Optimisation is set by the Makefile
[u/mrichter/AliRoot.git] / MUON / AliMUONv1.cxx
CommitLineData
a9e2aefa 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
2c799aa2 12 * about the suitability of this software for any purpeateose. It is *
a9e2aefa 13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
fe713e43 18Revision 1.31 2002/03/13 07:55:04 jchudoba
19Correction of the errourness last commit.
20
4b1670dc 21Revision 1.29 2001/06/21 14:54:37 morsch
22Put volumes of station 3 into DIPO if present. (A. de Falco)
23
2724ae40 24Revision 1.28 2001/05/16 14:57:17 alibrary
25New files for folders and Stack
26
9e1a0ddb 27Revision 1.27 2001/04/06 11:24:43 morsch
28Dependency on implementations of AliSegmentation and AliMUONResponse moved to AliMUONFactory class.
29Static method Build() builds the MUON system out of chambers, segmentation and response.
30
be3bb6c1 31Revision 1.26 2001/03/17 10:07:20 morsch
32Correct inconsistent variable name / method name / comments.
33
2eb55fab 34Revision 1.25 2001/03/16 15:32:06 morsch
35Corrections of overlap with beam shield and dipole (A. de Falco)
36
21a18f36 37Revision 1.24 2001/03/14 17:22:15 pcrochet
38Geometry of the trigger chambers : a vertical gap of has been introduced around x=0 according fig.3.27 of the TDR (P.Dupieux)
39
236fe2c5 40Revision 1.23 2001/01/18 15:23:49 egangler
41Bug correction in StepManager :
42Now the systematic offset with angle is cured
43
e0f71fb7 44Revision 1.22 2001/01/17 21:01:21 hristov
45Unused variable removed
46
a7e8b51a 47Revision 1.21 2000/12/20 13:00:22 egangler
48
49Added charge correlation between cathods.
50In Config_slat.C, use
51 MUON->Chamber(chamber-1).SetChargeCorrel(0.11); to set the RMS of
52 q1/q2 to 11 % (number from Alberto)
53 This is stored in AliMUONChamber fChargeCorrel member.
54 At generation time, when a tracks enters the volume,
55 AliMUONv1::StepManager calls
56 AliMUONChamber::ChargeCorrelationInit() to set the current value of
57 fCurrentCorrel which is then used at Disintegration level to scale
58 appropriately the PadHit charges.
59
681d067b 60Revision 1.20 2000/12/04 17:48:23 gosset
61Modifications for stations 1 et 2 mainly:
62* station 1 with 4 mm gas gap and smaller cathode segmentation...
63* stations 1 and 2 with "grey" frame crosses
64* mean noise at 1.5 ADC channel
65* Ar-CO2 gas (80%+20%)
66
b64652f5 67Revision 1.19 2000/12/02 17:15:46 morsch
68Correction of dead zones in inner regions of stations 3-5
69Correction of length of slats 3 and 9 of station 4.
70
a083207d 71Revision 1.17 2000/11/24 12:57:10 morsch
72New version of geometry for stations 3-5 "Slats" (A. de Falco)
73 - sensitive region at station 3 inner radius
74 - improved volume tree structure
75
3c084d9f 76Revision 1.16 2000/11/08 13:01:40 morsch
77Chamber half-planes of stations 3-5 at different z-positions.
78
e1ad7d45 79Revision 1.15 2000/11/06 11:39:02 morsch
80Bug in StepManager() corrected.
81
e3cf5faa 82Revision 1.14 2000/11/06 09:16:50 morsch
83Avoid overlap of slat volumes.
84
2c799aa2 85Revision 1.13 2000/10/26 07:33:44 morsch
86Correct x-position of slats in station 5.
87
8013c580 88Revision 1.12 2000/10/25 19:55:35 morsch
89Switches for each station individually for debug and lego.
90
b17c0c87 91Revision 1.11 2000/10/22 16:44:01 morsch
92Update of slat geometry for stations 3,4,5 (A. deFalco)
93
f9f7c205 94Revision 1.10 2000/10/12 16:07:04 gosset
95StepManager:
96* SigGenCond only called for tracking chambers,
97 hence no more division by 0,
98 and may use last ALIROOT/dummies.C with exception handling;
99* "10" replaced by "AliMUONConstants::NTrackingCh()".
100
a75f073c 101Revision 1.9 2000/10/06 15:37:22 morsch
102Problems with variable redefinition in for-loop solved.
103Variable names starting with u-case letters changed to l-case.
104
6c5ddcfa 105Revision 1.8 2000/10/06 09:06:31 morsch
106Include Slat chambers (stations 3-5) into geometry (A. de Falco)
107
1e8fff9c 108Revision 1.7 2000/10/02 21:28:09 fca
109Removal of useless dependecies via forward declarations
110
94de3818 111Revision 1.6 2000/10/02 17:20:45 egangler
112Cleaning of the code (continued ) :
113-> coding conventions
114-> void Streamers
115-> some useless includes removed or replaced by "class" statement
116
8c449e83 117Revision 1.5 2000/06/28 15:16:35 morsch
118(1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there)
119to allow development of slat-muon chamber simulation and reconstruction code in the MUON
120framework. The changes should have no side effects (mostly dummy arguments).
121(2) Hit disintegration uses 3-dim hit coordinates to allow simulation
122of chambers with overlapping modules (MakePadHits, Disintegration).
123
802a864d 124Revision 1.4 2000/06/26 14:02:38 morsch
125Add class AliMUONConstants with MUON specific constants using static memeber data and access methods.
126
f665c1ea 127Revision 1.3 2000/06/22 14:10:05 morsch
128HP scope problems corrected (PH)
129
e17592e9 130Revision 1.2 2000/06/15 07:58:49 morsch
131Code from MUON-dev joined
132
a9e2aefa 133Revision 1.1.2.14 2000/06/14 14:37:25 morsch
134Initialization of TriggerCircuit added (PC)
135
136Revision 1.1.2.13 2000/06/09 21:55:47 morsch
137Most coding rule violations corrected.
138
139Revision 1.1.2.12 2000/05/05 11:34:29 morsch
140Log inside comments.
141
142Revision 1.1.2.11 2000/05/05 10:06:48 morsch
143Coding Rule violations regarding trigger section corrected (CP)
144Log messages included.
145*/
146
147/////////////////////////////////////////////////////////
148// Manager and hits classes for set:MUON version 0 //
149/////////////////////////////////////////////////////////
150
151#include <TTUBE.h>
152#include <TNode.h>
153#include <TRandom.h>
154#include <TLorentzVector.h>
155#include <iostream.h>
156
157#include "AliMUONv1.h"
158#include "AliRun.h"
159#include "AliMC.h"
94de3818 160#include "AliMagF.h"
a9e2aefa 161#include "AliCallf77.h"
162#include "AliConst.h"
163#include "AliMUONChamber.h"
164#include "AliMUONHit.h"
165#include "AliMUONPadHit.h"
f665c1ea 166#include "AliMUONConstants.h"
8c449e83 167#include "AliMUONTriggerCircuit.h"
be3bb6c1 168#include "AliMUONFactory.h"
a9e2aefa 169
170ClassImp(AliMUONv1)
171
172//___________________________________________
37c0cd40 173AliMUONv1::AliMUONv1() : AliMUON()
a9e2aefa 174{
175// Constructor
37c0cd40 176 fChambers = 0;
a9e2aefa 177}
178
179//___________________________________________
180AliMUONv1::AliMUONv1(const char *name, const char *title)
181 : AliMUON(name,title)
182{
183// Constructor
be3bb6c1 184 AliMUONFactory::Build(this, title);
a9e2aefa 185}
186
187//___________________________________________
188void AliMUONv1::CreateGeometry()
189{
190//
191// Note: all chambers have the same structure, which could be
192// easily parameterised. This was intentionally not done in order
193// to give a starting point for the implementation of the actual
194// design of each station.
195 Int_t *idtmed = fIdtmed->GetArray()-1099;
196
197// Distance between Stations
198//
199 Float_t bpar[3];
200 Float_t tpar[3];
b64652f5 201// Float_t pgpar[10];
a9e2aefa 202 Float_t zpos1, zpos2, zfpos;
b64652f5 203 // Outer excess and inner recess for mother volume radius
204 // with respect to ROuter and RInner
a9e2aefa 205 Float_t dframep=.001; // Value for station 3 should be 6 ...
