a9e2aefa |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
2c799aa2 |
12 | * about the suitability of this software for any purpeateose. It is * |
a9e2aefa |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
16 | /* |
17 | $Log$ |
3c084d9f |
18 | Revision 1.16 2000/11/08 13:01:40 morsch |
19 | Chamber half-planes of stations 3-5 at different z-positions. |
20 | |
e1ad7d45 |
21 | Revision 1.15 2000/11/06 11:39:02 morsch |
22 | Bug in StepManager() corrected. |
23 | |
e3cf5faa |
24 | Revision 1.14 2000/11/06 09:16:50 morsch |
25 | Avoid overlap of slat volumes. |
26 | |
2c799aa2 |
27 | Revision 1.13 2000/10/26 07:33:44 morsch |
28 | Correct x-position of slats in station 5. |
29 | |
8013c580 |
30 | Revision 1.12 2000/10/25 19:55:35 morsch |
31 | Switches for each station individually for debug and lego. |
32 | |
b17c0c87 |
33 | Revision 1.11 2000/10/22 16:44:01 morsch |
34 | Update of slat geometry for stations 3,4,5 (A. deFalco) |
35 | |
f9f7c205 |
36 | Revision 1.10 2000/10/12 16:07:04 gosset |
37 | StepManager: |
38 | * SigGenCond only called for tracking chambers, |
39 | hence no more division by 0, |
40 | and may use last ALIROOT/dummies.C with exception handling; |
41 | * "10" replaced by "AliMUONConstants::NTrackingCh()". |
42 | |
a75f073c |
43 | Revision 1.9 2000/10/06 15:37:22 morsch |
44 | Problems with variable redefinition in for-loop solved. |
45 | Variable names starting with u-case letters changed to l-case. |
46 | |
6c5ddcfa |
47 | Revision 1.8 2000/10/06 09:06:31 morsch |
48 | Include Slat chambers (stations 3-5) into geometry (A. de Falco) |
49 | |
1e8fff9c |
50 | Revision 1.7 2000/10/02 21:28:09 fca |
51 | Removal of useless dependecies via forward declarations |
52 | |
94de3818 |
53 | Revision 1.6 2000/10/02 17:20:45 egangler |
54 | Cleaning of the code (continued ) : |
55 | -> coding conventions |
56 | -> void Streamers |
57 | -> some useless includes removed or replaced by "class" statement |
58 | |
8c449e83 |
59 | Revision 1.5 2000/06/28 15:16:35 morsch |
60 | (1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there) |
61 | to allow development of slat-muon chamber simulation and reconstruction code in the MUON |
62 | framework. The changes should have no side effects (mostly dummy arguments). |
63 | (2) Hit disintegration uses 3-dim hit coordinates to allow simulation |
64 | of chambers with overlapping modules (MakePadHits, Disintegration). |
65 | |
802a864d |
66 | Revision 1.4 2000/06/26 14:02:38 morsch |
67 | Add class AliMUONConstants with MUON specific constants using static memeber data and access methods. |
68 | |
f665c1ea |
69 | Revision 1.3 2000/06/22 14:10:05 morsch |
70 | HP scope problems corrected (PH) |
71 | |
e17592e9 |
72 | Revision 1.2 2000/06/15 07:58:49 morsch |
73 | Code from MUON-dev joined |
74 | |
a9e2aefa |
75 | Revision 1.1.2.14 2000/06/14 14:37:25 morsch |
76 | Initialization of TriggerCircuit added (PC) |
77 | |
78 | Revision 1.1.2.13 2000/06/09 21:55:47 morsch |
79 | Most coding rule violations corrected. |
80 | |
81 | Revision 1.1.2.12 2000/05/05 11:34:29 morsch |
82 | Log inside comments. |
83 | |
84 | Revision 1.1.2.11 2000/05/05 10:06:48 morsch |
85 | Coding Rule violations regarding trigger section corrected (CP) |
86 | Log messages included. |
87 | */ |
88 | |
89 | ///////////////////////////////////////////////////////// |
90 | // Manager and hits classes for set:MUON version 0 // |
91 | ///////////////////////////////////////////////////////// |
92 | |
93 | #include <TTUBE.h> |
94 | #include <TNode.h> |
95 | #include <TRandom.h> |
96 | #include <TLorentzVector.h> |
97 | #include <iostream.h> |
98 | |
99 | #include "AliMUONv1.h" |
100 | #include "AliRun.h" |
101 | #include "AliMC.h" |
94de3818 |
102 | #include "AliMagF.h" |
a9e2aefa |
103 | #include "AliCallf77.h" |
104 | #include "AliConst.h" |
105 | #include "AliMUONChamber.h" |
106 | #include "AliMUONHit.h" |
107 | #include "AliMUONPadHit.h" |
f665c1ea |
108 | #include "AliMUONConstants.h" |
8c449e83 |
109 | #include "AliMUONTriggerCircuit.h" |
a9e2aefa |
110 | |
111 | ClassImp(AliMUONv1) |
112 | |
113 | //___________________________________________ |
114 | AliMUONv1::AliMUONv1() : AliMUON() |
115 | { |
116 | // Constructor |
117 | fChambers = 0; |
118 | } |
119 | |
120 | //___________________________________________ |
121 | AliMUONv1::AliMUONv1(const char *name, const char *title) |
122 | : AliMUON(name,title) |
123 | { |
124 | // Constructor |
125 | } |
126 | |
127 | //___________________________________________ |
128 | void AliMUONv1::CreateGeometry() |
129 | { |
130 | // |
131 | // Note: all chambers have the same structure, which could be |
132 | // easily parameterised. This was intentionally not done in order |
133 | // to give a starting point for the implementation of the actual |
134 | // design of each station. |
135 | Int_t *idtmed = fIdtmed->GetArray()-1099; |
136 | |
137 | // Distance between Stations |
138 | // |
139 | Float_t bpar[3]; |
140 | Float_t tpar[3]; |
141 | Float_t pgpar[10]; |
142 | Float_t zpos1, zpos2, zfpos; |
143 | Float_t dframep=.001; // Value for station 3 should be 6 ... |
144 | Float_t dframep1=.001; |
145 | // Bool_t frames=kTRUE; |
146 | Bool_t frames=kFALSE; |
147 | |
148 | Float_t dframez=0.9; |
149 | Float_t dr; |
150 | Float_t dstation; |
151 | |
152 | // |
153 | // Rotation matrices in the x-y plane |
154 | Int_t idrotm[1199]; |
155 | // phi= 0 deg |
156 | AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.); |
157 | // phi= 90 deg |
158 | AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.); |
159 | // phi= 180 deg |
160 | AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.); |
161 | // phi= 270 deg |
162 | AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.); |
163 | // |
164 | Float_t phi=2*TMath::Pi()/12/2; |
165 | |
166 | // |
167 | // pointer to the current chamber |
168 | // pointer to the current chamber |
169 | Int_t idAlu1=idtmed[1103]; |
170 | Int_t idAlu2=idtmed[1104]; |
171 | // Int_t idAlu1=idtmed[1100]; |
172 | // Int_t idAlu2=idtmed[1100]; |
173 | Int_t idAir=idtmed[1100]; |
174 | Int_t idGas=idtmed[1105]; |
175 | |
176 | |
177 | AliMUONChamber *iChamber, *iChamber1, *iChamber2; |
b17c0c87 |
178 | Int_t stations[5] = {1, 1, 1, 1, 1}; |
179 | |
180 | if (stations[0]) { |
181 | |
a9e2aefa |
182 | //******************************************************************** |
183 | // Station 1 ** |
184 | //******************************************************************** |
185 | // CONCENTRIC |
186 | // indices 1 and 2 for first and second chambers in the station |
187 | // iChamber (first chamber) kept for other quanties than Z, |
188 | // assumed to be the same in both chambers |
189 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0]; |
190 | iChamber2 =(AliMUONChamber*) (*fChambers)[1]; |
191 | zpos1=iChamber1->Z(); |
192 | zpos2=iChamber2->Z(); |
193 | dstation = zpos2 - zpos1; |
194 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
195 | |
196 | // |
197 | // Mother volume |
198 | tpar[0] = iChamber->RInner()-dframep1; |
199 | tpar[1] = (iChamber->ROuter()+dframep1)/TMath::Cos(phi); |
2c799aa2 |
200 | tpar[2] = dstation/5; |
a9e2aefa |
201 | |
202 | gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3); |
203 | gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3); |
204 | gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
1e8fff9c |
205 | gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
a9e2aefa |
206 | // Aluminium frames |
207 | // Outer frames |
208 | pgpar[0] = 360/12/2; |
209 | pgpar[1] = 360.; |
210 | pgpar[2] = 12.; |
211 | pgpar[3] = 2; |
212 | pgpar[4] = -dframez/2; |
213 | pgpar[5] = iChamber->ROuter(); |
214 | pgpar[6] = pgpar[5]+dframep1; |
215 | pgpar[7] = +dframez/2; |
216 | pgpar[8] = pgpar[5]; |
217 | pgpar[9] = pgpar[6]; |
218 | gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10); |
219 | gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10); |
220 | gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); |
221 | gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); |
222 | gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); |
223 | gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); |
224 | // |
225 | // Inner frame |
226 | tpar[0]= iChamber->RInner()-dframep1; |
227 | tpar[1]= iChamber->RInner(); |
228 | tpar[2]= dframez/2; |
229 | gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3); |
230 | gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3); |
231 | |
232 | gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); |
233 | gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); |
234 | gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); |
235 | gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); |
236 | // |
237 | // Frame Crosses |
238 | if (frames) { |
239 | |
240 | bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2; |
241 | bpar[1] = dframep1/2; |
242 | bpar[2] = dframez/2; |
243 | gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3); |
244 | gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3); |
245 | |
246 | gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
247 | idrotm[1100],"ONLY"); |
248 | gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
249 | idrotm[1100],"ONLY"); |
250 | gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
251 | idrotm[1101],"ONLY"); |
252 | gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
253 | idrotm[1101],"ONLY"); |
254 | gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
255 | idrotm[1100],"ONLY"); |
256 | gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
257 | idrotm[1100],"ONLY"); |
258 | gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
259 | idrotm[1101],"ONLY"); |
260 | gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
261 | idrotm[1101],"ONLY"); |
262 | |
263 | gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
264 | idrotm[1100],"ONLY"); |
265 | gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
266 | idrotm[1100],"ONLY"); |
267 | gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
268 | idrotm[1101],"ONLY"); |
269 | gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
270 | idrotm[1101],"ONLY"); |
271 | gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
272 | idrotm[1100],"ONLY"); |
273 | gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
274 | idrotm[1100],"ONLY"); |
275 | gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
