Filling out AliHLTMUONDigitPublisherComponent code to generate dimuon raw data on...
[u/mrichter/AliRoot.git] / MUON / AliMUONSt1GeometryBuilderV2.cxx
CommitLineData
ba030c0e 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
d1cd2474 16// $Id$
17//
3d1463c8 18//-----------------------------------------------------------------------------
d1cd2474 19// Class AliMUONSt1GeometryBuilderV2
20// ---------------------------------
21// MUON Station1 detailed geometry construction class.
5f1df83a 22// (Originally defined in AliMUONv2.cxx - now removed.)
23// Included in AliRoot 2004/01/23
3d1463c8 24// Authors: David Guez, Ivana Hrivnacova, Marion MacCormick; IPN Orsay
25//-----------------------------------------------------------------------------
d1cd2474 26
adbabf6d 27#include "AliMUONSt1GeometryBuilderV2.h"
28#include "AliMUONSt1SpecialMotif.h"
29#include "AliMUON.h"
30#include "AliMUONConstants.h"
31#include "AliMUONGeometryModule.h"
32#include "AliMUONGeometryEnvelopeStore.h"
ba030c0e 33
331a617a 34#include "AliMpSegmentation.h"
35#include "AliMpDEManager.h"
86488ea7 36#include "AliMpContainers.h"
4d8c279c 37#include "AliMpConstants.h"
331a617a 38#include "AliMpCDB.h"
39#include "AliMpSectorSegmentation.h"
adbabf6d 40#include "AliMpSector.h"
41#include "AliMpRow.h"
42#include "AliMpVRowSegment.h"
43#include "AliMpMotifMap.h"
44#include "AliMpMotifPosition.h"
4d8c279c 45#include "AliMpPlaneType.h"
adbabf6d 46
47#include "AliRun.h"
48#include "AliMagF.h"
49#include "AliLog.h"
ba030c0e 50
51#include <TVector2.h>
d1cd2474 52#include <TVector3.h>
53#include <TGeoMatrix.h>
ba030c0e 54#include <TClonesArray.h>
5f91c9e8 55#include <Riostream.h>
56#include <TSystem.h>
5d12ce38 57#include <TVirtualMC.h>
91111b9c 58#include <TGeoManager.h>
59#include <TGeoVolume.h>
60#include <TGeoTube.h>
61#include <TGeoCompositeShape.h>
ba030c0e 62
86488ea7 63#ifdef WITH_STL
adbabf6d 64 #include <vector>
65#endif
e118b27e 66
86488ea7 67#ifdef WITH_ROOT
adbabf6d 68 #include "TArrayI.h"
69#endif
ba030c0e 70
5398f946 71/// \cond CLASSIMP
72ClassImp(AliMUONSt1GeometryBuilderV2)
73/// \endcond
74
5f91c9e8 75// Thickness Constants
d1cd2474 76const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzPadPlane=0.0148/2.; //Pad plane
1c4b9c4c 77const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzFoam = 2.503/2.; //Foam of mechanicalplane
78const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzFR4 = 0.062/2.; //FR4 of mechanical plane
d1cd2474 79const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzSnPb = 0.0091/2.; //Pad/Kapton connection (66 pt)
80const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzKapton = 0.0122/2.; //Kapton
81const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzBergPlastic = 0.3062/2.;//Berg connector
82const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzBergCopper = 0.1882/2.; //Berg connector
83const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzDaughter = 0.0156/2.; //Daughter board
b367fd8f 84const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzGas = 0.42/2.; //Gas thickness
5f91c9e8 85
86// Quadrant Mother volume - TUBS1 - Middle layer of model
d1cd2474 87const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherIR1 = 18.3;
88const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherOR1 = 105.673;
89const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherThick1 = 6.5/2;
90const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiL1 = 0.;
91const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiU1 = 90.;
5f91c9e8 92
93// Quadrant Mother volume - TUBS2 - near and far layers of model
d1cd2474 94const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherIR2 = 20.7;
95const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherOR2 = 100.073;
96const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherThick2 = 3.0/2;
97const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiL2 = 0.;
98const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiU2 = 90.;
5f91c9e8 99
100// Sensitive copper pads, foam layer, PCB and electronics model parameters
d1cd2474 101const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxHole=1.5/2.;
102const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyHole=6./2.;
103const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxBergPlastic=0.74/2.;
104const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyBergPlastic=5.09/2.;
105const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxBergCopper=0.25/2.;
106const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyBergCopper=3.6/2.;
107const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxKapton=0.8/2.;
108const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyKapton=5.7/2.;
109const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxDaughter=2.3/2.;
110const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyDaughter=6.3/2.;
111const GReal_t AliMUONSt1GeometryBuilderV2::fgkOffsetX=1.46;
112const GReal_t AliMUONSt1GeometryBuilderV2::fgkOffsetY=0.71;
5ae5869b 113const GReal_t AliMUONSt1GeometryBuilderV2::fgkDeltaFilleEtamX=1.00;
d1cd2474 114const GReal_t AliMUONSt1GeometryBuilderV2::fgkDeltaFilleEtamY=0.051;
115
116const GReal_t AliMUONSt1GeometryBuilderV2::fgkDeltaQuadLHC=2.6; // LHC Origin wrt Quadrant Origin
b367fd8f 117const GReal_t AliMUONSt1GeometryBuilderV2::fgkFrameOffset=5.2;
118 // Fix (1) of overlap SQN* layers with SQM* ones (was 5.0)
119
120// Pad planes offsets
121const GReal_t AliMUONSt1GeometryBuilderV2::fgkPadXOffsetBP = 0.50 - 0.63/2; // = 0.185
122const GReal_t AliMUONSt1GeometryBuilderV2::fgkPadYOffsetBP = -0.31 - 0.42/2; // =-0.52
d1cd2474 123
62c708bf 124const char* AliMUONSt1GeometryBuilderV2::fgkHoleName="SCHL";
125const char* AliMUONSt1GeometryBuilderV2::fgkDaughterName="SCDB";
b367fd8f 126const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantEnvelopeName="SE";
d1cd2474 127const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantMLayerName="SQM";
128const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantNLayerName="SQN";
129const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantFLayerName="SQF";
5ae5869b 130const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantMFLayerName="SQMF";
62c708bf 131const Int_t AliMUONSt1GeometryBuilderV2::fgkFoamBoxNameOffset=200;
132const Int_t AliMUONSt1GeometryBuilderV2::fgkFR4BoxNameOffset=400;
e8c253a0 133const Int_t AliMUONSt1GeometryBuilderV2::fgkDaughterCopyNoOffset=1000;
5f91c9e8 134
135//______________________________________________________________________________
d1cd2474 136AliMUONSt1GeometryBuilderV2::AliMUONSt1GeometryBuilderV2(AliMUON* muon)
8cf07955 137 : AliMUONVGeometryBuilder(0, 2),
d1cd2474 138 fMUON(muon)
ba030c0e 139{
5398f946 140/// Standard constructor
ba030c0e 141}
142
5f91c9e8 143//______________________________________________________________________________
d1cd2474 144AliMUONSt1GeometryBuilderV2::AliMUONSt1GeometryBuilderV2()
145 : AliMUONVGeometryBuilder(),
146 fMUON(0)
ba030c0e 147{
5398f946 148/// Default Constructor
ba030c0e 149}
ba030c0e 150
5f91c9e8 151//______________________________________________________________________________
d1cd2474 152AliMUONSt1GeometryBuilderV2::~AliMUONSt1GeometryBuilderV2()
ba030c0e 153{
5398f946 154/// Destructor
ba030c0e 155}
156
d1cd2474 157
5f91c9e8 158//
159// Private methods
160//
161
162//______________________________________________________________________________
b367fd8f 163TString
164AliMUONSt1GeometryBuilderV2::QuadrantEnvelopeName(Int_t chamber, Int_t quadrant) const
165{
5398f946 166/// Generate unique envelope name from chamber Id and quadrant number
b367fd8f 167
168 return Form("%s%d", Form("%s%d",fgkQuadrantEnvelopeName,chamber), quadrant);
169}
170
171//______________________________________________________________________________
d1cd2474 172void AliMUONSt1GeometryBuilderV2::CreateHole()
ba030c0e 173{
5398f946 174/// Create all the elements found inside a foam hole
175
d1cd2474 176 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
177 Int_t idAir = idtmed[1100]; // medium 1
178 //Int_t idCopper = idtmed[1109]; // medium 10 = copper
179 Int_t idCopper = idtmed[1121]; // medium 22 = copper
ba030c0e 180
5f91c9e8 181 GReal_t par[3];
182 GReal_t posX,posY,posZ;
183
184 par[0] = fgkHxHole;
185 par[1] = fgkHyHole;
186 par[2] = fgkHzFoam;
187 gMC->Gsvolu(fgkHoleName,"BOX",idAir,par,3);
188
189 par[0] = fgkHxKapton;
190 par[1] = fgkHyKapton;
191 par[2] = fgkHzSnPb;
192 gMC->Gsvolu("SNPB", "BOX", idCopper, par, 3);
193 posX = 0.;
194 posY = 0.;
195 posZ = -fgkHzFoam+fgkHzSnPb;
196 gMC->Gspos("SNPB",1,fgkHoleName, posX, posY, posZ, 0,"ONLY");
ba030c0e 197
5f91c9e8 198 par[0] = fgkHxHole;
199 par[1] = fgkHyBergPlastic;
200 par[2] = fgkHzKapton;
62c708bf 201 gMC->Gsvolu("SKPT", "BOX", idCopper, par, 3);
5f91c9e8 202 posX = 0.;
203 posY = 0.;
204 posZ = 0.;
62c708bf 205 gMC->Gspos("SKPT",1,fgkHoleName, posX, posY, posZ, 0,"ONLY");
5f91c9e8 206}
ba030c0e 207
5f91c9e8 208//______________________________________________________________________________
d1cd2474 209void AliMUONSt1GeometryBuilderV2::CreateDaughterBoard()
5f91c9e8 210{
5398f946 211/// Create all the elements in a daughter board
212
d1cd2474 213 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
5f91c9e8 214 Int_t idAir = idtmed[1100]; // medium 1
d1cd2474 215 //Int_t idCopper = idtmed[1109]; // medium 10 = copper
216 //Int_t idPlastic =idtmed[1116]; // medium 17 = Plastic
217 Int_t idCopper = idtmed[1121]; // medium 22 = copper
218 Int_t idPlastic =idtmed[1127]; // medium 28 = Plastic
ba030c0e 219
5f91c9e8 220 GReal_t par[3];
221 GReal_t posX,posY,posZ;
ba030c0e 222
5f91c9e8 223 par[0]=fgkHxDaughter;
224 par[1]=fgkHyDaughter;
225 par[2]=TotalHzDaughter();
226 gMC->Gsvolu(fgkDaughterName,"BOX",idAir,par,3);
ba030c0e 227
5f91c9e8 228 par[0]=fgkHxBergPlastic;
229 par[1]=fgkHyBergPlastic;
230 par[2]=fgkHzBergPlastic;
62c708bf 231 gMC->Gsvolu("SBGP","BOX",idPlastic,par,3);
5f91c9e8 232 posX=0.;
233 posY=0.;
234 posZ = -TotalHzDaughter() + fgkHzBergPlastic;
62c708bf 235 gMC->Gspos("SBGP",1,fgkDaughterName,posX,posY,posZ,0,"ONLY");
5f91c9e8 236
237 par[0]=fgkHxBergCopper;
238 par[1]=fgkHyBergCopper;
239 par[2]=fgkHzBergCopper;
62c708bf 240 gMC->Gsvolu("SBGC","BOX",idCopper,par,3);
5f91c9e8 241 posX=0.;
242 posY=0.;
243 posZ=0.;
62c708bf 244 gMC->Gspos("SBGC",1,"SBGP",posX,posY,posZ,0,"ONLY");
5f91c9e8 245
246 par[0]=fgkHxDaughter;
247 par[1]=fgkHyDaughter;
248 par[2]=fgkHzDaughter;
62c708bf 249 gMC->Gsvolu("SDGH","BOX",idCopper,par,3);
5f91c9e8 250 posX=0.;
251 posY=0.;
252 posZ = -TotalHzDaughter() + 2.*fgkHzBergPlastic + fgkHzDaughter;
62c708bf 253 gMC->Gspos("SDGH",1,fgkDaughterName,posX,posY,posZ,0,"ONLY");
5f91c9e8 254}
255
256//______________________________________________________________________________
d1cd2474 257void AliMUONSt1GeometryBuilderV2::CreateInnerLayers()
5f91c9e8 258{
5398f946 259/// Create the layer of sensitive volumes with gas
260/// and the copper layer.
5f91c9e8 261
262// Gas Medium
d1cd2474 263 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
79be0537 264 Int_t idArCO2 = idtmed[1108]; // medium 9 (ArCO2 80%)
d1cd2474 265 //Int_t idCopper = idtmed[1109]; // medium 10 = copper
79be0537 266 //Int_t idArCO2 = idtmed[1124]; // medium 25 (ArCO2 80%)
d1cd2474 267 Int_t idCopper = idtmed[1121]; // medium 22 = copper
5f91c9e8 268
269 Float_t par[11];
270
271//Make gas volume - composed of 11 trapezoids
272// section 1 of 11
273 par[0] = fgkHzGas;
274 par[1] = 0.;
275 par[2] = 0.;
276 par[3] = 71.33/2.;
277 par[4] = 9.76/2.;
278 par[5] = 48.77/2.;
279 par[6] = 15.3;
280 par[7] = 71.33/2.;
281 par[8] = 9.76/2.;
282 par[9] = 48.77/2.;
283 par[10] = 15.3;
284
285 gMC->Gsvolu("SA1G", "TRAP", idArCO2, par, 11);
286 gMC->Gsvolu("SA2G", "TRAP", idArCO2, par, 11);
ba030c0e 287
5f91c9e8 288 par[0] = fgkHzPadPlane;
289 gMC->Gsvolu("SA1C", "TRAP", idCopper,par, 11);
290
291// section 2 of 11
292 par[0] = fgkHzGas;
293 par[1] = 0.;
294 par[2] = 0.;
295 par[3] = 79.68/2.;
296 par[4] = 10.4/2.;
297 par[5] = 57.0/2.;
298 par[6] = 0.;
299 par[7] = 79.68/2.;
300 par[8] = 10.4/2.;
301 par[9] = 57.0/2.;
302 par[10] = 0.;
303 gMC->Gsvolu("SB1G", "TRAP", idArCO2, par, 11);
304 gMC->Gsvolu("SB2G", "TRAP", idArCO2, par, 11);
305
306 par[0] = fgkHzPadPlane;
307 gMC->Gsvolu("SB1C", "TRAP", idCopper,par, 11);
308
309// section 3 of 11
310 par[0] = fgkHzGas;
311 par[1] = 0.;
312 par[2] = 0.;
313 par[3] = 71.33/2.;
314 par[4] = 48.77/2.;
315 par[5] = 9.73/2.;
316 par[6] = -15.3;
317 par[7] = 71.33/2.;
318 par[8] = 48.77/2.;
319 par[9] = 9.73/2.;
320 par[10] = -15.3;
321
322 gMC->Gsvolu("SC1G", "TRAP", idArCO2, par, 11);
323 gMC->Gsvolu("SC2G", "TRAP", idArCO2, par, 11);
324
325 par[0] = fgkHzPadPlane;
326 gMC->Gsvolu("SC1C", "TRAP", idCopper,par, 11);
327
328// section 4 of 11
329 par[0] = fgkHzGas;
330 par[1] = 0.;
331 par[2] = 0.;
332 par[3] = 6.00/2.;
333 par[4] = 0.;
334 par[5] = 1.56/2.;
335 par[6] = 7.41;
336 par[7] = 6.00/2.;
337 par[8] = 0.;
338 par[9] = 1.56/2.;
339 par[10] = 7.41;
340 gMC->Gsvolu("SD1G", "TRAP", idArCO2, par, 11);
341 gMC->Gsvolu("SD2G", "TRAP", idArCO2, par, 11);
342
343 par[0] = fgkHzPadPlane;
344 gMC->Gsvolu("SD1C", "TRAP", idCopper,par, 11);
345
346// section 5 of 11
347 par[0] = fgkHzGas;
348 par[1] = 0.;
349 par[2] = 0.;
350 par[3] = 1.516/2.;
351 par[4] = 0.;
352 par[5] = 0.829/2.;
353 par[6] = 15.3;
354 par[7] = 1.516/2.;
355 par[8] = 0.;
356 par[9] = 0.829/2.;
357 par[10] = 15.3;
358 gMC->Gsvolu("SE1G", "TRAP", idArCO2, par, 11);
359 gMC->Gsvolu("SE2G", "TRAP", idArCO2, par, 11);
360
361 par[0] = fgkHzPadPlane;
362 gMC->Gsvolu("SE1C", "TRAP", idCopper,par, 11);
363
364// section 6 of 11
365 par[0] = fgkHzGas;
366 par[1] = 0.;
367 par[2] = 0.;
368 par[3] = 3.92/2.;
369 par[4] = 0.;
370 par[5] = 0.562/2.;
371 par[6] = -4.1;
372 par[7] = 3.92/2.;
373 par[8] = 0.;
374 par[9] = 0.562/2.;
375 par[10] = -4.1;
376 gMC->Gsvolu("SF1G", "TRAP", idArCO2, par, 11);
377 gMC->Gsvolu("SF2G", "TRAP", idArCO2, par, 11);
378
379 par[0] = fgkHzPadPlane;
380 gMC->Gsvolu("SF1C", "TRAP", idCopper,par, 11);
381
382// section 7 of 11
383 par[0] = fgkHzGas;
384 par[1] = 0.;
385 par[2] = 0.;
386 par[3] = 0.941/2.;
387 par[4] = 0.562/2.;
388 par[5] = 0.;
389 par[6] = -16.6;
390 par[7] = 0.941/2.;
391 par[8] = 0.562/2.;
392 par[9] = 0.;
393 par[10] =-16.6;
394 gMC->Gsvolu("SG1G", "TRAP", idArCO2, par, 11);
395 gMC->Gsvolu("SG2G", "TRAP", idArCO2, par, 11);
396
397 par[0] = fgkHzPadPlane;
398 gMC->Gsvolu("SG1C", "TRAP", idCopper,par, 11);
399
400// section 8 of 11
401 par[0] = fgkHzGas;
402 par[1] = 0.;
403 par[2] = 0.;
404 par[3] = 3.94/2.;
405 par[4] = 0.57/2.;
406 par[5] = 0.;
407 par[6] = 4.14;
408 par[7] = 3.94/2.;
409 par[8] = 0.57/2.;
410 par[9] = 0.;
411 par[10] = 4.14;
412 gMC->Gsvolu("SH1G", "TRAP", idArCO2, par, 11);
413 gMC->Gsvolu("SH2G", "TRAP", idArCO2, par, 11);
414
415 par[0] = fgkHzPadPlane;
416 gMC->Gsvolu("SH1C", "TRAP", idCopper,par, 11);
417
418// section 9 of 11
419 par[0] = fgkHzGas;
420 par[1] = 0.;
421 par[2] = 0.;
422 par[3] = 0.95/2.;
423 par[4] = 0.;
424 par[5] = 0.57/2;
425 par[6] = 16.7;
426 par[7] = 0.95/2.;
427 par[8] = 0.;
428 par[9] = 0.57/2;
429 par[10] = 16.7;
430 gMC->Gsvolu("SI1G", "TRAP", idArCO2, par, 11);
431 gMC->Gsvolu("SI2G", "TRAP", idArCO2, par, 11);
432
433 par[0] = fgkHzPadPlane;
434 gMC->Gsvolu("SI1C", "TRAP", idCopper,par, 11);
435
436// section 10 of 11
437 par[0] = fgkHzGas;
438 par[1] = 0.;
439 par[2] = 0.;
440 par[3] = 1.49/2.;
441 par[4] = 0.;
442 par[5] = 0.817/2.;
443 par[6] = -15.4;
444 par[7] = 1.49/2.;
445 par[8] = 0.;
446 par[9] = 0.817/2.;
447 par[10] = -15.4;
448 gMC->Gsvolu("SJ1G", "TRAP", idArCO2, par, 11);
449 gMC->Gsvolu("SJ2G", "TRAP", idArCO2, par, 11);
450
451 par[0] = fgkHzPadPlane;
452 gMC->Gsvolu("SJ1C", "TRAP", idCopper,par, 11);
453
454// section 11 of 11
455 par[0] = fgkHzGas;
456 par[1] = 0.;
457 par[2] = 0.;
458 par[3] = 5.93/2.;
459 par[4] = 0.;
460 par[5] = 1.49/2.;
461 par[6] = -7.16;
462 par[7] = 5.93/2.;
463 par[8] = 0.;
464 par[9] = 1.49/2.;
465 par[10] = -7.16;
466 gMC->Gsvolu("SK1G", "TRAP", idArCO2, par, 11);
467 gMC->Gsvolu("SK2G", "TRAP", idArCO2, par, 11);
468
469 par[0] = fgkHzPadPlane;
470 gMC->Gsvolu("SK1C", "TRAP", idCopper,par, 11);
ba030c0e 471}
5f91c9e8 472
473//______________________________________________________________________________
fdbaed6e 474void AliMUONSt1GeometryBuilderV2::CreateSpacer0()
475{
476/// The spacer volumes are defined according to the input prepared by Nicole Willis
477/// without any modifications
478/// <pre>
479/// No. Type Material Center (mm) Dimensions (mm) (half lengths)
480/// 5 BOX EPOXY 408.2 430.4 522.41 5.75 1.5 25.5
481/// 5P BOX EPOXY 408.2 445.4 522.41 5.75 1.5 25.5
482/// 6 BOX EPOXY 408.2 437.9 519.76 5.75 15.0 1.0
483/// 6P BOX EPOXY 408.2 437.9 525.06 5.75 15.0 1.0
484/// 7 CYL INOX 408.2 437.9 522.41 r=3.0 hz=20.63
ab6c4493 485/// </pre>
fdbaed6e 486
487 // tracking medias
488 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
489 Int_t idFrameEpoxy = idtmed[1123]; // medium 24 = Frame Epoxy ME730 // was 20 not 16
490 Int_t idInox = idtmed[1128]; // medium 29 Stainless Steel (18%Cr,9%Ni,Fe) // was 21 not 17
491
492 GReal_t par[3];
493 par[0] = 0.575;
494 par[1] = 0.150;
495 par[2] = 2.550;
496 gMC->Gsvolu("Spacer05","BOX",idFrameEpoxy,par,3);
497
498 par[0] = 0.575;
499 par[1] = 1.500;
500 par[2] = 0.100;
501 gMC->Gsvolu("Spacer06","BOX",idFrameEpoxy,par,3);
502
503 par[0] = 0.000;
504 par[1] = 0.300;
505 par[2] = 2.063;
506 gMC->Gsvolu("Spacer07","TUBE",idInox,par,3);
507}
508
509
510//______________________________________________________________________________
511void AliMUONSt1GeometryBuilderV2::CreateSpacer()
512{
513/// The spacer volumes are defined according to the input prepared by Nicole Willis
514/// with modifications needed to fit into existing geometry.
