a9e2aefa |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
2c799aa2 |
12 | * about the suitability of this software for any purpeateose. It is * |
a9e2aefa |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
16 | /* |
17 | $Log$ |
3f08857e |
18 | Revision 1.33 2002/07/23 10:02:46 morsch |
19 | All volume names start with "S". |
20 | |
b74f1c6a |
21 | Revision 1.32 2002/05/02 12:51:10 morsch |
22 | For G4: gMC->VolId(...) replaced by gAlice->GetModule(...). |
23 | |
fe713e43 |
24 | Revision 1.31 2002/03/13 07:55:04 jchudoba |
25 | Correction of the errourness last commit. |
26 | |
4b1670dc |
27 | Revision 1.29 2001/06/21 14:54:37 morsch |
28 | Put volumes of station 3 into DIPO if present. (A. de Falco) |
29 | |
2724ae40 |
30 | Revision 1.28 2001/05/16 14:57:17 alibrary |
31 | New files for folders and Stack |
32 | |
9e1a0ddb |
33 | Revision 1.27 2001/04/06 11:24:43 morsch |
34 | Dependency on implementations of AliSegmentation and AliMUONResponse moved to AliMUONFactory class. |
35 | Static method Build() builds the MUON system out of chambers, segmentation and response. |
36 | |
be3bb6c1 |
37 | Revision 1.26 2001/03/17 10:07:20 morsch |
38 | Correct inconsistent variable name / method name / comments. |
39 | |
2eb55fab |
40 | Revision 1.25 2001/03/16 15:32:06 morsch |
41 | Corrections of overlap with beam shield and dipole (A. de Falco) |
42 | |
21a18f36 |
43 | Revision 1.24 2001/03/14 17:22:15 pcrochet |
44 | Geometry of the trigger chambers : a vertical gap of has been introduced around x=0 according fig.3.27 of the TDR (P.Dupieux) |
45 | |
236fe2c5 |
46 | Revision 1.23 2001/01/18 15:23:49 egangler |
47 | Bug correction in StepManager : |
48 | Now the systematic offset with angle is cured |
49 | |
e0f71fb7 |
50 | Revision 1.22 2001/01/17 21:01:21 hristov |
51 | Unused variable removed |
52 | |
a7e8b51a |
53 | Revision 1.21 2000/12/20 13:00:22 egangler |
54 | |
55 | Added charge correlation between cathods. |
56 | In Config_slat.C, use |
57 | MUON->Chamber(chamber-1).SetChargeCorrel(0.11); to set the RMS of |
58 | q1/q2 to 11 % (number from Alberto) |
59 | This is stored in AliMUONChamber fChargeCorrel member. |
60 | At generation time, when a tracks enters the volume, |
61 | AliMUONv1::StepManager calls |
62 | AliMUONChamber::ChargeCorrelationInit() to set the current value of |
63 | fCurrentCorrel which is then used at Disintegration level to scale |
64 | appropriately the PadHit charges. |
65 | |
681d067b |
66 | Revision 1.20 2000/12/04 17:48:23 gosset |
67 | Modifications for stations 1 et 2 mainly: |
68 | * station 1 with 4 mm gas gap and smaller cathode segmentation... |
69 | * stations 1 and 2 with "grey" frame crosses |
70 | * mean noise at 1.5 ADC channel |
71 | * Ar-CO2 gas (80%+20%) |
72 | |
b64652f5 |
73 | Revision 1.19 2000/12/02 17:15:46 morsch |
74 | Correction of dead zones in inner regions of stations 3-5 |
75 | Correction of length of slats 3 and 9 of station 4. |
76 | |
a083207d |
77 | Revision 1.17 2000/11/24 12:57:10 morsch |
78 | New version of geometry for stations 3-5 "Slats" (A. de Falco) |
79 | - sensitive region at station 3 inner radius |
80 | - improved volume tree structure |
81 | |
3c084d9f |
82 | Revision 1.16 2000/11/08 13:01:40 morsch |
83 | Chamber half-planes of stations 3-5 at different z-positions. |
84 | |
e1ad7d45 |
85 | Revision 1.15 2000/11/06 11:39:02 morsch |
86 | Bug in StepManager() corrected. |
87 | |
e3cf5faa |
88 | Revision 1.14 2000/11/06 09:16:50 morsch |
89 | Avoid overlap of slat volumes. |
90 | |
2c799aa2 |
91 | Revision 1.13 2000/10/26 07:33:44 morsch |
92 | Correct x-position of slats in station 5. |
93 | |
8013c580 |
94 | Revision 1.12 2000/10/25 19:55:35 morsch |
95 | Switches for each station individually for debug and lego. |
96 | |
b17c0c87 |
97 | Revision 1.11 2000/10/22 16:44:01 morsch |
98 | Update of slat geometry for stations 3,4,5 (A. deFalco) |
99 | |
f9f7c205 |
100 | Revision 1.10 2000/10/12 16:07:04 gosset |
101 | StepManager: |
102 | * SigGenCond only called for tracking chambers, |
103 | hence no more division by 0, |
104 | and may use last ALIROOT/dummies.C with exception handling; |
105 | * "10" replaced by "AliMUONConstants::NTrackingCh()". |
106 | |
a75f073c |
107 | Revision 1.9 2000/10/06 15:37:22 morsch |
108 | Problems with variable redefinition in for-loop solved. |
109 | Variable names starting with u-case letters changed to l-case. |
110 | |
6c5ddcfa |
111 | Revision 1.8 2000/10/06 09:06:31 morsch |
112 | Include Slat chambers (stations 3-5) into geometry (A. de Falco) |
113 | |
1e8fff9c |
114 | Revision 1.7 2000/10/02 21:28:09 fca |
115 | Removal of useless dependecies via forward declarations |
116 | |
94de3818 |
117 | Revision 1.6 2000/10/02 17:20:45 egangler |
118 | Cleaning of the code (continued ) : |
119 | -> coding conventions |
120 | -> void Streamers |
121 | -> some useless includes removed or replaced by "class" statement |
122 | |
8c449e83 |
123 | Revision 1.5 2000/06/28 15:16:35 morsch |
124 | (1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there) |
125 | to allow development of slat-muon chamber simulation and reconstruction code in the MUON |
126 | framework. The changes should have no side effects (mostly dummy arguments). |
127 | (2) Hit disintegration uses 3-dim hit coordinates to allow simulation |
128 | of chambers with overlapping modules (MakePadHits, Disintegration). |
129 | |
802a864d |
130 | Revision 1.4 2000/06/26 14:02:38 morsch |
131 | Add class AliMUONConstants with MUON specific constants using static memeber data and access methods. |
132 | |
f665c1ea |
133 | Revision 1.3 2000/06/22 14:10:05 morsch |
134 | HP scope problems corrected (PH) |
135 | |
e17592e9 |
136 | Revision 1.2 2000/06/15 07:58:49 morsch |
137 | Code from MUON-dev joined |
138 | |
a9e2aefa |
139 | Revision 1.1.2.14 2000/06/14 14:37:25 morsch |
140 | Initialization of TriggerCircuit added (PC) |
141 | |
142 | Revision 1.1.2.13 2000/06/09 21:55:47 morsch |
143 | Most coding rule violations corrected. |
144 | |
145 | Revision 1.1.2.12 2000/05/05 11:34:29 morsch |
146 | Log inside comments. |
147 | |
148 | Revision 1.1.2.11 2000/05/05 10:06:48 morsch |
149 | Coding Rule violations regarding trigger section corrected (CP) |
150 | Log messages included. |
151 | */ |
152 | |
153 | ///////////////////////////////////////////////////////// |
154 | // Manager and hits classes for set:MUON version 0 // |
155 | ///////////////////////////////////////////////////////// |
156 | |
157 | #include <TTUBE.h> |
158 | #include <TNode.h> |
159 | #include <TRandom.h> |
160 | #include <TLorentzVector.h> |
161 | #include <iostream.h> |
162 | |
163 | #include "AliMUONv1.h" |
164 | #include "AliRun.h" |
165 | #include "AliMC.h" |
94de3818 |
166 | #include "AliMagF.h" |
a9e2aefa |
167 | #include "AliCallf77.h" |
168 | #include "AliConst.h" |
169 | #include "AliMUONChamber.h" |
170 | #include "AliMUONHit.h" |
171 | #include "AliMUONPadHit.h" |
f665c1ea |
172 | #include "AliMUONConstants.h" |
8c449e83 |
173 | #include "AliMUONTriggerCircuit.h" |
be3bb6c1 |
174 | #include "AliMUONFactory.h" |
a9e2aefa |
175 | |
176 | ClassImp(AliMUONv1) |
177 | |
178 | //___________________________________________ |
37c0cd40 |
179 | AliMUONv1::AliMUONv1() : AliMUON() |
a9e2aefa |
180 | { |
181 | // Constructor |
37c0cd40 |
182 | fChambers = 0; |
a9e2aefa |
183 | } |
184 | |
185 | //___________________________________________ |
186 | AliMUONv1::AliMUONv1(const char *name, const char *title) |
187 | : AliMUON(name,title) |
188 | { |
189 | // Constructor |
be3bb6c1 |
190 | AliMUONFactory::Build(this, title); |
a9e2aefa |
191 | } |
192 | |
193 | //___________________________________________ |
194 | void AliMUONv1::CreateGeometry() |
195 | { |
196 | // |
197 | // Note: all chambers have the same structure, which could be |
198 | // easily parameterised. This was intentionally not done in order |
199 | // to give a starting point for the implementation of the actual |
200 | // design of each station. |
201 | Int_t *idtmed = fIdtmed->GetArray()-1099; |
202 | |
203 | // Distance between Stations |
204 | // |
205 | Float_t bpar[3]; |
206 | Float_t tpar[3]; |
b64652f5 |
207 | // Float_t pgpar[10]; |
a9e2aefa |
208 | Float_t zpos1, zpos2, zfpos; |
b64652f5 |
209 | // Outer excess and inner recess for mother volume radius |
210 | // with respect to ROuter and RInner |
a9e2aefa |
211 | Float_t dframep=.001; // Value for station 3 should be 6 ... |
b64652f5 |
212 | // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm) |
213 | // Float_t dframep1=.001; |
214 | Float_t dframep1 = 11.0; |
215 | // Bool_t frameCrosses=kFALSE; |
216 | Bool_t frameCrosses=kTRUE; |
3f08857e |
217 | Float_t *dum=0; |
a9e2aefa |
218 | |
b64652f5 |
219 | // Float_t dframez=0.9; |
220 | // Half of the total thickness of frame crosses (including DAlu) |
221 | // for each chamber in stations 1 and 2: |
222 | // 3% of X0 of composite material, |
223 | // but taken as Aluminium here, with same thickness in number of X0 |
224 | Float_t dframez = 3. * 8.9 / 100; |
225 | // Float_t dr; |
a9e2aefa |
226 | Float_t dstation; |
227 | |
228 | // |
229 | // Rotation matrices in the x-y plane |
230 | Int_t idrotm[1199]; |
231 | // phi= 0 deg |
232 | AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.); |
233 | // phi= 90 deg |
234 | AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.); |
235 | // phi= 180 deg |
236 | AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.); |
237 | // phi= 270 deg |
238 | AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.); |
239 | // |
240 | Float_t phi=2*TMath::Pi()/12/2; |
241 | |
242 | // |
243 | // pointer to the current chamber |
244 | // pointer to the current chamber |
b64652f5 |
245 | Int_t idAlu1=idtmed[1103]; // medium 4 |
246 | Int_t idAlu2=idtmed[1104]; // medium 5 |
a9e2aefa |
247 | // Int_t idAlu1=idtmed[1100]; |
248 | // Int_t idAlu2=idtmed[1100]; |
b64652f5 |
249 | Int_t idAir=idtmed[1100]; // medium 1 |
250 | // Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas |
251 | Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%) |
a9e2aefa |
252 | |
253 | |
254 | AliMUONChamber *iChamber, *iChamber1, *iChamber2; |
b17c0c87 |
255 | Int_t stations[5] = {1, 1, 1, 1, 1}; |
256 | |
257 | if (stations[0]) { |
258 | |
a9e2aefa |
259 | //******************************************************************** |
260 | // Station 1 ** |
261 | //******************************************************************** |
262 | // CONCENTRIC |
263 | // indices 1 and 2 for first and second chambers in the station |
264 | // iChamber (first chamber) kept for other quanties than Z, |
265 | // assumed to be the same in both chambers |
266 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0]; |
267 | iChamber2 =(AliMUONChamber*) (*fChambers)[1]; |
268 | zpos1=iChamber1->Z(); |
269 | zpos2=iChamber2->Z(); |
270 | dstation = zpos2 - zpos1; |
b64652f5 |
271 | // DGas decreased from standard one (0.5) |
272 | iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4); |
273 | // DAlu increased from standard one (3% of X0), |
274 | // because more electronics with smaller pads |
275 | iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.); |
a9e2aefa |
276 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
277 | |
278 | // |
279 | // Mother volume |
b64652f5 |
280 | tpar[0] = iChamber->RInner()-dframep; |
281 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
2c799aa2 |
282 | tpar[2] = dstation/5; |
a9e2aefa |
283 | |
b74f1c6a |
284 | gMC->Gsvolu("S01M", "TUBE", idAir, tpar, 3); |
285 | gMC->Gsvolu("S02M", "TUBE", idAir, tpar, 3); |
286 | gMC->Gspos("S01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
287 | gMC->Gspos("S02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
b64652f5 |
288 | // // Aluminium frames |
289 | // // Outer frames |
290 | // pgpar[0] = 360/12/2; |
291 | // pgpar[1] = 360.; |
292 | // pgpar[2] = 12.; |
293 | // pgpar[3] = 2; |
294 | // pgpar[4] = -dframez/2; |
295 | // pgpar[5] = iChamber->ROuter(); |
296 | // pgpar[6] = pgpar[5]+dframep1; |
297 | // pgpar[7] = +dframez/2; |
298 | // pgpar[8] = pgpar[5]; |
299 | // pgpar[9] = pgpar[6]; |
b74f1c6a |
300 | // gMC->Gsvolu("S01O", "PGON", idAlu1, pgpar, 10); |
301 | // gMC->Gsvolu("S02O", "PGON", idAlu1, pgpar, 10); |
302 | // gMC->Gspos("S01O",1,"S01M", 0.,0.,-zfpos, 0,"ONLY"); |
303 | // gMC->Gspos("S01O",2,"S01M", 0.,0.,+zfpos, 0,"ONLY"); |
304 | // gMC->Gspos("S02O",1,"S02M", 0.,0.,-zfpos, 0,"ONLY"); |
305 | // gMC->Gspos("S02O",2,"S02M", 0.,0.,+zfpos, 0,"ONLY"); |
b64652f5 |
306 | // // |
307 | // // Inner frame |
308 | // tpar[0]= iChamber->RInner()-dframep1; |
309 | // tpar[1]= iChamber->RInner(); |
310 | // tpar[2]= dframez/2; |
b74f1c6a |
311 | // gMC->Gsvolu("S01I", "TUBE", idAlu1, tpar, 3); |
312 | // gMC->Gsvolu("S02I", "TUBE", idAlu1, tpar, 3); |
b64652f5 |
313 | |
b74f1c6a |
314 | // gMC->Gspos("S01I",1,"S01M", 0.,0.,-zfpos, 0,"ONLY"); |