276 | idrotm[1101],"ONLY"); |
277 | gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
278 | idrotm[1101],"ONLY"); |
279 | } |
280 | // |
281 | // Chamber Material represented by Alu sheet |
282 | tpar[0]= iChamber->RInner(); |
283 | tpar[1]= iChamber->ROuter(); |
284 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
285 | gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3); |
286 | gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3); |
287 | gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY"); |
288 | gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY"); |
289 | // |
290 | // Sensitive volumes |
291 | // tpar[2] = iChamber->DGas(); |
292 | tpar[2] = iChamber->DGas()/2; |
293 | gMC->Gsvolu("C01G", "TUBE", idtmed[1108], tpar, 3); |
294 | gMC->Gsvolu("C02G", "TUBE", idtmed[1108], tpar, 3); |
295 | gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY"); |
296 | gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY"); |
297 | // |
298 | // Frame Crosses to be placed inside gas |
299 | if (frames) { |
300 | |
301 | dr = (iChamber->ROuter() - iChamber->RInner()); |
302 | bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; |
303 | bpar[1] = dframep1/2; |
304 | bpar[2] = iChamber->DGas()/2; |
305 | gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3); |
306 | gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3); |
307 | |
308 | gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0, |
309 | idrotm[1100],"ONLY"); |
310 | gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0, |
311 | idrotm[1100],"ONLY"); |
312 | gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0, |
313 | idrotm[1101],"ONLY"); |
314 | gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0, |
315 | idrotm[1101],"ONLY"); |
316 | |
317 | gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0, |
318 | idrotm[1100],"ONLY"); |
319 | gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0, |
320 | idrotm[1100],"ONLY"); |
321 | gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0, |
322 | idrotm[1101],"ONLY"); |
323 | gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0, |
324 | idrotm[1101],"ONLY"); |
325 | } |
b17c0c87 |
326 | } |
327 | if (stations[1]) { |
328 | |
a9e2aefa |
329 | //******************************************************************** |
330 | // Station 2 ** |
331 | //******************************************************************** |
332 | // indices 1 and 2 for first and second chambers in the station |
333 | // iChamber (first chamber) kept for other quanties than Z, |
334 | // assumed to be the same in both chambers |
335 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2]; |
336 | iChamber2 =(AliMUONChamber*) (*fChambers)[3]; |
337 | zpos1=iChamber1->Z(); |
338 | zpos2=iChamber2->Z(); |
339 | dstation = zpos2 - zpos1; |
340 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
341 | |
342 | // |
343 | // Mother volume |
344 | tpar[0] = iChamber->RInner()-dframep; |
345 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
2c799aa2 |
346 | tpar[2] = dstation/5; |
a9e2aefa |
347 | |
348 | gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3); |
349 | gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3); |
350 | gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
351 | gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
352 | |
a9e2aefa |
353 | // Aluminium frames |
354 | // Outer frames |
355 | pgpar[0] = 360/12/2; |
356 | pgpar[1] = 360.; |
357 | pgpar[2] = 12.; |
358 | pgpar[3] = 2; |
359 | pgpar[4] = -dframez/2; |
360 | pgpar[5] = iChamber->ROuter(); |
361 | pgpar[6] = pgpar[5]+dframep; |
362 | pgpar[7] = +dframez/2; |
363 | pgpar[8] = pgpar[5]; |
364 | pgpar[9] = pgpar[6]; |
365 | gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10); |
366 | gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10); |
367 | gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); |
368 | gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); |
369 | gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); |
370 | gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); |
371 | // |
372 | // Inner frame |
373 | tpar[0]= iChamber->RInner()-dframep; |
374 | tpar[1]= iChamber->RInner(); |
375 | tpar[2]= dframez/2; |
376 | gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3); |
377 | gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3); |
378 | |
379 | gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); |
380 | gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); |
381 | gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); |
382 | gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); |
383 | // |
384 | // Frame Crosses |
385 | if (frames) { |
386 | |
387 | bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2; |
388 | bpar[1] = dframep/2; |
389 | bpar[2] = dframez/2; |
390 | gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3); |
391 | gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3); |
392 | |
393 | gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
394 | idrotm[1100],"ONLY"); |
395 | gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
396 | idrotm[1100],"ONLY"); |
397 | gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
398 | idrotm[1101],"ONLY"); |
399 | gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
400 | idrotm[1101],"ONLY"); |
401 | gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
402 | idrotm[1100],"ONLY"); |
403 | gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
404 | idrotm[1100],"ONLY"); |
405 | gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
406 | idrotm[1101],"ONLY"); |
407 | gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
408 | idrotm[1101],"ONLY"); |
409 | |
410 | gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
411 | idrotm[1100],"ONLY"); |
412 | gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
413 | idrotm[1100],"ONLY"); |
414 | gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
415 | idrotm[1101],"ONLY"); |
416 | gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
417 | idrotm[1101],"ONLY"); |
418 | gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
419 | idrotm[1100],"ONLY"); |
420 | gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
421 | idrotm[1100],"ONLY"); |
422 | gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
423 | idrotm[1101],"ONLY"); |
424 | gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
425 | idrotm[1101],"ONLY"); |
426 | } |
427 | // |
428 | // Chamber Material represented by Alu sheet |
429 | tpar[0]= iChamber->RInner(); |
430 | tpar[1]= iChamber->ROuter(); |
431 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
432 | gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3); |
433 | gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3); |
434 | gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY"); |
435 | gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY"); |
436 | // |
437 | // Sensitive volumes |
438 | // tpar[2] = iChamber->DGas(); |
439 | tpar[2] = iChamber->DGas()/2; |
440 | gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3); |
441 | gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3); |
442 | gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY"); |
443 | gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY"); |
444 | |
445 | if (frames) { |
446 | // |
447 | // Frame Crosses to be placed inside gas |
448 | dr = (iChamber->ROuter() - iChamber->RInner()); |
449 | bpar[0] = TMath::Sqrt(dr*dr-dframep*dframep/4)/2; |
450 | bpar[1] = dframep/2; |
451 | bpar[2] = iChamber->DGas()/2; |
452 | gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3); |
453 | gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3); |
454 | |
455 | gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0, |
456 | idrotm[1100],"ONLY"); |
457 | gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0, |
458 | idrotm[1100],"ONLY"); |
459 | gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0, |
460 | idrotm[1101],"ONLY"); |
461 | gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0, |
462 | idrotm[1101],"ONLY"); |
463 | |
464 | gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0, |
465 | idrotm[1100],"ONLY"); |
466 | gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0, |
467 | idrotm[1100],"ONLY"); |
468 | gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0, |
469 | idrotm[1101],"ONLY"); |
470 | gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0, |
471 | idrotm[1101],"ONLY"); |
472 | } |
b17c0c87 |
473 | } |
1e8fff9c |
474 | // define the id of tracking media: |
475 | Int_t idCopper = idtmed[1110]; |
476 | Int_t idGlass = idtmed[1111]; |
477 | Int_t idCarbon = idtmed[1112]; |
478 | Int_t idRoha = idtmed[1113]; |
479 | |
1e8fff9c |
480 | // sensitive area: 40*40 cm**2 |
6c5ddcfa |
481 | const Float_t sensLength = 40.; |
482 | const Float_t sensHeight = 40.; |
483 | const Float_t sensWidth = 0.5; // according to TDR fig 2.120 |
484 | const Int_t sensMaterial = idGas; |
1e8fff9c |
485 | const Float_t yOverlap = 1.5; |
486 | |
487 | // PCB dimensions in cm; width: 30 mum copper |
6c5ddcfa |
488 | const Float_t pcbLength = sensLength; |
489 | const Float_t pcbHeight = 60.; |
490 | const Float_t pcbWidth = 0.003; |
491 | const Int_t pcbMaterial = idCopper; |
1e8fff9c |
492 | |
493 | // Insulating material: 200 mum glass fiber glued to pcb |
6c5ddcfa |
494 | const Float_t insuLength = pcbLength; |
495 | const Float_t insuHeight = pcbHeight; |
496 | const Float_t insuWidth = 0.020; |
497 | const Int_t insuMaterial = idGlass; |
1e8fff9c |
498 | |
499 | // Carbon fiber panels: 200mum carbon/epoxy skin |
6c5ddcfa |
500 | const Float_t panelLength = sensLength; |
501 | const Float_t panelHeight = sensHeight; |
502 | const Float_t panelWidth = 0.020; |
503 | const Int_t panelMaterial = idCarbon; |
1e8fff9c |
504 | |
505 | // rohacell between the two carbon panels |
6c5ddcfa |
506 | const Float_t rohaLength = sensLength; |
507 | const Float_t rohaHeight = sensHeight; |
508 | const Float_t rohaWidth = 0.5; |
509 | const Int_t rohaMaterial = idRoha; |
1e8fff9c |
510 | |
511 | // Frame around the slat: 2 sticks along length,2 along height |
512 | // H: the horizontal ones |
6c5ddcfa |
513 | const Float_t hFrameLength = pcbLength; |
514 | const Float_t hFrameHeight = 1.5; |
515 | const Float_t hFrameWidth = sensWidth; |
516 | const Int_t hFrameMaterial = idGlass; |