515/// <pre>
516/// No. Type Material Center (mm) Dimensions (mm) (half lengths)
517/// 5 BOX EPOXY 408.2 430.4 522.41 5.75 1.5 25.5
518/// 5P BOX EPOXY 408.2 445.4 522.41 5.75 1.5 25.5
519/// 6 BOX EPOXY 408.2 437.9 519.76 5.75 15.0 1.0
520/// 6P BOX EPOXY 408.2 437.9 525.06 5.75 15.0 1.0
521/// 7 CYL INOX 408.2 437.9 522.41 r=3.0 hz=20.63
522/// </pre>
523/// To fit in existing volumes the volumes 5 and 7 are represented by 2 volumes
524/// with half size in z (5A, &A); the dimensions of the volume 5A were also modified
525/// to avoid overlaps (x made smaller, y larger to abotain the identical volume)
526
527 // tracking medias
528 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
529 Int_t idFrameEpoxy = idtmed[1123]; // medium 24 = Frame Epoxy ME730 // was 20 not 16
530 Int_t idInox = idtmed[1128]; // medium 29 Stainless Steel (18%Cr,9%Ni,Fe) // was 21 not 17
531
532 //GReal_t par[3];
533 //par[0] = 0.575;
534 //par[1] = 0.150;
535 //par[2] = 2.550;
536 //gMC->Gsvolu("Spacer5","BOX",idFrameEpoxy,par,3);
537
538 GReal_t par[3];
539 par[0] = 0.510;
540 par[1] = 0.170;
5ae5869b 541 par[2] = 1.1515;
fdbaed6e 542 gMC->Gsvolu("Spacer5A","BOX",idFrameEpoxy,par,3);
543
5ae5869b 544 par[0] = 0.516;
fdbaed6e 545 par[1] = 1.500;
546 par[2] = 0.100;
547 gMC->Gsvolu("Spacer6","BOX",idFrameEpoxy,par,3);
548
549 //par[0] = 0.000;
550 //par[1] = 0.300;
551 //par[2] = 2.063;
552 //gMC->Gsvolu("Spacer7","TUBE",idInox,par,3);
553
554 par[0] = 0.000;
555 par[1] = 0.300;
556 par[2] = 1.0315;
557 gMC->Gsvolu("Spacer7A","TUBE",idInox,par,3);
558}
559
560//______________________________________________________________________________
d1cd2474 561void AliMUONSt1GeometryBuilderV2::CreateQuadrant(Int_t chamber)
ba030c0e 562{
5398f946 563/// Create the quadrant (bending and non-bending planes)
564/// for the given chamber
5f91c9e8 565
5ae5869b 566 // CreateQuadrantLayersAsVolumes(chamber);
567 CreateQuadrantLayersAsAssemblies(chamber);
ba030c0e 568
5ae5869b 569 CreateFrame(chamber);
d1cd2474 570
5ae5869b 571 TExMap specialMap;
572 specialMap.Add(76, (Long_t) new AliMUONSt1SpecialMotif(TVector2( 0.1, 0.72), 90.));
ddfa5dbc 573 specialMap.Add(75, (Long_t) new AliMUONSt1SpecialMotif(TVector2( 0.7, 0.36)));
e8c253a0 574 specialMap.Add(47, (Long_t) new AliMUONSt1SpecialMotif(TVector2(1.01, 0.36)));
d1cd2474 575
331a617a 576 // Load mapping from OCDB
577 if ( ! AliMpSegmentation::Instance() ) {
578 AliFatal("Mapping has to be loaded first !");
579 }
580
581 const AliMpSectorSegmentation* kSegmentation1
582 = dynamic_cast<const AliMpSectorSegmentation*>(
583 AliMpSegmentation::Instance()
584 ->GetMpSegmentation(100, AliMpDEManager::GetCathod(100, AliMp::kBendingPlane)));
585 if ( ! kSegmentation1 ) {
586 AliFatal("Could not access sector segmentation !");
587 }
5ae5869b 588
331a617a 589 const AliMpSector* kSector1 = kSegmentation1->GetSector();
5ae5869b 590
b367fd8f 591 //Bool_t reflectZ = true;
592 Bool_t reflectZ = false;
593 //TVector3 where = TVector3(2.5+0.1+0.56+0.001, 2.5+0.1+0.001, 0.);
594 TVector3 where = TVector3(fgkDeltaQuadLHC + fgkPadXOffsetBP,
595 fgkDeltaQuadLHC + fgkPadYOffsetBP, 0.);
331a617a 596 PlaceSector(kSector1, specialMap, where, reflectZ, chamber);
ba030c0e 597
866c3232 598 Int_t nb = AliMpConstants::ManuMask(AliMp::kNonBendingPlane);
cd872630 599 TExMapIter it(&specialMap);
600 Long_t key;
601 Long_t value;
602 while ( it.Next(key,value) == kTRUE ) {
603 delete reinterpret_cast<AliMUONSt1SpecialMotif*>(value);
604 }
d1cd2474 605 specialMap.Delete();
5ae5869b 606 specialMap.Add(76 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(1.01,0.51),90.));
ddfa5dbc 607 specialMap.Add(75 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(2.20,-0.04)));
5ae5869b 608 specialMap.Add(47 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(2.18,-1.11)));
4d8c279c 609 specialMap.Add(20 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(0.2 ,-0.08)));
5ae5869b 610 specialMap.Add(46 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(0.6 , 0.17)));
ddfa5dbc 611 specialMap.Add(74 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(0.405, -0.10)));
b367fd8f 612 // Fix (7) - overlap of SQ42 with MCHL (after moving the whole sector
613 // in the true position)
614 // Was: specialMap.Add(47,(Long_t) new AliMUONSt1SpecialMotif(TVector2(1.61,-1.18)));
5ae5869b 615
331a617a 616 const AliMpSectorSegmentation* kSegmentation2
617 = dynamic_cast<const AliMpSectorSegmentation*>(
618 AliMpSegmentation::Instance()
619 ->GetMpSegmentation(100, AliMpDEManager::GetCathod(100, AliMp::kNonBendingPlane)));
620 if ( ! kSegmentation2 ) {
621 AliFatal("Could not access sector segmentation !");
622 }
623
624 const AliMpSector* kSector2 = kSegmentation2->GetSector();
625
b367fd8f 626 //reflectZ = false;
627 reflectZ = true;
331a617a 628 TVector2 offset = kSector2->Position();
e77b6d6b 629 where = TVector3(where.X()+offset.X(), where.Y()+offset.Y(), 0.);
b367fd8f 630 // Add the half-pad shift of the non-bending plane wrt bending plane
631 // (The shift is defined in the mapping as sector offset)
632 // Fix (4) - was TVector3(where.X()+0.63/2, ... - now it is -0.63/2
331a617a 633 PlaceSector(kSector2, specialMap, where, reflectZ, chamber);
d1cd2474 634
cd872630 635 it.Reset();
636 while ( it.Next(key,value) == kTRUE ) {
637 delete reinterpret_cast<AliMUONSt1SpecialMotif*>(value);
638 }
d1cd2474 639 specialMap.Delete();
ba030c0e 640}
641
5f91c9e8 642//______________________________________________________________________________
62c708bf 643void AliMUONSt1GeometryBuilderV2::CreateFoamBox(
644 Int_t segNumber,
645 const TVector2& dimensions)
ba030c0e 646{
5398f946 647/// Create all the elements in the copper plane
ba030c0e 648
d1cd2474 649 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
5f91c9e8 650 Int_t idAir = idtmed[1100]; // medium 1
d1cd2474 651 //Int_t idFoam = idtmed[1115]; // medium 16 = Foam
652 //Int_t idFR4 = idtmed[1114]; // medium 15 = FR4
653 Int_t idFoam = idtmed[1125]; // medium 26 = Foam
654 Int_t idFR4 = idtmed[1122]; // medium 23 = FR4
ba030c0e 655
5f91c9e8 656 // mother volume
657 GReal_t par[3];
658 par[0] = dimensions.X();
659 par[1] = dimensions.Y();
660 par[2] = TotalHzPlane();
62c708bf 661 gMC->Gsvolu(PlaneSegmentName(segNumber).Data(),"BOX",idAir,par,3);
5f91c9e8 662
663 // foam layer
5f91c9e8 664 par[0] = dimensions.X();
665 par[1] = dimensions.Y();
666 par[2] = fgkHzFoam;
62c708bf 667 gMC->Gsvolu(FoamBoxName(segNumber).Data(),"BOX",idFoam,par,3);
668 GReal_t posX,posY,posZ;
5f91c9e8 669 posX=0.;
670 posY=0.;
671 posZ = -TotalHzPlane() + fgkHzFoam;
62c708bf 672 gMC->Gspos(FoamBoxName(segNumber).Data(),1,
673 PlaneSegmentName(segNumber).Data(),posX,posY,posZ,0,"ONLY");
ba030c0e 674
5f91c9e8 675 // mechanical plane FR4 layer
5f91c9e8 676 par[0] = dimensions.X();
677 par[1] = dimensions.Y();
678 par[2] = fgkHzFR4;
62c708bf 679 gMC->Gsvolu(FR4BoxName(segNumber).Data(),"BOX",idFR4,par,3);
5f91c9e8 680 posX=0.;
681 posY=0.;
682 posZ = -TotalHzPlane()+ 2.*fgkHzFoam + fgkHzFR4;
62c708bf 683 gMC->Gspos(FR4BoxName(segNumber).Data(),1,
684 PlaneSegmentName(segNumber).Data(),posX,posY,posZ,0,"ONLY");
5f91c9e8 685}
ba030c0e 686
5f91c9e8 687//______________________________________________________________________________
62c708bf 688void AliMUONSt1GeometryBuilderV2::CreatePlaneSegment(Int_t segNumber,
689 const TVector2& dimensions,
690 Int_t nofHoles)
5f91c9e8 691{
5398f946 692/// Create a segment of a plane (this includes a foam layer,
693/// holes in the foam to feed the kaptons through, kapton connectors
694/// and the mother board.)
ba030c0e 695
62c708bf 696 CreateFoamBox(segNumber,dimensions);
fdbaed6e 697
698 // Place spacer in the concrete plane segments:
699 // S225 (in S025), S267 (in S067) in chamber1 and S309 (in S109). S351(in S151)
700 // in chamber2
701 // The segments were found as those which caused overlaps when we placed
702 // the spacer in global coordinates via PlaceSpacer0
703 //
704 // <posXYZ X_Y_Z=" 12.6000; 0.75000; 0.0000"> <volume name="Spacer5A"/>
705 // <posXYZ X_Y_Z=" 12.6000; -0.75000; 0.0000"> <volume name="Spacer5A"/>
706 // <posXYZ X_Y_Z=" 12.6000; 0.0000; 1.1515"> <volume name="Spacer6"/>
707 // <posXYZ X_Y_Z=" 12.6000; 0.0000; 0.0000"> <volume name="Spacer7A"/>
708
709 if ( FoamBoxName(segNumber) == "S225" ||
710 FoamBoxName(segNumber) == "S267" ||
711 FoamBoxName(segNumber) == "S309" ||
712 FoamBoxName(segNumber) == "S351" )
713 {
5ae5869b 714 GReal_t posX = 12.6;
715 GReal_t posY = 0.75;
716 GReal_t posZ = -0.1;
717 if ( FoamBoxName(segNumber) == "S267" ||
718 FoamBoxName(segNumber) == "S351" ) posY += fgkPadYOffsetBP;
fdbaed6e 719 gMC->Gspos("Spacer5A", 1, FoamBoxName(segNumber).Data(), posX, posY, posZ,0, "ONLY");
720
721 posY = -0.75;
5ae5869b 722 if ( FoamBoxName(segNumber) == "S267" ||
723 FoamBoxName(segNumber) == "S351" ) posY += fgkPadYOffsetBP;
fdbaed6e 724 gMC->Gspos("Spacer5A", 2, FoamBoxName(segNumber).Data(), posX, posY, posZ,0, "ONLY");
725
726 posY = 0.0;
727 posZ = 1.1515;
728 if ( FoamBoxName(segNumber) == "S267" ||
5ae5869b 729 FoamBoxName(segNumber) == "S351" ) posY += fgkPadYOffsetBP;
fdbaed6e 730 gMC->Gspos("Spacer6", 1, FoamBoxName(segNumber).Data(), posX, posY, posZ,0, "ONLY");
731
732 posY = 0.0;
733 posZ = 0.0;
5ae5869b 734 if ( FoamBoxName(segNumber) == "S267" ||
735 FoamBoxName(segNumber) == "S351" ) posY += fgkPadYOffsetBP;
fdbaed6e 736 gMC->Gspos("Spacer7A", 1, FoamBoxName(segNumber).Data(), posX, posY, posZ,0, "ONLY");
737 }
ba030c0e 738
5f91c9e8 739 for (Int_t holeNum=0;holeNum<nofHoles;holeNum++) {
740 GReal_t posX = ((2.*holeNum+1.)/nofHoles-1.)*dimensions.X();
741 GReal_t posY = 0.;
742 GReal_t posZ = 0.;
5ae5869b 743
62c708bf 744 gMC->Gspos(fgkHoleName,holeNum+1,
745 FoamBoxName(segNumber).Data(),posX,posY,posZ,0,"ONLY");
5f91c9e8 746 }
ba030c0e 747}
748
5f91c9e8 749//______________________________________________________________________________
5ae5869b 750void AliMUONSt1GeometryBuilderV2::CreateQuadrantLayersAsVolumes(Int_t chamber)
751{
752/// Create the three main layers as real volumes.
753/// Not used anymore.