315 | // gMC->Gspos("S01I",2,"S01M", 0.,0.,+zfpos, 0,"ONLY"); |
316 | // gMC->Gspos("S02I",1,"S02M", 0.,0.,-zfpos, 0,"ONLY"); |
317 | // gMC->Gspos("S02I",2,"S02M", 0.,0.,+zfpos, 0,"ONLY"); |
a9e2aefa |
318 | // |
319 | // Frame Crosses |
b64652f5 |
320 | if (frameCrosses) { |
321 | // outside gas |
322 | // security for inside mother volume |
323 | bpar[0] = (iChamber->ROuter() - iChamber->RInner()) |
324 | * TMath::Cos(TMath::ASin(dframep1 / |
325 | (iChamber->ROuter() - iChamber->RInner()))) |
326 | / 2.0; |
a9e2aefa |
327 | bpar[1] = dframep1/2; |
b64652f5 |
328 | // total thickness will be (4 * bpar[2]) for each chamber, |
329 | // which has to be equal to (2 * dframez) - DAlu |
330 | bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0; |
b74f1c6a |
331 | gMC->Gsvolu("S01B", "BOX", idAlu1, bpar, 3); |
332 | gMC->Gsvolu("S02B", "BOX", idAlu1, bpar, 3); |
a9e2aefa |
333 | |
b74f1c6a |
334 | gMC->Gspos("S01B",1,"S01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
a9e2aefa |
335 | idrotm[1100],"ONLY"); |
b74f1c6a |
336 | gMC->Gspos("S01B",2,"S01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
a9e2aefa |
337 | idrotm[1100],"ONLY"); |
b74f1c6a |
338 | gMC->Gspos("S01B",3,"S01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
a9e2aefa |
339 | idrotm[1101],"ONLY"); |
b74f1c6a |
340 | gMC->Gspos("S01B",4,"S01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
a9e2aefa |
341 | idrotm[1101],"ONLY"); |
b74f1c6a |
342 | gMC->Gspos("S01B",5,"S01M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
a9e2aefa |
343 | idrotm[1100],"ONLY"); |
b74f1c6a |
344 | gMC->Gspos("S01B",6,"S01M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
a9e2aefa |
345 | idrotm[1100],"ONLY"); |
b74f1c6a |
346 | gMC->Gspos("S01B",7,"S01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
a9e2aefa |
347 | idrotm[1101],"ONLY"); |
b74f1c6a |
348 | gMC->Gspos("S01B",8,"S01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
a9e2aefa |
349 | idrotm[1101],"ONLY"); |
350 | |
b74f1c6a |
351 | gMC->Gspos("S02B",1,"S02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
a9e2aefa |
352 | idrotm[1100],"ONLY"); |
b74f1c6a |
353 | gMC->Gspos("S02B",2,"S02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
a9e2aefa |
354 | idrotm[1100],"ONLY"); |
b74f1c6a |
355 | gMC->Gspos("S02B",3,"S02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
a9e2aefa |
356 | idrotm[1101],"ONLY"); |
b74f1c6a |
357 | gMC->Gspos("S02B",4,"S02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
a9e2aefa |
358 | idrotm[1101],"ONLY"); |
b74f1c6a |
359 | gMC->Gspos("S02B",5,"S02M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
a9e2aefa |
360 | idrotm[1100],"ONLY"); |
b74f1c6a |
361 | gMC->Gspos("S02B",6,"S02M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
a9e2aefa |
362 | idrotm[1100],"ONLY"); |
b74f1c6a |
363 | gMC->Gspos("S02B",7,"S02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
a9e2aefa |
364 | idrotm[1101],"ONLY"); |
b74f1c6a |
365 | gMC->Gspos("S02B",8,"S02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
a9e2aefa |
366 | idrotm[1101],"ONLY"); |
367 | } |
368 | // |
369 | // Chamber Material represented by Alu sheet |
370 | tpar[0]= iChamber->RInner(); |
371 | tpar[1]= iChamber->ROuter(); |
372 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
b74f1c6a |
373 | gMC->Gsvolu("S01A", "TUBE", idAlu2, tpar, 3); |
374 | gMC->Gsvolu("S02A", "TUBE",idAlu2, tpar, 3); |
375 | gMC->Gspos("S01A", 1, "S01M", 0., 0., 0., 0, "ONLY"); |
376 | gMC->Gspos("S02A", 1, "S02M", 0., 0., 0., 0, "ONLY"); |
a9e2aefa |
377 | // |
378 | // Sensitive volumes |
379 | // tpar[2] = iChamber->DGas(); |
380 | tpar[2] = iChamber->DGas()/2; |
b74f1c6a |
381 | gMC->Gsvolu("S01G", "TUBE", idGas, tpar, 3); |
382 | gMC->Gsvolu("S02G", "TUBE", idGas, tpar, 3); |
383 | gMC->Gspos("S01G", 1, "S01A", 0., 0., 0., 0, "ONLY"); |
384 | gMC->Gspos("S02G", 1, "S02A", 0., 0., 0., 0, "ONLY"); |
a9e2aefa |
385 | // |
b64652f5 |
386 | // Frame Crosses to be placed inside gas |
387 | // NONE: chambers are sensitive everywhere |
388 | // if (frameCrosses) { |
389 | |
390 | // dr = (iChamber->ROuter() - iChamber->RInner()); |
391 | // bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; |
392 | // bpar[1] = dframep1/2; |
393 | // bpar[2] = iChamber->DGas()/2; |
b74f1c6a |
394 | // gMC->Gsvolu("S01F", "BOX", idAlu1, bpar, 3); |
395 | // gMC->Gsvolu("S02F", "BOX", idAlu1, bpar, 3); |
a9e2aefa |
396 | |
b74f1c6a |
397 | // gMC->Gspos("S01F",1,"S01G", +iChamber->RInner()+bpar[0] , 0, 0, |
b64652f5 |
398 | // idrotm[1100],"ONLY"); |
b74f1c6a |
399 | // gMC->Gspos("S01F",2,"S01G", -iChamber->RInner()-bpar[0] , 0, 0, |
b64652f5 |
400 | // idrotm[1100],"ONLY"); |
b74f1c6a |
401 | // gMC->Gspos("S01F",3,"S01G", 0, +iChamber->RInner()+bpar[0] , 0, |
b64652f5 |
402 | // idrotm[1101],"ONLY"); |
b74f1c6a |
403 | // gMC->Gspos("S01F",4,"S01G", 0, -iChamber->RInner()-bpar[0] , 0, |
b64652f5 |
404 | // idrotm[1101],"ONLY"); |
a9e2aefa |
405 | |
b74f1c6a |
406 | // gMC->Gspos("S02F",1,"S02G", +iChamber->RInner()+bpar[0] , 0, 0, |
b64652f5 |
407 | // idrotm[1100],"ONLY"); |
b74f1c6a |
408 | // gMC->Gspos("S02F",2,"S02G", -iChamber->RInner()-bpar[0] , 0, 0, |
b64652f5 |
409 | // idrotm[1100],"ONLY"); |
b74f1c6a |
410 | // gMC->Gspos("S02F",3,"S02G", 0, +iChamber->RInner()+bpar[0] , 0, |
b64652f5 |
411 | // idrotm[1101],"ONLY"); |
b74f1c6a |
412 | // gMC->Gspos("S02F",4,"S02G", 0, -iChamber->RInner()-bpar[0] , 0, |
b64652f5 |
413 | // idrotm[1101],"ONLY"); |
414 | // } |
b17c0c87 |
415 | } |
416 | if (stations[1]) { |
417 | |
a9e2aefa |
418 | //******************************************************************** |
419 | // Station 2 ** |
420 | //******************************************************************** |
421 | // indices 1 and 2 for first and second chambers in the station |
422 | // iChamber (first chamber) kept for other quanties than Z, |
423 | // assumed to be the same in both chambers |
424 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2]; |
425 | iChamber2 =(AliMUONChamber*) (*fChambers)[3]; |
426 | zpos1=iChamber1->Z(); |
427 | zpos2=iChamber2->Z(); |
428 | dstation = zpos2 - zpos1; |
b64652f5 |
429 | // DGas and DAlu not changed from standard values |
a9e2aefa |
430 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
431 | |
432 | // |
433 | // Mother volume |
434 | tpar[0] = iChamber->RInner()-dframep; |
435 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
2c799aa2 |
436 | tpar[2] = dstation/5; |
a9e2aefa |
437 | |
b74f1c6a |
438 | gMC->Gsvolu("S03M", "TUBE", idAir, tpar, 3); |
439 | gMC->Gsvolu("S04M", "TUBE", idAir, tpar, 3); |
440 | gMC->Gspos("S03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
441 | gMC->Gspos("S04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
442 | |
b64652f5 |
443 | // // Aluminium frames |
444 | // // Outer frames |
445 | // pgpar[0] = 360/12/2; |
446 | // pgpar[1] = 360.; |
447 | // pgpar[2] = 12.; |
448 | // pgpar[3] = 2; |
449 | // pgpar[4] = -dframez/2; |
450 | // pgpar[5] = iChamber->ROuter(); |
451 | // pgpar[6] = pgpar[5]+dframep; |
452 | // pgpar[7] = +dframez/2; |
453 | // pgpar[8] = pgpar[5]; |
454 | // pgpar[9] = pgpar[6]; |
b74f1c6a |
455 | // gMC->Gsvolu("S03O", "PGON", idAlu1, pgpar, 10); |
456 | // gMC->Gsvolu("S04O", "PGON", idAlu1, pgpar, 10); |
457 | // gMC->Gspos("S03O",1,"S03M", 0.,0.,-zfpos, 0,"ONLY"); |
458 | // gMC->Gspos("S03O",2,"S03M", 0.,0.,+zfpos, 0,"ONLY"); |
459 | // gMC->Gspos("S04O",1,"S04M", 0.,0.,-zfpos, 0,"ONLY"); |
460 | // gMC->Gspos("S04O",2,"S04M", 0.,0.,+zfpos, 0,"ONLY"); |
b64652f5 |
461 | // // |
462 | // // Inner frame |
463 | // tpar[0]= iChamber->RInner()-dframep; |
464 | // tpar[1]= iChamber->RInner(); |
465 | // tpar[2]= dframez/2; |
b74f1c6a |
466 | // gMC->Gsvolu("S03I", "TUBE", idAlu1, tpar, 3); |
467 | // gMC->Gsvolu("S04I", "TUBE", idAlu1, tpar, 3); |
b64652f5 |
468 | |
b74f1c6a |
469 | // gMC->Gspos("S03I",1,"S03M", 0.,0.,-zfpos, 0,"ONLY"); |
470 | // gMC->Gspos("S03I",2,"S03M", 0.,0.,+zfpos, 0,"ONLY"); |
471 | // gMC->Gspos("S04I",1,"S04M", 0.,0.,-zfpos, 0,"ONLY"); |
472 | // gMC->Gspos("S04I",2,"S04M", 0.,0.,+zfpos, 0,"ONLY"); |
a9e2aefa |
473 | // |
474 | // Frame Crosses |
b64652f5 |
475 | if (frameCrosses) { |
476 | // outside gas |
477 | // security for inside mother volume |
478 | bpar[0] = (iChamber->ROuter() - iChamber->RInner()) |
479 | * TMath::Cos(TMath::ASin(dframep1 / |
480 | (iChamber->ROuter() - iChamber->RInner()))) |
481 | / 2.0; |
482 | bpar[1] = dframep1/2; |
483 | // total thickness will be (4 * bpar[2]) for each chamber, |
484 | // which has to be equal to (2 * dframez) - DAlu |
485 | bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0; |
b74f1c6a |
486 | gMC->Gsvolu("S03B", "BOX", idAlu1, bpar, 3); |
487 | gMC->Gsvolu("S04B", "BOX", idAlu1, bpar, 3); |
a9e2aefa |
488 | |
b74f1c6a |
489 | gMC->Gspos("S03B",1,"S03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
a9e2aefa |
490 | idrotm[1100],"ONLY"); |
b74f1c6a |
491 | gMC->Gspos("S03B",2,"S03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
a9e2aefa |
492 | idrotm[1100],"ONLY"); |
b74f1c6a |
493 | gMC->Gspos("S03B",3,"S03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
a9e2aefa |
494 | idrotm[1101],"ONLY"); |
b74f1c6a |
495 | gMC->Gspos("S03B",4,"S03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
a9e2aefa |
496 | idrotm[1101],"ONLY"); |
b74f1c6a |
497 | gMC->Gspos("S03B",5,"S03M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
a9e2aefa |
498 | idrotm[1100],"ONLY"); |
b74f1c6a |
499 | gMC->Gspos("S03B",6,"S03M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
a9e2aefa |
500 | idrotm[1100],"ONLY"); |
b74f1c6a |
501 | gMC->Gspos("S03B",7,"S03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
a9e2aefa |
502 | idrotm[1101],"ONLY"); |
b74f1c6a |
503 | gMC->Gspos("S03B",8,"S03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
a9e2aefa |
504 | idrotm[1101],"ONLY"); |
505 | |
b74f1c6a |
506 | gMC->Gspos("S04B",1,"S04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
a9e2aefa |
507 | idrotm[1100],"ONLY"); |
b74f1c6a |
508 | gMC->Gspos("S04B",2,"S04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
a9e2aefa |
509 | idrotm[1100],"ONLY"); |
b74f1c6a |
510 | gMC->Gspos("S04B",3,"S04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
a9e2aefa |
511 | idrotm[1101],"ONLY"); |
b74f1c6a |
512 | gMC->Gspos("S04B",4,"S04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
a9e2aefa |
513 | idrotm[1101],"ONLY"); |
b74f1c6a |
514 | gMC->Gspos("S04B",5,"S04M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
a9e2aefa |
515 | idrotm[1100],"ONLY"); |
b74f1c6a |
516 | gMC->Gspos("S04B",6,"S04M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
a9e2aefa |
517 | idrotm[1100],"ONLY"); |
b74f1c6a |
518 | gMC->Gspos("S04B",7,"S04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
a9e2aefa |
519 | idrotm[1101],"ONLY"); |
b74f1c6a |
520 | gMC->Gspos("S04B",8,"S04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
a9e2aefa |
521 | idrotm[1101],"ONLY"); |
522 | } |
523 | // |
524 | // Chamber Material represented by Alu sheet |
525 | tpar[0]= iChamber->RInner(); |
526 | tpar[1]= iChamber->ROuter(); |
527 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
b74f1c6a |
528 | gMC->Gsvolu("S03A", "TUBE", idAlu2, tpar, 3); |
529 | gMC->Gsvolu("S04A", "TUBE", idAlu2, tpar, 3); |
530 | gMC->Gspos("S03A", 1, "S03M", 0., 0., 0., 0, "ONLY"); |
531 | gMC->Gspos("S04A", 1, "S04M", 0., 0., 0., 0, "ONLY"); |
a9e2aefa |
532 | // |
533 | // Sensitive volumes |
534 | // tpar[2] = iChamber->DGas(); |
535 | tpar[2] = iChamber->DGas()/2; |
b74f1c6a |
536 | gMC->Gsvolu("S03G", "TUBE", idGas, tpar, 3); |
537 | gMC->Gsvolu("S04G", "TUBE", idGas, tpar, 3); |
538 | gMC->Gspos("S03G", 1, "S03A", 0., 0., 0., 0, "ONLY"); |
539 | gMC->Gspos("S04G", 1, "S04A", 0., 0., 0., 0, "ONLY"); |
a9e2aefa |
540 | // |
541 | // Frame Crosses to be placed inside gas |
b64652f5 |
542 | // NONE: chambers are sensitive everywhere |
543 | // if (frameCrosses) { |
544 | |
545 | // dr = (iChamber->ROuter() - iChamber->RInner()); |
546 | // bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; |
547 | // bpar[1] = dframep1/2; |
548 | // bpar[2] = iChamber->DGas()/2; |
b74f1c6a |
549 | // gMC->Gsvolu("S03F", "BOX", idAlu1, bpar, 3); |
550 | // gMC->Gsvolu("S04F", "BOX", idAlu1, bpar, 3); |
a9e2aefa |
551 | |
b74f1c6a |
552 | // gMC->Gspos("S03F",1,"S03G", +iChamber->RInner()+bpar[0] , 0, 0, |
b64652f5 |
553 | // idrotm[1100],"ONLY"); |
b74f1c6a |
554 | // gMC->Gspos("S03F",2,"S03G", -iChamber->RInner()-bpar[0] , 0, 0, |
b64652f5 |
555 | // idrotm[1100],"ONLY"); |
b74f1c6a |
556 | // gMC->Gspos("S03F",3,"S03G", 0, +iChamber->RInner()+bpar[0] , 0, |
b64652f5 |
557 | // idrotm[1101],"ONLY"); |
b74f1c6a |
558 | // gMC->Gspos("S03F",4,"S03G", 0, -iChamber->RInner()-bpar[0] , 0, |
b64652f5 |
559 | // idrotm[1101],"ONLY"); |
a9e2aefa |
560 | |
b74f1c6a |
