a9e2aefa |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
2c799aa2 |
12 | * about the suitability of this software for any purpeateose. It is * |
a9e2aefa |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
16 | /* |
17 | $Log$ |
a083207d |
18 | Revision 1.17 2000/11/24 12:57:10 morsch |
19 | New version of geometry for stations 3-5 "Slats" (A. de Falco) |
20 | - sensitive region at station 3 inner radius |
21 | - improved volume tree structure |
22 | |
3c084d9f |
23 | Revision 1.16 2000/11/08 13:01:40 morsch |
24 | Chamber half-planes of stations 3-5 at different z-positions. |
25 | |
e1ad7d45 |
26 | Revision 1.15 2000/11/06 11:39:02 morsch |
27 | Bug in StepManager() corrected. |
28 | |
e3cf5faa |
29 | Revision 1.14 2000/11/06 09:16:50 morsch |
30 | Avoid overlap of slat volumes. |
31 | |
2c799aa2 |
32 | Revision 1.13 2000/10/26 07:33:44 morsch |
33 | Correct x-position of slats in station 5. |
34 | |
8013c580 |
35 | Revision 1.12 2000/10/25 19:55:35 morsch |
36 | Switches for each station individually for debug and lego. |
37 | |
b17c0c87 |
38 | Revision 1.11 2000/10/22 16:44:01 morsch |
39 | Update of slat geometry for stations 3,4,5 (A. deFalco) |
40 | |
f9f7c205 |
41 | Revision 1.10 2000/10/12 16:07:04 gosset |
42 | StepManager: |
43 | * SigGenCond only called for tracking chambers, |
44 | hence no more division by 0, |
45 | and may use last ALIROOT/dummies.C with exception handling; |
46 | * "10" replaced by "AliMUONConstants::NTrackingCh()". |
47 | |
a75f073c |
48 | Revision 1.9 2000/10/06 15:37:22 morsch |
49 | Problems with variable redefinition in for-loop solved. |
50 | Variable names starting with u-case letters changed to l-case. |
51 | |
6c5ddcfa |
52 | Revision 1.8 2000/10/06 09:06:31 morsch |
53 | Include Slat chambers (stations 3-5) into geometry (A. de Falco) |
54 | |
1e8fff9c |
55 | Revision 1.7 2000/10/02 21:28:09 fca |
56 | Removal of useless dependecies via forward declarations |
57 | |
94de3818 |
58 | Revision 1.6 2000/10/02 17:20:45 egangler |
59 | Cleaning of the code (continued ) : |
60 | -> coding conventions |
61 | -> void Streamers |
62 | -> some useless includes removed or replaced by "class" statement |
63 | |
8c449e83 |
64 | Revision 1.5 2000/06/28 15:16:35 morsch |
65 | (1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there) |
66 | to allow development of slat-muon chamber simulation and reconstruction code in the MUON |
67 | framework. The changes should have no side effects (mostly dummy arguments). |
68 | (2) Hit disintegration uses 3-dim hit coordinates to allow simulation |
69 | of chambers with overlapping modules (MakePadHits, Disintegration). |
70 | |
802a864d |
71 | Revision 1.4 2000/06/26 14:02:38 morsch |
72 | Add class AliMUONConstants with MUON specific constants using static memeber data and access methods. |
73 | |
f665c1ea |
74 | Revision 1.3 2000/06/22 14:10:05 morsch |
75 | HP scope problems corrected (PH) |
76 | |
e17592e9 |
77 | Revision 1.2 2000/06/15 07:58:49 morsch |
78 | Code from MUON-dev joined |
79 | |
a9e2aefa |
80 | Revision 1.1.2.14 2000/06/14 14:37:25 morsch |
81 | Initialization of TriggerCircuit added (PC) |
82 | |
83 | Revision 1.1.2.13 2000/06/09 21:55:47 morsch |
84 | Most coding rule violations corrected. |
85 | |
86 | Revision 1.1.2.12 2000/05/05 11:34:29 morsch |
87 | Log inside comments. |
88 | |
89 | Revision 1.1.2.11 2000/05/05 10:06:48 morsch |
90 | Coding Rule violations regarding trigger section corrected (CP) |
91 | Log messages included. |
92 | */ |
93 | |
94 | ///////////////////////////////////////////////////////// |
95 | // Manager and hits classes for set:MUON version 0 // |
96 | ///////////////////////////////////////////////////////// |
97 | |
98 | #include <TTUBE.h> |
99 | #include <TNode.h> |
100 | #include <TRandom.h> |
101 | #include <TLorentzVector.h> |
102 | #include <iostream.h> |
103 | |
104 | #include "AliMUONv1.h" |
105 | #include "AliRun.h" |
106 | #include "AliMC.h" |
94de3818 |
107 | #include "AliMagF.h" |
a9e2aefa |
108 | #include "AliCallf77.h" |
109 | #include "AliConst.h" |
110 | #include "AliMUONChamber.h" |
111 | #include "AliMUONHit.h" |
112 | #include "AliMUONPadHit.h" |
f665c1ea |
113 | #include "AliMUONConstants.h" |
8c449e83 |
114 | #include "AliMUONTriggerCircuit.h" |
a9e2aefa |
115 | |
116 | ClassImp(AliMUONv1) |
117 | |
118 | //___________________________________________ |
119 | AliMUONv1::AliMUONv1() : AliMUON() |
120 | { |
121 | // Constructor |
122 | fChambers = 0; |
123 | } |
124 | |
125 | //___________________________________________ |