b64652f5 206 // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm)
207// Float_t dframep1=.001;
208 Float_t dframep1 = 11.0;
209// Bool_t frameCrosses=kFALSE;
210 Bool_t frameCrosses=kTRUE;
a9e2aefa 211
b64652f5 212// Float_t dframez=0.9;
213 // Half of the total thickness of frame crosses (including DAlu)
214 // for each chamber in stations 1 and 2:
215 // 3% of X0 of composite material,
216 // but taken as Aluminium here, with same thickness in number of X0
217 Float_t dframez = 3. * 8.9 / 100;
218// Float_t dr;
a9e2aefa 219 Float_t dstation;
220
221//
222// Rotation matrices in the x-y plane
223 Int_t idrotm[1199];
224// phi= 0 deg
225 AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.);
226// phi= 90 deg
227 AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.);
228// phi= 180 deg
229 AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.);
230// phi= 270 deg
231 AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.);
232//
233 Float_t phi=2*TMath::Pi()/12/2;
234
235//
236// pointer to the current chamber
237// pointer to the current chamber
b64652f5 238 Int_t idAlu1=idtmed[1103]; // medium 4
239 Int_t idAlu2=idtmed[1104]; // medium 5
a9e2aefa 240// Int_t idAlu1=idtmed[1100];
241// Int_t idAlu2=idtmed[1100];
b64652f5 242 Int_t idAir=idtmed[1100]; // medium 1
243// Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas
244 Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%)
a9e2aefa 245
246
247 AliMUONChamber *iChamber, *iChamber1, *iChamber2;
b17c0c87 248 Int_t stations[5] = {1, 1, 1, 1, 1};
249
250 if (stations[0]) {
251
a9e2aefa 252//********************************************************************
253// Station 1 **
254//********************************************************************
255// CONCENTRIC
256 // indices 1 and 2 for first and second chambers in the station
257 // iChamber (first chamber) kept for other quanties than Z,
258 // assumed to be the same in both chambers
259 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0];
260 iChamber2 =(AliMUONChamber*) (*fChambers)[1];
261 zpos1=iChamber1->Z();
262 zpos2=iChamber2->Z();
263 dstation = zpos2 - zpos1;
b64652f5 264 // DGas decreased from standard one (0.5)
265 iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4);
266 // DAlu increased from standard one (3% of X0),
267 // because more electronics with smaller pads
268 iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.);
a9e2aefa 269 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
270
271//
272// Mother volume
b64652f5 273 tpar[0] = iChamber->RInner()-dframep;
274 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2c799aa2 275 tpar[2] = dstation/5;
a9e2aefa 276
277 gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3);
278 gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3);
279 gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1e8fff9c 280 gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
b64652f5 281// // Aluminium frames
282// // Outer frames
283// pgpar[0] = 360/12/2;
284// pgpar[1] = 360.;
285// pgpar[2] = 12.;
286// pgpar[3] = 2;
287// pgpar[4] = -dframez/2;
288// pgpar[5] = iChamber->ROuter();
289// pgpar[6] = pgpar[5]+dframep1;
290// pgpar[7] = +dframez/2;
291// pgpar[8] = pgpar[5];
292// pgpar[9] = pgpar[6];
293// gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10);
294// gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10);
295// gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY");
296// gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY");
297// gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY");
298// gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY");
299// //
300// // Inner frame
301// tpar[0]= iChamber->RInner()-dframep1;
302// tpar[1]= iChamber->RInner();
303// tpar[2]= dframez/2;
304// gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3);
305// gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3);
306
307// gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY");
308// gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY");
309// gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY");
310// gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY");
a9e2aefa 311//
312// Frame Crosses
b64652f5 313 if (frameCrosses) {
314 // outside gas
315 // security for inside mother volume
316 bpar[0] = (iChamber->ROuter() - iChamber->RInner())
317 * TMath::Cos(TMath::ASin(dframep1 /
318 (iChamber->ROuter() - iChamber->RInner())))
319 / 2.0;
a9e2aefa 320 bpar[1] = dframep1/2;
b64652f5 321 // total thickness will be (4 * bpar[2]) for each chamber,
322 // which has to be equal to (2 * dframez) - DAlu
323 bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
a9e2aefa 324 gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3);
325 gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3);
326
327 gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
328 idrotm[1100],"ONLY");
329 gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
330 idrotm[1100],"ONLY");
331 gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
332 idrotm[1101],"ONLY");
333 gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
334 idrotm[1101],"ONLY");
335 gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
336 idrotm[1100],"ONLY");
337 gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
338 idrotm[1100],"ONLY");
339 gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
340 idrotm[1101],"ONLY");
341 gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
342 idrotm[1101],"ONLY");
343
344 gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
345 idrotm[1100],"ONLY");
346 gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
347 idrotm[1100],"ONLY");
348 gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
349 idrotm[1101],"ONLY");
350 gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
351 idrotm[1101],"ONLY");
352 gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
353 idrotm[1100],"ONLY");
354 gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
355 idrotm[1100],"ONLY");
356 gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
357 idrotm[1101],"ONLY");
358 gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
359 idrotm[1101],"ONLY");
360 }
361//
362// Chamber Material represented by Alu sheet
363 tpar[0]= iChamber->RInner();
364 tpar[1]= iChamber->ROuter();
365 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
366 gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3);
367 gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3);
368 gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY");
369 gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY");
370//
371// Sensitive volumes
372 // tpar[2] = iChamber->DGas();
373 tpar[2] = iChamber->DGas()/2;
b64652f5 374 gMC->Gsvolu("C01G", "TUBE", idGas, tpar, 3);
375 gMC->Gsvolu("C02G", "TUBE", idGas, tpar, 3);
a9e2aefa 376 gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY");
377 gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY");
378//
b64652f5 379// Frame Crosses to be placed inside gas
380 // NONE: chambers are sensitive everywhere
381// if (frameCrosses) {
382
383// dr = (iChamber->ROuter() - iChamber->RInner());
384// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
385// bpar[1] = dframep1/2;
386// bpar[2] = iChamber->DGas()/2;
387// gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3);
388// gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3);
a9e2aefa 389
b64652f5 390// gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0,
391// idrotm[1100],"ONLY");
392// gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0,
393// idrotm[1100],"ONLY");
394// gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0,
395// idrotm[1101],"ONLY");
396// gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0,
397// idrotm[1101],"ONLY");
a9e2aefa 398
b64652f5 399// gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0,
400// idrotm[1100],"ONLY");
401// gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0,
402// idrotm[1100],"ONLY");
403// gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0,
404// idrotm[1101],"ONLY");
405// gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0,
406// idrotm[1101],"ONLY");
407// }
b17c0c87 408 }
409 if (stations[1]) {
410
a9e2aefa 411//********************************************************************
412// Station 2 **
413//********************************************************************
414 // indices 1 and 2 for first and second chambers in the station
415 // iChamber (first chamber) kept for other quanties than Z,
416 // assumed to be the same in both chambers
417 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2];
418 iChamber2 =(AliMUONChamber*) (*fChambers)[3];
419 zpos1=iChamber1->Z();
420 zpos2=iChamber2->Z();
421 dstation = zpos2 - zpos1;
b64652f5 422 // DGas and DAlu not changed from standard values
a9e2aefa 423 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
424
425//
426// Mother volume
427 tpar[0] = iChamber->RInner()-dframep;
428 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2c799aa2 429 tpar[2] = dstation/5;
a9e2aefa 430
431 gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3);
432 gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3);
433 gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
434 gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 435
b64652f5 436// // Aluminium frames
437// // Outer frames
438// pgpar[0] = 360/12/2;
439// pgpar[1] = 360.;
440// pgpar[2] = 12.;
441// pgpar[3] = 2;
442// pgpar[4] = -dframez/2;
443// pgpar[5] = iChamber->ROuter();
444// pgpar[6] = pgpar[5]+dframep;
445// pgpar[7] = +dframez/2;
446// pgpar[8] = pgpar[5];
447// pgpar[9] = pgpar[6];
448// gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10);
449// gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10);
450// gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY");
451// gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY");
452// gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY");
453// gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY");
454// //
455// // Inner frame
456// tpar[0]= iChamber->RInner()-dframep;
457// tpar[1]= iChamber->RInner();
458// tpar[2]= dframez/2;
459// gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3);
460// gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3);
461
462// gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY");
463// gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY");
464// gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY");
465// gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY");
a9e2aefa 466//
467// Frame Crosses
b64652f5 468 if (frameCrosses) {
469 // outside gas
470 // security for inside mother volume
471 bpar[0] = (iChamber->ROuter() - iChamber->RInner())
472 * TMath::Cos(TMath::ASin(dframep1 /
473 (iChamber->ROuter() - iChamber->RInner())))
474 / 2.0;
475 bpar[1] = dframep1/2;
476 // total thickness will be (4 * bpar[2]) for each chamber,
477 // which has to be equal to (2 * dframez) - DAlu
478 bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
a9e2aefa 479 gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3);
480 gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3);
