New LinkDef (cmake)
[u/mrichter/AliRoot.git] / MUON / AliMUONSt1GeometryBuilderV2.cxx
CommitLineData
ba030c0e 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
d1cd2474 16// $Id$
17//
3d1463c8 18//-----------------------------------------------------------------------------
d1cd2474 19// Class AliMUONSt1GeometryBuilderV2
20// ---------------------------------
21// MUON Station1 detailed geometry construction class.
5f1df83a 22// (Originally defined in AliMUONv2.cxx - now removed.)
23// Included in AliRoot 2004/01/23
3d1463c8 24// Authors: David Guez, Ivana Hrivnacova, Marion MacCormick; IPN Orsay
25//-----------------------------------------------------------------------------
d1cd2474 26
adbabf6d 27#include "AliMUONSt1GeometryBuilderV2.h"
28#include "AliMUONSt1SpecialMotif.h"
29#include "AliMUON.h"
30#include "AliMUONConstants.h"
31#include "AliMUONGeometryModule.h"
32#include "AliMUONGeometryEnvelopeStore.h"
ba030c0e 33
331a617a 34#include "AliMpSegmentation.h"
35#include "AliMpDEManager.h"
4d8c279c 36#include "AliMpConstants.h"
331a617a 37#include "AliMpCDB.h"
adbabf6d 38#include "AliMpSector.h"
39#include "AliMpRow.h"
40#include "AliMpVRowSegment.h"
41#include "AliMpMotifMap.h"
42#include "AliMpMotifPosition.h"
4d8c279c 43#include "AliMpPlaneType.h"
adbabf6d 44
45#include "AliRun.h"
46#include "AliMagF.h"
47#include "AliLog.h"
ba030c0e 48
5f91c9e8 49#include <Riostream.h>
f7a1cc68 50#include <TClonesArray.h>
51#include <TGeoCompositeShape.h>
52#include <TGeoGlobalMagField.h>
91111b9c 53#include <TGeoManager.h>
f7a1cc68 54#include <TGeoMatrix.h>
91111b9c 55#include <TGeoTube.h>
f7a1cc68 56#include <TGeoVolume.h>
0ab920eb 57#include <TGeoXtru.h>
f7a1cc68 58#include <TSystem.h>
59#include <TVector2.h>
60#include <TVector3.h>
61#include <TVirtualMC.h>
2294822d 62#include <TArrayI.h>
ba030c0e 63
5398f946 64/// \cond CLASSIMP
65ClassImp(AliMUONSt1GeometryBuilderV2)
66/// \endcond
67
5f91c9e8 68// Thickness Constants
d1cd2474 69const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzPadPlane=0.0148/2.; //Pad plane
1c4b9c4c 70const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzFoam = 2.503/2.; //Foam of mechanicalplane
71const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzFR4 = 0.062/2.; //FR4 of mechanical plane
d1cd2474 72const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzSnPb = 0.0091/2.; //Pad/Kapton connection (66 pt)
73const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzKapton = 0.0122/2.; //Kapton
74const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzBergPlastic = 0.3062/2.;//Berg connector
75const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzBergCopper = 0.1882/2.; //Berg connector
76const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzDaughter = 0.0156/2.; //Daughter board
b367fd8f 77const GReal_t AliMUONSt1GeometryBuilderV2::fgkHzGas = 0.42/2.; //Gas thickness
5f91c9e8 78
79// Quadrant Mother volume - TUBS1 - Middle layer of model
d1cd2474 80const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherIR1 = 18.3;
81const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherOR1 = 105.673;
82const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherThick1 = 6.5/2;
83const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiL1 = 0.;
84const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiU1 = 90.;
5f91c9e8 85
86// Quadrant Mother volume - TUBS2 - near and far layers of model
d1cd2474 87const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherIR2 = 20.7;
88const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherOR2 = 100.073;
89const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherThick2 = 3.0/2;
90const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiL2 = 0.;
91const GReal_t AliMUONSt1GeometryBuilderV2::fgkMotherPhiU2 = 90.;
5f91c9e8 92
93// Sensitive copper pads, foam layer, PCB and electronics model parameters
d1cd2474 94const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxHole=1.5/2.;
95const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyHole=6./2.;
96const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxBergPlastic=0.74/2.;
97const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyBergPlastic=5.09/2.;
98const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxBergCopper=0.25/2.;
99const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyBergCopper=3.6/2.;
100const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxKapton=0.8/2.;
101const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyKapton=5.7/2.;
102const GReal_t AliMUONSt1GeometryBuilderV2::fgkHxDaughter=2.3/2.;
103const GReal_t AliMUONSt1GeometryBuilderV2::fgkHyDaughter=6.3/2.;
104const GReal_t AliMUONSt1GeometryBuilderV2::fgkOffsetX=1.46;
105const GReal_t AliMUONSt1GeometryBuilderV2::fgkOffsetY=0.71;
5ae5869b 106const GReal_t AliMUONSt1GeometryBuilderV2::fgkDeltaFilleEtamX=1.00;
d1cd2474 107const GReal_t AliMUONSt1GeometryBuilderV2::fgkDeltaFilleEtamY=0.051;
108
109const GReal_t AliMUONSt1GeometryBuilderV2::fgkDeltaQuadLHC=2.6; // LHC Origin wrt Quadrant Origin
b367fd8f 110const GReal_t AliMUONSt1GeometryBuilderV2::fgkFrameOffset=5.2;
111 // Fix (1) of overlap SQN* layers with SQM* ones (was 5.0)
112
113// Pad planes offsets
114const GReal_t AliMUONSt1GeometryBuilderV2::fgkPadXOffsetBP = 0.50 - 0.63/2; // = 0.185
115const GReal_t AliMUONSt1GeometryBuilderV2::fgkPadYOffsetBP = -0.31 - 0.42/2; // =-0.52
d1cd2474 116
62c708bf 117const char* AliMUONSt1GeometryBuilderV2::fgkHoleName="SCHL";
118const char* AliMUONSt1GeometryBuilderV2::fgkDaughterName="SCDB";
b367fd8f 119const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantEnvelopeName="SE";
d1cd2474 120const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantMLayerName="SQM";
121const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantNLayerName="SQN";
122const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantFLayerName="SQF";
5ae5869b 123const char* AliMUONSt1GeometryBuilderV2::fgkQuadrantMFLayerName="SQMF";
62c708bf 124const Int_t AliMUONSt1GeometryBuilderV2::fgkFoamBoxNameOffset=200;
125const Int_t AliMUONSt1GeometryBuilderV2::fgkFR4BoxNameOffset=400;
e8c253a0 126const Int_t AliMUONSt1GeometryBuilderV2::fgkDaughterCopyNoOffset=1000;
5f91c9e8 127
128//______________________________________________________________________________
d1cd2474 129AliMUONSt1GeometryBuilderV2::AliMUONSt1GeometryBuilderV2(AliMUON* muon)
8cf07955 130 : AliMUONVGeometryBuilder(0, 2),
d1cd2474 131 fMUON(muon)
ba030c0e 132{
5398f946 133/// Standard constructor
ba030c0e 134}
135
5f91c9e8 136//______________________________________________________________________________
d1cd2474 137AliMUONSt1GeometryBuilderV2::AliMUONSt1GeometryBuilderV2()
138 : AliMUONVGeometryBuilder(),
139 fMUON(0)
ba030c0e 140{
5398f946 141/// Default Constructor
ba030c0e 142}
ba030c0e 143
5f91c9e8 144//______________________________________________________________________________
d1cd2474 145AliMUONSt1GeometryBuilderV2::~AliMUONSt1GeometryBuilderV2()
ba030c0e 146{
5398f946 147/// Destructor
ba030c0e 148}
149
d1cd2474 150
5f91c9e8 151//
152// Private methods
153//
154
155//______________________________________________________________________________
b367fd8f 156TString
157AliMUONSt1GeometryBuilderV2::QuadrantEnvelopeName(Int_t chamber, Int_t quadrant) const
158{
5398f946 159/// Generate unique envelope name from chamber Id and quadrant number
b367fd8f 160
161 return Form("%s%d", Form("%s%d",fgkQuadrantEnvelopeName,chamber), quadrant);
162}
163
164//______________________________________________________________________________
d1cd2474 165void AliMUONSt1GeometryBuilderV2::CreateHole()
ba030c0e 166{
5398f946 167/// Create all the elements found inside a foam hole
168
d1cd2474 169 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
170 Int_t idAir = idtmed[1100]; // medium 1
171 //Int_t idCopper = idtmed[1109]; // medium 10 = copper
172 Int_t idCopper = idtmed[1121]; // medium 22 = copper
ba030c0e 173
5f91c9e8 174 GReal_t par[3];
175 GReal_t posX,posY,posZ;
176
177 par[0] = fgkHxHole;
178 par[1] = fgkHyHole;
179 par[2] = fgkHzFoam;
180 gMC->Gsvolu(fgkHoleName,"BOX",idAir,par,3);
181
182 par[0] = fgkHxKapton;
183 par[1] = fgkHyKapton;
184 par[2] = fgkHzSnPb;
185 gMC->Gsvolu("SNPB", "BOX", idCopper, par, 3);
186 posX = 0.;
187 posY = 0.;
188 posZ = -fgkHzFoam+fgkHzSnPb;
189 gMC->Gspos("SNPB",1,fgkHoleName, posX, posY, posZ, 0,"ONLY");
ba030c0e 190
5f91c9e8 191 par[0] = fgkHxHole;
192 par[1] = fgkHyBergPlastic;
193 par[2] = fgkHzKapton;
62c708bf 194 gMC->Gsvolu("SKPT", "BOX", idCopper, par, 3);
5f91c9e8 195 posX = 0.;
196 posY = 0.;
197 posZ = 0.;
62c708bf 198 gMC->Gspos("SKPT",1,fgkHoleName, posX, posY, posZ, 0,"ONLY");
5f91c9e8 199}
ba030c0e 200
5f91c9e8 201//______________________________________________________________________________
d1cd2474 202void AliMUONSt1GeometryBuilderV2::CreateDaughterBoard()
5f91c9e8 203{
5398f946 204/// Create all the elements in a daughter board
205
d1cd2474 206 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
5f91c9e8 207 Int_t idAir = idtmed[1100]; // medium 1
d1cd2474 208 //Int_t idCopper = idtmed[1109]; // medium 10 = copper
209 //Int_t idPlastic =idtmed[1116]; // medium 17 = Plastic
210 Int_t idCopper = idtmed[1121]; // medium 22 = copper
211 Int_t idPlastic =idtmed[1127]; // medium 28 = Plastic
ba030c0e 212
5f91c9e8 213 GReal_t par[3];
214 GReal_t posX,posY,posZ;
ba030c0e 215
5f91c9e8 216 par[0]=fgkHxDaughter;
217 par[1]=fgkHyDaughter;
218 par[2]=TotalHzDaughter();
219 gMC->Gsvolu(fgkDaughterName,"BOX",idAir,par,3);
ba030c0e 220
5f91c9e8 221 par[0]=fgkHxBergPlastic;
222 par[1]=fgkHyBergPlastic;
223 par[2]=fgkHzBergPlastic;
62c708bf 224 gMC->Gsvolu("SBGP","BOX",idPlastic,par,3);
5f91c9e8 225 posX=0.;
226 posY=0.;
227 posZ = -TotalHzDaughter() + fgkHzBergPlastic;
62c708bf 228 gMC->Gspos("SBGP",1,fgkDaughterName,posX,posY,posZ,0,"ONLY");
5f91c9e8 229
230 par[0]=fgkHxBergCopper;
231 par[1]=fgkHyBergCopper;
232 par[2]=fgkHzBergCopper;
62c708bf 233 gMC->Gsvolu("SBGC","BOX",idCopper,par,3);
5f91c9e8 234 posX=0.;
235 posY=0.;
236 posZ=0.;
62c708bf 237 gMC->Gspos("SBGC",1,"SBGP",posX,posY,posZ,0,"ONLY");
5f91c9e8 238
239 par[0]=fgkHxDaughter;
240 par[1]=fgkHyDaughter;
241 par[2]=fgkHzDaughter;
62c708bf 242 gMC->Gsvolu("SDGH","BOX",idCopper,par,3);
5f91c9e8 243 posX=0.;
244 posY=0.;
245 posZ = -TotalHzDaughter() + 2.*fgkHzBergPlastic + fgkHzDaughter;
62c708bf 246 gMC->Gspos("SDGH",1,fgkDaughterName,posX,posY,posZ,0,"ONLY");
5f91c9e8 247}
248
249//______________________________________________________________________________
d1cd2474 250void AliMUONSt1GeometryBuilderV2::CreateInnerLayers()
5f91c9e8 251{
5398f946 252/// Create the layer of sensitive volumes with gas
253/// and the copper layer.
0ab920eb 254/// The shape of the sensitive area is defined as an extruded
255/// solid substracted with tube (to get inner circular shape).
5f91c9e8 256
0ab920eb 257 TGeoMedium* kMedArCO2 = gGeoManager->GetMedium("MUON_ARG_CO2");
258 TGeoMedium* kMedCopper = gGeoManager->GetMedium("MUON_COPPER_II");
5f91c9e8 259
0ab920eb 260 Double_t rmin = 0.0;
261 Double_t rmax = fgkMotherIR1;
262 Double_t hz = fgkHzPadPlane + fgkHzGas;
263 new TGeoTube("cutTube",rmin, rmax, hz);
5f91c9e8 264
0ab920eb 265 Double_t maxXY = 89.0;
266 Double_t xy1 = 77.33;
267 Double_t xy2 = 48.77;
268 Double_t dxy1 = maxXY - xy1;
5f91c9e8 269
0ab920eb 270 Int_t nz = 2;
271 Int_t nv = 6;
272 Double_t vx[6] = { 0.0, 0.0, xy2, maxXY, maxXY, dxy1 };
273 Double_t vy[6] = { dxy1, maxXY, maxXY, xy2, 0.0, 0.0 };
274
275 TGeoXtru* xtruS1 = new TGeoXtru(nz);
276 xtruS1->SetName("xtruS1");
277 xtruS1->DefinePolygon(nv, vx, vy);
278 xtruS1->DefineSection(0, -fgkHzGas, 0.0, 0.0, 1.0);
279 xtruS1->DefineSection(1, fgkHzGas, 0.0, 0.0, 1.0);
280 TGeoCompositeShape* layerS1 = new TGeoCompositeShape("layerS1", "xtruS1-cutTube");
281 new TGeoVolume("SA1G", layerS1, kMedArCO2 );
282
283 TGeoXtru* xtruS2 = new TGeoXtru(nz);
284 xtruS2->SetName("xtruS2");
285 xtruS2->DefinePolygon(nv, vx, vy);
286 xtruS2->DefineSection(0, -fgkHzGas, 0.0, 0.0, 1.0);
287 xtruS2->DefineSection(1, fgkHzGas, 0.0, 0.0, 1.0);
288 TGeoCompositeShape* layerS2 = new TGeoCompositeShape("layerS2", "xtruS2-cutTube");
289 new TGeoVolume("SA2G", layerS2, kMedArCO2 );
290
291 TGeoXtru* xtruS3 = new TGeoXtru(nz);
292 xtruS3->SetName("xtruS3");
293 xtruS3->DefinePolygon(nv, vx, vy);
294 xtruS3->DefineSection(0, -fgkHzPadPlane, 0.0, 0.0, 1.0);
295 xtruS3->DefineSection(1, fgkHzPadPlane, 0.0, 0.0, 1.0);
296 TGeoCompositeShape* layerS3 = new TGeoCompositeShape("layerS3", "xtruS3-cutTube");
297 new TGeoVolume("SA1C", layerS3, kMedCopper );
298}
299
5f91c9e8 300
301//______________________________________________________________________________
fdbaed6e 302void AliMUONSt1GeometryBuilderV2::CreateSpacer0()
303{
304/// The spacer volumes are defined according to the input prepared by Nicole Willis
305/// without any modifications
306/// <pre>
307/// No. Type Material Center (mm) Dimensions (mm) (half lengths)
308/// 5 BOX EPOXY 408.2 430.4 522.41 5.75 1.5 25.5
309/// 5P BOX EPOXY 408.2 445.4 522.41 5.75 1.5 25.5
310/// 6 BOX EPOXY 408.2 437.9 519.76 5.75 15.0 1.0
311/// 6P BOX EPOXY 408.2 437.9 525.06 5.75 15.0 1.0
312/// 7 CYL INOX 408.2 437.9 522.41 r=3.0 hz=20.63
ab6c4493 313/// </pre>
fdbaed6e 314
315 // tracking medias
316 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
317 Int_t idFrameEpoxy = idtmed[1123]; // medium 24 = Frame Epoxy ME730 // was 20 not 16
318 Int_t idInox = idtmed[1128]; // medium 29 Stainless Steel (18%Cr,9%Ni,Fe) // was 21 not 17
319
320 GReal_t par[3];
321 par[0] = 0.575;
322 par[1] = 0.150;
323 par[2] = 2.550;
324 gMC->Gsvolu("Spacer05","BOX",idFrameEpoxy,par,3);
325
326 par[0] = 0.575;
327 par[1] = 1.500;
328 par[2] = 0.100;
329 gMC->Gsvolu("Spacer06","BOX",idFrameEpoxy,par,3);
330
331 par[0] = 0.000;
332 par[1] = 0.300;
333 par[2] = 2.063;
334 gMC->Gsvolu("Spacer07","TUBE",idInox,par,3);
335}
336
337
338//______________________________________________________________________________
339void AliMUONSt1GeometryBuilderV2::CreateSpacer()
340{
341/// The spacer volumes are defined according to the input prepared by Nicole Willis
342/// with modifications needed to fit into existing geometry.
