |
784 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
785 | // (4) At least three local maxima on cathode 1 or on cathode 2 |
786 | // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
787 | } else if (fNLocal[0]>2 || fNLocal[1]>2) { |
788 | |
789 | Int_t param = fNLocal[0]*fNLocal[1]; |
f8ffca81 |
790 | Int_t ii; |
9825400f |
791 | |
39e6d319 |
792 | Float_t ** xm = new Float_t * [param]; |
793 | for (ii=0; ii<param; ii++) xm[ii]=new Float_t [2]; |
794 | Float_t ** ym = new Float_t * [param]; |
795 | for (ii=0; ii<param; ii++) ym[ii]=new Float_t [2]; |
796 | Int_t ** ixm = new Int_t * [param]; |
797 | for (ii=0; ii<param; ii++) ixm[ii]=new Int_t [2]; |
798 | Int_t ** iym = new Int_t * [param]; |
799 | for (ii=0; ii<param; ii++) iym[ii]=new Int_t [2]; |
f8ffca81 |
800 | |
a9e2aefa |
801 | Int_t isec, ico; |
802 | Float_t dpx, dpy, dx, dy; |
803 | |
804 | ico=0; |
805 | for (Int_t im1=0; im1<fNLocal[0]; im1++) { |
806 | for (Int_t im2=0; im2<fNLocal[1]; im2++) { |
807 | xm[ico][0]=fX[fIndLocal[im1][0]][0]; |
808 | ym[ico][0]=fY[fIndLocal[im1][0]][0]; |
809 | xm[ico][1]=fX[fIndLocal[im2][1]][1]; |
810 | ym[ico][1]=fY[fIndLocal[im2][1]][1]; |
811 | |
812 | ixm[ico][0]=fIx[fIndLocal[im1][0]][0]; |
813 | iym[ico][0]=fIy[fIndLocal[im1][0]][0]; |
814 | ixm[ico][1]=fIx[fIndLocal[im2][1]][1]; |
815 | iym[ico][1]=fIy[fIndLocal[im2][1]][1]; |
816 | ico++; |
817 | } |
818 | } |
9825400f |
819 | |
a9e2aefa |
820 | Int_t nIco = ico; |
9825400f |
821 | |
a9e2aefa |
822 | fprintf(stderr,"nIco %d\n",nIco); |
823 | for (ico=0; ico<nIco; ico++) { |
824 | fprintf(stderr,"ico = %d\n",ico); |
825 | isec=Segmentation(0)->Sector(ixm[ico][0], iym[ico][0]); |
826 | dpx=Segmentation(0)->Dpx(isec)/2.; |
827 | dx=TMath::Abs(xm[ico][0]-xm[ico][1]); |
828 | isec=Segmentation(1)->Sector(ixm[ico][1], iym[ico][1]); |
829 | dpy=Segmentation(1)->Dpy(isec)/2.; |
830 | dy=TMath::Abs(ym[ico][0]-ym[ico][1]); |
831 | |
832 | fprintf(stderr,"dx %f dpx %f dy %f dpy %f\n",dx,dpx,dy,dpy); |
833 | fprintf(stderr," X %f Y %f\n",xm[ico][1],ym[ico][0]); |
834 | if ((dx <= dpx) && (dy <= dpy)) { |
835 | fprintf(stderr,"ok\n"); |
836 | Int_t cath; |
837 | AliMUONRawCluster cnew; |
838 | for (cath=0; cath<2; cath++) { |
839 | cnew.fX[cath]=Float_t(xm[ico][1]); |
840 | cnew.fY[cath]=Float_t(ym[ico][0]); |
841 | cnew.fMultiplicity[cath]=c->fMultiplicity[cath]; |
842 | for (i=0; i<fMul[cath]; i++) { |
9825400f |
843 | cnew.fIndexMap[i][cath]=c->fIndexMap[i][cath]; |
844 | fSegmentation[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
a9e2aefa |
845 | } |
846 | FillCluster(&cnew,cath); |
847 | } |
848 | cnew.fClusterType=cnew.PhysicsContribution(); |
849 | AddRawCluster(cnew); |
850 | fNPeaks++; |
851 | } |
852 | } |
f8ffca81 |
853 | delete [] xm; |
854 | delete [] ym; |
855 | delete [] ixm; |
856 | delete [] iym; |
a9e2aefa |
857 | } |
858 | } |
859 | |
860 | void AliMUONClusterFinderVS::FindLocalMaxima(AliMUONRawCluster* c) |
861 | { |
862 | // Find all local maxima of a cluster |
863 | |
864 | AliMUONDigit* digt; |
865 | |
866 | Int_t cath, cath1; // loops over cathodes |
867 | Int_t i; // loops over digits |
868 | Int_t j; // loops over cathodes |
869 | // |
870 | // Find local maxima |
871 | // |
872 | // counters for number of local maxima |
873 | fNLocal[0]=fNLocal[1]=0; |
874 | // flags digits as local maximum |
875 | Bool_t isLocal[100][2]; |
876 | for (i=0; i<100;i++) { |
877 | isLocal[i][0]=isLocal[i][1]=kFALSE; |
878 | } |
879 | // number of next neighbours and arrays to store them |
880 | Int_t nn; |
881 | Int_t x[kMaxNeighbours], y[kMaxNeighbours]; |
882 | // loop over cathodes |
883 | for (cath=0; cath<2; cath++) { |
884 | // loop over cluster digits |
885 | for (i=0; i<fMul[cath]; i++) { |
886 | // get neighbours for that digit and assume that it is local maximum |
887 | Segmentation(cath)->Neighbours(fIx[i][cath], fIy[i][cath], &nn, x, y); |
888 | isLocal[i][cath]=kTRUE; |
889 | Int_t isec= Segmentation(cath)->Sector(fIx[i][cath], fIy[i][cath]); |
890 | Float_t a0 = Segmentation(cath)->Dpx(isec)*Segmentation(cath)->Dpy(isec); |
891 | // loop over next neighbours, if at least one neighbour has higher charger assumption |
892 | // digit is not local maximum |
893 | for (j=0; j<nn; j++) { |
894 | if (HitMap(cath)->TestHit(x[j], y[j])==kEmpty) continue; |
895 | digt=(AliMUONDigit*) HitMap(cath)->GetHit(x[j], y[j]); |
896 | isec=Segmentation(cath)->Sector(x[j], y[j]); |
897 | Float_t a1 = Segmentation(cath)->Dpx(isec)*Segmentation(cath)->Dpy(isec); |
898 | if (digt->fSignal/a1 > fQ[i][cath]/a0) { |
899 | isLocal[i][cath]=kFALSE; |
900 | break; |
901 | // |
902 | // handle special case of neighbouring pads with equal signal |
903 | } else if (digt->fSignal == fQ[i][cath]) { |
904 | if (fNLocal[cath]>0) { |
905 | for (Int_t k=0; k<fNLocal[cath]; k++) { |
906 | if (x[j]==fIx[fIndLocal[k][cath]][cath] |
907 | && y[j]==fIy[fIndLocal[k][cath]][cath]) |
908 | { |
909 | isLocal[i][cath]=kFALSE; |
910 | } |
911 | } // loop over local maxima |