481
482 gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
483 idrotm[1100],"ONLY");
484 gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
485 idrotm[1100],"ONLY");
486 gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
487 idrotm[1101],"ONLY");
488 gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
489 idrotm[1101],"ONLY");
490 gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
491 idrotm[1100],"ONLY");
492 gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
493 idrotm[1100],"ONLY");
494 gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
495 idrotm[1101],"ONLY");
496 gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
497 idrotm[1101],"ONLY");
498
499 gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
500 idrotm[1100],"ONLY");
501 gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
502 idrotm[1100],"ONLY");
503 gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
504 idrotm[1101],"ONLY");
505 gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
506 idrotm[1101],"ONLY");
507 gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
508 idrotm[1100],"ONLY");
509 gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
510 idrotm[1100],"ONLY");
511 gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
512 idrotm[1101],"ONLY");
513 gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
514 idrotm[1101],"ONLY");
515 }
516//
517// Chamber Material represented by Alu sheet
518 tpar[0]= iChamber->RInner();
519 tpar[1]= iChamber->ROuter();
520 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
521 gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3);
522 gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3);
523 gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY");
524 gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY");
525//
526// Sensitive volumes
527 // tpar[2] = iChamber->DGas();
528 tpar[2] = iChamber->DGas()/2;
529 gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3);
530 gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3);
531 gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY");
532 gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY");
a9e2aefa 533//
534// Frame Crosses to be placed inside gas
b64652f5 535 // NONE: chambers are sensitive everywhere
536// if (frameCrosses) {
537
538// dr = (iChamber->ROuter() - iChamber->RInner());
539// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
540// bpar[1] = dframep1/2;
541// bpar[2] = iChamber->DGas()/2;
542// gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3);
543// gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3);
a9e2aefa 544
b64652f5 545// gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0,
546// idrotm[1100],"ONLY");
547// gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0,
548// idrotm[1100],"ONLY");
549// gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0,
550// idrotm[1101],"ONLY");
551// gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0,
552// idrotm[1101],"ONLY");
a9e2aefa 553
b64652f5 554// gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0,
555// idrotm[1100],"ONLY");
556// gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0,
557// idrotm[1100],"ONLY");
558// gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0,
559// idrotm[1101],"ONLY");
560// gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0,
561// idrotm[1101],"ONLY");
562// }
b17c0c87 563 }
1e8fff9c 564 // define the id of tracking media:
565 Int_t idCopper = idtmed[1110];
566 Int_t idGlass = idtmed[1111];
567 Int_t idCarbon = idtmed[1112];
568 Int_t idRoha = idtmed[1113];
569
1e8fff9c 570 // sensitive area: 40*40 cm**2
6c5ddcfa 571 const Float_t sensLength = 40.;
572 const Float_t sensHeight = 40.;
573 const Float_t sensWidth = 0.5; // according to TDR fig 2.120
574 const Int_t sensMaterial = idGas;
1e8fff9c 575 const Float_t yOverlap = 1.5;
576
577 // PCB dimensions in cm; width: 30 mum copper
6c5ddcfa 578 const Float_t pcbLength = sensLength;
579 const Float_t pcbHeight = 60.;
580 const Float_t pcbWidth = 0.003;
581 const Int_t pcbMaterial = idCopper;
1e8fff9c 582
583 // Insulating material: 200 mum glass fiber glued to pcb
6c5ddcfa 584 const Float_t insuLength = pcbLength;
585 const Float_t insuHeight = pcbHeight;
586 const Float_t insuWidth = 0.020;
587 const Int_t insuMaterial = idGlass;
1e8fff9c 588
589 // Carbon fiber panels: 200mum carbon/epoxy skin
6c5ddcfa 590 const Float_t panelLength = sensLength;
591 const Float_t panelHeight = sensHeight;
592 const Float_t panelWidth = 0.020;
593 const Int_t panelMaterial = idCarbon;
1e8fff9c 594
595 // rohacell between the two carbon panels
6c5ddcfa 596 const Float_t rohaLength = sensLength;
597 const Float_t rohaHeight = sensHeight;
598 const Float_t rohaWidth = 0.5;
599 const Int_t rohaMaterial = idRoha;
1e8fff9c 600
601 // Frame around the slat: 2 sticks along length,2 along height
602 // H: the horizontal ones
6c5ddcfa 603 const Float_t hFrameLength = pcbLength;
604 const Float_t hFrameHeight = 1.5;
605 const Float_t hFrameWidth = sensWidth;
606 const Int_t hFrameMaterial = idGlass;
1e8fff9c 607
608 // V: the vertical ones
6c5ddcfa 609 const Float_t vFrameLength = 4.0;
610 const Float_t vFrameHeight = sensHeight + hFrameHeight;
611 const Float_t vFrameWidth = sensWidth;
612 const Int_t vFrameMaterial = idGlass;
1e8fff9c 613
614 // B: the horizontal border filled with rohacell
6c5ddcfa 615 const Float_t bFrameLength = hFrameLength;
616 const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight;
617 const Float_t bFrameWidth = hFrameWidth;
618 const Int_t bFrameMaterial = idRoha;
1e8fff9c 619
620 // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper)
6c5ddcfa 621 const Float_t nulocLength = 2.5;
622 const Float_t nulocHeight = 7.5;
623 const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite;
624 const Int_t nulocMaterial = idCopper;
1e8fff9c 625
6c5ddcfa 626 const Float_t slatHeight = pcbHeight;
627 const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth +
628 2.* panelWidth + rohaWidth);
629 const Int_t slatMaterial = idAir;
630 const Float_t dSlatLength = vFrameLength; // border on left and right
1e8fff9c 631
1e8fff9c 632 Float_t spar[3];
b17c0c87 633 Int_t i, j;
634
3c084d9f 635 // the panel volume contains the rohacell
636
637 Float_t twidth = 2 * panelWidth + rohaWidth;
638 Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. };
b17c0c87 639 Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. };
3c084d9f 640
641 // insulating material contains PCB-> gas-> 2 borders filled with rohacell
642
643 twidth = 2*(insuWidth + pcbWidth) + sensWidth;
644 Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. };
645 twidth -= 2 * insuWidth;
646 Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. };
647 Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. };
648 Float_t theight = 2*hFrameHeight + sensHeight;
649 Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.};
b17c0c87 650 Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.};
3c084d9f 651 Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.};
b17c0c87 652 Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.};
b17c0c87 653 Float_t xx;
654 Float_t xxmax = (bFrameLength - nulocLength)/2.;
655 Int_t index=0;
656
657 if (stations[2]) {
658
659//********************************************************************
660// Station 3 **
661//********************************************************************
662 // indices 1 and 2 for first and second chambers in the station
663 // iChamber (first chamber) kept for other quanties than Z,
664 // assumed to be the same in both chambers
665 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4];
666 iChamber2 =(AliMUONChamber*) (*fChambers)[5];
667 zpos1=iChamber1->Z();
668 zpos2=iChamber2->Z();
669 dstation = zpos2 - zpos1;
670
b64652f5 671// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
b17c0c87 672//
673// Mother volume
674 tpar[0] = iChamber->RInner()-dframep;
675 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
21a18f36 676 tpar[2] = dstation/5;
2724ae40 677
678 char *slats5Mother = "C05M";
679 char *slats6Mother = "C06M";
680 Float_t zoffs5 = 0;
681 Float_t zoffs6 = 0;
682
fe713e43 683 if (gAlice->GetModule("DIPO")) {
2724ae40 684 slats5Mother="DDIP";
685 slats6Mother="DDIP";
686
687 zoffs5 = zpos1;
688 zoffs6 = zpos2;
689 }
690 else {
691 gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3);
692 gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3);
693 gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
694 gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
695 }
696
b17c0c87 697 // volumes for slat geometry (xx=5,..,10 chamber id):
698 // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes
699 // SxxG --> Sensitive volume (gas)
700 // SxxP --> PCB (copper)
701 // SxxI --> Insulator (vetronite)
702 // SxxC --> Carbon panel
703 // SxxR --> Rohacell
704 // SxxH, SxxV --> Horizontal and Vertical frames (vetronite)
21a18f36 705 // SB5x --> Volumes for the 35 cm long PCB
b17c0c87 706 // slat dimensions: slat is a MOTHER volume!!! made of air
707
21a18f36 708 // only for chamber 5: slat 1 has a PCB shorter by 5cm!
709
710 Float_t tlength = 35.;
711 Float_t panelpar2[3] = { tlength/2., panelpar[1], panelpar[2]};
712 Float_t rohapar2[3] = { tlength/2., rohapar[1], rohapar[2]};
713 Float_t insupar2[3] = { tlength/2., insupar[1], insupar[2]};
714 Float_t pcbpar2[3] = { tlength/2., pcbpar[1], pcbpar[2]};
715 Float_t senspar2[3] = { tlength/2., senspar[1], senspar[2]};
716 Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]};
717 Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]};
718
a083207d 719 const Int_t nSlats3 = 5; // number of slats per quadrant
720 const Int_t nPCB3[nSlats3] = {3,3,4,3,2}; // n PCB per slat
21a18f36 721 const Float_t xpos3[nSlats3] = {31., 40., 0., 0., 0.};
b17c0c87 722 Float_t slatLength3[nSlats3];
723
724 // create and position the slat (mother) volumes
725
6c5ddcfa 726 char volNam5[5];
727 char volNam6[5];
f9f7c205 728 Float_t xSlat3;
b17c0c87 729
21a18f36 730 Float_t spar2[3];
6c5ddcfa 731 for (i = 0; i<nSlats3; i++){
3c084d9f 732 slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength;
a083207d 733 xSlat3 = slatLength3[i]/2. - vFrameLength/2. + xpos3[i];
21a18f36 734 if (i==1 || i==0) slatLength3[i] -= 2. *dSlatLength; // frame out in PCB with circular border
a083207d 735 Float_t ySlat31 = sensHeight * i - yOverlap * i;
736 Float_t ySlat32 = -sensHeight * i + yOverlap * i;
3c084d9f 737 spar[0] = slatLength3[i]/2.;
738 spar[1] = slatHeight/2.;
739 spar[2] = slatWidth/2. * 1.01;
21a18f36 740 // take away 5 cm from the first slat in chamber 5
741 Float_t xSlat32 = 0;
742 if (i==1 || i==2) { // 1 pcb is shortened by 5cm
743 spar2[0] = spar[0]-5./2.;
744 xSlat32 = xSlat3 - 5/2.;
745 }
746 else {
747 spar2[0] = spar[0];
748 xSlat32 = xSlat3;
749 }
750 spar2[1] = spar[1];
751 spar2[2] = spar[2];
3c084d9f 752 Float_t dzCh3=spar[2] * 1.01;
753 // zSlat to be checked (odd downstream or upstream?)
754 Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2];
755 sprintf(volNam5,"S05%d",i);
21a18f36 756 gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar2,3);