126 | AliMUONv1::AliMUONv1(const char *name, const char *title) |
127 | : AliMUON(name,title) |
128 | { |
129 | // Constructor |
130 | } |
131 | |
132 | //___________________________________________ |
133 | void AliMUONv1::CreateGeometry() |
134 | { |
135 | // |
136 | // Note: all chambers have the same structure, which could be |
137 | // easily parameterised. This was intentionally not done in order |
138 | // to give a starting point for the implementation of the actual |
139 | // design of each station. |
140 | Int_t *idtmed = fIdtmed->GetArray()-1099; |
141 | |
142 | // Distance between Stations |
143 | // |
144 | Float_t bpar[3]; |
145 | Float_t tpar[3]; |
146 | Float_t pgpar[10]; |
147 | Float_t zpos1, zpos2, zfpos; |
148 | Float_t dframep=.001; // Value for station 3 should be 6 ... |
149 | Float_t dframep1=.001; |
150 | // Bool_t frames=kTRUE; |
151 | Bool_t frames=kFALSE; |
152 | |
153 | Float_t dframez=0.9; |
154 | Float_t dr; |
155 | Float_t dstation; |
156 | |
157 | // |
158 | // Rotation matrices in the x-y plane |
159 | Int_t idrotm[1199]; |
160 | // phi= 0 deg |
161 | AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.); |
162 | // phi= 90 deg |
163 | AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.); |
164 | // phi= 180 deg |
165 | AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.); |
166 | // phi= 270 deg |
167 | AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.); |
168 | // |
169 | Float_t phi=2*TMath::Pi()/12/2; |
170 | |
171 | // |
172 | // pointer to the current chamber |
173 | // pointer to the current chamber |
174 | Int_t idAlu1=idtmed[1103]; |
175 | Int_t idAlu2=idtmed[1104]; |
176 | // Int_t idAlu1=idtmed[1100]; |
177 | // Int_t idAlu2=idtmed[1100]; |
178 | Int_t idAir=idtmed[1100]; |
179 | Int_t idGas=idtmed[1105]; |
180 | |
181 | |
182 | AliMUONChamber *iChamber, *iChamber1, *iChamber2; |
b17c0c87 |
183 | Int_t stations[5] = {1, 1, 1, 1, 1}; |
184 | |
185 | if (stations[0]) { |
186 | |
a9e2aefa |
187 | //******************************************************************** |
188 | // Station 1 ** |
189 | //******************************************************************** |
190 | // CONCENTRIC |
191 | // indices 1 and 2 for first and second chambers in the station |
192 | // iChamber (first chamber) kept for other quanties than Z, |
193 | // assumed to be the same in both chambers |
194 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0]; |
195 | iChamber2 =(AliMUONChamber*) (*fChambers)[1]; |
196 | zpos1=iChamber1->Z(); |
197 | zpos2=iChamber2->Z(); |
198 | dstation = zpos2 - zpos1; |
199 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
200 | |
201 | // |
202 | // Mother volume |
203 | tpar[0] = iChamber->RInner()-dframep1; |
204 | tpar[1] = (iChamber->ROuter()+dframep1)/TMath::Cos(phi); |
2c799aa2 |
205 | tpar[2] = dstation/5; |
a9e2aefa |
206 | |
207 | gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3); |
208 | gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3); |
209 | gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
1e8fff9c |
210 | gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
a9e2aefa |
211 | // Aluminium frames |
212 | // Outer frames |
213 | pgpar[0] = 360/12/2; |
214 | pgpar[1] = 360.; |
215 | pgpar[2] = 12.; |
216 | pgpar[3] = 2; |
217 | pgpar[4] = -dframez/2; |
218 | pgpar[5] = iChamber->ROuter(); |
219 | pgpar[6] = pgpar[5]+dframep1; |
220 | pgpar[7] = +dframez/2; |
221 | pgpar[8] = pgpar[5]; |
222 | pgpar[9] = pgpar[6]; |
223 | gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10); |
224 | gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10); |
225 | gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); |
226 | gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); |
227 | gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); |
228 | gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); |
229 | // |
230 | // Inner frame |
231 | tpar[0]= iChamber->RInner()-dframep1; |
232 | tpar[1]= iChamber->RInner(); |
233 | tpar[2]= dframez/2; |
234 | gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3); |
235 | gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3); |
236 | |
237 | gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); |
238 | gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); |
239 | gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); |
240 | gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); |
241 | // |
242 | // Frame Crosses |
243 | if (frames) { |
244 | |
245 | bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2; |