754
755 // tracking medias
756 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
757 Int_t idAir = idtmed[1100]; // medium 1
758
759 Float_t par[11];
760 Float_t posX,posY,posZ;
761
762// Quadrant volume TUBS1, positioned at the end
763 par[0] = fgkMotherIR1;
764 par[1] = fgkMotherOR1;
765 par[2] = fgkMotherThick1;
766 par[3] = fgkMotherPhiL1;
767 par[4] = fgkMotherPhiU1;
768 gMC->Gsvolu(QuadrantMLayerName(chamber),"TUBS",idAir,par,5);
769 // gMC->Gsvolu(QuadrantMFLayerName(chamber),"TUBS",idAir,par,5);
770
771// Replace the volume shape with a composite shape
772// with substracted overlap with beam shield (YMOT)
773
774 if ( gMC->IsRootGeometrySupported() ) {
775
776 // Get shape
777 TGeoVolume* mlayer
778 = gGeoManager->FindVolumeFast(QuadrantMLayerName(chamber));
779 if ( !mlayer ) {
780 AliErrorStream()
781 << "Quadrant volume " << QuadrantMLayerName(chamber) << " not found"
782 << endl;
783 }
784 else {
785 TGeoShape* quadrant = mlayer->GetShape();
786 quadrant->SetName("quadrant");
787
788 // Beam shield recess
789 par[0] = 0;
790 par[1] = 15.4;
791 par[2] = fgkMotherThick1;
792 new TGeoTube("shield_tube", par[0], par[1], par[2]);
793
794 // Displacement
795 posX = 2.6;
796 posY = 2.6;
797 posZ = 0;
798 TGeoTranslation* displacement
799 = new TGeoTranslation("TR", posX, posY, posZ);
800 displacement->RegisterYourself();
801
802 // Composite shape
803 TGeoShape* composite
804 = new TGeoCompositeShape("composite", "quadrant-shield_tube:TR");
805
806 // Reset shape to volume
807 mlayer->SetShape(composite);
808 }
809
810 TGeoVolume* malayer
811 = gGeoManager->FindVolumeFast(QuadrantMFLayerName(chamber));
812 if ( !malayer ) {
813 AliErrorStream()
814 << "Quadrant volume " << QuadrantMFLayerName(chamber) << " not found"
815 << endl;
816 }
817 else {
818 TGeoShape* quadrant = malayer->GetShape();
819 quadrant->SetName("quadrant");
820
821 // Beam shield recess
822 par[0] = 0;
823 par[1] = 15.4;
824 par[2] = fgkMotherThick1;
825 new TGeoTube("shield_tube", par[0], par[1], par[2]);
826
827 // Displacement
828 posX = 2.6;
829 posY = 2.6;
830 posZ = 0;
831 TGeoTranslation* displacement
832 = new TGeoTranslation("TR", posX, posY, posZ);
833 displacement->RegisterYourself();
834
835 // Composite shape
836 TGeoShape* composite
837 = new TGeoCompositeShape("composite", "quadrant-shield_tube:TR");
838
839 // Reset shape to volume
840 malayer->SetShape(composite);
841 }
842 }
843
844// Quadrant volume TUBS2, positioned at the end
845 par[0] = fgkMotherIR2;
846 par[1] = fgkMotherOR2;
847 par[2] = fgkMotherThick2;
848 par[3] = fgkMotherPhiL2;
849 par[4] = fgkMotherPhiU2;
850
851 gMC->Gsvolu(QuadrantNLayerName(chamber),"TUBS",idAir,par,5);
852 gMC->Gsvolu(QuadrantFLayerName(chamber),"TUBS",idAir,par,5);
853}
854
855//______________________________________________________________________________
856void AliMUONSt1GeometryBuilderV2::CreateQuadrantLayersAsAssemblies(Int_t chamber)
857{
858/// Create the three main layers as assemblies
859
860 gGeoManager->MakeVolumeAssembly(QuadrantMLayerName(chamber).Data());
861 gGeoManager->MakeVolumeAssembly(QuadrantMFLayerName(chamber).Data());
862 gGeoManager->MakeVolumeAssembly(QuadrantNLayerName(chamber).Data());
863 gGeoManager->MakeVolumeAssembly(QuadrantFLayerName(chamber).Data());
864}
865
866//______________________________________________________________________________
d1cd2474 867void AliMUONSt1GeometryBuilderV2::CreateFrame(Int_t chamber)
ba030c0e 868{
5398f946 869/// Create the non-sensitive elements of the frame for the \a chamber
870///
871/// Model and notation: \n
872/// \n
873/// The Quadrant volume name starts with SQ \n
874/// The volume segments are numbered 00 to XX \n
875/// \n
876/// OutTopFrame \n
877/// (SQ02-16) \n
878/// ------------ \n
879/// OutEdgeFrame / | \n
880/// (SQ17-24) / | InVFrame (SQ00-01) \n
881/// / | \n
882/// | | \n
883/// OutVFrame | _- - \n
884/// (SQ25-39) | | InArcFrame (SQ42-45) \n
885/// | | \n
886/// ------------- \n
887/// InHFrame (SQ40-41) \n
888/// \n
889/// \n
890/// 06 February 2003 - Overlapping volumes resolved. \n
891/// One quarter chamber is comprised of three TUBS volumes: SQMx, SQNx, and SQFx,
892/// where SQMx is the Quadrant Middle layer for chamber \a chamber ( posZ in [-3.25,3.25]),
893/// SQNx is the Quadrant Near side layer for chamber \a chamber ( posZ in [-6.25,3-.25) ), and
894/// SQFx is the Quadrant Far side layer for chamber \a chamber ( posZ in (3.25,6.25] ).
ba030c0e 895
5ae5869b 896 // TString quadrantMLayerName = QuadrantMLayerName(chamber);
897
898 TString quadrantMLayerName = QuadrantMFLayerName(chamber);
899 TString quadrantNLayerName = QuadrantNLayerName(chamber);
900 TString quadrantFLayerName = QuadrantFLayerName(chamber);
901
d1cd2474 902 const Float_t kNearFarLHC=2.4; // Near and Far TUBS Origin wrt LHC Origin
ba030c0e 903
ba030c0e 904 // tracking medias
d1cd2474 905 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
5f91c9e8 906
5ae5869b 907 //Int_t idAir = idtmed[1100]; // medium 1
d1cd2474 908 //Int_t idFrameEpoxy = idtmed[1115]; // medium 16 = Frame Epoxy ME730
909 //Int_t idInox = idtmed[1116]; // medium 17 Stainless Steel (18%Cr,9%Ni,Fe)
910 //Int_t idFR4 = idtmed[1110]; // medium 11 FR4
911 //Int_t idCopper = idtmed[1109]; // medium 10 Copper
912 //Int_t idAlu = idtmed[1103]; // medium 4 Aluminium
913 Int_t idFrameEpoxy = idtmed[1123]; // medium 24 = Frame Epoxy ME730 // was 20 not 16
914 Int_t idInox = idtmed[1128]; // medium 29 Stainless Steel (18%Cr,9%Ni,Fe) // was 21 not 17
915 Int_t idFR4 = idtmed[1122]; // medium 23 FR4 // was 15 not 11
916 Int_t idCopper = idtmed[1121]; // medium 22 Copper
917 Int_t idAlu = idtmed[1120]; // medium 21 Aluminium
5f91c9e8 918
919
920// Rotation Matrices
921 Int_t rot1, rot2, rot3;
922
923// Rotation matrices
d1cd2474 924 fMUON->AliMatrix(rot1, 90., 90., 90., 180., 0., 0.); // +90 deg in x-y plane
925 fMUON->AliMatrix(rot2, 90., 45., 90., 135., 0., 0.); // +45 deg in x-y plane
926 fMUON->AliMatrix(rot3, 90., 45., 90., 315.,180., 0.); // +45 deg in x-y + rotation 180° around y
5f91c9e8 927
928// Translation matrices ... NOT USED
d1cd2474 929// fMUON->AliMatrix(trans1, 90., 0., 90., 90., 0., 0.); // X-> X; Y -> Y; Z -> Z
930// fMUON->AliMatrix(trans2, 90., 180., 90., 90., 180., 0.); // X->-X; Y -> Y; Z ->-Z
931// fMUON->AliMatrix(trans3, 90., 180., 90., 270., 0., 0.); // X->-X; Y ->-Y; Z -> Z
932// fMUON->AliMatrix(trans4, 90., 0., 90., 270., 180., 0.); // X-> X; Y ->-Y; Z ->-Z
ba030c0e 933//
5f91c9e8 934 // ___________________Volume thicknesses________________________
ba030c0e 935
d1cd2474 936 const Float_t kHzFrameThickness = 1.59/2.; //equivalent thickness
937 const Float_t kHzOuterFrameEpoxy = 1.19/2.; //equivalent thickness
938 const Float_t kHzOuterFrameInox = 0.1/2.; //equivalent thickness
939 const Float_t kHzFoam = 2.083/2.; //evaluated elsewhere
940 // CHECK with fgkHzFoam
5f91c9e8 941
942// Pertaining to the top outer area
d1cd2474 943 const Float_t kHzTopAnodeSteel1 = 0.185/2.; //equivalent thickness
944 const Float_t kHzTopAnodeSteel2 = 0.51/2.; //equivalent thickness
945 const Float_t kHzAnodeFR4 = 0.08/2.; //equivalent thickness
946 const Float_t kHzTopEarthFaceCu = 0.364/2.; //equivalent thickness
947 const Float_t kHzTopEarthProfileCu = 1.1/2.; //equivalent thickness
948 const Float_t kHzTopPositionerSteel = 1.45/2.; //should really be 2.125/2.;
949 const Float_t kHzTopGasSupportAl = 0.85/2.; //equivalent thickness
5f91c9e8 950
951// Pertaining to the vertical outer area
d1cd2474 952 const Float_t kHzVerticalCradleAl = 0.8/2.; //equivalent thickness
953 const Float_t kHzLateralSightAl = 0.975/2.; //equivalent thickness
954 const Float_t kHzLateralPosnInoxFace = 2.125/2.;//equivalent thickness
955 const Float_t kHzLatPosInoxProfM = 6.4/2.; //equivalent thickness
956 const Float_t kHzLatPosInoxProfNF = 1.45/2.; //equivalent thickness
957 const Float_t kHzLateralPosnAl = 0.5/2.; //equivalent thickness
958 const Float_t kHzVertEarthFaceCu = 0.367/2.; //equivalent thickness
959 const Float_t kHzVertBarSteel = 0.198/2.; //equivalent thickness
960 const Float_t kHzVertEarthProfCu = 1.1/2.; //equivalent thickness
5f91c9e8 961
962 //_______________Parameter definitions in sequence _________
963
964// InVFrame parameters
d1cd2474 965 const Float_t kHxInVFrame = 1.85/2.;
966 const Float_t kHyInVFrame = 73.95/2.;
967 const Float_t kHzInVFrame = kHzFrameThickness;
ba030c0e 968
5f91c9e8 969//Flat 7.5mm vertical section
d1cd2474 970 const Float_t kHxV1mm = 0.75/2.;
971 const Float_t kHyV1mm = 1.85/2.;
972 const Float_t kHzV1mm = kHzFrameThickness;
ba030c0e 973
5f91c9e8 974// OuterTopFrame Structure
975//
976// FRAME
977// The frame is composed of a cuboid and two trapezoids
978// (TopFrameAnode, TopFrameAnodeA, TopFrameAnodeB).
979// Each shape is composed of two layers (Epoxy and Inox) and
980// takes the frame's inner anode circuitry into account in the material budget.
981//
982// ANODE
983// The overhanging anode part is composed froma cuboid and two trapezoids
984// (TopAnode, TopAnode1, and TopAnode2). These surfaces neglect implanted
985// resistors, but accounts for the major Cu, Pb/Sn, and FR4 material
986// contributions.
987// The stainless steel anode supports have been included.
988//
989// EARTHING (TopEarthFace, TopEarthProfile)
990// Al GAS SUPPORT (TopGasSupport)
991//
992// ALIGNMENT (TopPositioner) - Alignment system, three sights per quarter
993// chamber. This sight is forseen for the alignment of the horizontal level
994// (parallel to the OY axis of LHC). Its position will be evaluated relative
995// to a system of sights places on the cradles;
996//
997//---
ba030c0e 998
5f91c9e8 999//TopFrameAnode parameters - cuboid, 2 layers
d1cd2474 1000 const Float_t kHxTFA = 34.1433/2.;
1001 const Float_t kHyTFA = 7.75/2.;
1002 const Float_t kHzTFAE = kHzOuterFrameEpoxy; // layer 1 thickness
1003 const Float_t kHzTFAI = kHzOuterFrameInox; // layer 3 thickness
ba030c0e 1004
5f91c9e8 1005// TopFrameAnodeA parameters - trapezoid, 2 layers
d1cd2474 1006 const Float_t kHzFAAE = kHzOuterFrameEpoxy; // layer 1 thickness
1007 const Float_t kHzFAAI = kHzOuterFrameInox; // layer 3 thickness
1008 const Float_t kTetFAA = 0.;
1009 const Float_t kPhiFAA = 0.;
1010 const Float_t kH1FAA = 8.7/2.;
1011 const Float_t kBl1FAA = 4.35/2.;
1012 const Float_t kTl1FAA = 7.75/2.;
1013 const Float_t kAlp1FAA = 11.06;
1014 const Float_t kH2FAA = 8.7/2.;
1015 const Float_t kBl2FAA = 4.35/2.;
1016 const Float_t kTl2FAA = 7.75/2.;
1017 const Float_t kAlp2FAA = 11.06;
ba030c0e 1018
5f91c9e8 1019// TopFrameAnodeB parameters - trapezoid, 2 layers
d1cd2474 1020 const Float_t kHzFABE = kHzOuterFrameEpoxy; // layer 1 thickness
1021 const Float_t kHzFABI = kHzOuterFrameInox; // layer 3 thickness
1022 const Float_t kTetFAB = 0.;
1023 const Float_t kPhiFAB = 0.;
1024 const Float_t kH1FAB = 8.70/2.;
1025 const Float_t kBl1FAB = 0.;
1026 const Float_t kTl1FAB = 4.35/2.;
1027 const Float_t kAlp1FAB = 14.03;
1028 const Float_t kH2FAB = 8.70/2.;
1029 const Float_t kBl2FAB = 0.;
1030 const Float_t kTl2FAB = 4.35/2.;
1031 const Float_t kAlp2FAB = 14.03;
ba030c0e 1032
5f91c9e8 1033// TopAnode parameters - cuboid (part 1 of 3 parts)
d1cd2474 1034 const Float_t kHxTA1 = 16.2/2.;
1035 const Float_t kHyTA1 = 3.5/2.;
1036 const Float_t kHzTA11 = kHzTopAnodeSteel1; // layer 1
1037 const Float_t kHzTA12 = kHzAnodeFR4; // layer 2
5f91c9e8 1038
1039// TopAnode parameters - trapezoid 1 (part 2 of 3 parts)
d1cd2474 1040 const Float_t kHzTA21 = kHzTopAnodeSteel2; // layer 1
1041 const Float_t kHzTA22 = kHzAnodeFR4; // layer 2
1042 const Float_t kTetTA2 = 0.;
1043 const Float_t kPhiTA2= 0.;
1044 const Float_t kH1TA2 = 7.268/2.;
1045 const Float_t kBl1TA2 = 2.03/2.;
1046 const Float_t kTl1TA2 = 3.5/2.;
1047 const Float_t kAlp1TA2 = 5.78;
1048 const Float_t kH2TA2 = 7.268/2.;
1049 const Float_t kBl2TA2 = 2.03/2.;
1050 const Float_t kTl2TA2 = 3.5/2.;
1051 const Float_t kAlp2TA2 = 5.78;
5f91c9e8 1052
1053// TopAnode parameters - trapezoid 2 (part 3 of 3 parts)
d1cd2474 1054 const Float_t kHzTA3 = kHzAnodeFR4; // layer 1
1055 const Float_t kTetTA3 = 0.;
1056 const Float_t kPhiTA3 = 0.;
1057 const Float_t kH1TA3 = 7.268/2.;
1058 const Float_t kBl1TA3 = 0.;
1059 const Float_t kTl1TA3 = 2.03/2.;
1060 const Float_t kAlp1TA3 = 7.95;
1061 const Float_t kH2TA3 = 7.268/2.;
1062 const Float_t kBl2TA3 = 0.;
1063 const Float_t kTl2TA3 = 2.03/2.;
1064 const Float_t kAlp2TA3 = 7.95;
ba030c0e 1065
5f91c9e8 1066// TopEarthFace parameters - single trapezoid
d1cd2474 1067 const Float_t kHzTEF = kHzTopEarthFaceCu;
1068 const Float_t kTetTEF = 0.;
1069 const Float_t kPhiTEF = 0.;
1070 const Float_t kH1TEF = 1.200/2.;
1071 const Float_t kBl1TEF = 21.323/2.;
1072 const Float_t kTl1TEF = 17.963/2.;
1073 const Float_t kAlp1TEF = -54.46;
1074 const Float_t kH2TEF = 1.200/2.;
1075 const Float_t kBl2TEF = 21.323/2.;
1076 const Float_t kTl2TEF = 17.963/2.;
1077 const Float_t kAlp2TEF = -54.46;
5f91c9e8 1078
1079// TopEarthProfile parameters - single trapezoid
d1cd2474 1080 const Float_t kHzTEP = kHzTopEarthProfileCu;
1081 const Float_t kTetTEP = 0.;
1082 const Float_t kPhiTEP = 0.;
1083 const Float_t kH1TEP = 0.40/2.;
1084 const Float_t kBl1TEP = 31.766/2.;
1085 const Float_t kTl1TEP = 30.535/2.;
1086 const Float_t kAlp1TEP = -56.98;
1087 const Float_t kH2TEP = 0.40/2.;
1088 const Float_t kBl2TEP = 31.766/2.;
