a9e2aefa |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
2c799aa2 |
12 | * about the suitability of this software for any purpeateose. It is * |
a9e2aefa |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
16 | /* |
17 | $Log$ |
236fe2c5 |
18 | Revision 1.23 2001/01/18 15:23:49 egangler |
19 | Bug correction in StepManager : |
20 | Now the systematic offset with angle is cured |
21 | |
e0f71fb7 |
22 | Revision 1.22 2001/01/17 21:01:21 hristov |
23 | Unused variable removed |
24 | |
a7e8b51a |
25 | Revision 1.21 2000/12/20 13:00:22 egangler |
26 | |
27 | Added charge correlation between cathods. |
28 | In Config_slat.C, use |
29 | MUON->Chamber(chamber-1).SetChargeCorrel(0.11); to set the RMS of |
30 | q1/q2 to 11 % (number from Alberto) |
31 | This is stored in AliMUONChamber fChargeCorrel member. |
32 | At generation time, when a tracks enters the volume, |
33 | AliMUONv1::StepManager calls |
34 | AliMUONChamber::ChargeCorrelationInit() to set the current value of |
35 | fCurrentCorrel which is then used at Disintegration level to scale |
36 | appropriately the PadHit charges. |
37 | |
681d067b |
38 | Revision 1.20 2000/12/04 17:48:23 gosset |
39 | Modifications for stations 1 et 2 mainly: |
40 | * station 1 with 4 mm gas gap and smaller cathode segmentation... |
41 | * stations 1 and 2 with "grey" frame crosses |
42 | * mean noise at 1.5 ADC channel |
43 | * Ar-CO2 gas (80%+20%) |
44 | |
b64652f5 |
45 | Revision 1.19 2000/12/02 17:15:46 morsch |
46 | Correction of dead zones in inner regions of stations 3-5 |
47 | Correction of length of slats 3 and 9 of station 4. |
48 | |
a083207d |
49 | Revision 1.17 2000/11/24 12:57:10 morsch |
50 | New version of geometry for stations 3-5 "Slats" (A. de Falco) |
51 | - sensitive region at station 3 inner radius |
52 | - improved volume tree structure |
53 | |
3c084d9f |
54 | Revision 1.16 2000/11/08 13:01:40 morsch |
55 | Chamber half-planes of stations 3-5 at different z-positions. |
56 | |
e1ad7d45 |
57 | Revision 1.15 2000/11/06 11:39:02 morsch |
58 | Bug in StepManager() corrected. |
59 | |
e3cf5faa |
60 | Revision 1.14 2000/11/06 09:16:50 morsch |
61 | Avoid overlap of slat volumes. |
62 | |
2c799aa2 |
63 | Revision 1.13 2000/10/26 07:33:44 morsch |
64 | Correct x-position of slats in station 5. |
65 | |
8013c580 |
66 | Revision 1.12 2000/10/25 19:55:35 morsch |
67 | Switches for each station individually for debug and lego. |
68 | |
b17c0c87 |
69 | Revision 1.11 2000/10/22 16:44:01 morsch |
70 | Update of slat geometry for stations 3,4,5 (A. deFalco) |
71 | |
f9f7c205 |
72 | Revision 1.10 2000/10/12 16:07:04 gosset |
73 | StepManager: |
74 | * SigGenCond only called for tracking chambers, |
75 | hence no more division by 0, |
76 | and may use last ALIROOT/dummies.C with exception handling; |
77 | * "10" replaced by "AliMUONConstants::NTrackingCh()". |
78 | |
a75f073c |
79 | Revision 1.9 2000/10/06 15:37:22 morsch |
80 | Problems with variable redefinition in for-loop solved. |
81 | Variable names starting with u-case letters changed to l-case. |
82 | |
6c5ddcfa |
83 | Revision 1.8 2000/10/06 09:06:31 morsch |
84 | Include Slat chambers (stations 3-5) into geometry (A. de Falco) |
85 | |
1e8fff9c |
86 | Revision 1.7 2000/10/02 21:28:09 fca |
87 | Removal of useless dependecies via forward declarations |
88 | |
94de3818 |
89 | Revision 1.6 2000/10/02 17:20:45 egangler |
90 | Cleaning of the code (continued ) : |
91 | -> coding conventions |
92 | -> void Streamers |
93 | -> some useless includes removed or replaced by "class" statement |
94 | |
8c449e83 |
95 | Revision 1.5 2000/06/28 15:16:35 morsch |
96 | (1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there) |
97 | to allow development of slat-muon chamber simulation and reconstruction code in the MUON |
98 | framework. The changes should have no side effects (mostly dummy arguments). |
99 | (2) Hit disintegration uses 3-dim hit coordinates to allow simulation |
100 | of chambers with overlapping modules (MakePadHits, Disintegration). |
101 | |
802a864d |
102 | Revision 1.4 2000/06/26 14:02:38 morsch |
103 | Add class AliMUONConstants with MUON specific constants using static memeber data and access methods. |
104 | |
f665c1ea |
105 | Revision 1.3 2000/06/22 14:10:05 morsch |
106 | HP scope problems corrected (PH) |
107 | |
e17592e9 |
108 | Revision 1.2 2000/06/15 07:58:49 morsch |
109 | Code from MUON-dev joined |
110 | |
a9e2aefa |
111 | Revision 1.1.2.14 2000/06/14 14:37:25 morsch |
112 | Initialization of TriggerCircuit added (PC) |
113 | |
114 | Revision 1.1.2.13 2000/06/09 21:55:47 morsch |
115 | Most coding rule violations corrected. |
116 | |
117 | Revision 1.1.2.12 2000/05/05 11:34:29 morsch |
118 | Log inside comments. |
119 | |
120 | Revision 1.1.2.11 2000/05/05 10:06:48 morsch |
121 | Coding Rule violations regarding trigger section corrected (CP) |
122 | Log messages included. |
123 | */ |
124 | |
125 | ///////////////////////////////////////////////////////// |
126 | // Manager and hits classes for set:MUON version 0 // |
127 | ///////////////////////////////////////////////////////// |
128 | |
129 | #include <TTUBE.h> |
130 | #include <TNode.h> |
131 | #include <TRandom.h> |
132 | #include <TLorentzVector.h> |
133 | #include <iostream.h> |
134 | |
135 | #include "AliMUONv1.h" |
136 | #include "AliRun.h" |
137 | #include "AliMC.h" |
94de3818 |
138 | #include "AliMagF.h" |
a9e2aefa |
139 | #include "AliCallf77.h" |
140 | #include "AliConst.h" |
141 | #include "AliMUONChamber.h" |
142 | #include "AliMUONHit.h" |
143 | #include "AliMUONPadHit.h" |
f665c1ea |
144 | #include "AliMUONConstants.h" |
8c449e83 |
145 | #include "AliMUONTriggerCircuit.h" |
a9e2aefa |
146 | |
147 | ClassImp(AliMUONv1) |
148 | |
149 | //___________________________________________ |
150 | AliMUONv1::AliMUONv1() : AliMUON() |
151 | { |
152 | // Constructor |
153 | fChambers = 0; |
154 | } |
155 | |
156 | //___________________________________________ |
157 | AliMUONv1::AliMUONv1(const char *name, const char *title) |
158 | : AliMUON(name,title) |
159 | { |
160 | // Constructor |
161 | } |
162 | |
163 | //___________________________________________ |
164 | void AliMUONv1::CreateGeometry() |
165 | { |
166 | // |
167 | // Note: all chambers have the same structure, which could be |
168 | // easily parameterised. This was intentionally not done in order |
169 | // to give a starting point for the implementation of the actual |
170 | // design of each station. |
171 | Int_t *idtmed = fIdtmed->GetArray()-1099; |
172 | |
173 | // Distance between Stations |
174 | // |
175 | Float_t bpar[3]; |
176 | Float_t tpar[3]; |
b64652f5 |
177 | // Float_t pgpar[10]; |
a9e2aefa |
178 | Float_t zpos1, zpos2, zfpos; |
b64652f5 |
179 | // Outer excess and inner recess for mother volume radius |
180 | // with respect to ROuter and RInner |
a9e2aefa |
181 | Float_t dframep=.001; // Value for station 3 should be 6 ... |
b64652f5 |
182 | // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm) |
183 | // Float_t dframep1=.001; |
184 | Float_t dframep1 = 11.0; |
185 | // Bool_t frameCrosses=kFALSE; |
186 | Bool_t frameCrosses=kTRUE; |
a9e2aefa |
187 | |
b64652f5 |
188 | // Float_t dframez=0.9; |
189 | // Half of the total thickness of frame crosses (including DAlu) |
190 | // for each chamber in stations 1 and 2: |
191 | // 3% of X0 of composite material, |
192 | // but taken as Aluminium here, with same thickness in number of X0 |
193 | Float_t dframez = 3. * 8.9 / 100; |
194 | // Float_t dr; |
a9e2aefa |
195 | Float_t dstation; |
196 | |
197 | // |
198 | // Rotation matrices in the x-y plane |
199 | Int_t idrotm[1199]; |
200 | // phi= 0 deg |
201 | AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.); |
202 | // phi= 90 deg |
203 | AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.); |
204 | // phi= 180 deg |
205 | AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.); |
206 | // phi= 270 deg |
207 | AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.); |
208 | // |
209 | Float_t phi=2*TMath::Pi()/12/2; |
210 | |
211 | // |
212 | // pointer to the current chamber |
213 | // pointer to the current chamber |
b64652f5 |
214 | Int_t idAlu1=idtmed[1103]; // medium 4 |
215 | Int_t idAlu2=idtmed[1104]; // medium 5 |
a9e2aefa |
216 | // Int_t idAlu1=idtmed[1100]; |
217 | // Int_t idAlu2=idtmed[1100]; |
b64652f5 |
218 | Int_t idAir=idtmed[1100]; // medium 1 |
219 | // Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas |
220 | Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%) |
a9e2aefa |
221 | |
222 | |
223 | AliMUONChamber *iChamber, *iChamber1, *iChamber2; |
b17c0c87 |
224 | Int_t stations[5] = {1, 1, 1, 1, 1}; |
225 | |
226 | if (stations[0]) { |
227 | |
a9e2aefa |
228 | //******************************************************************** |
229 | // Station 1 ** |
230 | //******************************************************************** |
231 | // CONCENTRIC |
232 | // indices 1 and 2 for first and second chambers in the station |
233 | // iChamber (first chamber) kept for other quanties than Z, |
234 | // assumed to be the same in both chambers |
235 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0]; |
236 | iChamber2 =(AliMUONChamber*) (*fChambers)[1]; |
237 | zpos1=iChamber1->Z(); |
238 | zpos2=iChamber2->Z(); |
239 | dstation = zpos2 - zpos1; |
b64652f5 |
240 | // DGas decreased from standard one (0.5) |
241 | iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4); |
242 | // DAlu increased from standard one (3% of X0), |
243 | // because more electronics with smaller pads |
244 | iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.); |
a9e2aefa |
245 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
246 | |
247 | // |
248 | // Mother volume |
b64652f5 |
249 | tpar[0] = iChamber->RInner()-dframep; |
250 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
2c799aa2 |
251 | tpar[2] = dstation/5; |
a9e2aefa |
252 | |
253 | gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3); |
254 | gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3); |
255 | gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
1e8fff9c |
256 | gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
b64652f5 |
257 | // // Aluminium frames |
258 | // // Outer frames |
259 | // pgpar[0] = 360/12/2; |
260 | // pgpar[1] = 360.; |
261 | // pgpar[2] = 12.; |
262 | // pgpar[3] = 2; |
263 | // pgpar[4] = -dframez/2; |
264 | // pgpar[5] = iChamber->ROuter(); |
265 | // pgpar[6] = pgpar[5]+dframep1; |
266 | // pgpar[7] = +dframez/2; |
267 | // pgpar[8] = pgpar[5]; |
268 | // pgpar[9] = pgpar[6]; |
269 | // gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10); |
270 | // gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10); |
271 | // gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); |
272 | // gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); |
273 | // gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); |
274 | // gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); |
275 | // // |
276 | // // Inner frame |
277 | // tpar[0]= iChamber->RInner()-dframep1; |
278 | // tpar[1]= iChamber->RInner(); |
279 | // tpar[2]= dframez/2; |
280 | // gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3); |
281 | // gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3); |
282 | |
283 | // gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); |
284 | // gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); |