343/// <pre>
344/// No. Type Material Center (mm) Dimensions (mm) (half lengths)
345/// 5 BOX EPOXY 408.2 430.4 522.41 5.75 1.5 25.5
346/// 5P BOX EPOXY 408.2 445.4 522.41 5.75 1.5 25.5
347/// 6 BOX EPOXY 408.2 437.9 519.76 5.75 15.0 1.0
348/// 6P BOX EPOXY 408.2 437.9 525.06 5.75 15.0 1.0
349/// 7 CYL INOX 408.2 437.9 522.41 r=3.0 hz=20.63
350/// </pre>
351/// To fit in existing volumes the volumes 5 and 7 are represented by 2 volumes
352/// with half size in z (5A, &A); the dimensions of the volume 5A were also modified
353/// to avoid overlaps (x made smaller, y larger to abotain the identical volume)
354
355 // tracking medias
356 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
357 Int_t idFrameEpoxy = idtmed[1123]; // medium 24 = Frame Epoxy ME730 // was 20 not 16
358 Int_t idInox = idtmed[1128]; // medium 29 Stainless Steel (18%Cr,9%Ni,Fe) // was 21 not 17
359
360 //GReal_t par[3];
361 //par[0] = 0.575;
362 //par[1] = 0.150;
363 //par[2] = 2.550;
364 //gMC->Gsvolu("Spacer5","BOX",idFrameEpoxy,par,3);
365
366 GReal_t par[3];
367 par[0] = 0.510;
368 par[1] = 0.170;
5ae5869b 369 par[2] = 1.1515;
fdbaed6e 370 gMC->Gsvolu("Spacer5A","BOX",idFrameEpoxy,par,3);
371
afab29fc 372 par[0] = 0.510;
fdbaed6e 373 par[1] = 1.500;
374 par[2] = 0.100;
375 gMC->Gsvolu("Spacer6","BOX",idFrameEpoxy,par,3);
376
377 //par[0] = 0.000;
378 //par[1] = 0.300;
379 //par[2] = 2.063;
380 //gMC->Gsvolu("Spacer7","TUBE",idInox,par,3);
381
382 par[0] = 0.000;
383 par[1] = 0.300;
384 par[2] = 1.0315;
385 gMC->Gsvolu("Spacer7A","TUBE",idInox,par,3);
386}
387
388//______________________________________________________________________________
d1cd2474 389void AliMUONSt1GeometryBuilderV2::CreateQuadrant(Int_t chamber)
ba030c0e 390{
5398f946 391/// Create the quadrant (bending and non-bending planes)
392/// for the given chamber
5f91c9e8 393
5ae5869b 394 // CreateQuadrantLayersAsVolumes(chamber);
395 CreateQuadrantLayersAsAssemblies(chamber);
ba030c0e 396
5ae5869b 397 CreateFrame(chamber);
d1cd2474 398
5ae5869b 399 TExMap specialMap;
400 specialMap.Add(76, (Long_t) new AliMUONSt1SpecialMotif(TVector2( 0.1, 0.72), 90.));
ddfa5dbc 401 specialMap.Add(75, (Long_t) new AliMUONSt1SpecialMotif(TVector2( 0.7, 0.36)));
e8c253a0 402 specialMap.Add(47, (Long_t) new AliMUONSt1SpecialMotif(TVector2(1.01, 0.36)));
d1cd2474 403
331a617a 404 // Load mapping from OCDB
405 if ( ! AliMpSegmentation::Instance() ) {
406 AliFatal("Mapping has to be loaded first !");
407 }
408
f3ed9a44 409 const AliMpSector* kSector1
410 = AliMpSegmentation::Instance()->GetSector(100, AliMpDEManager::GetCathod(100, AliMp::kBendingPlane));
411 if ( ! kSector1 ) {
331a617a 412 AliFatal("Could not access sector segmentation !");
413 }
5ae5869b 414
b367fd8f 415 //Bool_t reflectZ = true;
416 Bool_t reflectZ = false;
417 //TVector3 where = TVector3(2.5+0.1+0.56+0.001, 2.5+0.1+0.001, 0.);
418 TVector3 where = TVector3(fgkDeltaQuadLHC + fgkPadXOffsetBP,
419 fgkDeltaQuadLHC + fgkPadYOffsetBP, 0.);
331a617a 420 PlaceSector(kSector1, specialMap, where, reflectZ, chamber);
ba030c0e 421
866c3232 422 Int_t nb = AliMpConstants::ManuMask(AliMp::kNonBendingPlane);
cd872630 423 TExMapIter it(&specialMap);
424 Long_t key;
425 Long_t value;
426 while ( it.Next(key,value) == kTRUE ) {
427 delete reinterpret_cast<AliMUONSt1SpecialMotif*>(value);
428 }
d1cd2474 429 specialMap.Delete();
5ae5869b 430 specialMap.Add(76 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(1.01,0.51),90.));
35bf4a8f 431 specialMap.Add(75 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(2.20,-0.08)));
432 specialMap.Add(47 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(2.40,-1.11)));
4d8c279c 433 specialMap.Add(20 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(0.2 ,-0.08)));
35bf4a8f 434 specialMap.Add(46 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(0.92 , 0.17)));
ddfa5dbc 435 specialMap.Add(74 | nb,(Long_t) new AliMUONSt1SpecialMotif(TVector2(0.405, -0.10)));
b367fd8f 436 // Fix (7) - overlap of SQ42 with MCHL (after moving the whole sector
437 // in the true position)
5ae5869b 438
f3ed9a44 439 const AliMpSector* kSector2
440 = AliMpSegmentation::Instance()
441 ->GetSector(100, AliMpDEManager::GetCathod(100, AliMp::kNonBendingPlane));
442 if ( ! kSector2 ) {
443 AliFatal("Could not access sector !");
331a617a 444 }
331a617a 445
b367fd8f 446 //reflectZ = false;
447 reflectZ = true;
331a617a 448 TVector2 offset = kSector2->Position();
e77b6d6b 449 where = TVector3(where.X()+offset.X(), where.Y()+offset.Y(), 0.);
b367fd8f 450 // Add the half-pad shift of the non-bending plane wrt bending plane
451 // (The shift is defined in the mapping as sector offset)
452 // Fix (4) - was TVector3(where.X()+0.63/2, ... - now it is -0.63/2
331a617a 453 PlaceSector(kSector2, specialMap, where, reflectZ, chamber);
d1cd2474 454
cd872630 455 it.Reset();
456 while ( it.Next(key,value) == kTRUE ) {
457 delete reinterpret_cast<AliMUONSt1SpecialMotif*>(value);
458 }
d1cd2474 459 specialMap.Delete();
ba030c0e 460}
461
5f91c9e8 462//______________________________________________________________________________
62c708bf 463void AliMUONSt1GeometryBuilderV2::CreateFoamBox(
464 Int_t segNumber,
465 const TVector2& dimensions)
ba030c0e 466{
5398f946 467/// Create all the elements in the copper plane
ba030c0e 468
d1cd2474 469 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
5f91c9e8 470 Int_t idAir = idtmed[1100]; // medium 1
d1cd2474 471 //Int_t idFoam = idtmed[1115]; // medium 16 = Foam
472 //Int_t idFR4 = idtmed[1114]; // medium 15 = FR4
473 Int_t idFoam = idtmed[1125]; // medium 26 = Foam
474 Int_t idFR4 = idtmed[1122]; // medium 23 = FR4
ba030c0e 475
5f91c9e8 476 // mother volume
477 GReal_t par[3];
478 par[0] = dimensions.X();
479 par[1] = dimensions.Y();
480 par[2] = TotalHzPlane();
62c708bf 481 gMC->Gsvolu(PlaneSegmentName(segNumber).Data(),"BOX",idAir,par,3);
5f91c9e8 482
483 // foam layer
5f91c9e8 484 par[0] = dimensions.X();
485 par[1] = dimensions.Y();
486 par[2] = fgkHzFoam;
62c708bf 487 gMC->Gsvolu(FoamBoxName(segNumber).Data(),"BOX",idFoam,par,3);
488 GReal_t posX,posY,posZ;
5f91c9e8 489 posX=0.;
490 posY=0.;
491 posZ = -TotalHzPlane() + fgkHzFoam;
62c708bf 492 gMC->Gspos(FoamBoxName(segNumber).Data(),1,
493 PlaneSegmentName(segNumber).Data(),posX,posY,posZ,0,"ONLY");
ba030c0e 494
5f91c9e8 495 // mechanical plane FR4 layer
5f91c9e8 496 par[0] = dimensions.X();
497 par[1] = dimensions.Y();
498 par[2] = fgkHzFR4;
62c708bf 499 gMC->Gsvolu(FR4BoxName(segNumber).Data(),"BOX",idFR4,par,3);
5f91c9e8 500 posX=0.;
501 posY=0.;
502 posZ = -TotalHzPlane()+ 2.*fgkHzFoam + fgkHzFR4;
62c708bf 503 gMC->Gspos(FR4BoxName(segNumber).Data(),1,
504 PlaneSegmentName(segNumber).Data(),posX,posY,posZ,0,"ONLY");
5f91c9e8 505}
ba030c0e 506
5f91c9e8 507//______________________________________________________________________________
62c708bf 508void AliMUONSt1GeometryBuilderV2::CreatePlaneSegment(Int_t segNumber,
509 const TVector2& dimensions,
510 Int_t nofHoles)
5f91c9e8 511{
5398f946 512/// Create a segment of a plane (this includes a foam layer,
513/// holes in the foam to feed the kaptons through, kapton connectors
514/// and the mother board.)
ba030c0e 515
62c708bf 516 CreateFoamBox(segNumber,dimensions);
fdbaed6e 517
518 // Place spacer in the concrete plane segments:
519 // S225 (in S025), S267 (in S067) in chamber1 and S309 (in S109). S351(in S151)
520 // in chamber2
521 // The segments were found as those which caused overlaps when we placed
522 // the spacer in global coordinates via PlaceSpacer0
523 //
524 // <posXYZ X_Y_Z=" 12.6000; 0.75000; 0.0000"> <volume name="Spacer5A"/>
525 // <posXYZ X_Y_Z=" 12.6000; -0.75000; 0.0000"> <volume name="Spacer5A"/>
526 // <posXYZ X_Y_Z=" 12.6000; 0.0000; 1.1515"> <volume name="Spacer6"/>
527 // <posXYZ X_Y_Z=" 12.6000; 0.0000; 0.0000"> <volume name="Spacer7A"/>
528
529 if ( FoamBoxName(segNumber) == "S225" ||
530 FoamBoxName(segNumber) == "S267" ||
531 FoamBoxName(segNumber) == "S309" ||
532 FoamBoxName(segNumber) == "S351" )
533 {
5ae5869b 534 GReal_t posX = 12.6;
535 GReal_t posY = 0.75;
536 GReal_t posZ = -0.1;
537 if ( FoamBoxName(segNumber) == "S267" ||
538 FoamBoxName(segNumber) == "S351" ) posY += fgkPadYOffsetBP;
fdbaed6e 539 gMC->Gspos("Spacer5A", 1, FoamBoxName(segNumber).Data(), posX, posY, posZ,0, "ONLY");
540
541 posY = -0.75;
5ae5869b 542 if ( FoamBoxName(segNumber) == "S267" ||
543 FoamBoxName(segNumber) == "S351" ) posY += fgkPadYOffsetBP;
fdbaed6e 544 gMC->Gspos("Spacer5A", 2, FoamBoxName(segNumber).Data(), posX, posY, posZ,0, "ONLY");
545
546 posY = 0.0;
547 posZ = 1.1515;
548 if ( FoamBoxName(segNumber) == "S267" ||
5ae5869b 549 FoamBoxName(segNumber) == "S351" ) posY += fgkPadYOffsetBP;
fdbaed6e 550 gMC->Gspos("Spacer6", 1, FoamBoxName(segNumber).Data(), posX, posY, posZ,0, "ONLY");
551
552 posY = 0.0;
553 posZ = 0.0;
5ae5869b 554 if ( FoamBoxName(segNumber) == "S267" ||
555 FoamBoxName(segNumber) == "S351" ) posY += fgkPadYOffsetBP;
fdbaed6e 556 gMC->Gspos("Spacer7A", 1, FoamBoxName(segNumber).Data(), posX, posY, posZ,0, "ONLY");
557 }
ba030c0e 558
5f91c9e8 559 for (Int_t holeNum=0;holeNum<nofHoles;holeNum++) {
560 GReal_t posX = ((2.*holeNum+1.)/nofHoles-1.)*dimensions.X();
561 GReal_t posY = 0.;
562 GReal_t posZ = 0.;
5ae5869b 563
62c708bf 564 gMC->Gspos(fgkHoleName,holeNum+1,
565 FoamBoxName(segNumber).Data(),posX,posY,posZ,0,"ONLY");
5f91c9e8 566 }
ba030c0e 567}
568
5f91c9e8 569//______________________________________________________________________________
5ae5869b 570void AliMUONSt1GeometryBuilderV2::CreateQuadrantLayersAsVolumes(Int_t chamber)
571{
572/// Create the three main layers as real volumes.
573/// Not used anymore.