1e8fff9c |
517 | |
518 | // V: the vertical ones |
6c5ddcfa |
519 | const Float_t vFrameLength = 4.0; |
520 | const Float_t vFrameHeight = sensHeight + hFrameHeight; |
521 | const Float_t vFrameWidth = sensWidth; |
522 | const Int_t vFrameMaterial = idGlass; |
1e8fff9c |
523 | |
524 | // B: the horizontal border filled with rohacell |
6c5ddcfa |
525 | const Float_t bFrameLength = hFrameLength; |
526 | const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; |
527 | const Float_t bFrameWidth = hFrameWidth; |
528 | const Int_t bFrameMaterial = idRoha; |
1e8fff9c |
529 | |
530 | // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) |
6c5ddcfa |
531 | const Float_t nulocLength = 2.5; |
532 | const Float_t nulocHeight = 7.5; |
533 | const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite; |
534 | const Int_t nulocMaterial = idCopper; |
1e8fff9c |
535 | |
6c5ddcfa |
536 | const Float_t slatHeight = pcbHeight; |
537 | const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + |
538 | 2.* panelWidth + rohaWidth); |
539 | const Int_t slatMaterial = idAir; |
540 | const Float_t dSlatLength = vFrameLength; // border on left and right |
1e8fff9c |
541 | |
1e8fff9c |
542 | Float_t spar[3]; |
b17c0c87 |
543 | Int_t i, j; |
544 | |
3c084d9f |
545 | // the panel volume contains the rohacell |
546 | |
547 | Float_t twidth = 2 * panelWidth + rohaWidth; |
548 | Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. }; |
b17c0c87 |
549 | Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; |
3c084d9f |
550 | |
551 | // insulating material contains PCB-> gas-> 2 borders filled with rohacell |
552 | |
553 | twidth = 2*(insuWidth + pcbWidth) + sensWidth; |
554 | Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. }; |
555 | twidth -= 2 * insuWidth; |
556 | Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. }; |
557 | Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; |
558 | Float_t theight = 2*hFrameHeight + sensHeight; |
559 | Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.}; |
b17c0c87 |
560 | Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; |
3c084d9f |
561 | Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; |
b17c0c87 |
562 | Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; |
b17c0c87 |
563 | Float_t xx; |
564 | Float_t xxmax = (bFrameLength - nulocLength)/2.; |
565 | Int_t index=0; |
566 | |
567 | if (stations[2]) { |
568 | |
569 | //******************************************************************** |
570 | // Station 3 ** |
571 | //******************************************************************** |
572 | // indices 1 and 2 for first and second chambers in the station |
573 | // iChamber (first chamber) kept for other quanties than Z, |
574 | // assumed to be the same in both chambers |
575 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4]; |
576 | iChamber2 =(AliMUONChamber*) (*fChambers)[5]; |
577 | zpos1=iChamber1->Z(); |
578 | zpos2=iChamber2->Z(); |
579 | dstation = zpos2 - zpos1; |
580 | |
581 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
582 | // |
583 | // Mother volume |
584 | tpar[0] = iChamber->RInner()-dframep; |
585 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
3c084d9f |
586 | tpar[2] = dstation/4; |
b17c0c87 |
587 | gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3); |
588 | gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3); |
589 | gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
590 | gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
591 | |
592 | // volumes for slat geometry (xx=5,..,10 chamber id): |
593 | // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes |
594 | // SxxG --> Sensitive volume (gas) |
595 | // SxxP --> PCB (copper) |
596 | // SxxI --> Insulator (vetronite) |
597 | // SxxC --> Carbon panel |
598 | // SxxR --> Rohacell |
599 | // SxxH, SxxV --> Horizontal and Vertical frames (vetronite) |
600 | |
601 | // slat dimensions: slat is a MOTHER volume!!! made of air |
602 | |
603 | |
604 | const Int_t nSlats3 = 4; // number of slats per quadrant |
605 | const Int_t nPCB3[nSlats3] = {3,4,3,2}; // n PCB per slat |
606 | Float_t slatLength3[nSlats3]; |
607 | |
608 | // create and position the slat (mother) volumes |
609 | |
6c5ddcfa |
610 | char volNam5[5]; |
611 | char volNam6[5]; |
f9f7c205 |
612 | Float_t xSlat3; |
b17c0c87 |
613 | |
6c5ddcfa |
614 | for (i = 0; i<nSlats3; i++){ |
3c084d9f |
615 | slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength; |
616 | xSlat3 = slatLength3[i]/2. - vFrameLength/2.; |
b17c0c87 |
617 | |
3c084d9f |
618 | if (i==0) { |
619 | xSlat3 += 40.; |
620 | slatLength3[i] -= 2. *dSlatLength; |
621 | } |
622 | Float_t ySlat31 = sensHeight * (i+0.5) - yOverlap * i - yOverlap/2.; |
623 | Float_t ySlat32 = -sensHeight * (i+0.5) + yOverlap * i + yOverlap/2.; |
624 | spar[0] = slatLength3[i]/2.; |
625 | spar[1] = slatHeight/2.; |
626 | spar[2] = slatWidth/2. * 1.01; |
627 | Float_t dzCh3=spar[2] * 1.01; |
628 | // zSlat to be checked (odd downstream or upstream?) |
629 | Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; |
630 | sprintf(volNam5,"S05%d",i); |
631 | gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar,3); |
632 | gMC->Gspos(volNam5, i*4+1,"C05M", xSlat3, ySlat31, zSlat+2.*dzCh3, 0, "ONLY"); |
633 | gMC->Gspos(volNam5, i*4+2,"C05M",-xSlat3, ySlat31, zSlat-2.*dzCh3, 0, "ONLY"); |
634 | gMC->Gspos(volNam5, i*4+3,"C05M", xSlat3, ySlat32,-zSlat+2.*dzCh3, 0, "ONLY"); |
635 | gMC->Gspos(volNam5, i*4+4,"C05M",-xSlat3, ySlat32,-zSlat-2.*dzCh3, 0, "ONLY"); |
636 | sprintf(volNam6,"S06%d",i); |
637 | gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3); |
638 | gMC->Gspos(volNam6, i*4+1,"C06M", xSlat3, ySlat31, zSlat+2.*dzCh3, 0, "ONLY"); |
639 | gMC->Gspos(volNam6, i*4+2,"C06M",-xSlat3, ySlat31, zSlat-2.*dzCh3, 0, "ONLY"); |
640 | gMC->Gspos(volNam6, i*4+3,"C06M", xSlat3, ySlat32,-zSlat+2.*dzCh3, 0, "ONLY"); |
641 | gMC->Gspos(volNam6, i*4+4,"C06M",-xSlat3, ySlat32,-zSlat-2.*dzCh3, 0, "ONLY"); |
642 | // 1st pcb in 1st slat made by some rectangular divisions |
b17c0c87 |
643 | |
3c084d9f |
644 | } |
1e8fff9c |
645 | |
646 | // create the panel volume |
b17c0c87 |
647 | |
6c5ddcfa |
648 | gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3); |
649 | gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3); |
1e8fff9c |
650 | |
651 | // create the rohacell volume |
b17c0c87 |
652 | |
6c5ddcfa |
653 | gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3); |
654 | gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
655 | |
3c084d9f |
656 | // create the insulating material volume |
657 | |
658 | gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3); |
659 | gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3); |
660 | |
661 | // create the PCB volume |
662 | |
663 | gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3); |
664 | gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3); |
665 | |
666 | // create the sensitive volumes, |
667 | gMC->Gsvolu("S05G","BOX",sensMaterial,0,0); |
668 | gMC->Gsvolu("S06G","BOX",sensMaterial,0,0); |
669 | |
670 | |
1e8fff9c |
671 | // create the vertical frame volume |
b17c0c87 |
672 | |
6c5ddcfa |
673 | gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3); |
674 | gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
675 | |
676 | // create the horizontal frame volume |
b17c0c87 |
677 | |
6c5ddcfa |
678 | gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3); |
679 | gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
680 | |
681 | // create the horizontal border volume |
b17c0c87 |
682 | |
6c5ddcfa |
683 | gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3); |
684 | gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
685 | |
b17c0c87 |
686 | index=0; |
6c5ddcfa |
687 | for (i = 0; i<nSlats3; i++){ |
688 | sprintf(volNam5,"S05%d",i); |
689 | sprintf(volNam6,"S06%d",i); |
f9f7c205 |
690 | Float_t xvFrame = (slatLength3[i] - vFrameLength)/2.; |
3c084d9f |
691 | // position the vertical frames |
692 | if (i>0) { |
693 | gMC->Gspos("S05V",2*i-1,volNam5, xvFrame, 0., 0. , 0, "ONLY"); |
694 | gMC->Gspos("S05V",2*i ,volNam5,-xvFrame, 0., 0. , 0, "ONLY"); |
695 | gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY"); |
696 | gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY"); |
697 | } |
698 | // position the panels and the insulating material |
6c5ddcfa |
699 | for (j=0; j<nPCB3[i]; j++){ |
1e8fff9c |
700 | index++; |
6c5ddcfa |
701 | Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5); |
3c084d9f |
702 | |
703 | Float_t zPanel = spar[2] - panelpar[2]; |
704 | gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY"); |
705 | gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY"); |
706 | gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY"); |
707 | gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY"); |
708 | |
709 | gMC->Gspos("S05I",index,volNam5, xx, 0., 0 , 0, "ONLY"); |
710 | gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
711 | } |
a9e2aefa |
712 | } |
a9e2aefa |
713 | |
3c084d9f |
714 | // position the rohacell volume inside the panel volume |
715 | gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY"); |
716 | gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY"); |
717 | |
718 | // position the PCB volume inside the insulating material volume |
719 | gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); |
720 | gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); |
721 | // position the horizontal frame volume inside the PCB volume |
722 | gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); |
723 | gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); |
724 | // position the sensitive volume inside the horizontal frame volume |
725 | gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); |
726 | gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); |
727 | // position the border volumes inside the PCB volume |
728 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
729 | gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); |
730 | gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); |
731 | gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); |
732 | gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); |
733 | |
1e8fff9c |
734 | // create the NULOC volume and position it in the horizontal frame |
b17c0c87 |
735 | |
6c5ddcfa |
736 | gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3); |