912 | } // are there already local maxima |
913 | } // same charge ? |
914 | } // loop over next neighbours |
915 | if (isLocal[i][cath]) { |
916 | fIndLocal[fNLocal[cath]][cath]=i; |
917 | fNLocal[cath]++; |
918 | } |
919 | } // loop over all digits |
920 | } // loop over cathodes |
921 | |
922 | printf("\n Found %d %d %d %d local Maxima\n", |
923 | fNLocal[0], fNLocal[1], fMul[0], fMul[1]); |
924 | fprintf(stderr,"\n Cathode 1 local Maxima %d Multiplicite %d\n",fNLocal[0], fMul[0]); |
925 | fprintf(stderr," Cathode 2 local Maxima %d Multiplicite %d\n",fNLocal[1], fMul[1]); |
926 | Int_t ix, iy, isec; |
927 | Float_t dpx, dpy; |
928 | |
929 | |
930 | if (fNLocal[1]==2 && (fNLocal[0]==1 || fNLocal[0]==0)) { |
931 | Int_t iback=fNLocal[0]; |
932 | |
933 | // Two local maxima on cathode 2 and one maximum on cathode 1 |
934 | // Look for local maxima considering up and down neighbours on the 1st cathode only |
935 | // |
936 | // Loop over cluster digits |
937 | cath=0; |
938 | cath1=1; |
939 | |
940 | for (i=0; i<fMul[cath]; i++) { |
941 | isec=Segmentation(cath)->Sector(fIx[i][cath],fIy[i][cath]); |
942 | dpy=Segmentation(cath)->Dpy(isec); |
943 | dpx=Segmentation(cath)->Dpx(isec); |
944 | if (isLocal[i][cath]) continue; |
945 | // Pad position should be consistent with position of local maxima on the opposite cathode |
946 | if ((TMath::Abs(fX[i][cath]-fX[fIndLocal[0][cath1]][cath1]) > dpx/2.) && |
947 | (TMath::Abs(fX[i][cath]-fX[fIndLocal[1][cath1]][cath1]) > dpx/2.)) |
948 | continue; |
949 | |
950 | // get neighbours for that digit and assume that it is local maximum |
951 | isLocal[i][cath]=kTRUE; |
952 | // compare signal to that on the two neighbours on the left and on the right |
953 | Segmentation(cath)->GetPadIxy(fX[i][cath],fY[i][cath]+dpy,ix,iy); |
954 | // iNN counts the number of neighbours with signal, it should be 1 or 2 |
955 | Int_t iNN=0; |
956 | if (HitMap(cath)->TestHit(ix, iy)!=kEmpty) { |
957 | iNN++; |
958 | digt=(AliMUONDigit*) HitMap(cath)->GetHit(ix,iy); |
959 | if (digt->fSignal > fQ[i][cath]) isLocal[i][cath]=kFALSE; |
960 | } |
961 | Segmentation(cath)->GetPadIxy(fX[i][cath],fY[i][cath]-dpy,ix,iy); |
962 | if (HitMap(cath)->TestHit(ix, iy)!=kEmpty) { |
963 | iNN++; |
964 | digt=(AliMUONDigit*) HitMap(cath)->GetHit(ix,iy); |
965 | if (digt->fSignal > fQ[i][cath]) isLocal[i][cath]=kFALSE; |
966 | } |
967 | if (isLocal[i][cath] && iNN>0) { |
968 | fIndLocal[fNLocal[cath]][cath]=i; |
969 | fNLocal[cath]++; |
970 | } |
971 | } // loop over all digits |
972 | // if one additional maximum has been found we are happy |
973 | // if more maxima have been found restore the previous situation |
974 | fprintf(stderr,"\n New search gives %d local maxima for cathode 1 \n",fNLocal[0]); |
975 | fprintf(stderr," %d local maxima for cathode 2 \n",fNLocal[1]); |
976 | if (fNLocal[cath]>2) { |
977 | fNLocal[cath]=iback; |
978 | } |
979 | |
980 | } // 1,2 local maxima |
981 | |
982 | if (fNLocal[0]==2 && (fNLocal[1]==1 || fNLocal[1]==0)) { |
983 | Int_t iback=fNLocal[1]; |
984 | |
985 | // Two local maxima on cathode 1 and one maximum on cathode 2 |
986 | // Look for local maxima considering left and right neighbours on the 2nd cathode only |
987 | cath=1; |
988 | Int_t cath1=0; |
989 | |
990 | |
991 | // |
992 | // Loop over cluster digits |
993 | for (i=0; i<fMul[cath]; i++) { |
994 | isec=Segmentation(cath)->Sector(fIx[i][cath],fIy[i][cath]); |
995 | dpx=Segmentation(cath)->Dpx(isec); |
996 | dpy=Segmentation(cath)->Dpy(isec); |
997 | if (isLocal[i][cath]) continue; |
998 | // Pad position should be consistent with position of local maxima on the opposite cathode |
999 | if ((TMath::Abs(fY[i][cath]-fY[fIndLocal[0][cath1]][cath1]) > dpy/2.) && |
1000 | (TMath::Abs(fY[i][cath]-fY[fIndLocal[1][cath1]][cath1]) > dpy/2.)) |
1001 | continue; |
1002 | // |
1003 | // get neighbours for that digit and assume that it is local maximum |
1004 | isLocal[i][cath]=kTRUE; |
1005 | // compare signal to that on the two neighbours on the left and on the right |
1006 | Segmentation(cath)->GetPadIxy(fX[i][cath]+dpx,fY[i][cath],ix,iy); |
1007 | // iNN counts the number of neighbours with signal, it should be 1 or 2 |
1008 | Int_t iNN=0; |
1009 | if (HitMap(cath)->TestHit(ix, iy)!=kEmpty) { |
1010 | iNN++; |
1011 | digt=(AliMUONDigit*) HitMap(cath)->GetHit(ix,iy); |
1012 | if (digt->fSignal > fQ[i][cath]) isLocal[i][cath]=kFALSE; |
1013 | } |
1014 | Segmentation(cath)->GetPadIxy(fX[i][cath]-dpx,fY[i][cath],ix,iy); |
1015 | if (HitMap(cath)->TestHit(ix, iy)!=kEmpty) { |
1016 | iNN++; |
1017 | digt=(AliMUONDigit*) HitMap(cath)->GetHit(ix,iy); |
1018 | if (digt->fSignal > fQ[i][cath]) isLocal[i][cath]=kFALSE; |
1019 | } |
1020 | if (isLocal[i][cath] && iNN>0) { |
1021 | fIndLocal[fNLocal[cath]][cath]=i; |
1022 | fNLocal[cath]++; |
1023 | } |
1024 | } // loop over all digits |
1025 | // if one additional maximum has been found we are happy |
1026 | // if more maxima have been found restore the previous situation |