1089 const Float_t kTl2TEP = 30.535/2.;
1090 const Float_t kAlp2TEP = -56.98;
5f91c9e8 1091
1092// TopPositioner parameters - single Stainless Steel trapezoid
d1cd2474 1093 const Float_t kHzTP = kHzTopPositionerSteel;
1094 const Float_t kTetTP = 0.;
1095 const Float_t kPhiTP = 0.;
1096 const Float_t kH1TP = 3.00/2.;
1097 const Float_t kBl1TP = 7.023/2.;
1098 const Float_t kTl1TP = 7.314/2.;
1099 const Float_t kAlp1TP = 2.78;
1100 const Float_t kH2TP = 3.00/2.;
1101 const Float_t kBl2TP = 7.023/2.;
1102 const Float_t kTl2TP = 7.314/2.;
1103 const Float_t kAlp2TP = 2.78;
5f91c9e8 1104
1105// TopGasSupport parameters - single cuboid
d1cd2474 1106 const Float_t kHxTGS = 8.50/2.;
1107 const Float_t kHyTGS = 3.00/2.;
1108 const Float_t kHzTGS = kHzTopGasSupportAl;
5f91c9e8 1109
1110// OutEdgeFrame parameters - 4 trapezoidal sections, 2 layers of material
1111//
1112//---
1113
1114// Trapezoid 1
d1cd2474 1115 const Float_t kHzOETFE = kHzOuterFrameEpoxy; // layer 1
1116 const Float_t kHzOETFI = kHzOuterFrameInox; // layer 3
ba030c0e 1117
d1cd2474 1118 const Float_t kTetOETF = 0.; // common to all 4 trapezoids
1119 const Float_t kPhiOETF = 0.; // common to all 4 trapezoids
5f91c9e8 1120
d1cd2474 1121 const Float_t kH1OETF = 7.196/2.; // common to all 4 trapezoids
1122 const Float_t kH2OETF = 7.196/2.; // common to all 4 trapezoids
5f91c9e8 1123
d1cd2474 1124 const Float_t kBl1OETF1 = 3.75/2;
1125 const Float_t kTl1OETF1 = 3.996/2.;
1126 const Float_t kAlp1OETF1 = 0.98;
5f91c9e8 1127
d1cd2474 1128 const Float_t kBl2OETF1 = 3.75/2;
1129 const Float_t kTl2OETF1 = 3.996/2.;
1130 const Float_t kAlp2OETF1 = 0.98;
5f91c9e8 1131
1132// Trapezoid 2
d1cd2474 1133 const Float_t kBl1OETF2 = 3.01/2.;
1134 const Float_t kTl1OETF2 = 3.75/2;
1135 const Float_t kAlp1OETF2 = 2.94;
5f91c9e8 1136
d1cd2474 1137 const Float_t kBl2OETF2 = 3.01/2.;
1138 const Float_t kTl2OETF2 = 3.75/2;
1139 const Float_t kAlp2OETF2 = 2.94;
5f91c9e8 1140
1141// Trapezoid 3
b367fd8f 1142 //const Float_t kBl1OETF3 = 1.767/2.;
1143 //const Float_t kTl1OETF3 = 3.01/2.;
1144 const Float_t kBl1OETF3 = 1.117/2.;
1145 const Float_t kTl1OETF3 = 2.36/2.;
d1cd2474 1146 const Float_t kAlp1OETF3 = 4.94;
b367fd8f 1147 // Fix (5) - overlap of SQ21 with 041M and 125M
ba030c0e 1148
b367fd8f 1149 //const Float_t kBl2OETF3 = 1.767/2.;
1150 //const Float_t kTl2OETF3 = 3.01/2.;
1151 const Float_t kBl2OETF3 = 1.117/2.;
1152 const Float_t kTl2OETF3 = 2.36/2.;
d1cd2474 1153 const Float_t kAlp2OETF3 = 4.94;
b367fd8f 1154 // Fix (5) - overlap of SQ21 with 041M and 125M
ba030c0e 1155
5f91c9e8 1156// Trapezoid 4
d1cd2474 1157 const Float_t kBl1OETF4 = 0.;
1158 const Float_t kTl1OETF4 = 1.77/2.;
1159 const Float_t kAlp1OETF4 = 7.01;
ba030c0e 1160
d1cd2474 1161 const Float_t kBl2OETF4 = 0.;
1162 const Float_t kTl2OETF4 = 1.77/2.;
1163 const Float_t kAlp2OETF4 = 7.01;
5f91c9e8 1164
1165// Frame Structure (OutVFrame):
1166//
1167// OutVFrame and corner (OutVFrame cuboid, OutVFrame trapezoid)
1168// EARTHING (VertEarthFaceCu,VertEarthSteel,VertEarthProfCu),
1169// DETECTOR POSITIONNING (SuppLateralPositionner, LateralPositionner),
1170// CRADLE (VertCradle), and
1171// ALIGNMENT (LateralSightSupport, LateralSight)
1172//
1173//---
1174
1175// OutVFrame parameters - cuboid
d1cd2474 1176 const Float_t kHxOutVFrame = 1.85/2.;
1177 const Float_t kHyOutVFrame = 46.23/2.;
1178 const Float_t kHzOutVFrame = kHzFrameThickness;
5f91c9e8 1179
1180// OutVFrame corner parameters - trapezoid
d1cd2474 1181 const Float_t kHzOCTF = kHzFrameThickness;
1182 const Float_t kTetOCTF = 0.;
1183 const Float_t kPhiOCTF = 0.;
1184 const Float_t kH1OCTF = 1.85/2.;
1185 const Float_t kBl1OCTF = 0.;
1186 const Float_t kTl1OCTF = 3.66/2.;
1187 const Float_t kAlp1OCTF = 44.67;
1188 const Float_t kH2OCTF = 1.85/2.;
1189 const Float_t kBl2OCTF = 0.;
1190 const Float_t kTl2OCTF = 3.66/2.;
1191 const Float_t kAlp2OCTF = 44.67;
5f91c9e8 1192
1193// VertEarthFaceCu parameters - single trapezoid
d1cd2474 1194 const Float_t kHzVFC = kHzVertEarthFaceCu;
1195 const Float_t kTetVFC = 0.;
1196 const Float_t kPhiVFC = 0.;
1197 const Float_t kH1VFC = 1.200/2.;
1198 const Float_t kBl1VFC = 46.11/2.;
1199 const Float_t kTl1VFC = 48.236/2.;
1200 const Float_t kAlp1VFC = 41.54;
1201 const Float_t kH2VFC = 1.200/2.;
1202 const Float_t kBl2VFC = 46.11/2.;
1203 const Float_t kTl2VFC = 48.236/2.;
1204 const Float_t kAlp2VFC = 41.54;
5f91c9e8 1205
1206// VertEarthSteel parameters - single trapezoid
d1cd2474 1207 const Float_t kHzVES = kHzVertBarSteel;
1208 const Float_t kTetVES = 0.;
1209 const Float_t kPhiVES = 0.;
1210 const Float_t kH1VES = 1.200/2.;
1211 const Float_t kBl1VES = 30.486/2.;
1212 const Float_t kTl1VES = 32.777/2.;
1213 const Float_t kAlp1VES = 43.67;
1214 const Float_t kH2VES = 1.200/2.;
1215 const Float_t kBl2VES = 30.486/2.;
1216 const Float_t kTl2VES = 32.777/2.;
1217 const Float_t kAlp2VES = 43.67;
5f91c9e8 1218
1219// VertEarthProfCu parameters - single trapezoid
d1cd2474 1220 const Float_t kHzVPC = kHzVertEarthProfCu;
1221 const Float_t kTetVPC = 0.;
1222 const Float_t kPhiVPC = 0.;
1223 const Float_t kH1VPC = 0.400/2.;
1224 const Float_t kBl1VPC = 29.287/2.;
1225 const Float_t kTl1VPC = 30.091/2.;
1226 const Float_t kAlp1VPC = 45.14;
1227 const Float_t kH2VPC = 0.400/2.;
1228 const Float_t kBl2VPC = 29.287/2.;
1229 const Float_t kTl2VPC = 30.091/2.;
1230 const Float_t kAlp2VPC = 45.14;
5f91c9e8 1231
1232// SuppLateralPositionner - single cuboid
d1cd2474 1233 const Float_t kHxSLP = 2.80/2.;
1234 const Float_t kHySLP = 5.00/2.;
1235 const Float_t kHzSLP = kHzLateralPosnAl;
5f91c9e8 1236
1237// LateralPositionner - squared off U bend, face view
d1cd2474 1238 const Float_t kHxLPF = 5.2/2.;
1239 const Float_t kHyLPF = 3.0/2.;
1240 const Float_t kHzLPF = kHzLateralPosnInoxFace;
5f91c9e8 1241
1242// LateralPositionner - squared off U bend, profile view
d1cd2474 1243 const Float_t kHxLPP = 0.425/2.;
1244 const Float_t kHyLPP = 3.0/2.;
1245 const Float_t kHzLPP = kHzLatPosInoxProfM; // middle layer
1246 const Float_t kHzLPNF = kHzLatPosInoxProfNF; // near and far layers
5f91c9e8 1247
1248// VertCradle, 3 layers (copies), each composed of 4 trapezoids
1249// VertCradleA
d1cd2474 1250 const Float_t kHzVC1 = kHzVerticalCradleAl;
1251 const Float_t kTetVC1 = 0.;
1252 const Float_t kPhiVC1 = 0.;
1253 const Float_t kH1VC1 = 10.25/2.;
1254 const Float_t kBl1VC1 = 3.70/2.;
1255 const Float_t kTl1VC1 = 0.;
1256 const Float_t kAlp1VC1 = -10.23;
1257 const Float_t kH2VC1 = 10.25/2.;
1258 const Float_t kBl2VC1 = 3.70/2.;
1259 const Float_t kTl2VC1 = 0.;
1260 const Float_t kAlp2VC1 = -10.23;
5f91c9e8 1261
1262// VertCradleB
d1cd2474 1263 const Float_t kHzVC2 = kHzVerticalCradleAl;
1264 const Float_t kTetVC2 = 0.;
1265 const Float_t kPhiVC2 = 0.;
1266 const Float_t kH1VC2 = 10.25/2.;
1267 const Float_t kBl1VC2 = 6.266/2.;
1268 const Float_t kTl1VC2 = 3.70/2.;
1269 const Float_t kAlp1VC2 = -7.13;
1270 const Float_t kH2VC2 = 10.25/2.;
1271 const Float_t kBl2VC2 = 6.266/2.;
1272 const Float_t kTl2VC2 = 3.70/2.;
1273 const Float_t kAlp2VC2 = -7.13;
5f91c9e8 1274
1275// VertCradleC
d1cd2474 1276 const Float_t kHzVC3 = kHzVerticalCradleAl;
1277 const Float_t kTetVC3 = 0.;
1278 const Float_t kPhiVC3 = 0.;
1279 const Float_t kH1VC3 = 10.25/2.;
1280 const Float_t kBl1VC3 = 7.75/2.;
1281 const Float_t kTl1VC3 = 6.266/2.;
1282 const Float_t kAlp1VC3 = -4.14;
1283 const Float_t kH2VC3 = 10.25/2.;
1284 const Float_t kBl2VC3 = 7.75/2.;
1285 const Float_t kTl2VC3 = 6.266/2.;
1286 const Float_t kAlp2VC3 = -4.14;
5f91c9e8 1287
1288// VertCradleD
d1cd2474 1289 const Float_t kHzVC4 = kHzVerticalCradleAl;
1290 const Float_t kTetVC4 = 0.;
1291 const Float_t kPhiVC4 = 0.;
1292 const Float_t kH1VC4 = 10.27/2.;
1293 const Float_t kBl1VC4 = 8.273/2.;
1294 const Float_t kTl1VC4 = 7.75/2.;
1295 const Float_t kAlp1VC4 = -1.46;
1296 const Float_t kH2VC4 = 10.27/2.;
1297 const Float_t kBl2VC4 = 8.273/2.;
1298 const Float_t kTl2VC4 = 7.75/2.;
1299 const Float_t kAlp2VC4 = -1.46;
5f91c9e8 1300
1301// LateralSightSupport - single trapezoid
d1cd2474 1302 const Float_t kHzVSS = kHzLateralSightAl;
1303 const Float_t kTetVSS = 0.;
1304 const Float_t kPhiVSS = 0.;
1305 const Float_t kH1VSS = 5.00/2.;
1306 const Float_t kBl1VSS = 7.747/2;
1307 const Float_t kTl1VSS = 7.188/2.;
1308 const Float_t kAlp1VSS = -3.20;
1309 const Float_t kH2VSS = 5.00/2.;
1310 const Float_t kBl2VSS = 7.747/2.;
1311 const Float_t kTl2VSS = 7.188/2.;
1312 const Float_t kAlp2VSS = -3.20;
5f91c9e8 1313
1314// LateralSight (reference point) - 3 per quadrant, only 1 programmed for now
d1cd2474 1315 const Float_t kVSInRad = 0.6;
1316 const Float_t kVSOutRad = 1.3;
1317 const Float_t kVSLen = kHzFrameThickness;
5f91c9e8 1318
1319//---
ba030c0e 1320
5f91c9e8 1321// InHFrame parameters
d1cd2474 1322 const Float_t kHxInHFrame = 75.8/2.;
1323 const Float_t kHyInHFrame = 1.85/2.;
1324 const Float_t kHzInHFrame = kHzFrameThickness;
5f91c9e8 1325
1326//Flat 7.5mm horizontal section
d1cd2474 1327 const Float_t kHxH1mm = 1.85/2.;
1328 const Float_t kHyH1mm = 0.75/2.;
1329 const Float_t kHzH1mm = kHzFrameThickness;
ba030c0e 1330
5f91c9e8 1331//---
ba030c0e 1332
5f91c9e8 1333// InArcFrame parameters
d1cd2474 1334 const Float_t kIAF = 15.70;
1335 const Float_t kOAF = 17.55;
1336 const Float_t kHzAF = kHzFrameThickness;
1337 const Float_t kAFphi1 = 0.0;
1338 const Float_t kAFphi2 = 90.0;
ba030c0e 1339
5f91c9e8 1340//---
ba030c0e 1341
5f91c9e8 1342// ScrewsInFrame parameters HEAD
d1cd2474 1343 const Float_t kSCRUHMI = 0.;
1344 const Float_t kSCRUHMA = 0.690/2.;
1345 const Float_t kSCRUHLE = 0.4/2.;
5f91c9e8 1346// ScrewsInFrame parameters MIDDLE
d1cd2474 1347 const Float_t kSCRUMMI = 0.;
1348 const Float_t kSCRUMMA = 0.39/2.;
1349 const Float_t kSCRUMLE = kHzFrameThickness;
5f91c9e8 1350// ScrewsInFrame parameters NUT
d1cd2474 1351 const Float_t kSCRUNMI = 0.;
1352 const Float_t kSCRUNMA = 0.78/2.;
1353 const Float_t kSCRUNLE = 0.8/2.;
5f91c9e8 1354
1355 // ___________________Make volumes________________________
ba030c0e 1356
5f91c9e8 1357 Float_t par[11];
1358 Float_t posX,posY,posZ;
ba030c0e 1359
5f91c9e8 1360 if (chamber==1) {
1361 // InVFrame
d1cd2474 1362 par[0] = kHxInVFrame;
1363 par[1] = kHyInVFrame;
1364 par[2] = kHzInVFrame;
5f91c9e8 1365 gMC->Gsvolu("SQ00","BOX",idFrameEpoxy,par,3);
1366
1367 //Flat 1mm vertical section
d1cd2474 1368 par[0] = kHxV1mm;
1369 par[1] = kHyV1mm;
1370 par[2] = kHzV1mm;
5f91c9e8 1371 gMC->Gsvolu("SQ01","BOX",idFrameEpoxy,par,3);
1372
1373// OutTopFrame
1374//
1375// - 3 components (a cuboid and 2 trapezes) and 2 layers (Epoxy/Inox)
1376//
1377//---
ba030c0e 1378
5f91c9e8 1379 // TopFrameAnode - layer 1 of 2
d1cd2474 1380 par[0] = kHxTFA;
1381 par[1] = kHyTFA;
1382 par[2] = kHzTFAE;
5f91c9e8 1383 gMC->Gsvolu("SQ02","BOX",idFrameEpoxy,par,3);
1384
1385 // TopFrameAnode - layer 2 of 2
d1cd2474 1386 par[2] = kHzTFAI;
5f91c9e8 1387 gMC->Gsvolu("SQ03","BOX",idInox,par,3);
1388
1389 // TopFrameAnodeA - layer 1 of 2
d1cd2474 1390 par[0] = kHzFAAE;
1391 par[1] = kTetFAA;
1392 par[2] = kPhiFAA;
1393 par[3] = kH1FAA;
1394 par[4] = kBl1FAA;
1395 par[5] = kTl1FAA;
1396 par[6] = kAlp1FAA;
1397 par[7] = kH2FAA;
1398 par[8] = kBl2FAA;
1399 par[9] = kTl2FAA;
1400 par[10] = kAlp2FAA;
5f91c9e8 1401 gMC->Gsvolu("SQ04","TRAP",idFrameEpoxy,par,11);
1402
1403 // TopFrameAnodeA - layer 2 of 2
d1cd2474 1404 par[0] = kHzFAAI;
5f91c9e8 1405 gMC->Gsvolu("SQ05","TRAP",idInox,par,11);
ba030c0e 1406
5f91c9e8 1407 // TopFrameAnodeB - layer 1 of 2
d1cd2474 1408 par[0] = kHzFABE;
1409 par[1] = kTetFAB;
1410 par[2] = kPhiFAB;
1411 par[3] = kH1FAB;
1412 par[4] = kBl1FAB;
1413 par[5] = kTl1FAB;
1414 par[6] = kAlp1FAB;
1415 par[7] = kH2FAB;
1416 par[8] = kBl2FAB;
1417 par[9] = kTl2FAB;
1418 par[10] = kAlp2FAB;
5f91c9e8 1419 gMC->Gsvolu("SQ06","TRAP",idFrameEpoxy,par,11);
1420
1421 // OutTopTrapFrameB - layer 2 of 2
d1cd2474 1422 par[0] = kHzFABI;
5f91c9e8 1423 gMC->Gsvolu("SQ07","TRAP",idInox,par,11);
1424
1425 // TopAnode1 - layer 1 of 2
d1cd2474 1426 par[0] = kHxTA1;
1427 par[1] = kHyTA1;
1428 par[2] = kHzTA11;
5f91c9e8 1429 gMC->Gsvolu("SQ08","BOX",idInox,par,3);
1430
1431 // TopAnode1 - layer 2 of 2
d1cd2474 1432 par[2] = kHzTA12;
5f91c9e8 1433 gMC->Gsvolu("SQ09","BOX",idFR4,par,11);
1434
1435 // TopAnode2 - layer 1 of 2
d1cd2474 1436 par[0] = kHzTA21;
1437 par[1] = kTetTA2;
1438 par[2] = kPhiTA2;
1439 par[3] = kH1TA2;
1440 par[4] = kBl1TA2;
1441 par[5] = kTl1TA2;
1442 par[6] = kAlp1TA2;
1443 par[7] = kH2TA2;
1444 par[8] = kBl2TA2;
1445 par[9] = kTl2TA2;
1446 par[10] = kAlp2TA2;
5f91c9e8 1447 gMC->Gsvolu("SQ10","TRAP",idInox,par,11);
1448
1449 // TopAnode2 - layer 2 of 2
d1cd2474 1450 par[0] = kHzTA22;
5f91c9e8 1451 gMC->Gsvolu("SQ11","TRAP",idFR4,par,11);
1452
1453 // TopAnode3 - layer 1 of 1
d1cd2474 1454 par[0] = kHzTA3;
1455 par[1] = kTetTA3;
1456 par[2] = kPhiTA3;
1457 par[3] = kH1TA3;
1458 par[4] = kBl1TA3;
1459 par[5] = kTl1TA3;
1460 par[6] = kAlp1TA3;
1461 par[7] = kH2TA3;
1462 par[8] = kBl2TA3;
1463 par[9] = kTl2TA3;
1464 par[10] = kAlp2TA3;
5f91c9e8 1465 gMC->Gsvolu("SQ12","TRAP",idFR4,par,11);
1466
1467 // TopEarthFace
d1cd2474 1468 par[0] = kHzTEF;
1469 par[1] = kTetTEF;
1470 par[2] = kPhiTEF;
1471 par[3] = kH1TEF;
1472 par[4] = kBl1TEF;
1473 par[5] = kTl1TEF;
1474 par[6] = kAlp1TEF;
1475 par[7] = kH2TEF;
1476 par[8] = kBl2TEF;
1477 par[9] = kTl2TEF;
1478 par[10] = kAlp2TEF;
5f91c9e8 1479 gMC->Gsvolu("SQ13","TRAP",idCopper,par,11);