737 | gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3); |
6c5ddcfa |
738 | index = 0; |
6c5ddcfa |
739 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
740 | index++; |
6c5ddcfa |
741 | gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
742 | gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
743 | gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
744 | gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
745 | } |
746 | |
3c084d9f |
747 | |
748 | // position the volumes approximating the circular section of the pipe |
749 | Float_t epsilon = 0.001; |
750 | Int_t ndiv=6; |
751 | Float_t divpar[3]; |
752 | Double_t dydiv= sensHeight/ndiv; |
753 | Double_t ydiv = -dydiv - yOverlap/2.; |
754 | Int_t imax=0; |
755 | // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat]; |
756 | imax = 1; |
757 | Float_t rmin = 35.; |
758 | Float_t z1 = -spar[2], z2=slatWidth; |
759 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
760 | ydiv+= dydiv; |
761 | Float_t xdiv =0; |
762 | if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ); |
763 | divpar[0] = (pcbLength-xdiv)/2.; |
764 | divpar[1] = dydiv/2. - epsilon; |
765 | divpar[2] = sensWidth/2.; |
766 | Float_t xvol=(pcbLength+xdiv)/2.; |
767 | Float_t yvol=ydiv + dydiv/2.; |
768 | gMC->Gsposp("S05G",imax+4*idiv+1,"C05M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
769 | gMC->Gsposp("S06G",imax+4*idiv+1,"C06M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
770 | gMC->Gsposp("S05G",imax+4*idiv+2,"C05M", xvol,-yvol, z2-z1, 0, "ONLY",divpar,3); |
771 | gMC->Gsposp("S06G",imax+4*idiv+2,"C06M", xvol,-yvol, z2-z1, 0, "ONLY",divpar,3); |
772 | gMC->Gsposp("S05G",imax+4*idiv+3,"C05M",-xvol, yvol,-z2+z1, 0, "ONLY",divpar,3); |
773 | gMC->Gsposp("S06G",imax+4*idiv+3,"C06M",-xvol, yvol,-z2+z1, 0, "ONLY",divpar,3); |
774 | gMC->Gsposp("S05G",imax+4*idiv+4,"C05M",-xvol,-yvol,-z1-z2, 0, "ONLY",divpar,3); |
775 | gMC->Gsposp("S06G",imax+4*idiv+4,"C06M",-xvol,-yvol,-z1-z2, 0, "ONLY",divpar,3); |
776 | } |
b17c0c87 |
777 | } |
b17c0c87 |
778 | |
a9e2aefa |
779 | |
3c084d9f |
780 | if (stations[3]) { |
781 | |
a9e2aefa |
782 | //******************************************************************** |
783 | // Station 4 ** |
784 | //******************************************************************** |
785 | // indices 1 and 2 for first and second chambers in the station |
786 | // iChamber (first chamber) kept for other quanties than Z, |
787 | // assumed to be the same in both chambers |
788 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6]; |
789 | iChamber2 =(AliMUONChamber*) (*fChambers)[7]; |
790 | zpos1=iChamber1->Z(); |
791 | zpos2=iChamber2->Z(); |
792 | dstation = zpos2 - zpos1; |
793 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
794 | |
795 | // |
796 | // Mother volume |
797 | tpar[0] = iChamber->RInner()-dframep; |
798 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
3c084d9f |
799 | tpar[2] = 3.252; |
a9e2aefa |
800 | |
801 | gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3); |
802 | gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3); |
803 | gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
804 | gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
805 | |
a9e2aefa |
806 | |
f9f7c205 |
807 | const Int_t nSlats4 = 6; // number of slats per quadrant |
808 | const Int_t nPCB4[nSlats4] = {4,5,5,4,3,2}; // n PCB per slat |
1e8fff9c |
809 | |
810 | // slat dimensions: slat is a MOTHER volume!!! made of air |
6c5ddcfa |
811 | Float_t slatLength4[nSlats4]; |
1e8fff9c |
812 | |
813 | // create and position the slat (mother) volumes |
814 | |
6c5ddcfa |
815 | char volNam7[5]; |
816 | char volNam8[5]; |
1e8fff9c |
817 | Float_t xSlat4; |
f9f7c205 |
818 | Float_t ySlat4; |
1e8fff9c |
819 | |
6c5ddcfa |
820 | for (i = 0; i<nSlats4; i++){ |
821 | slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength; |
f9f7c205 |
822 | xSlat4 = slatLength4[i]/2. - vFrameLength/2.; |
823 | if (i==0) xSlat4 += 37.5; |
3c084d9f |
824 | if (i==1) xSlat4 += 32; // to be checked |
f9f7c205 |
825 | ySlat4 = sensHeight * i - yOverlap *i; |
a9e2aefa |
826 | |
6c5ddcfa |
827 | spar[0] = slatLength4[i]/2.; |
828 | spar[1] = slatHeight/2.; |
3c084d9f |
829 | spar[2] = slatWidth/2.*1.01; |
830 | Float_t dzCh4=spar[2]*1.01; |
1e8fff9c |
831 | // zSlat to be checked (odd downstream or upstream?) |
3c084d9f |
832 | Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2]; |
6c5ddcfa |
833 | sprintf(volNam7,"S07%d",i); |
834 | gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3); |
e1ad7d45 |
835 | gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
836 | gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
f9f7c205 |
837 | if (i>0) { |
e1ad7d45 |
838 | gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
839 | gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
f9f7c205 |
840 | } |
6c5ddcfa |
841 | sprintf(volNam8,"S08%d",i); |
842 | gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3); |
e1ad7d45 |
843 | gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
844 | gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
f9f7c205 |
845 | if (i>0) { |
e1ad7d45 |
846 | gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
847 | gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
f9f7c205 |
848 | } |
a9e2aefa |
849 | } |
850 | |
3c084d9f |
851 | |
852 | // create the panel volume |
1e8fff9c |
853 | |
3c084d9f |
854 | gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3); |
855 | gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3); |
a9e2aefa |
856 | |
3c084d9f |
857 | // create the rohacell volume |
858 | |
859 | gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3); |
860 | gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
861 | |
1e8fff9c |
862 | // create the insulating material volume |
863 | |
6c5ddcfa |
864 | gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3); |
865 | gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3); |
1e8fff9c |
866 | |
3c084d9f |
867 | // create the PCB volume |
1e8fff9c |
868 | |
3c084d9f |
869 | gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3); |
870 | gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3); |
1e8fff9c |
871 | |
3c084d9f |
872 | // create the sensitive volumes, |
873 | |
874 | gMC->Gsvolu("S07G","BOX",sensMaterial,0,0); |
875 | gMC->Gsvolu("S08G","BOX",sensMaterial,0,0); |
876 | // gMC->Gsvolu("S07G","BOX",sensMaterial,senspar,3); |
877 | // gMC->Gsvolu("S08G","BOX",sensMaterial,senspar,3); |
878 | |
879 | |
1e8fff9c |
880 | |
881 | // create the vertical frame volume |
882 | |
6c5ddcfa |
883 | gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3); |
884 | gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
885 | |
886 | // create the horizontal frame volume |
887 | |
6c5ddcfa |
888 | gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3); |
889 | gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
890 | |
891 | // create the horizontal border volume |
892 | |
6c5ddcfa |
893 | gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3); |
894 | gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3); |
3c084d9f |
895 | |
896 | index=0; |
6c5ddcfa |
897 | for (i = 0; i<nSlats4; i++){ |
898 | sprintf(volNam7,"S07%d",i); |
899 | sprintf(volNam8,"S08%d",i); |
900 | Float_t xvFrame = (slatLength4[i] - vFrameLength)/2.; |
3c084d9f |
901 | // position the vertical frames |
6c5ddcfa |
902 | gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY"); |
903 | gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY"); |
904 | gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY"); |
905 | gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY"); |
3c084d9f |
906 | |
907 | // position the panels and the insulating material |
6c5ddcfa |
908 | for (j=0; j<nPCB4[i]; j++){ |
1e8fff9c |
909 | index++; |
6c5ddcfa |
910 | Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5); |
3c084d9f |
911 | |
912 | Float_t zPanel = spar[2] - panelpar[2]; |
913 | gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY"); |
914 | gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY"); |
915 | gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY"); |
916 | gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY"); |
917 | |
918 | gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY"); |
919 | gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
920 | } |
a9e2aefa |
921 | } |
1e8fff9c |
922 | |
3c084d9f |
923 | // position the rohacell volume inside the panel volume |
924 | gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY"); |
925 | gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY"); |
926 | |
927 | // position the PCB volume inside the insulating material volume |
928 | gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); |
929 | gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); |
930 | // position the horizontal frame volume inside the PCB volume |
931 | gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); |
932 | gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); |
933 | // position the sensitive volume inside the horizontal frame volume |
934 | gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); |
935 | gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); |
936 | // gMC->Gspos("S07G",1,"S07H",0.,0.,0.,0,"ONLY"); |
937 | // gMC->Gspos("S08G",1,"S08H",0.,0.,0.,0,"ONLY"); |
938 | // position the border volumes inside the PCB volume |
939 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
940 | gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); |
941 | gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); |
942 | gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); |
943 | gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); |
944 | |
1e8fff9c |
945 | // create the NULOC volume and position it in the horizontal frame |
3c084d9f |
946 | |
6c5ddcfa |
947 | gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3); |
948 | gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3); |
3c084d9f |
949 | index = 0; |
6c5ddcfa |
950 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
951 | index++; |
6c5ddcfa |
952 | gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
953 | gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
954 | gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
955 | gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
956 | } |
b17c0c87 |
957 | } |
3c084d9f |