574
575 // tracking medias
576 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
577 Int_t idAir = idtmed[1100]; // medium 1
578
579 Float_t par[11];
580 Float_t posX,posY,posZ;
581
582// Quadrant volume TUBS1, positioned at the end
583 par[0] = fgkMotherIR1;
584 par[1] = fgkMotherOR1;
585 par[2] = fgkMotherThick1;
586 par[3] = fgkMotherPhiL1;
587 par[4] = fgkMotherPhiU1;
588 gMC->Gsvolu(QuadrantMLayerName(chamber),"TUBS",idAir,par,5);
589 // gMC->Gsvolu(QuadrantMFLayerName(chamber),"TUBS",idAir,par,5);
590
591// Replace the volume shape with a composite shape
592// with substracted overlap with beam shield (YMOT)
593
594 if ( gMC->IsRootGeometrySupported() ) {
595
596 // Get shape
597 TGeoVolume* mlayer
598 = gGeoManager->FindVolumeFast(QuadrantMLayerName(chamber));
599 if ( !mlayer ) {
600 AliErrorStream()
601 << "Quadrant volume " << QuadrantMLayerName(chamber) << " not found"
602 << endl;
603 }
604 else {
605 TGeoShape* quadrant = mlayer->GetShape();
606 quadrant->SetName("quadrant");
607
608 // Beam shield recess
609 par[0] = 0;
610 par[1] = 15.4;
611 par[2] = fgkMotherThick1;
612 new TGeoTube("shield_tube", par[0], par[1], par[2]);
613
614 // Displacement
615 posX = 2.6;
616 posY = 2.6;
617 posZ = 0;
618 TGeoTranslation* displacement
619 = new TGeoTranslation("TR", posX, posY, posZ);
620 displacement->RegisterYourself();
621
622 // Composite shape
623 TGeoShape* composite
624 = new TGeoCompositeShape("composite", "quadrant-shield_tube:TR");
625
626 // Reset shape to volume
627 mlayer->SetShape(composite);
628 }
629
630 TGeoVolume* malayer
631 = gGeoManager->FindVolumeFast(QuadrantMFLayerName(chamber));
632 if ( !malayer ) {
633 AliErrorStream()
634 << "Quadrant volume " << QuadrantMFLayerName(chamber) << " not found"
635 << endl;
636 }
637 else {
638 TGeoShape* quadrant = malayer->GetShape();
639 quadrant->SetName("quadrant");
640
641 // Beam shield recess
642 par[0] = 0;
643 par[1] = 15.4;
644 par[2] = fgkMotherThick1;
645 new TGeoTube("shield_tube", par[0], par[1], par[2]);
646
647 // Displacement
648 posX = 2.6;
649 posY = 2.6;
650 posZ = 0;
651 TGeoTranslation* displacement
652 = new TGeoTranslation("TR", posX, posY, posZ);
653 displacement->RegisterYourself();
654
655 // Composite shape
656 TGeoShape* composite
657 = new TGeoCompositeShape("composite", "quadrant-shield_tube:TR");
658
659 // Reset shape to volume
660 malayer->SetShape(composite);
661 }
662 }
663
664// Quadrant volume TUBS2, positioned at the end
665 par[0] = fgkMotherIR2;
666 par[1] = fgkMotherOR2;
667 par[2] = fgkMotherThick2;
668 par[3] = fgkMotherPhiL2;
669 par[4] = fgkMotherPhiU2;
670
671 gMC->Gsvolu(QuadrantNLayerName(chamber),"TUBS",idAir,par,5);
672 gMC->Gsvolu(QuadrantFLayerName(chamber),"TUBS",idAir,par,5);
673}
674
675//______________________________________________________________________________
676void AliMUONSt1GeometryBuilderV2::CreateQuadrantLayersAsAssemblies(Int_t chamber)
677{
678/// Create the three main layers as assemblies
679
680 gGeoManager->MakeVolumeAssembly(QuadrantMLayerName(chamber).Data());
681 gGeoManager->MakeVolumeAssembly(QuadrantMFLayerName(chamber).Data());
682 gGeoManager->MakeVolumeAssembly(QuadrantNLayerName(chamber).Data());
683 gGeoManager->MakeVolumeAssembly(QuadrantFLayerName(chamber).Data());
684}
685
686//______________________________________________________________________________
d1cd2474 687void AliMUONSt1GeometryBuilderV2::CreateFrame(Int_t chamber)
ba030c0e 688{
5398f946 689/// Create the non-sensitive elements of the frame for the \a chamber
690///
691/// Model and notation: \n
692/// \n
693/// The Quadrant volume name starts with SQ \n
694/// The volume segments are numbered 00 to XX \n
695/// \n
696/// OutTopFrame \n
697/// (SQ02-16) \n
698/// ------------ \n
699/// OutEdgeFrame / | \n
700/// (SQ17-24) / | InVFrame (SQ00-01) \n
701/// / | \n
702/// | | \n
703/// OutVFrame | _- - \n
704/// (SQ25-39) | | InArcFrame (SQ42-45) \n
705/// | | \n
706/// ------------- \n
707/// InHFrame (SQ40-41) \n
708/// \n
709/// \n
710/// 06 February 2003 - Overlapping volumes resolved. \n
711/// One quarter chamber is comprised of three TUBS volumes: SQMx, SQNx, and SQFx,
712/// where SQMx is the Quadrant Middle layer for chamber \a chamber ( posZ in [-3.25,3.25]),
713/// SQNx is the Quadrant Near side layer for chamber \a chamber ( posZ in [-6.25,3-.25) ), and
714/// SQFx is the Quadrant Far side layer for chamber \a chamber ( posZ in (3.25,6.25] ).
ba030c0e 715
5ae5869b 716 // TString quadrantMLayerName = QuadrantMLayerName(chamber);
717
718 TString quadrantMLayerName = QuadrantMFLayerName(chamber);
719 TString quadrantNLayerName = QuadrantNLayerName(chamber);
720 TString quadrantFLayerName = QuadrantFLayerName(chamber);
721
d1cd2474 722 const Float_t kNearFarLHC=2.4; // Near and Far TUBS Origin wrt LHC Origin
ba030c0e 723
ba030c0e 724 // tracking medias
d1cd2474 725 Int_t* idtmed = fMUON->GetIdtmed()->GetArray()-1099;
5f91c9e8 726
5ae5869b 727 //Int_t idAir = idtmed[1100]; // medium 1
d1cd2474 728 //Int_t idFrameEpoxy = idtmed[1115]; // medium 16 = Frame Epoxy ME730
729 //Int_t idInox = idtmed[1116]; // medium 17 Stainless Steel (18%Cr,9%Ni,Fe)
730 //Int_t idFR4 = idtmed[1110]; // medium 11 FR4
731 //Int_t idCopper = idtmed[1109]; // medium 10 Copper
732 //Int_t idAlu = idtmed[1103]; // medium 4 Aluminium
733 Int_t idFrameEpoxy = idtmed[1123]; // medium 24 = Frame Epoxy ME730 // was 20 not 16
734 Int_t idInox = idtmed[1128]; // medium 29 Stainless Steel (18%Cr,9%Ni,Fe) // was 21 not 17
735 Int_t idFR4 = idtmed[1122]; // medium 23 FR4 // was 15 not 11
736 Int_t idCopper = idtmed[1121]; // medium 22 Copper
737 Int_t idAlu = idtmed[1120]; // medium 21 Aluminium
5f91c9e8 738
739
0ab920eb 740 TGeoMedium* kMedEpoxy = gGeoManager->GetMedium("MUON_FrameCH$");
741 TGeoMedium* kMedInox = gGeoManager->GetMedium("MUON_Kapton");
742 TGeoMedium* kMedAlu = gGeoManager->GetMedium("MUON_ALU_II$");
743
744
5f91c9e8 745// Rotation Matrices
0ab920eb 746 Int_t rot1, rot2, rot3, rot4;
5f91c9e8 747
748// Rotation matrices
d1cd2474 749 fMUON->AliMatrix(rot1, 90., 90., 90., 180., 0., 0.); // +90 deg in x-y plane
750 fMUON->AliMatrix(rot2, 90., 45., 90., 135., 0., 0.); // +45 deg in x-y plane
751 fMUON->AliMatrix(rot3, 90., 45., 90., 315.,180., 0.); // +45 deg in x-y + rotation 180° around y
0ab920eb 752 fMUON->AliMatrix(rot4, 90., 315., 90., 45., 0., 0.); // -45 deg in x-y plane
5f91c9e8 753
0ab920eb 754// ___________________Volume thicknesses________________________
ba030c0e 755
d1cd2474 756 const Float_t kHzFrameThickness = 1.59/2.; //equivalent thickness
757 const Float_t kHzOuterFrameEpoxy = 1.19/2.; //equivalent thickness
758 const Float_t kHzOuterFrameInox = 0.1/2.; //equivalent thickness
759 const Float_t kHzFoam = 2.083/2.; //evaluated elsewhere
760 // CHECK with fgkHzFoam
5f91c9e8 761
762// Pertaining to the top outer area
d1cd2474 763 const Float_t kHzTopAnodeSteel1 = 0.185/2.; //equivalent thickness
764 const Float_t kHzTopAnodeSteel2 = 0.51/2.; //equivalent thickness
765 const Float_t kHzAnodeFR4 = 0.08/2.; //equivalent thickness
766 const Float_t kHzTopEarthFaceCu = 0.364/2.; //equivalent thickness
767 const Float_t kHzTopEarthProfileCu = 1.1/2.; //equivalent thickness
768 const Float_t kHzTopPositionerSteel = 1.45/2.; //should really be 2.125/2.;
769 const Float_t kHzTopGasSupportAl = 0.85/2.; //equivalent thickness
5f91c9e8 770
771// Pertaining to the vertical outer area
d1cd2474 772 const Float_t kHzVerticalCradleAl = 0.8/2.; //equivalent thickness
773 const Float_t kHzLateralSightAl = 0.975/2.; //equivalent thickness
774 const Float_t kHzLateralPosnInoxFace = 2.125/2.;//equivalent thickness
775 const Float_t kHzLatPosInoxProfM = 6.4/2.; //equivalent thickness
776 const Float_t kHzLatPosInoxProfNF = 1.45/2.; //equivalent thickness
777 const Float_t kHzLateralPosnAl = 0.5/2.; //equivalent thickness
778 const Float_t kHzVertEarthFaceCu = 0.367/2.; //equivalent thickness
779 const Float_t kHzVertBarSteel = 0.198/2.; //equivalent thickness
780 const Float_t kHzVertEarthProfCu = 1.1/2.; //equivalent thickness
5f91c9e8 781
0ab920eb 782//_______________Parameter definitions in sequence _________
5f91c9e8 783
784// InVFrame parameters
d1cd2474 785 const Float_t kHxInVFrame = 1.85/2.;
786 const Float_t kHyInVFrame = 73.95/2.;
787 const Float_t kHzInVFrame = kHzFrameThickness;
ba030c0e 788
5f91c9e8 789//Flat 7.5mm vertical section
d1cd2474 790 const Float_t kHxV1mm = 0.75/2.;
791 const Float_t kHyV1mm = 1.85/2.;
792 const Float_t kHzV1mm = kHzFrameThickness;
ba030c0e 793
5f91c9e8 794// OuterTopFrame Structure
795//
796// FRAME
797// The frame is composed of a cuboid and two trapezoids
798// (TopFrameAnode, TopFrameAnodeA, TopFrameAnodeB).
799// Each shape is composed of two layers (Epoxy and Inox) and
800// takes the frame's inner anode circuitry into account in the material budget.
801//
802// ANODE
803// The overhanging anode part is composed froma cuboid and two trapezoids
804// (TopAnode, TopAnode1, and TopAnode2). These surfaces neglect implanted
805// resistors, but accounts for the major Cu, Pb/Sn, and FR4 material
806// contributions.
807// The stainless steel anode supports have been included.
808//
809// EARTHING (TopEarthFace, TopEarthProfile)
810// Al GAS SUPPORT (TopGasSupport)
811//
812// ALIGNMENT (TopPositioner) - Alignment system, three sights per quarter
813// chamber. This sight is forseen for the alignment of the horizontal level
814// (parallel to the OY axis of LHC). Its position will be evaluated relative
815// to a system of sights places on the cradles;
816//
817//---
ba030c0e 818
5f91c9e8 819//TopFrameAnode parameters - cuboid, 2 layers
d1cd2474 820 const Float_t kHxTFA = 34.1433/2.;
821 const Float_t kHyTFA = 7.75/2.;
822 const Float_t kHzTFAE = kHzOuterFrameEpoxy; // layer 1 thickness
823 const Float_t kHzTFAI = kHzOuterFrameInox; // layer 3 thickness
ba030c0e 824
0ab920eb 825// TopFrameAnode parameters - 2 trapezoids, 2 layers
826// (redefined with TGeoXtru shape)
d1cd2474 827 const Float_t kH1FAA = 8.7/2.;
d1cd2474 828 const Float_t kTl1FAB = 4.35/2.;
0ab920eb 829 const Float_t kTl1FAA = 7.75/2.;
830
5f91c9e8 831// TopAnode parameters - cuboid (part 1 of 3 parts)
d1cd2474 832 const Float_t kHxTA1 = 16.2/2.;
833 const Float_t kHyTA1 = 3.5/2.;
834 const Float_t kHzTA11 = kHzTopAnodeSteel1; // layer 1
835 const Float_t kHzTA12 = kHzAnodeFR4; // layer 2
5f91c9e8 836
837// TopAnode parameters - trapezoid 1 (part 2 of 3 parts)
d1cd2474 838 const Float_t kHzTA21 = kHzTopAnodeSteel2; // layer 1
839 const Float_t kHzTA22 = kHzAnodeFR4; // layer 2
840 const Float_t kTetTA2 = 0.;
841 const Float_t kPhiTA2= 0.;
842 const Float_t kH1TA2 = 7.268/2.;
843 const Float_t kBl1TA2 = 2.03/2.;
844 const Float_t kTl1TA2 = 3.5/2.;
845 const Float_t kAlp1TA2 = 5.78;
846 const Float_t kH2TA2 = 7.268/2.;
847 const Float_t kBl2TA2 = 2.03/2.;
848 const Float_t kTl2TA2 = 3.5/2.;
849 const Float_t kAlp2TA2 = 5.78;
5f91c9e8 850
851// TopAnode parameters - trapezoid 2 (part 3 of 3 parts)
d1cd2474 852 const Float_t kHzTA3 = kHzAnodeFR4; // layer 1
853 const Float_t kTetTA3 = 0.;
854 const Float_t kPhiTA3 = 0.;
855 const Float_t kH1TA3 = 7.268/2.;
856 const Float_t kBl1TA3 = 0.;
857 const Float_t kTl1TA3 = 2.03/2.;
858 const Float_t kAlp1TA3 = 7.95;
859 const Float_t kH2TA3 = 7.268/2.;
860 const Float_t kBl2TA3 = 0.;
861 const Float_t kTl2TA3 = 2.03/2.;
862 const Float_t kAlp2TA3 = 7.95;
ba030c0e 863
5f91c9e8 864// TopEarthFace parameters - single trapezoid
d1cd2474 865 const Float_t kHzTEF = kHzTopEarthFaceCu;
866 const Float_t kTetTEF = 0.;
867 const Float_t kPhiTEF = 0.;