561 | // gMC->Gspos("S04F",1,"S04G", +iChamber->RInner()+bpar[0] , 0, 0, |
b64652f5 |
562 | // idrotm[1100],"ONLY"); |
b74f1c6a |
563 | // gMC->Gspos("S04F",2,"S04G", -iChamber->RInner()-bpar[0] , 0, 0, |
b64652f5 |
564 | // idrotm[1100],"ONLY"); |
b74f1c6a |
565 | // gMC->Gspos("S04F",3,"S04G", 0, +iChamber->RInner()+bpar[0] , 0, |
b64652f5 |
566 | // idrotm[1101],"ONLY"); |
b74f1c6a |
567 | // gMC->Gspos("S04F",4,"S04G", 0, -iChamber->RInner()-bpar[0] , 0, |
b64652f5 |
568 | // idrotm[1101],"ONLY"); |
569 | // } |
b17c0c87 |
570 | } |
1e8fff9c |
571 | // define the id of tracking media: |
572 | Int_t idCopper = idtmed[1110]; |
573 | Int_t idGlass = idtmed[1111]; |
574 | Int_t idCarbon = idtmed[1112]; |
575 | Int_t idRoha = idtmed[1113]; |
576 | |
1e8fff9c |
577 | // sensitive area: 40*40 cm**2 |
6c5ddcfa |
578 | const Float_t sensLength = 40.; |
579 | const Float_t sensHeight = 40.; |
580 | const Float_t sensWidth = 0.5; // according to TDR fig 2.120 |
581 | const Int_t sensMaterial = idGas; |
1e8fff9c |
582 | const Float_t yOverlap = 1.5; |
583 | |
584 | // PCB dimensions in cm; width: 30 mum copper |
6c5ddcfa |
585 | const Float_t pcbLength = sensLength; |
586 | const Float_t pcbHeight = 60.; |
587 | const Float_t pcbWidth = 0.003; |
588 | const Int_t pcbMaterial = idCopper; |
1e8fff9c |
589 | |
590 | // Insulating material: 200 mum glass fiber glued to pcb |
6c5ddcfa |
591 | const Float_t insuLength = pcbLength; |
592 | const Float_t insuHeight = pcbHeight; |
593 | const Float_t insuWidth = 0.020; |
594 | const Int_t insuMaterial = idGlass; |
1e8fff9c |
595 | |
596 | // Carbon fiber panels: 200mum carbon/epoxy skin |
6c5ddcfa |
597 | const Float_t panelLength = sensLength; |
598 | const Float_t panelHeight = sensHeight; |
599 | const Float_t panelWidth = 0.020; |
600 | const Int_t panelMaterial = idCarbon; |
1e8fff9c |
601 | |
602 | // rohacell between the two carbon panels |
6c5ddcfa |
603 | const Float_t rohaLength = sensLength; |
604 | const Float_t rohaHeight = sensHeight; |
605 | const Float_t rohaWidth = 0.5; |
606 | const Int_t rohaMaterial = idRoha; |
1e8fff9c |
607 | |
608 | // Frame around the slat: 2 sticks along length,2 along height |
609 | // H: the horizontal ones |
6c5ddcfa |
610 | const Float_t hFrameLength = pcbLength; |
611 | const Float_t hFrameHeight = 1.5; |
612 | const Float_t hFrameWidth = sensWidth; |
613 | const Int_t hFrameMaterial = idGlass; |
1e8fff9c |
614 | |
615 | // V: the vertical ones |
6c5ddcfa |
616 | const Float_t vFrameLength = 4.0; |
617 | const Float_t vFrameHeight = sensHeight + hFrameHeight; |
618 | const Float_t vFrameWidth = sensWidth; |
619 | const Int_t vFrameMaterial = idGlass; |
1e8fff9c |
620 | |
621 | // B: the horizontal border filled with rohacell |
6c5ddcfa |
622 | const Float_t bFrameLength = hFrameLength; |
623 | const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; |
624 | const Float_t bFrameWidth = hFrameWidth; |
625 | const Int_t bFrameMaterial = idRoha; |
1e8fff9c |
626 | |
627 | // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) |
6c5ddcfa |
628 | const Float_t nulocLength = 2.5; |
629 | const Float_t nulocHeight = 7.5; |
630 | const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite; |
631 | const Int_t nulocMaterial = idCopper; |
1e8fff9c |
632 | |
6c5ddcfa |
633 | const Float_t slatHeight = pcbHeight; |
634 | const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + |
635 | 2.* panelWidth + rohaWidth); |
636 | const Int_t slatMaterial = idAir; |
637 | const Float_t dSlatLength = vFrameLength; // border on left and right |
1e8fff9c |
638 | |
1e8fff9c |
639 | Float_t spar[3]; |
b17c0c87 |
640 | Int_t i, j; |
641 | |
3c084d9f |
642 | // the panel volume contains the rohacell |
643 | |
644 | Float_t twidth = 2 * panelWidth + rohaWidth; |
645 | Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. }; |
b17c0c87 |
646 | Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; |
3c084d9f |
647 | |
648 | // insulating material contains PCB-> gas-> 2 borders filled with rohacell |
649 | |
650 | twidth = 2*(insuWidth + pcbWidth) + sensWidth; |
651 | Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. }; |
652 | twidth -= 2 * insuWidth; |
653 | Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. }; |
654 | Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; |
655 | Float_t theight = 2*hFrameHeight + sensHeight; |
656 | Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.}; |
b17c0c87 |
657 | Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; |
3c084d9f |
658 | Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; |
b17c0c87 |
659 | Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; |
b17c0c87 |
660 | Float_t xx; |
661 | Float_t xxmax = (bFrameLength - nulocLength)/2.; |
662 | Int_t index=0; |
663 | |
664 | if (stations[2]) { |
665 | |
666 | //******************************************************************** |
667 | // Station 3 ** |
668 | //******************************************************************** |
669 | // indices 1 and 2 for first and second chambers in the station |
670 | // iChamber (first chamber) kept for other quanties than Z, |
671 | // assumed to be the same in both chambers |
672 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4]; |
673 | iChamber2 =(AliMUONChamber*) (*fChambers)[5]; |
674 | zpos1=iChamber1->Z(); |
675 | zpos2=iChamber2->Z(); |
676 | dstation = zpos2 - zpos1; |
677 | |
b64652f5 |
678 | // zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more |
b17c0c87 |
679 | // |
680 | // Mother volume |
681 | tpar[0] = iChamber->RInner()-dframep; |
682 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
21a18f36 |
683 | tpar[2] = dstation/5; |
2724ae40 |
684 | |
b74f1c6a |
685 | char *slats5Mother = "S05M"; |
686 | char *slats6Mother = "S06M"; |
2724ae40 |
687 | Float_t zoffs5 = 0; |
688 | Float_t zoffs6 = 0; |
689 | |
fe713e43 |
690 | if (gAlice->GetModule("DIPO")) { |
2724ae40 |
691 | slats5Mother="DDIP"; |
692 | slats6Mother="DDIP"; |
693 | |
694 | zoffs5 = zpos1; |
695 | zoffs6 = zpos2; |
696 | } |
697 | else { |
b74f1c6a |
698 | gMC->Gsvolu("S05M", "TUBE", idAir, tpar, 3); |
699 | gMC->Gsvolu("S06M", "TUBE", idAir, tpar, 3); |
700 | gMC->Gspos("S05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
701 | gMC->Gspos("S06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
2724ae40 |
702 | } |
703 | |
b17c0c87 |
704 | // volumes for slat geometry (xx=5,..,10 chamber id): |
705 | // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes |
706 | // SxxG --> Sensitive volume (gas) |
707 | // SxxP --> PCB (copper) |
708 | // SxxI --> Insulator (vetronite) |
709 | // SxxC --> Carbon panel |
710 | // SxxR --> Rohacell |
711 | // SxxH, SxxV --> Horizontal and Vertical frames (vetronite) |
21a18f36 |
712 | // SB5x --> Volumes for the 35 cm long PCB |
b17c0c87 |
713 | // slat dimensions: slat is a MOTHER volume!!! made of air |
714 | |
21a18f36 |
715 | // only for chamber 5: slat 1 has a PCB shorter by 5cm! |
716 | |
717 | Float_t tlength = 35.; |
718 | Float_t panelpar2[3] = { tlength/2., panelpar[1], panelpar[2]}; |
719 | Float_t rohapar2[3] = { tlength/2., rohapar[1], rohapar[2]}; |
720 | Float_t insupar2[3] = { tlength/2., insupar[1], insupar[2]}; |
721 | Float_t pcbpar2[3] = { tlength/2., pcbpar[1], pcbpar[2]}; |
722 | Float_t senspar2[3] = { tlength/2., senspar[1], senspar[2]}; |
723 | Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]}; |
724 | Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]}; |
725 | |
a083207d |
726 | const Int_t nSlats3 = 5; // number of slats per quadrant |
727 | const Int_t nPCB3[nSlats3] = {3,3,4,3,2}; // n PCB per slat |
21a18f36 |
728 | const Float_t xpos3[nSlats3] = {31., 40., 0., 0., 0.}; |
b17c0c87 |
729 | Float_t slatLength3[nSlats3]; |
730 | |
731 | // create and position the slat (mother) volumes |
732 | |
6c5ddcfa |
733 | char volNam5[5]; |
734 | char volNam6[5]; |
f9f7c205 |
735 | Float_t xSlat3; |
b17c0c87 |
736 | |
21a18f36 |
737 | Float_t spar2[3]; |
6c5ddcfa |
738 | for (i = 0; i<nSlats3; i++){ |
3c084d9f |
739 | slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength; |
a083207d |
740 | xSlat3 = slatLength3[i]/2. - vFrameLength/2. + xpos3[i]; |
21a18f36 |
741 | if (i==1 || i==0) slatLength3[i] -= 2. *dSlatLength; // frame out in PCB with circular border |
a083207d |
742 | Float_t ySlat31 = sensHeight * i - yOverlap * i; |
743 | Float_t ySlat32 = -sensHeight * i + yOverlap * i; |
3c084d9f |
744 | spar[0] = slatLength3[i]/2.; |
745 | spar[1] = slatHeight/2.; |
746 | spar[2] = slatWidth/2. * 1.01; |
21a18f36 |
747 | // take away 5 cm from the first slat in chamber 5 |
748 | Float_t xSlat32 = 0; |
749 | if (i==1 || i==2) { // 1 pcb is shortened by 5cm |
750 | spar2[0] = spar[0]-5./2.; |
751 | xSlat32 = xSlat3 - 5/2.; |
752 | } |
753 | else { |
754 | spar2[0] = spar[0]; |
755 | xSlat32 = xSlat3; |
756 | } |
757 | spar2[1] = spar[1]; |
758 | spar2[2] = spar[2]; |
3c084d9f |
759 | Float_t dzCh3=spar[2] * 1.01; |
760 | // zSlat to be checked (odd downstream or upstream?) |
761 | Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; |
762 | sprintf(volNam5,"S05%d",i); |
21a18f36 |
763 | gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar2,3); |
2724ae40 |
764 | gMC->Gspos(volNam5, i*4+1,slats5Mother, xSlat32, ySlat31, zoffs5+zSlat+2.*dzCh3, 0, "ONLY"); |
765 | gMC->Gspos(volNam5, i*4+2,slats5Mother,-xSlat32, ySlat31, zoffs5+zSlat-2.*dzCh3, 0, "ONLY"); |
21a18f36 |
766 | |
a083207d |
767 | if (i>0) { |
2724ae40 |
768 | gMC->Gspos(volNam5, i*4+3,slats5Mother, xSlat32, ySlat32, zoffs5+zSlat+2.*dzCh3, 0, "ONLY"); |
769 | gMC->Gspos(volNam5, i*4+4,slats5Mother,-xSlat32, ySlat32, zoffs5+zSlat-2.*dzCh3, 0, "ONLY"); |
a083207d |
770 | } |
3c084d9f |
771 | sprintf(volNam6,"S06%d",i); |
772 | gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3); |
2724ae40 |
773 | gMC->Gspos(volNam6, i*4+1,slats6Mother, xSlat3, ySlat31, zoffs6+zSlat+2.*dzCh3, 0, "ONLY"); |
774 | gMC->Gspos(volNam6, i*4+2,slats6Mother,-xSlat3, ySlat31, zoffs6+zSlat-2.*dzCh3, 0, "ONLY"); |
a083207d |
775 | if (i>0) { |
2724ae40 |
776 | gMC->Gspos(volNam6, i*4+3,slats6Mother, xSlat3, ySlat32, zoffs6+zSlat+2.*dzCh3, 0, "ONLY"); |
777 | gMC->Gspos(volNam6, i*4+4,slats6Mother,-xSlat3, ySlat32, zoffs6+zSlat-2.*dzCh3, 0, "ONLY"); |
a083207d |
778 | } |
3c084d9f |
779 | } |
1e8fff9c |
780 | |
781 | // create the panel volume |
b17c0c87 |
782 | |
6c5ddcfa |
783 | gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3); |
21a18f36 |
784 | gMC->Gsvolu("SB5C","BOX",panelMaterial,panelpar2,3); |
6c5ddcfa |
785 | gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3); |
1e8fff9c |
786 | |
787 | // create the rohacell volume |
b17c0c87 |
788 | |
6c5ddcfa |
789 | gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3); |
21a18f36 |
790 | gMC->Gsvolu("SB5R","BOX",rohaMaterial,rohapar2,3); |
6c5ddcfa |
791 | gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
792 | |
3c084d9f |
793 | // create the insulating material volume |
794 | |
795 | gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3); |
21a18f36 |
796 | gMC->Gsvolu("SB5I","BOX",insuMaterial,insupar2,3); |
3c084d9f |
797 | gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3); |
798 | |
799 | // create the PCB volume |
800 | |
801 | gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3); |
21a18f36 |
802 | gMC->Gsvolu("SB5P","BOX",pcbMaterial,pcbpar2,3); |
3c084d9f |
803 | gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3); |
804 | |
805 | // create the sensitive volumes, |
3f08857e |
806 | gMC->Gsvolu("S05G","BOX",sensMaterial,dum,0); |
807 | gMC->Gsvolu("S06G","BOX",sensMaterial,dum,0); |
3c084d9f |
808 | |
809 | |
1e8fff9c |
810 | // create the vertical frame volume |
b17c0c87 |
811 | |
6c5ddcfa |
812 | gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3); |
813 | gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
814 | |
815 | // create the horizontal frame volume |
b17c0c87 |
816 | |
6c5ddcfa |
817 | gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3); |
21a18f36 |
818 | gMC->Gsvolu("SB5H","BOX",hFrameMaterial,hFramepar2,3); |
6c5ddcfa |
819 | gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
820 | |
821 | // create the horizontal border volume |
b17c0c87 |
822 | |
6c5ddcfa |
823 | gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3); |
21a18f36 |
824 | gMC->Gsvolu("SB5B","BOX",bFrameMaterial,bFramepar2,3); |
6c5ddcfa |
825 | gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
826 | |
b17c0c87 |
827 | index=0; |
6c5ddcfa |
828 | for (i = 0; i<nSlats3; i++){ |
829 | sprintf(volNam5,"S05%d",i); |
830 | sprintf(volNam6,"S06%d",i); |
f9f7c205 |
831 | Float_t xvFrame = (slatLength3[i] - vFrameLength)/2.; |
21a18f36 |
832 | Float_t xvFrame2 = xvFrame; |
833 | if ( i==1 || i ==2 ) xvFrame2 -= 5./2.; |
3c084d9f |
834 | // position the vertical frames |
21a18f36 |
835 | if (i!=1 && i!=0) { |