958 | |
b17c0c87 |
959 | if (stations[4]) { |
960 | |
1e8fff9c |
961 | |
a9e2aefa |
962 | //******************************************************************** |
963 | // Station 5 ** |
964 | //******************************************************************** |
965 | // indices 1 and 2 for first and second chambers in the station |
966 | // iChamber (first chamber) kept for other quanties than Z, |
967 | // assumed to be the same in both chambers |
968 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8]; |
969 | iChamber2 =(AliMUONChamber*) (*fChambers)[9]; |
970 | zpos1=iChamber1->Z(); |
971 | zpos2=iChamber2->Z(); |
972 | dstation = zpos2 - zpos1; |
973 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
3c084d9f |
974 | |
a9e2aefa |
975 | // |
976 | // Mother volume |
977 | tpar[0] = iChamber->RInner()-dframep; |
978 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
3c084d9f |
979 | tpar[2] = dstation/5.; |
a9e2aefa |
980 | |
981 | gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3); |
982 | gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3); |
983 | gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
984 | gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
a9e2aefa |
985 | |
a9e2aefa |
986 | |
1e8fff9c |
987 | const Int_t nSlats5 = 7; // number of slats per quadrant |
f9f7c205 |
988 | const Int_t nPCB5[nSlats5] = {7,7,6,6,5,4,2}; // n PCB per slat |
1e8fff9c |
989 | |
990 | // slat dimensions: slat is a MOTHER volume!!! made of air |
6c5ddcfa |
991 | Float_t slatLength5[nSlats5]; |
6c5ddcfa |
992 | char volNam9[5]; |
993 | char volNam10[5]; |
f9f7c205 |
994 | Float_t xSlat5; |
995 | Float_t ySlat5; |
1e8fff9c |
996 | |
6c5ddcfa |
997 | for (i = 0; i<nSlats5; i++){ |
998 | slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength; |
8013c580 |
999 | xSlat5 = slatLength5[i]/2. - vFrameLength/2.; |
f9f7c205 |
1000 | if (i==0) xSlat5 += 37.5; |
3c084d9f |
1001 | if (i==1) xSlat5 += 32; // to be checked |
f9f7c205 |
1002 | ySlat5 = sensHeight * i - yOverlap * i; |
6c5ddcfa |
1003 | spar[0] = slatLength5[i]/2.; |
1004 | spar[1] = slatHeight/2.; |
3c084d9f |
1005 | spar[2] = slatWidth/2. * 1.01; |
1006 | Float_t dzCh5=spar[2]*1.01; |
1e8fff9c |
1007 | // zSlat to be checked (odd downstream or upstream?) |
3c084d9f |
1008 | Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; |
6c5ddcfa |
1009 | sprintf(volNam9,"S09%d",i); |
1010 | gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3); |
e1ad7d45 |
1011 | gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1012 | gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1013 | if (i>0) { |
3c084d9f |
1014 | gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1015 | gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1016 | } |
6c5ddcfa |
1017 | sprintf(volNam10,"S10%d",i); |
1018 | gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3); |
e1ad7d45 |
1019 | gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1020 | gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1021 | if (i>0) { |
3c084d9f |
1022 | gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1023 | gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1024 | } |
a9e2aefa |
1025 | } |
1026 | |
1e8fff9c |
1027 | // create the panel volume |
3c084d9f |
1028 | |
6c5ddcfa |
1029 | gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3); |
1030 | gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3); |
3c084d9f |
1031 | |
1e8fff9c |
1032 | // create the rohacell volume |
3c084d9f |
1033 | |
6c5ddcfa |
1034 | gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3); |
1035 | gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3); |
3c084d9f |
1036 | |
1037 | // create the insulating material volume |
1038 | |
1039 | gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3); |
1040 | gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3); |
1041 | |
1042 | // create the PCB volume |
1043 | |
1044 | gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3); |
1045 | gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3); |
1046 | |
1047 | // create the sensitive volumes, |
1048 | |
1049 | gMC->Gsvolu("S09G","BOX",sensMaterial,0,0); |
1050 | gMC->Gsvolu("S10G","BOX",sensMaterial,0,0); |
1051 | // gMC->Gsvolu("S09G","BOX",sensMaterial,senspar,3); |
1052 | // gMC->Gsvolu("S10G","BOX",sensMaterial,senspar,3); |
1053 | |
1054 | |
1e8fff9c |
1055 | // create the vertical frame volume |
3c084d9f |
1056 | |
6c5ddcfa |
1057 | gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3); |
1058 | gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
1059 | |
1060 | // create the horizontal frame volume |
3c084d9f |
1061 | |
6c5ddcfa |
1062 | gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3); |
1063 | gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
1064 | |
1065 | // create the horizontal border volume |
1066 | |
6c5ddcfa |
1067 | gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3); |
1068 | gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
1069 | |
3c084d9f |
1070 | index=0; |
6c5ddcfa |
1071 | for (i = 0; i<nSlats5; i++){ |
1072 | sprintf(volNam9,"S09%d",i); |
1073 | sprintf(volNam10,"S10%d",i); |
1074 | Float_t xvFrame = (slatLength5[i] - vFrameLength)/2.; |
3c084d9f |
1075 | // position the vertical frames |
6c5ddcfa |
1076 | gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY"); |
1077 | gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY"); |
1078 | gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY"); |
1079 | gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY"); |
3c084d9f |
1080 | |
1081 | // position the panels and the insulating material |
6c5ddcfa |
1082 | for (j=0; j<nPCB5[i]; j++){ |
1e8fff9c |
1083 | index++; |
3c084d9f |
1084 | Float_t xx = sensLength * (-nPCB5[i]/2.+j+.5); |
1085 | |
1086 | Float_t zPanel = spar[2] - panelpar[2]; |
1087 | gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY"); |
1088 | gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY"); |
1089 | gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY"); |
1090 | gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY"); |
1091 | |
1092 | gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY"); |
1093 | gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
1094 | } |
1095 | } |
1096 | |
3c084d9f |
1097 | // position the rohacell volume inside the panel volume |
1098 | gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY"); |
1099 | gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY"); |
1100 | |
1101 | // position the PCB volume inside the insulating material volume |
1102 | gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); |
1103 | gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); |
1104 | // position the horizontal frame volume inside the PCB volume |
1105 | gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); |
1106 | gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); |
1107 | // position the sensitive volume inside the horizontal frame volume |
1108 | gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); |
1109 | gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); |
1110 | // gMC->Gspos("S09G",1,"S09H",0.,0.,0.,0,"ONLY"); |
1111 | // gMC->Gspos("S10G",1,"S10H",0.,0.,0.,0,"ONLY"); |
1112 | // position the border volumes inside the PCB volume |
1113 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
1114 | gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); |
1115 | gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); |
1116 | gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); |
1117 | gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); |
1118 | |
1e8fff9c |
1119 | // create the NULOC volume and position it in the horizontal frame |
3c084d9f |
1120 | |
6c5ddcfa |
1121 | gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3); |
1122 | gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3); |
3c084d9f |
1123 | index = 0; |
6c5ddcfa |
1124 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
1125 | index++; |
6c5ddcfa |
1126 | gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1127 | gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1128 | gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1129 | gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
a9e2aefa |
1130 | } |
b17c0c87 |
1131 | } |
1132 | |
1e8fff9c |
1133 | |
a9e2aefa |
1134 | /////////////////////////////////////// |
1135 | // GEOMETRY FOR THE TRIGGER CHAMBERS // |
1136 | /////////////////////////////////////// |
1137 | |
1138 | // 03/00 P. Dupieux : introduce a slighly more realistic |
1139 | // geom. of the trigger readout planes with |
1140 | // 2 Zpos per trigger plane (alternate |
1141 | // between left and right of the trigger) |
1142 | |
1143 | // Parameters of the Trigger Chambers |
1144 | |
1145 | |
1146 | const Float_t kXMC1MIN=34.; |
1147 | const Float_t kXMC1MED=51.; |
1148 | const Float_t kXMC1MAX=272.; |
1149 | const Float_t kYMC1MIN=34.; |
1150 | const Float_t kYMC1MAX=51.; |
1151 | const Float_t kRMIN1=50.; |
1152 | const Float_t kRMAX1=62.; |
1153 | const Float_t kRMIN2=50.; |
1154 | const Float_t kRMAX2=66.; |
1155 | |
1156 | // zposition of the middle of the gas gap in mother vol |
1157 | const Float_t kZMCm=-3.6; |
1158 | const Float_t kZMCp=+3.6; |
1159 | |
1160 | |
1161 | // TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1 |
1162 | |
1163 | // iChamber 1 and 2 for first and second chambers in the station |
1164 | // iChamber (first chamber) kept for other quanties than Z, |
1165 | // assumed to be the same in both chambers |
1166 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10]; |
1167 | iChamber2 =(AliMUONChamber*) (*fChambers)[11]; |
1168 | |
1169 | // 03/00 |
1170 | // zpos1 and zpos2 are now the middle of the first and second |
1171 | // plane of station 1 : |
1172 | // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm |
1173 | // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm |
1174 | // |
1175 | // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps) |
1176 | // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps) |
1177 | // rem : the total thickness accounts for 1 mm of al on both |
1178 | // side of the RPCs (see zpos1 and zpos2), as previously |
1179 | |
1180 | zpos1=iChamber1->Z(); |
1181 | zpos2=iChamber2->Z(); |
1182 | |
1183 | |
1184 | // Mother volume definition |
1185 | tpar[0] = iChamber->RInner(); |