1480
1481 // TopEarthProfile
d1cd2474 1482 par[0] = kHzTEP;
1483 par[1] = kTetTEP;
1484 par[2] = kPhiTEP;
1485 par[3] = kH1TEP;
1486 par[4] = kBl1TEP;
1487 par[5] = kTl1TEP;
1488 par[6] = kAlp1TEP;
1489 par[7] = kH2TEP;
1490 par[8] = kBl2TEP;
1491 par[9] = kTl2TEP;
1492 par[10] = kAlp2TEP;
5f91c9e8 1493 gMC->Gsvolu("SQ14","TRAP",idCopper,par,11);
1494
1495 // TopGasSupport
d1cd2474 1496 par[0] = kHxTGS;
1497 par[1] = kHyTGS;
1498 par[2] = kHzTGS;
5f91c9e8 1499 gMC->Gsvolu("SQ15","BOX",idAlu,par,3);
1500
1501 // TopPositioner parameters - single Stainless Steel trapezoid
d1cd2474 1502 par[0] = kHzTP;
1503 par[1] = kTetTP;
1504 par[2] = kPhiTP;
1505 par[3] = kH1TP;
1506 par[4] = kBl1TP;
1507 par[5] = kTl1TP;
1508 par[6] = kAlp1TP;
1509 par[7] = kH2TP;
1510 par[8] = kBl2TP;
1511 par[9] = kTl2TP;
1512 par[10] = kAlp2TP;
5f91c9e8 1513 gMC->Gsvolu("SQ16","TRAP",idInox,par,11);
ba030c0e 1514
5f91c9e8 1515//
1516// OutEdgeTrapFrame Epoxy = (4 trapezes)*2 copies*2 layers (Epoxy/Inox)
1517//
1518//---
1519 // Trapezoid 1 - 2 layers
d1cd2474 1520 par[1] = kTetOETF;
1521 par[2] = kPhiOETF;
1522 par[3] = kH1OETF;
1523 par[4] = kBl1OETF1;
1524 par[5] = kTl1OETF1;
1525 par[6] = kAlp1OETF1;
1526 par[7] = kH2OETF;
1527 par[8] = kBl2OETF1;
1528 par[9] = kTl2OETF1;
1529 par[10] = kAlp2OETF1;
5f91c9e8 1530
d1cd2474 1531 par[0] = kHzOETFE;
5f91c9e8 1532 gMC->Gsvolu("SQ17","TRAP",idFrameEpoxy,par,11);
d1cd2474 1533 par[0] = kHzOETFI;
5f91c9e8 1534 gMC->Gsvolu("SQ18","TRAP",idInox,par,11);
1535
1536 // Trapezoid 2 - 2 layers
d1cd2474 1537 par[4] = kBl1OETF2;
1538 par[5] = kTl1OETF2;
1539 par[6] = kAlp1OETF2;
5f91c9e8 1540
d1cd2474 1541 par[8] = kBl2OETF2;
1542 par[9] = kTl2OETF2;
1543 par[10] = kAlp2OETF2;
5f91c9e8 1544
d1cd2474 1545 par[0] = kHzOETFE;
5f91c9e8 1546 gMC->Gsvolu("SQ19","TRAP",idFrameEpoxy,par,11);
d1cd2474 1547 par[0] = kHzOETFI;
5f91c9e8 1548 gMC->Gsvolu("SQ20","TRAP",idInox,par,11);
1549
1550 // Trapezoid 3 - 2 layers
d1cd2474 1551 par[4] = kBl1OETF3;
1552 par[5] = kTl1OETF3;
1553 par[6] = kAlp1OETF3;
5f91c9e8 1554
d1cd2474 1555 par[8] = kBl2OETF3;
1556 par[9] = kTl2OETF3;
1557 par[10] = kAlp2OETF3;
5f91c9e8 1558
d1cd2474 1559 par[0] = kHzOETFE;
5f91c9e8 1560 gMC->Gsvolu("SQ21","TRAP",idFrameEpoxy,par,11);
d1cd2474 1561 par[0] = kHzOETFI;
5f91c9e8 1562 gMC->Gsvolu("SQ22","TRAP",idInox,par,11);
1563
1564 // Trapezoid 4 - 2 layers
ba030c0e 1565
d1cd2474 1566 par[4] = kBl1OETF4;
1567 par[5] = kTl1OETF4;
1568 par[6] = kAlp1OETF4;
ba030c0e 1569
d1cd2474 1570 par[8] = kBl2OETF4;
1571 par[9] = kTl2OETF4;
1572 par[10] = kAlp2OETF4;
5f91c9e8 1573
d1cd2474 1574 par[0] = kHzOETFE;
5f91c9e8 1575 gMC->Gsvolu("SQ23","TRAP",idFrameEpoxy,par,11);
d1cd2474 1576 par[0] = kHzOETFI;
5f91c9e8 1577 gMC->Gsvolu("SQ24","TRAP",idInox,par,11);
ba030c0e 1578
5f91c9e8 1579//---
1580 // OutVFrame
d1cd2474 1581 par[0] = kHxOutVFrame;
1582 par[1] = kHyOutVFrame;
1583 par[2] = kHzOutVFrame;
5f91c9e8 1584 gMC->Gsvolu("SQ25","BOX",idFrameEpoxy,par,3);
d1cd2474 1585
5f91c9e8 1586 // OutVFrame corner
d1cd2474 1587 par[0] = kHzOCTF;
1588 par[1] = kTetOCTF;
1589 par[2] = kPhiOCTF;
1590 par[3] = kH1OCTF;
1591 par[4] = kBl1OCTF;
1592 par[5] = kTl1OCTF;
1593 par[6] = kAlp1OCTF;
1594 par[7] = kH2OCTF;
1595 par[8] = kBl2OCTF;
1596 par[9] = kTl2OCTF;
1597 par[10] = kAlp2OCTF;
5f91c9e8 1598 gMC->Gsvolu("SQ26","TRAP",idFrameEpoxy,par,11);
1599
1600 // EarthFaceCu trapezoid
d1cd2474 1601 par[0] = kHzVFC;
1602 par[1] = kTetVFC;
1603 par[2] = kPhiVFC;
1604 par[3] = kH1VFC;
1605 par[4] = kBl1VFC;
1606 par[5] = kTl1VFC;
1607 par[6] = kAlp1VFC;
1608 par[7] = kH2VFC;
1609 par[8] = kBl2VFC;
1610 par[9] = kTl2VFC;
1611 par[10] = kAlp2VFC;
5f91c9e8 1612 gMC->Gsvolu("SQ27","TRAP",idCopper,par,11);
1613
1614 // VertEarthSteel trapezoid
d1cd2474 1615 par[0] = kHzVES;
1616 par[1] = kTetVES;
1617 par[2] = kPhiVES;
1618 par[3] = kH1VES;
1619 par[4] = kBl1VES;
1620 par[5] = kTl1VES;
1621 par[6] = kAlp1VES;
1622 par[7] = kH2VES;
1623 par[8] = kBl2VES;
1624 par[9] = kTl2VES;
1625 par[10] = kAlp2VES;
5f91c9e8 1626 gMC->Gsvolu("SQ28","TRAP",idInox,par,11);
1627
1628 // VertEarthProfCu trapezoid
d1cd2474 1629 par[0] = kHzVPC;
1630 par[1] = kTetVPC;
1631 par[2] = kPhiVPC;
1632 par[3] = kH1VPC;
1633 par[4] = kBl1VPC;
1634 par[5] = kTl1VPC;
1635 par[6] = kAlp1VPC;
1636 par[7] = kH2VPC;
1637 par[8] = kBl2VPC;
1638 par[9] = kTl2VPC;
1639 par[10] = kAlp2VPC;
5f91c9e8 1640 gMC->Gsvolu("SQ29","TRAP",idCopper,par,11);
1641
1642 // SuppLateralPositionner cuboid
d1cd2474 1643 par[0] = kHxSLP;
1644 par[1] = kHySLP;
1645 par[2] = kHzSLP;
5f91c9e8 1646 gMC->Gsvolu("SQ30","BOX",idAlu,par,3);
1647
1648 // LateralPositionerFace
d1cd2474 1649 par[0] = kHxLPF;
1650 par[1] = kHyLPF;
1651 par[2] = kHzLPF;
5f91c9e8 1652 gMC->Gsvolu("SQ31","BOX",idInox,par,3);
1653
1654 // LateralPositionerProfile
d1cd2474 1655 par[0] = kHxLPP;
1656 par[1] = kHyLPP;
1657 par[2] = kHzLPP;
5f91c9e8 1658 gMC->Gsvolu("SQ32","BOX",idInox,par,3); // middle layer
1659
d1cd2474 1660 par[0] = kHxLPP;
1661 par[1] = kHyLPP;
1662 par[2] = kHzLPNF;
5f91c9e8 1663 gMC->Gsvolu("SQ33","BOX",idInox,par,3); // near and far layers
1664
1665 // VertCradleA - 1st trapezoid
d1cd2474 1666 par[0] = kHzVC1;
1667 par[1] = kTetVC1;
1668 par[2] = kPhiVC1;
1669 par[3] = kH1VC1;
1670 par[4] = kBl1VC1;
1671 par[5] = kTl1VC1;
1672 par[6] = kAlp1VC1;
1673 par[7] = kH2VC1;
1674 par[8] = kBl2VC1;
1675 par[9] = kTl2VC1;
1676 par[10] = kAlp2VC1;
5f91c9e8 1677 gMC->Gsvolu("SQ34","TRAP",idAlu,par,11);
ba030c0e 1678
5f91c9e8 1679 // VertCradleB - 2nd trapezoid
d1cd2474 1680 par[0] = kHzVC2;
1681 par[1] = kTetVC2;
1682 par[2] = kPhiVC2;
1683 par[3] = kH1VC2;
1684 par[4] = kBl1VC2;
1685 par[5] = kTl1VC2;
1686 par[6] = kAlp1VC2;
1687 par[7] = kH2VC2;
1688 par[8] = kBl2VC2;
1689 par[9] = kTl2VC2;
1690 par[10] = kAlp2VC2;
5f91c9e8 1691 gMC->Gsvolu("SQ35","TRAP",idAlu,par,11);
1692
1693 // VertCradleC - 3rd trapezoid
d1cd2474 1694 par[0] = kHzVC3;
1695 par[1] = kTetVC3;
1696 par[2] = kPhiVC3;
1697 par[3] = kH1VC3;
1698 par[4] = kBl1VC3;
1699 par[5] = kTl1VC3;
1700 par[6] = kAlp1VC3;
1701 par[7] = kH2VC3;
1702 par[8] = kBl2VC3;
1703 par[9] = kTl2VC3;
1704 par[10] = kAlp2VC3;
5f91c9e8 1705 gMC->Gsvolu("SQ36","TRAP",idAlu,par,11);
1706
1707 // VertCradleD - 4th trapezoid
d1cd2474 1708 par[0] = kHzVC4;
1709 par[1] = kTetVC4;
1710 par[2] = kPhiVC4;
1711 par[3] = kH1VC4;
1712 par[4] = kBl1VC4;
1713 par[5] = kTl1VC4;
1714 par[6] = kAlp1VC4;
1715 par[7] = kH2VC4;
1716 par[8] = kBl2VC4;
1717 par[9] = kTl2VC4;
1718 par[10] = kAlp2VC4;
5f91c9e8 1719 gMC->Gsvolu("SQ37","TRAP",idAlu,par,11);
1720
1721 // LateralSightSupport trapezoid
d1cd2474 1722 par[0] = kHzVSS;
1723 par[1] = kTetVSS;
1724 par[2] = kPhiVSS;
1725 par[3] = kH1VSS;
1726 par[4] = kBl1VSS;
1727 par[5] = kTl1VSS;
1728 par[6] = kAlp1VSS;
1729 par[7] = kH2VSS;
1730 par[8] = kBl2VSS;
1731 par[9] = kTl2VSS;
1732 par[10] = kAlp2VSS;
5f91c9e8 1733 gMC->Gsvolu("SQ38","TRAP",idAlu,par,11);
1734
1735 // LateralSight
d1cd2474 1736 par[0] = kVSInRad;
1737 par[1] = kVSOutRad;
1738 par[2] = kVSLen;
5f91c9e8 1739 gMC->Gsvolu("SQ39","TUBE",idFrameEpoxy,par,3);
1740
1741//---
1742 // InHFrame
d1cd2474 1743 par[0] = kHxInHFrame;
1744 par[1] = kHyInHFrame;
1745 par[2] = kHzInHFrame;
5f91c9e8 1746 gMC->Gsvolu("SQ40","BOX",idFrameEpoxy,par,3);
1747
1748 //Flat 7.5mm horizontal section
d1cd2474 1749 par[0] = kHxH1mm;
1750 par[1] = kHyH1mm;
1751 par[2] = kHzH1mm;
5f91c9e8 1752 gMC->Gsvolu("SQ41","BOX",idFrameEpoxy,par,3);
1753
1754 // InArcFrame
d1cd2474 1755 par[0] = kIAF;
1756 par[1] = kOAF;
1757 par[2] = kHzAF;
1758 par[3] = kAFphi1;
1759 par[4] = kAFphi2;
5f91c9e8 1760
1761 gMC->Gsvolu("SQ42","TUBS",idFrameEpoxy,par,5);
1762
1763//---
1764 // ScrewsInFrame - 3 sections in order to avoid overlapping volumes
1765 // Screw Head, in air
d1cd2474 1766 par[0] = kSCRUHMI;
1767 par[1] = kSCRUHMA;
1768 par[2] = kSCRUHLE;
5f91c9e8 1769
1770 gMC->Gsvolu("SQ43","TUBE",idInox,par,3);
1771
1772 // Middle part, in the Epoxy
d1cd2474 1773 par[0] = kSCRUMMI;
1774 par[1] = kSCRUMMA;
1775 par[2] = kSCRUMLE;
5f91c9e8 1776 gMC->Gsvolu("SQ44","TUBE",idInox,par,3);
1777
1778 // Screw nut, in air
d1cd2474 1779 par[0] = kSCRUNMI;
1780 par[1] = kSCRUNMA;
1781 par[2] = kSCRUNLE;
5f91c9e8 1782 gMC->Gsvolu("SQ45","TUBE",idInox,par,3);
1783 }
1784
1785// __________________Place volumes in the quadrant ____________
1786
1787 // InVFrame
d1cd2474 1788 posX = kHxInVFrame;
1789 posY = 2.0*kHyInHFrame+2.*kHyH1mm+kIAF+kHyInVFrame;
5f91c9e8 1790 posZ = 0.;
5ae5869b 1791 gMC->Gspos("SQ00",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
ba030c0e 1792
d1cd2474 1793// keep memory of the mid position. Used for placing screws
1794 const GReal_t kMidVposX = posX;
1795 const GReal_t kMidVposY = posY;
1796 const GReal_t kMidVposZ = posZ;
1797
5f91c9e8 1798 //Flat 7.5mm vertical section
d1cd2474 1799 posX = 2.0*kHxInVFrame+kHxV1mm;
1800 posY = 2.0*kHyInHFrame+2.*kHyH1mm+kIAF+kHyV1mm;
5f91c9e8 1801 posZ = 0.;
5ae5869b 1802 gMC->Gspos("SQ01",1,quadrantMLayerName,posX, posY, posZ,0, "ONLY");
5f91c9e8 1803
1804 // TopFrameAnode place 2 layers of TopFrameAnode cuboids
d1cd2474 1805 posX = kHxTFA;
1806 posY = 2.*kHyInHFrame+2.*kHyH1mm+kIAF+2.*kHyInVFrame+kHyTFA;
ddfa5dbc 1807 posZ = -kHzOuterFrameInox;
5ae5869b 1808 gMC->Gspos("SQ02",1,quadrantMLayerName,posX, posY, posZ,0,"ONLY");
ddfa5dbc 1809 posZ = kHzOuterFrameEpoxy;
5ae5869b 1810 gMC->Gspos("SQ03",1,quadrantMLayerName,posX, posY, posZ,0,"ONLY");
5f91c9e8 1811
1812 // place 2 layers of TopFrameAnodeA trapezoids
1813 posX = 35.8932+fgkDeltaQuadLHC;
1814 posY = 92.6745+fgkDeltaQuadLHC;
ddfa5dbc 1815 posZ = -kHzOuterFrameInox;
5ae5869b 1816 gMC->Gspos("SQ04",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
ddfa5dbc 1817 posZ = kHzOuterFrameEpoxy;
5ae5869b 1818 gMC->Gspos("SQ05",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1819
1820 // place 2 layers of TopFrameAnodeB trapezoids
1821 posX = 44.593+fgkDeltaQuadLHC;
1822 posY = 90.737+fgkDeltaQuadLHC;
ddfa5dbc 1823 posZ = -kHzOuterFrameInox;
5ae5869b 1824 gMC->Gspos("SQ06",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
ddfa5dbc 1825 posZ = kHzOuterFrameEpoxy;
5ae5869b 1826 gMC->Gspos("SQ07",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1827
1828 // TopAnode1 place 2 layers
1829 posX = 6.8+fgkDeltaQuadLHC;
1830 posY = 99.85+fgkDeltaQuadLHC;
d1cd2474 1831 posZ = -1.*kHzAnodeFR4;
5ae5869b 1832 gMC->Gspos("SQ08",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
ddfa5dbc 1833 posZ = kHzTopAnodeSteel1;
5ae5869b 1834 gMC->Gspos("SQ09",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1835
1836 // TopAnode2 place 2 layers
1837 posX = 18.534+fgkDeltaQuadLHC;
1838 posY = 99.482+fgkDeltaQuadLHC;
d1cd2474 1839 posZ = -1.*kHzAnodeFR4;
5ae5869b 1840 gMC->Gspos("SQ10",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
ddfa5dbc 1841 posZ = kHzTopAnodeSteel2;
5ae5869b 1842 gMC->Gspos("SQ11",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1843
1844 // TopAnode3 place 1 layer
1845 posX = 25.80+fgkDeltaQuadLHC;
1846 posY = 98.61+fgkDeltaQuadLHC;
1847 posZ = 0.;
5ae5869b 1848 gMC->Gspos("SQ12",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1849
1850 // TopEarthFace - 2 copies
1851 posX = 23.122+fgkDeltaQuadLHC;
1852 posY = 96.90+fgkDeltaQuadLHC;
d1cd2474 1853 posZ = kHzOuterFrameEpoxy+kHzOuterFrameInox+kHzTopEarthFaceCu;
5ae5869b 1854 gMC->Gspos("SQ13",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1855 posZ = -1.*posZ;
5ae5869b 1856 gMC->Gspos("SQ13",2,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1857
1858 // TopEarthProfile
1859 posX = 14.475+fgkDeltaQuadLHC;
1860 posY = 97.900+fgkDeltaQuadLHC;
d1cd2474 1861 posZ = kHzTopEarthProfileCu;
5ae5869b 1862 gMC->Gspos("SQ14",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1863 posZ = -1.0*posZ;
5ae5869b 1864 gMC->Gspos("SQ14",2,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1865
1866 // TopGasSupport - 2 copies
1867 posX = 4.9500+fgkDeltaQuadLHC;
1868 posY = 96.200+fgkDeltaQuadLHC;
d1cd2474 1869 posZ = kHzOuterFrameEpoxy+kHzOuterFrameInox+kHzTopGasSupportAl;
5ae5869b 1870 gMC->Gspos("SQ15",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1871 posZ = -1.*posZ;
5ae5869b 1872 gMC->Gspos("SQ15",2,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1873
1874 // TopPositioner parameters - single Stainless Steel trapezoid - 2 copies
1875 posX = 7.60+fgkDeltaQuadLHC;
1876 posY = 98.98+fgkDeltaQuadLHC;
d1cd2474 1877 posZ = kHzOuterFrameEpoxy+kHzOuterFrameInox+2.*kHzTopGasSupportAl+kHzTopPositionerSteel;
5ae5869b 1878 gMC->Gspos("SQ16",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1879 posZ = -1.*posZ;
5ae5869b 1880 gMC->Gspos("SQ16",2,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1881
1882 // OutEdgeFrame
c03e5213 1883 Float_t xCenter[8];
1884 Float_t yCenter[8];
5f91c9e8 1885
c03e5213 1886 xCenter[0] = 73.201 + fgkDeltaQuadLHC;
1887 xCenter[1] = 78.124 + fgkDeltaQuadLHC;
b367fd8f 1888 //xCenter[2] = 82.862 + fgkDeltaQuadLHC;
1889 xCenter[2] = 83.102 + fgkDeltaQuadLHC;
c03e5213 1890 xCenter[3] = 87.418 + fgkDeltaQuadLHC;
b367fd8f 1891 // Fix (5) - overlap of SQ21 with 041M and 125M
5f91c9e8 1892
c03e5213 1893 yCenter[0] = 68.122 + fgkDeltaQuadLHC;
1894 yCenter[1] = 62.860 + fgkDeltaQuadLHC;
b367fd8f 1895 //yCenter[2] = 57.420 + fgkDeltaQuadLHC;
1896 yCenter[2] = 57.660 + fgkDeltaQuadLHC;
c03e5213 1897 yCenter[3] = 51.800 + fgkDeltaQuadLHC;