2724ae40 757 gMC->Gspos(volNam5, i*4+1,slats5Mother, xSlat32, ySlat31, zoffs5+zSlat+2.*dzCh3, 0, "ONLY");
758 gMC->Gspos(volNam5, i*4+2,slats5Mother,-xSlat32, ySlat31, zoffs5+zSlat-2.*dzCh3, 0, "ONLY");
21a18f36 759
a083207d 760 if (i>0) {
2724ae40 761 gMC->Gspos(volNam5, i*4+3,slats5Mother, xSlat32, ySlat32, zoffs5+zSlat+2.*dzCh3, 0, "ONLY");
762 gMC->Gspos(volNam5, i*4+4,slats5Mother,-xSlat32, ySlat32, zoffs5+zSlat-2.*dzCh3, 0, "ONLY");
a083207d 763 }
3c084d9f 764 sprintf(volNam6,"S06%d",i);
765 gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3);
2724ae40 766 gMC->Gspos(volNam6, i*4+1,slats6Mother, xSlat3, ySlat31, zoffs6+zSlat+2.*dzCh3, 0, "ONLY");
767 gMC->Gspos(volNam6, i*4+2,slats6Mother,-xSlat3, ySlat31, zoffs6+zSlat-2.*dzCh3, 0, "ONLY");
a083207d 768 if (i>0) {
2724ae40 769 gMC->Gspos(volNam6, i*4+3,slats6Mother, xSlat3, ySlat32, zoffs6+zSlat+2.*dzCh3, 0, "ONLY");
770 gMC->Gspos(volNam6, i*4+4,slats6Mother,-xSlat3, ySlat32, zoffs6+zSlat-2.*dzCh3, 0, "ONLY");
a083207d 771 }
3c084d9f 772 }
1e8fff9c 773
774 // create the panel volume
b17c0c87 775
6c5ddcfa 776 gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3);
21a18f36 777 gMC->Gsvolu("SB5C","BOX",panelMaterial,panelpar2,3);
6c5ddcfa 778 gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3);
1e8fff9c 779
780 // create the rohacell volume
b17c0c87 781
6c5ddcfa 782 gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3);
21a18f36 783 gMC->Gsvolu("SB5R","BOX",rohaMaterial,rohapar2,3);
6c5ddcfa 784 gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3);
1e8fff9c 785
3c084d9f 786 // create the insulating material volume
787
788 gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3);
21a18f36 789 gMC->Gsvolu("SB5I","BOX",insuMaterial,insupar2,3);
3c084d9f 790 gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3);
791
792 // create the PCB volume
793
794 gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3);
21a18f36 795 gMC->Gsvolu("SB5P","BOX",pcbMaterial,pcbpar2,3);
3c084d9f 796 gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3);
797
798 // create the sensitive volumes,
799 gMC->Gsvolu("S05G","BOX",sensMaterial,0,0);
800 gMC->Gsvolu("S06G","BOX",sensMaterial,0,0);
801
802
1e8fff9c 803 // create the vertical frame volume
b17c0c87 804
6c5ddcfa 805 gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3);
806 gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 807
808 // create the horizontal frame volume
b17c0c87 809
6c5ddcfa 810 gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3);
21a18f36 811 gMC->Gsvolu("SB5H","BOX",hFrameMaterial,hFramepar2,3);
6c5ddcfa 812 gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 813
814 // create the horizontal border volume
b17c0c87 815
6c5ddcfa 816 gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3);
21a18f36 817 gMC->Gsvolu("SB5B","BOX",bFrameMaterial,bFramepar2,3);
6c5ddcfa 818 gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3);
1e8fff9c 819
b17c0c87 820 index=0;
6c5ddcfa 821 for (i = 0; i<nSlats3; i++){
822 sprintf(volNam5,"S05%d",i);
823 sprintf(volNam6,"S06%d",i);
f9f7c205 824 Float_t xvFrame = (slatLength3[i] - vFrameLength)/2.;
21a18f36 825 Float_t xvFrame2 = xvFrame;
826 if ( i==1 || i ==2 ) xvFrame2 -= 5./2.;
3c084d9f 827 // position the vertical frames
21a18f36 828 if (i!=1 && i!=0) {
829 gMC->Gspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY");
830 gMC->Gspos("S05V",2*i ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY");
3c084d9f 831 gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY");
832 gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY");
833 }
834 // position the panels and the insulating material
6c5ddcfa 835 for (j=0; j<nPCB3[i]; j++){
1e8fff9c 836 index++;
6c5ddcfa 837 Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5);
21a18f36 838 Float_t xx2 = xx + 5/2.;
3c084d9f 839
840 Float_t zPanel = spar[2] - panelpar[2];
21a18f36 841 if ( (i==1 || i==2) && j == nPCB3[i]-1) { // 1 pcb is shortened by 5cm
842 gMC->Gspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
843 gMC->Gspos("SB5C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
844 gMC->Gspos("SB5I",index ,volNam5, xx, 0., 0 , 0, "ONLY");
845 }
846 else if ( (i==1 || i==2) && j < nPCB3[i]-1) {
847 gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY");
848 gMC->Gspos("S05C",2*index ,volNam5, xx2, 0.,-zPanel , 0, "ONLY");
849 gMC->Gspos("S05I",index ,volNam5, xx2, 0., 0 , 0, "ONLY");
850 }
851 else {
852 gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
853 gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
854 gMC->Gspos("S05I",index ,volNam5, xx, 0., 0 , 0, "ONLY");
855 }
3c084d9f 856 gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY");
857 gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY");
3c084d9f 858 gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY");
1e8fff9c 859 }
a9e2aefa 860 }
21a18f36 861
3c084d9f 862 // position the rohacell volume inside the panel volume
863 gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY");
21a18f36 864 gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY");
3c084d9f 865 gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY");
866
867 // position the PCB volume inside the insulating material volume
868 gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY");
21a18f36 869 gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY");
3c084d9f 870 gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY");
871 // position the horizontal frame volume inside the PCB volume
872 gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY");
21a18f36 873 gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY");
3c084d9f 874 gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY");
875 // position the sensitive volume inside the horizontal frame volume
876 gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3);
21a18f36 877 gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3);
3c084d9f 878 gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3);
879 // position the border volumes inside the PCB volume
880 Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.;
881 gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY");
882 gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY");
21a18f36 883 gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY");
884 gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY");
3c084d9f 885 gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY");
886 gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY");
887
1e8fff9c 888 // create the NULOC volume and position it in the horizontal frame
b17c0c87 889
6c5ddcfa 890 gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3);
891 gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3);
6c5ddcfa 892 index = 0;
21a18f36 893 Float_t xxmax2 = xxmax - 5./2.;
894 for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) {
1e8fff9c 895 index++;
6c5ddcfa 896 gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
897 gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY");
21a18f36 898 if (xx > -xxmax2 && xx< xxmax2) {
899 gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
900 gMC->Gspos("S05N",2*index ,"SB5B", xx, 0., bFrameWidth/4., 0, "ONLY");
901 }
6c5ddcfa 902 gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
903 gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY");
1e8fff9c 904 }
3c084d9f 905
906 // position the volumes approximating the circular section of the pipe
a083207d 907 Float_t yoffs = sensHeight/2. - yOverlap;
3c084d9f 908 Float_t epsilon = 0.001;
909 Int_t ndiv=6;
910 Float_t divpar[3];
911 Double_t dydiv= sensHeight/ndiv;
21a18f36 912 Double_t ydiv = yoffs -dydiv;
3c084d9f 913 Int_t imax=0;
3c084d9f 914 imax = 1;
21a18f36 915 Float_t rmin = 33.;
a083207d 916 Float_t z1 = spar[2], z2=2*spar[2]*1.01;
3c084d9f 917 for (Int_t idiv=0;idiv<ndiv; idiv++){
918 ydiv+= dydiv;
425ebd0a 919 Float_t xdiv = 0.;
3c084d9f 920 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
921 divpar[0] = (pcbLength-xdiv)/2.;
922 divpar[1] = dydiv/2. - epsilon;
923 divpar[2] = sensWidth/2.;
425ebd0a 924 Float_t xvol=(pcbLength+xdiv)/2.+1.999;
a083207d 925 Float_t yvol=ydiv + dydiv/2.;
21a18f36 926 //printf ("y ll = %f y ur = %f \n",yvol - divpar[1], yvol + divpar[1]);
2724ae40 927 gMC->Gsposp("S05G",imax+4*idiv+1,slats5Mother, xvol, yvol, zoffs5+z1+z2, 0, "ONLY",divpar,3);
928 gMC->Gsposp("S06G",imax+4*idiv+1,slats6Mother, xvol, yvol, zoffs6+z1+z2, 0, "ONLY",divpar,3);
929 gMC->Gsposp("S05G",imax+4*idiv+2,slats5Mother, xvol,-yvol, zoffs5+z1+z2, 0, "ONLY",divpar,3);
930 gMC->Gsposp("S06G",imax+4*idiv+2,slats6Mother, xvol,-yvol, zoffs6+z1+z2, 0, "ONLY",divpar,3);
931 gMC->Gsposp("S05G",imax+4*idiv+3,slats5Mother,-xvol, yvol, zoffs5+z1-z2, 0, "ONLY",divpar,3);
932 gMC->Gsposp("S06G",imax+4*idiv+3,slats6Mother,-xvol, yvol, zoffs6+z1-z2, 0, "ONLY",divpar,3);
933 gMC->Gsposp("S05G",imax+4*idiv+4,slats5Mother,-xvol,-yvol, zoffs5+z1-z2, 0, "ONLY",divpar,3);
934 gMC->Gsposp("S06G",imax+4*idiv+4,slats6Mother,-xvol,-yvol, zoffs6+z1-z2, 0, "ONLY",divpar,3);
3c084d9f 935 }
b17c0c87 936 }
b17c0c87 937
3c084d9f 938 if (stations[3]) {
939
a9e2aefa 940//********************************************************************
941// Station 4 **
942//********************************************************************
943 // indices 1 and 2 for first and second chambers in the station
944 // iChamber (first chamber) kept for other quanties than Z,
945 // assumed to be the same in both chambers
946 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6];
947 iChamber2 =(AliMUONChamber*) (*fChambers)[7];
948 zpos1=iChamber1->Z();
949 zpos2=iChamber2->Z();
950 dstation = zpos2 - zpos1;
b64652f5 951// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
a9e2aefa 952
953//
954// Mother volume
955 tpar[0] = iChamber->RInner()-dframep;
956 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2724ae40 957 tpar[2] = dstation/4;
a9e2aefa 958
959 gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3);
960 gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3);
961 gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
962 gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 963
a9e2aefa 964
f9f7c205 965 const Int_t nSlats4 = 6; // number of slats per quadrant
425ebd0a 966 const Int_t nPCB4[nSlats4] = {4,4,5,5,4,3}; // n PCB per slat
21a18f36 967 const Float_t xpos4[nSlats4] = {38.5, 40., 0., 0., 0., 0.};
6c5ddcfa 968 Float_t slatLength4[nSlats4];
1e8fff9c 969
970 // create and position the slat (mother) volumes
971
6c5ddcfa 972 char volNam7[5];
973 char volNam8[5];
1e8fff9c 974 Float_t xSlat4;
f9f7c205 975 Float_t ySlat4;
1e8fff9c 976
6c5ddcfa 977 for (i = 0; i<nSlats4; i++){
a083207d 978 slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength;
979 xSlat4 = slatLength4[i]/2. - vFrameLength/2. + xpos4[i];
2724ae40 980 if (i==1) slatLength4[i] -= 2. *dSlatLength; // frame out in PCB with circular border
a083207d 981 ySlat4 = sensHeight * i - yOverlap *i;
982
983 spar[0] = slatLength4[i]/2.;
984 spar[1] = slatHeight/2.;
985 spar[2] = slatWidth/2.*1.01;
986 Float_t dzCh4=spar[2]*1.01;
987 // zSlat to be checked (odd downstream or upstream?)