1186 | tpar[1] = iChamber->ROuter(); |
1187 | tpar[2] = 4.0; |
1188 | gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3); |
1189 | gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3); |
1190 | |
1191 | // Definition of the flange between the beam shielding and the RPC |
1192 | tpar[0]= kRMIN1; |
1193 | tpar[1]= kRMAX1; |
1194 | tpar[2]= 4.0; |
1195 | |
1196 | gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al |
1197 | gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY"); |
1198 | gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY"); |
1199 | |
1200 | |
1201 | // FIRST PLANE OF STATION 1 |
1202 | |
1203 | // ratios of zpos1m/zpos1p and inverse for first plane |
1204 | Float_t zmp=(zpos1-3.6)/(zpos1+3.6); |
1205 | Float_t zpm=1./zmp; |
1206 | |
1207 | |
1208 | // Definition of prototype for chambers in the first plane |
1209 | |
1210 | tpar[0]= 0.; |
1211 | tpar[1]= 0.; |
1212 | tpar[2]= 0.; |
1213 | |
1214 | gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al |
1215 | gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1216 | gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1217 | |
1218 | // chamber type A |
1219 | tpar[0] = -1.; |
1220 | tpar[1] = -1.; |
1221 | |
1222 | const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; |
1223 | const Float_t kYMC1Am=0.; |
1224 | const Float_t kYMC1Ap=0.; |
1225 | |
1226 | tpar[2] = 0.1; |
1227 | gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3); |
1228 | tpar[2] = 0.3; |
1229 | gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3); |
1230 | |
1231 | tpar[2] = 0.4; |
1232 | tpar[0] = (kXMC1MAX-kXMC1MED)/2.; |
1233 | tpar[1] = kYMC1MIN; |
1234 | |
1235 | gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3); |
1236 | gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3); |
1237 | |
1238 | // chamber type B |
1239 | Float_t tpar1save=tpar[1]; |
1240 | Float_t y1msave=kYMC1Am; |
1241 | Float_t y1psave=kYMC1Ap; |
1242 | |
1243 | tpar[0] = (kXMC1MAX-kXMC1MIN)/2.; |
1244 | tpar[1] = (kYMC1MAX-kYMC1MIN)/2.; |
1245 | |
1246 | const Float_t kXMC1B=kXMC1MIN+tpar[0]; |
1247 | const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1]; |
1248 | const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1]; |
1249 | |
1250 | gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1251 | gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
1252 | gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1253 | gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
1254 | |
1255 | // chamber type C (end of type B !!) |
1256 | tpar1save=tpar[1]; |
1257 | y1msave=kYMC1Bm; |
1258 | y1psave=kYMC1Bp; |
1259 | |
1260 | tpar[0] = kXMC1MAX/2; |
1261 | tpar[1] = kYMC1MAX/2; |
1262 | |
1263 | const Float_t kXMC1C=tpar[0]; |
1264 | // warning : same Z than type B |
1265 | const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1]; |
1266 | const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1]; |
1267 | |
1268 | gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1269 | gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
1270 | gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1271 | gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
1272 | |
1273 | // chamber type D, E and F (same size) |
1274 | tpar1save=tpar[1]; |
1275 | y1msave=kYMC1Cm; |
1276 | y1psave=kYMC1Cp; |
1277 | |
1278 | tpar[0] = kXMC1MAX/2.; |
1279 | tpar[1] = kYMC1MIN; |
1280 | |
1281 | const Float_t kXMC1D=tpar[0]; |
1282 | const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1]; |
1283 | const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1]; |
1284 | |
1285 | gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1286 | gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
1287 | gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1288 | gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
1289 | |
1290 | |
1291 | tpar1save=tpar[1]; |
1292 | y1msave=kYMC1Dm; |
1293 | y1psave=kYMC1Dp; |
1294 | const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1]; |
1295 | const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1]; |
1296 | |
1297 | gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1298 | gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
1299 | gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1300 | gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
1301 | |
1302 | tpar1save=tpar[1]; |
1303 | y1msave=kYMC1Em; |
1304 | y1psave=kYMC1Ep; |
1305 | const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1]; |
1306 | const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1]; |
1307 | |
1308 | gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1309 | gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
1310 | gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1311 | gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
1312 | |
1313 | // Positioning first plane in ALICE |
1314 | gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY"); |
1315 | |
1316 | // End of geometry definition for the first plane of station 1 |
1317 | |
1318 | |
1319 | |
1320 | // SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1 |
1321 | |
1322 | const Float_t kZ12=zpos2/zpos1; |
1323 | |
1324 | // Definition of prototype for chambers in the second plane of station 1 |
1325 | |
1326 | tpar[0]= 0.; |
1327 | tpar[1]= 0.; |
1328 | tpar[2]= 0.; |
1329 | |
1330 | gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al |
1331 | gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1332 | gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1333 | |
1334 | // chamber type A |
1335 | tpar[0] = -1.; |
1336 | tpar[1] = -1.; |
1337 | |
1338 | const Float_t kXMC2A=kXMC1A*kZ12; |
1339 | const Float_t kYMC2Am=0.; |
1340 | const Float_t kYMC2Ap=0.; |
1341 | |
1342 | tpar[2] = 0.1; |
1343 | gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3); |
1344 | tpar[2] = 0.3; |
1345 | gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3); |
1346 | |
1347 | tpar[2] = 0.4; |
1348 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12; |
1349 | tpar[1] = kYMC1MIN*kZ12; |
1350 | |
1351 | gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3); |
1352 | gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3); |
1353 | |
1354 | |
1355 | // chamber type B |
1356 | |
1357 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12; |
1358 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12; |
1359 | |
1360 | const Float_t kXMC2B=kXMC1B*kZ12; |
1361 | const Float_t kYMC2Bp=kYMC1Bp*kZ12; |
1362 | const Float_t kYMC2Bm=kYMC1Bm*kZ12; |
1363 | gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1364 | gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
1365 | gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1366 | gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
1367 | |
1368 | |
1369 | // chamber type C (end of type B !!) |
1370 | |
1371 | tpar[0] = (kXMC1MAX/2)*kZ12; |
1372 | tpar[1] = (kYMC1MAX/2)*kZ12; |
1373 | |
1374 | const Float_t kXMC2C=kXMC1C*kZ12; |
1375 | const Float_t kYMC2Cp=kYMC1Cp*kZ12; |
1376 | const Float_t kYMC2Cm=kYMC1Cm*kZ12; |
1377 | gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1378 | gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
1379 | gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1380 | gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
1381 | |
1382 | // chamber type D, E and F (same size) |
1383 | |
1384 | tpar[0] = (kXMC1MAX/2.)*kZ12; |
1385 | tpar[1] = kYMC1MIN*kZ12; |
1386 | |
1387 | const Float_t kXMC2D=kXMC1D*kZ12; |
1388 | const Float_t kYMC2Dp=kYMC1Dp*kZ12; |
1389 | const Float_t kYMC2Dm=kYMC1Dm*kZ12; |
1390 | gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1391 | gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
1392 | gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1393 | gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
1394 | |
1395 | const Float_t kYMC2Ep=kYMC1Ep*kZ12; |
1396 | const Float_t kYMC2Em=kYMC1Em*kZ12; |
1397 | gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1398 | gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
1399 | gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1400 | gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
1401 | |
1402 | |
1403 | const Float_t kYMC2Fp=kYMC1Fp*kZ12; |
1404 | const Float_t kYMC2Fm=kYMC1Fm*kZ12; |
1405 | gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1406 | gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
1407 | gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1408 | gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
1409 | |
1410 | // Positioning second plane of station 1 in ALICE |
1411 | |
1412 | gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY"); |
1413 | |
1414 | // End of geometry definition for the second plane of station 1 |
1415 | |
1416 | |
1417 | |
1418 | // TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2 |
1419 | |
1420 | // 03/00 |
1421 | // zpos3 and zpos4 are now the middle of the first and second |
1422 | // plane of station 2 : |
1423 | // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm |
1424 | // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm |
1425 | // |
1426 | // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps) |
1427 | // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps) |
1428 | // rem : the total thickness accounts for 1 mm of al on both |
1429 | // side of the RPCs (see zpos3 and zpos4), as previously |
1430 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12]; |
1431 | iChamber2 =(AliMUONChamber*) (*fChambers)[13]; |
1432 | Float_t zpos3=iChamber1->Z(); |
1433 | Float_t zpos4=iChamber2->Z(); |
1434 | |
1435 | |
1436 | // Mother volume definition |
1437 | tpar[0] = iChamber->RInner(); |
1438 | tpar[1] = iChamber->ROuter(); |
1439 | tpar[2] = 4.0; |
1440 | |
1441 | gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3); |
1442 | gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3); |
1443 | |
1444 | // Definition of the flange between the beam shielding and the RPC |
1445 | // ???? interface shielding |
1446 | |
1447 | tpar[0]= kRMIN2; |
1448 | tpar[1]= kRMAX2; |
1449 | tpar[2]= 4.0; |
1450 | |
1451 | gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al |
1452 | gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY"); |
1453 | gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY"); |
1454 | |
1455 | |
1456 | |
1457 | // FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1 |