b367fd8f 1898 // Fix (5) - overlap of SQ21 with 041M and 125M
5f91c9e8 1899
c03e5213 1900 xCenter[4] = 68.122 + fgkDeltaQuadLHC;
1901 xCenter[5] = 62.860 + fgkDeltaQuadLHC;
1902 xCenter[6] = 57.420 + fgkDeltaQuadLHC;
1903 xCenter[7] = 51.800 + fgkDeltaQuadLHC;
5f91c9e8 1904
c03e5213 1905 yCenter[4] = 73.210 + fgkDeltaQuadLHC;
1906 yCenter[5] = 78.124 + fgkDeltaQuadLHC;
1907 yCenter[6] = 82.862 + fgkDeltaQuadLHC;
1908 yCenter[7] = 87.418 + fgkDeltaQuadLHC;
5f91c9e8 1909
d1cd2474 1910 posZ = -1.0*kHzOuterFrameInox;
5ae5869b 1911 gMC->Gspos("SQ17",1,quadrantMLayerName, xCenter[0], yCenter[0], posZ, rot2,"ONLY");
1912 gMC->Gspos("SQ17",2,quadrantMLayerName, xCenter[4], yCenter[4], posZ, rot3,"ONLY");
5f91c9e8 1913
5ae5869b 1914 gMC->Gspos("SQ19",1,quadrantMLayerName, xCenter[1], yCenter[1], posZ, rot2,"ONLY");
1915 gMC->Gspos("SQ19",2,quadrantMLayerName, xCenter[5], yCenter[5], posZ, rot3,"ONLY");
5f91c9e8 1916
5ae5869b 1917 gMC->Gspos("SQ21",1,quadrantMLayerName, xCenter[2], yCenter[2], posZ, rot2,"ONLY");
1918 gMC->Gspos("SQ21",2,quadrantMLayerName, xCenter[6], yCenter[6], posZ, rot3,"ONLY");
ba030c0e 1919
5ae5869b 1920 gMC->Gspos("SQ23",1,quadrantMLayerName, xCenter[3], yCenter[3], posZ, rot2,"ONLY");
1921 gMC->Gspos("SQ23",2,quadrantMLayerName, xCenter[7], yCenter[7], posZ, rot3,"ONLY");
5f91c9e8 1922
ddfa5dbc 1923 posZ = kHzOuterFrameEpoxy;
5f91c9e8 1924
5ae5869b 1925 gMC->Gspos("SQ18",1,quadrantMLayerName, xCenter[0], yCenter[0], posZ, rot2,"ONLY");
1926 gMC->Gspos("SQ18",2,quadrantMLayerName, xCenter[4], yCenter[4], posZ, rot3,"ONLY");
5f91c9e8 1927
5ae5869b 1928 gMC->Gspos("SQ20",1,quadrantMLayerName, xCenter[1], yCenter[1], posZ, rot2,"ONLY");
1929 gMC->Gspos("SQ20",2,quadrantMLayerName, xCenter[5], yCenter[5], posZ, rot3,"ONLY");
5f91c9e8 1930
5ae5869b 1931 gMC->Gspos("SQ22",1,quadrantMLayerName, xCenter[2], yCenter[2], posZ, rot2,"ONLY");
1932 gMC->Gspos("SQ22",2,quadrantMLayerName, xCenter[6], yCenter[6], posZ, rot3,"ONLY");
5f91c9e8 1933
5ae5869b 1934 gMC->Gspos("SQ24",1,quadrantMLayerName, xCenter[3], yCenter[3], posZ, rot2,"ONLY");
1935 gMC->Gspos("SQ24",2,quadrantMLayerName, xCenter[7], yCenter[7], posZ, rot3,"ONLY");
5f91c9e8 1936
1937//---
1938
ba030c0e 1939// OutVFrame
d1cd2474 1940 posX = 2.*kHxInVFrame+kIAF+2.*kHxInHFrame-kHxOutVFrame+2.*kHxV1mm;
1941 posY = 2.*kHyInHFrame+kHyOutVFrame;
ba030c0e 1942 posZ = 0.;
5ae5869b 1943 gMC->Gspos("SQ25",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1944
d1cd2474 1945 // keep memory of the mid position. Used for placing screws
1946 const GReal_t kMidOVposX = posX;
1947 const GReal_t kMidOVposY = posY;
1948 const GReal_t kMidOVposZ = posZ;
1949
1950 const Float_t kTOPY = posY+kHyOutVFrame;
1951 const Float_t kOUTX = posX;
ba030c0e 1952
5f91c9e8 1953// OutVFrame corner
d1cd2474 1954 posX = kOUTX;
1955 posY = kTOPY+((kBl1OCTF+kTl1OCTF)/2.);
5f91c9e8 1956 posZ = 0.;
5ae5869b 1957 gMC->Gspos("SQ26",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1958
1959// VertEarthFaceCu - 2 copies
1960 posX = 89.4000+fgkDeltaQuadLHC;
1961 posY = 25.79+fgkDeltaQuadLHC;
d1cd2474 1962 posZ = kHzFrameThickness+2.0*kHzFoam+kHzVertEarthFaceCu;
5ae5869b 1963 gMC->Gspos("SQ27",1,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1964 posZ = -1.0*posZ;
5ae5869b 1965 gMC->Gspos("SQ27",2,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1966
1967// VertEarthSteel - 2 copies
1968 posX = 91.00+fgkDeltaQuadLHC;
1969 posY = 30.616+fgkDeltaQuadLHC;
d1cd2474 1970 posZ = kHzFrameThickness+2.0*kHzFoam+kHzVertBarSteel;
5ae5869b 1971 gMC->Gspos("SQ28",1,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1972 posZ = -1.0*posZ;
5ae5869b 1973 gMC->Gspos("SQ28",2,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1974
1975// VertEarthProfCu - 2 copies
1976 posX = 92.000+fgkDeltaQuadLHC;
1977 posY = 29.64+fgkDeltaQuadLHC;
d1cd2474 1978 posZ = kHzFrameThickness;
5ae5869b 1979 gMC->Gspos("SQ29",1,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1980 posZ = -1.0*posZ;
5ae5869b 1981 gMC->Gspos("SQ29",2,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1982
1983// SuppLateralPositionner - 2 copies
d1cd2474 1984 posX = 90.2-kNearFarLHC;
1985 posY = 5.00-kNearFarLHC;
1986 posZ = kHzLateralPosnAl-fgkMotherThick2;
5ae5869b 1987 gMC->Gspos("SQ30",1,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1988 posZ = -1.0*posZ;
5ae5869b 1989 gMC->Gspos("SQ30",2,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1990
1991// LateralPositionner - 2 copies - Face view
d1cd2474 1992 posX = 92.175-kNearFarLHC-2.*kHxLPP;
1993 posY = 5.00-kNearFarLHC;
1994 posZ =2.0*kHzLateralPosnAl+kHzLateralPosnInoxFace-fgkMotherThick2;
5ae5869b 1995 gMC->Gspos("SQ31",1,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1996 posZ = -1.0*posZ;
5ae5869b 1997 gMC->Gspos("SQ31",2,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1998
1999// LateralPositionner - Profile view
d1cd2474 2000 posX = 92.175+fgkDeltaQuadLHC+kHxLPF-kHxLPP;
5f91c9e8 2001 posY = 5.00+fgkDeltaQuadLHC;
2002 posZ = 0.;
5ae5869b 2003 gMC->Gspos("SQ32",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY"); // middle layer
5f91c9e8 2004
d1cd2474 2005 posX = 92.175-kNearFarLHC+kHxLPF-kHxLPP;
2006 posY = 5.0000-kNearFarLHC;
2007 posZ = fgkMotherThick2-kHzLPNF;
5ae5869b 2008 gMC->Gspos("SQ33",1,quadrantNLayerName,posX, posY, posZ, 0, "ONLY"); // near layer
5f91c9e8 2009 posZ = -1.*posZ;
5ae5869b 2010 gMC->Gspos("SQ33",2,quadrantFLayerName,posX, posY, posZ, 0, "ONLY"); // far layer
5f91c9e8 2011
2012// VertCradleA 1st Trapezoid - 3 copies
2013 posX = 95.73+fgkDeltaQuadLHC;
2014 posY = 33.26+fgkDeltaQuadLHC;
2015 posZ = 0.;
5ae5869b 2016 gMC->Gspos("SQ34",2,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2017
d1cd2474 2018 posX = 95.73-kNearFarLHC;
2019 posY = 33.26-kNearFarLHC;
2020 posZ = 2.0*kHzLateralSightAl+kHzVerticalCradleAl-fgkMotherThick2;
5ae5869b 2021 gMC->Gspos("SQ34",1,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2022 posZ = -1.0*posZ;
5ae5869b 2023 gMC->Gspos("SQ34",3,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2024
2025// VertCradleB 2nd Trapezoid - 3 copies
2026 posX = 97.29+fgkDeltaQuadLHC;
2027 posY = 23.02+fgkDeltaQuadLHC;
2028 posZ = 0.;
5ae5869b 2029 gMC->Gspos("SQ35",2,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2030
d1cd2474 2031 posX = 97.29-kNearFarLHC;
2032 posY = 23.02-kNearFarLHC;
2033 posZ = 2.0*kHzLateralSightAl+kHzVerticalCradleAl-fgkMotherThick2;
5ae5869b 2034 gMC->Gspos("SQ35",1,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2035 posZ = -1.0*posZ;
5ae5869b 2036 gMC->Gspos("SQ35",3,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2037
2038// OutVertCradleC 3rd Trapeze - 3 copies
2039 posX = 98.31+fgkDeltaQuadLHC;
2040 posY = 12.77+fgkDeltaQuadLHC;
2041 posZ = 0.;
5ae5869b 2042 gMC->Gspos("SQ36",2,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2043
b367fd8f 2044 posX = 98.05-kNearFarLHC;
d1cd2474 2045 posY = 12.77-kNearFarLHC;
d1cd2474 2046 posZ = 2.0*kHzLateralSightAl+kHzVerticalCradleAl-fgkMotherThick2;
b367fd8f 2047 // Fix (2) of extrusion SQ36 from SQN1, SQN2, SQF1, SQF2
2048 // (was posX = 98.31 ...)
5ae5869b 2049 gMC->Gspos("SQ36",1,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2050 posZ = -1.0*posZ;
5ae5869b 2051 gMC->Gspos("SQ36",3,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2052
2053// OutVertCradleD 4th Trapeze - 3 copies
2054 posX = 98.81+fgkDeltaQuadLHC;
2055 posY = 2.52+fgkDeltaQuadLHC;
2056 posZ = 0.;
5ae5869b 2057 gMC->Gspos("SQ37",2,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2058
d1cd2474 2059 posZ = fgkMotherThick1-kHzVerticalCradleAl;
5ae5869b 2060 gMC->Gspos("SQ37",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2061 posZ = -1.0*posZ;
5ae5869b 2062 gMC->Gspos("SQ37",3,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2063
2064// LateralSightSupport - 2 copies
b367fd8f 2065 posX = 98.33-kNearFarLHC;
d1cd2474 2066 posY = 10.00-kNearFarLHC;
2067 posZ = kHzLateralSightAl-fgkMotherThick2;
b367fd8f 2068 // Fix (3) of extrusion SQ38 from SQN1, SQN2, SQF1, SQF2
2069 // (was posX = 98.53 ...)
5ae5869b 2070 gMC->Gspos("SQ38",1,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2071 posZ = -1.0*posZ;
5ae5869b 2072 gMC->Gspos("SQ38",2,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 2073
2074// Mire placement
2075 posX = 92.84+fgkDeltaQuadLHC;
2076 posY = 8.13+fgkDeltaQuadLHC;
ba030c0e 2077 posZ = 0.;
5ae5869b 2078 gMC->Gspos("SQ39",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 2079
2080//---
2081
2082// InHFrame
d1cd2474 2083 posX = 2.0*kHxInVFrame+2.*kHxV1mm+kIAF+kHxInHFrame;
2084 posY = kHyInHFrame;
5f91c9e8 2085 posZ = 0.;
5ae5869b 2086 gMC->Gspos("SQ40",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
ba030c0e 2087
d1cd2474 2088 // keep memory of the mid position. Used for placing screws
2089 const GReal_t kMidHposX = posX;
2090 const GReal_t kMidHposY = posY;
2091 const GReal_t kMidHposZ = posZ;
2092
5f91c9e8 2093// Flat 7.5mm horizontal section
d1cd2474 2094 posX = 2.0*kHxInVFrame+2.*kHxV1mm+kIAF+kHxH1mm;
2095 posY = 2.0*kHyInHFrame+kHyH1mm;
ba030c0e 2096 posZ = 0.;
5ae5869b 2097 gMC->Gspos("SQ41",1,quadrantMLayerName,posX, posY, posZ,0, "ONLY");
ba030c0e 2098
2099// InArcFrame
d1cd2474 2100 posX = 2.0*kHxInVFrame+2.*kHxV1mm;
2101 posY = 2.0*kHyInHFrame+2.*kHyH1mm;
ba030c0e 2102 posZ = 0.;
5ae5869b 2103 gMC->Gspos("SQ42",1,quadrantMLayerName,posX, posY, posZ,0, "ONLY");
ba030c0e 2104
d1cd2474 2105// keep memory of the mid position. Used for placing screws
2106 const GReal_t kMidArcposX = posX;
2107 const GReal_t kMidArcposY = posY;
2108 const GReal_t kMidArcposZ = posZ;
2109
5f91c9e8 2110// ScrewsInFrame - in sensitive volume
ba030c0e 2111
2112 Float_t scruX[64];
2113 Float_t scruY[64];
2114
2115// Screws on IHEpoxyFrame
2116
d1cd2474 2117 const Int_t kNumberOfScrewsIH = 14; // no. of screws on the IHEpoxyFrame
2118 const Float_t kOffX = 5.; // inter-screw distance
ba030c0e 2119
2120 // first screw coordinates
2121 scruX[0] = 21.07;
2122 scruY[0] = -2.23;
2123 // other screw coordinates
d1cd2474 2124 for (Int_t i = 1;i<kNumberOfScrewsIH;i++){
2125 scruX[i] = scruX[i-1]+kOffX;
ba030c0e 2126 scruY[i] = scruY[0];
2127 }
2128 // Position the volumes on the frames
d1cd2474 2129 for (Int_t i = 0;i<kNumberOfScrewsIH;i++){
5f91c9e8 2130 posX = fgkDeltaQuadLHC + scruX[i];
2131 posY = fgkDeltaQuadLHC + scruY[i];
ba030c0e 2132 posZ = 0.;
5ae5869b 2133 gMC->Gspos("SQ43",i+1,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 2134 if (chamber==1)
2135 gMC->Gspos("SQ44",i+1,"SQ40",posX+0.1-kMidHposX, posY+0.1-kMidHposY, posZ-kMidHposZ, 0, "ONLY");
5ae5869b 2136 gMC->Gspos("SQ45",i+1,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
ba030c0e 2137 }
2138 // special screw coordinates
2139 scruX[63] = 16.3;
2140 scruY[63] = -2.23;
5f91c9e8 2141 posX = fgkDeltaQuadLHC + scruX[63];
2142 posY = fgkDeltaQuadLHC + scruY[63];
ba030c0e 2143 posZ = 0.;
5ae5869b 2144 gMC->Gspos("SQ43",64,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 2145 if (chamber==1)
2146 gMC->Gspos("SQ44",64,"SQ40",posX+0.1-kMidHposX, posY+0.1-kMidHposY, posZ-kMidHposZ, 0, "ONLY");
5ae5869b 2147 gMC->Gspos("SQ45",64,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
ba030c0e 2148
2149// Screws on the IVEpoxyFrame
2150
d1cd2474 2151 const Int_t kNumberOfScrewsIV = 15; // no. of screws on the IVEpoxyFrame
2152 const Float_t kOffY = 5.; // inter-screw distance
c03e5213 2153 Int_t firstScrew = 58;
2154 Int_t lastScrew = 44;
ba030c0e 2155
2156 // first (special) screw coordinates
c03e5213 2157 scruX[firstScrew-1] = -2.23;
2158 scruY[firstScrew-1] = 16.3;
ba030c0e 2159 // second (repetitive) screw coordinates
c03e5213 2160 scruX[firstScrew-2] = -2.23;
2161 scruY[firstScrew-2] = 21.07;
ba030c0e 2162 // other screw coordinates
c03e5213 2163 for (Int_t i = firstScrew-3;i>lastScrew-2;i--){
2164 scruX[i] = scruX[firstScrew-2];
d1cd2474 2165 scruY[i] = scruY[i+1]+kOffY;
ba030c0e 2166 }
2167
d1cd2474 2168 for (Int_t i = 0;i<kNumberOfScrewsIV;i++){
c03e5213 2169 posX = fgkDeltaQuadLHC + scruX[i+lastScrew-1];
2170 posY = fgkDeltaQuadLHC + scruY[i+lastScrew-1];
ba030c0e 2171 posZ = 0.;
5ae5869b 2172 gMC->Gspos("SQ43",i+lastScrew,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 2173 if (chamber==1)
2174 gMC->Gspos("SQ44",i+lastScrew,"SQ00",posX+0.1-kMidVposX, posY+0.1-kMidVposY, posZ-kMidVposZ, 0, "ONLY");
5ae5869b 2175 gMC->Gspos("SQ45",i+lastScrew,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
ba030c0e 2176 }
2177
2178// Screws on the OVEpoxyFrame
2179
d1cd2474 2180 const Int_t kNumberOfScrewsOV = 10; // no. of screws on the OVEpoxyFrame
ba030c0e 2181
c03e5213 2182 firstScrew = 15;
2183 lastScrew = 25;
ba030c0e 2184
2185 // first (repetitive) screw coordinates
d1cd2474 2186 // notes: 1st screw should be placed in volume 40 (InnerHorizFrame)
c03e5213 2187 scruX[firstScrew-1] = 90.9;
2188 scruY[firstScrew-1] = -2.23; // true value
ba030c0e 2189
2190 // other screw coordinates
c03e5213 2191 for (Int_t i = firstScrew; i<lastScrew; i++ ){
2192 scruX[i] = scruX[firstScrew-1];
d1cd2474 2193 scruY[i] = scruY[i-1]+kOffY;
ba030c0e 2194 }
d1cd2474 2195 for (Int_t i = 1;i<kNumberOfScrewsOV;i++){
c03e5213 2196 posX = fgkDeltaQuadLHC + scruX[i+firstScrew-1];
2197 posY = fgkDeltaQuadLHC + scruY[i+firstScrew-1];
ba030c0e 2198 posZ = 0.;
5ae5869b 2199 gMC->Gspos("SQ43",i+firstScrew,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 2200 // ??