1027 | fprintf(stderr,"\n New search gives %d local maxima for cathode 1 \n",fNLocal[0]); |
1028 | fprintf(stderr,"\n %d local maxima for cathode 2 \n",fNLocal[1]); |
1029 | // printf("\n New search gives %d %d \n",fNLocal[0],fNLocal[1]); |
1030 | if (fNLocal[cath]>2) { |
1031 | fNLocal[cath]=iback; |
1032 | } |
1033 | |
1034 | |
1035 | |
1036 | } // 2,1 local maxima |
1037 | } |
1038 | |
1039 | |
1040 | void AliMUONClusterFinderVS::FillCluster(AliMUONRawCluster* c, Int_t flag, Int_t cath) |
1041 | { |
1042 | // |
1043 | // Completes cluster information starting from list of digits |
1044 | // |
1045 | AliMUONDigit* dig; |
1046 | Float_t x, y; |
1047 | Int_t ix, iy; |
1048 | |
1049 | if (cath==1) { |
1050 | c->fPeakSignal[cath]=c->fPeakSignal[0]; |
1051 | } else { |
1052 | c->fPeakSignal[cath]=0; |
1053 | } |
1054 | |
1055 | |
1056 | if (flag) { |
1057 | c->fX[cath]=0; |
1058 | c->fY[cath]=0; |
1059 | c->fQ[cath]=0; |
1060 | } |
1061 | |
1062 | // fprintf(stderr,"\n fPeakSignal %d\n",c->fPeakSignal[cath]); |
1063 | for (Int_t i=0; i<c->fMultiplicity[cath]; i++) |
1064 | { |
1065 | dig= (AliMUONDigit*)Digits(cath)->UncheckedAt(c->fIndexMap[i][cath]); |
1066 | ix=dig->fPadX+c->fOffsetMap[i][cath]; |
1067 | iy=dig->fPadY; |
1068 | Int_t q=dig->fSignal; |
1069 | if (!flag) q=Int_t(q*c->fContMap[i][cath]); |
1070 | // fprintf(stderr,"q %d c->fPeakSignal[ %d ] %d\n",q,cath,c->fPeakSignal[cath]); |
1071 | if (dig->fPhysics >= dig->fSignal) { |
1072 | c->fPhysicsMap[i]=2; |
1073 | } else if (dig->fPhysics == 0) { |
1074 | c->fPhysicsMap[i]=0; |
1075 | } else c->fPhysicsMap[i]=1; |
1076 | // |
1077 | // |
1078 | // fprintf(stderr,"q %d c->fPeakSignal[cath] %d\n",q,c->fPeakSignal[cath]); |
1079 | // peak signal and track list |
1080 | if (q>c->fPeakSignal[cath]) { |
1081 | c->fPeakSignal[cath]=q; |
1082 | c->fTracks[0]=dig->fHit; |
1083 | c->fTracks[1]=dig->fTracks[0]; |
1084 | c->fTracks[2]=dig->fTracks[1]; |
1085 | // fprintf(stderr," c->fTracks[0] %d c->fTracks[1] %d\n",dig->fHit,dig->fTracks[0]); |
1086 | } |
1087 | // |
1088 | if (flag) { |
1089 | Segmentation(cath)->GetPadCxy(ix, iy, x, y); |
1090 | c->fX[cath] += q*x; |
1091 | c->fY[cath] += q*y; |
1092 | c->fQ[cath] += q; |
1093 | } |
1094 | } // loop over digits |
1095 | // fprintf(stderr," fin du cluster c\n"); |
1096 | |
1097 | |
1098 | if (flag) { |
1099 | c->fX[cath]/=c->fQ[cath]; |
1100 | c->fX[cath]=Segmentation(cath)->GetAnod(c->fX[cath]); |
1101 | c->fY[cath]/=c->fQ[cath]; |
1102 | // |
1103 | // apply correction to the coordinate along the anode wire |
1104 | // |
1105 | x=c->fX[cath]; |
1106 | y=c->fY[cath]; |
1107 | Segmentation(cath)->GetPadIxy(x, y, ix, iy); |
1108 | Segmentation(cath)->GetPadCxy(ix, iy, x, y); |
1109 | Int_t isec=Segmentation(cath)->Sector(ix,iy); |
1110 | TF1* cogCorr = Segmentation(cath)->CorrFunc(isec-1); |
1111 | |
1112 | if (cogCorr) { |
1113 | Float_t yOnPad=(c->fY[cath]-y)/Segmentation(cath)->Dpy(isec); |
1114 | c->fY[cath]=c->fY[cath]-cogCorr->Eval(yOnPad, 0, 0); |
1115 | } |
1116 | } |
1117 | } |
1118 | |
1119 | void AliMUONClusterFinderVS::FillCluster(AliMUONRawCluster* c, Int_t cath) |
1120 | { |
1121 | // |
1122 | // Completes cluster information starting from list of digits |
1123 | // |
1124 | static Float_t dr0; |
1125 | |
1126 | AliMUONDigit* dig; |
1127 | |
1128 | if (cath==0) { |
1129 | dr0 = 10000; |
1130 | } |
1131 | |
1132 | Float_t xpad, ypad; |
1133 | Float_t dx, dy, dr; |
1134 | |
1135 | for (Int_t i=0; i<c->fMultiplicity[cath]; i++) |
1136 | { |
1137 | dig= (AliMUONDigit*)Digits(cath)->UncheckedAt(c->fIndexMap[i][cath]); |
1138 | Segmentation(cath)-> |
1139 | GetPadCxy(dig->fPadX,dig->fPadY,xpad,ypad); |
1140 | fprintf(stderr,"x %f y %f cx %f cy %f\n",xpad,ypad,c->fX[0],c->fY[0]); |
1141 | dx = xpad - c->fX[0]; |
1142 | dy = ypad - c->fY[0]; |
1143 | dr = TMath::Sqrt(dx*dx+dy*dy); |
1144 | |
1145 | if (dr < dr0) { |
1146 | dr0 = dr; |
1147 | fprintf(stderr," dr %f\n",dr); |
1148 | Int_t q=dig->fSignal; |
1149 | if (dig->fPhysics >= dig->fSignal) { |
1150 | c->fPhysicsMap[i]=2; |
1151 | } else if (dig->fPhysics == 0) { |
1152 | c->fPhysicsMap[i]=0; |
1153 | } else c->fPhysicsMap[i]=1; |
1154 | c->fPeakSignal[cath]=q; |
1155 | c->fTracks[0]=dig->fHit; |
1156 | c->fTracks[1]=dig->fTracks[0]; |
1157 | c->fTracks[2]=dig->fTracks[1]; |
1158 | fprintf(stderr," c->fTracks[0] %d c->fTracks[1] %d\n",dig->fHit,dig->fTracks[0]); |
1159 | } |
1160 | // |
1161 | } // loop over digits |
1162 | |
1163 | // apply correction to the coordinate along the anode wire |
1164 | c->fX[cath]=Segmentation(cath)->GetAnod(c->fX[cath]); |
1165 | } |
1166 | |
1167 | void AliMUONClusterFinderVS::FindCluster(Int_t i, Int_t j, Int_t cath, AliMUONRawCluster &c){ |
1168 | // |
1169 | // Find clusterset |
1170 | // |
1171 | // |
1172 | // Add i,j as element of the cluster |
1173 | // |
1174 | |
1175 | Int_t idx = HitMap(cath)->GetHitIndex(i,j); |
1176 | AliMUONDigit* dig = (AliMUONDigit*) HitMap(cath)->GetHit(i,j); |