285 | // gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); |
286 | // gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); |
a9e2aefa |
287 | // |
288 | // Frame Crosses |
b64652f5 |
289 | if (frameCrosses) { |
290 | // outside gas |
291 | // security for inside mother volume |
292 | bpar[0] = (iChamber->ROuter() - iChamber->RInner()) |
293 | * TMath::Cos(TMath::ASin(dframep1 / |
294 | (iChamber->ROuter() - iChamber->RInner()))) |
295 | / 2.0; |
a9e2aefa |
296 | bpar[1] = dframep1/2; |
b64652f5 |
297 | // total thickness will be (4 * bpar[2]) for each chamber, |
298 | // which has to be equal to (2 * dframez) - DAlu |
299 | bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0; |
a9e2aefa |
300 | gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3); |
301 | gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3); |
302 | |
303 | gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
304 | idrotm[1100],"ONLY"); |
305 | gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
306 | idrotm[1100],"ONLY"); |
307 | gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
308 | idrotm[1101],"ONLY"); |
309 | gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
310 | idrotm[1101],"ONLY"); |
311 | gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
312 | idrotm[1100],"ONLY"); |
313 | gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
314 | idrotm[1100],"ONLY"); |
315 | gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
316 | idrotm[1101],"ONLY"); |
317 | gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
318 | idrotm[1101],"ONLY"); |
319 | |
320 | gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
321 | idrotm[1100],"ONLY"); |
322 | gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
323 | idrotm[1100],"ONLY"); |
324 | gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
325 | idrotm[1101],"ONLY"); |
326 | gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
327 | idrotm[1101],"ONLY"); |
328 | gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
329 | idrotm[1100],"ONLY"); |
330 | gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
331 | idrotm[1100],"ONLY"); |
332 | gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
333 | idrotm[1101],"ONLY"); |
334 | gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
335 | idrotm[1101],"ONLY"); |
336 | } |
337 | // |
338 | // Chamber Material represented by Alu sheet |
339 | tpar[0]= iChamber->RInner(); |
340 | tpar[1]= iChamber->ROuter(); |
341 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
342 | gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3); |
343 | gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3); |
344 | gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY"); |
345 | gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY"); |
346 | // |
347 | // Sensitive volumes |
348 | // tpar[2] = iChamber->DGas(); |
349 | tpar[2] = iChamber->DGas()/2; |
b64652f5 |
350 | gMC->Gsvolu("C01G", "TUBE", idGas, tpar, 3); |
351 | gMC->Gsvolu("C02G", "TUBE", idGas, tpar, 3); |
a9e2aefa |
352 | gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY"); |
353 | gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY"); |
354 | // |
b64652f5 |
355 | // Frame Crosses to be placed inside gas |
356 | // NONE: chambers are sensitive everywhere |
357 | // if (frameCrosses) { |
358 | |
359 | // dr = (iChamber->ROuter() - iChamber->RInner()); |
360 | // bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; |
361 | // bpar[1] = dframep1/2; |
362 | // bpar[2] = iChamber->DGas()/2; |
363 | // gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3); |
364 | // gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3); |
a9e2aefa |
365 | |
b64652f5 |
366 | // gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0, |
367 | // idrotm[1100],"ONLY"); |
368 | // gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0, |
369 | // idrotm[1100],"ONLY"); |
370 | // gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0, |
371 | // idrotm[1101],"ONLY"); |
372 | // gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0, |
373 | // idrotm[1101],"ONLY"); |
a9e2aefa |
374 | |
b64652f5 |
375 | // gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0, |
376 | // idrotm[1100],"ONLY"); |
377 | // gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0, |
378 | // idrotm[1100],"ONLY"); |
379 | // gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0, |
380 | // idrotm[1101],"ONLY"); |
381 | // gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0, |
382 | // idrotm[1101],"ONLY"); |
383 | // } |
b17c0c87 |
384 | } |
385 | if (stations[1]) { |
386 | |
a9e2aefa |
387 | //******************************************************************** |
388 | // Station 2 ** |
389 | //******************************************************************** |
390 | // indices 1 and 2 for first and second chambers in the station |
391 | // iChamber (first chamber) kept for other quanties than Z, |
392 | // assumed to be the same in both chambers |
393 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2]; |
394 | iChamber2 =(AliMUONChamber*) (*fChambers)[3]; |
395 | zpos1=iChamber1->Z(); |
396 | zpos2=iChamber2->Z(); |
397 | dstation = zpos2 - zpos1; |
b64652f5 |
398 | // DGas and DAlu not changed from standard values |
a9e2aefa |
399 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
400 | |
401 | // |
402 | // Mother volume |
403 | tpar[0] = iChamber->RInner()-dframep; |
404 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
2c799aa2 |
405 | tpar[2] = dstation/5; |
a9e2aefa |
406 | |
407 | gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3); |
408 | gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3); |
409 | gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
410 | gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
411 | |
b64652f5 |
412 | // // Aluminium frames |
413 | // // Outer frames |
414 | // pgpar[0] = 360/12/2; |
415 | // pgpar[1] = 360.; |
416 | // pgpar[2] = 12.; |
417 | // pgpar[3] = 2; |
418 | // pgpar[4] = -dframez/2; |
419 | // pgpar[5] = iChamber->ROuter(); |
420 | // pgpar[6] = pgpar[5]+dframep; |
421 | // pgpar[7] = +dframez/2; |
422 | // pgpar[8] = pgpar[5]; |
423 | // pgpar[9] = pgpar[6]; |
424 | // gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10); |
425 | // gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10); |
426 | // gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); |
427 | // gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); |
428 | // gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); |
429 | // gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); |
430 | // // |
431 | // // Inner frame |
432 | // tpar[0]= iChamber->RInner()-dframep; |
433 | // tpar[1]= iChamber->RInner(); |
434 | // tpar[2]= dframez/2; |
435 | // gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3); |
436 | // gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3); |
437 | |
438 | // gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); |
439 | // gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); |
440 | // gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); |
441 | // gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); |
a9e2aefa |
442 | // |
443 | // Frame Crosses |
b64652f5 |
444 | if (frameCrosses) { |
445 | // outside gas |
446 | // security for inside mother volume |
447 | bpar[0] = (iChamber->ROuter() - iChamber->RInner()) |
448 | * TMath::Cos(TMath::ASin(dframep1 / |
449 | (iChamber->ROuter() - iChamber->RInner()))) |
450 | / 2.0; |
451 | bpar[1] = dframep1/2; |
452 | // total thickness will be (4 * bpar[2]) for each chamber, |
453 | // which has to be equal to (2 * dframez) - DAlu |
454 | bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0; |
a9e2aefa |
455 | gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3); |
456 | gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3); |
457 | |
458 | gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
459 | idrotm[1100],"ONLY"); |
460 | gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
461 | idrotm[1100],"ONLY"); |
462 | gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
463 | idrotm[1101],"ONLY"); |
464 | gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
465 | idrotm[1101],"ONLY"); |
466 | gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
467 | idrotm[1100],"ONLY"); |
468 | gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
469 | idrotm[1100],"ONLY"); |
470 | gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
471 | idrotm[1101],"ONLY"); |
472 | gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
473 | idrotm[1101],"ONLY"); |
474 | |
475 | gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
476 | idrotm[1100],"ONLY"); |
477 | gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
478 | idrotm[1100],"ONLY"); |
479 | gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
480 | idrotm[1101],"ONLY"); |
481 | gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
482 | idrotm[1101],"ONLY"); |
483 | gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
484 | idrotm[1100],"ONLY"); |
485 | gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
486 | idrotm[1100],"ONLY"); |
487 | gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
488 | idrotm[1101],"ONLY"); |
489 | gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
490 | idrotm[1101],"ONLY"); |
491 | } |
492 | // |
493 | // Chamber Material represented by Alu sheet |
494 | tpar[0]= iChamber->RInner(); |
495 | tpar[1]= iChamber->ROuter(); |
496 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
497 | gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3); |
498 | gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3); |
499 | gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY"); |
500 | gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY"); |
501 | // |
502 | // Sensitive volumes |
503 | // tpar[2] = iChamber->DGas(); |
504 | tpar[2] = iChamber->DGas()/2; |
505 | gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3); |
506 | gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3); |
507 | gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY"); |
508 | gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY"); |
a9e2aefa |
509 | // |
510 | // Frame Crosses to be placed inside gas |
b64652f5 |
511 | // NONE: chambers are sensitive everywhere |
512 | // if (frameCrosses) { |
513 | |
514 | // dr = (iChamber->ROuter() - iChamber->RInner()); |
515 | // bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; |
516 | // bpar[1] = dframep1/2; |
517 | // bpar[2] = iChamber->DGas()/2; |
518 | // gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3); |
519 | // gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3); |
a9e2aefa |
520 | |
b64652f5 |
521 | // gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0, |
522 | // idrotm[1100],"ONLY"); |
523 | // gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0, |
524 | // idrotm[1100],"ONLY"); |
525 | // gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0, |
526 | // idrotm[1101],"ONLY"); |
527 | // gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0, |
528 | // idrotm[1101],"ONLY"); |
a9e2aefa |
529 | |
b64652f5 |
530 | // gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0, |
531 | // idrotm[1100],"ONLY"); |
532 | // gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0, |
533 | // idrotm[1100],"ONLY"); |
534 | // gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0, |