868 const Float_t kH1TEF = 1.200/2.;
869 const Float_t kBl1TEF = 21.323/2.;
870 const Float_t kTl1TEF = 17.963/2.;
871 const Float_t kAlp1TEF = -54.46;
872 const Float_t kH2TEF = 1.200/2.;
873 const Float_t kBl2TEF = 21.323/2.;
874 const Float_t kTl2TEF = 17.963/2.;
875 const Float_t kAlp2TEF = -54.46;
5f91c9e8 876
877// TopEarthProfile parameters - single trapezoid
d1cd2474 878 const Float_t kHzTEP = kHzTopEarthProfileCu;
879 const Float_t kTetTEP = 0.;
880 const Float_t kPhiTEP = 0.;
881 const Float_t kH1TEP = 0.40/2.;
882 const Float_t kBl1TEP = 31.766/2.;
883 const Float_t kTl1TEP = 30.535/2.;
884 const Float_t kAlp1TEP = -56.98;
885 const Float_t kH2TEP = 0.40/2.;
886 const Float_t kBl2TEP = 31.766/2.;
887 const Float_t kTl2TEP = 30.535/2.;
888 const Float_t kAlp2TEP = -56.98;
5f91c9e8 889
890// TopPositioner parameters - single Stainless Steel trapezoid
d1cd2474 891 const Float_t kHzTP = kHzTopPositionerSteel;
892 const Float_t kTetTP = 0.;
893 const Float_t kPhiTP = 0.;
894 const Float_t kH1TP = 3.00/2.;
895 const Float_t kBl1TP = 7.023/2.;
896 const Float_t kTl1TP = 7.314/2.;
897 const Float_t kAlp1TP = 2.78;
898 const Float_t kH2TP = 3.00/2.;
899 const Float_t kBl2TP = 7.023/2.;
900 const Float_t kTl2TP = 7.314/2.;
901 const Float_t kAlp2TP = 2.78;
5f91c9e8 902
903// TopGasSupport parameters - single cuboid
d1cd2474 904 const Float_t kHxTGS = 8.50/2.;
905 const Float_t kHyTGS = 3.00/2.;
906 const Float_t kHzTGS = kHzTopGasSupportAl;
5f91c9e8 907
908// OutEdgeFrame parameters - 4 trapezoidal sections, 2 layers of material
0ab920eb 909// (redefined with TGeoXtru shape)
5f91c9e8 910//
d1cd2474 911 const Float_t kH1OETF = 7.196/2.; // common to all 4 trapezoids
0ab920eb 912 const Float_t kTl1OETF1 = 3.996/2.; // Trapezoid 1
913 const Float_t kTl1OETF2 = 3.75/2; // Trapezoid 2
914 const Float_t kTl1OETF3 = 3.01/2.; // Trapezoid 3
915 const Float_t kTl1OETF4 = 1.77/2.; // Trapezoid 4
916
5f91c9e8 917
5f91c9e8 918// Frame Structure (OutVFrame):
919//
920// OutVFrame and corner (OutVFrame cuboid, OutVFrame trapezoid)
921// EARTHING (VertEarthFaceCu,VertEarthSteel,VertEarthProfCu),
922// DETECTOR POSITIONNING (SuppLateralPositionner, LateralPositionner),
923// CRADLE (VertCradle), and
924// ALIGNMENT (LateralSightSupport, LateralSight)
925//
926//---
927
928// OutVFrame parameters - cuboid
d1cd2474 929 const Float_t kHxOutVFrame = 1.85/2.;
930 const Float_t kHyOutVFrame = 46.23/2.;
931 const Float_t kHzOutVFrame = kHzFrameThickness;
5f91c9e8 932
933// OutVFrame corner parameters - trapezoid
d1cd2474 934 const Float_t kHzOCTF = kHzFrameThickness;
935 const Float_t kTetOCTF = 0.;
936 const Float_t kPhiOCTF = 0.;
937 const Float_t kH1OCTF = 1.85/2.;
938 const Float_t kBl1OCTF = 0.;
939 const Float_t kTl1OCTF = 3.66/2.;
940 const Float_t kAlp1OCTF = 44.67;
941 const Float_t kH2OCTF = 1.85/2.;
942 const Float_t kBl2OCTF = 0.;
943 const Float_t kTl2OCTF = 3.66/2.;
944 const Float_t kAlp2OCTF = 44.67;
5f91c9e8 945
946// VertEarthFaceCu parameters - single trapezoid
d1cd2474 947 const Float_t kHzVFC = kHzVertEarthFaceCu;
948 const Float_t kTetVFC = 0.;
949 const Float_t kPhiVFC = 0.;
950 const Float_t kH1VFC = 1.200/2.;
951 const Float_t kBl1VFC = 46.11/2.;
952 const Float_t kTl1VFC = 48.236/2.;
953 const Float_t kAlp1VFC = 41.54;
954 const Float_t kH2VFC = 1.200/2.;
955 const Float_t kBl2VFC = 46.11/2.;
956 const Float_t kTl2VFC = 48.236/2.;
957 const Float_t kAlp2VFC = 41.54;
5f91c9e8 958
959// VertEarthSteel parameters - single trapezoid
d1cd2474 960 const Float_t kHzVES = kHzVertBarSteel;
961 const Float_t kTetVES = 0.;
962 const Float_t kPhiVES = 0.;
963 const Float_t kH1VES = 1.200/2.;
964 const Float_t kBl1VES = 30.486/2.;
965 const Float_t kTl1VES = 32.777/2.;
966 const Float_t kAlp1VES = 43.67;
967 const Float_t kH2VES = 1.200/2.;
968 const Float_t kBl2VES = 30.486/2.;
969 const Float_t kTl2VES = 32.777/2.;
970 const Float_t kAlp2VES = 43.67;
5f91c9e8 971
972// VertEarthProfCu parameters - single trapezoid
d1cd2474 973 const Float_t kHzVPC = kHzVertEarthProfCu;
974 const Float_t kTetVPC = 0.;
975 const Float_t kPhiVPC = 0.;
976 const Float_t kH1VPC = 0.400/2.;
977 const Float_t kBl1VPC = 29.287/2.;
978 const Float_t kTl1VPC = 30.091/2.;
979 const Float_t kAlp1VPC = 45.14;
980 const Float_t kH2VPC = 0.400/2.;
981 const Float_t kBl2VPC = 29.287/2.;
982 const Float_t kTl2VPC = 30.091/2.;
983 const Float_t kAlp2VPC = 45.14;
5f91c9e8 984
985// SuppLateralPositionner - single cuboid
d1cd2474 986 const Float_t kHxSLP = 2.80/2.;
987 const Float_t kHySLP = 5.00/2.;
988 const Float_t kHzSLP = kHzLateralPosnAl;
5f91c9e8 989
990// LateralPositionner - squared off U bend, face view
d1cd2474 991 const Float_t kHxLPF = 5.2/2.;
992 const Float_t kHyLPF = 3.0/2.;
993 const Float_t kHzLPF = kHzLateralPosnInoxFace;
5f91c9e8 994
995// LateralPositionner - squared off U bend, profile view
d1cd2474 996 const Float_t kHxLPP = 0.425/2.;
997 const Float_t kHyLPP = 3.0/2.;
998 const Float_t kHzLPP = kHzLatPosInoxProfM; // middle layer
999 const Float_t kHzLPNF = kHzLatPosInoxProfNF; // near and far layers
5f91c9e8 1000
1001// VertCradle, 3 layers (copies), each composed of 4 trapezoids
0ab920eb 1002// (redefined with TGeoXtru shape)
1003//
1004 const Float_t kH1VC1 = 10.25/2.; // all cradles
1005 const Float_t kBl1VC1 = 3.70/2.; // VertCradleA
1006 const Float_t kBl1VC2 = 6.266/2.; // VertCradleB
1007 const Float_t kBl1VC3 = 7.75/2.; // VertCradleC
5f91c9e8 1008
1009// VertCradleD
d1cd2474 1010 const Float_t kHzVC4 = kHzVerticalCradleAl;
1011 const Float_t kTetVC4 = 0.;
1012 const Float_t kPhiVC4 = 0.;
1013 const Float_t kH1VC4 = 10.27/2.;
1014 const Float_t kBl1VC4 = 8.273/2.;
1015 const Float_t kTl1VC4 = 7.75/2.;
1016 const Float_t kAlp1VC4 = -1.46;
1017 const Float_t kH2VC4 = 10.27/2.;
1018 const Float_t kBl2VC4 = 8.273/2.;
1019 const Float_t kTl2VC4 = 7.75/2.;
1020 const Float_t kAlp2VC4 = -1.46;
0ab920eb 1021
5f91c9e8 1022// LateralSightSupport - single trapezoid
d1cd2474 1023 const Float_t kHzVSS = kHzLateralSightAl;
1024 const Float_t kTetVSS = 0.;
1025 const Float_t kPhiVSS = 0.;
1026 const Float_t kH1VSS = 5.00/2.;
1027 const Float_t kBl1VSS = 7.747/2;
1028 const Float_t kTl1VSS = 7.188/2.;
1029 const Float_t kAlp1VSS = -3.20;
1030 const Float_t kH2VSS = 5.00/2.;
1031 const Float_t kBl2VSS = 7.747/2.;
1032 const Float_t kTl2VSS = 7.188/2.;
1033 const Float_t kAlp2VSS = -3.20;
5f91c9e8 1034
1035// LateralSight (reference point) - 3 per quadrant, only 1 programmed for now
d1cd2474 1036 const Float_t kVSInRad = 0.6;
1037 const Float_t kVSOutRad = 1.3;
1038 const Float_t kVSLen = kHzFrameThickness;
5f91c9e8 1039
1040//---
ba030c0e 1041
5f91c9e8 1042// InHFrame parameters
d1cd2474 1043 const Float_t kHxInHFrame = 75.8/2.;
1044 const Float_t kHyInHFrame = 1.85/2.;
1045 const Float_t kHzInHFrame = kHzFrameThickness;
5f91c9e8 1046
1047//Flat 7.5mm horizontal section
d1cd2474 1048 const Float_t kHxH1mm = 1.85/2.;
1049 const Float_t kHyH1mm = 0.75/2.;
1050 const Float_t kHzH1mm = kHzFrameThickness;
ba030c0e 1051
5f91c9e8 1052//---
ba030c0e 1053
5f91c9e8 1054// InArcFrame parameters
d1cd2474 1055 const Float_t kIAF = 15.70;
1056 const Float_t kOAF = 17.55;
1057 const Float_t kHzAF = kHzFrameThickness;
1058 const Float_t kAFphi1 = 0.0;
1059 const Float_t kAFphi2 = 90.0;
ba030c0e 1060
5f91c9e8 1061//---
ba030c0e 1062
5f91c9e8 1063// ScrewsInFrame parameters HEAD
d1cd2474 1064 const Float_t kSCRUHMI = 0.;
1065 const Float_t kSCRUHMA = 0.690/2.;
1066 const Float_t kSCRUHLE = 0.4/2.;
5f91c9e8 1067// ScrewsInFrame parameters MIDDLE
d1cd2474 1068 const Float_t kSCRUMMI = 0.;
1069 const Float_t kSCRUMMA = 0.39/2.;
1070 const Float_t kSCRUMLE = kHzFrameThickness;
5f91c9e8 1071// ScrewsInFrame parameters NUT
d1cd2474 1072 const Float_t kSCRUNMI = 0.;
1073 const Float_t kSCRUNMA = 0.78/2.;
1074 const Float_t kSCRUNLE = 0.8/2.;
5f91c9e8 1075
1076 // ___________________Make volumes________________________
ba030c0e 1077
5f91c9e8 1078 Float_t par[11];
1079 Float_t posX,posY,posZ;
ba030c0e 1080
5f91c9e8 1081 if (chamber==1) {
1082 // InVFrame
d1cd2474 1083 par[0] = kHxInVFrame;
1084 par[1] = kHyInVFrame;
1085 par[2] = kHzInVFrame;
5f91c9e8 1086 gMC->Gsvolu("SQ00","BOX",idFrameEpoxy,par,3);
1087
1088 //Flat 1mm vertical section
d1cd2474 1089 par[0] = kHxV1mm;
1090 par[1] = kHyV1mm;
1091 par[2] = kHzV1mm;
5f91c9e8 1092 gMC->Gsvolu("SQ01","BOX",idFrameEpoxy,par,3);
1093
1094// OutTopFrame
1095//
1096// - 3 components (a cuboid and 2 trapezes) and 2 layers (Epoxy/Inox)
1097//
1098//---
ba030c0e 1099
5f91c9e8 1100 // TopFrameAnode - layer 1 of 2
d1cd2474 1101 par[0] = kHxTFA;
1102 par[1] = kHyTFA;
1103 par[2] = kHzTFAE;
5f91c9e8 1104 gMC->Gsvolu("SQ02","BOX",idFrameEpoxy,par,3);
1105
1106 // TopFrameAnode - layer 2 of 2
d1cd2474 1107 par[2] = kHzTFAI;
5f91c9e8 1108 gMC->Gsvolu("SQ03","BOX",idInox,par,3);
1109
0ab920eb 1110
1111 // Common declarations for TGeoXtru parameters
1112 Double_t dx, dx0, dx1, dx2, dx3;
1113 Double_t dy, dy1, dy2, dy3, dy4;
1114 Double_t vx[16];
1115 Double_t vy[16];
1116 Int_t nz;
1117 Int_t nv;
1118
1119 // SQ04to06 and SQ05to07
1120
1121 dx = 2.*kH1FAA;
1122 dy1 = 2.*kTl1FAA;
1123 dy2 = 2.*kTl1FAB;
1124
1125 nz = 2;
1126 nv = 5;
1127 vx[0] = 0.0; vy[0] = 0.0;
1128 vx[1] = 0.0; vy[1] = dy1;
1129 vx[2] = dx; vy[2] = dy2;
1130 vx[3] = 2*dx; vy[3] = 0.0;
1131 vx[4] = dx; vy[4] = 0.0;
1132
1133 // Shift center in the middle
1134 for ( Int_t i=0; i<nv; i++ ) {
1135 vx[i] -= dx;
1136 vy[i] -= 0.5*dy1;
1137 }
1138
1139 TGeoXtru* xtruS5 = new TGeoXtru(nz);
1140 xtruS5->DefinePolygon(nv, vx, vy);
1141 xtruS5->DefineSection(0, -kHzOuterFrameEpoxy, 0.0, 0.0, 1.0);
1142 xtruS5->DefineSection(1, kHzOuterFrameEpoxy, 0.0, 0.0, 1.0);
1143 new TGeoVolume("SQ04toSQ06", xtruS5, kMedEpoxy);
1144
1145 TGeoXtru* xtruS6 = new TGeoXtru(nz);
1146 xtruS6->DefinePolygon(nv, vx, vy);
1147 xtruS6->DefineSection(0, -kHzOuterFrameInox, 0.0, 0.0, 1.0);
1148 xtruS6->DefineSection(1, kHzOuterFrameInox, 0.0, 0.0, 1.0);
1149 new TGeoVolume("SQ05toSQ07", xtruS6, kMedInox);
1150
5f91c9e8 1151
1152 // TopAnode1 - layer 1 of 2
d1cd2474 1153 par[0] = kHxTA1;
1154 par[1] = kHyTA1;
1155 par[2] = kHzTA11;
5f91c9e8 1156 gMC->Gsvolu("SQ08","BOX",idInox,par,3);
1157
1158 // TopAnode1 - layer 2 of 2
d1cd2474 1159 par[2] = kHzTA12;
5f91c9e8 1160 gMC->Gsvolu("SQ09","BOX",idFR4,par,11);
1161
1162 // TopAnode2 - layer 1 of 2
d1cd2474 1163 par[0] = kHzTA21;
1164 par[1] = kTetTA2;
1165 par[2] = kPhiTA2;
1166 par[3] = kH1TA2;
1167 par[4] = kBl1TA2;
1168 par[5] = kTl1TA2;
1169 par[6] = kAlp1TA2;
1170 par[7] = kH2TA2;
1171 par[8] = kBl2TA2;
1172 par[9] = kTl2TA2;
1173 par[10] = kAlp2TA2;
5f91c9e8 1174 gMC->Gsvolu("SQ10","TRAP",idInox,par,11);
1175
1176 // TopAnode2 - layer 2 of 2
d1cd2474 1177 par[0] = kHzTA22;
5f91c9e8 1178 gMC->Gsvolu("SQ11","TRAP",idFR4,par,11);
1179
1180 // TopAnode3 - layer 1 of 1
d1cd2474 1181 par[0] = kHzTA3;
1182 par[1] = kTetTA3;
1183 par[2] = kPhiTA3;
1184 par[3] = kH1TA3;
1185 par[4] = kBl1TA3;
1186 par[5] = kTl1TA3;
1187 par[6] = kAlp1TA3;
1188 par[7] = kH2TA3;
1189 par[8] = kBl2TA3;
1190 par[9] = kTl2TA3;
1191 par[10] = kAlp2TA3;
5f91c9e8 1192 gMC->Gsvolu("SQ12","TRAP",idFR4,par,11);
1193
1194 // TopEarthFace
d1cd2474 1195 par[0] = kHzTEF;
1196 par[1] = kTetTEF;
1197 par[2] = kPhiTEF;
1198 par[3] = kH1TEF;
1199 par[4] = kBl1TEF;
1200 par[5] = kTl1TEF;
1201 par[6] = kAlp1TEF;
1202 par[7] = kH2TEF;
1203 par[8] = kBl2TEF;
1204 par[9] = kTl2TEF;
1205 par[10] = kAlp2TEF;
5f91c9e8 1206 gMC->Gsvolu("SQ13","TRAP",idCopper,par,11);
1207
1208 // TopEarthProfile
d1cd2474 1209 par[0] = kHzTEP;
1210 par[1] = kTetTEP;
1211 par[2] = kPhiTEP;