1177 | Int_t q=dig->fSignal; |
1178 | Int_t theX=dig->fPadX; |
1179 | Int_t theY=dig->fPadY; |
1180 | if (q > TMath::Abs(c.fPeakSignal[0]) && q > TMath::Abs(c.fPeakSignal[1])) { |
1181 | c.fPeakSignal[cath]=q; |
1182 | c.fTracks[0]=dig->fHit; |
1183 | c.fTracks[1]=dig->fTracks[0]; |
1184 | c.fTracks[2]=dig->fTracks[1]; |
1185 | } |
1186 | |
1187 | // |
1188 | // Make sure that list of digits is ordered |
1189 | // |
1190 | Int_t mu=c.fMultiplicity[cath]; |
1191 | c.fIndexMap[mu][cath]=idx; |
1192 | |
1193 | if (dig->fPhysics >= dig->fSignal) { |
1194 | c.fPhysicsMap[mu]=2; |
1195 | } else if (dig->fPhysics == 0) { |
1196 | c.fPhysicsMap[mu]=0; |
1197 | } else c.fPhysicsMap[mu]=1; |
1198 | if (mu > 0) { |
1199 | for (Int_t ind=mu-1; ind>=0; ind--) { |
1200 | Int_t ist=(c.fIndexMap)[ind][cath]; |
1201 | Int_t ql=((AliMUONDigit*)Digits(cath) |
1202 | ->UncheckedAt(ist))->fSignal; |
1203 | Int_t ix=((AliMUONDigit*)Digits(cath) |
1204 | ->UncheckedAt(ist))->fPadX; |
1205 | Int_t iy=((AliMUONDigit*)Digits(cath) |
1206 | ->UncheckedAt(ist))->fPadY; |
1207 | |
1208 | if (q>ql || (q==ql && theX > ix && theY < iy)) { |
1209 | c.fIndexMap[ind][cath]=idx; |
1210 | c.fIndexMap[ind+1][cath]=ist; |
1211 | } else { |
1212 | break; |
1213 | } |
1214 | } |
1215 | } |
1216 | |
1217 | c.fMultiplicity[cath]++; |
1218 | if (c.fMultiplicity[cath] >= 50 ) { |
1219 | printf("FindCluster - multiplicity >50 %d \n",c.fMultiplicity[0]); |
1220 | c.fMultiplicity[cath]=49; |
1221 | } |
1222 | |
1223 | // Prepare center of gravity calculation |
1224 | Float_t x, y; |
1225 | Segmentation(cath)->GetPadCxy(i, j, x, y); |
1226 | |
1227 | c.fX[cath] += q*x; |
1228 | c.fY[cath] += q*y; |
1229 | c.fQ[cath] += q; |
1230 | // Flag hit as taken |
1231 | HitMap(cath)->FlagHit(i,j); |
1232 | // |
1233 | // Now look recursively for all neighbours and pad hit on opposite cathode |
1234 | // |
1235 | // Loop over neighbours |
1236 | Int_t ix,iy; |
1237 | Int_t nn; |
1238 | Int_t xList[kMaxNeighbours], yList[kMaxNeighbours]; |
1239 | Segmentation(cath)->Neighbours(i,j,&nn,xList,yList); |
1240 | for (Int_t in=0; in<nn; in++) { |
1241 | ix=xList[in]; |
1242 | iy=yList[in]; |
1243 | if (HitMap(cath)->TestHit(ix,iy)==kUnused) FindCluster(ix, iy, cath, c); |
1244 | } |
1245 | // Neighbours on opposite cathode |
1246 | // Take into account that several pads can overlap with the present pad |
1247 | Float_t xmin, xmax, ymin, ymax, xc, yc; |
1248 | Int_t iop; |
1249 | Int_t isec=Segmentation(cath)->Sector(i,j); |
1250 | if (cath==0) { |
1251 | iop=1; |
1252 | xmin=x-Segmentation(cath)->Dpx(isec); |
1253 | xmax=x+Segmentation(cath)->Dpx(isec); |
1254 | xc=xmin+.001; |
1255 | while (xc < xmax) { |
1256 | xc+=Segmentation(iop)->Dpx(isec); |
1257 | Segmentation(iop)->GetPadIxy(xc,y,ix,iy); |
1258 | if (ix>=(Segmentation(iop)->Npx()) || (iy>=Segmentation(iop)->Npy())) continue; |
1259 | if (HitMap(iop)->TestHit(ix,iy)==kUnused) FindCluster(ix, iy, iop, c); |
1260 | } |
1261 | } else { |
1262 | iop=0; |
1263 | ymin=y-Segmentation(cath)->Dpy(isec); |
1264 | ymax=y+Segmentation(cath)->Dpy(isec); |
1265 | yc=ymin+.001; |
1266 | while (yc < ymax) { |
1267 | yc+=Segmentation(iop)->Dpy(isec); |
1268 | Segmentation(iop)->GetPadIxy(x,yc,ix,iy); |
1269 | if (ix>=(Segmentation(iop)->Npx()) || (iy>=Segmentation(iop)->Npy())) continue; |
1270 | if (HitMap(iop)->TestHit(ix,iy)==kUnused) FindCluster(ix, iy, iop, c); |
1271 | } |
1272 | } |
1273 | } |
1274 | |
1275 | //_____________________________________________________________________________ |
1276 | |
1277 | void AliMUONClusterFinderVS::FindRawClusters() |
1278 | { |
1279 | // |
1280 | // MUON cluster finder from digits -- finds neighbours on both cathodes and |
1281 | // fills the tree with raw clusters |
1282 | // |
1283 | |
1284 | if (!NDigits(0) && !NDigits(1)) return; |
1285 | |
9825400f |
1286 | fHitMap = new AliMUONHitMapA1(fSegmentation[0] , fDigits); |
1287 | fHitMap2 = new AliMUONHitMapA1(fSegmentation[1], fDigits2); |
a9e2aefa |
1288 | |
1289 | AliMUONDigit *dig; |
1290 | |
1291 | Int_t ndig, cath; |
1292 | Int_t nskip=0; |
1293 | Int_t ncls=0; |
1294 | HitMap(0)->FillHits(); |
1295 | HitMap(1)->FillHits(); |
1296 | // |
1297 | // Outer Loop over Cathodes |
1298 | for (cath=0; cath<2; cath++) { |
1299 | for (ndig=0; ndig<NDigits(cath); ndig++) { |
1300 | dig = (AliMUONDigit*)Digits(cath)->UncheckedAt(ndig); |
1301 | Int_t i=dig->fPadX; |
1302 | Int_t j=dig->fPadY; |
1303 | if (HitMap(cath)->TestHit(i,j)==kUsed ||fHitMap->TestHit(i,j)==kEmpty) { |
1304 | nskip++; |
1305 | continue; |
1306 | } |
1307 | fprintf(stderr,"\n CATHODE %d CLUSTER %d\n",cath,ncls); |
1308 | AliMUONRawCluster c; |
1309 | c.fMultiplicity[0]=0; |
1310 | c.fMultiplicity[1]=0; |
1311 | c.fPeakSignal[cath]=dig->fSignal; |
1312 | c.fTracks[0]=dig->fHit; |
1313 | c.fTracks[1]=dig->fTracks[0]; |
1314 | c.fTracks[2]=dig->fTracks[1]; |
1315 | // tag the beginning of cluster list in a raw cluster |
1316 | c.fNcluster[0]=-1; |
1317 | |
1318 | FindCluster(i,j,cath,c); |