988 Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2];
989 sprintf(volNam7,"S07%d",i);
990 gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3);
991 gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
992 gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
993 if (i>0) {
994 gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
995 gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
996 }
997 sprintf(volNam8,"S08%d",i);
998 gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3);
999 gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
1000 gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
1001 if (i>0) {
1002 gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY");
1003 gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY");
1004 }
a9e2aefa 1005 }
a083207d 1006
3c084d9f 1007
1008 // create the panel volume
1e8fff9c 1009
3c084d9f 1010 gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3);
1011 gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3);
a9e2aefa 1012
3c084d9f 1013 // create the rohacell volume
1014
1015 gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3);
1016 gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3);
1e8fff9c 1017
1e8fff9c 1018 // create the insulating material volume
1019
6c5ddcfa 1020 gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3);
1021 gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3);
1e8fff9c 1022
3c084d9f 1023 // create the PCB volume
1e8fff9c 1024
3c084d9f 1025 gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3);
1026 gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3);
1e8fff9c 1027
3c084d9f 1028 // create the sensitive volumes,
1029
1030 gMC->Gsvolu("S07G","BOX",sensMaterial,0,0);
1031 gMC->Gsvolu("S08G","BOX",sensMaterial,0,0);
1e8fff9c 1032
1033 // create the vertical frame volume
1034
6c5ddcfa 1035 gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3);
1036 gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 1037
1038 // create the horizontal frame volume
1039
6c5ddcfa 1040 gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3);
1041 gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 1042
1043 // create the horizontal border volume
1044
6c5ddcfa 1045 gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3);
1046 gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3);
3c084d9f 1047
1048 index=0;
6c5ddcfa 1049 for (i = 0; i<nSlats4; i++){
1050 sprintf(volNam7,"S07%d",i);
1051 sprintf(volNam8,"S08%d",i);
1052 Float_t xvFrame = (slatLength4[i] - vFrameLength)/2.;
3c084d9f 1053 // position the vertical frames
21a18f36 1054 if (i!=1 && i!=0) {
a083207d 1055 gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY");
1056 gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY");
1057 gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY");
1058 gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY");
1059 }
3c084d9f 1060 // position the panels and the insulating material
6c5ddcfa 1061 for (j=0; j<nPCB4[i]; j++){
1e8fff9c 1062 index++;
6c5ddcfa 1063 Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5);
3c084d9f 1064
1065 Float_t zPanel = spar[2] - panelpar[2];
1066 gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY");
1067 gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY");
1068 gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY");
1069 gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY");
1070
1071 gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY");
1072 gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY");
1e8fff9c 1073 }
a9e2aefa 1074 }
1e8fff9c 1075
3c084d9f 1076 // position the rohacell volume inside the panel volume
1077 gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY");
1078 gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY");
1079
1080 // position the PCB volume inside the insulating material volume
1081 gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY");
1082 gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY");
1083 // position the horizontal frame volume inside the PCB volume
1084 gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY");
1085 gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY");
1086 // position the sensitive volume inside the horizontal frame volume
1087 gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3);
1088 gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3);
3c084d9f 1089 // position the border volumes inside the PCB volume
1090 Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.;
1091 gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY");
1092 gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY");
1093 gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY");
1094 gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY");
1095
1e8fff9c 1096 // create the NULOC volume and position it in the horizontal frame
3c084d9f 1097
6c5ddcfa 1098 gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3);
1099 gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3);
3c084d9f 1100 index = 0;
21a18f36 1101 for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) {
1e8fff9c 1102 index++;
6c5ddcfa 1103 gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1104 gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY");
1105 gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1106 gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY");
1e8fff9c 1107 }
a083207d 1108
1109 // position the volumes approximating the circular section of the pipe
21a18f36 1110 Float_t yoffs = sensHeight/2. - yOverlap;
a083207d 1111 Float_t epsilon = 0.001;
1112 Int_t ndiv=6;
1113 Float_t divpar[3];
1114 Double_t dydiv= sensHeight/ndiv;
21a18f36 1115 Double_t ydiv = yoffs -dydiv;
a083207d 1116 Int_t imax=0;
a083207d 1117 imax = 1;
1118 Float_t rmin = 40.;
1119 Float_t z1 = -spar[2], z2=2*spar[2]*1.01;
1120 for (Int_t idiv=0;idiv<ndiv; idiv++){
1121 ydiv+= dydiv;
425ebd0a 1122 Float_t xdiv = 0.;
a083207d 1123 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1124 divpar[0] = (pcbLength-xdiv)/2.;
1125 divpar[1] = dydiv/2. - epsilon;
1126 divpar[2] = sensWidth/2.;
425ebd0a 1127 Float_t xvol=(pcbLength+xdiv)/2.+1.999;
a083207d 1128 Float_t yvol=ydiv + dydiv/2.;
1129 gMC->Gsposp("S07G",imax+4*idiv+1,"C07M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1130 gMC->Gsposp("S08G",imax+4*idiv+1,"C08M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1131 gMC->Gsposp("S07G",imax+4*idiv+2,"C07M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1132 gMC->Gsposp("S08G",imax+4*idiv+2,"C08M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1133 gMC->Gsposp("S07G",imax+4*idiv+3,"C07M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1134 gMC->Gsposp("S08G",imax+4*idiv+3,"C08M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1135 gMC->Gsposp("S07G",imax+4*idiv+4,"C07M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1136 gMC->Gsposp("S08G",imax+4*idiv+4,"C08M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1137 }
1138
1139
1140
1141
1142
b17c0c87 1143 }
3c084d9f 1144
b17c0c87 1145 if (stations[4]) {
1146
1e8fff9c 1147
a9e2aefa 1148//********************************************************************
1149// Station 5 **
1150//********************************************************************
1151 // indices 1 and 2 for first and second chambers in the station
1152 // iChamber (first chamber) kept for other quanties than Z,
1153 // assumed to be the same in both chambers
1154 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8];
1155 iChamber2 =(AliMUONChamber*) (*fChambers)[9];
1156 zpos1=iChamber1->Z();
1157 zpos2=iChamber2->Z();
1158 dstation = zpos2 - zpos1;
b64652f5 1159// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
3c084d9f 1160
a9e2aefa 1161//
1162// Mother volume
1163 tpar[0] = iChamber->RInner()-dframep;
1164 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
3c084d9f 1165 tpar[2] = dstation/5.;
a9e2aefa 1166
1167 gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3);
1168 gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3);
1169 gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1170 gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
a9e2aefa 1171
a9e2aefa 1172
1e8fff9c 1173 const Int_t nSlats5 = 7; // number of slats per quadrant
a083207d 1174 const Int_t nPCB5[nSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat
21a18f36 1175 const Float_t xpos5[nSlats5] = {38.5, 40., 0., 0., 0., 0., 0.};
6c5ddcfa 1176 Float_t slatLength5[nSlats5];
6c5ddcfa 1177 char volNam9[5];
1178 char volNam10[5];
f9f7c205 1179 Float_t xSlat5;
1180 Float_t ySlat5;
1e8fff9c 1181
6c5ddcfa 1182 for (i = 0; i<nSlats5; i++){
1183 slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength;
a083207d 1184 xSlat5 = slatLength5[i]/2. - vFrameLength/2. +xpos5[i];
21a18f36 1185 if (i==1 || i==0) slatLength5[i] -= 2. *dSlatLength; // frame out in PCB with circular border
f9f7c205 1186 ySlat5 = sensHeight * i - yOverlap * i;
6c5ddcfa 1187 spar[0] = slatLength5[i]/2.;
1188 spar[1] = slatHeight/2.;
3c084d9f 1189 spar[2] = slatWidth/2. * 1.01;
1190 Float_t dzCh5=spar[2]*1.01;
1e8fff9c 1191 // zSlat to be checked (odd downstream or upstream?)
3c084d9f 1192 Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2];
6c5ddcfa 1193 sprintf(volNam9,"S09%d",i);
1194 gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3);
e1ad7d45 1195 gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1196 gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
f9f7c205 1197 if (i>0) {
3c084d9f 1198 gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1199 gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
f9f7c205 1200 }
6c5ddcfa 1201 sprintf(volNam10,"S10%d",i);
1202 gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3);
e1ad7d45 1203 gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1204 gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
f9f7c205 1205 if (i>0) {
3c084d9f 1206 gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY");
1207 gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY");
f9f7c205 1208 }
a9e2aefa 1209 }
1210
1e8fff9c 1211 // create the panel volume
3c084d9f 1212
6c5ddcfa 1213 gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3);
1214 gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3);
3c084d9f 1215
1e8fff9c 1216 // create the rohacell volume
3c084d9f 1217
6c5ddcfa 1218 gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3);
1219 gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3);
3c084d9f 1220
1221 // create the insulating material volume
1222
1223 gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3);
1224 gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3);
1225
1226 // create the PCB volume
1227
1228 gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3);
1229 gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3);
1230
1231 // create the sensitive volumes,
1232
1233 gMC->Gsvolu("S09G","BOX",sensMaterial,0,0);
1234 gMC->Gsvolu("S10G","BOX",sensMaterial,0,0);
3c084d9f 1235
1e8fff9c 1236 // create the vertical frame volume
3c084d9f 1237
6c5ddcfa 1238 gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3);
1239 gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 1240
1241 // create the horizontal frame volume
3c084d9f 1242
6c5ddcfa 1243 gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3);
1244 gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 1245
1246 // create the horizontal border volume
1247
6c5ddcfa 1248 gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3);
1249 gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3);
1e8fff9c 1250
3c084d9f 1251 index=0;
6c5ddcfa 1252 for (i = 0; i<nSlats5; i++){
1253 sprintf(volNam9,"S09%d",i);
1254 sprintf(volNam10,"S10%d",i);
1255 Float_t xvFrame = (slatLength5[i] - vFrameLength)/2.;
3c084d9f 1256 // position the vertical frames
21a18f36 1257 if (i!=1 && i!=0) {
a083207d 1258 gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY");
1259 gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY");
1260 gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY");
1261 gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY");
1262 }
3c084d9f 1263
1264 // position the panels and the insulating material
6c5ddcfa 1265 for (j=0; j<nPCB5[i]; j++){
1e8fff9c 1266 index++;
3c084d9f 1267 Float_t xx = sensLength * (-nPCB5[i]/2.+j+.5);
1268
1269 Float_t zPanel = spar[2] - panelpar[2];
1270 gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY");