2201 if (chamber==1)
2202 gMC->Gspos("SQ44",i+firstScrew,"SQ25",posX+0.1-kMidOVposX, posY+0.1-kMidOVposY, posZ-kMidOVposZ, 0, "ONLY");
5ae5869b 2203 gMC->Gspos("SQ45",i+firstScrew,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
ba030c0e 2204 }
d1cd2474 2205 // special case for 1st screw, inside the horizontal frame (volume 40)
2206 posX = fgkDeltaQuadLHC + scruX[firstScrew-1];
2207 posY = fgkDeltaQuadLHC + scruY[firstScrew-1];
2208 posZ = 0.;
2209 if (chamber==1)
2210 gMC->Gspos("SQ44",firstScrew,"SQ40",posX+0.1-kMidHposX, posY+0.1-kMidHposY, posZ-kMidHposZ, 0, "ONLY");
2211
ba030c0e 2212// Inner Arc of Frame, screw positions and numbers-1
2213 scruX[62] = 16.009; scruY[62] = 1.401;
2214 scruX[61] = 14.564; scruY[61] = 6.791;
2215 scruX[60] = 11.363; scruY[60] = 11.363;
2216 scruX[59] = 6.791 ; scruY[59] = 14.564;
2217 scruX[58] = 1.401 ; scruY[58] = 16.009;
2218
2219 for (Int_t i = 0;i<5;i++){
5f91c9e8 2220 posX = fgkDeltaQuadLHC + scruX[i+58];
2221 posY = fgkDeltaQuadLHC + scruY[i+58];
ba030c0e 2222 posZ = 0.;
5ae5869b 2223 gMC->Gspos("SQ43",i+58+1,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 2224 if (chamber==1)
2225 gMC->Gspos("SQ44",i+58+1,"SQ42",posX+0.1-kMidArcposX, posY+0.1-kMidArcposY, posZ-kMidArcposZ, 0, "ONLY");
5ae5869b 2226 gMC->Gspos("SQ45",i+58+1,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
5f91c9e8 2227 }
2228}
ba030c0e 2229
5f91c9e8 2230//______________________________________________________________________________
d1cd2474 2231void AliMUONSt1GeometryBuilderV2::PlaceInnerLayers(Int_t chamber)
5f91c9e8 2232{
5398f946 2233/// Place the gas and copper layers for the specified chamber.
ba030c0e 2234
5f91c9e8 2235// Rotation Matrices
2236 Int_t rot1, rot2, rot3, rot4;
ba030c0e 2237
d1cd2474 2238 fMUON->AliMatrix(rot1, 90., 315., 90., 45., 0., 0.); // -45 deg
2239 fMUON->AliMatrix(rot2, 90., 90., 90., 180., 0., 0.); // 90 deg
2240 fMUON->AliMatrix(rot3, 90., 270., 90., 0., 0., 0.); // -90 deg
2241 fMUON->AliMatrix(rot4, 90., 45., 90., 135., 0., 0.); // deg
ba030c0e 2242
5f91c9e8 2243 GReal_t x;
2244 GReal_t y;
2245 GReal_t zg = 0.;
2246 GReal_t zc = fgkHzGas + fgkHzPadPlane;
2247 Int_t dpos = (chamber-1)*2;
2248 TString name;
ba030c0e 2249
5f91c9e8 2250 x = 14.53 + fgkDeltaQuadLHC;
2251 y = 53.34 + fgkDeltaQuadLHC;
2252 name = GasVolumeName("SAG", chamber);
2253 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,0,"ONLY");
2254 gMC->Gspos("SA1C", 1+dpos, QuadrantMLayerName(chamber),x,y, zc,0,"ONLY");
2255 gMC->Gspos("SA1C", 2+dpos, QuadrantMLayerName(chamber),x,y,-zc,0,"ONLY");
2256
2257 x = 40.67 + fgkDeltaQuadLHC;
2258 y = 40.66 + fgkDeltaQuadLHC;
2259 name = GasVolumeName("SBG", chamber);
2260 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot1,"ONLY");
2261 gMC->Gspos("SB1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot1,"ONLY");
2262 gMC->Gspos("SB1C", 2+dpos, QuadrantMLayerName(chamber),x,y,-zc,rot1,"ONLY");
2263
2264 x = 53.34 + fgkDeltaQuadLHC;
2265 y = 14.52 + fgkDeltaQuadLHC;
2266 name = GasVolumeName("SCG", chamber);
2267 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot2,"ONLY");
2268 gMC->Gspos("SC1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot2,"ONLY");
2269 gMC->Gspos("SC1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot2,"ONLY");
2270
2271 x = 5.83 + fgkDeltaQuadLHC;
2272 y = 17.29 + fgkDeltaQuadLHC;
2273 name = GasVolumeName("SDG", chamber);
2274 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot3,"ONLY");
2275 gMC->Gspos("SD1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot3,"ONLY");
2276 gMC->Gspos("SD1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot3,"ONLY");
2277
2278 x = 9.04 + fgkDeltaQuadLHC;
2279 y = 16.91 + fgkDeltaQuadLHC;
2280 name = GasVolumeName("SEG", chamber);
2281 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,0,"ONLY");
2282 gMC->Gspos("SE1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,0,"ONLY");
2283 gMC->Gspos("SE1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,0,"ONLY");
2284
2285 x = 10.12 + fgkDeltaQuadLHC;
2286 y = 14.67 + fgkDeltaQuadLHC;
2287 name = GasVolumeName("SFG", chamber);
2288 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot4,"ONLY");
2289 gMC->Gspos("SF1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot4,"ONLY");
2290 gMC->Gspos("SF1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot4,"ONLY");
2291
2292 x = 8.2042 + fgkDeltaQuadLHC;
2293 y = 16.19 + fgkDeltaQuadLHC;
2294 name = GasVolumeName("SGG", chamber);
2295 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot4,"ONLY");
2296 gMC->Gspos("SG1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot4,"ONLY");
2297 gMC->Gspos("SG1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot4,"ONLY");
2298
2299 x = 14.68 + fgkDeltaQuadLHC;
2300 y = 10.10 + fgkDeltaQuadLHC;
2301 name = GasVolumeName("SHG", chamber);
2302 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot4,"ONLY");
2303 gMC->Gspos("SH1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot4,"ONLY");
2304 gMC->Gspos("SH1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot4,"ONLY");
2305
2306 x = 16.21 + fgkDeltaQuadLHC;
2307 y = 8.17 + fgkDeltaQuadLHC;
2308 name = GasVolumeName("SIG", chamber);
2309 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot4,"ONLY");
2310 gMC->Gspos("SI1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot4,"ONLY");
2311 gMC->Gspos("SI1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot4,"ONLY");
2312
2313 x = 16.92 + fgkDeltaQuadLHC;
2314 y = 9.02 + fgkDeltaQuadLHC;
2315 name = GasVolumeName("SJG", chamber);
2316 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot3,"ONLY");
2317 gMC->Gspos("SJ1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot3,"ONLY");
2318 gMC->Gspos("SJ1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot3,"ONLY");
2319
2320 x = 17.30 + fgkDeltaQuadLHC;
2321 y = 5.85 + fgkDeltaQuadLHC;
2322 name = GasVolumeName("SKG", chamber);
2323 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,0,"ONLY");
2324 gMC->Gspos("SK1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,0,"ONLY");
2325 gMC->Gspos("SK1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,0,"ONLY");
ba030c0e 2326}
2327
fdbaed6e 2328
2329//______________________________________________________________________________
2330void AliMUONSt1GeometryBuilderV2::PlaceSpacer0(Int_t chamber)
2331{
2332/// Place the spacer defined in global positions
2333/// !! This method should be used only to find out the right mother volume
2334/// for the spacer if geometry is changed and the plane segment volumes
2335/// will change their numbering
2336
2337 // Global position of mother volume for the QuadrantMLayer
2338 // SQM1: (-2.6, -2.6, -522.41)
2339 // SQM2: (-2.6, -2.6, -541.49)
2340 GReal_t mx = 2.6;
2341 GReal_t my = -2.6;
2342 GReal_t mz = 522.41;
2343
2344 GReal_t x, y, z;
2345 x = 40.82 - mx;
2346 y = 43.04 - my;
2347 z = 522.41 - mz;
5ae5869b 2348 AliDebugStream(2) << "spacer05 pos1: " << x << ", " << y << ", " << z << endl;
fdbaed6e 2349 gMC->Gspos("Spacer05", 1, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
2350
2351 y = 44.54 - my;
5ae5869b 2352 AliDebugStream(2) << "spacer05 pos2: " << x << ", " << y << ", " << z << endl;
fdbaed6e 2353 gMC->Gspos("Spacer05", 2, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
2354
2355 x = 40.82 - mx;
2356 y = 43.79 - my;
2357 z = 519.76 - mz;
5ae5869b 2358 AliDebugStream(2) << "spacer06 pos1: " << x << ", " << y << ", " << z << endl;
fdbaed6e 2359 gMC->Gspos("Spacer06", 1, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
2360
2361 z = 525.06 - mz;
5ae5869b 2362 AliDebugStream(2) << "spacer06 pos2: " << x << ", " << y << ", " << z << endl;
fdbaed6e 2363 gMC->Gspos("Spacer06", 2, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
2364
2365 x = 40.82 - mx;
2366 y = 43.79 - my;
2367 z = 522.41 - mz;
5ae5869b 2368 AliDebugStream(2) << "spacer07 pos1: " << x << ", " << y << ", " << z << endl;
fdbaed6e 2369 gMC->Gspos("Spacer07", 1, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
2370}
2371
5f91c9e8 2372//______________________________________________________________________________
331a617a 2373void AliMUONSt1GeometryBuilderV2::PlaceSector(const AliMpSector* sector,
5ae5869b 2374 TExMap specialMap,
5f91c9e8 2375 const TVector3& where, Bool_t reflectZ, Int_t chamber)
ba030c0e 2376{
5398f946 2377/// Place all the segments in the mother volume, at the position defined
5ae5869b 2378/// by the sector's data. \n
2379/// The lines with comments COMMENT OUT BEGIN/END indicates blocks
2380/// which can be commented out in order to reduce the number of volumes
2381/// in a sector to the plane segments corresponding to regular motifs only.
ba030c0e 2382
5f91c9e8 2383 static Int_t segNum=1;
2384 Int_t sgn;
2385 Int_t reflZ;
2386 Int_t rotMat;
2387
2388 if (!reflectZ) {
2389 sgn= 1;
2390 reflZ=0; // no reflection along z... nothing
d1cd2474 2391 fMUON->AliMatrix(rotMat, 90.,90.,90,180.,0.,0.); // 90° rotation around z, NO reflection along z
5f91c9e8 2392 } else {
2393 sgn=-1;
d1cd2474 2394 fMUON->AliMatrix(reflZ, 90.,0.,90,90.,180.,0.); // reflection along z
2395 fMUON->AliMatrix(rotMat, 90.,90.,90,180.,180.,0.); // 90° rotation around z AND reflection along z
5f91c9e8 2396 }
2397
ba030c0e 2398 GReal_t posX,posY,posZ;
2399
86488ea7 2400#ifdef WITH_STL
d1cd2474 2401 vector<Int_t> alreadyDone;
2402#endif
2403
86488ea7 2404#ifdef WITH_ROOT
d1cd2474 2405 TArrayI alreadyDone(20);
2406 Int_t nofAlreadyDone = 0;
2407#endif
2408
5f91c9e8 2409 for (Int_t irow=0;irow<sector->GetNofRows();irow++){ // for each row
2410 AliMpRow* row = sector->GetRow(irow);
ba030c0e 2411
ba030c0e 2412
5f91c9e8 2413 for (Int_t iseg=0;iseg<row->GetNofRowSegments();iseg++){ // for each row segment
2414 AliMpVRowSegment* seg = row->GetRowSegment(iseg);
5f91c9e8 2415
d1cd2474 2416 Long_t value = specialMap.GetValue(seg->GetMotifPositionId(0));
2417
2418 if ( value == 0 ){ //if this is a normal segment (ie. not part of <specialMap>)
5f91c9e8 2419
2420 // create the cathode part
62c708bf 2421 CreatePlaneSegment(segNum, seg->Dimensions(), seg->GetNofMotifs());
5f91c9e8 2422
e77b6d6b 2423 posX = where.X() + seg->Position().X();
2424 posY = where.Y() + seg->Position().Y();
5f91c9e8 2425 posZ = where.Z() + sgn * (TotalHzPlane() + fgkHzGas + 2.*fgkHzPadPlane);
62c708bf 2426 gMC->Gspos(PlaneSegmentName(segNum).Data(), 1,
2427 QuadrantMLayerName(chamber), posX, posY, posZ, reflZ, "ONLY");
5f91c9e8 2428
2429 // and place all the daughter boards of this segment
5ae5869b 2430
2431// COMMENT OUT BEGIN
5f91c9e8 2432 for (Int_t motifNum=0;motifNum<seg->GetNofMotifs();motifNum++) {
e8c253a0 2433
2434 // Copy number
5f91c9e8 2435 Int_t motifPosId = seg->GetMotifPositionId(motifNum);
2436 AliMpMotifPosition* motifPos =
2437 sector->GetMotifMap()->FindMotifPosition(motifPosId);
e8c253a0 2438 Int_t copyNo = motifPosId;
866c3232 2439 if ( sector->GetDirection() == AliMp::kX) copyNo += fgkDaughterCopyNoOffset;
5f91c9e8 2440
e8c253a0 2441 // Position
e77b6d6b 2442 posX = where.X() + motifPos->Position().X() + fgkOffsetX;
2443 posY = where.Y() + motifPos->Position().Y() + fgkOffsetY;
5f91c9e8 2444 posZ = where.Z() + sgn * (fgkMotherThick1 - TotalHzDaughter());
e8c253a0 2445 gMC->Gspos(fgkDaughterName, copyNo, QuadrantMLayerName(chamber), posX, posY, posZ, reflZ, "ONLY");
5f91c9e8 2446 }
5ae5869b 2447// COMMENT OUT END
2448
5f91c9e8 2449 segNum++;
2450
2451 } else {
2452
5ae5869b 2453// COMMENT OUT BEGIN
5f91c9e8 2454 // if this is a special segment
2455 for (Int_t motifNum=0;motifNum<seg->GetNofMotifs();motifNum++) {// for each motif
2456
2457 Int_t motifPosId = seg->GetMotifPositionId(motifNum);
2458
86488ea7 2459#ifdef WITH_STL
d1cd2474 2460 if (find(alreadyDone.begin(),alreadyDone.end(),motifPosId)
2461 != alreadyDone.end()) continue; // don't treat the same motif twice
2462
d1cd2474 2463#endif
86488ea7 2464#ifdef WITH_ROOT
d1cd2474 2465 Bool_t isDone = false;
2466 Int_t i=0;
2467 while (i<nofAlreadyDone && !isDone) {
2468 if (alreadyDone.At(i) == motifPosId) isDone=true;
2469 i++;
2470 }
2471 if (isDone) continue; // don't treat the same motif twice
630711ed 2472#endif
d1cd2474 2473
2474 AliMUONSt1SpecialMotif spMot = *((AliMUONSt1SpecialMotif*)specialMap.GetValue(motifPosId));
5ae5869b 2475 AliDebugStream(2) << chamber << " processing special motif: " << motifPosId << endl;
d1cd2474 2476
5f91c9e8 2477 AliMpMotifPosition* motifPos = sector->GetMotifMap()->FindMotifPosition(motifPosId);
2478
e8c253a0 2479 // Copy number
2480 Int_t copyNo = motifPosId;
866c3232 2481 if ( sector->GetDirection() == AliMp::kX) copyNo += fgkDaughterCopyNoOffset;
e8c253a0 2482
5f91c9e8 2483 // place the hole for the motif, wrt the requested rotation angle
2484 Int_t rot = ( spMot.GetRotAngle()<0.1 ) ? reflZ:rotMat;
2485
e77b6d6b 2486 posX = where.X() + motifPos->Position().X() + spMot.GetDelta().X();
2487 posY = where.Y() + motifPos->Position().Y() + spMot.GetDelta().Y();
5f91c9e8 2488 posZ = where.Z() + sgn * (TotalHzPlane() + fgkHzGas + 2.*fgkHzPadPlane);
e8c253a0 2489 gMC->Gspos(fgkHoleName, copyNo, QuadrantMLayerName(chamber), posX, posY, posZ, rot, "ONLY");
5f91c9e8 2490
2491 // then place the daughter board for the motif, wrt the requested rotation angle
2492 posX = posX+fgkDeltaFilleEtamX;
2493 posY = posY+fgkDeltaFilleEtamY;
2494 posZ = where.Z() + sgn * (fgkMotherThick1 - TotalHzDaughter());
e8c253a0 2495 gMC->Gspos(fgkDaughterName, copyNo, QuadrantMLayerName(chamber), posX, posY, posZ, rot, "ONLY");
5f91c9e8 2496
86488ea7 2497#ifdef WITH_STL
d1cd2474 2498 alreadyDone.push_back(motifPosId);// mark this motif as done
2499#endif
86488ea7 2500#ifdef WITH_ROOT
d1cd2474 2501 if (nofAlreadyDone == alreadyDone.GetSize())
2502 alreadyDone.Set(2*nofAlreadyDone);
2503 alreadyDone.AddAt(motifPosId, nofAlreadyDone++);
2504#endif
5ae5869b 2505 AliDebugStream(2) << chamber << " processed motifPosId: " << motifPosId << endl;
5f91c9e8 2506 }
5ae5869b 2507// COMMENT OUT END
2508
5f91c9e8 2509 }// end of special motif case
2510 }
2511 }
5398f946 2512/// \endcond
5f91c9e8 2513}
2514
2515//______________________________________________________________________________
d1cd2474 2516TString AliMUONSt1GeometryBuilderV2::GasVolumeName(const TString& name, Int_t chamber) const
ba030c0e 2517{
5398f946 2518/// Insert the chamber number into the name.
ba030c0e 2519
5f91c9e8 2520 TString newString(name);
2521
2522 TString number("");
2523 number += chamber;
ba030c0e 2524
5f91c9e8 2525 newString.Insert(2, number);
ba030c0e 2526
5f91c9e8 2527 return newString;
ba030c0e 2528}
2529
5f91c9e8 2530//
2531// public methods
2532//
2533
2534//______________________________________________________________________________
d1cd2474 2535void AliMUONSt1GeometryBuilderV2::CreateMaterials()
ba030c0e 2536{
5398f946 2537/// Define materials specific to station 1
2538
d1cd2474 2539// Materials and medias defined in MUONv1:
2540//
2541// AliMaterial( 9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
2542// AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
2543// AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500);
2544// AliMixture( 19, "Bakelite$", abak, zbak, dbak, -3, wbak);
2545// AliMixture( 20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
2546// AliMixture( 21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
2547// AliMixture( 22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
2548// AliMixture( 23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
2549// AliMixture( 24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
2550// AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.);
2551// AliMixture( 32, "Vetronite$",aglass, zglass, dglass, 5, wglass);
2552// AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9);
2553// AliMixture( 34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac);
2554
2555// AliMedium( 1, "AIR_CH_US ", 15, 1, iSXFLD, ...