836 | gMC->Gspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY"); |
837 | gMC->Gspos("S05V",2*i ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY"); |
3c084d9f |
838 | gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY"); |
839 | gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY"); |
840 | } |
841 | // position the panels and the insulating material |
6c5ddcfa |
842 | for (j=0; j<nPCB3[i]; j++){ |
1e8fff9c |
843 | index++; |
6c5ddcfa |
844 | Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5); |
21a18f36 |
845 | Float_t xx2 = xx + 5/2.; |
3c084d9f |
846 | |
847 | Float_t zPanel = spar[2] - panelpar[2]; |
21a18f36 |
848 | if ( (i==1 || i==2) && j == nPCB3[i]-1) { // 1 pcb is shortened by 5cm |
849 | gMC->Gspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY"); |
850 | gMC->Gspos("SB5C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY"); |
851 | gMC->Gspos("SB5I",index ,volNam5, xx, 0., 0 , 0, "ONLY"); |
852 | } |
853 | else if ( (i==1 || i==2) && j < nPCB3[i]-1) { |
854 | gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY"); |
855 | gMC->Gspos("S05C",2*index ,volNam5, xx2, 0.,-zPanel , 0, "ONLY"); |
856 | gMC->Gspos("S05I",index ,volNam5, xx2, 0., 0 , 0, "ONLY"); |
857 | } |
858 | else { |
859 | gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY"); |
860 | gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY"); |
861 | gMC->Gspos("S05I",index ,volNam5, xx, 0., 0 , 0, "ONLY"); |
862 | } |
3c084d9f |
863 | gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY"); |
864 | gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY"); |
3c084d9f |
865 | gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
866 | } |
a9e2aefa |
867 | } |
21a18f36 |
868 | |
3c084d9f |
869 | // position the rohacell volume inside the panel volume |
870 | gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY"); |
21a18f36 |
871 | gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY"); |
3c084d9f |
872 | gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY"); |
873 | |
874 | // position the PCB volume inside the insulating material volume |
875 | gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); |
21a18f36 |
876 | gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY"); |
3c084d9f |
877 | gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); |
878 | // position the horizontal frame volume inside the PCB volume |
879 | gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); |
21a18f36 |
880 | gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY"); |
3c084d9f |
881 | gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); |
882 | // position the sensitive volume inside the horizontal frame volume |
883 | gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); |
21a18f36 |
884 | gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3); |
3c084d9f |
885 | gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); |
886 | // position the border volumes inside the PCB volume |
887 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
888 | gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); |
889 | gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); |
21a18f36 |
890 | gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY"); |
891 | gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY"); |
3c084d9f |
892 | gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); |
893 | gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); |
894 | |
1e8fff9c |
895 | // create the NULOC volume and position it in the horizontal frame |
b17c0c87 |
896 | |
6c5ddcfa |
897 | gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3); |
898 | gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3); |
6c5ddcfa |
899 | index = 0; |
21a18f36 |
900 | Float_t xxmax2 = xxmax - 5./2.; |
901 | for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { |
1e8fff9c |
902 | index++; |
6c5ddcfa |
903 | gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
904 | gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
21a18f36 |
905 | if (xx > -xxmax2 && xx< xxmax2) { |
906 | gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
907 | gMC->Gspos("S05N",2*index ,"SB5B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
908 | } |
6c5ddcfa |
909 | gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
910 | gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
911 | } |
3c084d9f |
912 | |
913 | // position the volumes approximating the circular section of the pipe |
a083207d |
914 | Float_t yoffs = sensHeight/2. - yOverlap; |
3c084d9f |
915 | Float_t epsilon = 0.001; |
916 | Int_t ndiv=6; |
917 | Float_t divpar[3]; |
918 | Double_t dydiv= sensHeight/ndiv; |
21a18f36 |
919 | Double_t ydiv = yoffs -dydiv; |
3c084d9f |
920 | Int_t imax=0; |
3c084d9f |
921 | imax = 1; |
21a18f36 |
922 | Float_t rmin = 33.; |
a083207d |
923 | Float_t z1 = spar[2], z2=2*spar[2]*1.01; |
3c084d9f |
924 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
925 | ydiv+= dydiv; |
425ebd0a |
926 | Float_t xdiv = 0.; |
3c084d9f |
927 | if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ); |
928 | divpar[0] = (pcbLength-xdiv)/2.; |
929 | divpar[1] = dydiv/2. - epsilon; |
930 | divpar[2] = sensWidth/2.; |
425ebd0a |
931 | Float_t xvol=(pcbLength+xdiv)/2.+1.999; |
a083207d |
932 | Float_t yvol=ydiv + dydiv/2.; |
21a18f36 |
933 | //printf ("y ll = %f y ur = %f \n",yvol - divpar[1], yvol + divpar[1]); |
2724ae40 |
934 | gMC->Gsposp("S05G",imax+4*idiv+1,slats5Mother, xvol, yvol, zoffs5+z1+z2, 0, "ONLY",divpar,3); |
935 | gMC->Gsposp("S06G",imax+4*idiv+1,slats6Mother, xvol, yvol, zoffs6+z1+z2, 0, "ONLY",divpar,3); |
936 | gMC->Gsposp("S05G",imax+4*idiv+2,slats5Mother, xvol,-yvol, zoffs5+z1+z2, 0, "ONLY",divpar,3); |
937 | gMC->Gsposp("S06G",imax+4*idiv+2,slats6Mother, xvol,-yvol, zoffs6+z1+z2, 0, "ONLY",divpar,3); |
938 | gMC->Gsposp("S05G",imax+4*idiv+3,slats5Mother,-xvol, yvol, zoffs5+z1-z2, 0, "ONLY",divpar,3); |
939 | gMC->Gsposp("S06G",imax+4*idiv+3,slats6Mother,-xvol, yvol, zoffs6+z1-z2, 0, "ONLY",divpar,3); |
940 | gMC->Gsposp("S05G",imax+4*idiv+4,slats5Mother,-xvol,-yvol, zoffs5+z1-z2, 0, "ONLY",divpar,3); |
941 | gMC->Gsposp("S06G",imax+4*idiv+4,slats6Mother,-xvol,-yvol, zoffs6+z1-z2, 0, "ONLY",divpar,3); |
3c084d9f |
942 | } |
b17c0c87 |
943 | } |
b17c0c87 |
944 | |
3c084d9f |
945 | if (stations[3]) { |
946 | |
a9e2aefa |
947 | //******************************************************************** |
948 | // Station 4 ** |
949 | //******************************************************************** |
950 | // indices 1 and 2 for first and second chambers in the station |
951 | // iChamber (first chamber) kept for other quanties than Z, |
952 | // assumed to be the same in both chambers |
953 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6]; |
954 | iChamber2 =(AliMUONChamber*) (*fChambers)[7]; |
955 | zpos1=iChamber1->Z(); |
956 | zpos2=iChamber2->Z(); |
957 | dstation = zpos2 - zpos1; |
b64652f5 |
958 | // zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more |
a9e2aefa |
959 | |
960 | // |
961 | // Mother volume |
962 | tpar[0] = iChamber->RInner()-dframep; |
963 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
2724ae40 |
964 | tpar[2] = dstation/4; |
a9e2aefa |
965 | |
b74f1c6a |
966 | gMC->Gsvolu("S07M", "TUBE", idAir, tpar, 3); |
967 | gMC->Gsvolu("S08M", "TUBE", idAir, tpar, 3); |
968 | gMC->Gspos("S07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
969 | gMC->Gspos("S08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
970 | |
a9e2aefa |
971 | |
f9f7c205 |
972 | const Int_t nSlats4 = 6; // number of slats per quadrant |
425ebd0a |
973 | const Int_t nPCB4[nSlats4] = {4,4,5,5,4,3}; // n PCB per slat |
21a18f36 |
974 | const Float_t xpos4[nSlats4] = {38.5, 40., 0., 0., 0., 0.}; |
6c5ddcfa |
975 | Float_t slatLength4[nSlats4]; |
1e8fff9c |
976 | |
977 | // create and position the slat (mother) volumes |
978 | |
6c5ddcfa |
979 | char volNam7[5]; |
980 | char volNam8[5]; |
1e8fff9c |
981 | Float_t xSlat4; |
f9f7c205 |
982 | Float_t ySlat4; |
1e8fff9c |
983 | |
6c5ddcfa |
984 | for (i = 0; i<nSlats4; i++){ |
a083207d |
985 | slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength; |
986 | xSlat4 = slatLength4[i]/2. - vFrameLength/2. + xpos4[i]; |
2724ae40 |
987 | if (i==1) slatLength4[i] -= 2. *dSlatLength; // frame out in PCB with circular border |
a083207d |
988 | ySlat4 = sensHeight * i - yOverlap *i; |
989 | |
990 | spar[0] = slatLength4[i]/2.; |
991 | spar[1] = slatHeight/2.; |
992 | spar[2] = slatWidth/2.*1.01; |
993 | Float_t dzCh4=spar[2]*1.01; |
994 | // zSlat to be checked (odd downstream or upstream?) |
995 | Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2]; |
996 | sprintf(volNam7,"S07%d",i); |
997 | gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3); |
b74f1c6a |
998 | gMC->Gspos(volNam7, i*4+1,"S07M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
999 | gMC->Gspos(volNam7, i*4+2,"S07M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
a083207d |
1000 | if (i>0) { |
b74f1c6a |
1001 | gMC->Gspos(volNam7, i*4+3,"S07M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
1002 | gMC->Gspos(volNam7, i*4+4,"S07M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
a083207d |
1003 | } |
1004 | sprintf(volNam8,"S08%d",i); |
1005 | gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3); |
b74f1c6a |
1006 | gMC->Gspos(volNam8, i*4+1,"S08M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
1007 | gMC->Gspos(volNam8, i*4+2,"S08M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
a083207d |
1008 | if (i>0) { |
b74f1c6a |
1009 | gMC->Gspos(volNam8, i*4+3,"S08M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
1010 | gMC->Gspos(volNam8, i*4+4,"S08M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
a083207d |
1011 | } |
a9e2aefa |
1012 | } |
a083207d |
1013 | |
3c084d9f |
1014 | |
1015 | // create the panel volume |
1e8fff9c |
1016 | |
3c084d9f |
1017 | gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3); |
1018 | gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3); |
a9e2aefa |
1019 | |
3c084d9f |
1020 | // create the rohacell volume |
1021 | |
1022 | gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3); |
1023 | gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
1024 | |
1e8fff9c |
1025 | // create the insulating material volume |
1026 | |
6c5ddcfa |
1027 | gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3); |
1028 | gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3); |
1e8fff9c |
1029 | |
3c084d9f |
1030 | // create the PCB volume |
1e8fff9c |
1031 | |
3c084d9f |
1032 | gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3); |
1033 | gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3); |
1e8fff9c |
1034 | |
3c084d9f |
1035 | // create the sensitive volumes, |
1036 | |
3f08857e |
1037 | gMC->Gsvolu("S07G","BOX",sensMaterial,dum,0); |
1038 | gMC->Gsvolu("S08G","BOX",sensMaterial,dum,0); |
1e8fff9c |
1039 | |
1040 | // create the vertical frame volume |
1041 | |
6c5ddcfa |
1042 | gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3); |
1043 | gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
1044 | |
1045 | // create the horizontal frame volume |
1046 | |
6c5ddcfa |
1047 | gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3); |
1048 | gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
1049 | |
1050 | // create the horizontal border volume |
1051 | |
6c5ddcfa |
1052 | gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3); |
1053 | gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3); |
3c084d9f |
1054 | |
1055 | index=0; |
6c5ddcfa |
1056 | for (i = 0; i<nSlats4; i++){ |
1057 | sprintf(volNam7,"S07%d",i); |
1058 | sprintf(volNam8,"S08%d",i); |
1059 | Float_t xvFrame = (slatLength4[i] - vFrameLength)/2.; |
3c084d9f |
1060 | // position the vertical frames |
21a18f36 |
1061 | if (i!=1 && i!=0) { |
a083207d |
1062 | gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY"); |
1063 | gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY"); |
1064 | gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY"); |
1065 | gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY"); |
1066 | } |
3c084d9f |
1067 | // position the panels and the insulating material |
6c5ddcfa |
1068 | for (j=0; j<nPCB4[i]; j++){ |
1e8fff9c |
1069 | index++; |
6c5ddcfa |
1070 | Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5); |
3c084d9f |
1071 | |
1072 | Float_t zPanel = spar[2] - panelpar[2]; |
1073 | gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY"); |
1074 | gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY"); |
1075 | gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY"); |
1076 | gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY"); |
1077 | |
1078 | gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY"); |
1079 | gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
1080 | } |
a9e2aefa |
1081 | } |
1e8fff9c |
1082 | |
3c084d9f |
1083 | // position the rohacell volume inside the panel volume |