1271 gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY");
1272 gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY");
1273 gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY");
1274
1275 gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY");
1276 gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY");
1e8fff9c 1277 }
1278 }
1279
3c084d9f 1280 // position the rohacell volume inside the panel volume
1281 gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY");
1282 gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY");
1283
1284 // position the PCB volume inside the insulating material volume
1285 gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY");
1286 gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY");
1287 // position the horizontal frame volume inside the PCB volume
1288 gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY");
1289 gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY");
1290 // position the sensitive volume inside the horizontal frame volume
1291 gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3);
1292 gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3);
3c084d9f 1293 // position the border volumes inside the PCB volume
1294 Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.;
1295 gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY");
1296 gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY");
1297 gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY");
1298 gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY");
1299
1e8fff9c 1300 // create the NULOC volume and position it in the horizontal frame
3c084d9f 1301
6c5ddcfa 1302 gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3);
1303 gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3);
3c084d9f 1304 index = 0;
21a18f36 1305 for (xx = -xxmax; xx<=xxmax; xx+=2*nulocLength) {
1e8fff9c 1306 index++;
6c5ddcfa 1307 gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1308 gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY");
1309 gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1310 gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY");
a9e2aefa 1311 }
a083207d 1312 // position the volumes approximating the circular section of the pipe
21a18f36 1313 Float_t yoffs = sensHeight/2. - yOverlap;
a083207d 1314 Float_t epsilon = 0.001;
1315 Int_t ndiv=6;
1316 Float_t divpar[3];
1317 Double_t dydiv= sensHeight/ndiv;
21a18f36 1318 Double_t ydiv = yoffs -dydiv;
a083207d 1319 Int_t imax=0;
1320 // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat];
1321 imax = 1;
1322 Float_t rmin = 40.;
1323 Float_t z1 = spar[2], z2=2*spar[2]*1.01;
1324 for (Int_t idiv=0;idiv<ndiv; idiv++){
1325 ydiv+= dydiv;
425ebd0a 1326 Float_t xdiv = 0.;
a083207d 1327 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1328 divpar[0] = (pcbLength-xdiv)/2.;
1329 divpar[1] = dydiv/2. - epsilon;
1330 divpar[2] = sensWidth/2.;
425ebd0a 1331 Float_t xvol=(pcbLength+xdiv)/2. + 1.999;
a083207d 1332 Float_t yvol=ydiv + dydiv/2.;
1333 gMC->Gsposp("S09G",imax+4*idiv+1,"C09M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1334 gMC->Gsposp("S10G",imax+4*idiv+1,"C10M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3);
1335 gMC->Gsposp("S09G",imax+4*idiv+2,"C09M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1336 gMC->Gsposp("S10G",imax+4*idiv+2,"C10M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3);
1337 gMC->Gsposp("S09G",imax+4*idiv+3,"C09M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1338 gMC->Gsposp("S10G",imax+4*idiv+3,"C10M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3);
1339 gMC->Gsposp("S09G",imax+4*idiv+4,"C09M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1340 gMC->Gsposp("S10G",imax+4*idiv+4,"C10M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3);
1341 }
1342
b17c0c87 1343 }
1344
1e8fff9c 1345
a9e2aefa 1346///////////////////////////////////////
1347// GEOMETRY FOR THE TRIGGER CHAMBERS //
1348///////////////////////////////////////
1349
1350// 03/00 P. Dupieux : introduce a slighly more realistic
1351// geom. of the trigger readout planes with
1352// 2 Zpos per trigger plane (alternate
1353// between left and right of the trigger)
1354
1355// Parameters of the Trigger Chambers
1356
236fe2c5 1357// DP03-01 introduce dead zone of +/- 2 cm arround x=0 (as in TDR, fig3.27)
1358 const Float_t kDXZERO=2.;
a9e2aefa 1359 const Float_t kXMC1MIN=34.;
1360 const Float_t kXMC1MED=51.;
1361 const Float_t kXMC1MAX=272.;
1362 const Float_t kYMC1MIN=34.;
1363 const Float_t kYMC1MAX=51.;
1364 const Float_t kRMIN1=50.;
236fe2c5 1365// DP03-01 const Float_t kRMAX1=62.;
1366 const Float_t kRMAX1=64.;
a9e2aefa 1367 const Float_t kRMIN2=50.;
236fe2c5 1368// DP03-01 const Float_t kRMAX2=66.;
1369 const Float_t kRMAX2=68.;
a9e2aefa 1370
1371// zposition of the middle of the gas gap in mother vol
1372 const Float_t kZMCm=-3.6;
1373 const Float_t kZMCp=+3.6;
1374
1375
1376// TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1
1377
1378 // iChamber 1 and 2 for first and second chambers in the station
1379 // iChamber (first chamber) kept for other quanties than Z,
1380 // assumed to be the same in both chambers
1381 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10];
1382 iChamber2 =(AliMUONChamber*) (*fChambers)[11];
1383
1384 // 03/00
1385 // zpos1 and zpos2 are now the middle of the first and second
1386 // plane of station 1 :
1387 // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm
1388 // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm
1389 //
1390 // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps)
1391 // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps)
1392 // rem : the total thickness accounts for 1 mm of al on both
1393 // side of the RPCs (see zpos1 and zpos2), as previously
1394
1395 zpos1=iChamber1->Z();
1396 zpos2=iChamber2->Z();
1397
1398
1399// Mother volume definition
1400 tpar[0] = iChamber->RInner();
1401 tpar[1] = iChamber->ROuter();
1402 tpar[2] = 4.0;
1403 gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3);
1404 gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3);
1405
1406// Definition of the flange between the beam shielding and the RPC
1407 tpar[0]= kRMIN1;
1408 tpar[1]= kRMAX1;
1409 tpar[2]= 4.0;
1410
1411 gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al
1412 gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY");
1413 gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY");
1414
1415
1416// FIRST PLANE OF STATION 1
1417
1418// ratios of zpos1m/zpos1p and inverse for first plane
1419 Float_t zmp=(zpos1-3.6)/(zpos1+3.6);
1420 Float_t zpm=1./zmp;
1421
1422
1423// Definition of prototype for chambers in the first plane
1424
1425 tpar[0]= 0.;
1426 tpar[1]= 0.;
1427 tpar[2]= 0.;
1428
1429 gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al
1430 gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1431 gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1432
1433// chamber type A
1434 tpar[0] = -1.;
1435 tpar[1] = -1.;
1436
236fe2c5 1437// DP03-01 const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.;
1438 const Float_t kXMC1A=kDXZERO+kXMC1MED+(kXMC1MAX-kXMC1MED)/2.;
a9e2aefa 1439 const Float_t kYMC1Am=0.;
1440 const Float_t kYMC1Ap=0.;
1441
1442 tpar[2] = 0.1;
1443 gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3);
1444 tpar[2] = 0.3;
1445 gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3);
1446
1447 tpar[2] = 0.4;
1448 tpar[0] = (kXMC1MAX-kXMC1MED)/2.;
1449 tpar[1] = kYMC1MIN;
1450
1451 gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3);
1452 gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3);
1453
1454// chamber type B
1455 Float_t tpar1save=tpar[1];
1456 Float_t y1msave=kYMC1Am;
1457 Float_t y1psave=kYMC1Ap;
1458
1459 tpar[0] = (kXMC1MAX-kXMC1MIN)/2.;
1460 tpar[1] = (kYMC1MAX-kYMC1MIN)/2.;
1461
236fe2c5 1462// DP03-01 const Float_t kXMC1B=kXMC1MIN+tpar[0];
1463 const Float_t kXMC1B=kDXZERO+kXMC1MIN+tpar[0];
a9e2aefa 1464 const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1];
1465 const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1];
1466
1467 gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3);
1468 gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3);
1469 gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3);
1470 gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3);
1471
1472// chamber type C (end of type B !!)
1473 tpar1save=tpar[1];
1474 y1msave=kYMC1Bm;
1475 y1psave=kYMC1Bp;
1476
1477 tpar[0] = kXMC1MAX/2;
1478 tpar[1] = kYMC1MAX/2;
1479
236fe2c5 1480
1481// DP03-01 const Float_t kXMC1C=tpar[0];
1482 const Float_t kXMC1C=kDXZERO+tpar[0];
a9e2aefa 1483// warning : same Z than type B
1484 const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1];
1485 const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1];
1486
1487 gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3);
1488 gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3);
1489 gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3);
1490 gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3);
1491
1492// chamber type D, E and F (same size)
1493 tpar1save=tpar[1];
1494 y1msave=kYMC1Cm;
1495 y1psave=kYMC1Cp;
1496
1497 tpar[0] = kXMC1MAX/2.;
1498 tpar[1] = kYMC1MIN;
1499
236fe2c5 1500// DP03-01 const Float_t kXMC1D=tpar[0];
1501 const Float_t kXMC1D=kDXZERO+tpar[0];
a9e2aefa 1502 const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1];
1503 const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1];
1504
1505 gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3);
1506 gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3);
1507 gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3);
1508 gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3);
1509
1510
1511 tpar1save=tpar[1];
1512 y1msave=kYMC1Dm;
1513 y1psave=kYMC1Dp;
1514 const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1];
1515 const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1];
1516
1517 gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3);
1518 gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3);
1519 gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3);
1520 gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3);
1521
1522 tpar1save=tpar[1];
1523 y1msave=kYMC1Em;
1524 y1psave=kYMC1Ep;
1525 const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1];
1526 const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1];
1527
1528 gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3);
1529 gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3);
1530 gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3);
1531 gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3);
1532
1533// Positioning first plane in ALICE
1534 gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY");
1535
1536// End of geometry definition for the first plane of station 1
1537
1538
1539
1540// SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1
1541
1542 const Float_t kZ12=zpos2/zpos1;
1543
1544// Definition of prototype for chambers in the second plane of station 1
1545
1546 tpar[0]= 0.;
1547 tpar[1]= 0.;
1548 tpar[2]= 0.;
1549
1550 gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al
1551 gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1552 gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1553
1554// chamber type A
1555 tpar[0] = -1.;
1556 tpar[1] = -1.;
1557
1558 const Float_t kXMC2A=kXMC1A*kZ12;
1559 const Float_t kYMC2Am=0.;
1560 const Float_t kYMC2Ap=0.;
1561
1562 tpar[2] = 0.1;
1563 gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3);
1564 tpar[2] = 0.3;
1565 gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3);
1566
1567 tpar[2] = 0.4;
1568 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12;
1569 tpar[1] = kYMC1MIN*kZ12;
1570
1571 gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3);
1572 gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3);
1573
1574
1575// chamber type B
1576
1577 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12;
1578 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12;
1579
1580 const Float_t kXMC2B=kXMC1B*kZ12;
1581 const Float_t kYMC2Bp=kYMC1Bp*kZ12;
1582 const Float_t kYMC2Bm=kYMC1Bm*kZ12;
1583 gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3);
1584 gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3);
1585 gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3);
1586 gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3);
1587
1588
1589// chamber type C (end of type B !!)