535 | // idrotm[1101],"ONLY"); |
536 | // gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0, |
537 | // idrotm[1101],"ONLY"); |
538 | // } |
b17c0c87 |
539 | } |
1e8fff9c |
540 | // define the id of tracking media: |
541 | Int_t idCopper = idtmed[1110]; |
542 | Int_t idGlass = idtmed[1111]; |
543 | Int_t idCarbon = idtmed[1112]; |
544 | Int_t idRoha = idtmed[1113]; |
545 | |
1e8fff9c |
546 | // sensitive area: 40*40 cm**2 |
6c5ddcfa |
547 | const Float_t sensLength = 40.; |
548 | const Float_t sensHeight = 40.; |
549 | const Float_t sensWidth = 0.5; // according to TDR fig 2.120 |
550 | const Int_t sensMaterial = idGas; |
1e8fff9c |
551 | const Float_t yOverlap = 1.5; |
552 | |
553 | // PCB dimensions in cm; width: 30 mum copper |
6c5ddcfa |
554 | const Float_t pcbLength = sensLength; |
555 | const Float_t pcbHeight = 60.; |
556 | const Float_t pcbWidth = 0.003; |
557 | const Int_t pcbMaterial = idCopper; |
1e8fff9c |
558 | |
559 | // Insulating material: 200 mum glass fiber glued to pcb |
6c5ddcfa |
560 | const Float_t insuLength = pcbLength; |
561 | const Float_t insuHeight = pcbHeight; |
562 | const Float_t insuWidth = 0.020; |
563 | const Int_t insuMaterial = idGlass; |
1e8fff9c |
564 | |
565 | // Carbon fiber panels: 200mum carbon/epoxy skin |
6c5ddcfa |
566 | const Float_t panelLength = sensLength; |
567 | const Float_t panelHeight = sensHeight; |
568 | const Float_t panelWidth = 0.020; |
569 | const Int_t panelMaterial = idCarbon; |
1e8fff9c |
570 | |
571 | // rohacell between the two carbon panels |
6c5ddcfa |
572 | const Float_t rohaLength = sensLength; |
573 | const Float_t rohaHeight = sensHeight; |
574 | const Float_t rohaWidth = 0.5; |
575 | const Int_t rohaMaterial = idRoha; |
1e8fff9c |
576 | |
577 | // Frame around the slat: 2 sticks along length,2 along height |
578 | // H: the horizontal ones |
6c5ddcfa |
579 | const Float_t hFrameLength = pcbLength; |
580 | const Float_t hFrameHeight = 1.5; |
581 | const Float_t hFrameWidth = sensWidth; |
582 | const Int_t hFrameMaterial = idGlass; |
1e8fff9c |
583 | |
584 | // V: the vertical ones |
6c5ddcfa |
585 | const Float_t vFrameLength = 4.0; |
586 | const Float_t vFrameHeight = sensHeight + hFrameHeight; |
587 | const Float_t vFrameWidth = sensWidth; |
588 | const Int_t vFrameMaterial = idGlass; |
1e8fff9c |
589 | |
590 | // B: the horizontal border filled with rohacell |
6c5ddcfa |
591 | const Float_t bFrameLength = hFrameLength; |
592 | const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; |
593 | const Float_t bFrameWidth = hFrameWidth; |
594 | const Int_t bFrameMaterial = idRoha; |
1e8fff9c |
595 | |
596 | // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) |
6c5ddcfa |
597 | const Float_t nulocLength = 2.5; |
598 | const Float_t nulocHeight = 7.5; |
599 | const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite; |
600 | const Int_t nulocMaterial = idCopper; |
1e8fff9c |
601 | |
6c5ddcfa |
602 | const Float_t slatHeight = pcbHeight; |
603 | const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + |
604 | 2.* panelWidth + rohaWidth); |
605 | const Int_t slatMaterial = idAir; |
606 | const Float_t dSlatLength = vFrameLength; // border on left and right |
1e8fff9c |
607 | |
1e8fff9c |
608 | Float_t spar[3]; |
b17c0c87 |
609 | Int_t i, j; |
610 | |
3c084d9f |
611 | // the panel volume contains the rohacell |
612 | |
613 | Float_t twidth = 2 * panelWidth + rohaWidth; |
614 | Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. }; |
b17c0c87 |
615 | Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; |
3c084d9f |
616 | |
617 | // insulating material contains PCB-> gas-> 2 borders filled with rohacell |
618 | |
619 | twidth = 2*(insuWidth + pcbWidth) + sensWidth; |
620 | Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. }; |
621 | twidth -= 2 * insuWidth; |
622 | Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. }; |
623 | Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; |
624 | Float_t theight = 2*hFrameHeight + sensHeight; |
625 | Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.}; |
b17c0c87 |
626 | Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; |
3c084d9f |
627 | Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; |
b17c0c87 |
628 | Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; |
b17c0c87 |
629 | Float_t xx; |
630 | Float_t xxmax = (bFrameLength - nulocLength)/2.; |
631 | Int_t index=0; |
632 | |
633 | if (stations[2]) { |
634 | |
635 | //******************************************************************** |
636 | // Station 3 ** |
637 | //******************************************************************** |
638 | // indices 1 and 2 for first and second chambers in the station |
639 | // iChamber (first chamber) kept for other quanties than Z, |
640 | // assumed to be the same in both chambers |
641 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4]; |
642 | iChamber2 =(AliMUONChamber*) (*fChambers)[5]; |
643 | zpos1=iChamber1->Z(); |
644 | zpos2=iChamber2->Z(); |
645 | dstation = zpos2 - zpos1; |
646 | |
b64652f5 |
647 | // zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more |
b17c0c87 |
648 | // |
649 | // Mother volume |
650 | tpar[0] = iChamber->RInner()-dframep; |
651 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
3c084d9f |
652 | tpar[2] = dstation/4; |
b17c0c87 |
653 | gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3); |
654 | gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3); |
655 | gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
656 | gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
657 | |
658 | // volumes for slat geometry (xx=5,..,10 chamber id): |
659 | // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes |
660 | // SxxG --> Sensitive volume (gas) |
661 | // SxxP --> PCB (copper) |
662 | // SxxI --> Insulator (vetronite) |
663 | // SxxC --> Carbon panel |
664 | // SxxR --> Rohacell |
665 | // SxxH, SxxV --> Horizontal and Vertical frames (vetronite) |
666 | |
667 | // slat dimensions: slat is a MOTHER volume!!! made of air |
668 | |
a083207d |
669 | const Int_t nSlats3 = 5; // number of slats per quadrant |
670 | const Int_t nPCB3[nSlats3] = {3,3,4,3,2}; // n PCB per slat |
671 | const Float_t xpos3[nSlats3] = {30., 40., 0., 0., 0.}; |
b17c0c87 |
672 | Float_t slatLength3[nSlats3]; |
673 | |
674 | // create and position the slat (mother) volumes |
675 | |
6c5ddcfa |
676 | char volNam5[5]; |
677 | char volNam6[5]; |
f9f7c205 |
678 | Float_t xSlat3; |
b17c0c87 |
679 | |
6c5ddcfa |
680 | for (i = 0; i<nSlats3; i++){ |
3c084d9f |
681 | slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength; |
a083207d |
682 | xSlat3 = slatLength3[i]/2. - vFrameLength/2. + xpos3[i]; |
683 | if (i==1) slatLength3[i] -= 2. *dSlatLength; // frame out in PCB with circular border |
684 | Float_t ySlat31 = sensHeight * i - yOverlap * i; |
685 | Float_t ySlat32 = -sensHeight * i + yOverlap * i; |
3c084d9f |
686 | spar[0] = slatLength3[i]/2.; |
687 | spar[1] = slatHeight/2.; |
688 | spar[2] = slatWidth/2. * 1.01; |
689 | Float_t dzCh3=spar[2] * 1.01; |
690 | // zSlat to be checked (odd downstream or upstream?) |
691 | Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; |
692 | sprintf(volNam5,"S05%d",i); |
693 | gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar,3); |
694 | gMC->Gspos(volNam5, i*4+1,"C05M", xSlat3, ySlat31, zSlat+2.*dzCh3, 0, "ONLY"); |
695 | gMC->Gspos(volNam5, i*4+2,"C05M",-xSlat3, ySlat31, zSlat-2.*dzCh3, 0, "ONLY"); |
a083207d |
696 | if (i>0) { |
697 | gMC->Gspos(volNam5, i*4+3,"C05M", xSlat3, ySlat32, zSlat+2.*dzCh3, 0, "ONLY"); |
698 | gMC->Gspos(volNam5, i*4+4,"C05M",-xSlat3, ySlat32, zSlat-2.*dzCh3, 0, "ONLY"); |
699 | } |
3c084d9f |
700 | sprintf(volNam6,"S06%d",i); |
701 | gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3); |
702 | gMC->Gspos(volNam6, i*4+1,"C06M", xSlat3, ySlat31, zSlat+2.*dzCh3, 0, "ONLY"); |
703 | gMC->Gspos(volNam6, i*4+2,"C06M",-xSlat3, ySlat31, zSlat-2.*dzCh3, 0, "ONLY"); |
a083207d |
704 | if (i>0) { |
705 | gMC->Gspos(volNam6, i*4+3,"C06M", xSlat3, ySlat32, zSlat+2.*dzCh3, 0, "ONLY"); |
706 | gMC->Gspos(volNam6, i*4+4,"C06M",-xSlat3, ySlat32, zSlat-2.*dzCh3, 0, "ONLY"); |
707 | } |
3c084d9f |
708 | } |
1e8fff9c |
709 | |
710 | // create the panel volume |
b17c0c87 |
711 | |
6c5ddcfa |
712 | gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3); |
713 | gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3); |
1e8fff9c |
714 | |
715 | // create the rohacell volume |
b17c0c87 |
716 | |
6c5ddcfa |
717 | gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3); |
718 | gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
719 | |
3c084d9f |
720 | // create the insulating material volume |
721 | |
722 | gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3); |
723 | gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3); |
724 | |
725 | // create the PCB volume |
726 | |
727 | gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3); |
728 | gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3); |
729 | |
730 | // create the sensitive volumes, |
731 | gMC->Gsvolu("S05G","BOX",sensMaterial,0,0); |
732 | gMC->Gsvolu("S06G","BOX",sensMaterial,0,0); |
733 | |
734 | |
1e8fff9c |
735 | // create the vertical frame volume |
b17c0c87 |
736 | |
6c5ddcfa |
737 | gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3); |
738 | gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
739 | |
740 | // create the horizontal frame volume |
b17c0c87 |
741 | |
6c5ddcfa |
742 | gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3); |
743 | gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
744 | |
745 | // create the horizontal border volume |
b17c0c87 |
746 | |
6c5ddcfa |
747 | gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3); |
748 | gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
749 | |
b17c0c87 |
750 | index=0; |
6c5ddcfa |
751 | for (i = 0; i<nSlats3; i++){ |
752 | sprintf(volNam5,"S05%d",i); |
753 | sprintf(volNam6,"S06%d",i); |
f9f7c205 |
754 | Float_t xvFrame = (slatLength3[i] - vFrameLength)/2.; |
3c084d9f |
755 | // position the vertical frames |
a083207d |
756 | if (i!=1) { |
3c084d9f |
757 | gMC->Gspos("S05V",2*i-1,volNam5, xvFrame, 0., 0. , 0, "ONLY"); |
758 | gMC->Gspos("S05V",2*i ,volNam5,-xvFrame, 0., 0. , 0, "ONLY"); |
759 | gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY"); |
760 | gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY"); |
761 | } |
762 | // position the panels and the insulating material |
6c5ddcfa |
763 | for (j=0; j<nPCB3[i]; j++){ |
1e8fff9c |
764 | index++; |
6c5ddcfa |
765 | Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5); |
3c084d9f |
766 | |
767 | Float_t zPanel = spar[2] - panelpar[2]; |
768 | gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY"); |
769 | gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY"); |
770 | gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY"); |
771 | gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY"); |
772 | |
773 | gMC->Gspos("S05I",index,volNam5, xx, 0., 0 , 0, "ONLY"); |
774 | gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
775 | } |
a9e2aefa |
776 | } |
a9e2aefa |
777 | |
3c084d9f |
778 | // position the rohacell volume inside the panel volume |
779 | gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY"); |
780 | gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY"); |
781 | |
782 | // position the PCB volume inside the insulating material volume |