1084 | gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY"); |
1085 | gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY"); |
1086 | |
1087 | // position the PCB volume inside the insulating material volume |
1088 | gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); |
1089 | gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); |
1090 | // position the horizontal frame volume inside the PCB volume |
1091 | gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); |
1092 | gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); |
1093 | // position the sensitive volume inside the horizontal frame volume |
1094 | gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); |
1095 | gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); |
3c084d9f |
1096 | // position the border volumes inside the PCB volume |
1097 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
1098 | gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); |
1099 | gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); |
1100 | gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); |
1101 | gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); |
1102 | |
1e8fff9c |
1103 | // create the NULOC volume and position it in the horizontal frame |
3c084d9f |
1104 | |
6c5ddcfa |
1105 | gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3); |
1106 | gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3); |
3c084d9f |
1107 | index = 0; |
21a18f36 |
1108 | for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { |
1e8fff9c |
1109 | index++; |
6c5ddcfa |
1110 | gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1111 | gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1112 | gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1113 | gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
1114 | } |
a083207d |
1115 | |
1116 | // position the volumes approximating the circular section of the pipe |
21a18f36 |
1117 | Float_t yoffs = sensHeight/2. - yOverlap; |
a083207d |
1118 | Float_t epsilon = 0.001; |
1119 | Int_t ndiv=6; |
1120 | Float_t divpar[3]; |
1121 | Double_t dydiv= sensHeight/ndiv; |
21a18f36 |
1122 | Double_t ydiv = yoffs -dydiv; |
a083207d |
1123 | Int_t imax=0; |
a083207d |
1124 | imax = 1; |
1125 | Float_t rmin = 40.; |
1126 | Float_t z1 = -spar[2], z2=2*spar[2]*1.01; |
1127 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
1128 | ydiv+= dydiv; |
425ebd0a |
1129 | Float_t xdiv = 0.; |
a083207d |
1130 | if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ); |
1131 | divpar[0] = (pcbLength-xdiv)/2.; |
1132 | divpar[1] = dydiv/2. - epsilon; |
1133 | divpar[2] = sensWidth/2.; |
425ebd0a |
1134 | Float_t xvol=(pcbLength+xdiv)/2.+1.999; |
a083207d |
1135 | Float_t yvol=ydiv + dydiv/2.; |
b74f1c6a |
1136 | gMC->Gsposp("S07G",imax+4*idiv+1,"S07M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1137 | gMC->Gsposp("S08G",imax+4*idiv+1,"S08M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1138 | gMC->Gsposp("S07G",imax+4*idiv+2,"S07M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1139 | gMC->Gsposp("S08G",imax+4*idiv+2,"S08M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1140 | gMC->Gsposp("S07G",imax+4*idiv+3,"S07M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1141 | gMC->Gsposp("S08G",imax+4*idiv+3,"S08M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1142 | gMC->Gsposp("S07G",imax+4*idiv+4,"S07M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
1143 | gMC->Gsposp("S08G",imax+4*idiv+4,"S08M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
a083207d |
1144 | } |
1145 | |
1146 | |
1147 | |
1148 | |
1149 | |
b17c0c87 |
1150 | } |
3c084d9f |
1151 | |
b17c0c87 |
1152 | if (stations[4]) { |
1153 | |
1e8fff9c |
1154 | |
a9e2aefa |
1155 | //******************************************************************** |
1156 | // Station 5 ** |
1157 | //******************************************************************** |
1158 | // indices 1 and 2 for first and second chambers in the station |
1159 | // iChamber (first chamber) kept for other quanties than Z, |
1160 | // assumed to be the same in both chambers |
1161 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8]; |
1162 | iChamber2 =(AliMUONChamber*) (*fChambers)[9]; |
1163 | zpos1=iChamber1->Z(); |
1164 | zpos2=iChamber2->Z(); |
1165 | dstation = zpos2 - zpos1; |
b64652f5 |
1166 | // zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more |
3c084d9f |
1167 | |
a9e2aefa |
1168 | // |
1169 | // Mother volume |
1170 | tpar[0] = iChamber->RInner()-dframep; |
1171 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
3c084d9f |
1172 | tpar[2] = dstation/5.; |
a9e2aefa |
1173 | |
b74f1c6a |
1174 | gMC->Gsvolu("S09M", "TUBE", idAir, tpar, 3); |
1175 | gMC->Gsvolu("S10M", "TUBE", idAir, tpar, 3); |
1176 | gMC->Gspos("S09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
1177 | gMC->Gspos("S10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
a9e2aefa |
1178 | |
a9e2aefa |
1179 | |
1e8fff9c |
1180 | const Int_t nSlats5 = 7; // number of slats per quadrant |
a083207d |
1181 | const Int_t nPCB5[nSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat |
21a18f36 |
1182 | const Float_t xpos5[nSlats5] = {38.5, 40., 0., 0., 0., 0., 0.}; |
6c5ddcfa |
1183 | Float_t slatLength5[nSlats5]; |
6c5ddcfa |
1184 | char volNam9[5]; |
1185 | char volNam10[5]; |
f9f7c205 |
1186 | Float_t xSlat5; |
1187 | Float_t ySlat5; |
1e8fff9c |
1188 | |
6c5ddcfa |
1189 | for (i = 0; i<nSlats5; i++){ |
1190 | slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength; |
a083207d |
1191 | xSlat5 = slatLength5[i]/2. - vFrameLength/2. +xpos5[i]; |
21a18f36 |
1192 | if (i==1 || i==0) slatLength5[i] -= 2. *dSlatLength; // frame out in PCB with circular border |
f9f7c205 |
1193 | ySlat5 = sensHeight * i - yOverlap * i; |
6c5ddcfa |
1194 | spar[0] = slatLength5[i]/2.; |
1195 | spar[1] = slatHeight/2.; |
3c084d9f |
1196 | spar[2] = slatWidth/2. * 1.01; |
1197 | Float_t dzCh5=spar[2]*1.01; |
1e8fff9c |
1198 | // zSlat to be checked (odd downstream or upstream?) |
3c084d9f |
1199 | Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; |
6c5ddcfa |
1200 | sprintf(volNam9,"S09%d",i); |
1201 | gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3); |
b74f1c6a |
1202 | gMC->Gspos(volNam9, i*4+1,"S09M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1203 | gMC->Gspos(volNam9, i*4+2,"S09M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1204 | if (i>0) { |
b74f1c6a |
1205 | gMC->Gspos(volNam9, i*4+3,"S09M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1206 | gMC->Gspos(volNam9, i*4+4,"S09M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1207 | } |
6c5ddcfa |
1208 | sprintf(volNam10,"S10%d",i); |
1209 | gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3); |
b74f1c6a |
1210 | gMC->Gspos(volNam10, i*4+1,"S10M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1211 | gMC->Gspos(volNam10, i*4+2,"S10M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1212 | if (i>0) { |
b74f1c6a |
1213 | gMC->Gspos(volNam10, i*4+3,"S10M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1214 | gMC->Gspos(volNam10, i*4+4,"S10M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1215 | } |
a9e2aefa |
1216 | } |
1217 | |
1e8fff9c |
1218 | // create the panel volume |
3c084d9f |
1219 | |
6c5ddcfa |
1220 | gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3); |
1221 | gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3); |
3c084d9f |
1222 | |
1e8fff9c |
1223 | // create the rohacell volume |
3c084d9f |
1224 | |
6c5ddcfa |
1225 | gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3); |
1226 | gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3); |
3c084d9f |
1227 | |
1228 | // create the insulating material volume |
1229 | |
1230 | gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3); |
1231 | gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3); |
1232 | |
1233 | // create the PCB volume |
1234 | |
1235 | gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3); |
1236 | gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3); |
1237 | |
1238 | // create the sensitive volumes, |
1239 | |
3f08857e |
1240 | gMC->Gsvolu("S09G","BOX",sensMaterial,dum,0); |
1241 | gMC->Gsvolu("S10G","BOX",sensMaterial,dum,0); |
3c084d9f |
1242 | |
1e8fff9c |
1243 | // create the vertical frame volume |
3c084d9f |
1244 | |
6c5ddcfa |
1245 | gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3); |
1246 | gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
1247 | |
1248 | // create the horizontal frame volume |
3c084d9f |
1249 | |
6c5ddcfa |
1250 | gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3); |
1251 | gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
1252 | |
1253 | // create the horizontal border volume |
1254 | |
6c5ddcfa |
1255 | gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3); |
1256 | gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
1257 | |
3c084d9f |
1258 | index=0; |
6c5ddcfa |
1259 | for (i = 0; i<nSlats5; i++){ |
1260 | sprintf(volNam9,"S09%d",i); |
1261 | sprintf(volNam10,"S10%d",i); |
1262 | Float_t xvFrame = (slatLength5[i] - vFrameLength)/2.; |
3c084d9f |
1263 | // position the vertical frames |
21a18f36 |
1264 | if (i!=1 && i!=0) { |
a083207d |
1265 | gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY"); |
1266 | gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY"); |
1267 | gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY"); |
1268 | gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY"); |
1269 | } |
3c084d9f |
1270 | |
1271 | // position the panels and the insulating material |
6c5ddcfa |
1272 | for (j=0; j<nPCB5[i]; j++){ |
1e8fff9c |
1273 | index++; |
3c084d9f |
1274 | Float_t xx = sensLength * (-nPCB5[i]/2.+j+.5); |
1275 | |
1276 | Float_t zPanel = spar[2] - panelpar[2]; |
1277 | gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY"); |
1278 | gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY"); |
1279 | gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY"); |
1280 | gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY"); |
1281 | |
1282 | gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY"); |
1283 | gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
1284 | } |
1285 | } |
1286 | |
3c084d9f |
1287 | // position the rohacell volume inside the panel volume |
1288 | gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY"); |
1289 | gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY"); |
1290 | |
1291 | // position the PCB volume inside the insulating material volume |
1292 | gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); |
1293 | gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); |
1294 | // position the horizontal frame volume inside the PCB volume |
1295 | gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); |
1296 | gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); |
1297 | // position the sensitive volume inside the horizontal frame volume |
1298 | gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); |
1299 | gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); |
3c084d9f |
1300 | // position the border volumes inside the PCB volume |
1301 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
1302 | gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); |
1303 | gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); |
1304 | gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); |
1305 | gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); |
1306 | |
1e8fff9c |
1307 | // create the NULOC volume and position it in the horizontal frame |
3c084d9f |
1308 | |
6c5ddcfa |
1309 | gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3); |
1310 | gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3); |
3c084d9f |
1311 | index = 0; |
21a18f36 |
1312 | for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) { |
1e8fff9c |
1313 | index++; |
6c5ddcfa |
1314 | gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1315 | gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1316 | gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1317 | gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
a9e2aefa |
1318 | } |
a083207d |
1319 | // position the volumes approximating the circular section of the pipe |
21a18f36 |
1320 | Float_t yoffs = sensHeight/2. - yOverlap; |
a083207d |
1321 | Float_t epsilon = 0.001; |
1322 | Int_t ndiv=6; |
1323 | Float_t divpar[3]; |
1324 | Double_t dydiv= sensHeight/ndiv; |
21a18f36 |
1325 | Double_t ydiv = yoffs -dydiv; |
a083207d |
1326 | Int_t imax=0; |
1327 | // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat]; |
1328 | imax = 1; |
1329 | Float_t rmin = 40.; |
1330 | Float_t z1 = spar[2], z2=2*spar[2]*1.01; |
1331 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
1332 | ydiv+= dydiv; |
425ebd0a |
1333 | Float_t xdiv = 0.; |
a083207d |
1334 | if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ); |