1319 | |
1320 | // center of gravity |
1321 | c.fX[0] /= c.fQ[0]; |
1322 | c.fX[0]=Segmentation(0)->GetAnod(c.fX[0]); |
1323 | c.fY[0] /= c.fQ[0]; |
1324 | c.fX[1] /= c.fQ[1]; |
1325 | c.fX[1]=Segmentation(0)->GetAnod(c.fX[1]); |
1326 | c.fY[1] /= c.fQ[1]; |
1327 | fprintf(stderr,"\n Cathode 1 multiplicite %d X(CG) %f Y(CG) %f\n",c.fMultiplicity[0],c.fX[0],c.fY[0]); |
1328 | fprintf(stderr," Cathode 2 multiplicite %d X(CG) %f Y(CG) %f\n",c.fMultiplicity[1],c.fX[1],c.fY[1]); |
1329 | |
1330 | // Mathieson Fit |
1331 | /* |
1332 | Bool_t fitted; |
1333 | |
1334 | fitted=SingleMathiesonFit(&c, 0); |
1335 | c.fX[0]=Segmentation(0)->GetAnod(c.fX[0]); |
1336 | fitted=SingleMathiesonFit(&c, 1); |
1337 | c.fX[1]=Segmentation(1)->GetAnod(c.fX[1]); |
1338 | */ |
1339 | // |
1340 | // Analyse cluster and decluster if necessary |
1341 | // |
1342 | ncls++; |
1343 | c.fNcluster[1]=fNRawClusters; |
1344 | c.fClusterType=c.PhysicsContribution(); |
1345 | |
1346 | fNPeaks=0; |
1347 | // |
1348 | // |
1349 | Decluster(&c); |
1350 | // AddRawCluster(c); |
1351 | |
1352 | // |
1353 | // reset Cluster object |
f8ffca81 |
1354 | { // begin local scope |
1355 | for (int k=0;k<c.fMultiplicity[0];k++) c.fIndexMap[k][0]=0; |
1356 | } // end local scope |
a9e2aefa |
1357 | |
f8ffca81 |
1358 | { // begin local scope |
1359 | for (int k=0;k<c.fMultiplicity[1];k++) c.fIndexMap[k][1]=0; |
1360 | } // end local scope |
1361 | |
a9e2aefa |
1362 | c.fMultiplicity[0]=c.fMultiplicity[0]=0; |
1363 | |
1364 | |
1365 | } // end loop ndig |
1366 | } // end loop cathodes |
1367 | delete fHitMap; |
1368 | delete fHitMap2; |
1369 | } |
1370 | |
1371 | Float_t AliMUONClusterFinderVS::SingleMathiesonFit(AliMUONRawCluster *c, Int_t cath) |
1372 | { |
1373 | // |
9825400f |
1374 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1375 | |
9825400f |
1376 | clusterInput.Fitter()->SetFCN(fcnS1); |
1377 | clusterInput.Fitter()->mninit(2,10,7); |
a9e2aefa |
1378 | Double_t arglist[20]; |
1379 | Int_t ierflag=0; |
1380 | arglist[0]=1; |
9825400f |
1381 | // clusterInput.Fitter()->mnexcm("SET ERR",arglist,1,ierflag); |
a9e2aefa |
1382 | // Set starting values |
1383 | static Double_t vstart[2]; |
1384 | vstart[0]=c->fX[1]; |
1385 | vstart[1]=c->fY[0]; |
1386 | |
1387 | |
1388 | // lower and upper limits |
1389 | static Double_t lower[2], upper[2]; |
1390 | Int_t ix,iy; |
1391 | Segmentation(cath)->GetPadIxy(c->fX[cath], c->fY[cath], ix, iy); |
1392 | Int_t isec=Segmentation(cath)->Sector(ix, iy); |
1393 | lower[0]=vstart[0]-Segmentation(cath)->Dpx(isec)/2; |
1394 | lower[1]=vstart[1]-Segmentation(cath)->Dpy(isec)/2; |
1395 | |
1396 | upper[0]=lower[0]+Segmentation(cath)->Dpx(isec); |
1397 | upper[1]=lower[1]+Segmentation(cath)->Dpy(isec); |
1398 | |
1399 | // step sizes |
1400 | static Double_t step[2]={0.0005, 0.0005}; |
1401 | |
9825400f |
1402 | clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); |
1403 | clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); |
a9e2aefa |
1404 | // ready for minimisation |
9825400f |
1405 | clusterInput.Fitter()->SetPrintLevel(1); |
1406 | clusterInput.Fitter()->mnexcm("SET OUT", arglist, 0, ierflag); |
a9e2aefa |
1407 | arglist[0]= -1; |
1408 | arglist[1]= 0; |
1409 | |
9825400f |
1410 | clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag); |
1411 | clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag); |
1412 | clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag); |
a9e2aefa |
1413 | Double_t fmin, fedm, errdef; |
1414 | Int_t npari, nparx, istat; |
1415 | |
9825400f |
1416 | clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat); |
a9e2aefa |
1417 | fFitStat=istat; |
1418 | |
1419 | // Print results |
1420 | // Get fitted parameters |
1421 | Double_t xrec, yrec; |
1422 | TString chname; |
1423 | Double_t epxz, b1, b2; |
1424 | Int_t ierflg; |
9825400f |
1425 | clusterInput.Fitter()->mnpout(0, chname, xrec, epxz, b1, b2, ierflg); |
1426 | clusterInput.Fitter()->mnpout(1, chname, yrec, epxz, b1, b2, ierflg); |
a9e2aefa |
1427 | fXFit[cath]=xrec; |
1428 | fYFit[cath]=yrec; |
1429 | return fmin; |
1430 | } |
1431 | |
1432 | Float_t AliMUONClusterFinderVS::CombiSingleMathiesonFit(AliMUONRawCluster *c) |
1433 | { |
1434 | // Perform combined Mathieson fit on both cathode planes |
1435 | // |
9825400f |
1436 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
1437 | clusterInput.Fitter()->SetFCN(fcnCombiS1); |
1438 | clusterInput.Fitter()->mninit(2,10,7); |
a9e2aefa |
1439 | Double_t arglist[20]; |
1440 | Int_t ierflag=0; |
1441 | arglist[0]=1; |
1442 | static Double_t vstart[2]; |
1443 | vstart[0]=fXInit[0]; |
1444 | vstart[1]=fYInit[0]; |
1445 | |
1446 | |
1447 | // lower and upper limits |
1448 | static Double_t lower[2], upper[2]; |
1449 | Int_t ix,iy,isec; |
1450 | Segmentation(0)->GetPadIxy(fXInit[0], fYInit[0], ix, iy); |
1451 | isec=Segmentation(0)->Sector(ix, iy); |
1452 | Float_t dpy=Segmentation(0)->Dpy(isec)/2; |
1453 | Segmentation(1)->GetPadIxy(fXInit[0], fYInit[0], ix, iy); |