783 | gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); |
784 | gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); |
785 | // position the horizontal frame volume inside the PCB volume |
786 | gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); |
787 | gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); |
788 | // position the sensitive volume inside the horizontal frame volume |
789 | gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); |
790 | gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); |
791 | // position the border volumes inside the PCB volume |
792 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
793 | gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); |
794 | gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); |
795 | gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); |
796 | gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); |
797 | |
1e8fff9c |
798 | // create the NULOC volume and position it in the horizontal frame |
b17c0c87 |
799 | |
6c5ddcfa |
800 | gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3); |
801 | gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3); |
6c5ddcfa |
802 | index = 0; |
6c5ddcfa |
803 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
804 | index++; |
6c5ddcfa |
805 | gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
806 | gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
807 | gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
808 | gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
809 | } |
3c084d9f |
810 | |
811 | // position the volumes approximating the circular section of the pipe |
a083207d |
812 | Float_t yoffs = sensHeight/2. - yOverlap; |
3c084d9f |
813 | Float_t epsilon = 0.001; |
814 | Int_t ndiv=6; |
815 | Float_t divpar[3]; |
816 | Double_t dydiv= sensHeight/ndiv; |
a083207d |
817 | Double_t ydiv = yoffs -dydiv - yOverlap/2.; |
3c084d9f |
818 | Int_t imax=0; |
819 | // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat]; |
820 | imax = 1; |
821 | Float_t rmin = 35.; |
a083207d |
822 | Float_t z1 = spar[2], z2=2*spar[2]*1.01; |
3c084d9f |
823 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
824 | ydiv+= dydiv; |
425ebd0a |
825 | Float_t xdiv = 0.; |
3c084d9f |
826 | if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ); |
827 | divpar[0] = (pcbLength-xdiv)/2.; |
828 | divpar[1] = dydiv/2. - epsilon; |
829 | divpar[2] = sensWidth/2.; |
425ebd0a |
830 | Float_t xvol=(pcbLength+xdiv)/2.+1.999; |
a083207d |
831 | Float_t yvol=ydiv + dydiv/2.; |
3c084d9f |
832 | gMC->Gsposp("S05G",imax+4*idiv+1,"C05M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
833 | gMC->Gsposp("S06G",imax+4*idiv+1,"C06M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
a083207d |
834 | gMC->Gsposp("S05G",imax+4*idiv+2,"C05M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
835 | gMC->Gsposp("S06G",imax+4*idiv+2,"C06M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
836 | gMC->Gsposp("S05G",imax+4*idiv+3,"C05M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
837 | gMC->Gsposp("S06G",imax+4*idiv+3,"C06M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
838 | gMC->Gsposp("S05G",imax+4*idiv+4,"C05M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
839 | gMC->Gsposp("S06G",imax+4*idiv+4,"C06M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
3c084d9f |
840 | } |
b17c0c87 |
841 | } |
b17c0c87 |
842 | |
a9e2aefa |
843 | |
3c084d9f |
844 | if (stations[3]) { |
845 | |
a9e2aefa |
846 | //******************************************************************** |
847 | // Station 4 ** |
848 | //******************************************************************** |
849 | // indices 1 and 2 for first and second chambers in the station |
850 | // iChamber (first chamber) kept for other quanties than Z, |
851 | // assumed to be the same in both chambers |
852 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6]; |
853 | iChamber2 =(AliMUONChamber*) (*fChambers)[7]; |
854 | zpos1=iChamber1->Z(); |
855 | zpos2=iChamber2->Z(); |
856 | dstation = zpos2 - zpos1; |
b64652f5 |
857 | // zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more |
a9e2aefa |
858 | |
859 | // |
860 | // Mother volume |
861 | tpar[0] = iChamber->RInner()-dframep; |
862 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
3c084d9f |
863 | tpar[2] = 3.252; |
a9e2aefa |
864 | |
865 | gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3); |
866 | gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3); |
867 | gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
868 | gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
869 | |
a9e2aefa |
870 | |
f9f7c205 |
871 | const Int_t nSlats4 = 6; // number of slats per quadrant |
425ebd0a |
872 | const Int_t nPCB4[nSlats4] = {4,4,5,5,4,3}; // n PCB per slat |
a083207d |
873 | const Float_t xpos4[nSlats4] = {37.5, 40., 0., 0., 0., 0.}; |
6c5ddcfa |
874 | Float_t slatLength4[nSlats4]; |
1e8fff9c |
875 | |
876 | // create and position the slat (mother) volumes |
877 | |
6c5ddcfa |
878 | char volNam7[5]; |
879 | char volNam8[5]; |
1e8fff9c |
880 | Float_t xSlat4; |
f9f7c205 |
881 | Float_t ySlat4; |
1e8fff9c |
882 | |
6c5ddcfa |
883 | for (i = 0; i<nSlats4; i++){ |
a083207d |
884 | slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength; |
885 | xSlat4 = slatLength4[i]/2. - vFrameLength/2. + xpos4[i]; |
886 | if (i==1) slatLength4[i] -= 2. *dSlatLength; // frame out in PCB with circular border |
887 | ySlat4 = sensHeight * i - yOverlap *i; |
888 | |
889 | spar[0] = slatLength4[i]/2.; |
890 | spar[1] = slatHeight/2.; |
891 | spar[2] = slatWidth/2.*1.01; |
892 | Float_t dzCh4=spar[2]*1.01; |
893 | // zSlat to be checked (odd downstream or upstream?) |
894 | Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2]; |
895 | sprintf(volNam7,"S07%d",i); |
896 | gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3); |
897 | gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
898 | gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
899 | if (i>0) { |
900 | gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
901 | gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
902 | } |
903 | sprintf(volNam8,"S08%d",i); |
904 | gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3); |
905 | gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
906 | gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
907 | if (i>0) { |
908 | gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
909 | gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
910 | } |
a9e2aefa |
911 | } |
a083207d |
912 | |
3c084d9f |
913 | |
914 | // create the panel volume |
1e8fff9c |
915 | |
3c084d9f |
916 | gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3); |
917 | gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3); |
a9e2aefa |
918 | |
3c084d9f |
919 | // create the rohacell volume |
920 | |
921 | gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3); |
922 | gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
923 | |
1e8fff9c |
924 | // create the insulating material volume |
925 | |
6c5ddcfa |
926 | gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3); |
927 | gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3); |
1e8fff9c |
928 | |
3c084d9f |
929 | // create the PCB volume |
1e8fff9c |
930 | |
3c084d9f |
931 | gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3); |
932 | gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3); |
1e8fff9c |
933 | |
3c084d9f |
934 | // create the sensitive volumes, |
935 | |
936 | gMC->Gsvolu("S07G","BOX",sensMaterial,0,0); |
937 | gMC->Gsvolu("S08G","BOX",sensMaterial,0,0); |
1e8fff9c |
938 | |
939 | // create the vertical frame volume |
940 | |
6c5ddcfa |
941 | gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3); |
942 | gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
943 | |
944 | // create the horizontal frame volume |
945 | |
6c5ddcfa |
946 | gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3); |
947 | gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
948 | |
949 | // create the horizontal border volume |
950 | |
6c5ddcfa |
951 | gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3); |
952 | gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3); |
3c084d9f |
953 | |
954 | index=0; |
6c5ddcfa |
955 | for (i = 0; i<nSlats4; i++){ |
956 | sprintf(volNam7,"S07%d",i); |
957 | sprintf(volNam8,"S08%d",i); |
958 | Float_t xvFrame = (slatLength4[i] - vFrameLength)/2.; |
3c084d9f |
959 | // position the vertical frames |
a083207d |
960 | if (i!=1) { |
961 | gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY"); |
962 | gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY"); |
963 | gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY"); |
964 | gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY"); |
965 | } |
3c084d9f |
966 | // position the panels and the insulating material |
6c5ddcfa |
967 | for (j=0; j<nPCB4[i]; j++){ |
1e8fff9c |
968 | index++; |
6c5ddcfa |
969 | Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5); |
3c084d9f |
970 | |
971 | Float_t zPanel = spar[2] - panelpar[2]; |
972 | gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY"); |
973 | gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY"); |
974 | gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY"); |
975 | gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY"); |
976 | |
977 | gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY"); |
978 | gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
979 | } |
a9e2aefa |
980 | } |
1e8fff9c |
981 | |
3c084d9f |
982 | // position the rohacell volume inside the panel volume |
983 | gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY"); |
984 | gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY"); |
985 | |
986 | // position the PCB volume inside the insulating material volume |
987 | gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); |
988 | gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); |
989 | // position the horizontal frame volume inside the PCB volume |
990 | gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); |
991 | gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); |
992 | // position the sensitive volume inside the horizontal frame volume |
993 | gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); |
994 | gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); |
3c084d9f |
995 | // position the border volumes inside the PCB volume |
996 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
997 | gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); |
998 | gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); |
999 | gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); |
1000 | gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); |
1001 | |
1e8fff9c |
1002 | // create the NULOC volume and position it in the horizontal frame |
3c084d9f |
1003 | |
6c5ddcfa |
1004 | gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3); |
1005 | gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3); |
3c084d9f |
1006 | index = 0; |
6c5ddcfa |
1007 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
1008 | index++; |
6c5ddcfa |
1009 | gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1010 | gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1011 | gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1012 | gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
1013 | } |
a083207d |
1014 | |