1212 par[3] = kH1TEP;
1213 par[4] = kBl1TEP;
1214 par[5] = kTl1TEP;
1215 par[6] = kAlp1TEP;
1216 par[7] = kH2TEP;
1217 par[8] = kBl2TEP;
1218 par[9] = kTl2TEP;
1219 par[10] = kAlp2TEP;
5f91c9e8 1220 gMC->Gsvolu("SQ14","TRAP",idCopper,par,11);
1221
1222 // TopGasSupport
d1cd2474 1223 par[0] = kHxTGS;
1224 par[1] = kHyTGS;
1225 par[2] = kHzTGS;
5f91c9e8 1226 gMC->Gsvolu("SQ15","BOX",idAlu,par,3);
1227
1228 // TopPositioner parameters - single Stainless Steel trapezoid
d1cd2474 1229 par[0] = kHzTP;
1230 par[1] = kTetTP;
1231 par[2] = kPhiTP;
1232 par[3] = kH1TP;
1233 par[4] = kBl1TP;
1234 par[5] = kTl1TP;
1235 par[6] = kAlp1TP;
1236 par[7] = kH2TP;
1237 par[8] = kBl2TP;
1238 par[9] = kTl2TP;
1239 par[10] = kAlp2TP;
5f91c9e8 1240 gMC->Gsvolu("SQ16","TRAP",idInox,par,11);
ba030c0e 1241
5f91c9e8 1242//
1243// OutEdgeTrapFrame Epoxy = (4 trapezes)*2 copies*2 layers (Epoxy/Inox)
0ab920eb 1244// (redefined with TGeoXtru shape )
5f91c9e8 1245//---
ba030c0e 1246
0ab920eb 1247 dx = 2.*kH1OETF;
1248 dy1 = 2.*kTl1OETF4;
1249 dy2 = 2.*kTl1OETF3;
1250 dy3 = 2.*kTl1OETF2;
1251 dy4 = 2.*kTl1OETF1;
1252
1253 nz = 2;
1254 nv = 16;
1255 vx[0] = -4*dx; vy[0] = 0.0;
1256 vx[1] = -3*dx; vy[1] = dy1;
1257 vx[2] = -2*dx; vy[2] = dy2;
1258 vx[3] = -1*dx; vy[3] = dy3;
1259 vx[4] = 0.0; vy[4] = dy4;
1260 vx[5] = dx; vy[5] = dy3;
1261 vx[6] = 2*dx; vy[6] = dy2;
1262 vx[7] = 3*dx; vy[7] = dy1;
1263 vx[8] = 4*dx; vy[8] = 0.0;
1264 vx[9] = 3*dx; vy[9] = 0.0;
1265 vx[10] = 2*dx; vy[10] = 0.0;
1266 vx[11] = dx; vy[11] = 0.0;
1267 vx[12] = 0.0; vy[12] = 0.0;
1268 vx[13] = -1*dx; vy[13] = 0.0;
1269 vx[14] = -2*dx; vy[14] = 0.0;
1270 vx[15] = -3*dx; vy[15] = 0.0;
1271
1272 // Shift center in the middle
1273 for ( Int_t i=0; i<nv; i++ ) vy[i] += dy4/2.0;
1274
1275 TGeoXtru* xtruS1 = new TGeoXtru(nz);
1276 xtruS1->DefinePolygon(nv, vx, vy);
1277 xtruS1->DefineSection(0, -kHzOuterFrameEpoxy, 0.0, 0.0, 1.0);
1278 xtruS1->DefineSection(1, kHzOuterFrameEpoxy, 0.0, 0.0, 1.0);
1279 new TGeoVolume("SQ17to23", xtruS1, kMedEpoxy );
1280
1281 TGeoXtru* xtruS2 = new TGeoXtru(nz);
1282 xtruS2->DefinePolygon(nv, vx, vy);
1283 xtruS2->DefineSection(0, -kHzOuterFrameInox, 0.0, 0.0, 1.0);
1284 xtruS2->DefineSection(1, kHzOuterFrameInox, 0.0, 0.0, 1.0);
1285 new TGeoVolume("SQ18to24", xtruS2, kMedInox );
ba030c0e 1286
0ab920eb 1287//
1288// OutEdgeTrapFrame Epoxy = (4 trapezes)*2 copies*2 layers (Epoxy/Inox)
5f91c9e8 1289//---
1290 // OutVFrame
d1cd2474 1291 par[0] = kHxOutVFrame;
1292 par[1] = kHyOutVFrame;
1293 par[2] = kHzOutVFrame;
5f91c9e8 1294 gMC->Gsvolu("SQ25","BOX",idFrameEpoxy,par,3);
d1cd2474 1295
5f91c9e8 1296 // OutVFrame corner
d1cd2474 1297 par[0] = kHzOCTF;
1298 par[1] = kTetOCTF;
1299 par[2] = kPhiOCTF;
1300 par[3] = kH1OCTF;
1301 par[4] = kBl1OCTF;
1302 par[5] = kTl1OCTF;
1303 par[6] = kAlp1OCTF;
1304 par[7] = kH2OCTF;
1305 par[8] = kBl2OCTF;
1306 par[9] = kTl2OCTF;
1307 par[10] = kAlp2OCTF;
5f91c9e8 1308 gMC->Gsvolu("SQ26","TRAP",idFrameEpoxy,par,11);
1309
1310 // EarthFaceCu trapezoid
d1cd2474 1311 par[0] = kHzVFC;
1312 par[1] = kTetVFC;
1313 par[2] = kPhiVFC;
1314 par[3] = kH1VFC;
1315 par[4] = kBl1VFC;
1316 par[5] = kTl1VFC;
1317 par[6] = kAlp1VFC;
1318 par[7] = kH2VFC;
1319 par[8] = kBl2VFC;
1320 par[9] = kTl2VFC;
1321 par[10] = kAlp2VFC;
5f91c9e8 1322 gMC->Gsvolu("SQ27","TRAP",idCopper,par,11);
1323
1324 // VertEarthSteel trapezoid
d1cd2474 1325 par[0] = kHzVES;
1326 par[1] = kTetVES;
1327 par[2] = kPhiVES;
1328 par[3] = kH1VES;
1329 par[4] = kBl1VES;
1330 par[5] = kTl1VES;
1331 par[6] = kAlp1VES;
1332 par[7] = kH2VES;
1333 par[8] = kBl2VES;
1334 par[9] = kTl2VES;
1335 par[10] = kAlp2VES;
5f91c9e8 1336 gMC->Gsvolu("SQ28","TRAP",idInox,par,11);
1337
1338 // VertEarthProfCu trapezoid
d1cd2474 1339 par[0] = kHzVPC;
1340 par[1] = kTetVPC;
1341 par[2] = kPhiVPC;
1342 par[3] = kH1VPC;
1343 par[4] = kBl1VPC;
1344 par[5] = kTl1VPC;
1345 par[6] = kAlp1VPC;
1346 par[7] = kH2VPC;
1347 par[8] = kBl2VPC;
1348 par[9] = kTl2VPC;
1349 par[10] = kAlp2VPC;
5f91c9e8 1350 gMC->Gsvolu("SQ29","TRAP",idCopper,par,11);
1351
1352 // SuppLateralPositionner cuboid
d1cd2474 1353 par[0] = kHxSLP;
1354 par[1] = kHySLP;
1355 par[2] = kHzSLP;
5f91c9e8 1356 gMC->Gsvolu("SQ30","BOX",idAlu,par,3);
1357
1358 // LateralPositionerFace
d1cd2474 1359 par[0] = kHxLPF;
1360 par[1] = kHyLPF;
1361 par[2] = kHzLPF;
5f91c9e8 1362 gMC->Gsvolu("SQ31","BOX",idInox,par,3);
1363
1364 // LateralPositionerProfile
d1cd2474 1365 par[0] = kHxLPP;
1366 par[1] = kHyLPP;
1367 par[2] = kHzLPP;
5f91c9e8 1368 gMC->Gsvolu("SQ32","BOX",idInox,par,3); // middle layer
1369
d1cd2474 1370 par[0] = kHxLPP;
1371 par[1] = kHyLPP;
1372 par[2] = kHzLPNF;
5f91c9e8 1373 gMC->Gsvolu("SQ33","BOX",idInox,par,3); // near and far layers
1374
0ab920eb 1375 dy = 2.*kH1VC1;
1376 dx0 = 2.*kBl1VC4;
1377 dx1 = 2.*kBl1VC3;
1378 dx2 = 2.*kBl1VC2;
1379 dx3 = 2.*kBl1VC1;
ba030c0e 1380
0ab920eb 1381 // VertCradle
1382 // (Trapezoids SQ34 to SQ36 or SQ37 redefined with TGeoXtru shape)
1383
1384 nz = 2;
1385 nv = 7;
1386 vx[0] = 0.0; vy[0] = 0.0;
1387 vx[1] = 0.0; vy[1] = dy;
1388 vx[2] = 0.0; vy[2] = 2*dy;
1389 vx[3] = 0.0; vy[3] = 3*dy;
1390 vx[4] = dx3; vy[4] = 2*dy;
1391 vx[5] = dx2; vy[5] = dy;
1392 vx[6] = dx1; vy[6] = 0.0;
1393
1394 // Shift center in the middle
1395 for ( Int_t i=0; i<nv; i++ ) {
1396 vx[i] -= dx1/2.0;
1397 vy[i] -= 1.5*dy;
1398 }
1399
1400 TGeoXtru* xtruS3 = new TGeoXtru(nz);
1401 xtruS3->DefinePolygon(nv, vx, vy);
1402 xtruS3->DefineSection(0, -kHzVerticalCradleAl, 0.0, 0.0, 1.0);
1403 xtruS3->DefineSection(1, kHzVerticalCradleAl, 0.0, 0.0, 1.0);
1404 new TGeoVolume("SQ34to36", xtruS3, kMedAlu);
1405
1406 // Trapezoids SQ34 to SQ37;
1407 // (keeping the same coordinate system as for SQ34to36)
1408
1409 nz = 2;
1410 nv = 9;
1411 vx[0] = 0.0; vy[0] =-1.0*dy;
1412 vx[1] = 0.0; vy[1] = 0.0;
1413 vx[2] = 0.0; vy[2] = dy;
1414 vx[3] = 0.0; vy[3] = 2*dy;
1415 vx[4] = 0.0; vy[4] = 3*dy;
1416 vx[5] = dx3; vy[5] = 2*dy;
1417 vx[6] = dx2; vy[6] = dy;
1418 vx[7] = dx1; vy[7] = 0.0;
1419 vx[8] = dx0; vy[8] =-1.0*dy;
1420
1421 // Shift center in the middle (of SQ34to36!!)
1422 for ( Int_t i=0; i<nv; i++ ) {
1423 vx[i] -= dx1/2.0;
1424 vy[i] -= 1.5*dy;
1425 }
1426
1427 TGeoXtru* xtruS4 = new TGeoXtru(nz);
1428 xtruS4->DefinePolygon(nv, vx, vy);
1429 xtruS4->DefineSection(0, -kHzVerticalCradleAl, 0.0, 0.0, 1.0);
1430 xtruS4->DefineSection(1, kHzVerticalCradleAl, 0.0, 0.0, 1.0);
1431 new TGeoVolume("SQ34to37", xtruS4, kMedAlu);
5f91c9e8 1432
1433 // VertCradleD - 4th trapezoid
d1cd2474 1434 par[0] = kHzVC4;
1435 par[1] = kTetVC4;
1436 par[2] = kPhiVC4;
1437 par[3] = kH1VC4;
1438 par[4] = kBl1VC4;
1439 par[5] = kTl1VC4;
1440 par[6] = kAlp1VC4;
1441 par[7] = kH2VC4;
1442 par[8] = kBl2VC4;
1443 par[9] = kTl2VC4;
1444 par[10] = kAlp2VC4;
5f91c9e8 1445 gMC->Gsvolu("SQ37","TRAP",idAlu,par,11);
1446
1447 // LateralSightSupport trapezoid
d1cd2474 1448 par[0] = kHzVSS;
1449 par[1] = kTetVSS;
1450 par[2] = kPhiVSS;
1451 par[3] = kH1VSS;
1452 par[4] = kBl1VSS;
1453 par[5] = kTl1VSS;
1454 par[6] = kAlp1VSS;
1455 par[7] = kH2VSS;
1456 par[8] = kBl2VSS;
1457 par[9] = kTl2VSS;
1458 par[10] = kAlp2VSS;
5f91c9e8 1459 gMC->Gsvolu("SQ38","TRAP",idAlu,par,11);
1460
1461 // LateralSight
d1cd2474 1462 par[0] = kVSInRad;
1463 par[1] = kVSOutRad;
1464 par[2] = kVSLen;
5f91c9e8 1465 gMC->Gsvolu("SQ39","TUBE",idFrameEpoxy,par,3);
1466
1467//---
1468 // InHFrame
d1cd2474 1469 par[0] = kHxInHFrame;
1470 par[1] = kHyInHFrame;
1471 par[2] = kHzInHFrame;
5f91c9e8 1472 gMC->Gsvolu("SQ40","BOX",idFrameEpoxy,par,3);
1473
1474 //Flat 7.5mm horizontal section
d1cd2474 1475 par[0] = kHxH1mm;
1476 par[1] = kHyH1mm;
1477 par[2] = kHzH1mm;
5f91c9e8 1478 gMC->Gsvolu("SQ41","BOX",idFrameEpoxy,par,3);
1479
1480 // InArcFrame
d1cd2474 1481 par[0] = kIAF;
1482 par[1] = kOAF;
1483 par[2] = kHzAF;
1484 par[3] = kAFphi1;
1485 par[4] = kAFphi2;
5f91c9e8 1486
1487 gMC->Gsvolu("SQ42","TUBS",idFrameEpoxy,par,5);
1488
1489//---
1490 // ScrewsInFrame - 3 sections in order to avoid overlapping volumes
1491 // Screw Head, in air
d1cd2474 1492 par[0] = kSCRUHMI;
1493 par[1] = kSCRUHMA;
1494 par[2] = kSCRUHLE;
5f91c9e8 1495
1496 gMC->Gsvolu("SQ43","TUBE",idInox,par,3);
1497
1498 // Middle part, in the Epoxy
d1cd2474 1499 par[0] = kSCRUMMI;
1500 par[1] = kSCRUMMA;
1501 par[2] = kSCRUMLE;
5f91c9e8 1502 gMC->Gsvolu("SQ44","TUBE",idInox,par,3);
1503
1504 // Screw nut, in air
d1cd2474 1505 par[0] = kSCRUNMI;
1506 par[1] = kSCRUNMA;
1507 par[2] = kSCRUNLE;
5f91c9e8 1508 gMC->Gsvolu("SQ45","TUBE",idInox,par,3);
1509 }
1510
1511// __________________Place volumes in the quadrant ____________
1512
1513 // InVFrame
d1cd2474 1514 posX = kHxInVFrame;
1515 posY = 2.0*kHyInHFrame+2.*kHyH1mm+kIAF+kHyInVFrame;
5f91c9e8 1516 posZ = 0.;
5ae5869b 1517 gMC->Gspos("SQ00",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
ba030c0e 1518
d1cd2474 1519// keep memory of the mid position. Used for placing screws
1520 const GReal_t kMidVposX = posX;
1521 const GReal_t kMidVposY = posY;
1522 const GReal_t kMidVposZ = posZ;
1523
5f91c9e8 1524 //Flat 7.5mm vertical section
d1cd2474 1525 posX = 2.0*kHxInVFrame+kHxV1mm;
1526 posY = 2.0*kHyInHFrame+2.*kHyH1mm+kIAF+kHyV1mm;
5f91c9e8 1527 posZ = 0.;
5ae5869b 1528 gMC->Gspos("SQ01",1,quadrantMLayerName,posX, posY, posZ,0, "ONLY");
5f91c9e8 1529
1530 // TopFrameAnode place 2 layers of TopFrameAnode cuboids
d1cd2474 1531 posX = kHxTFA;
1532 posY = 2.*kHyInHFrame+2.*kHyH1mm+kIAF+2.*kHyInVFrame+kHyTFA;
ddfa5dbc 1533 posZ = -kHzOuterFrameInox;
5ae5869b 1534 gMC->Gspos("SQ02",1,quadrantMLayerName,posX, posY, posZ,0,"ONLY");
ddfa5dbc 1535 posZ = kHzOuterFrameEpoxy;
5ae5869b 1536 gMC->Gspos("SQ03",1,quadrantMLayerName,posX, posY, posZ,0,"ONLY");
5f91c9e8 1537
0ab920eb 1538 // TopFrameAnode - place 2 layers of 2 trapezoids
1539 // (SQ04 - SQ07)
1540 posX += kHxTFA + 2.*kH1FAA;
ddfa5dbc 1541 posZ = -kHzOuterFrameInox;
0ab920eb 1542 gMC->Gspos("SQ04toSQ06",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
ddfa5dbc 1543 posZ = kHzOuterFrameEpoxy;
0ab920eb 1544 gMC->Gspos("SQ05toSQ07",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1545
1546 // TopAnode1 place 2 layers
1547 posX = 6.8+fgkDeltaQuadLHC;
1548 posY = 99.85+fgkDeltaQuadLHC;
d1cd2474 1549 posZ = -1.*kHzAnodeFR4;
5ae5869b 1550 gMC->Gspos("SQ08",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
ddfa5dbc 1551 posZ = kHzTopAnodeSteel1;
5ae5869b 1552 gMC->Gspos("SQ09",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1553
1554 // TopAnode2 place 2 layers
1555 posX = 18.534+fgkDeltaQuadLHC;
1556 posY = 99.482+fgkDeltaQuadLHC;
d1cd2474 1557 posZ = -1.*kHzAnodeFR4;
afab29fc 1558 // shift up to solve overlap with SQ14
1559 posY += 0.1;
5ae5869b 1560 gMC->Gspos("SQ10",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
ddfa5dbc 1561 posZ = kHzTopAnodeSteel2;
5ae5869b 1562 gMC->Gspos("SQ11",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1563
1564 // TopAnode3 place 1 layer
35bf4a8f 1565 posX = 25.804+fgkDeltaQuadLHC;
5f91c9e8 1566 posY = 98.61+fgkDeltaQuadLHC;
1567 posZ = 0.;
5ae5869b 1568 gMC->Gspos("SQ12",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1569
1570 // TopEarthFace - 2 copies
1571 posX = 23.122+fgkDeltaQuadLHC;
1572 posY = 96.90+fgkDeltaQuadLHC;
d1cd2474 1573 posZ = kHzOuterFrameEpoxy+kHzOuterFrameInox+kHzTopEarthFaceCu;
5ae5869b 1574 gMC->Gspos("SQ13",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1575 posZ = -1.*posZ;
5ae5869b 1576 gMC->Gspos("SQ13",2,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1577
1578 // TopEarthProfile
1579 posX = 14.475+fgkDeltaQuadLHC;
1580 posY = 97.900+fgkDeltaQuadLHC;
d1cd2474 1581 posZ = kHzTopEarthProfileCu;