1590
1591 tpar[0] = (kXMC1MAX/2)*kZ12;
1592 tpar[1] = (kYMC1MAX/2)*kZ12;
1593
1594 const Float_t kXMC2C=kXMC1C*kZ12;
1595 const Float_t kYMC2Cp=kYMC1Cp*kZ12;
1596 const Float_t kYMC2Cm=kYMC1Cm*kZ12;
1597 gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3);
1598 gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3);
1599 gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3);
1600 gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3);
1601
1602// chamber type D, E and F (same size)
1603
1604 tpar[0] = (kXMC1MAX/2.)*kZ12;
1605 tpar[1] = kYMC1MIN*kZ12;
1606
1607 const Float_t kXMC2D=kXMC1D*kZ12;
1608 const Float_t kYMC2Dp=kYMC1Dp*kZ12;
1609 const Float_t kYMC2Dm=kYMC1Dm*kZ12;
1610 gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3);
1611 gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3);
1612 gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3);
1613 gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3);
1614
1615 const Float_t kYMC2Ep=kYMC1Ep*kZ12;
1616 const Float_t kYMC2Em=kYMC1Em*kZ12;
1617 gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3);
1618 gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3);
1619 gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3);
1620 gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3);
1621
1622
1623 const Float_t kYMC2Fp=kYMC1Fp*kZ12;
1624 const Float_t kYMC2Fm=kYMC1Fm*kZ12;
1625 gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3);
1626 gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3);
1627 gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3);
1628 gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3);
1629
1630// Positioning second plane of station 1 in ALICE
1631
1632 gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY");
1633
1634// End of geometry definition for the second plane of station 1
1635
1636
1637
1638// TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2
1639
1640 // 03/00
1641 // zpos3 and zpos4 are now the middle of the first and second
1642 // plane of station 2 :
1643 // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm
1644 // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm
1645 //
1646 // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps)
1647 // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps)
1648 // rem : the total thickness accounts for 1 mm of al on both
1649 // side of the RPCs (see zpos3 and zpos4), as previously
1650 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12];
1651 iChamber2 =(AliMUONChamber*) (*fChambers)[13];
1652 Float_t zpos3=iChamber1->Z();
1653 Float_t zpos4=iChamber2->Z();
1654
1655
1656// Mother volume definition
1657 tpar[0] = iChamber->RInner();
1658 tpar[1] = iChamber->ROuter();
1659 tpar[2] = 4.0;
1660
1661 gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3);
1662 gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3);
1663
1664// Definition of the flange between the beam shielding and the RPC
1665// ???? interface shielding
1666
1667 tpar[0]= kRMIN2;
1668 tpar[1]= kRMAX2;
1669 tpar[2]= 4.0;
1670
1671 gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al
1672 gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY");
1673 gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY");
1674
1675
1676
1677// FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1
1678
1679 const Float_t kZ13=zpos3/zpos1;
1680
1681// Definition of prototype for chambers in the first plane of station 2
1682 tpar[0]= 0.;
1683 tpar[1]= 0.;
1684 tpar[2]= 0.;
1685
1686 gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al
1687 gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1688 gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1689
1690
1691// chamber type A
1692 tpar[0] = -1.;
1693 tpar[1] = -1.;
1694
1695 const Float_t kXMC3A=kXMC1A*kZ13;
1696 const Float_t kYMC3Am=0.;
1697 const Float_t kYMC3Ap=0.;
1698
1699 tpar[2] = 0.1;
1700 gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3);
1701 tpar[2] = 0.3;
1702 gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3);
1703
1704 tpar[2] = 0.4;
1705 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13;
1706 tpar[1] = kYMC1MIN*kZ13;
1707 gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3);
1708 gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3);
1709
1710
1711// chamber type B
1712 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13;
1713 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13;
1714
1715 const Float_t kXMC3B=kXMC1B*kZ13;
1716 const Float_t kYMC3Bp=kYMC1Bp*kZ13;
1717 const Float_t kYMC3Bm=kYMC1Bm*kZ13;
1718 gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3);
1719 gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3);
1720 gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3);
1721 gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3);
1722
1723
1724// chamber type C (end of type B !!)
1725 tpar[0] = (kXMC1MAX/2)*kZ13;
1726 tpar[1] = (kYMC1MAX/2)*kZ13;
1727
1728 const Float_t kXMC3C=kXMC1C*kZ13;
1729 const Float_t kYMC3Cp=kYMC1Cp*kZ13;
1730 const Float_t kYMC3Cm=kYMC1Cm*kZ13;
1731 gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3);
1732 gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3);
1733 gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3);
1734 gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3);
1735
1736
1737// chamber type D, E and F (same size)
1738
1739 tpar[0] = (kXMC1MAX/2.)*kZ13;
1740 tpar[1] = kYMC1MIN*kZ13;
1741
1742 const Float_t kXMC3D=kXMC1D*kZ13;
1743 const Float_t kYMC3Dp=kYMC1Dp*kZ13;
1744 const Float_t kYMC3Dm=kYMC1Dm*kZ13;
1745 gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3);
1746 gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3);
1747 gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3);
1748 gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3);
1749
1750 const Float_t kYMC3Ep=kYMC1Ep*kZ13;
1751 const Float_t kYMC3Em=kYMC1Em*kZ13;
1752 gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3);
1753 gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3);
1754 gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3);
1755 gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3);
1756
1757 const Float_t kYMC3Fp=kYMC1Fp*kZ13;
1758 const Float_t kYMC3Fm=kYMC1Fm*kZ13;
1759 gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3);
1760 gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3);
1761 gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3);
1762 gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3);
1763
1764
1765// Positioning first plane of station 2 in ALICE
1766
1767 gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY");
1768
1769// End of geometry definition for the first plane of station 2
1770
1771
1772
1773
1774// SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1
1775
1776 const Float_t kZ14=zpos4/zpos1;
1777
1778// Definition of prototype for chambers in the second plane of station 2
1779
1780 tpar[0]= 0.;
1781 tpar[1]= 0.;
1782 tpar[2]= 0.;
1783
1784 gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al
1785 gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1786 gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1787
1788// chamber type A
1789 tpar[0] = -1.;
1790 tpar[1] = -1.;
1791
1792 const Float_t kXMC4A=kXMC1A*kZ14;
1793 const Float_t kYMC4Am=0.;
1794 const Float_t kYMC4Ap=0.;
1795
1796 tpar[2] = 0.1;
1797 gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3);
1798 tpar[2] = 0.3;
1799 gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3);
1800
1801 tpar[2] = 0.4;
1802 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14;
1803 tpar[1] = kYMC1MIN*kZ14;
1804 gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3);
1805 gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3);
1806
1807
1808// chamber type B
1809 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14;
1810 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14;
1811
1812 const Float_t kXMC4B=kXMC1B*kZ14;
1813 const Float_t kYMC4Bp=kYMC1Bp*kZ14;
1814 const Float_t kYMC4Bm=kYMC1Bm*kZ14;
1815 gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3);
1816 gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3);
1817 gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3);
1818 gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3);
1819
1820
1821// chamber type C (end of type B !!)
1822 tpar[0] =(kXMC1MAX/2)*kZ14;
1823 tpar[1] = (kYMC1MAX/2)*kZ14;
1824
1825 const Float_t kXMC4C=kXMC1C*kZ14;
1826 const Float_t kYMC4Cp=kYMC1Cp*kZ14;
1827 const Float_t kYMC4Cm=kYMC1Cm*kZ14;
1828 gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3);
1829 gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3);
1830 gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3);
1831 gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3);
1832
1833
1834// chamber type D, E and F (same size)
1835 tpar[0] = (kXMC1MAX/2.)*kZ14;
1836 tpar[1] = kYMC1MIN*kZ14;
1837
1838 const Float_t kXMC4D=kXMC1D*kZ14;
1839 const Float_t kYMC4Dp=kYMC1Dp*kZ14;
1840 const Float_t kYMC4Dm=kYMC1Dm*kZ14;
1841 gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3);
1842 gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3);
1843 gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3);
1844 gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3);
1845
1846 const Float_t kYMC4Ep=kYMC1Ep*kZ14;
1847 const Float_t kYMC4Em=kYMC1Em*kZ14;
1848 gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3);
1849 gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3);
1850 gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3);
1851 gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3);
1852
1853 const Float_t kYMC4Fp=kYMC1Fp*kZ14;
1854 const Float_t kYMC4Fm=kYMC1Fm*kZ14;
1855 gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3);
1856 gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3);
1857 gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3);
1858 gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3);
1859
1860
1861// Positioning second plane of station 2 in ALICE
1862
1863 gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY");
1864
1865// End of geometry definition for the second plane of station 2
1866
1867// End of trigger geometry definition
1868
1869}
1870
1871
1872
1873//___________________________________________
1874void AliMUONv1::CreateMaterials()
1875{
1876 // *** DEFINITION OF AVAILABLE MUON MATERIALS ***
1877 //
b64652f5 1878 // Ar-CO2 gas (80%+20%)
a9e2aefa 1879 Float_t ag1[3] = { 39.95,12.01,16. };
1880 Float_t zg1[3] = { 18.,6.,8. };
1881 Float_t wg1[3] = { .8,.0667,.13333 };
1882 Float_t dg1 = .001821;
1883 //
1884 // Ar-buthane-freon gas -- trigger chambers
1885 Float_t atr1[4] = { 39.95,12.01,1.01,19. };
1886 Float_t ztr1[4] = { 18.,6.,1.,9. };
1887 Float_t wtr1[4] = { .56,.1262857,.2857143,.028 };
1888 Float_t dtr1 = .002599;
1889 //
1890 // Ar-CO2 gas
1891 Float_t agas[3] = { 39.95,12.01,16. };
1892 Float_t zgas[3] = { 18.,6.,8. };
1893 Float_t wgas[3] = { .74,.086684,.173316 };
1894 Float_t dgas = .0018327;
1895 //
1896 // Ar-Isobutane gas (80%+20%) -- tracking
1897 Float_t ag[3] = { 39.95,12.01,1.01 };
1898 Float_t zg[3] = { 18.,6.,1. };
1899 Float_t wg[3] = { .8,.057,.143 };
1900 Float_t dg = .0019596;
1901 //
1902 // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger
1903 Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
1904 Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
1905 Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
1906 Float_t dtrig = .0031463;
1907 //
1908 // bakelite
1909
1910 Float_t abak[3] = {12.01 , 1.01 , 16.};
1911 Float_t zbak[3] = {6. , 1. , 8.};
1912 Float_t wbak[3] = {6. , 6. , 1.};
1913 Float_t dbak = 1.4;
1914
1915 Float_t epsil, stmin, deemax, tmaxfd, stemax;
1916
1917 Int_t iSXFLD = gAlice->Field()->Integ();
1918 Float_t sXMGMX = gAlice->Field()->Max();
1919 //
1920 // --- Define the various materials for GEANT ---
1921 AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1922 AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1923 AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500);
1924 AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
1925 AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
1926 AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
1927 AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
1928 AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
1929 AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
1e8fff9c 1930 // materials for slat:
1931 // Sensitive area: gas (already defined)
1932 // PCB: copper
1933 // insulating material and frame: vetronite
1934 // walls: carbon, rohacell, carbon
1935 Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.};
1936 Float_t zglass[5]={ 6., 14., 8., 5., 11.};
1937 Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01};
1938 Float_t dglass=1.74;
1939
1940 // rohacell: C9 H13 N1 O2
1941 Float_t arohac[4] = {12.01, 1.01, 14.010, 16.};
1942 Float_t zrohac[4] = { 6., 1., 7., 8.};
1943 Float_t wrohac[4] = { 9., 13., 1., 2.};
1944 Float_t drohac = 0.03;
1945
1946 AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.);
1947 AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass);
1948 AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9);
1949 AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac);
1950
a9e2aefa 1951
1952 epsil = .001; // Tracking precision,
1953 stemax = -1.; // Maximum displacement for multiple scat
1954 tmaxfd = -20.; // Maximum angle due to field deflection
1955 deemax = -.3; // Maximum fractional energy loss, DLS
1956 stmin = -.8;
1957 //
1958 // Air
1959 AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1960 //
1961 // Aluminum
1962
1963 AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1964 fMaxDestepAlu, epsil, stmin);
1965 AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1966 fMaxDestepAlu, epsil, stmin);
1967 //
1968 // Ar-isoC4H10 gas
1969
1970 AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1971 fMaxDestepGas, epsil, stmin);
1972//
1973 // Ar-Isobuthane-Forane-SF6 gas
1974
1975 AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1976
1977 AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1978 fMaxDestepAlu, epsil, stmin);
1979
1980 AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1981 fMaxDestepAlu, epsil, stmin);
1e8fff9c 1982 // tracking media for slats: check the parameters!!