1015 | // position the volumes approximating the circular section of the pipe |
1016 | Float_t yoffs = sensHeight/2. - yOverlap/2.; |
1017 | Float_t epsilon = 0.001; |
1018 | Int_t ndiv=6; |
1019 | Float_t divpar[3]; |
1020 | Double_t dydiv= sensHeight/ndiv; |
1021 | Double_t ydiv = yoffs -dydiv - yOverlap/2.; |
1022 | Int_t imax=0; |
1023 | // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat]; |
1024 | imax = 1; |
1025 | Float_t rmin = 40.; |
1026 | Float_t z1 = -spar[2], z2=2*spar[2]*1.01; |
1027 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
1028 | ydiv+= dydiv; |
425ebd0a |
1029 | Float_t xdiv = 0.; |
a083207d |
1030 | if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ); |
1031 | divpar[0] = (pcbLength-xdiv)/2.; |
1032 | divpar[1] = dydiv/2. - epsilon; |
1033 | divpar[2] = sensWidth/2.; |
425ebd0a |
1034 | Float_t xvol=(pcbLength+xdiv)/2.+1.999; |
a083207d |
1035 | Float_t yvol=ydiv + dydiv/2.; |
1036 | gMC->Gsposp("S07G",imax+4*idiv+1,"C07M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1037 | gMC->Gsposp("S08G",imax+4*idiv+1,"C08M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1038 | gMC->Gsposp("S07G",imax+4*idiv+2,"C07M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1039 | gMC->Gsposp("S08G",imax+4*idiv+2,"C08M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1040 | gMC->Gsposp("S07G",imax+4*idiv+3,"C07M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1041 | gMC->Gsposp("S08G",imax+4*idiv+3,"C08M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1042 | gMC->Gsposp("S07G",imax+4*idiv+4,"C07M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
1043 | gMC->Gsposp("S08G",imax+4*idiv+4,"C08M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
1044 | } |
1045 | |
1046 | |
1047 | |
1048 | |
1049 | |
b17c0c87 |
1050 | } |
3c084d9f |
1051 | |
b17c0c87 |
1052 | if (stations[4]) { |
1053 | |
1e8fff9c |
1054 | |
a9e2aefa |
1055 | //******************************************************************** |
1056 | // Station 5 ** |
1057 | //******************************************************************** |
1058 | // indices 1 and 2 for first and second chambers in the station |
1059 | // iChamber (first chamber) kept for other quanties than Z, |
1060 | // assumed to be the same in both chambers |
1061 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8]; |
1062 | iChamber2 =(AliMUONChamber*) (*fChambers)[9]; |
1063 | zpos1=iChamber1->Z(); |
1064 | zpos2=iChamber2->Z(); |
1065 | dstation = zpos2 - zpos1; |
b64652f5 |
1066 | // zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more |
3c084d9f |
1067 | |
a9e2aefa |
1068 | // |
1069 | // Mother volume |
1070 | tpar[0] = iChamber->RInner()-dframep; |
1071 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
3c084d9f |
1072 | tpar[2] = dstation/5.; |
a9e2aefa |
1073 | |
1074 | gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3); |
1075 | gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3); |
1076 | gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
1077 | gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
a9e2aefa |
1078 | |
a9e2aefa |
1079 | |
1e8fff9c |
1080 | const Int_t nSlats5 = 7; // number of slats per quadrant |
a083207d |
1081 | const Int_t nPCB5[nSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat |
1082 | const Float_t xpos5[nSlats5] = {37.5, 40., 0., 0., 0., 0., 0.}; |
6c5ddcfa |
1083 | Float_t slatLength5[nSlats5]; |
6c5ddcfa |
1084 | char volNam9[5]; |
1085 | char volNam10[5]; |
f9f7c205 |
1086 | Float_t xSlat5; |
1087 | Float_t ySlat5; |
1e8fff9c |
1088 | |
6c5ddcfa |
1089 | for (i = 0; i<nSlats5; i++){ |
1090 | slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength; |
a083207d |
1091 | xSlat5 = slatLength5[i]/2. - vFrameLength/2. +xpos5[i]; |
1092 | if (i==1) slatLength5[i] -= 2. *dSlatLength; // frame out in PCB with circular border |
f9f7c205 |
1093 | ySlat5 = sensHeight * i - yOverlap * i; |
6c5ddcfa |
1094 | spar[0] = slatLength5[i]/2.; |
1095 | spar[1] = slatHeight/2.; |
3c084d9f |
1096 | spar[2] = slatWidth/2. * 1.01; |
1097 | Float_t dzCh5=spar[2]*1.01; |
1e8fff9c |
1098 | // zSlat to be checked (odd downstream or upstream?) |
3c084d9f |
1099 | Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; |
6c5ddcfa |
1100 | sprintf(volNam9,"S09%d",i); |
1101 | gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3); |
e1ad7d45 |
1102 | gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1103 | gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1104 | if (i>0) { |
3c084d9f |
1105 | gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1106 | gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1107 | } |
6c5ddcfa |
1108 | sprintf(volNam10,"S10%d",i); |
1109 | gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3); |
e1ad7d45 |
1110 | gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1111 | gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1112 | if (i>0) { |
3c084d9f |
1113 | gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1114 | gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1115 | } |
a9e2aefa |
1116 | } |
1117 | |
1e8fff9c |
1118 | // create the panel volume |
3c084d9f |
1119 | |
6c5ddcfa |
1120 | gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3); |
1121 | gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3); |
3c084d9f |
1122 | |
1e8fff9c |
1123 | // create the rohacell volume |
3c084d9f |
1124 | |
6c5ddcfa |
1125 | gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3); |
1126 | gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3); |
3c084d9f |
1127 | |
1128 | // create the insulating material volume |
1129 | |
1130 | gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3); |
1131 | gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3); |
1132 | |
1133 | // create the PCB volume |
1134 | |
1135 | gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3); |
1136 | gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3); |
1137 | |
1138 | // create the sensitive volumes, |
1139 | |
1140 | gMC->Gsvolu("S09G","BOX",sensMaterial,0,0); |
1141 | gMC->Gsvolu("S10G","BOX",sensMaterial,0,0); |
3c084d9f |
1142 | |
1e8fff9c |
1143 | // create the vertical frame volume |
3c084d9f |
1144 | |
6c5ddcfa |
1145 | gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3); |
1146 | gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
1147 | |
1148 | // create the horizontal frame volume |
3c084d9f |
1149 | |
6c5ddcfa |
1150 | gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3); |
1151 | gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
1152 | |
1153 | // create the horizontal border volume |
1154 | |
6c5ddcfa |
1155 | gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3); |
1156 | gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
1157 | |
3c084d9f |
1158 | index=0; |
6c5ddcfa |
1159 | for (i = 0; i<nSlats5; i++){ |
1160 | sprintf(volNam9,"S09%d",i); |
1161 | sprintf(volNam10,"S10%d",i); |
1162 | Float_t xvFrame = (slatLength5[i] - vFrameLength)/2.; |
3c084d9f |
1163 | // position the vertical frames |
a083207d |
1164 | if (i!=1) { |
1165 | gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY"); |
1166 | gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY"); |
1167 | gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY"); |
1168 | gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY"); |
1169 | } |
3c084d9f |
1170 | |
1171 | // position the panels and the insulating material |
6c5ddcfa |
1172 | for (j=0; j<nPCB5[i]; j++){ |
1e8fff9c |
1173 | index++; |
3c084d9f |
1174 | Float_t xx = sensLength * (-nPCB5[i]/2.+j+.5); |
1175 | |
1176 | Float_t zPanel = spar[2] - panelpar[2]; |
1177 | gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY"); |
1178 | gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY"); |
1179 | gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY"); |
1180 | gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY"); |
1181 | |
1182 | gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY"); |
1183 | gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
1184 | } |
1185 | } |
1186 | |
3c084d9f |
1187 | // position the rohacell volume inside the panel volume |
1188 | gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY"); |
1189 | gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY"); |
1190 | |
1191 | // position the PCB volume inside the insulating material volume |
1192 | gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); |
1193 | gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); |
1194 | // position the horizontal frame volume inside the PCB volume |
1195 | gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); |
1196 | gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); |
1197 | // position the sensitive volume inside the horizontal frame volume |
1198 | gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); |
1199 | gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); |
3c084d9f |
1200 | // position the border volumes inside the PCB volume |
1201 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
1202 | gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); |
1203 | gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); |
1204 | gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); |
1205 | gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); |
1206 | |
1e8fff9c |
1207 | // create the NULOC volume and position it in the horizontal frame |
3c084d9f |
1208 | |
6c5ddcfa |
1209 | gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3); |
1210 | gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3); |
3c084d9f |
1211 | index = 0; |
6c5ddcfa |
1212 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
1213 | index++; |
6c5ddcfa |
1214 | gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1215 | gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1216 | gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1217 | gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
a9e2aefa |
1218 | } |
a083207d |
1219 | // position the volumes approximating the circular section of the pipe |
1220 | Float_t yoffs = sensHeight/2. - yOverlap/2.; |
1221 | Float_t epsilon = 0.001; |
1222 | Int_t ndiv=6; |
1223 | Float_t divpar[3]; |
1224 | Double_t dydiv= sensHeight/ndiv; |
1225 | Double_t ydiv = yoffs -dydiv - yOverlap/2.; |
1226 | Int_t imax=0; |
1227 | // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat]; |
1228 | imax = 1; |
1229 | Float_t rmin = 40.; |
1230 | Float_t z1 = spar[2], z2=2*spar[2]*1.01; |
1231 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
1232 | ydiv+= dydiv; |
425ebd0a |
1233 | Float_t xdiv = 0.; |
a083207d |
1234 | if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ); |
1235 | divpar[0] = (pcbLength-xdiv)/2.; |
1236 | divpar[1] = dydiv/2. - epsilon; |
1237 | divpar[2] = sensWidth/2.; |
425ebd0a |
1238 | Float_t xvol=(pcbLength+xdiv)/2. + 1.999; |
a083207d |
1239 | Float_t yvol=ydiv + dydiv/2.; |
1240 | gMC->Gsposp("S09G",imax+4*idiv+1,"C09M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1241 | gMC->Gsposp("S10G",imax+4*idiv+1,"C10M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1242 | gMC->Gsposp("S09G",imax+4*idiv+2,"C09M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1243 | gMC->Gsposp("S10G",imax+4*idiv+2,"C10M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1244 | gMC->Gsposp("S09G",imax+4*idiv+3,"C09M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1245 | gMC->Gsposp("S10G",imax+4*idiv+3,"C10M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1246 | gMC->Gsposp("S09G",imax+4*idiv+4,"C09M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