2556// AliMedium( 4, "ALU_CH_US ", 9, 0, iSXFLD, ...
2557// AliMedium( 5, "ALU_CH_US ", 10, 0, iSXFLD, ...
2558// AliMedium( 6, "AR_CH_US ", 20, 1, iSXFLD, ...
2559// AliMedium( 7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, ...
2560// AliMedium( 8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, ...
2561// AliMedium( 9, "ARG_CO2 ", 22, 1, iSXFLD, ...
2562// AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, ...
2563// AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, ...
2564// AliMedium(13, "CARBON ", 33, 0, iSXFLD, ...
2565// AliMedium(14, "Rohacell ", 34, 0, iSXFLD, ...
2d5a9247 2566// AliMedium(24, "FrameCH$ ", 44, 1, iSXFLD, ...
d1cd2474 2567
2568 //
2569 // --- Define materials for GEANT ---
2570 //
2571
2572 fMUON->AliMaterial(41, "Aluminium II$", 26.98, 13., 2.7, -8.9, 26.1);
2573 // was id: 9
2574 // from PDG and "The Particle Detector BriefBook", Bock and Vasilescu, P.18
2575 // ??? same but the last but one argument < 0
d1cd2474 2576 //
2577 // --- Define mixtures for GEANT ---
2578 //
2579
79be0537 2580 // // Ar-CO2 gas II (80%+20%)
2581// Float_t ag1[2] = { 39.95, 44.01};
2582// Float_t zg1[2] = { 18., 22.};
2583// Float_t wg1[2] = { .8, 0.2};
2584// Float_t dg1 = .001821;
2585// fMUON->AliMixture(45, "ArCO2 II 80%$", ag1, zg1, dg1, 2, wg1);
2586// // was id: 22
2587// // use wg1 weighting factors (6th arg > 0)
d1cd2474 2588
2589 // Rohacell 51 II - imide methacrylique
2590 Float_t aRohacell51[4] = { 12.01, 1.01, 16.00, 14.01};
2591 Float_t zRohacell51[4] = { 6., 1., 8., 7.};
2592 Float_t wRohacell51[4] = { 9., 13., 2., 1.};
5f91c9e8 2593 Float_t dRohacell51 = 0.052;
d1cd2474 2594 fMUON->AliMixture(46, "FOAM$",aRohacell51,zRohacell51,dRohacell51,-4,wRohacell51);
2595 // was id: 32
2596 // use relative A (molecular) values (6th arg < 0)
5f91c9e8 2597
d1cd2474 2598 Float_t aSnPb[2] = { 118.69, 207.19};
2599 Float_t zSnPb[2] = { 50, 82};
2600 Float_t wSnPb[2] = { 0.6, 0.4} ;
5f91c9e8 2601 Float_t dSnPb = 8.926;
d1cd2474 2602 fMUON->AliMixture(47, "SnPb$", aSnPb,zSnPb,dSnPb,2,wSnPb);
2603 // was id: 35
2604 // use wSnPb weighting factors (6th arg > 0)
ba030c0e 2605
5f91c9e8 2606 // plastic definition from K5, Freiburg (found on web)
d1cd2474 2607 Float_t aPlastic[2]={ 1.01, 12.01};
2608 Float_t zPlastic[2]={ 1, 6};
2609 Float_t wPlastic[2]={ 1, 1};
5f91c9e8 2610 Float_t denPlastic=1.107;
d1cd2474 2611 fMUON->AliMixture(48, "Plastic$",aPlastic,zPlastic,denPlastic,-2,wPlastic);
2612 // was id: 33
2613 // use relative A (molecular) values (6th arg < 0)...no other info...
5f91c9e8 2614
d1cd2474 2615 // Not used, to be removed
2616 //
d1cd2474 2617 // was id: 34
2618
5f91c9e8 2619 // Inox/Stainless Steel (18%Cr, 9%Ni)
d1cd2474 2620 Float_t aInox[3] = {55.847, 51.9961, 58.6934};
2621 Float_t zInox[3] = {26., 24., 28.};
2622 Float_t wInox[3] = {0.73, 0.18, 0.09};
5f91c9e8 2623 Float_t denInox = 7.930;
d1cd2474 2624 fMUON->AliMixture(50, "StainlessSteel$",aInox,zInox,denInox,3,wInox);
2625 // was id: 37
2626 // use wInox weighting factors (6th arg > 0)
2627 // from CERN note NUFACT Note023, Oct.2000
2628 //
2629 // End - Not used, to be removed
2630
2631 //
2632 // --- Define the tracking medias for GEANT ---
2633 //
2634
5f91c9e8 2635 GReal_t epsil = .001; // Tracking precision,
d1cd2474 2636 //GReal_t stemax = -1.; // Maximum displacement for multiple scat
5f91c9e8 2637 GReal_t tmaxfd = -20.; // Maximum angle due to field deflection
d1cd2474 2638 //GReal_t deemax = -.3; // Maximum fractional energy loss, DLS
5f91c9e8 2639 GReal_t stmin = -.8;
d1cd2474 2640 GReal_t maxStepAlu = fMUON->GetMaxStepAlu();
2641 GReal_t maxDestepAlu = fMUON->GetMaxDestepAlu();
8224ab9a 2642 // GReal_t maxStepGas = fMUON->GetMaxStepGas();
7b5f6560 2643 Int_t iSXFLD = gAlice->Field()->PrecInteg();
5f91c9e8 2644 Float_t sXMGMX = gAlice->Field()->Max();
2645
d1cd2474 2646 fMUON->AliMedium(21, "ALU_II$", 41, 0, iSXFLD, sXMGMX,
2647 tmaxfd, maxStepAlu, maxDestepAlu, epsil, stmin);
f1501d74 2648
d1cd2474 2649 // was med: 20 mat: 36
79be0537 2650 // fMUON->AliMedium(25, "ARG_CO2_II", 45, 1, iSXFLD, sXMGMX,
2651// tmaxfd, maxStepGas, maxDestepAlu, epsil, stmin);
2652// // was med: 9 mat: 22
d1cd2474 2653 fMUON->AliMedium(26, "FOAM_CH$", 46, 0, iSXFLD, sXMGMX,
2654 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ;
2655 // was med: 16 mat: 32
2656 fMUON->AliMedium(27, "SnPb$", 47, 0, iSXFLD, sXMGMX,
2657 10.0, 0.01, 1.0, 0.003, 0.003);
2658 // was med: 19 mat: 35
2659 fMUON->AliMedium(28, "Plastic$", 48, 0, iSXFLD, sXMGMX,
2660 10.0, 0.01, 1.0, 0.003, 0.003);
2661 // was med: 17 mat: 33
2662
2663 // Not used, to be romoved
2664 //
f1501d74 2665
d1cd2474 2666 fMUON->AliMedium(30, "InoxBolts$", 50, 1, iSXFLD, sXMGMX,
2667 10.0, 0.01, 1.0, 0.003, 0.003);
2668 // was med: 21 mat: 37
2669 //
2670 // End - Not used, to be removed
ba030c0e 2671}
2672
5f91c9e8 2673//______________________________________________________________________________
d1cd2474 2674void AliMUONSt1GeometryBuilderV2::CreateGeometry()
ba030c0e 2675{
5398f946 2676/// Create the detailed GEANT geometry for the dimuon arm station1
2677
5a0e88a7 2678 AliDebug(1,"Called");
5f91c9e8 2679
adbabf6d 2680 // Define chamber volumes as virtual
2681 //
2682
5f91c9e8 2683 // Create basic volumes
2684 //
2685 CreateHole();
2686 CreateDaughterBoard();
2687 CreateInnerLayers();
fdbaed6e 2688 // CreateSpacer0();
2689 CreateSpacer();
ba030c0e 2690
5f91c9e8 2691 // Create reflexion matrices
2692 //
d1cd2474 2693/*
5f91c9e8 2694 Int_t reflXZ, reflYZ, reflXY;
d1cd2474 2695 fMUON->AliMatrix(reflXZ, 90., 180., 90., 90., 180., 0.);
2696 fMUON->AliMatrix(reflYZ, 90., 0., 90.,-90., 180., 0.);
2697 fMUON->AliMatrix(reflXY, 90., 180., 90., 270., 0., 0.);
2698*/
5f91c9e8 2699 // Define transformations for each quadrant
e7addd77 2700 // In old coordinate system: In new coordinate system:
5f91c9e8 2701 //
e7addd77 2702 //
2703 // II. | I. I. | II.
ecbcb19e 2704 // | (101) | (100)
e7addd77 2705 // _____ | ____ _____ | ____
2706 // | |
2707 // III. | IV. IV. | III.
ecbcb19e 2708 // (102) | (103)
5f91c9e8 2709 //
d1cd2474 2710/*
5f91c9e8 2711 Int_t rotm[4];
2712 rotm[0]=0; // quadrant I
2713 rotm[1]=reflXZ; // quadrant II
2714 rotm[2]=reflXY; // quadrant III
2715 rotm[3]=reflYZ; // quadrant IV
d1cd2474 2716*/
2717 TGeoRotation rotm[4];
2718 rotm[0] = TGeoRotation("identity");
2719 rotm[1] = TGeoRotation("reflXZ", 90., 180., 90., 90., 180., 0.);
2720 rotm[2] = TGeoRotation("reflXY", 90., 180., 90., 270., 0., 0.);
2721 rotm[3] = TGeoRotation("reflYZ", 90., 0., 90.,-90., 180., 0.);
ba030c0e 2722
5f91c9e8 2723 TVector3 scale[4];
2724 scale[0] = TVector3( 1, 1, 1); // quadrant I
2725 scale[1] = TVector3(-1, 1, -1); // quadrant II
2726 scale[2] = TVector3(-1, -1, 1); // quadrant III
2727 scale[3] = TVector3( 1, -1, -1); // quadrant IV
ba030c0e 2728
a432117a 2729 Int_t detElemId[4];
ecbcb19e 2730 detElemId[0] = 1; // quadrant I
e7addd77 2731 detElemId[1] = 0; // quadrant II
ecbcb19e 2732 detElemId[2] = 3; // quadrant III
2733 detElemId[3] = 2; // quadrant IV
a432117a 2734
5f91c9e8 2735 // Shift in Z of the middle layer
10bb087f 2736 Double_t deltaZ = 7.5/2.;
5f91c9e8 2737
2738 // Position of quadrant I wrt to the chamber position
b367fd8f 2739 // TVector3 pos0(-fgkDeltaQuadLHC, -fgkDeltaQuadLHC, deltaZ);
5f91c9e8 2740
2741 // Shift for near/far layers
2742 GReal_t shiftXY = fgkFrameOffset;
2743 GReal_t shiftZ = fgkMotherThick1+fgkMotherThick2;
2744
2745 // Build two chambers
2746 //
2747 for (Int_t ich=1; ich<3; ich++) {
2748
2749 // Create quadrant volume
2750 CreateQuadrant(ich);
2751
2752 // Place gas volumes
2753 PlaceInnerLayers(ich);
2754
2755 // Place the quadrant
2756 for (Int_t i=0; i<4; i++) {
b367fd8f 2757 // DE envelope
2758 GReal_t posx0, posy0, posz0;
2759 posx0 = fgkPadXOffsetBP * scale[i].X();
2760 posy0 = fgkPadYOffsetBP * scale[i].Y();;
2761 posz0 = deltaZ * scale[i].Z();
2762 GetEnvelopes(ich-1)
2763 ->AddEnvelope(QuadrantEnvelopeName(ich,i), detElemId[i] + ich*100, true,
2764 TGeoTranslation(posx0, posy0, posz0), rotm[i]);
2765
5f91c9e8 2766 // Middle layer
a432117a 2767 GReal_t posx, posy, posz;
b367fd8f 2768 posx = -fgkDeltaQuadLHC - fgkPadXOffsetBP;
2769 posy = -fgkDeltaQuadLHC - fgkPadYOffsetBP;
2770 posz = 0.;
a432117a 2771 GetEnvelopes(ich-1)
b367fd8f 2772 ->AddEnvelopeConstituent(QuadrantMLayerName(ich), QuadrantEnvelopeName(ich,i),
2773 i+1, TGeoTranslation(posx, posy, posz));
5ae5869b 2774 GetEnvelopes(ich-1)
2775 ->AddEnvelopeConstituent(QuadrantMFLayerName(ich), QuadrantEnvelopeName(ich,i),
2776 i+5, TGeoTranslation(posx, posy, posz));
5f91c9e8 2777
2778 // Near/far layers
b367fd8f 2779 GReal_t posx2 = posx + shiftXY;;
2780 GReal_t posy2 = posy + shiftXY;;
2781 GReal_t posz2 = posz - shiftZ;;
d1cd2474 2782 //gMC->Gspos(QuadrantNLayerName(ich), i+1, "ALIC", posx2, posy2, posz2, rotm[i],"ONLY");
a432117a 2783 GetEnvelopes(ich-1)
b367fd8f 2784 ->AddEnvelopeConstituent(QuadrantNLayerName(ich), QuadrantEnvelopeName(ich,i),
2785 i+1, TGeoTranslation(posx2, posy2, posz2));
5f91c9e8 2786
b367fd8f 2787 posz2 = posz + shiftZ;
d1cd2474 2788 //gMC->Gspos(QuadrantFLayerName(ich), i+1, "ALIC", posx2, posy2, posz2, rotm[i],"ONLY");
a432117a 2789 GetEnvelopes(ich-1)
b367fd8f 2790 ->AddEnvelopeConstituent(QuadrantFLayerName(ich), QuadrantEnvelopeName(ich,i),
2791 i+1, TGeoTranslation(posx2, posy2, posz2));
5ae5869b 2792
fdbaed6e 2793 // Place spacer in global coordinates in the first non rotated quadrant
2794 // if ( detElemId[i] == 0 ) PlaceSpacer0(ich);
2795 // !! This placement should be used only to find out the right mother volume
2796 // for the spacer if geometry is changed and the plane segment volumes
2797 // will change their numbering
2798 // The call to the method CreateSpacer0(); above haa to be uncommented, too
5f91c9e8 2799 }
2800 }
5f91c9e8 2801}
2802
2803//______________________________________________________________________________
d1cd2474 2804void AliMUONSt1GeometryBuilderV2::SetTransformations()
5f91c9e8 2805{
5398f946 2806/// Define the transformations for the station2 chambers.
5f91c9e8 2807
7b5f6560 2808 if (gAlice->GetModule("SHIL")) {
2809 SetMotherVolume(0, "YOUT1");
2810 SetMotherVolume(1, "YOUT1");
2811 }
2812
adbabf6d 2813 SetVolume(0, "SC01", true);
2814 SetVolume(1, "SC02", true);
2815
b7ef3c96 2816 Double_t zpos1 = - AliMUONConstants::DefaultChamberZ(0);
2817 SetTranslation(0, TGeoTranslation(0., 0., zpos1));
5f91c9e8 2818
b7ef3c96 2819 Double_t zpos2 = - AliMUONConstants::DefaultChamberZ(1);
2820 SetTranslation(1, TGeoTranslation(0., 0., zpos2));
d1cd2474 2821}
5f91c9e8 2822
d1cd2474 2823//______________________________________________________________________________
2824void AliMUONSt1GeometryBuilderV2::SetSensitiveVolumes()
2825{
5398f946 2826/// Define the sensitive volumes for station2 chambers.
5f91c9e8 2827
e118b27e 2828 GetGeometry(0)->SetSensitiveVolume("SA1G");
2829 GetGeometry(0)->SetSensitiveVolume("SB1G");
2830 GetGeometry(0)->SetSensitiveVolume("SC1G");
2831 GetGeometry(0)->SetSensitiveVolume("SD1G");
2832 GetGeometry(0)->SetSensitiveVolume("SE1G");
2833 GetGeometry(0)->SetSensitiveVolume("SF1G");
2834 GetGeometry(0)->SetSensitiveVolume("SG1G");
2835 GetGeometry(0)->SetSensitiveVolume("SH1G");
2836 GetGeometry(0)->SetSensitiveVolume("SI1G");
2837 GetGeometry(0)->SetSensitiveVolume("SJ1G");
2838 GetGeometry(0)->SetSensitiveVolume("SK1G");
d1cd2474 2839
e118b27e 2840 GetGeometry(1)->SetSensitiveVolume("SA2G");
2841 GetGeometry(1)->SetSensitiveVolume("SB2G");
2842 GetGeometry(1)->SetSensitiveVolume("SC2G");
2843 GetGeometry(1)->SetSensitiveVolume("SD2G");
2844 GetGeometry(1)->SetSensitiveVolume("SE2G");
2845 GetGeometry(1)->SetSensitiveVolume("SF2G");
2846 GetGeometry(1)->SetSensitiveVolume("SG2G");
2847 GetGeometry(1)->SetSensitiveVolume("SH2G");
2848 GetGeometry(1)->SetSensitiveVolume("SI2G");
2849 GetGeometry(1)->SetSensitiveVolume("SJ2G");
2850 GetGeometry(1)->SetSensitiveVolume("SK2G");
ba030c0e 2851}
5f91c9e8 2852