1983 AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd,
1984 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1985 AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd,
1986 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1987 AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd,
1988 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1989 AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd,
1990 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
a9e2aefa 1991}
1992
1993//___________________________________________
1994
1995void AliMUONv1::Init()
1996{
1997 //
1998 // Initialize Tracking Chambers
1999 //
2000
9e1a0ddb 2001 if(fDebug) printf("\n%s: Start Init for version 1 - CPC chamber type\n\n",ClassName());
e17592e9 2002 Int_t i;
f665c1ea 2003 for (i=0; i<AliMUONConstants::NCh(); i++) {
a9e2aefa 2004 ( (AliMUONChamber*) (*fChambers)[i])->Init();
2005 }
2006
2007 //
2008 // Set the chamber (sensitive region) GEANT identifier
2009 AliMC* gMC = AliMC::GetMC();
2010 ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G"));
2011 ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G"));
b17c0c87 2012
a9e2aefa 2013 ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G"));
2014 ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G"));
b17c0c87 2015
1e8fff9c 2016 ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G"));
2017 ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G"));
b17c0c87 2018
1e8fff9c 2019 ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G"));
2020 ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G"));
b17c0c87 2021
1e8fff9c 2022 ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G"));
2023 ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G"));
b17c0c87 2024
a9e2aefa 2025 ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A"));
2026 ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A"));
2027 ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A"));
2028 ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A"));
2029
9e1a0ddb 2030 if(fDebug) printf("\n%s: Finished Init for version 1 - CPC chamber type\n",ClassName());
a9e2aefa 2031
2032 //cp
9e1a0ddb 2033 if(fDebug) printf("\n%s: Start Init for Trigger Circuits\n",ClassName());
f665c1ea 2034 for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) {
a9e2aefa 2035 ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i);
2036 }
9e1a0ddb 2037 if(fDebug) printf("%s: Finished Init for Trigger Circuits\n",ClassName());
a9e2aefa 2038 //cp
2039
2040}
2041
2042//___________________________________________
2043void AliMUONv1::StepManager()
2044{
2045 Int_t copy, id;
2046 static Int_t idvol;
2047 static Int_t vol[2];
2048 Int_t ipart;
2049 TLorentzVector pos;
2050 TLorentzVector mom;
2051 Float_t theta,phi;
2052 Float_t destep, step;
681d067b 2053
1e8fff9c 2054 static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength;
2eb55fab 2055 const Float_t kBig = 1.e10;
a9e2aefa 2056 static Float_t hits[15];
2057
2058 TClonesArray &lhits = *fHits;
2059
2060 //
a9e2aefa 2061 //
2062 // Only charged tracks
2063 if( !(gMC->TrackCharge()) ) return;
2064 //
2065 // Only gas gap inside chamber
2066 // Tag chambers and record hits when track enters
2067 idvol=-1;
2068 id=gMC->CurrentVolID(copy);
2069
2eb55fab 2070 for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) {
a9e2aefa 2071 if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){
2eb55fab 2072 vol[0] = i;
2073 idvol = i-1;
a9e2aefa 2074 }
2075 }
2076 if (idvol == -1) return;
2077 //
2078 // Get current particle id (ipart), track position (pos) and momentum (mom)
2079 gMC->TrackPosition(pos);
2080 gMC->TrackMomentum(mom);
2081
2082 ipart = gMC->TrackPid();
a9e2aefa 2083
2084 //
2085 // momentum loss and steplength in last step
2086 destep = gMC->Edep();
2087 step = gMC->TrackStep();
2088
2089 //
2090 // record hits when track enters ...
2091 if( gMC->IsTrackEntering()) {
2092 gMC->SetMaxStep(fMaxStepGas);
2093 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
2094 Double_t rt = TMath::Sqrt(tc);
2095 Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]);
2eb55fab 2096 Double_t tx = mom[0]/pmom;
2097 Double_t ty = mom[1]/pmom;
2098 Double_t tz = mom[2]/pmom;
2099 Double_t s = ((AliMUONChamber*)(*fChambers)[idvol])
a9e2aefa 2100 ->ResponseModel()
2101 ->Pitch()/tz;
2102 theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
2103 phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
2104 hits[0] = Float_t(ipart); // Geant3 particle type
2eb55fab 2105 hits[1] = pos[0]+s*tx; // X-position for hit
2106 hits[2] = pos[1]+s*ty; // Y-position for hit
2107 hits[3] = pos[2]+s*tz; // Z-position for hit
a9e2aefa 2108 hits[4] = theta; // theta angle of incidence
2109 hits[5] = phi; // phi angle of incidence
2eb55fab 2110 hits[8] = (Float_t) fNPadHits; // first padhit
a9e2aefa 2111 hits[9] = -1; // last pad hit
2eb55fab 2112 hits[10] = mom[3]; // hit momentum P
2113 hits[11] = mom[0]; // Px
2114 hits[12] = mom[1]; // Py
2115 hits[13] = mom[2]; // Pz
a9e2aefa 2116 tof=gMC->TrackTime();
2eb55fab 2117 hits[14] = tof; // Time of flight
2118 tlength = 0;
2119 eloss = 0;
2120 eloss2 = 0;
2121 xhit = pos[0];
2122 yhit = pos[1];
2123 zhit = pos[2];
681d067b 2124 Chamber(idvol).ChargeCorrelationInit();
a9e2aefa 2125 // Only if not trigger chamber
1e8fff9c 2126
2127
2128
2129
2eb55fab 2130 if(idvol < AliMUONConstants::NTrackingCh()) {
a9e2aefa 2131 //
2132 // Initialize hit position (cursor) in the segmentation model
2133 ((AliMUONChamber*) (*fChambers)[idvol])
2134 ->SigGenInit(pos[0], pos[1], pos[2]);
2135 } else {
2136 //geant3->Gpcxyz();
2137 //printf("In the Trigger Chamber #%d\n",idvol-9);
2138 }
2139 }
2140 eloss2+=destep;
2141
2142 //
2143 // Calculate the charge induced on a pad (disintegration) in case
2144 //
2145 // Mip left chamber ...
2146 if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
2147 gMC->SetMaxStep(kBig);
2148 eloss += destep;
2149 tlength += step;
2150
802a864d 2151 Float_t x0,y0,z0;
2152 Float_t localPos[3];
2153 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
802a864d 2154 gMC->Gmtod(globalPos,localPos,1);
2155
2eb55fab 2156 if(idvol < AliMUONConstants::NTrackingCh()) {
a9e2aefa 2157// tracking chambers
2158 x0 = 0.5*(xhit+pos[0]);
2159 y0 = 0.5*(yhit+pos[1]);
1e8fff9c 2160 z0 = 0.5*(zhit+pos[2]);
a9e2aefa 2161 } else {
2162// trigger chambers
2eb55fab 2163 x0 = xhit;
2164 y0 = yhit;
2165 z0 = 0.;
a9e2aefa 2166 }
2167
1e8fff9c 2168
802a864d 2169 if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol);
a9e2aefa 2170
2171
2eb55fab 2172 hits[6] = tlength; // track length
2173 hits[7] = eloss2; // de/dx energy loss
2174
a9e2aefa 2175 if (fNPadHits > (Int_t)hits[8]) {
2eb55fab 2176 hits[8] = hits[8]+1;
2177 hits[9] = (Float_t) fNPadHits;
a9e2aefa 2178 }
2eb55fab 2179//
2180// new hit
2181
a9e2aefa 2182 new(lhits[fNhits++])
2eb55fab 2183 AliMUONHit(fIshunt, gAlice->CurrentTrack(), vol,hits);
a9e2aefa 2184 eloss = 0;
2185 //
2186 // Check additional signal generation conditions
2187 // defined by the segmentation
a75f073c 2188 // model (boundary crossing conditions)
2189 // only for tracking chambers
a9e2aefa 2190 } else if
a75f073c 2191 ((idvol < AliMUONConstants::NTrackingCh()) &&
2192 ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2]))
a9e2aefa 2193 {
2194 ((AliMUONChamber*) (*fChambers)[idvol])
2195 ->SigGenInit(pos[0], pos[1], pos[2]);
802a864d 2196
2197 Float_t localPos[3];
2198 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
2199 gMC->Gmtod(globalPos,localPos,1);
2200
e0f71fb7 2201 eloss += destep;
802a864d 2202
a75f073c 2203 if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh())
1e8fff9c 2204 MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol);
a9e2aefa 2205 xhit = pos[0];
2206 yhit = pos[1];
e0f71fb7 2207 zhit = pos[2];
2208 eloss = 0;
a9e2aefa 2209 tlength += step ;
2210 //
2211 // nothing special happened, add up energy loss
2212 } else {
2213 eloss += destep;
2214 tlength += step ;
2215 }
2216}
2217
2218