1454 | isec=Segmentation(1)->Sector(ix, iy); |
1455 | Float_t dpx=Segmentation(1)->Dpx(isec)/2; |
1456 | |
1457 | |
1458 | lower[0]=vstart[0]-dpx; |
1459 | lower[1]=vstart[1]-dpy; |
1460 | |
1461 | upper[0]=vstart[0]+dpx; |
1462 | upper[1]=vstart[1]+dpy; |
1463 | |
1464 | // step sizes |
1465 | static Double_t step[2]={0.00001, 0.0001}; |
1466 | |
9825400f |
1467 | clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); |
1468 | clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); |
a9e2aefa |
1469 | // ready for minimisation |
9825400f |
1470 | clusterInput.Fitter()->SetPrintLevel(1); |
1471 | clusterInput.Fitter()->mnexcm("SET OUT", arglist, 0, ierflag); |
a9e2aefa |
1472 | arglist[0]= -1; |
1473 | arglist[1]= 0; |
1474 | |
9825400f |
1475 | clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag); |
1476 | clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag); |
1477 | clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag); |
a9e2aefa |
1478 | Double_t fmin, fedm, errdef; |
1479 | Int_t npari, nparx, istat; |
1480 | |
9825400f |
1481 | clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat); |
a9e2aefa |
1482 | fFitStat=istat; |
1483 | |
1484 | // Print results |
1485 | // Get fitted parameters |
1486 | Double_t xrec, yrec; |
1487 | TString chname; |
1488 | Double_t epxz, b1, b2; |
1489 | Int_t ierflg; |
9825400f |
1490 | clusterInput.Fitter()->mnpout(0, chname, xrec, epxz, b1, b2, ierflg); |
1491 | clusterInput.Fitter()->mnpout(1, chname, yrec, epxz, b1, b2, ierflg); |
a9e2aefa |
1492 | fXFit[0]=xrec; |
1493 | fYFit[0]=yrec; |
1494 | return fmin; |
1495 | } |
1496 | |
1497 | Bool_t AliMUONClusterFinderVS::DoubleMathiesonFit(AliMUONRawCluster *c, Int_t cath) |
1498 | { |
1499 | // |
1500 | // Initialise global variables for fit |
9825400f |
1501 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
1502 | clusterInput.Fitter()->SetFCN(fcnS2); |
1503 | clusterInput.Fitter()->mninit(5,10,7); |
a9e2aefa |
1504 | Double_t arglist[20]; |
1505 | Int_t ierflag=0; |
1506 | arglist[0]=1; |
1507 | // Set starting values |
1508 | static Double_t vstart[5]; |
1509 | vstart[0]=fX[fIndLocal[0][cath]][cath]; |
1510 | vstart[1]=fY[fIndLocal[0][cath]][cath]; |
1511 | vstart[2]=fX[fIndLocal[1][cath]][cath]; |
1512 | vstart[3]=fY[fIndLocal[1][cath]][cath]; |
1513 | vstart[4]=Float_t(fQ[fIndLocal[0][cath]][cath])/ |
1514 | Float_t(fQ[fIndLocal[0][cath]][cath]+fQ[fIndLocal[1][cath]][cath]); |
1515 | // lower and upper limits |
1516 | static Double_t lower[5], upper[5]; |
1517 | Int_t isec=Segmentation(cath)->Sector(fIx[fIndLocal[0][cath]][cath], fIy[fIndLocal[0][cath]][cath]); |
1518 | lower[0]=vstart[0]-Segmentation(cath)->Dpx(isec); |
1519 | lower[1]=vstart[1]-Segmentation(cath)->Dpy(isec); |
1520 | |
1521 | upper[0]=lower[0]+2.*Segmentation(cath)->Dpx(isec); |
1522 | upper[1]=lower[1]+2.*Segmentation(cath)->Dpy(isec); |
1523 | |
1524 | isec=Segmentation(cath)->Sector(fIx[fIndLocal[1][cath]][cath], fIy[fIndLocal[1][cath]][cath]); |
1525 | lower[2]=vstart[2]-Segmentation(cath)->Dpx(isec)/2; |
1526 | lower[3]=vstart[3]-Segmentation(cath)->Dpy(isec)/2; |
1527 | |
1528 | upper[2]=lower[2]+Segmentation(cath)->Dpx(isec); |
1529 | upper[3]=lower[3]+Segmentation(cath)->Dpy(isec); |
1530 | |
1531 | lower[4]=0.; |
1532 | upper[4]=1.; |
1533 | // step sizes |
1534 | static Double_t step[5]={0.0005, 0.0005, 0.0005, 0.0005, 0.0001}; |
1535 | |
9825400f |
1536 | clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); |
1537 | clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); |
1538 | clusterInput.Fitter()->mnparm(2,"x2",vstart[2],step[2],lower[2],upper[2],ierflag); |
1539 | clusterInput.Fitter()->mnparm(3,"y2",vstart[3],step[3],lower[3],upper[3],ierflag); |
1540 | clusterInput.Fitter()->mnparm(4,"a0",vstart[4],step[4],lower[4],upper[4],ierflag); |
a9e2aefa |
1541 | // ready for minimisation |
9825400f |
1542 | clusterInput.Fitter()->SetPrintLevel(-1); |
1543 | clusterInput.Fitter()->mnexcm("SET OUT", arglist, 0, ierflag); |
a9e2aefa |
1544 | arglist[0]= -1; |
1545 | arglist[1]= 0; |
1546 | |
9825400f |
1547 | clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag); |
1548 | clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag); |
1549 | clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag); |
a9e2aefa |
1550 | // Get fitted parameters |
1551 | Double_t xrec[2], yrec[2], qfrac; |
1552 | TString chname; |
1553 | Double_t epxz, b1, b2; |
1554 | Int_t ierflg; |
9825400f |
1555 | clusterInput.Fitter()->mnpout(0, chname, xrec[0], epxz, b1, b2, ierflg); |
1556 | clusterInput.Fitter()->mnpout(1, chname, yrec[0], epxz, b1, b2, ierflg); |
1557 | clusterInput.Fitter()->mnpout(2, chname, xrec[1], epxz, b1, b2, ierflg); |
1558 | clusterInput.Fitter()->mnpout(3, chname, yrec[1], epxz, b1, b2, ierflg); |
1559 | clusterInput.Fitter()->mnpout(4, chname, qfrac, epxz, b1, b2, ierflg); |
a9e2aefa |
1560 | |
1561 | Double_t fmin, fedm, errdef; |
1562 | Int_t npari, nparx, istat; |