1247 | gMC->Gsposp("S10G",imax+4*idiv+4,"C10M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
1248 | } |
1249 | |
b17c0c87 |
1250 | } |
1251 | |
1e8fff9c |
1252 | |
a9e2aefa |
1253 | /////////////////////////////////////// |
1254 | // GEOMETRY FOR THE TRIGGER CHAMBERS // |
1255 | /////////////////////////////////////// |
1256 | |
1257 | // 03/00 P. Dupieux : introduce a slighly more realistic |
1258 | // geom. of the trigger readout planes with |
1259 | // 2 Zpos per trigger plane (alternate |
1260 | // between left and right of the trigger) |
1261 | |
1262 | // Parameters of the Trigger Chambers |
1263 | |
236fe2c5 |
1264 | // DP03-01 introduce dead zone of +/- 2 cm arround x=0 (as in TDR, fig3.27) |
1265 | const Float_t kDXZERO=2.; |
a9e2aefa |
1266 | const Float_t kXMC1MIN=34.; |
1267 | const Float_t kXMC1MED=51.; |
1268 | const Float_t kXMC1MAX=272.; |
1269 | const Float_t kYMC1MIN=34.; |
1270 | const Float_t kYMC1MAX=51.; |
1271 | const Float_t kRMIN1=50.; |
236fe2c5 |
1272 | // DP03-01 const Float_t kRMAX1=62.; |
1273 | const Float_t kRMAX1=64.; |
a9e2aefa |
1274 | const Float_t kRMIN2=50.; |
236fe2c5 |
1275 | // DP03-01 const Float_t kRMAX2=66.; |
1276 | const Float_t kRMAX2=68.; |
a9e2aefa |
1277 | |
1278 | // zposition of the middle of the gas gap in mother vol |
1279 | const Float_t kZMCm=-3.6; |
1280 | const Float_t kZMCp=+3.6; |
1281 | |
1282 | |
1283 | // TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1 |
1284 | |
1285 | // iChamber 1 and 2 for first and second chambers in the station |
1286 | // iChamber (first chamber) kept for other quanties than Z, |
1287 | // assumed to be the same in both chambers |
1288 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10]; |
1289 | iChamber2 =(AliMUONChamber*) (*fChambers)[11]; |
1290 | |
1291 | // 03/00 |
1292 | // zpos1 and zpos2 are now the middle of the first and second |
1293 | // plane of station 1 : |
1294 | // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm |
1295 | // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm |
1296 | // |
1297 | // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps) |
1298 | // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps) |
1299 | // rem : the total thickness accounts for 1 mm of al on both |
1300 | // side of the RPCs (see zpos1 and zpos2), as previously |
1301 | |
1302 | zpos1=iChamber1->Z(); |
1303 | zpos2=iChamber2->Z(); |
1304 | |
1305 | |
1306 | // Mother volume definition |
1307 | tpar[0] = iChamber->RInner(); |
1308 | tpar[1] = iChamber->ROuter(); |
1309 | tpar[2] = 4.0; |
1310 | gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3); |
1311 | gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3); |
1312 | |
1313 | // Definition of the flange between the beam shielding and the RPC |
1314 | tpar[0]= kRMIN1; |
1315 | tpar[1]= kRMAX1; |
1316 | tpar[2]= 4.0; |
1317 | |
1318 | gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al |
1319 | gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY"); |
1320 | gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY"); |
1321 | |
1322 | |
1323 | // FIRST PLANE OF STATION 1 |
1324 | |
1325 | // ratios of zpos1m/zpos1p and inverse for first plane |
1326 | Float_t zmp=(zpos1-3.6)/(zpos1+3.6); |
1327 | Float_t zpm=1./zmp; |
1328 | |
1329 | |
1330 | // Definition of prototype for chambers in the first plane |
1331 | |
1332 | tpar[0]= 0.; |
1333 | tpar[1]= 0.; |
1334 | tpar[2]= 0.; |
1335 | |
1336 | gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al |
1337 | gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1338 | gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1339 | |
1340 | // chamber type A |
1341 | tpar[0] = -1.; |
1342 | tpar[1] = -1.; |
1343 | |
236fe2c5 |
1344 | // DP03-01 const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; |
1345 | const Float_t kXMC1A=kDXZERO+kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; |
a9e2aefa |
1346 | const Float_t kYMC1Am=0.; |
1347 | const Float_t kYMC1Ap=0.; |
1348 | |
1349 | tpar[2] = 0.1; |
1350 | gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3); |
1351 | tpar[2] = 0.3; |
1352 | gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3); |
1353 | |
1354 | tpar[2] = 0.4; |
1355 | tpar[0] = (kXMC1MAX-kXMC1MED)/2.; |
1356 | tpar[1] = kYMC1MIN; |
1357 | |
1358 | gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3); |
1359 | gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3); |
1360 | |
1361 | // chamber type B |
1362 | Float_t tpar1save=tpar[1]; |
1363 | Float_t y1msave=kYMC1Am; |
1364 | Float_t y1psave=kYMC1Ap; |
1365 | |
1366 | tpar[0] = (kXMC1MAX-kXMC1MIN)/2.; |
1367 | tpar[1] = (kYMC1MAX-kYMC1MIN)/2.; |
1368 | |
236fe2c5 |
1369 | // DP03-01 const Float_t kXMC1B=kXMC1MIN+tpar[0]; |
1370 | const Float_t kXMC1B=kDXZERO+kXMC1MIN+tpar[0]; |
a9e2aefa |
1371 | const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1]; |
1372 | const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1]; |
1373 | |
1374 | gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1375 | gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
1376 | gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1377 | gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
1378 | |
1379 | // chamber type C (end of type B !!) |
1380 | tpar1save=tpar[1]; |
1381 | y1msave=kYMC1Bm; |
1382 | y1psave=kYMC1Bp; |
1383 | |
1384 | tpar[0] = kXMC1MAX/2; |
1385 | tpar[1] = kYMC1MAX/2; |
1386 | |
236fe2c5 |
1387 | |
1388 | // DP03-01 const Float_t kXMC1C=tpar[0]; |
1389 | const Float_t kXMC1C=kDXZERO+tpar[0]; |
a9e2aefa |
1390 | // warning : same Z than type B |
1391 | const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1]; |
1392 | const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1]; |
1393 | |
1394 | gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1395 | gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
1396 | gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1397 | gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
1398 | |
1399 | // chamber type D, E and F (same size) |
1400 | tpar1save=tpar[1]; |
1401 | y1msave=kYMC1Cm; |
1402 | y1psave=kYMC1Cp; |
1403 | |
1404 | tpar[0] = kXMC1MAX/2.; |
1405 | tpar[1] = kYMC1MIN; |
1406 | |
236fe2c5 |
1407 | // DP03-01 const Float_t kXMC1D=tpar[0]; |
1408 | const Float_t kXMC1D=kDXZERO+tpar[0]; |
a9e2aefa |
1409 | const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1]; |
1410 | const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1]; |
1411 | |
1412 | gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1413 | gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
1414 | gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1415 | gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
1416 | |
1417 | |
1418 | tpar1save=tpar[1]; |
1419 | y1msave=kYMC1Dm; |
1420 | y1psave=kYMC1Dp; |
1421 | const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1]; |
1422 | const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1]; |
1423 | |
1424 | gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1425 | gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
1426 | gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1427 | gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
1428 | |
1429 | tpar1save=tpar[1]; |
1430 | y1msave=kYMC1Em; |
1431 | y1psave=kYMC1Ep; |
1432 | const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1]; |
1433 | const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1]; |
1434 | |
1435 | gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1436 | gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
1437 | gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1438 | gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
1439 | |
1440 | // Positioning first plane in ALICE |
1441 | gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY"); |
1442 | |
1443 | // End of geometry definition for the first plane of station 1 |
1444 | |
1445 | |
1446 | |
1447 | // SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1 |
1448 | |
1449 | const Float_t kZ12=zpos2/zpos1; |
1450 | |
1451 | // Definition of prototype for chambers in the second plane of station 1 |
1452 | |
1453 | tpar[0]= 0.; |
1454 | tpar[1]= 0.; |
1455 | tpar[2]= 0.; |
1456 | |
1457 | gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al |
1458 | gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1459 | gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1460 | |
1461 | // chamber type A |
1462 | tpar[0] = -1.; |
1463 | tpar[1] = -1.; |
1464 | |
1465 | const Float_t kXMC2A=kXMC1A*kZ12; |
1466 | const Float_t kYMC2Am=0.; |
1467 | const Float_t kYMC2Ap=0.; |
1468 | |
1469 | tpar[2] = 0.1; |
1470 | gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3); |
1471 | tpar[2] = 0.3; |
1472 | gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3); |
1473 | |
1474 | tpar[2] = 0.4; |
1475 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12; |
1476 | tpar[1] = kYMC1MIN*kZ12; |
1477 | |
1478 | gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3); |
1479 | gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3); |
1480 | |
1481 | |
1482 | // chamber type B |
1483 | |
1484 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12; |
1485 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12; |
1486 | |
1487 | const Float_t kXMC2B=kXMC1B*kZ12; |
1488 | const Float_t kYMC2Bp=kYMC1Bp*kZ12; |
1489 | const Float_t kYMC2Bm=kYMC1Bm*kZ12; |
1490 | gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1491 | gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
1492 | gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1493 | gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
1494 | |
1495 | |
1496 | // chamber type C (end of type B !!) |
1497 | |
1498 | tpar[0] = (kXMC1MAX/2)*kZ12; |
1499 | tpar[1] = (kYMC1MAX/2)*kZ12; |
1500 | |
1501 | const Float_t kXMC2C=kXMC1C*kZ12; |
1502 | const Float_t kYMC2Cp=kYMC1Cp*kZ12; |
1503 | const Float_t kYMC2Cm=kYMC1Cm*kZ12; |
1504 | gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1505 | gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
1506 | gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1507 | gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
1508 | |
1509 | // chamber type D, E and F (same size) |
1510 | |
1511 | tpar[0] = (kXMC1MAX/2.)*kZ12; |
1512 | tpar[1] = kYMC1MIN*kZ12; |
1513 | |
1514 | const Float_t kXMC2D=kXMC1D*kZ12; |
1515 | const Float_t kYMC2Dp=kYMC1Dp*kZ12; |
1516 | const Float_t kYMC2Dm=kYMC1Dm*kZ12; |
1517 | gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1518 | gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
1519 | gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1520 | gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
1521 | |
1522 | const Float_t kYMC2Ep=kYMC1Ep*kZ12; |
1523 | const Float_t kYMC2Em=kYMC1Em*kZ12; |
1524 | gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1525 | gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
1526 | gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1527 | gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
1528 | |
1529 | |
1530 | const Float_t kYMC2Fp=kYMC1Fp*kZ12; |
1531 | const Float_t kYMC2Fm=kYMC1Fm*kZ12; |
1532 | gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1533 | gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