1335 | divpar[0] = (pcbLength-xdiv)/2.; |
1336 | divpar[1] = dydiv/2. - epsilon; |
1337 | divpar[2] = sensWidth/2.; |
425ebd0a |
1338 | Float_t xvol=(pcbLength+xdiv)/2. + 1.999; |
a083207d |
1339 | Float_t yvol=ydiv + dydiv/2.; |
b74f1c6a |
1340 | gMC->Gsposp("S09G",imax+4*idiv+1,"S09M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1341 | gMC->Gsposp("S10G",imax+4*idiv+1,"S10M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1342 | gMC->Gsposp("S09G",imax+4*idiv+2,"S09M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1343 | gMC->Gsposp("S10G",imax+4*idiv+2,"S10M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1344 | gMC->Gsposp("S09G",imax+4*idiv+3,"S09M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1345 | gMC->Gsposp("S10G",imax+4*idiv+3,"S10M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1346 | gMC->Gsposp("S09G",imax+4*idiv+4,"S09M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
1347 | gMC->Gsposp("S10G",imax+4*idiv+4,"S10M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
a083207d |
1348 | } |
1349 | |
b17c0c87 |
1350 | } |
1351 | |
1e8fff9c |
1352 | |
a9e2aefa |
1353 | /////////////////////////////////////// |
1354 | // GEOMETRY FOR THE TRIGGER CHAMBERS // |
1355 | /////////////////////////////////////// |
1356 | |
1357 | // 03/00 P. Dupieux : introduce a slighly more realistic |
1358 | // geom. of the trigger readout planes with |
1359 | // 2 Zpos per trigger plane (alternate |
1360 | // between left and right of the trigger) |
1361 | |
1362 | // Parameters of the Trigger Chambers |
1363 | |
236fe2c5 |
1364 | // DP03-01 introduce dead zone of +/- 2 cm arround x=0 (as in TDR, fig3.27) |
1365 | const Float_t kDXZERO=2.; |
a9e2aefa |
1366 | const Float_t kXMC1MIN=34.; |
1367 | const Float_t kXMC1MED=51.; |
1368 | const Float_t kXMC1MAX=272.; |
1369 | const Float_t kYMC1MIN=34.; |
1370 | const Float_t kYMC1MAX=51.; |
1371 | const Float_t kRMIN1=50.; |
236fe2c5 |
1372 | // DP03-01 const Float_t kRMAX1=62.; |
1373 | const Float_t kRMAX1=64.; |
a9e2aefa |
1374 | const Float_t kRMIN2=50.; |
236fe2c5 |
1375 | // DP03-01 const Float_t kRMAX2=66.; |
1376 | const Float_t kRMAX2=68.; |
a9e2aefa |
1377 | |
1378 | // zposition of the middle of the gas gap in mother vol |
1379 | const Float_t kZMCm=-3.6; |
1380 | const Float_t kZMCp=+3.6; |
1381 | |
1382 | |
1383 | // TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1 |
1384 | |
1385 | // iChamber 1 and 2 for first and second chambers in the station |
1386 | // iChamber (first chamber) kept for other quanties than Z, |
1387 | // assumed to be the same in both chambers |
1388 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10]; |
1389 | iChamber2 =(AliMUONChamber*) (*fChambers)[11]; |
1390 | |
1391 | // 03/00 |
1392 | // zpos1 and zpos2 are now the middle of the first and second |
1393 | // plane of station 1 : |
1394 | // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm |
1395 | // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm |
1396 | // |
1397 | // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps) |
1398 | // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps) |
1399 | // rem : the total thickness accounts for 1 mm of al on both |
1400 | // side of the RPCs (see zpos1 and zpos2), as previously |
1401 | |
1402 | zpos1=iChamber1->Z(); |
1403 | zpos2=iChamber2->Z(); |
1404 | |
1405 | |
1406 | // Mother volume definition |
1407 | tpar[0] = iChamber->RInner(); |
1408 | tpar[1] = iChamber->ROuter(); |
1409 | tpar[2] = 4.0; |
b74f1c6a |
1410 | gMC->Gsvolu("SM11", "TUBE", idAir, tpar, 3); |
1411 | gMC->Gsvolu("SM12", "TUBE", idAir, tpar, 3); |
a9e2aefa |
1412 | |
1413 | // Definition of the flange between the beam shielding and the RPC |
1414 | tpar[0]= kRMIN1; |
1415 | tpar[1]= kRMAX1; |
1416 | tpar[2]= 4.0; |
1417 | |
b74f1c6a |
1418 | gMC->Gsvolu("SF1A", "TUBE", idAlu1, tpar, 3); //Al |
1419 | gMC->Gspos("SF1A", 1, "SM11", 0., 0., 0., 0, "MANY"); |
1420 | gMC->Gspos("SF1A", 2, "SM12", 0., 0., 0., 0, "MANY"); |
a9e2aefa |
1421 | |
1422 | |
1423 | // FIRST PLANE OF STATION 1 |
1424 | |
1425 | // ratios of zpos1m/zpos1p and inverse for first plane |
1426 | Float_t zmp=(zpos1-3.6)/(zpos1+3.6); |
1427 | Float_t zpm=1./zmp; |
1428 | |
1429 | |
1430 | // Definition of prototype for chambers in the first plane |
1431 | |
1432 | tpar[0]= 0.; |
1433 | tpar[1]= 0.; |
1434 | tpar[2]= 0.; |
1435 | |
b74f1c6a |
1436 | gMC->Gsvolu("SC1A", "BOX ", idAlu1, tpar, 0); //Al |
1437 | gMC->Gsvolu("SB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1438 | gMC->Gsvolu("SG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
a9e2aefa |
1439 | |
1440 | // chamber type A |
1441 | tpar[0] = -1.; |
1442 | tpar[1] = -1.; |
1443 | |
236fe2c5 |
1444 | // DP03-01 const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; |
1445 | const Float_t kXMC1A=kDXZERO+kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; |
a9e2aefa |
1446 | const Float_t kYMC1Am=0.; |
1447 | const Float_t kYMC1Ap=0.; |
1448 | |
1449 | tpar[2] = 0.1; |
b74f1c6a |
1450 | gMC->Gsposp("SG1A", 1, "SB1A", 0., 0., 0., 0, "ONLY",tpar,3); |
a9e2aefa |
1451 | tpar[2] = 0.3; |
b74f1c6a |
1452 | gMC->Gsposp("SB1A", 1, "SC1A", 0., 0., 0., 0, "ONLY",tpar,3); |
a9e2aefa |
1453 | |
1454 | tpar[2] = 0.4; |
1455 | tpar[0] = (kXMC1MAX-kXMC1MED)/2.; |
1456 | tpar[1] = kYMC1MIN; |
1457 | |
b74f1c6a |
1458 | gMC->Gsposp("SC1A", 1, "SM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3); |
1459 | gMC->Gsposp("SC1A", 2, "SM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3); |
a9e2aefa |
1460 | |
1461 | // chamber type B |
1462 | Float_t tpar1save=tpar[1]; |
1463 | Float_t y1msave=kYMC1Am; |
1464 | Float_t y1psave=kYMC1Ap; |
1465 | |
1466 | tpar[0] = (kXMC1MAX-kXMC1MIN)/2.; |
1467 | tpar[1] = (kYMC1MAX-kYMC1MIN)/2.; |
1468 | |
236fe2c5 |
1469 | // DP03-01 const Float_t kXMC1B=kXMC1MIN+tpar[0]; |
1470 | const Float_t kXMC1B=kDXZERO+kXMC1MIN+tpar[0]; |
a9e2aefa |
1471 | const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1]; |
1472 | const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1]; |
1473 | |
b74f1c6a |
1474 | gMC->Gsposp("SC1A", 3, "SM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1475 | gMC->Gsposp("SC1A", 4, "SM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
1476 | gMC->Gsposp("SC1A", 5, "SM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1477 | gMC->Gsposp("SC1A", 6, "SM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
a9e2aefa |
1478 | |
1479 | // chamber type C (end of type B !!) |
1480 | tpar1save=tpar[1]; |
1481 | y1msave=kYMC1Bm; |
1482 | y1psave=kYMC1Bp; |
1483 | |
1484 | tpar[0] = kXMC1MAX/2; |
1485 | tpar[1] = kYMC1MAX/2; |
1486 | |
236fe2c5 |
1487 | |
1488 | // DP03-01 const Float_t kXMC1C=tpar[0]; |
1489 | const Float_t kXMC1C=kDXZERO+tpar[0]; |
a9e2aefa |
1490 | // warning : same Z than type B |
1491 | const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1]; |
1492 | const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1]; |
1493 | |
b74f1c6a |
1494 | gMC->Gsposp("SC1A", 7, "SM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1495 | gMC->Gsposp("SC1A", 8, "SM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
1496 | gMC->Gsposp("SC1A", 9, "SM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1497 | gMC->Gsposp("SC1A", 10, "SM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
a9e2aefa |
1498 | |
1499 | // chamber type D, E and F (same size) |
1500 | tpar1save=tpar[1]; |
1501 | y1msave=kYMC1Cm; |
1502 | y1psave=kYMC1Cp; |
1503 | |
1504 | tpar[0] = kXMC1MAX/2.; |
1505 | tpar[1] = kYMC1MIN; |
1506 | |
236fe2c5 |
1507 | // DP03-01 const Float_t kXMC1D=tpar[0]; |
1508 | const Float_t kXMC1D=kDXZERO+tpar[0]; |
a9e2aefa |
1509 | const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1]; |
1510 | const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1]; |
1511 | |
b74f1c6a |
1512 | gMC->Gsposp("SC1A", 11, "SM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1513 | gMC->Gsposp("SC1A", 12, "SM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
1514 | gMC->Gsposp("SC1A", 13, "SM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1515 | gMC->Gsposp("SC1A", 14, "SM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
a9e2aefa |
1516 | |
1517 | |
1518 | tpar1save=tpar[1]; |
1519 | y1msave=kYMC1Dm; |
1520 | y1psave=kYMC1Dp; |
1521 | const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1]; |
1522 | const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1]; |
1523 | |
b74f1c6a |
1524 | gMC->Gsposp("SC1A", 15, "SM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1525 | gMC->Gsposp("SC1A", 16, "SM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
1526 | gMC->Gsposp("SC1A", 17, "SM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1527 | gMC->Gsposp("SC1A", 18, "SM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
a9e2aefa |
1528 | |
1529 | tpar1save=tpar[1]; |
1530 | y1msave=kYMC1Em; |
1531 | y1psave=kYMC1Ep; |
1532 | const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1]; |
1533 | const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1]; |
1534 | |
b74f1c6a |
1535 | gMC->Gsposp("SC1A", 19, "SM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1536 | gMC->Gsposp("SC1A", 20, "SM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
1537 | gMC->Gsposp("SC1A", 21, "SM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1538 | gMC->Gsposp("SC1A", 22, "SM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
a9e2aefa |
1539 | |
1540 | // Positioning first plane in ALICE |
b74f1c6a |
1541 | gMC->Gspos("SM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY"); |
a9e2aefa |
1542 | |
1543 | // End of geometry definition for the first plane of station 1 |
1544 | |
1545 | |
1546 | |
1547 | // SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1 |
1548 | |
1549 | const Float_t kZ12=zpos2/zpos1; |
1550 | |
1551 | // Definition of prototype for chambers in the second plane of station 1 |
1552 | |
1553 | tpar[0]= 0.; |
1554 | tpar[1]= 0.; |
1555 | tpar[2]= 0.; |
1556 | |
b74f1c6a |
1557 | gMC->Gsvolu("SC2A", "BOX ", idAlu1, tpar, 0); //Al |
1558 | gMC->Gsvolu("SB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1559 | gMC->Gsvolu("SG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
a9e2aefa |
1560 | |
1561 | // chamber type A |
1562 | tpar[0] = -1.; |
1563 | tpar[1] = -1.; |
1564 | |
1565 | const Float_t kXMC2A=kXMC1A*kZ12; |
1566 | const Float_t kYMC2Am=0.; |
1567 | const Float_t kYMC2Ap=0.; |
1568 | |
1569 | tpar[2] = 0.1; |
b74f1c6a |
1570 | gMC->Gsposp("SG2A", 1, "SB2A", 0., 0., 0., 0, "ONLY",tpar,3); |
a9e2aefa |
1571 | tpar[2] = 0.3; |
b74f1c6a |
1572 | gMC->Gsposp("SB2A", 1, "SC2A", 0., 0., 0., 0, "ONLY",tpar,3); |
a9e2aefa |
1573 | |
1574 | tpar[2] = 0.4; |
1575 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12; |
1576 | tpar[1] = kYMC1MIN*kZ12; |
1577 | |
b74f1c6a |
1578 | gMC->Gsposp("SC2A", 1, "SM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3); |
1579 | gMC->Gsposp("SC2A", 2, "SM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3); |
a9e2aefa |
1580 | |
1581 | |
1582 | // chamber type B |
1583 | |
1584 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12; |
1585 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12; |
1586 | |
1587 | const Float_t kXMC2B=kXMC1B*kZ12; |
1588 | const Float_t kYMC2Bp=kYMC1Bp*kZ12; |
1589 | const Float_t kYMC2Bm=kYMC1Bm*kZ12; |
b74f1c6a |
1590 | gMC->Gsposp("SC2A", 3, "SM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1591 | gMC->Gsposp("SC2A", 4, "SM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
1592 | gMC->Gsposp("SC2A", 5, "SM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1593 | gMC->Gsposp("SC2A", 6, "SM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
a9e2aefa |
1594 | |
1595 | |
1596 | // chamber type C (end of type B !!) |
1597 | |
1598 | tpar[0] = (kXMC1MAX/2)*kZ12; |
1599 | tpar[1] = (kYMC1MAX/2)*kZ12; |
1600 | |
1601 | const Float_t kXMC2C=kXMC1C*kZ12; |
1602 | const Float_t kYMC2Cp=kYMC1Cp*kZ12; |
1603 | const Float_t kYMC2Cm=kYMC1Cm*kZ12; |
b74f1c6a |
1604 | gMC->Gsposp("SC2A", 7, "SM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1605 | gMC->Gsposp("SC2A", 8, "SM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
1606 | gMC->Gsposp("SC2A", 9, "SM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1607 | gMC->Gsposp("SC2A", 10, "SM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
a9e2aefa |
1608 | |
1609 | // chamber type D, E and F (same size) |
1610 | |
1611 | tpar[0] = (kXMC1MAX/2.)*kZ12; |
1612 | tpar[1] = kYMC1MIN*kZ12; |
1613 | |
1614 | const Float_t kXMC2D=kXMC1D*kZ12; |
1615 | const Float_t kYMC2Dp=kYMC1Dp*kZ12; |
1616 | const Float_t kYMC2Dm=kYMC1Dm*kZ12; |
b74f1c6a |
1617 | gMC->Gsposp("SC2A", 11, "SM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1618 | gMC->Gsposp("SC2A", 12, "SM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