1563 | |
9825400f |
1564 | clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat); |
a9e2aefa |
1565 | fFitStat=istat; |
a9e2aefa |
1566 | return kTRUE; |
1567 | } |
1568 | |
1569 | Float_t AliMUONClusterFinderVS::CombiDoubleMathiesonFit(AliMUONRawCluster *c) |
1570 | { |
1571 | // |
1572 | // Perform combined double Mathieson fit on both cathode planes |
1573 | // |
9825400f |
1574 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
1575 | clusterInput.Fitter()->SetFCN(fcnCombiS2); |
1576 | clusterInput.Fitter()->mninit(6,10,7); |
a9e2aefa |
1577 | Double_t arglist[20]; |
1578 | Int_t ierflag=0; |
1579 | arglist[0]=1; |
1580 | // Set starting values |
1581 | static Double_t vstart[6]; |
1582 | vstart[0]=fXInit[0]; |
1583 | vstart[1]=fYInit[0]; |
1584 | vstart[2]=fXInit[1]; |
1585 | vstart[3]=fYInit[1]; |
1586 | vstart[4]=fQrInit[0]; |
1587 | vstart[5]=fQrInit[1]; |
1588 | // lower and upper limits |
1589 | static Double_t lower[6], upper[6]; |
1590 | Int_t ix,iy,isec; |
1591 | Float_t dpx, dpy; |
1592 | |
1593 | Segmentation(1)->GetPadIxy(fXInit[0], fYInit[0], ix, iy); |
1594 | isec=Segmentation(1)->Sector(ix, iy); |
1595 | dpx=Segmentation(1)->Dpx(isec); |
1596 | |
1597 | Segmentation(0)->GetPadIxy(fXInit[0], fYInit[0], ix, iy); |
1598 | isec=Segmentation(0)->Sector(ix, iy); |
1599 | dpy=Segmentation(0)->Dpy(isec); |
1600 | |
1601 | lower[0]=vstart[0]-dpx; |
1602 | lower[1]=vstart[1]-dpy; |
1603 | upper[0]=vstart[0]+dpx; |
1604 | upper[1]=vstart[1]+dpy; |
1605 | |
1606 | |
1607 | Segmentation(1)->GetPadIxy(fXInit[1], fYInit[1], ix, iy); |
1608 | isec=Segmentation(1)->Sector(ix, iy); |
1609 | dpx=Segmentation(1)->Dpx(isec); |
1610 | Segmentation(0)->GetPadIxy(fXInit[1], fYInit[1], ix, iy); |
1611 | isec=Segmentation(0)->Sector(ix, iy); |
1612 | dpy=Segmentation(0)->Dpy(isec); |
1613 | |
1614 | lower[2]=vstart[2]-dpx; |
1615 | lower[3]=vstart[3]-dpy; |
1616 | upper[2]=vstart[2]+dpx; |
1617 | upper[3]=vstart[3]+dpy; |
1618 | |
1619 | |
1620 | lower[4]=0.; |
1621 | upper[4]=1.; |
1622 | lower[5]=0.; |
1623 | upper[5]=1.; |
1624 | |
1625 | // step sizes |
1626 | static Double_t step[6]={0.0005, 0.0005, 0.0005, 0.0005, 0.001, 0.001}; |
1627 | |
9825400f |
1628 | clusterInput.Fitter()->mnparm(0,"x1",vstart[0],step[0],lower[0],upper[0],ierflag); |
1629 | clusterInput.Fitter()->mnparm(1,"y1",vstart[1],step[1],lower[1],upper[1],ierflag); |
1630 | clusterInput.Fitter()->mnparm(2,"x2",vstart[2],step[2],lower[2],upper[2],ierflag); |
1631 | clusterInput.Fitter()->mnparm(3,"y2",vstart[3],step[3],lower[3],upper[3],ierflag); |
1632 | clusterInput.Fitter()->mnparm(4,"a0",vstart[4],step[4],lower[4],upper[4],ierflag); |
1633 | clusterInput.Fitter()->mnparm(5,"a1",vstart[5],step[5],lower[5],upper[5],ierflag); |
a9e2aefa |
1634 | // ready for minimisation |
9825400f |
1635 | clusterInput.Fitter()->SetPrintLevel(-1); |
1636 | clusterInput.Fitter()->mnexcm("SET OUT", arglist, 0, ierflag); |
a9e2aefa |
1637 | arglist[0]= -1; |
1638 | arglist[1]= 0; |
1639 | |
9825400f |
1640 | clusterInput.Fitter()->mnexcm("SET NOGR", arglist, 0, ierflag); |
1641 | clusterInput.Fitter()->mnexcm("MIGRAD", arglist, 0, ierflag); |
1642 | clusterInput.Fitter()->mnexcm("EXIT" , arglist, 0, ierflag); |
a9e2aefa |
1643 | // Get fitted parameters |
1644 | TString chname; |
1645 | Double_t epxz, b1, b2; |
1646 | Int_t ierflg; |
9825400f |
1647 | clusterInput.Fitter()->mnpout(0, chname, fXFit[0], epxz, b1, b2, ierflg); |
1648 | clusterInput.Fitter()->mnpout(1, chname, fYFit[0], epxz, b1, b2, ierflg); |
1649 | clusterInput.Fitter()->mnpout(2, chname, fXFit[1], epxz, b1, b2, ierflg); |
1650 | clusterInput.Fitter()->mnpout(3, chname, fYFit[1], epxz, b1, b2, ierflg); |
1651 | clusterInput.Fitter()->mnpout(4, chname, fQrFit[0], epxz, b1, b2, ierflg); |
1652 | clusterInput.Fitter()->mnpout(5, chname, fQrFit[1], epxz, b1, b2, ierflg); |
a9e2aefa |
1653 | |
1654 | Double_t fmin, fedm, errdef; |
1655 | Int_t npari, nparx, istat; |
1656 | |
9825400f |
1657 | clusterInput.Fitter()->mnstat(fmin, fedm, errdef, npari, nparx, istat); |
a9e2aefa |
1658 | fFitStat=istat; |
1659 | |
1660 | fChi2[0]=fmin; |
1661 | fChi2[1]=fmin; |
1662 | return fmin; |
1663 | } |
1664 | |
1665 | void AliMUONClusterFinderVS::Split(AliMUONRawCluster* c) |
1666 | { |
1667 | // |
1668 | // One cluster for each maximum |
1669 | // |
1670 | Int_t i, j, cath; |
9825400f |
1671 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1672 | for (j=0; j<2; j++) { |
1673 | AliMUONRawCluster cnew; |
1674 | for (cath=0; cath<2; cath++) { |
1675 | cnew.fChi2[cath]=fChi2[0]; |
1676 | |
1677 | if (fNPeaks == 0) { |
1678 | cnew.fNcluster[0]=-1; |
1679 | cnew.fNcluster[1]=fNRawClusters; |
1680 | } else { |
1681 | cnew.fNcluster[0]=fNPeaks; |
1682 | cnew.fNcluster[1]=0; |
1683 | } |
1684 | cnew.fMultiplicity[cath]=0; |
1685 | cnew.fX[cath]=Float_t(fXFit[j]); |
1686 | cnew.fY[cath]=Float_t(fYFit[j]); |
1687 | if (j==0) { |
9825400f |
1688 | cnew.fQ[cath]=Int_t(clusterInput.TotalCharge(cath)*fQrFit[cath]); |