5ae5869b 1582 gMC->Gspos("SQ14",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1583 posZ = -1.0*posZ;
5ae5869b 1584 gMC->Gspos("SQ14",2,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1585
1586 // TopGasSupport - 2 copies
1587 posX = 4.9500+fgkDeltaQuadLHC;
1588 posY = 96.200+fgkDeltaQuadLHC;
d1cd2474 1589 posZ = kHzOuterFrameEpoxy+kHzOuterFrameInox+kHzTopGasSupportAl;
5ae5869b 1590 gMC->Gspos("SQ15",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1591 posZ = -1.*posZ;
5ae5869b 1592 gMC->Gspos("SQ15",2,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1593
1594 // TopPositioner parameters - single Stainless Steel trapezoid - 2 copies
1595 posX = 7.60+fgkDeltaQuadLHC;
1596 posY = 98.98+fgkDeltaQuadLHC;
d1cd2474 1597 posZ = kHzOuterFrameEpoxy+kHzOuterFrameInox+2.*kHzTopGasSupportAl+kHzTopPositionerSteel;
5ae5869b 1598 gMC->Gspos("SQ16",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1599 posZ = -1.*posZ;
5ae5869b 1600 gMC->Gspos("SQ16",2,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1601
1602 // OutEdgeFrame
5f91c9e8 1603
0ab920eb 1604 posZ = -1.0*kHzOuterFrameInox;
1605 //Double_t xCenterAll = 70.6615;
1606 Double_t xCenterAll = 70.500;
1607 Double_t yCenterAll = 70.350;
1608 gMC->Gspos("SQ17to23",1,quadrantMLayerName, xCenterAll, yCenterAll, posZ, rot4,"ONLY");
5f91c9e8 1609
ddfa5dbc 1610 posZ = kHzOuterFrameEpoxy;
0ab920eb 1611 gMC->Gspos("SQ18to24",1,quadrantMLayerName, xCenterAll, yCenterAll, posZ, rot4,"ONLY");
5f91c9e8 1612
5f91c9e8 1613//---
1614
ba030c0e 1615// OutVFrame
d1cd2474 1616 posX = 2.*kHxInVFrame+kIAF+2.*kHxInHFrame-kHxOutVFrame+2.*kHxV1mm;
1617 posY = 2.*kHyInHFrame+kHyOutVFrame;
ba030c0e 1618 posZ = 0.;
5ae5869b 1619 gMC->Gspos("SQ25",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1620
d1cd2474 1621 // keep memory of the mid position. Used for placing screws
1622 const GReal_t kMidOVposX = posX;
1623 const GReal_t kMidOVposY = posY;
1624 const GReal_t kMidOVposZ = posZ;
1625
1626 const Float_t kTOPY = posY+kHyOutVFrame;
1627 const Float_t kOUTX = posX;
ba030c0e 1628
5f91c9e8 1629// OutVFrame corner
d1cd2474 1630 posX = kOUTX;
1631 posY = kTOPY+((kBl1OCTF+kTl1OCTF)/2.);
5f91c9e8 1632 posZ = 0.;
4274a250 1633 // shift to solve overlap with SQ17to23 and SQ18to24
1634 posX += 0.02;
5ae5869b 1635 gMC->Gspos("SQ26",1,quadrantMLayerName,posX, posY, posZ, rot1,"ONLY");
5f91c9e8 1636
1637// VertEarthFaceCu - 2 copies
1638 posX = 89.4000+fgkDeltaQuadLHC;
1639 posY = 25.79+fgkDeltaQuadLHC;
d1cd2474 1640 posZ = kHzFrameThickness+2.0*kHzFoam+kHzVertEarthFaceCu;
5ae5869b 1641 gMC->Gspos("SQ27",1,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1642 posZ = -1.0*posZ;
5ae5869b 1643 gMC->Gspos("SQ27",2,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1644
1645// VertEarthSteel - 2 copies
1646 posX = 91.00+fgkDeltaQuadLHC;
1647 posY = 30.616+fgkDeltaQuadLHC;
d1cd2474 1648 posZ = kHzFrameThickness+2.0*kHzFoam+kHzVertBarSteel;
5ae5869b 1649 gMC->Gspos("SQ28",1,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1650 posZ = -1.0*posZ;
5ae5869b 1651 gMC->Gspos("SQ28",2,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1652
1653// VertEarthProfCu - 2 copies
1654 posX = 92.000+fgkDeltaQuadLHC;
1655 posY = 29.64+fgkDeltaQuadLHC;
d1cd2474 1656 posZ = kHzFrameThickness;
5ae5869b 1657 gMC->Gspos("SQ29",1,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1658 posZ = -1.0*posZ;
5ae5869b 1659 gMC->Gspos("SQ29",2,quadrantMLayerName,posX, posY, posZ, rot1, "ONLY");
5f91c9e8 1660
1661// SuppLateralPositionner - 2 copies
d1cd2474 1662 posX = 90.2-kNearFarLHC;
1663 posY = 5.00-kNearFarLHC;
1664 posZ = kHzLateralPosnAl-fgkMotherThick2;
5ae5869b 1665 gMC->Gspos("SQ30",1,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1666 posZ = -1.0*posZ;
5ae5869b 1667 gMC->Gspos("SQ30",2,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1668
1669// LateralPositionner - 2 copies - Face view
d1cd2474 1670 posX = 92.175-kNearFarLHC-2.*kHxLPP;
1671 posY = 5.00-kNearFarLHC;
1672 posZ =2.0*kHzLateralPosnAl+kHzLateralPosnInoxFace-fgkMotherThick2;
5ae5869b 1673 gMC->Gspos("SQ31",1,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1674 posZ = -1.0*posZ;
5ae5869b 1675 gMC->Gspos("SQ31",2,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1676
1677// LateralPositionner - Profile view
d1cd2474 1678 posX = 92.175+fgkDeltaQuadLHC+kHxLPF-kHxLPP;
5f91c9e8 1679 posY = 5.00+fgkDeltaQuadLHC;
1680 posZ = 0.;
5ae5869b 1681 gMC->Gspos("SQ32",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY"); // middle layer
5f91c9e8 1682
d1cd2474 1683 posX = 92.175-kNearFarLHC+kHxLPF-kHxLPP;
1684 posY = 5.0000-kNearFarLHC;
1685 posZ = fgkMotherThick2-kHzLPNF;
5ae5869b 1686 gMC->Gspos("SQ33",1,quadrantNLayerName,posX, posY, posZ, 0, "ONLY"); // near layer
5f91c9e8 1687 posZ = -1.*posZ;
5ae5869b 1688 gMC->Gspos("SQ33",2,quadrantFLayerName,posX, posY, posZ, 0, "ONLY"); // far layer
5f91c9e8 1689
5f91c9e8 1690
0ab920eb 1691// VertCradle - 3 (or 4 ) trapezoids redefined with TGeoXtru shape
5f91c9e8 1692
5f91c9e8 1693 posX = 97.29+fgkDeltaQuadLHC;
1694 posY = 23.02+fgkDeltaQuadLHC;
0ab920eb 1695 posZ = 0.;
1696 posX += 1.39311;
1697 gMC->Gspos("SQ34to37",2,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1698
d1cd2474 1699 posX = 97.29-kNearFarLHC;
1700 posY = 23.02-kNearFarLHC;
1701 posZ = 2.0*kHzLateralSightAl+kHzVerticalCradleAl-fgkMotherThick2;
0ab920eb 1702 posX += 1.39311;
1703 gMC->Gspos("SQ34to36",1,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
1704
1705 posZ = -1.0*posZ;
1706 gMC->Gspos("SQ34to36",3,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1707
5f91c9e8 1708
1709// OutVertCradleD 4th Trapeze - 3 copies
0ab920eb 1710
5f91c9e8 1711 posX = 98.81+fgkDeltaQuadLHC;
1712 posY = 2.52+fgkDeltaQuadLHC;
d1cd2474 1713 posZ = fgkMotherThick1-kHzVerticalCradleAl;
5ae5869b 1714 gMC->Gspos("SQ37",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1715 posZ = -1.0*posZ;
5ae5869b 1716 gMC->Gspos("SQ37",3,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1717
1718// LateralSightSupport - 2 copies
b367fd8f 1719 posX = 98.33-kNearFarLHC;
d1cd2474 1720 posY = 10.00-kNearFarLHC;
1721 posZ = kHzLateralSightAl-fgkMotherThick2;
b367fd8f 1722 // Fix (3) of extrusion SQ38 from SQN1, SQN2, SQF1, SQF2
1723 // (was posX = 98.53 ...)
5ae5869b 1724 gMC->Gspos("SQ38",1,quadrantNLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1725 posZ = -1.0*posZ;
5ae5869b 1726 gMC->Gspos("SQ38",2,quadrantFLayerName,posX, posY, posZ, 0, "ONLY");
5f91c9e8 1727
1728// Mire placement
1729 posX = 92.84+fgkDeltaQuadLHC;
1730 posY = 8.13+fgkDeltaQuadLHC;
ba030c0e 1731 posZ = 0.;
5ae5869b 1732 gMC->Gspos("SQ39",1,quadrantMLayerName,posX, posY, posZ, 0,"ONLY");
5f91c9e8 1733
1734//---
1735
1736// InHFrame
d1cd2474 1737 posX = 2.0*kHxInVFrame+2.*kHxV1mm+kIAF+kHxInHFrame;
1738 posY = kHyInHFrame;
5f91c9e8 1739 posZ = 0.;
5ae5869b 1740 gMC->Gspos("SQ40",1,quadrantMLayerName,posX, posY, posZ, 0, "ONLY");
ba030c0e 1741
d1cd2474 1742 // keep memory of the mid position. Used for placing screws
1743 const GReal_t kMidHposX = posX;
1744 const GReal_t kMidHposY = posY;
1745 const GReal_t kMidHposZ = posZ;
1746
5f91c9e8 1747// Flat 7.5mm horizontal section
d1cd2474 1748 posX = 2.0*kHxInVFrame+2.*kHxV1mm+kIAF+kHxH1mm;
1749 posY = 2.0*kHyInHFrame+kHyH1mm;
ba030c0e 1750 posZ = 0.;
5ae5869b 1751 gMC->Gspos("SQ41",1,quadrantMLayerName,posX, posY, posZ,0, "ONLY");
ba030c0e 1752
1753// InArcFrame
d1cd2474 1754 posX = 2.0*kHxInVFrame+2.*kHxV1mm;
1755 posY = 2.0*kHyInHFrame+2.*kHyH1mm;
ba030c0e 1756 posZ = 0.;
5ae5869b 1757 gMC->Gspos("SQ42",1,quadrantMLayerName,posX, posY, posZ,0, "ONLY");
ba030c0e 1758
d1cd2474 1759// keep memory of the mid position. Used for placing screws
1760 const GReal_t kMidArcposX = posX;
1761 const GReal_t kMidArcposY = posY;
1762 const GReal_t kMidArcposZ = posZ;
1763
5f91c9e8 1764// ScrewsInFrame - in sensitive volume
ba030c0e 1765
1766 Float_t scruX[64];
1767 Float_t scruY[64];
1768
1769// Screws on IHEpoxyFrame
1770
d1cd2474 1771 const Int_t kNumberOfScrewsIH = 14; // no. of screws on the IHEpoxyFrame
1772 const Float_t kOffX = 5.; // inter-screw distance
ba030c0e 1773
1774 // first screw coordinates
1775 scruX[0] = 21.07;
1776 scruY[0] = -2.23;
1777 // other screw coordinates
d1cd2474 1778 for (Int_t i = 1;i<kNumberOfScrewsIH;i++){
1779 scruX[i] = scruX[i-1]+kOffX;
ba030c0e 1780 scruY[i] = scruY[0];
1781 }
1782 // Position the volumes on the frames
d1cd2474 1783 for (Int_t i = 0;i<kNumberOfScrewsIH;i++){
5f91c9e8 1784 posX = fgkDeltaQuadLHC + scruX[i];
1785 posY = fgkDeltaQuadLHC + scruY[i];
ba030c0e 1786 posZ = 0.;
5ae5869b 1787 gMC->Gspos("SQ43",i+1,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 1788 if (chamber==1)
1789 gMC->Gspos("SQ44",i+1,"SQ40",posX+0.1-kMidHposX, posY+0.1-kMidHposY, posZ-kMidHposZ, 0, "ONLY");
5ae5869b 1790 gMC->Gspos("SQ45",i+1,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
ba030c0e 1791 }
1792 // special screw coordinates
1793 scruX[63] = 16.3;
1794 scruY[63] = -2.23;
5f91c9e8 1795 posX = fgkDeltaQuadLHC + scruX[63];
1796 posY = fgkDeltaQuadLHC + scruY[63];
ba030c0e 1797 posZ = 0.;
5ae5869b 1798 gMC->Gspos("SQ43",64,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 1799 if (chamber==1)
1800 gMC->Gspos("SQ44",64,"SQ40",posX+0.1-kMidHposX, posY+0.1-kMidHposY, posZ-kMidHposZ, 0, "ONLY");
5ae5869b 1801 gMC->Gspos("SQ45",64,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
ba030c0e 1802
1803// Screws on the IVEpoxyFrame
1804
d1cd2474 1805 const Int_t kNumberOfScrewsIV = 15; // no. of screws on the IVEpoxyFrame
1806 const Float_t kOffY = 5.; // inter-screw distance
c03e5213 1807 Int_t firstScrew = 58;
1808 Int_t lastScrew = 44;
ba030c0e 1809
1810 // first (special) screw coordinates
c03e5213 1811 scruX[firstScrew-1] = -2.23;
1812 scruY[firstScrew-1] = 16.3;
ba030c0e 1813 // second (repetitive) screw coordinates
c03e5213 1814 scruX[firstScrew-2] = -2.23;
1815 scruY[firstScrew-2] = 21.07;
ba030c0e 1816 // other screw coordinates
c03e5213 1817 for (Int_t i = firstScrew-3;i>lastScrew-2;i--){
1818 scruX[i] = scruX[firstScrew-2];
d1cd2474 1819 scruY[i] = scruY[i+1]+kOffY;
ba030c0e 1820 }
1821
d1cd2474 1822 for (Int_t i = 0;i<kNumberOfScrewsIV;i++){
c03e5213 1823 posX = fgkDeltaQuadLHC + scruX[i+lastScrew-1];
1824 posY = fgkDeltaQuadLHC + scruY[i+lastScrew-1];
ba030c0e 1825 posZ = 0.;
5ae5869b 1826 gMC->Gspos("SQ43",i+lastScrew,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 1827 if (chamber==1)
1828 gMC->Gspos("SQ44",i+lastScrew,"SQ00",posX+0.1-kMidVposX, posY+0.1-kMidVposY, posZ-kMidVposZ, 0, "ONLY");
5ae5869b 1829 gMC->Gspos("SQ45",i+lastScrew,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
ba030c0e 1830 }
1831
1832// Screws on the OVEpoxyFrame
1833
d1cd2474 1834 const Int_t kNumberOfScrewsOV = 10; // no. of screws on the OVEpoxyFrame
ba030c0e 1835
c03e5213 1836 firstScrew = 15;
1837 lastScrew = 25;
ba030c0e 1838
1839 // first (repetitive) screw coordinates
d1cd2474 1840 // notes: 1st screw should be placed in volume 40 (InnerHorizFrame)
c03e5213 1841 scruX[firstScrew-1] = 90.9;
1842 scruY[firstScrew-1] = -2.23; // true value
ba030c0e 1843
1844 // other screw coordinates
c03e5213 1845 for (Int_t i = firstScrew; i<lastScrew; i++ ){
1846 scruX[i] = scruX[firstScrew-1];
d1cd2474 1847 scruY[i] = scruY[i-1]+kOffY;
ba030c0e 1848 }
d1cd2474 1849 for (Int_t i = 1;i<kNumberOfScrewsOV;i++){
c03e5213 1850 posX = fgkDeltaQuadLHC + scruX[i+firstScrew-1];
1851 posY = fgkDeltaQuadLHC + scruY[i+firstScrew-1];
ba030c0e 1852 posZ = 0.;
5ae5869b 1853 gMC->Gspos("SQ43",i+firstScrew,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 1854 // ??