1619 | gMC->Gsposp("SC2A", 13, "SM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1620 | gMC->Gsposp("SC2A", 14, "SM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
a9e2aefa |
1621 | |
1622 | const Float_t kYMC2Ep=kYMC1Ep*kZ12; |
1623 | const Float_t kYMC2Em=kYMC1Em*kZ12; |
b74f1c6a |
1624 | gMC->Gsposp("SC2A", 15, "SM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1625 | gMC->Gsposp("SC2A", 16, "SM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
1626 | gMC->Gsposp("SC2A", 17, "SM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1627 | gMC->Gsposp("SC2A", 18, "SM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
a9e2aefa |
1628 | |
1629 | |
1630 | const Float_t kYMC2Fp=kYMC1Fp*kZ12; |
1631 | const Float_t kYMC2Fm=kYMC1Fm*kZ12; |
b74f1c6a |
1632 | gMC->Gsposp("SC2A", 19, "SM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1633 | gMC->Gsposp("SC2A", 20, "SM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
1634 | gMC->Gsposp("SC2A", 21, "SM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1635 | gMC->Gsposp("SC2A", 22, "SM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
a9e2aefa |
1636 | |
1637 | // Positioning second plane of station 1 in ALICE |
1638 | |
b74f1c6a |
1639 | gMC->Gspos("SM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY"); |
a9e2aefa |
1640 | |
1641 | // End of geometry definition for the second plane of station 1 |
1642 | |
1643 | |
1644 | |
1645 | // TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2 |
1646 | |
1647 | // 03/00 |
1648 | // zpos3 and zpos4 are now the middle of the first and second |
1649 | // plane of station 2 : |
1650 | // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm |
1651 | // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm |
1652 | // |
1653 | // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps) |
1654 | // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps) |
1655 | // rem : the total thickness accounts for 1 mm of al on both |
1656 | // side of the RPCs (see zpos3 and zpos4), as previously |
1657 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12]; |
1658 | iChamber2 =(AliMUONChamber*) (*fChambers)[13]; |
1659 | Float_t zpos3=iChamber1->Z(); |
1660 | Float_t zpos4=iChamber2->Z(); |
1661 | |
1662 | |
1663 | // Mother volume definition |
1664 | tpar[0] = iChamber->RInner(); |
1665 | tpar[1] = iChamber->ROuter(); |
1666 | tpar[2] = 4.0; |
1667 | |
b74f1c6a |
1668 | gMC->Gsvolu("SM21", "TUBE", idAir, tpar, 3); |
1669 | gMC->Gsvolu("SM22", "TUBE", idAir, tpar, 3); |
a9e2aefa |
1670 | |
1671 | // Definition of the flange between the beam shielding and the RPC |
1672 | // ???? interface shielding |
1673 | |
1674 | tpar[0]= kRMIN2; |
1675 | tpar[1]= kRMAX2; |
1676 | tpar[2]= 4.0; |
1677 | |
b74f1c6a |
1678 | gMC->Gsvolu("SF2A", "TUBE", idAlu1, tpar, 3); //Al |
1679 | gMC->Gspos("SF2A", 1, "SM21", 0., 0., 0., 0, "MANY"); |
1680 | gMC->Gspos("SF2A", 2, "SM22", 0., 0., 0., 0, "MANY"); |
a9e2aefa |
1681 | |
1682 | |
1683 | |
1684 | // FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1 |
1685 | |
1686 | const Float_t kZ13=zpos3/zpos1; |
1687 | |
1688 | // Definition of prototype for chambers in the first plane of station 2 |
1689 | tpar[0]= 0.; |
1690 | tpar[1]= 0.; |
1691 | tpar[2]= 0.; |
1692 | |
b74f1c6a |
1693 | gMC->Gsvolu("SC3A", "BOX ", idAlu1, tpar, 0); //Al |
1694 | gMC->Gsvolu("SB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1695 | gMC->Gsvolu("SG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
a9e2aefa |
1696 | |
1697 | |
1698 | // chamber type A |
1699 | tpar[0] = -1.; |
1700 | tpar[1] = -1.; |
1701 | |
1702 | const Float_t kXMC3A=kXMC1A*kZ13; |
1703 | const Float_t kYMC3Am=0.; |
1704 | const Float_t kYMC3Ap=0.; |
1705 | |
1706 | tpar[2] = 0.1; |
b74f1c6a |
1707 | gMC->Gsposp("SG3A", 1, "SB3A", 0., 0., 0., 0, "ONLY",tpar,3); |
a9e2aefa |
1708 | tpar[2] = 0.3; |
b74f1c6a |
1709 | gMC->Gsposp("SB3A", 1, "SC3A", 0., 0., 0., 0, "ONLY",tpar,3); |
a9e2aefa |
1710 | |
1711 | tpar[2] = 0.4; |
1712 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13; |
1713 | tpar[1] = kYMC1MIN*kZ13; |
b74f1c6a |
1714 | gMC->Gsposp("SC3A", 1, "SM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3); |
1715 | gMC->Gsposp("SC3A", 2, "SM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3); |
a9e2aefa |
1716 | |
1717 | |
1718 | // chamber type B |
1719 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13; |
1720 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13; |
1721 | |
1722 | const Float_t kXMC3B=kXMC1B*kZ13; |
1723 | const Float_t kYMC3Bp=kYMC1Bp*kZ13; |
1724 | const Float_t kYMC3Bm=kYMC1Bm*kZ13; |
b74f1c6a |
1725 | gMC->Gsposp("SC3A", 3, "SM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1726 | gMC->Gsposp("SC3A", 4, "SM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
1727 | gMC->Gsposp("SC3A", 5, "SM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1728 | gMC->Gsposp("SC3A", 6, "SM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
a9e2aefa |
1729 | |
1730 | |
1731 | // chamber type C (end of type B !!) |
1732 | tpar[0] = (kXMC1MAX/2)*kZ13; |
1733 | tpar[1] = (kYMC1MAX/2)*kZ13; |
1734 | |
1735 | const Float_t kXMC3C=kXMC1C*kZ13; |
1736 | const Float_t kYMC3Cp=kYMC1Cp*kZ13; |
1737 | const Float_t kYMC3Cm=kYMC1Cm*kZ13; |
b74f1c6a |
1738 | gMC->Gsposp("SC3A", 7, "SM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1739 | gMC->Gsposp("SC3A", 8, "SM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
1740 | gMC->Gsposp("SC3A", 9, "SM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1741 | gMC->Gsposp("SC3A", 10, "SM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
a9e2aefa |
1742 | |
1743 | |
1744 | // chamber type D, E and F (same size) |
1745 | |
1746 | tpar[0] = (kXMC1MAX/2.)*kZ13; |
1747 | tpar[1] = kYMC1MIN*kZ13; |
1748 | |
1749 | const Float_t kXMC3D=kXMC1D*kZ13; |
1750 | const Float_t kYMC3Dp=kYMC1Dp*kZ13; |
1751 | const Float_t kYMC3Dm=kYMC1Dm*kZ13; |
b74f1c6a |
1752 | gMC->Gsposp("SC3A", 11, "SM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1753 | gMC->Gsposp("SC3A", 12, "SM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
1754 | gMC->Gsposp("SC3A", 13, "SM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1755 | gMC->Gsposp("SC3A", 14, "SM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
a9e2aefa |
1756 | |
1757 | const Float_t kYMC3Ep=kYMC1Ep*kZ13; |
1758 | const Float_t kYMC3Em=kYMC1Em*kZ13; |
b74f1c6a |
1759 | gMC->Gsposp("SC3A", 15, "SM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1760 | gMC->Gsposp("SC3A", 16, "SM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
1761 | gMC->Gsposp("SC3A", 17, "SM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1762 | gMC->Gsposp("SC3A", 18, "SM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
a9e2aefa |
1763 | |
1764 | const Float_t kYMC3Fp=kYMC1Fp*kZ13; |
1765 | const Float_t kYMC3Fm=kYMC1Fm*kZ13; |
b74f1c6a |
1766 | gMC->Gsposp("SC3A", 19, "SM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1767 | gMC->Gsposp("SC3A", 20, "SM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
1768 | gMC->Gsposp("SC3A", 21, "SM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1769 | gMC->Gsposp("SC3A", 22, "SM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
a9e2aefa |
1770 | |
1771 | |
1772 | // Positioning first plane of station 2 in ALICE |
1773 | |
b74f1c6a |
1774 | gMC->Gspos("SM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY"); |
a9e2aefa |
1775 | |
1776 | // End of geometry definition for the first plane of station 2 |
1777 | |
1778 | |
1779 | |
1780 | |
1781 | // SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1 |
1782 | |
1783 | const Float_t kZ14=zpos4/zpos1; |
1784 | |
1785 | // Definition of prototype for chambers in the second plane of station 2 |
1786 | |
1787 | tpar[0]= 0.; |
1788 | tpar[1]= 0.; |
1789 | tpar[2]= 0.; |
1790 | |
b74f1c6a |
1791 | gMC->Gsvolu("SC4A", "BOX ", idAlu1, tpar, 0); //Al |
1792 | gMC->Gsvolu("SB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1793 | gMC->Gsvolu("SG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
a9e2aefa |
1794 | |
1795 | // chamber type A |
1796 | tpar[0] = -1.; |
1797 | tpar[1] = -1.; |
1798 | |
1799 | const Float_t kXMC4A=kXMC1A*kZ14; |
1800 | const Float_t kYMC4Am=0.; |
1801 | const Float_t kYMC4Ap=0.; |
1802 | |
1803 | tpar[2] = 0.1; |
b74f1c6a |
1804 | gMC->Gsposp("SG4A", 1, "SB4A", 0., 0., 0., 0, "ONLY",tpar,3); |
a9e2aefa |
1805 | tpar[2] = 0.3; |
b74f1c6a |
1806 | gMC->Gsposp("SB4A", 1, "SC4A", 0., 0., 0., 0, "ONLY",tpar,3); |
a9e2aefa |
1807 | |
1808 | tpar[2] = 0.4; |
1809 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14; |
1810 | tpar[1] = kYMC1MIN*kZ14; |
b74f1c6a |
1811 | gMC->Gsposp("SC4A", 1, "SM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3); |
1812 | gMC->Gsposp("SC4A", 2, "SM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3); |
a9e2aefa |
1813 | |
1814 | |
1815 | // chamber type B |
1816 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14; |
1817 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14; |
1818 | |
1819 | const Float_t kXMC4B=kXMC1B*kZ14; |
1820 | const Float_t kYMC4Bp=kYMC1Bp*kZ14; |
1821 | const Float_t kYMC4Bm=kYMC1Bm*kZ14; |
b74f1c6a |
1822 | gMC->Gsposp("SC4A", 3, "SM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1823 | gMC->Gsposp("SC4A", 4, "SM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
1824 | gMC->Gsposp("SC4A", 5, "SM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1825 | gMC->Gsposp("SC4A", 6, "SM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
a9e2aefa |
1826 | |
1827 | |
1828 | // chamber type C (end of type B !!) |
1829 | tpar[0] =(kXMC1MAX/2)*kZ14; |
1830 | tpar[1] = (kYMC1MAX/2)*kZ14; |
1831 | |
1832 | const Float_t kXMC4C=kXMC1C*kZ14; |
1833 | const Float_t kYMC4Cp=kYMC1Cp*kZ14; |
1834 | const Float_t kYMC4Cm=kYMC1Cm*kZ14; |
b74f1c6a |
1835 | gMC->Gsposp("SC4A", 7, "SM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1836 | gMC->Gsposp("SC4A", 8, "SM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
1837 | gMC->Gsposp("SC4A", 9, "SM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1838 | gMC->Gsposp("SC4A", 10, "SM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
a9e2aefa |
1839 | |
1840 | |
1841 | // chamber type D, E and F (same size) |
1842 | tpar[0] = (kXMC1MAX/2.)*kZ14; |
1843 | tpar[1] = kYMC1MIN*kZ14; |
1844 | |
1845 | const Float_t kXMC4D=kXMC1D*kZ14; |
1846 | const Float_t kYMC4Dp=kYMC1Dp*kZ14; |
1847 | const Float_t kYMC4Dm=kYMC1Dm*kZ14; |
b74f1c6a |
1848 | gMC->Gsposp("SC4A", 11, "SM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1849 | gMC->Gsposp("SC4A", 12, "SM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
1850 | gMC->Gsposp("SC4A", 13, "SM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1851 | gMC->Gsposp("SC4A", 14, "SM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
a9e2aefa |
1852 | |
1853 | const Float_t kYMC4Ep=kYMC1Ep*kZ14; |
1854 | const Float_t kYMC4Em=kYMC1Em*kZ14; |
b74f1c6a |
1855 | gMC->Gsposp("SC4A", 15, "SM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1856 | gMC->Gsposp("SC4A", 16, "SM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
1857 | gMC->Gsposp("SC4A", 17, "SM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1858 | gMC->Gsposp("SC4A", 18, "SM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
a9e2aefa |
1859 | |
1860 | const Float_t kYMC4Fp=kYMC1Fp*kZ14; |
1861 | const Float_t kYMC4Fm=kYMC1Fm*kZ14; |
b74f1c6a |
1862 | gMC->Gsposp("SC4A", 19, "SM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1863 | gMC->Gsposp("SC4A", 20, "SM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
1864 | gMC->Gsposp("SC4A", 21, "SM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1865 | gMC->Gsposp("SC4A", 22, "SM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
a9e2aefa |
1866 | |
1867 | |
1868 | // Positioning second plane of station 2 in ALICE |
1869 | |
b74f1c6a |
1870 | gMC->Gspos("SM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY"); |
a9e2aefa |
1871 | |
1872 | // End of geometry definition for the second plane of station 2 |
1873 | |
1874 | // End of trigger geometry definition |
1875 | |
1876 | } |
1877 | |
1878 | |
1879 | |
1880 | //___________________________________________ |
1881 | void AliMUONv1::CreateMaterials() |
1882 | { |
1883 | // *** DEFINITION OF AVAILABLE MUON MATERIALS *** |
1884 | // |
b64652f5 |
1885 | // Ar-CO2 gas (80%+20%) |
a9e2aefa |
1886 | Float_t ag1[3] = { 39.95,12.01,16. }; |
1887 | Float_t zg1[3] = { 18.,6.,8. }; |
1888 | Float_t wg1[3] = { .8,.0667,.13333 }; |
1889 | Float_t dg1 = .001821; |
1890 | // |
1891 | // Ar-buthane-freon gas -- trigger chambers |
1892 | Float_t atr1[4] = { 39.95,12.01,1.01,19. }; |
1893 | Float_t ztr1[4] = { 18.,6.,1.,9. }; |
1894 | Float_t wtr1[4] = { .56,.1262857,.2857143,.028 }; |
1895 | Float_t dtr1 = .002599; |
1896 | // |
1897 | // Ar-CO2 gas |
1898 | Float_t agas[3] = { 39.95,12.01,16. }; |
1899 | Float_t zgas[3] = { 18.,6.,8. }; |