1534 | gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1535 | gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
1536 | |
1537 | // Positioning second plane of station 1 in ALICE |
1538 | |
1539 | gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY"); |
1540 | |
1541 | // End of geometry definition for the second plane of station 1 |
1542 | |
1543 | |
1544 | |
1545 | // TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2 |
1546 | |
1547 | // 03/00 |
1548 | // zpos3 and zpos4 are now the middle of the first and second |
1549 | // plane of station 2 : |
1550 | // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm |
1551 | // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm |
1552 | // |
1553 | // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps) |
1554 | // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps) |
1555 | // rem : the total thickness accounts for 1 mm of al on both |
1556 | // side of the RPCs (see zpos3 and zpos4), as previously |
1557 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12]; |
1558 | iChamber2 =(AliMUONChamber*) (*fChambers)[13]; |
1559 | Float_t zpos3=iChamber1->Z(); |
1560 | Float_t zpos4=iChamber2->Z(); |
1561 | |
1562 | |
1563 | // Mother volume definition |
1564 | tpar[0] = iChamber->RInner(); |
1565 | tpar[1] = iChamber->ROuter(); |
1566 | tpar[2] = 4.0; |
1567 | |
1568 | gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3); |
1569 | gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3); |
1570 | |
1571 | // Definition of the flange between the beam shielding and the RPC |
1572 | // ???? interface shielding |
1573 | |
1574 | tpar[0]= kRMIN2; |
1575 | tpar[1]= kRMAX2; |
1576 | tpar[2]= 4.0; |
1577 | |
1578 | gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al |
1579 | gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY"); |
1580 | gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY"); |
1581 | |
1582 | |
1583 | |
1584 | // FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1 |
1585 | |
1586 | const Float_t kZ13=zpos3/zpos1; |
1587 | |
1588 | // Definition of prototype for chambers in the first plane of station 2 |
1589 | tpar[0]= 0.; |
1590 | tpar[1]= 0.; |
1591 | tpar[2]= 0.; |
1592 | |
1593 | gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al |
1594 | gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1595 | gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1596 | |
1597 | |
1598 | // chamber type A |
1599 | tpar[0] = -1.; |
1600 | tpar[1] = -1.; |
1601 | |
1602 | const Float_t kXMC3A=kXMC1A*kZ13; |
1603 | const Float_t kYMC3Am=0.; |
1604 | const Float_t kYMC3Ap=0.; |
1605 | |
1606 | tpar[2] = 0.1; |
1607 | gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3); |
1608 | tpar[2] = 0.3; |
1609 | gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3); |
1610 | |
1611 | tpar[2] = 0.4; |
1612 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13; |
1613 | tpar[1] = kYMC1MIN*kZ13; |
1614 | gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3); |
1615 | gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3); |
1616 | |
1617 | |
1618 | // chamber type B |
1619 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13; |
1620 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13; |
1621 | |
1622 | const Float_t kXMC3B=kXMC1B*kZ13; |
1623 | const Float_t kYMC3Bp=kYMC1Bp*kZ13; |
1624 | const Float_t kYMC3Bm=kYMC1Bm*kZ13; |
1625 | gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1626 | gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
1627 | gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1628 | gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
1629 | |
1630 | |
1631 | // chamber type C (end of type B !!) |
1632 | tpar[0] = (kXMC1MAX/2)*kZ13; |
1633 | tpar[1] = (kYMC1MAX/2)*kZ13; |
1634 | |
1635 | const Float_t kXMC3C=kXMC1C*kZ13; |
1636 | const Float_t kYMC3Cp=kYMC1Cp*kZ13; |
1637 | const Float_t kYMC3Cm=kYMC1Cm*kZ13; |
1638 | gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1639 | gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
1640 | gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1641 | gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
1642 | |
1643 | |
1644 | // chamber type D, E and F (same size) |
1645 | |
1646 | tpar[0] = (kXMC1MAX/2.)*kZ13; |
1647 | tpar[1] = kYMC1MIN*kZ13; |
1648 | |
1649 | const Float_t kXMC3D=kXMC1D*kZ13; |
1650 | const Float_t kYMC3Dp=kYMC1Dp*kZ13; |
1651 | const Float_t kYMC3Dm=kYMC1Dm*kZ13; |
1652 | gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1653 | gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
1654 | gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1655 | gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
1656 | |
1657 | const Float_t kYMC3Ep=kYMC1Ep*kZ13; |
1658 | const Float_t kYMC3Em=kYMC1Em*kZ13; |
1659 | gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1660 | gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
1661 | gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1662 | gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
1663 | |
1664 | const Float_t kYMC3Fp=kYMC1Fp*kZ13; |
1665 | const Float_t kYMC3Fm=kYMC1Fm*kZ13; |
1666 | gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1667 | gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
1668 | gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1669 | gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
1670 | |
1671 | |
1672 | // Positioning first plane of station 2 in ALICE |
1673 | |
1674 | gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY"); |
1675 | |
1676 | // End of geometry definition for the first plane of station 2 |
1677 | |
1678 | |
1679 | |
1680 | |
1681 | // SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1 |
1682 | |
1683 | const Float_t kZ14=zpos4/zpos1; |
1684 | |
1685 | // Definition of prototype for chambers in the second plane of station 2 |
1686 | |
1687 | tpar[0]= 0.; |
1688 | tpar[1]= 0.; |
1689 | tpar[2]= 0.; |
1690 | |
1691 | gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al |
1692 | gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1693 | gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1694 | |
1695 | // chamber type A |
1696 | tpar[0] = -1.; |
1697 | tpar[1] = -1.; |
1698 | |
1699 | const Float_t kXMC4A=kXMC1A*kZ14; |
1700 | const Float_t kYMC4Am=0.; |
1701 | const Float_t kYMC4Ap=0.; |
1702 | |
1703 | tpar[2] = 0.1; |
1704 | gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3); |
1705 | tpar[2] = 0.3; |
1706 | gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3); |
1707 | |
1708 | tpar[2] = 0.4; |
1709 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14; |
1710 | tpar[1] = kYMC1MIN*kZ14; |
1711 | gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3); |
1712 | gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3); |
1713 | |
1714 | |
1715 | // chamber type B |
1716 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14; |
1717 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14; |
1718 | |
1719 | const Float_t kXMC4B=kXMC1B*kZ14; |
1720 | const Float_t kYMC4Bp=kYMC1Bp*kZ14; |
1721 | const Float_t kYMC4Bm=kYMC1Bm*kZ14; |
1722 | gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1723 | gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
1724 | gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1725 | gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
1726 | |
1727 | |
1728 | // chamber type C (end of type B !!) |
1729 | tpar[0] =(kXMC1MAX/2)*kZ14; |
1730 | tpar[1] = (kYMC1MAX/2)*kZ14; |
1731 | |
1732 | const Float_t kXMC4C=kXMC1C*kZ14; |
1733 | const Float_t kYMC4Cp=kYMC1Cp*kZ14; |
1734 | const Float_t kYMC4Cm=kYMC1Cm*kZ14; |
1735 | gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1736 | gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
1737 | gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1738 | gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
1739 | |
1740 | |
1741 | // chamber type D, E and F (same size) |
1742 | tpar[0] = (kXMC1MAX/2.)*kZ14; |
1743 | tpar[1] = kYMC1MIN*kZ14; |
1744 | |
1745 | const Float_t kXMC4D=kXMC1D*kZ14; |
1746 | const Float_t kYMC4Dp=kYMC1Dp*kZ14; |
1747 | const Float_t kYMC4Dm=kYMC1Dm*kZ14; |
1748 | gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1749 | gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
1750 | gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1751 | gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
1752 | |
1753 | const Float_t kYMC4Ep=kYMC1Ep*kZ14; |
1754 | const Float_t kYMC4Em=kYMC1Em*kZ14; |
1755 | gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1756 | gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
1757 | gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1758 | gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
1759 | |
1760 | const Float_t kYMC4Fp=kYMC1Fp*kZ14; |
1761 | const Float_t kYMC4Fm=kYMC1Fm*kZ14; |
1762 | gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1763 | gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
1764 | gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1765 | gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
1766 | |
1767 | |
1768 | // Positioning second plane of station 2 in ALICE |
1769 | |
1770 | gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY"); |
1771 | |
1772 | // End of geometry definition for the second plane of station 2 |
1773 | |
1774 | // End of trigger geometry definition |
1775 | |
1776 | } |
1777 | |
1778 | |
1779 | |
1780 | //___________________________________________ |
1781 | void AliMUONv1::CreateMaterials() |
1782 | { |
1783 | // *** DEFINITION OF AVAILABLE MUON MATERIALS *** |
1784 | // |
b64652f5 |
1785 | // Ar-CO2 gas (80%+20%) |
a9e2aefa |
1786 | Float_t ag1[3] = { 39.95,12.01,16. }; |
1787 | Float_t zg1[3] = { 18.,6.,8. }; |
1788 | Float_t wg1[3] = { .8,.0667,.13333 }; |
1789 | Float_t dg1 = .001821; |
1790 | // |
1791 | // Ar-buthane-freon gas -- trigger chambers |
1792 | Float_t atr1[4] = { 39.95,12.01,1.01,19. }; |
1793 | Float_t ztr1[4] = { 18.,6.,1.,9. }; |
1794 | Float_t wtr1[4] = { .56,.1262857,.2857143,.028 }; |
1795 | Float_t dtr1 = .002599; |
1796 | // |
1797 | // Ar-CO2 gas |
1798 | Float_t agas[3] = { 39.95,12.01,16. }; |
1799 | Float_t zgas[3] = { 18.,6.,8. }; |
1800 | Float_t wgas[3] = { .74,.086684,.173316 }; |
1801 | Float_t dgas = .0018327; |
1802 | // |
1803 | // Ar-Isobutane gas (80%+20%) -- tracking |
1804 | Float_t ag[3] = { 39.95,12.01,1.01 }; |
1805 | Float_t zg[3] = { 18.,6.,1. }; |
1806 | Float_t wg[3] = { .8,.057,.143 }; |
1807 | Float_t dg = .0019596; |
1808 | // |
1809 | // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger |
1810 | Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 }; |
1811 | Float_t ztrig[5] = { 18.,6.,1.,9.,16. }; |
1812 | Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 }; |
1813 | Float_t dtrig = .0031463; |
1814 | // |
1815 | // bakelite |
1816 | |
1817 | Float_t abak[3] = {12.01 , 1.01 , 16.}; |
1818 | Float_t zbak[3] = {6. , 1. , 8.}; |
1819 | Float_t wbak[3] = {6. , 6. , 1.}; |
1820 | Float_t dbak = 1.4; |
1821 | |
1822 | Float_t epsil, stmin, deemax, tmaxfd, stemax; |
1823 | |
1824 | Int_t iSXFLD = gAlice->Field()->Integ(); |
1825 | Float_t sXMGMX = gAlice->Field()->Max(); |
1826 | // |
1827 | // --- Define the various materials for GEANT --- |
1828 | AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1829 | AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1830 | AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500); |