1458 | |
1459 | const Float_t kZ13=zpos3/zpos1; |
1460 | |
1461 | // Definition of prototype for chambers in the first plane of station 2 |
1462 | tpar[0]= 0.; |
1463 | tpar[1]= 0.; |
1464 | tpar[2]= 0.; |
1465 | |
1466 | gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al |
1467 | gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1468 | gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1469 | |
1470 | |
1471 | // chamber type A |
1472 | tpar[0] = -1.; |
1473 | tpar[1] = -1.; |
1474 | |
1475 | const Float_t kXMC3A=kXMC1A*kZ13; |
1476 | const Float_t kYMC3Am=0.; |
1477 | const Float_t kYMC3Ap=0.; |
1478 | |
1479 | tpar[2] = 0.1; |
1480 | gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3); |
1481 | tpar[2] = 0.3; |
1482 | gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3); |
1483 | |
1484 | tpar[2] = 0.4; |
1485 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13; |
1486 | tpar[1] = kYMC1MIN*kZ13; |
1487 | gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3); |
1488 | gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3); |
1489 | |
1490 | |
1491 | // chamber type B |
1492 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13; |
1493 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13; |
1494 | |
1495 | const Float_t kXMC3B=kXMC1B*kZ13; |
1496 | const Float_t kYMC3Bp=kYMC1Bp*kZ13; |
1497 | const Float_t kYMC3Bm=kYMC1Bm*kZ13; |
1498 | gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1499 | gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
1500 | gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1501 | gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
1502 | |
1503 | |
1504 | // chamber type C (end of type B !!) |
1505 | tpar[0] = (kXMC1MAX/2)*kZ13; |
1506 | tpar[1] = (kYMC1MAX/2)*kZ13; |
1507 | |
1508 | const Float_t kXMC3C=kXMC1C*kZ13; |
1509 | const Float_t kYMC3Cp=kYMC1Cp*kZ13; |
1510 | const Float_t kYMC3Cm=kYMC1Cm*kZ13; |
1511 | gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1512 | gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
1513 | gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1514 | gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
1515 | |
1516 | |
1517 | // chamber type D, E and F (same size) |
1518 | |
1519 | tpar[0] = (kXMC1MAX/2.)*kZ13; |
1520 | tpar[1] = kYMC1MIN*kZ13; |
1521 | |
1522 | const Float_t kXMC3D=kXMC1D*kZ13; |
1523 | const Float_t kYMC3Dp=kYMC1Dp*kZ13; |
1524 | const Float_t kYMC3Dm=kYMC1Dm*kZ13; |
1525 | gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1526 | gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
1527 | gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1528 | gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
1529 | |
1530 | const Float_t kYMC3Ep=kYMC1Ep*kZ13; |
1531 | const Float_t kYMC3Em=kYMC1Em*kZ13; |
1532 | gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1533 | gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
1534 | gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1535 | gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
1536 | |
1537 | const Float_t kYMC3Fp=kYMC1Fp*kZ13; |
1538 | const Float_t kYMC3Fm=kYMC1Fm*kZ13; |
1539 | gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1540 | gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
1541 | gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1542 | gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
1543 | |
1544 | |
1545 | // Positioning first plane of station 2 in ALICE |
1546 | |
1547 | gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY"); |
1548 | |
1549 | // End of geometry definition for the first plane of station 2 |
1550 | |
1551 | |
1552 | |
1553 | |
1554 | // SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1 |
1555 | |
1556 | const Float_t kZ14=zpos4/zpos1; |
1557 | |
1558 | // Definition of prototype for chambers in the second plane of station 2 |
1559 | |
1560 | tpar[0]= 0.; |
1561 | tpar[1]= 0.; |
1562 | tpar[2]= 0.; |
1563 | |
1564 | gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al |
1565 | gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1566 | gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1567 | |
1568 | // chamber type A |
1569 | tpar[0] = -1.; |
1570 | tpar[1] = -1.; |
1571 | |
1572 | const Float_t kXMC4A=kXMC1A*kZ14; |
1573 | const Float_t kYMC4Am=0.; |
1574 | const Float_t kYMC4Ap=0.; |
1575 | |
1576 | tpar[2] = 0.1; |
1577 | gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3); |
1578 | tpar[2] = 0.3; |
1579 | gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3); |
1580 | |
1581 | tpar[2] = 0.4; |
1582 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14; |
1583 | tpar[1] = kYMC1MIN*kZ14; |
1584 | gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3); |
1585 | gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3); |
1586 | |
1587 | |
1588 | // chamber type B |
1589 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14; |
1590 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14; |
1591 | |
1592 | const Float_t kXMC4B=kXMC1B*kZ14; |
1593 | const Float_t kYMC4Bp=kYMC1Bp*kZ14; |
1594 | const Float_t kYMC4Bm=kYMC1Bm*kZ14; |
1595 | gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1596 | gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
1597 | gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1598 | gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
1599 | |
1600 | |
1601 | // chamber type C (end of type B !!) |
1602 | tpar[0] =(kXMC1MAX/2)*kZ14; |
1603 | tpar[1] = (kYMC1MAX/2)*kZ14; |
1604 | |
1605 | const Float_t kXMC4C=kXMC1C*kZ14; |
1606 | const Float_t kYMC4Cp=kYMC1Cp*kZ14; |
1607 | const Float_t kYMC4Cm=kYMC1Cm*kZ14; |
1608 | gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1609 | gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
1610 | gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1611 | gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
1612 | |
1613 | |
1614 | // chamber type D, E and F (same size) |
1615 | tpar[0] = (kXMC1MAX/2.)*kZ14; |
1616 | tpar[1] = kYMC1MIN*kZ14; |
1617 | |
1618 | const Float_t kXMC4D=kXMC1D*kZ14; |
1619 | const Float_t kYMC4Dp=kYMC1Dp*kZ14; |
1620 | const Float_t kYMC4Dm=kYMC1Dm*kZ14; |
1621 | gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1622 | gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
1623 | gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1624 | gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
1625 | |
1626 | const Float_t kYMC4Ep=kYMC1Ep*kZ14; |
1627 | const Float_t kYMC4Em=kYMC1Em*kZ14; |
1628 | gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1629 | gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
1630 | gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1631 | gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
1632 | |
1633 | const Float_t kYMC4Fp=kYMC1Fp*kZ14; |
1634 | const Float_t kYMC4Fm=kYMC1Fm*kZ14; |
1635 | gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1636 | gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
1637 | gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1638 | gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
1639 | |
1640 | |
1641 | // Positioning second plane of station 2 in ALICE |
1642 | |
1643 | gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY"); |
1644 | |
1645 | // End of geometry definition for the second plane of station 2 |
1646 | |
1647 | // End of trigger geometry definition |
1648 | |
1649 | } |
1650 | |
1651 | |
1652 | |
1653 | //___________________________________________ |
1654 | void AliMUONv1::CreateMaterials() |
1655 | { |
1656 | // *** DEFINITION OF AVAILABLE MUON MATERIALS *** |
1657 | // |
1658 | // Ar-CO2 gas |
1659 | Float_t ag1[3] = { 39.95,12.01,16. }; |
1660 | Float_t zg1[3] = { 18.,6.,8. }; |
1661 | Float_t wg1[3] = { .8,.0667,.13333 }; |
1662 | Float_t dg1 = .001821; |
1663 | // |
1664 | // Ar-buthane-freon gas -- trigger chambers |
1665 | Float_t atr1[4] = { 39.95,12.01,1.01,19. }; |
1666 | Float_t ztr1[4] = { 18.,6.,1.,9. }; |
1667 | Float_t wtr1[4] = { .56,.1262857,.2857143,.028 }; |
1668 | Float_t dtr1 = .002599; |
1669 | // |
1670 | // Ar-CO2 gas |
1671 | Float_t agas[3] = { 39.95,12.01,16. }; |
1672 | Float_t zgas[3] = { 18.,6.,8. }; |
1673 | Float_t wgas[3] = { .74,.086684,.173316 }; |
1674 | Float_t dgas = .0018327; |
1675 | // |
1676 | // Ar-Isobutane gas (80%+20%) -- tracking |
1677 | Float_t ag[3] = { 39.95,12.01,1.01 }; |
1678 | Float_t zg[3] = { 18.,6.,1. }; |
1679 | Float_t wg[3] = { .8,.057,.143 }; |
1680 | Float_t dg = .0019596; |
1681 | // |
1682 | // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger |
1683 | Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 }; |
1684 | Float_t ztrig[5] = { 18.,6.,1.,9.,16. }; |
1685 | Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 }; |
1686 | Float_t dtrig = .0031463; |
1687 | // |
1688 | // bakelite |
1689 | |
1690 | Float_t abak[3] = {12.01 , 1.01 , 16.}; |
1691 | Float_t zbak[3] = {6. , 1. , 8.}; |
1692 | Float_t wbak[3] = {6. , 6. , 1.}; |
1693 | Float_t dbak = 1.4; |
1694 | |
1695 | Float_t epsil, stmin, deemax, tmaxfd, stemax; |
1696 | |
1697 | Int_t iSXFLD = gAlice->Field()->Integ(); |
1698 | Float_t sXMGMX = gAlice->Field()->Max(); |
1699 | // |
1700 | // --- Define the various materials for GEANT --- |
1701 | AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1702 | AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1703 | AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500); |
1704 | AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak); |
1705 | AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg); |
1706 | AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig); |
1707 | AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1); |
1708 | AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1); |
1709 | AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas); |
1e8fff9c |
1710 | // materials for slat: |
1711 | // Sensitive area: gas (already defined) |
1712 | // PCB: copper |
1713 | // insulating material and frame: vetronite |
1714 | // walls: carbon, rohacell, carbon |
1715 | Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.}; |
1716 | Float_t zglass[5]={ 6., 14., 8., 5., 11.}; |
1717 | Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01}; |
1718 | Float_t dglass=1.74; |
1719 | |
1720 | // rohacell: C9 H13 N1 O2 |
1721 | Float_t arohac[4] = {12.01, 1.01, 14.010, 16.}; |