1900 | Float_t wgas[3] = { .74,.086684,.173316 }; |
1901 | Float_t dgas = .0018327; |
1902 | // |
1903 | // Ar-Isobutane gas (80%+20%) -- tracking |
1904 | Float_t ag[3] = { 39.95,12.01,1.01 }; |
1905 | Float_t zg[3] = { 18.,6.,1. }; |
1906 | Float_t wg[3] = { .8,.057,.143 }; |
1907 | Float_t dg = .0019596; |
1908 | // |
1909 | // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger |
1910 | Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 }; |
1911 | Float_t ztrig[5] = { 18.,6.,1.,9.,16. }; |
1912 | Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 }; |
1913 | Float_t dtrig = .0031463; |
1914 | // |
1915 | // bakelite |
1916 | |
1917 | Float_t abak[3] = {12.01 , 1.01 , 16.}; |
1918 | Float_t zbak[3] = {6. , 1. , 8.}; |
1919 | Float_t wbak[3] = {6. , 6. , 1.}; |
1920 | Float_t dbak = 1.4; |
1921 | |
1922 | Float_t epsil, stmin, deemax, tmaxfd, stemax; |
1923 | |
1924 | Int_t iSXFLD = gAlice->Field()->Integ(); |
1925 | Float_t sXMGMX = gAlice->Field()->Max(); |
1926 | // |
1927 | // --- Define the various materials for GEANT --- |
1928 | AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1929 | AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1930 | AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500); |
1931 | AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak); |
1932 | AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg); |
1933 | AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig); |
1934 | AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1); |
1935 | AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1); |
1936 | AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas); |
1e8fff9c |
1937 | // materials for slat: |
1938 | // Sensitive area: gas (already defined) |
1939 | // PCB: copper |
1940 | // insulating material and frame: vetronite |
1941 | // walls: carbon, rohacell, carbon |
1942 | Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.}; |
1943 | Float_t zglass[5]={ 6., 14., 8., 5., 11.}; |
1944 | Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01}; |
1945 | Float_t dglass=1.74; |
1946 | |
1947 | // rohacell: C9 H13 N1 O2 |
1948 | Float_t arohac[4] = {12.01, 1.01, 14.010, 16.}; |
1949 | Float_t zrohac[4] = { 6., 1., 7., 8.}; |
1950 | Float_t wrohac[4] = { 9., 13., 1., 2.}; |
1951 | Float_t drohac = 0.03; |
1952 | |
1953 | AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.); |
1954 | AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass); |
1955 | AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9); |
1956 | AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac); |
1957 | |
a9e2aefa |
1958 | |
1959 | epsil = .001; // Tracking precision, |
1960 | stemax = -1.; // Maximum displacement for multiple scat |
1961 | tmaxfd = -20.; // Maximum angle due to field deflection |
1962 | deemax = -.3; // Maximum fractional energy loss, DLS |
1963 | stmin = -.8; |
1964 | // |
1965 | // Air |
1966 | AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1967 | // |
1968 | // Aluminum |
1969 | |
1970 | AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1971 | fMaxDestepAlu, epsil, stmin); |
1972 | AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1973 | fMaxDestepAlu, epsil, stmin); |
1974 | // |
1975 | // Ar-isoC4H10 gas |
1976 | |
1977 | AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1978 | fMaxDestepGas, epsil, stmin); |
1979 | // |
1980 | // Ar-Isobuthane-Forane-SF6 gas |
1981 | |
1982 | AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1983 | |
1984 | AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1985 | fMaxDestepAlu, epsil, stmin); |
1986 | |
1987 | AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1988 | fMaxDestepAlu, epsil, stmin); |
1e8fff9c |
1989 | // tracking media for slats: check the parameters!! |
1990 | AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd, |
1991 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1992 | AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd, |
1993 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1994 | AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd, |
1995 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1996 | AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd, |
1997 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
a9e2aefa |
1998 | } |
1999 | |
2000 | //___________________________________________ |
2001 | |
2002 | void AliMUONv1::Init() |
2003 | { |
2004 | // |
2005 | // Initialize Tracking Chambers |
2006 | // |
2007 | |
9e1a0ddb |
2008 | if(fDebug) printf("\n%s: Start Init for version 1 - CPC chamber type\n\n",ClassName()); |
e17592e9 |
2009 | Int_t i; |
f665c1ea |
2010 | for (i=0; i<AliMUONConstants::NCh(); i++) { |
a9e2aefa |
2011 | ( (AliMUONChamber*) (*fChambers)[i])->Init(); |
2012 | } |
2013 | |
2014 | // |
2015 | // Set the chamber (sensitive region) GEANT identifier |
2016 | AliMC* gMC = AliMC::GetMC(); |
b74f1c6a |
2017 | ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("S01G")); |
2018 | ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("S02G")); |
b17c0c87 |
2019 | |
b74f1c6a |
2020 | ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("S03G")); |
2021 | ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("S04G")); |
b17c0c87 |
2022 | |
1e8fff9c |
2023 | ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G")); |
2024 | ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G")); |
b17c0c87 |
2025 | |
1e8fff9c |
2026 | ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G")); |
2027 | ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G")); |
b17c0c87 |
2028 | |
1e8fff9c |
2029 | ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G")); |
2030 | ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G")); |
b17c0c87 |
2031 | |
b74f1c6a |
2032 | ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("SG1A")); |
2033 | ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("SG2A")); |
2034 | ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("SG3A")); |
2035 | ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("SG4A")); |
a9e2aefa |
2036 | |
9e1a0ddb |
2037 | if(fDebug) printf("\n%s: Finished Init for version 1 - CPC chamber type\n",ClassName()); |
a9e2aefa |
2038 | |
2039 | //cp |
9e1a0ddb |
2040 | if(fDebug) printf("\n%s: Start Init for Trigger Circuits\n",ClassName()); |
f665c1ea |
2041 | for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) { |
a9e2aefa |
2042 | ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i); |
2043 | } |
9e1a0ddb |
2044 | if(fDebug) printf("%s: Finished Init for Trigger Circuits\n",ClassName()); |
a9e2aefa |
2045 | //cp |
2046 | |
2047 | } |
2048 | |
2049 | //___________________________________________ |
2050 | void AliMUONv1::StepManager() |
2051 | { |
2052 | Int_t copy, id; |
2053 | static Int_t idvol; |
2054 | static Int_t vol[2]; |
2055 | Int_t ipart; |
2056 | TLorentzVector pos; |
2057 | TLorentzVector mom; |
2058 | Float_t theta,phi; |
2059 | Float_t destep, step; |
681d067b |
2060 | |
1e8fff9c |
2061 | static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength; |
2eb55fab |
2062 | const Float_t kBig = 1.e10; |
a9e2aefa |
2063 | static Float_t hits[15]; |
2064 | |
2065 | TClonesArray &lhits = *fHits; |
2066 | |
2067 | // |
a9e2aefa |
2068 | // |
2069 | // Only charged tracks |
2070 | if( !(gMC->TrackCharge()) ) return; |
2071 | // |
2072 | // Only gas gap inside chamber |
2073 | // Tag chambers and record hits when track enters |
2074 | idvol=-1; |
2075 | id=gMC->CurrentVolID(copy); |
2076 | |
2eb55fab |
2077 | for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) { |
a9e2aefa |
2078 | if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){ |
2eb55fab |
2079 | vol[0] = i; |
2080 | idvol = i-1; |
a9e2aefa |
2081 | } |
2082 | } |
2083 | if (idvol == -1) return; |
2084 | // |
2085 | // Get current particle id (ipart), track position (pos) and momentum (mom) |
2086 | gMC->TrackPosition(pos); |
2087 | gMC->TrackMomentum(mom); |
2088 | |
2089 | ipart = gMC->TrackPid(); |
a9e2aefa |
2090 | |
2091 | // |
2092 | // momentum loss and steplength in last step |
2093 | destep = gMC->Edep(); |
2094 | step = gMC->TrackStep(); |
2095 | |
2096 | // |
2097 | // record hits when track enters ... |
2098 | if( gMC->IsTrackEntering()) { |
2099 | gMC->SetMaxStep(fMaxStepGas); |
2100 | Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; |
2101 | Double_t rt = TMath::Sqrt(tc); |
2102 | Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]); |
2eb55fab |
2103 | Double_t tx = mom[0]/pmom; |
2104 | Double_t ty = mom[1]/pmom; |
2105 | Double_t tz = mom[2]/pmom; |
2106 | Double_t s = ((AliMUONChamber*)(*fChambers)[idvol]) |
a9e2aefa |
2107 | ->ResponseModel() |
2108 | ->Pitch()/tz; |
2109 | theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; |
2110 | phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; |
2111 | hits[0] = Float_t(ipart); // Geant3 particle type |
2eb55fab |
2112 | hits[1] = pos[0]+s*tx; // X-position for hit |
2113 | hits[2] = pos[1]+s*ty; // Y-position for hit |
2114 | hits[3] = pos[2]+s*tz; // Z-position for hit |
a9e2aefa |
2115 | hits[4] = theta; // theta angle of incidence |
2116 | hits[5] = phi; // phi angle of incidence |
2eb55fab |
2117 | hits[8] = (Float_t) fNPadHits; // first padhit |
a9e2aefa |
2118 | hits[9] = -1; // last pad hit |
2eb55fab |
2119 | hits[10] = mom[3]; // hit momentum P |
2120 | hits[11] = mom[0]; // Px |
2121 | hits[12] = mom[1]; // Py |
2122 | hits[13] = mom[2]; // Pz |
a9e2aefa |
2123 | tof=gMC->TrackTime(); |
2eb55fab |
2124 | hits[14] = tof; // Time of flight |
2125 | tlength = 0; |
2126 | eloss = 0; |
2127 | eloss2 = 0; |
2128 | xhit = pos[0]; |
2129 | yhit = pos[1]; |
2130 | zhit = pos[2]; |
681d067b |
2131 | Chamber(idvol).ChargeCorrelationInit(); |
a9e2aefa |
2132 | // Only if not trigger chamber |
1e8fff9c |
2133 | |
2134 | |
2135 | |
2136 | |
2eb55fab |
2137 | if(idvol < AliMUONConstants::NTrackingCh()) { |
a9e2aefa |
2138 | // |
2139 | // Initialize hit position (cursor) in the segmentation model |
2140 | ((AliMUONChamber*) (*fChambers)[idvol]) |
2141 | ->SigGenInit(pos[0], pos[1], pos[2]); |
2142 | } else { |
2143 | //geant3->Gpcxyz(); |
2144 | //printf("In the Trigger Chamber #%d\n",idvol-9); |
2145 | } |
2146 | } |
2147 | eloss2+=destep; |
2148 | |
2149 | // |
2150 | // Calculate the charge induced on a pad (disintegration) in case |
2151 | // |
2152 | // Mip left chamber ... |
2153 | if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ |
2154 | gMC->SetMaxStep(kBig); |
2155 | eloss += destep; |
2156 | tlength += step; |
2157 | |
802a864d |
2158 | Float_t x0,y0,z0; |
2159 | Float_t localPos[3]; |
2160 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
802a864d |
2161 | gMC->Gmtod(globalPos,localPos,1); |
2162 | |
2eb55fab |
2163 | if(idvol < AliMUONConstants::NTrackingCh()) { |
a9e2aefa |
2164 | // tracking chambers |
2165 | x0 = 0.5*(xhit+pos[0]); |
2166 | y0 = 0.5*(yhit+pos[1]); |
1e8fff9c |
2167 | z0 = 0.5*(zhit+pos[2]); |
a9e2aefa |
2168 | } else { |
2169 | // trigger chambers |
2eb55fab |
2170 | x0 = xhit; |
2171 | y0 = yhit; |
2172 | z0 = 0.; |
a9e2aefa |
2173 | } |
2174 | |
1e8fff9c |
2175 | |
802a864d |
2176 | if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol); |
a9e2aefa |
2177 | |
2178 | |
2eb55fab |
2179 | hits[6] = tlength; // track length |
2180 | hits[7] = eloss2; // de/dx energy loss |
2181 | |
a9e2aefa |
2182 | if (fNPadHits > (Int_t)hits[8]) { |
2eb55fab |
2183 | hits[8] = hits[8]+1; |
2184 | hits[9] = (Float_t) fNPadHits; |
a9e2aefa |
2185 | } |
2eb55fab |
2186 | // |
2187 | // new hit |
2188 | |
a9e2aefa |
2189 | new(lhits[fNhits++]) |
2eb55fab |
2190 | AliMUONHit(fIshunt, gAlice->CurrentTrack(), vol,hits); |
a9e2aefa |
2191 | eloss = 0; |
2192 | // |
2193 | // Check additional signal generation conditions |
2194 | // defined by the segmentation |
a75f073c |
2195 | // model (boundary crossing conditions) |
2196 | // only for tracking chambers |
a9e2aefa |
2197 | } else if |
a75f073c |
2198 | ((idvol < AliMUONConstants::NTrackingCh()) && |
2199 | ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2])) |
a9e2aefa |
2200 | { |
2201 | ((AliMUONChamber*) (*fChambers)[idvol]) |
2202 | ->SigGenInit(pos[0], pos[1], pos[2]); |
802a864d |
2203 | |
2204 | Float_t localPos[3]; |
2205 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
2206 | gMC->Gmtod(globalPos,localPos,1); |
2207 | |
e0f71fb7 |
2208 | eloss += destep; |
802a864d |
2209 | |
a75f073c |
2210 | if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh()) |
1e8fff9c |
2211 | MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol); |
a9e2aefa |
2212 | xhit = pos[0]; |
2213 | yhit = pos[1]; |
e0f71fb7 |
2214 | zhit = pos[2]; |
2215 | eloss = 0; |
a9e2aefa |
2216 | tlength += step ; |
2217 | // |
2218 | // nothing special happened, add up energy loss |
2219 | } else { |
2220 | eloss += destep; |
2221 | tlength += step ; |
2222 | } |
2223 | } |
2224 | |
2225 | |