a9e2aefa |
1689 | } else { |
9825400f |
1690 | cnew.fQ[cath]=Int_t(clusterInput.TotalCharge(cath)*(1-fQrFit[cath])); |
a9e2aefa |
1691 | } |
9825400f |
1692 | fSegmentation[cath]->SetHit(fXFit[j],fYFit[j]); |
a9e2aefa |
1693 | for (i=0; i<fMul[cath]; i++) { |
1694 | cnew.fIndexMap[cnew.fMultiplicity[cath]][cath]= |
1695 | c->fIndexMap[i][cath]; |
9825400f |
1696 | fSegmentation[cath]->SetPad(fIx[i][cath], fIy[i][cath]); |
1697 | Float_t q1=fResponse->IntXY(fSegmentation[cath]); |
a9e2aefa |
1698 | cnew.fContMap[i][cath] |
1699 | =(q1*Float_t(cnew.fQ[cath]))/Float_t(fQ[i][cath]); |
1700 | cnew.fMultiplicity[cath]++; |
1701 | // printf(" fXFIT %f fYFIT %f Multiplicite %d\n",cnew.fX[cath],cnew.fY[cath],cnew.fMultiplicity[cath]); |
1702 | } |
1703 | FillCluster(&cnew,0,cath); |
1704 | } // cathode loop |
1705 | |
1706 | cnew.fClusterType=cnew.PhysicsContribution(); |
1707 | if (cnew.fQ[0]>0 && cnew.fQ[1]>0) AddRawCluster(cnew); |
1708 | fNPeaks++; |
1709 | } |
1710 | } |
1711 | |
1712 | |
a9e2aefa |
1713 | // |
1714 | // Minimisation functions |
1715 | // Single Mathieson |
1716 | void fcnS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag) |
1717 | { |
9825400f |
1718 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1719 | Int_t i; |
1720 | Float_t delta; |
1721 | Float_t chisq=0; |
1722 | Float_t qcont=0; |
1723 | Float_t qtot=0; |
9825400f |
1724 | |
1725 | for (i=0; i<clusterInput.Nmul(0); i++) { |
1726 | Float_t q0=clusterInput.Charge(i,0); |
1727 | Float_t q1=clusterInput.DiscrChargeS1(i,par); |
a9e2aefa |
1728 | delta=(q0-q1)/q0; |
1729 | chisq+=delta*delta; |
1730 | qcont+=q1; |
1731 | qtot+=q0; |
1732 | } |
1733 | f=chisq; |
1734 | } |
1735 | |
1736 | void fcnCombiS1(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag) |
1737 | { |
9825400f |
1738 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1739 | Int_t i, cath; |
1740 | Float_t delta; |
1741 | Float_t chisq=0; |
1742 | Float_t qcont=0; |
1743 | Float_t qtot=0; |
1744 | // Float_t chi2temp=0; |
1745 | |
1746 | for (cath=0; cath<2; cath++) { |
1747 | // chisq=0; |
9825400f |
1748 | for (i=0; i<clusterInput.Nmul(cath); i++) { |
1749 | Float_t q0=clusterInput.Charge(i,cath); |
1750 | Float_t q1=clusterInput.DiscrChargeCombiS1(i,par,cath); |
a9e2aefa |
1751 | // delta=(q0-q1); |
1752 | delta=(q0-q1)/q0; |
1753 | chisq+=delta*delta; |
1754 | qcont+=q1; |
1755 | qtot+=q0; |
1756 | } |
9825400f |
1757 | // if (cath == 0) chi2temp=chisq/clusterInput.Nbins[cath]; |
a9e2aefa |
1758 | } |
9825400f |
1759 | // chisq = chisq/clusterInput.Nbins[1]+chi2temp; |
a9e2aefa |
1760 | f=chisq; |
1761 | } |
1762 | |
1763 | // Double Mathieson |
1764 | void fcnS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag) |
1765 | { |
9825400f |
1766 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1767 | Int_t i; |
1768 | Float_t delta; |
1769 | Float_t chisq=0; |
1770 | Float_t qcont=0; |
1771 | Float_t qtot=0; |
1772 | |
9825400f |
1773 | for (i=0; i<clusterInput.Nmul(0); i++) { |
a9e2aefa |
1774 | |
9825400f |
1775 | Float_t q0=clusterInput.Charge(i,0); |
1776 | Float_t q1=clusterInput.DiscrChargeS2(i,par); |
a9e2aefa |
1777 | delta=(q0-q1)/q0; |
1778 | chisq+=delta*delta; |
1779 | qcont+=q1; |
1780 | qtot+=q0; |
1781 | } |
1782 | // chisq=chisq+=(qtot-qcont)*(qtot-qcont)*0.5; |
1783 | f=chisq; |
1784 | } |
1785 | |
1786 | // Double Mathieson |
1787 | void fcnCombiS2(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag) |
1788 | { |
9825400f |
1789 | AliMUONClusterInput& clusterInput = *(AliMUONClusterInput::Instance()); |
a9e2aefa |
1790 | Int_t i, cath; |
1791 | Float_t delta; |
1792 | Float_t chisq=0; |
1793 | Float_t qcont=0; |
1794 | Float_t qtot=0; |
1795 | // Float_t chi2temp=0; |
1796 | |
1797 | for (cath=0; cath<2; cath++) { |
1798 | // chisq=0; |
9825400f |
1799 | for (i=0; i<clusterInput.Nmul(cath); i++) { |
1800 | Float_t q0=clusterInput.Charge(i,cath); |
1801 | Float_t q1=clusterInput.DiscrChargeCombiS2(i,par,cath); |
a9e2aefa |
1802 | // delta=(q0-q1); |
1803 | delta=(q0-q1)/q0; |
1804 | chisq+=delta*delta; |
1805 | qcont+=q1; |
1806 | qtot+=q0; |
1807 | } |
9825400f |
1808 | // if (cath == 0) chi2temp=chisq/clusterInput.Nbins[cath]; |
a9e2aefa |
1809 | } |
9825400f |
1810 | // chisq = chisq/clusterInput.Nbins[1]+chi2temp; |
a9e2aefa |
1811 | f=chisq; |
1812 | } |
1813 | |
1814 | void AliMUONClusterFinderVS::AddRawCluster(const AliMUONRawCluster c) |
1815 | { |
1816 | // |
1817 | // Add a raw cluster copy to the list |
1818 | // |
1819 | AliMUON *pMUON=(AliMUON*)gAlice->GetModule("MUON"); |
1820 | pMUON->AddRawCluster(fChamber,c); |
1821 | fNRawClusters++; |
1822 | fprintf(stderr,"\nfNRawClusters %d\n",fNRawClusters); |
1823 | } |
1824 | |
1825 | |
1826 | AliMUONClusterFinderVS& AliMUONClusterFinderVS |
1827 | ::operator = (const AliMUONClusterFinderVS& rhs) |
1828 | { |
1829 | // Dummy assignment operator |
1830 | return *this; |
1831 | } |
1832 | |
1833 | |
1834 | |
1835 | |
1836 | |
1837 | |
1838 | |
1839 | |
1840 | |