1855 if (chamber==1)
1856 gMC->Gspos("SQ44",i+firstScrew,"SQ25",posX+0.1-kMidOVposX, posY+0.1-kMidOVposY, posZ-kMidOVposZ, 0, "ONLY");
5ae5869b 1857 gMC->Gspos("SQ45",i+firstScrew,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
ba030c0e 1858 }
d1cd2474 1859 // special case for 1st screw, inside the horizontal frame (volume 40)
1860 posX = fgkDeltaQuadLHC + scruX[firstScrew-1];
1861 posY = fgkDeltaQuadLHC + scruY[firstScrew-1];
1862 posZ = 0.;
1863 if (chamber==1)
1864 gMC->Gspos("SQ44",firstScrew,"SQ40",posX+0.1-kMidHposX, posY+0.1-kMidHposY, posZ-kMidHposZ, 0, "ONLY");
1865
ba030c0e 1866// Inner Arc of Frame, screw positions and numbers-1
1867 scruX[62] = 16.009; scruY[62] = 1.401;
1868 scruX[61] = 14.564; scruY[61] = 6.791;
1869 scruX[60] = 11.363; scruY[60] = 11.363;
1870 scruX[59] = 6.791 ; scruY[59] = 14.564;
1871 scruX[58] = 1.401 ; scruY[58] = 16.009;
1872
1873 for (Int_t i = 0;i<5;i++){
5f91c9e8 1874 posX = fgkDeltaQuadLHC + scruX[i+58];
1875 posY = fgkDeltaQuadLHC + scruY[i+58];
ba030c0e 1876 posZ = 0.;
5ae5869b 1877 gMC->Gspos("SQ43",i+58+1,quadrantMLayerName,posX+0.1, posY+0.1, posZ-kHzInHFrame-kSCRUHLE, 0, "ONLY");
d1cd2474 1878 if (chamber==1)
1879 gMC->Gspos("SQ44",i+58+1,"SQ42",posX+0.1-kMidArcposX, posY+0.1-kMidArcposY, posZ-kMidArcposZ, 0, "ONLY");
5ae5869b 1880 gMC->Gspos("SQ45",i+58+1,quadrantMLayerName,posX+0.1, posY+0.1, posZ+kHzInHFrame+kSCRUNLE, 0, "ONLY");
5f91c9e8 1881 }
1882}
5f91c9e8 1883//______________________________________________________________________________
d1cd2474 1884void AliMUONSt1GeometryBuilderV2::PlaceInnerLayers(Int_t chamber)
5f91c9e8 1885{
5398f946 1886/// Place the gas and copper layers for the specified chamber.
ba030c0e 1887
0ab920eb 1888 GReal_t x = fgkDeltaQuadLHC;
1889 GReal_t y = fgkDeltaQuadLHC;
1890 GReal_t zg = 0.0;
1891 GReal_t zc = fgkHzGas + fgkHzPadPlane;
1892 Int_t dpos = (chamber-1)*2;
1893
1894 TString name = GasVolumeName("SAG", chamber);
1895 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,0,"ONLY");
1896 gMC->Gspos("SA1C", 1+dpos, QuadrantMLayerName(chamber),x,y, zc,0,"ONLY");
1897 gMC->Gspos("SA1C", 2+dpos, QuadrantMLayerName(chamber),x,y,-zc,0,"ONLY");
ba030c0e 1898}
1899
fdbaed6e 1900//______________________________________________________________________________
1901void AliMUONSt1GeometryBuilderV2::PlaceSpacer0(Int_t chamber)
1902{
1903/// Place the spacer defined in global positions
1904/// !! This method should be used only to find out the right mother volume
1905/// for the spacer if geometry is changed and the plane segment volumes
1906/// will change their numbering
1907
1908 // Global position of mother volume for the QuadrantMLayer
1909 // SQM1: (-2.6, -2.6, -522.41)
1910 // SQM2: (-2.6, -2.6, -541.49)
1911 GReal_t mx = 2.6;
1912 GReal_t my = -2.6;
1913 GReal_t mz = 522.41;
1914
1915 GReal_t x, y, z;
1916 x = 40.82 - mx;
1917 y = 43.04 - my;
1918 z = 522.41 - mz;
5ae5869b 1919 AliDebugStream(2) << "spacer05 pos1: " << x << ", " << y << ", " << z << endl;
fdbaed6e 1920 gMC->Gspos("Spacer05", 1, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
1921
1922 y = 44.54 - my;
5ae5869b 1923 AliDebugStream(2) << "spacer05 pos2: " << x << ", " << y << ", " << z << endl;
fdbaed6e 1924 gMC->Gspos("Spacer05", 2, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
1925
1926 x = 40.82 - mx;
1927 y = 43.79 - my;
1928 z = 519.76 - mz;
5ae5869b 1929 AliDebugStream(2) << "spacer06 pos1: " << x << ", " << y << ", " << z << endl;
fdbaed6e 1930 gMC->Gspos("Spacer06", 1, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
1931
1932 z = 525.06 - mz;
5ae5869b 1933 AliDebugStream(2) << "spacer06 pos2: " << x << ", " << y << ", " << z << endl;
fdbaed6e 1934 gMC->Gspos("Spacer06", 2, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
1935
1936 x = 40.82 - mx;
1937 y = 43.79 - my;
1938 z = 522.41 - mz;
5ae5869b 1939 AliDebugStream(2) << "spacer07 pos1: " << x << ", " << y << ", " << z << endl;
fdbaed6e 1940 gMC->Gspos("Spacer07", 1, QuadrantMLayerName(chamber), x, y, z, 0, "ONLY");
1941}
1942
5f91c9e8 1943//______________________________________________________________________________
331a617a 1944void AliMUONSt1GeometryBuilderV2::PlaceSector(const AliMpSector* sector,
5ae5869b 1945 TExMap specialMap,
5f91c9e8 1946 const TVector3& where, Bool_t reflectZ, Int_t chamber)
ba030c0e 1947{
5398f946 1948/// Place all the segments in the mother volume, at the position defined
5ae5869b 1949/// by the sector's data. \n
1950/// The lines with comments COMMENT OUT BEGIN/END indicates blocks
1951/// which can be commented out in order to reduce the number of volumes
1952/// in a sector to the plane segments corresponding to regular motifs only.
ba030c0e 1953
5f91c9e8 1954 static Int_t segNum=1;
1955 Int_t sgn;
1956 Int_t reflZ;
1957 Int_t rotMat;
1958
1959 if (!reflectZ) {
1960 sgn= 1;
1961 reflZ=0; // no reflection along z... nothing
d1cd2474 1962 fMUON->AliMatrix(rotMat, 90.,90.,90,180.,0.,0.); // 90° rotation around z, NO reflection along z
5f91c9e8 1963 } else {
1964 sgn=-1;
d1cd2474 1965 fMUON->AliMatrix(reflZ, 90.,0.,90,90.,180.,0.); // reflection along z
1966 fMUON->AliMatrix(rotMat, 90.,90.,90,180.,180.,0.); // 90° rotation around z AND reflection along z
5f91c9e8 1967 }
1968
ba030c0e 1969 GReal_t posX,posY,posZ;
1970
d1cd2474 1971 TArrayI alreadyDone(20);
1972 Int_t nofAlreadyDone = 0;
d1cd2474 1973
5f91c9e8 1974 for (Int_t irow=0;irow<sector->GetNofRows();irow++){ // for each row
1975 AliMpRow* row = sector->GetRow(irow);
ba030c0e 1976
ba030c0e 1977
5f91c9e8 1978 for (Int_t iseg=0;iseg<row->GetNofRowSegments();iseg++){ // for each row segment
1979 AliMpVRowSegment* seg = row->GetRowSegment(iseg);
5f91c9e8 1980
d1cd2474 1981 Long_t value = specialMap.GetValue(seg->GetMotifPositionId(0));
1982
1983 if ( value == 0 ){ //if this is a normal segment (ie. not part of <specialMap>)
5f91c9e8 1984
1985 // create the cathode part
62c708bf 1986 CreatePlaneSegment(segNum, seg->Dimensions(), seg->GetNofMotifs());
5f91c9e8 1987
e77b6d6b 1988 posX = where.X() + seg->Position().X();
1989 posY = where.Y() + seg->Position().Y();
5f91c9e8 1990 posZ = where.Z() + sgn * (TotalHzPlane() + fgkHzGas + 2.*fgkHzPadPlane);
62c708bf 1991 gMC->Gspos(PlaneSegmentName(segNum).Data(), 1,
1992 QuadrantMLayerName(chamber), posX, posY, posZ, reflZ, "ONLY");
5f91c9e8 1993
1994 // and place all the daughter boards of this segment
5ae5869b 1995
1996// COMMENT OUT BEGIN
5f91c9e8 1997 for (Int_t motifNum=0;motifNum<seg->GetNofMotifs();motifNum++) {
e8c253a0 1998
1999 // Copy number
5f91c9e8 2000 Int_t motifPosId = seg->GetMotifPositionId(motifNum);
2001 AliMpMotifPosition* motifPos =
2002 sector->GetMotifMap()->FindMotifPosition(motifPosId);
e8c253a0 2003 Int_t copyNo = motifPosId;
866c3232 2004 if ( sector->GetDirection() == AliMp::kX) copyNo += fgkDaughterCopyNoOffset;
5f91c9e8 2005
e8c253a0 2006 // Position
e77b6d6b 2007 posX = where.X() + motifPos->Position().X() + fgkOffsetX;
2008 posY = where.Y() + motifPos->Position().Y() + fgkOffsetY;
5f91c9e8 2009 posZ = where.Z() + sgn * (fgkMotherThick1 - TotalHzDaughter());
e8c253a0 2010 gMC->Gspos(fgkDaughterName, copyNo, QuadrantMLayerName(chamber), posX, posY, posZ, reflZ, "ONLY");
5f91c9e8 2011 }
5ae5869b 2012// COMMENT OUT END
2013
5f91c9e8 2014 segNum++;
2015
2016 } else {
2017
5ae5869b 2018// COMMENT OUT BEGIN
5f91c9e8 2019 // if this is a special segment
2020 for (Int_t motifNum=0;motifNum<seg->GetNofMotifs();motifNum++) {// for each motif
2021
2022 Int_t motifPosId = seg->GetMotifPositionId(motifNum);
2023
d1cd2474 2024 Bool_t isDone = false;
2025 Int_t i=0;
2026 while (i<nofAlreadyDone && !isDone) {
2027 if (alreadyDone.At(i) == motifPosId) isDone=true;
2028 i++;
2029 }
2030 if (isDone) continue; // don't treat the same motif twice
2031
2032 AliMUONSt1SpecialMotif spMot = *((AliMUONSt1SpecialMotif*)specialMap.GetValue(motifPosId));
5ae5869b 2033 AliDebugStream(2) << chamber << " processing special motif: " << motifPosId << endl;
d1cd2474 2034
5f91c9e8 2035 AliMpMotifPosition* motifPos = sector->GetMotifMap()->FindMotifPosition(motifPosId);
2036
e8c253a0 2037 // Copy number
2038 Int_t copyNo = motifPosId;
866c3232 2039 if ( sector->GetDirection() == AliMp::kX) copyNo += fgkDaughterCopyNoOffset;
e8c253a0 2040
5f91c9e8 2041 // place the hole for the motif, wrt the requested rotation angle
2042 Int_t rot = ( spMot.GetRotAngle()<0.1 ) ? reflZ:rotMat;
2043
e77b6d6b 2044 posX = where.X() + motifPos->Position().X() + spMot.GetDelta().X();
2045 posY = where.Y() + motifPos->Position().Y() + spMot.GetDelta().Y();
5f91c9e8 2046 posZ = where.Z() + sgn * (TotalHzPlane() + fgkHzGas + 2.*fgkHzPadPlane);
35bf4a8f 2047 // Shift the hole for special motif 46 to avoid debording into S047
afab29fc 2048 if ( copyNo == 2070 ) {
2049 posX -= 0.1;
2050 posY -= 0.1;
2051 }
e8c253a0 2052 gMC->Gspos(fgkHoleName, copyNo, QuadrantMLayerName(chamber), posX, posY, posZ, rot, "ONLY");
5f91c9e8 2053
2054 // then place the daughter board for the motif, wrt the requested rotation angle
2055 posX = posX+fgkDeltaFilleEtamX;
2056 posY = posY+fgkDeltaFilleEtamY;
35bf4a8f 2057 // Do not shift the daughter board
afab29fc 2058 if ( copyNo == 2070 ) {
2059 posX += 0.1;
2060 posY += 0.1;
2061 }
5f91c9e8 2062 posZ = where.Z() + sgn * (fgkMotherThick1 - TotalHzDaughter());
e8c253a0 2063 gMC->Gspos(fgkDaughterName, copyNo, QuadrantMLayerName(chamber), posX, posY, posZ, rot, "ONLY");
5f91c9e8 2064
d1cd2474 2065 if (nofAlreadyDone == alreadyDone.GetSize())
2066 alreadyDone.Set(2*nofAlreadyDone);
2067 alreadyDone.AddAt(motifPosId, nofAlreadyDone++);
2294822d 2068
5ae5869b 2069 AliDebugStream(2) << chamber << " processed motifPosId: " << motifPosId << endl;
5f91c9e8 2070 }
5ae5869b 2071// COMMENT OUT END
2072
5f91c9e8 2073 }// end of special motif case
2074 }
2075 }
2076}
2077
2078//______________________________________________________________________________
d1cd2474 2079TString AliMUONSt1GeometryBuilderV2::GasVolumeName(const TString& name, Int_t chamber) const
ba030c0e 2080{
5398f946 2081/// Insert the chamber number into the name.
ba030c0e 2082
5f91c9e8 2083 TString newString(name);
2084
2085 TString number("");
2086 number += chamber;
ba030c0e 2087
5f91c9e8 2088 newString.Insert(2, number);
ba030c0e 2089
5f91c9e8 2090 return newString;
ba030c0e 2091}
2092
5f91c9e8 2093//
2094// public methods
2095//
2096
2097//______________________________________________________________________________
d1cd2474 2098void AliMUONSt1GeometryBuilderV2::CreateMaterials()
ba030c0e 2099{
5398f946 2100/// Define materials specific to station 1
2101
d1cd2474 2102// Materials and medias defined in MUONv1:
2103//
2104// AliMaterial( 9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
2105// AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
2106// AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500);
2107// AliMixture( 19, "Bakelite$", abak, zbak, dbak, -3, wbak);
2108// AliMixture( 20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
2109// AliMixture( 21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
2110// AliMixture( 22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
2111// AliMixture( 23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
2112// AliMixture( 24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
2113// AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.);
2114// AliMixture( 32, "Vetronite$",aglass, zglass, dglass, 5, wglass);
2115// AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9);
2116// AliMixture( 34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac);
2117
2118// AliMedium( 1, "AIR_CH_US ", 15, 1, iSXFLD, ...