1722 | Float_t zrohac[4] = { 6., 1., 7., 8.}; |
1723 | Float_t wrohac[4] = { 9., 13., 1., 2.}; |
1724 | Float_t drohac = 0.03; |
1725 | |
1726 | AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.); |
1727 | AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass); |
1728 | AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9); |
1729 | AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac); |
1730 | |
a9e2aefa |
1731 | |
1732 | epsil = .001; // Tracking precision, |
1733 | stemax = -1.; // Maximum displacement for multiple scat |
1734 | tmaxfd = -20.; // Maximum angle due to field deflection |
1735 | deemax = -.3; // Maximum fractional energy loss, DLS |
1736 | stmin = -.8; |
1737 | // |
1738 | // Air |
1739 | AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1740 | // |
1741 | // Aluminum |
1742 | |
1743 | AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1744 | fMaxDestepAlu, epsil, stmin); |
1745 | AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1746 | fMaxDestepAlu, epsil, stmin); |
1747 | // |
1748 | // Ar-isoC4H10 gas |
1749 | |
1750 | AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1751 | fMaxDestepGas, epsil, stmin); |
1752 | // |
1753 | // Ar-Isobuthane-Forane-SF6 gas |
1754 | |
1755 | AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1756 | |
1757 | AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1758 | fMaxDestepAlu, epsil, stmin); |
1759 | |
1760 | AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1761 | fMaxDestepAlu, epsil, stmin); |
1e8fff9c |
1762 | // tracking media for slats: check the parameters!! |
1763 | AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd, |
1764 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1765 | AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd, |
1766 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1767 | AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd, |
1768 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1769 | AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd, |
1770 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
a9e2aefa |
1771 | } |
1772 | |
1773 | //___________________________________________ |
1774 | |
1775 | void AliMUONv1::Init() |
1776 | { |
1777 | // |
1778 | // Initialize Tracking Chambers |
1779 | // |
1780 | |
1781 | printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n"); |
e17592e9 |
1782 | Int_t i; |
f665c1ea |
1783 | for (i=0; i<AliMUONConstants::NCh(); i++) { |
a9e2aefa |
1784 | ( (AliMUONChamber*) (*fChambers)[i])->Init(); |
1785 | } |
1786 | |
1787 | // |
1788 | // Set the chamber (sensitive region) GEANT identifier |
1789 | AliMC* gMC = AliMC::GetMC(); |
1790 | ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G")); |
1791 | ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G")); |
b17c0c87 |
1792 | |
a9e2aefa |
1793 | ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G")); |
1794 | ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G")); |
b17c0c87 |
1795 | |
1e8fff9c |
1796 | ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G")); |
1797 | ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G")); |
b17c0c87 |
1798 | |
1e8fff9c |
1799 | ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G")); |
1800 | ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G")); |
b17c0c87 |
1801 | |
1e8fff9c |
1802 | ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G")); |
1803 | ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G")); |
b17c0c87 |
1804 | |
a9e2aefa |
1805 | ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A")); |
1806 | ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A")); |
1807 | ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A")); |
1808 | ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A")); |
1809 | |
1810 | printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n"); |
1811 | |
1812 | //cp |
1813 | printf("\n\n\n Start Init for Trigger Circuits\n\n\n"); |
f665c1ea |
1814 | for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) { |
a9e2aefa |
1815 | ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i); |
1816 | } |
1817 | printf(" Finished Init for Trigger Circuits\n\n\n"); |
1818 | //cp |
1819 | |
1820 | } |
1821 | |
1822 | //___________________________________________ |
1823 | void AliMUONv1::StepManager() |
1824 | { |
1825 | Int_t copy, id; |
1826 | static Int_t idvol; |
1827 | static Int_t vol[2]; |
1828 | Int_t ipart; |
1829 | TLorentzVector pos; |
1830 | TLorentzVector mom; |
1831 | Float_t theta,phi; |
1832 | Float_t destep, step; |
1833 | |
1e8fff9c |
1834 | static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength; |
a9e2aefa |
1835 | const Float_t kBig=1.e10; |
a9e2aefa |
1836 | // modifs perso |
1837 | static Float_t hits[15]; |
1838 | |
1839 | TClonesArray &lhits = *fHits; |
1840 | |
1841 | // |
1842 | // Set maximum step size for gas |
1843 | // numed=gMC->GetMedium(); |
1844 | // |
1845 | // Only charged tracks |
1846 | if( !(gMC->TrackCharge()) ) return; |
1847 | // |
1848 | // Only gas gap inside chamber |
1849 | // Tag chambers and record hits when track enters |
1850 | idvol=-1; |
1851 | id=gMC->CurrentVolID(copy); |
1852 | |
f665c1ea |
1853 | for (Int_t i=1; i<=AliMUONConstants::NCh(); i++) { |
a9e2aefa |
1854 | if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){ |
1855 | vol[0]=i; |
1856 | idvol=i-1; |
1857 | } |
1858 | } |
1859 | if (idvol == -1) return; |
1860 | // |
1861 | // Get current particle id (ipart), track position (pos) and momentum (mom) |
1862 | gMC->TrackPosition(pos); |
1863 | gMC->TrackMomentum(mom); |
1864 | |
1865 | ipart = gMC->TrackPid(); |
1866 | //Int_t ipart1 = gMC->IdFromPDG(ipart); |
1867 | //printf("ich, ipart %d %d \n",vol[0],ipart1); |
1868 | |
1869 | // |
1870 | // momentum loss and steplength in last step |
1871 | destep = gMC->Edep(); |
1872 | step = gMC->TrackStep(); |
1873 | |
1874 | // |
1875 | // record hits when track enters ... |
1876 | if( gMC->IsTrackEntering()) { |
1877 | gMC->SetMaxStep(fMaxStepGas); |
1878 | Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; |
1879 | Double_t rt = TMath::Sqrt(tc); |
1880 | Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]); |
1881 | Double_t tx=mom[0]/pmom; |
1882 | Double_t ty=mom[1]/pmom; |
1883 | Double_t tz=mom[2]/pmom; |
1884 | Double_t s=((AliMUONChamber*)(*fChambers)[idvol]) |
1885 | ->ResponseModel() |
1886 | ->Pitch()/tz; |
1887 | theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; |
1888 | phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; |
1889 | hits[0] = Float_t(ipart); // Geant3 particle type |
1890 | hits[1] = pos[0]+s*tx; // X-position for hit |
1891 | hits[2] = pos[1]+s*ty; // Y-position for hit |
1892 | hits[3] = pos[2]+s*tz; // Z-position for hit |
1893 | hits[4] = theta; // theta angle of incidence |
1894 | hits[5] = phi; // phi angle of incidence |
1895 | hits[8] = (Float_t) fNPadHits; // first padhit |
1896 | hits[9] = -1; // last pad hit |
1897 | |
1898 | // modifs perso |
1899 | hits[10] = mom[3]; // hit momentum P |
1900 | hits[11] = mom[0]; // Px/P |
1901 | hits[12] = mom[1]; // Py/P |
1902 | hits[13] = mom[2]; // Pz/P |
1903 | // fin modifs perso |
1904 | tof=gMC->TrackTime(); |
1905 | hits[14] = tof; // Time of flight |
1906 | // phi angle of incidence |
1907 | tlength = 0; |
1908 | eloss = 0; |
1909 | eloss2 = 0; |
1910 | xhit = pos[0]; |
1911 | yhit = pos[1]; |
1e8fff9c |
1912 | zhit = pos[2]; |
a9e2aefa |
1913 | // Only if not trigger chamber |
1e8fff9c |
1914 | |
1915 | |
1916 | |
1917 | |
a75f073c |
1918 | if(idvol<AliMUONConstants::NTrackingCh()) { |
a9e2aefa |
1919 | // |
1920 | // Initialize hit position (cursor) in the segmentation model |
1921 | ((AliMUONChamber*) (*fChambers)[idvol]) |
1922 | ->SigGenInit(pos[0], pos[1], pos[2]); |
1923 | } else { |
1924 | //geant3->Gpcxyz(); |
1925 | //printf("In the Trigger Chamber #%d\n",idvol-9); |
1926 | } |
1927 | } |
1928 | eloss2+=destep; |
1929 | |
1930 | // |
1931 | // Calculate the charge induced on a pad (disintegration) in case |
1932 | // |
1933 | // Mip left chamber ... |
1934 | if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ |
1935 | gMC->SetMaxStep(kBig); |
1936 | eloss += destep; |
1937 | tlength += step; |
1938 | |
802a864d |
1939 | Float_t x0,y0,z0; |
1940 | Float_t localPos[3]; |
1941 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
802a864d |
1942 | gMC->Gmtod(globalPos,localPos,1); |
1943 | |
a75f073c |
1944 | if(idvol<AliMUONConstants::NTrackingCh()) { |
a9e2aefa |
1945 | // tracking chambers |
1946 | x0 = 0.5*(xhit+pos[0]); |
1947 | y0 = 0.5*(yhit+pos[1]); |
1e8fff9c |
1948 | z0 = 0.5*(zhit+pos[2]); |
1949 | // z0 = localPos[2]; |
a9e2aefa |
1950 | } else { |
1951 | // trigger chambers |
1952 | x0=xhit; |
1953 | y0=yhit; |
1e8fff9c |
1954 | // z0=yhit; |
802a864d |
1955 | z0=0.; |
a9e2aefa |
1956 | } |
1957 | |
1e8fff9c |
1958 | |
802a864d |
1959 | if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol); |
a9e2aefa |
1960 | |
1961 | |
1962 | hits[6]=tlength; |
1963 | hits[7]=eloss2; |
1964 | if (fNPadHits > (Int_t)hits[8]) { |
1965 | hits[8]= hits[8]+1; |
1966 | hits[9]= (Float_t) fNPadHits; |
1967 | } |
1968 | |
1969 | new(lhits[fNhits++]) |
1970 | AliMUONHit(fIshunt,gAlice->CurrentTrack(),vol,hits); |
1971 | eloss = 0; |
1972 | // |
1973 | // Check additional signal generation conditions |
1974 | // defined by the segmentation |
a75f073c |
1975 | // model (boundary crossing conditions) |
1976 | // only for tracking chambers |
a9e2aefa |
1977 | } else if |
a75f073c |
1978 | ((idvol < AliMUONConstants::NTrackingCh()) && |
1979 | ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2])) |
a9e2aefa |
1980 | { |
1981 | ((AliMUONChamber*) (*fChambers)[idvol]) |
1982 | ->SigGenInit(pos[0], pos[1], pos[2]); |
802a864d |
1983 | |
1984 | Float_t localPos[3]; |
1985 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
1986 | gMC->Gmtod(globalPos,localPos,1); |
1987 | |
1988 | |
a75f073c |
1989 | if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh()) |
1e8fff9c |
1990 | MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol); |
a9e2aefa |
1991 | xhit = pos[0]; |
1992 | yhit = pos[1]; |
1e8fff9c |
1993 | zhit = pos[2]; |
a9e2aefa |
1994 | eloss = destep; |
1995 | tlength += step ; |
1996 | // |
1997 | // nothing special happened, add up energy loss |
1998 | } else { |
1999 | eloss += destep; |
2000 | tlength += step ; |
2001 | } |
2002 | } |
2003 | |
2004 | |