1831 | AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak); |
1832 | AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg); |
1833 | AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig); |
1834 | AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1); |
1835 | AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1); |
1836 | AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas); |
1e8fff9c |
1837 | // materials for slat: |
1838 | // Sensitive area: gas (already defined) |
1839 | // PCB: copper |
1840 | // insulating material and frame: vetronite |
1841 | // walls: carbon, rohacell, carbon |
1842 | Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.}; |
1843 | Float_t zglass[5]={ 6., 14., 8., 5., 11.}; |
1844 | Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01}; |
1845 | Float_t dglass=1.74; |
1846 | |
1847 | // rohacell: C9 H13 N1 O2 |
1848 | Float_t arohac[4] = {12.01, 1.01, 14.010, 16.}; |
1849 | Float_t zrohac[4] = { 6., 1., 7., 8.}; |
1850 | Float_t wrohac[4] = { 9., 13., 1., 2.}; |
1851 | Float_t drohac = 0.03; |
1852 | |
1853 | AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.); |
1854 | AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass); |
1855 | AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9); |
1856 | AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac); |
1857 | |
a9e2aefa |
1858 | |
1859 | epsil = .001; // Tracking precision, |
1860 | stemax = -1.; // Maximum displacement for multiple scat |
1861 | tmaxfd = -20.; // Maximum angle due to field deflection |
1862 | deemax = -.3; // Maximum fractional energy loss, DLS |
1863 | stmin = -.8; |
1864 | // |
1865 | // Air |
1866 | AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1867 | // |
1868 | // Aluminum |
1869 | |
1870 | AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1871 | fMaxDestepAlu, epsil, stmin); |
1872 | AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1873 | fMaxDestepAlu, epsil, stmin); |
1874 | // |
1875 | // Ar-isoC4H10 gas |
1876 | |
1877 | AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1878 | fMaxDestepGas, epsil, stmin); |
1879 | // |
1880 | // Ar-Isobuthane-Forane-SF6 gas |
1881 | |
1882 | AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1883 | |
1884 | AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1885 | fMaxDestepAlu, epsil, stmin); |
1886 | |
1887 | AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1888 | fMaxDestepAlu, epsil, stmin); |
1e8fff9c |
1889 | // tracking media for slats: check the parameters!! |
1890 | AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd, |
1891 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1892 | AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd, |
1893 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1894 | AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd, |
1895 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1896 | AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd, |
1897 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
a9e2aefa |
1898 | } |
1899 | |
1900 | //___________________________________________ |
1901 | |
1902 | void AliMUONv1::Init() |
1903 | { |
1904 | // |
1905 | // Initialize Tracking Chambers |
1906 | // |
1907 | |
1908 | printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n"); |
e17592e9 |
1909 | Int_t i; |
f665c1ea |
1910 | for (i=0; i<AliMUONConstants::NCh(); i++) { |
a9e2aefa |
1911 | ( (AliMUONChamber*) (*fChambers)[i])->Init(); |
1912 | } |
1913 | |
1914 | // |
1915 | // Set the chamber (sensitive region) GEANT identifier |
1916 | AliMC* gMC = AliMC::GetMC(); |
1917 | ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G")); |
1918 | ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G")); |
b17c0c87 |
1919 | |
a9e2aefa |
1920 | ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G")); |
1921 | ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G")); |
b17c0c87 |
1922 | |
1e8fff9c |
1923 | ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G")); |
1924 | ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G")); |
b17c0c87 |
1925 | |
1e8fff9c |
1926 | ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G")); |
1927 | ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G")); |
b17c0c87 |
1928 | |
1e8fff9c |
1929 | ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G")); |
1930 | ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G")); |
b17c0c87 |
1931 | |
a9e2aefa |
1932 | ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A")); |
1933 | ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A")); |
1934 | ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A")); |
1935 | ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A")); |
1936 | |
1937 | printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n"); |
1938 | |
1939 | //cp |
1940 | printf("\n\n\n Start Init for Trigger Circuits\n\n\n"); |
f665c1ea |
1941 | for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) { |
a9e2aefa |
1942 | ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i); |
1943 | } |
1944 | printf(" Finished Init for Trigger Circuits\n\n\n"); |
1945 | //cp |
1946 | |
1947 | } |
1948 | |
1949 | //___________________________________________ |
1950 | void AliMUONv1::StepManager() |
1951 | { |
1952 | Int_t copy, id; |
1953 | static Int_t idvol; |
1954 | static Int_t vol[2]; |
1955 | Int_t ipart; |
1956 | TLorentzVector pos; |
1957 | TLorentzVector mom; |
1958 | Float_t theta,phi; |
1959 | Float_t destep, step; |
681d067b |
1960 | |
1e8fff9c |
1961 | static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength; |
a9e2aefa |
1962 | const Float_t kBig=1.e10; |
a9e2aefa |
1963 | // modifs perso |
1964 | static Float_t hits[15]; |
1965 | |
1966 | TClonesArray &lhits = *fHits; |
1967 | |
1968 | // |
1969 | // Set maximum step size for gas |
1970 | // numed=gMC->GetMedium(); |
1971 | // |
1972 | // Only charged tracks |
1973 | if( !(gMC->TrackCharge()) ) return; |
1974 | // |
1975 | // Only gas gap inside chamber |
1976 | // Tag chambers and record hits when track enters |
1977 | idvol=-1; |
1978 | id=gMC->CurrentVolID(copy); |
1979 | |
f665c1ea |
1980 | for (Int_t i=1; i<=AliMUONConstants::NCh(); i++) { |
a9e2aefa |
1981 | if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){ |
1982 | vol[0]=i; |
1983 | idvol=i-1; |
1984 | } |
1985 | } |
1986 | if (idvol == -1) return; |
1987 | // |
1988 | // Get current particle id (ipart), track position (pos) and momentum (mom) |
1989 | gMC->TrackPosition(pos); |
1990 | gMC->TrackMomentum(mom); |
1991 | |
1992 | ipart = gMC->TrackPid(); |
1993 | //Int_t ipart1 = gMC->IdFromPDG(ipart); |
1994 | //printf("ich, ipart %d %d \n",vol[0],ipart1); |
1995 | |
1996 | // |
1997 | // momentum loss and steplength in last step |
1998 | destep = gMC->Edep(); |
1999 | step = gMC->TrackStep(); |
2000 | |
2001 | // |
2002 | // record hits when track enters ... |
2003 | if( gMC->IsTrackEntering()) { |
2004 | gMC->SetMaxStep(fMaxStepGas); |
2005 | Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; |
2006 | Double_t rt = TMath::Sqrt(tc); |
2007 | Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]); |
2008 | Double_t tx=mom[0]/pmom; |
2009 | Double_t ty=mom[1]/pmom; |
2010 | Double_t tz=mom[2]/pmom; |
2011 | Double_t s=((AliMUONChamber*)(*fChambers)[idvol]) |
2012 | ->ResponseModel() |
2013 | ->Pitch()/tz; |
2014 | theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; |
2015 | phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; |
2016 | hits[0] = Float_t(ipart); // Geant3 particle type |
2017 | hits[1] = pos[0]+s*tx; // X-position for hit |
2018 | hits[2] = pos[1]+s*ty; // Y-position for hit |
2019 | hits[3] = pos[2]+s*tz; // Z-position for hit |
2020 | hits[4] = theta; // theta angle of incidence |
2021 | hits[5] = phi; // phi angle of incidence |
2022 | hits[8] = (Float_t) fNPadHits; // first padhit |
2023 | hits[9] = -1; // last pad hit |
2024 | |
2025 | // modifs perso |
2026 | hits[10] = mom[3]; // hit momentum P |
2027 | hits[11] = mom[0]; // Px/P |
2028 | hits[12] = mom[1]; // Py/P |
2029 | hits[13] = mom[2]; // Pz/P |
2030 | // fin modifs perso |
2031 | tof=gMC->TrackTime(); |
2032 | hits[14] = tof; // Time of flight |
2033 | // phi angle of incidence |
2034 | tlength = 0; |
2035 | eloss = 0; |
2036 | eloss2 = 0; |
2037 | xhit = pos[0]; |
2038 | yhit = pos[1]; |
1e8fff9c |
2039 | zhit = pos[2]; |
681d067b |
2040 | Chamber(idvol).ChargeCorrelationInit(); |
a9e2aefa |
2041 | // Only if not trigger chamber |
1e8fff9c |
2042 | |
2043 | |
2044 | |
2045 | |
a75f073c |
2046 | if(idvol<AliMUONConstants::NTrackingCh()) { |
a9e2aefa |
2047 | // |
2048 | // Initialize hit position (cursor) in the segmentation model |
2049 | ((AliMUONChamber*) (*fChambers)[idvol]) |
2050 | ->SigGenInit(pos[0], pos[1], pos[2]); |
2051 | } else { |
2052 | //geant3->Gpcxyz(); |
2053 | //printf("In the Trigger Chamber #%d\n",idvol-9); |
2054 | } |
2055 | } |
2056 | eloss2+=destep; |
2057 | |
2058 | // |
2059 | // Calculate the charge induced on a pad (disintegration) in case |
2060 | // |
2061 | // Mip left chamber ... |
2062 | if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ |
2063 | gMC->SetMaxStep(kBig); |
2064 | eloss += destep; |
2065 | tlength += step; |
2066 | |
802a864d |
2067 | Float_t x0,y0,z0; |
2068 | Float_t localPos[3]; |
2069 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
802a864d |
2070 | gMC->Gmtod(globalPos,localPos,1); |
2071 | |
a75f073c |
2072 | if(idvol<AliMUONConstants::NTrackingCh()) { |
a9e2aefa |
2073 | // tracking chambers |
2074 | x0 = 0.5*(xhit+pos[0]); |
2075 | y0 = 0.5*(yhit+pos[1]); |
1e8fff9c |
2076 | z0 = 0.5*(zhit+pos[2]); |
2077 | // z0 = localPos[2]; |
a9e2aefa |
2078 | } else { |
2079 | // trigger chambers |
2080 | x0=xhit; |
2081 | y0=yhit; |
1e8fff9c |
2082 | // z0=yhit; |
802a864d |
2083 | z0=0.; |
a9e2aefa |
2084 | } |
2085 | |
1e8fff9c |
2086 | |
802a864d |
2087 | if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol); |
a9e2aefa |
2088 | |
2089 | |
2090 | hits[6]=tlength; |
2091 | hits[7]=eloss2; |
2092 | if (fNPadHits > (Int_t)hits[8]) { |
2093 | hits[8]= hits[8]+1; |
2094 | hits[9]= (Float_t) fNPadHits; |
2095 | } |
2096 | |
2097 | new(lhits[fNhits++]) |
2098 | AliMUONHit(fIshunt,gAlice->CurrentTrack(),vol,hits); |
2099 | eloss = 0; |
2100 | // |
2101 | // Check additional signal generation conditions |
2102 | // defined by the segmentation |
a75f073c |
2103 | // model (boundary crossing conditions) |
2104 | // only for tracking chambers |
a9e2aefa |
2105 | } else if |
a75f073c |
2106 | ((idvol < AliMUONConstants::NTrackingCh()) && |
2107 | ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2])) |
a9e2aefa |
2108 | { |
2109 | ((AliMUONChamber*) (*fChambers)[idvol]) |
2110 | ->SigGenInit(pos[0], pos[1], pos[2]); |
802a864d |
2111 | |
2112 | Float_t localPos[3]; |
2113 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
2114 | gMC->Gmtod(globalPos,localPos,1); |
2115 | |
e0f71fb7 |
2116 | eloss += destep; |
802a864d |
2117 | |
a75f073c |
2118 | if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh()) |
1e8fff9c |
2119 | MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol); |
a9e2aefa |
2120 | xhit = pos[0]; |
2121 | yhit = pos[1]; |
e0f71fb7 |
2122 | zhit = pos[2]; |
2123 | eloss = 0; |
a9e2aefa |
2124 | tlength += step ; |
2125 | // |
2126 | // nothing special happened, add up energy loss |
2127 | } else { |
2128 | eloss += destep; |
2129 | tlength += step ; |
2130 | } |
2131 | } |
2132 | |
2133 | |