2119// AliMedium( 4, "ALU_CH_US ", 9, 0, iSXFLD, ...
2120// AliMedium( 5, "ALU_CH_US ", 10, 0, iSXFLD, ...
2121// AliMedium( 6, "AR_CH_US ", 20, 1, iSXFLD, ...
2122// AliMedium( 7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, ...
2123// AliMedium( 8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, ...
2124// AliMedium( 9, "ARG_CO2 ", 22, 1, iSXFLD, ...
2125// AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, ...
2126// AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, ...
2127// AliMedium(13, "CARBON ", 33, 0, iSXFLD, ...
2128// AliMedium(14, "Rohacell ", 34, 0, iSXFLD, ...
2d5a9247 2129// AliMedium(24, "FrameCH$ ", 44, 1, iSXFLD, ...
d1cd2474 2130
2131 //
2132 // --- Define materials for GEANT ---
2133 //
2134
2135 fMUON->AliMaterial(41, "Aluminium II$", 26.98, 13., 2.7, -8.9, 26.1);
2136 // was id: 9
2137 // from PDG and "The Particle Detector BriefBook", Bock and Vasilescu, P.18
2138 // ??? same but the last but one argument < 0
d1cd2474 2139 //
2140 // --- Define mixtures for GEANT ---
2141 //
2142
79be0537 2143 // // Ar-CO2 gas II (80%+20%)
2144// Float_t ag1[2] = { 39.95, 44.01};
2145// Float_t zg1[2] = { 18., 22.};
2146// Float_t wg1[2] = { .8, 0.2};
2147// Float_t dg1 = .001821;
2148// fMUON->AliMixture(45, "ArCO2 II 80%$", ag1, zg1, dg1, 2, wg1);
2149// // was id: 22
2150// // use wg1 weighting factors (6th arg > 0)
d1cd2474 2151
2152 // Rohacell 51 II - imide methacrylique
2153 Float_t aRohacell51[4] = { 12.01, 1.01, 16.00, 14.01};
2154 Float_t zRohacell51[4] = { 6., 1., 8., 7.};
2155 Float_t wRohacell51[4] = { 9., 13., 2., 1.};
5f91c9e8 2156 Float_t dRohacell51 = 0.052;
d1cd2474 2157 fMUON->AliMixture(46, "FOAM$",aRohacell51,zRohacell51,dRohacell51,-4,wRohacell51);
2158 // was id: 32
2159 // use relative A (molecular) values (6th arg < 0)
5f91c9e8 2160
d1cd2474 2161 Float_t aSnPb[2] = { 118.69, 207.19};
2162 Float_t zSnPb[2] = { 50, 82};
2163 Float_t wSnPb[2] = { 0.6, 0.4} ;
5f91c9e8 2164 Float_t dSnPb = 8.926;
d1cd2474 2165 fMUON->AliMixture(47, "SnPb$", aSnPb,zSnPb,dSnPb,2,wSnPb);
2166 // was id: 35
2167 // use wSnPb weighting factors (6th arg > 0)
ba030c0e 2168
5f91c9e8 2169 // plastic definition from K5, Freiburg (found on web)
d1cd2474 2170 Float_t aPlastic[2]={ 1.01, 12.01};
2171 Float_t zPlastic[2]={ 1, 6};
2172 Float_t wPlastic[2]={ 1, 1};
5f91c9e8 2173 Float_t denPlastic=1.107;
d1cd2474 2174 fMUON->AliMixture(48, "Plastic$",aPlastic,zPlastic,denPlastic,-2,wPlastic);
2175 // was id: 33
2176 // use relative A (molecular) values (6th arg < 0)...no other info...
5f91c9e8 2177
d1cd2474 2178 // Not used, to be removed
2179 //
d1cd2474 2180 // was id: 34
2181
5f91c9e8 2182 // Inox/Stainless Steel (18%Cr, 9%Ni)
d1cd2474 2183 Float_t aInox[3] = {55.847, 51.9961, 58.6934};
2184 Float_t zInox[3] = {26., 24., 28.};
2185 Float_t wInox[3] = {0.73, 0.18, 0.09};
5f91c9e8 2186 Float_t denInox = 7.930;
d1cd2474 2187 fMUON->AliMixture(50, "StainlessSteel$",aInox,zInox,denInox,3,wInox);
2188 // was id: 37
2189 // use wInox weighting factors (6th arg > 0)
2190 // from CERN note NUFACT Note023, Oct.2000
2191 //
2192 // End - Not used, to be removed
2193
2194 //
2195 // --- Define the tracking medias for GEANT ---
2196 //
2197
5f91c9e8 2198 GReal_t epsil = .001; // Tracking precision,
d1cd2474 2199 //GReal_t stemax = -1.; // Maximum displacement for multiple scat
5f91c9e8 2200 GReal_t tmaxfd = -20.; // Maximum angle due to field deflection
d1cd2474 2201 //GReal_t deemax = -.3; // Maximum fractional energy loss, DLS
5f91c9e8 2202 GReal_t stmin = -.8;
d1cd2474 2203 GReal_t maxStepAlu = fMUON->GetMaxStepAlu();
2204 GReal_t maxDestepAlu = fMUON->GetMaxDestepAlu();
8224ab9a 2205 // GReal_t maxStepGas = fMUON->GetMaxStepGas();
f7a1cc68 2206 Int_t iSXFLD = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->PrecInteg();
2207 Float_t sXMGMX = ((AliMagF*)TGeoGlobalMagField::Instance()->GetField())->Max();
5f91c9e8 2208
d1cd2474 2209 fMUON->AliMedium(21, "ALU_II$", 41, 0, iSXFLD, sXMGMX,
2210 tmaxfd, maxStepAlu, maxDestepAlu, epsil, stmin);
f1501d74 2211
d1cd2474 2212 // was med: 20 mat: 36
79be0537 2213 // fMUON->AliMedium(25, "ARG_CO2_II", 45, 1, iSXFLD, sXMGMX,
2214// tmaxfd, maxStepGas, maxDestepAlu, epsil, stmin);
2215// // was med: 9 mat: 22
d1cd2474 2216 fMUON->AliMedium(26, "FOAM_CH$", 46, 0, iSXFLD, sXMGMX,
2217 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ;
2218 // was med: 16 mat: 32
2219 fMUON->AliMedium(27, "SnPb$", 47, 0, iSXFLD, sXMGMX,
2220 10.0, 0.01, 1.0, 0.003, 0.003);
2221 // was med: 19 mat: 35
2222 fMUON->AliMedium(28, "Plastic$", 48, 0, iSXFLD, sXMGMX,
2223 10.0, 0.01, 1.0, 0.003, 0.003);
2224 // was med: 17 mat: 33
2225
2226 // Not used, to be romoved
2227 //
f1501d74 2228
d1cd2474 2229 fMUON->AliMedium(30, "InoxBolts$", 50, 1, iSXFLD, sXMGMX,
2230 10.0, 0.01, 1.0, 0.003, 0.003);
2231 // was med: 21 mat: 37
2232 //
2233 // End - Not used, to be removed
ba030c0e 2234}
2235
5f91c9e8 2236//______________________________________________________________________________
d1cd2474 2237void AliMUONSt1GeometryBuilderV2::CreateGeometry()
ba030c0e 2238{
5398f946 2239/// Create the detailed GEANT geometry for the dimuon arm station1
2240
5a0e88a7 2241 AliDebug(1,"Called");
5f91c9e8 2242
adbabf6d 2243 // Define chamber volumes as virtual
2244 //
2245
5f91c9e8 2246 // Create basic volumes
2247 //
2248 CreateHole();
2249 CreateDaughterBoard();
2250 CreateInnerLayers();
fdbaed6e 2251 // CreateSpacer0();
2252 CreateSpacer();
ba030c0e 2253
5f91c9e8 2254 // Create reflexion matrices
2255 //
d1cd2474 2256/*
5f91c9e8 2257 Int_t reflXZ, reflYZ, reflXY;
d1cd2474 2258 fMUON->AliMatrix(reflXZ, 90., 180., 90., 90., 180., 0.);
2259 fMUON->AliMatrix(reflYZ, 90., 0., 90.,-90., 180., 0.);
2260 fMUON->AliMatrix(reflXY, 90., 180., 90., 270., 0., 0.);
2261*/
5f91c9e8 2262 // Define transformations for each quadrant
e7addd77 2263 // In old coordinate system: In new coordinate system:
5f91c9e8 2264 //
e7addd77 2265 //
2266 // II. | I. I. | II.
ecbcb19e 2267 // | (101) | (100)
e7addd77 2268 // _____ | ____ _____ | ____
2269 // | |
2270 // III. | IV. IV. | III.
ecbcb19e 2271 // (102) | (103)
5f91c9e8 2272 //
d1cd2474 2273/*
5f91c9e8 2274 Int_t rotm[4];
2275 rotm[0]=0; // quadrant I
2276 rotm[1]=reflXZ; // quadrant II
2277 rotm[2]=reflXY; // quadrant III
2278 rotm[3]=reflYZ; // quadrant IV
d1cd2474 2279*/
2280 TGeoRotation rotm[4];
2281 rotm[0] = TGeoRotation("identity");
2282 rotm[1] = TGeoRotation("reflXZ", 90., 180., 90., 90., 180., 0.);
2283 rotm[2] = TGeoRotation("reflXY", 90., 180., 90., 270., 0., 0.);
2284 rotm[3] = TGeoRotation("reflYZ", 90., 0., 90.,-90., 180., 0.);
ba030c0e 2285
5f91c9e8 2286 TVector3 scale[4];
71167142 2287 scale[0] = TVector3( 1, 1, -1); // quadrant I
2288 scale[1] = TVector3(-1, 1, 1); // quadrant II
2289 scale[2] = TVector3(-1, -1, -1); // quadrant III
2290 scale[3] = TVector3( 1, -1, 1); // quadrant IV
ba030c0e 2291
a432117a 2292 Int_t detElemId[4];
ecbcb19e 2293 detElemId[0] = 1; // quadrant I
e7addd77 2294 detElemId[1] = 0; // quadrant II
ecbcb19e 2295 detElemId[2] = 3; // quadrant III
2296 detElemId[3] = 2; // quadrant IV
a432117a 2297
5f91c9e8 2298 // Shift in Z of the middle layer
10bb087f 2299 Double_t deltaZ = 7.5/2.;
5f91c9e8 2300
2301 // Position of quadrant I wrt to the chamber position
b367fd8f 2302 // TVector3 pos0(-fgkDeltaQuadLHC, -fgkDeltaQuadLHC, deltaZ);
5f91c9e8 2303
2304 // Shift for near/far layers
2305 GReal_t shiftXY = fgkFrameOffset;
2306 GReal_t shiftZ = fgkMotherThick1+fgkMotherThick2;
2307
2308 // Build two chambers
2309 //
2310 for (Int_t ich=1; ich<3; ich++) {
0ab920eb 2311 //for (Int_t ich=1; ich<2; ich++) {
5f91c9e8 2312
2313 // Create quadrant volume
2314 CreateQuadrant(ich);
2315
2316 // Place gas volumes
2317 PlaceInnerLayers(ich);
2318
2319 // Place the quadrant
2320 for (Int_t i=0; i<4; i++) {
0ab920eb 2321 //for (Int_t i=1; i<2; i++) {
b367fd8f 2322 // DE envelope
2323 GReal_t posx0, posy0, posz0;
2324 posx0 = fgkPadXOffsetBP * scale[i].X();
2325 posy0 = fgkPadYOffsetBP * scale[i].Y();;
2326 posz0 = deltaZ * scale[i].Z();
2327 GetEnvelopes(ich-1)
2328 ->AddEnvelope(QuadrantEnvelopeName(ich,i), detElemId[i] + ich*100, true,
2329 TGeoTranslation(posx0, posy0, posz0), rotm[i]);
2330
5f91c9e8 2331 // Middle layer
a432117a 2332 GReal_t posx, posy, posz;
b367fd8f 2333 posx = -fgkDeltaQuadLHC - fgkPadXOffsetBP;
2334 posy = -fgkDeltaQuadLHC - fgkPadYOffsetBP;
2335 posz = 0.;
a432117a 2336 GetEnvelopes(ich-1)
b367fd8f 2337 ->AddEnvelopeConstituent(QuadrantMLayerName(ich), QuadrantEnvelopeName(ich,i),
2338 i+1, TGeoTranslation(posx, posy, posz));
5ae5869b 2339 GetEnvelopes(ich-1)
2340 ->AddEnvelopeConstituent(QuadrantMFLayerName(ich), QuadrantEnvelopeName(ich,i),
2341 i+5, TGeoTranslation(posx, posy, posz));
5f91c9e8 2342
2343 // Near/far layers
b367fd8f 2344 GReal_t posx2 = posx + shiftXY;;
2345 GReal_t posy2 = posy + shiftXY;;
2346 GReal_t posz2 = posz - shiftZ;;
d1cd2474 2347 //gMC->Gspos(QuadrantNLayerName(ich), i+1, "ALIC", posx2, posy2, posz2, rotm[i],"ONLY");
a432117a 2348 GetEnvelopes(ich-1)
b367fd8f 2349 ->AddEnvelopeConstituent(QuadrantNLayerName(ich), QuadrantEnvelopeName(ich,i),
2350 i+1, TGeoTranslation(posx2, posy2, posz2));
5f91c9e8 2351
b367fd8f 2352 posz2 = posz + shiftZ;
d1cd2474 2353 //gMC->Gspos(QuadrantFLayerName(ich), i+1, "ALIC", posx2, posy2, posz2, rotm[i],"ONLY");
a432117a 2354 GetEnvelopes(ich-1)
b367fd8f 2355 ->AddEnvelopeConstituent(QuadrantFLayerName(ich), QuadrantEnvelopeName(ich,i),
2356 i+1, TGeoTranslation(posx2, posy2, posz2));
5ae5869b 2357
fdbaed6e 2358 // Place spacer in global coordinates in the first non rotated quadrant
2359 // if ( detElemId[i] == 0 ) PlaceSpacer0(ich);
2360 // !! This placement should be used only to find out the right mother volume
2361 // for the spacer if geometry is changed and the plane segment volumes
2362 // will change their numbering
2363 // The call to the method CreateSpacer0(); above haa to be uncommented, too
5f91c9e8 2364 }
2365 }
5f91c9e8 2366}
2367
2368//______________________________________________________________________________
b96f7067 2369void AliMUONSt1GeometryBuilderV2::SetVolumes()
5f91c9e8 2370{
b96f7067 2371/// Define the volumes for the station2 chambers.
5f91c9e8 2372
7b5f6560 2373 if (gAlice->GetModule("SHIL")) {
2374 SetMotherVolume(0, "YOUT1");
2375 SetMotherVolume(1, "YOUT1");
2376 }
2377
adbabf6d 2378 SetVolume(0, "SC01", true);
2379 SetVolume(1, "SC02", true);
b96f7067 2380}
2381
2382//______________________________________________________________________________
2383void AliMUONSt1GeometryBuilderV2::SetTransformations()
2384{
2385/// Define the transformations for the station2 chambers.
adbabf6d 2386
b7ef3c96 2387 Double_t zpos1 = - AliMUONConstants::DefaultChamberZ(0);
2388 SetTranslation(0, TGeoTranslation(0., 0., zpos1));
5f91c9e8 2389
b7ef3c96 2390 Double_t zpos2 = - AliMUONConstants::DefaultChamberZ(1);
2391 SetTranslation(1, TGeoTranslation(0., 0., zpos2));
d1cd2474 2392}
5f91c9e8 2393
d1cd2474 2394//______________________________________________________________________________
2395void AliMUONSt1GeometryBuilderV2::SetSensitiveVolumes()
2396{
5398f946 2397/// Define the sensitive volumes for station2 chambers.
5f91c9e8 2398
e118b27e 2399 GetGeometry(0)->SetSensitiveVolume("SA1G");
e118b27e 2400 GetGeometry(1)->SetSensitiveVolume("SA2G");
ba030c0e 2401}
5f91c9e8 2402