246 | bpar[1] = dframep1/2; |
247 | bpar[2] = dframez/2; |
248 | gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3); |
249 | gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3); |
250 | |
251 | gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
252 | idrotm[1100],"ONLY"); |
253 | gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
254 | idrotm[1100],"ONLY"); |
255 | gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
256 | idrotm[1101],"ONLY"); |
257 | gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
258 | idrotm[1101],"ONLY"); |
259 | gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
260 | idrotm[1100],"ONLY"); |
261 | gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
262 | idrotm[1100],"ONLY"); |
263 | gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
264 | idrotm[1101],"ONLY"); |
265 | gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
266 | idrotm[1101],"ONLY"); |
267 | |
268 | gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
269 | idrotm[1100],"ONLY"); |
270 | gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
271 | idrotm[1100],"ONLY"); |
272 | gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
273 | idrotm[1101],"ONLY"); |
274 | gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
275 | idrotm[1101],"ONLY"); |
276 | gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
277 | idrotm[1100],"ONLY"); |
278 | gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
279 | idrotm[1100],"ONLY"); |
280 | gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
281 | idrotm[1101],"ONLY"); |
282 | gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
283 | idrotm[1101],"ONLY"); |
284 | } |
285 | // |
286 | // Chamber Material represented by Alu sheet |
287 | tpar[0]= iChamber->RInner(); |
288 | tpar[1]= iChamber->ROuter(); |
289 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
290 | gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3); |
291 | gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3); |
292 | gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY"); |
293 | gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY"); |
294 | // |
295 | // Sensitive volumes |
296 | // tpar[2] = iChamber->DGas(); |
297 | tpar[2] = iChamber->DGas()/2; |
298 | gMC->Gsvolu("C01G", "TUBE", idtmed[1108], tpar, 3); |
299 | gMC->Gsvolu("C02G", "TUBE", idtmed[1108], tpar, 3); |
300 | gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY"); |
301 | gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY"); |
302 | // |
303 | // Frame Crosses to be placed inside gas |
304 | if (frames) { |
305 | |
306 | dr = (iChamber->ROuter() - iChamber->RInner()); |
307 | bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; |
308 | bpar[1] = dframep1/2; |
309 | bpar[2] = iChamber->DGas()/2; |
310 | gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3); |
311 | gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3); |
312 | |
313 | gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0, |
314 | idrotm[1100],"ONLY"); |
315 | gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0, |
316 | idrotm[1100],"ONLY"); |
317 | gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0, |
318 | idrotm[1101],"ONLY"); |
319 | gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0, |
320 | idrotm[1101],"ONLY"); |
321 | |
322 | gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0, |
323 | idrotm[1100],"ONLY"); |
324 | gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0, |
325 | idrotm[1100],"ONLY"); |
326 | gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0, |
327 | idrotm[1101],"ONLY"); |
328 | gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0, |
329 | idrotm[1101],"ONLY"); |
330 | } |
b17c0c87 |
331 | } |
332 | if (stations[1]) { |
333 | |
a9e2aefa |
334 | //******************************************************************** |
335 | // Station 2 ** |
336 | //******************************************************************** |
337 | // indices 1 and 2 for first and second chambers in the station |
338 | // iChamber (first chamber) kept for other quanties than Z, |
339 | // assumed to be the same in both chambers |
340 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2]; |
341 | iChamber2 =(AliMUONChamber*) (*fChambers)[3]; |
342 | zpos1=iChamber1->Z(); |
343 | zpos2=iChamber2->Z(); |
344 | dstation = zpos2 - zpos1; |
345 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
346 | |
347 | // |
348 | // Mother volume |
349 | tpar[0] = iChamber->RInner()-dframep; |
350 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
2c799aa2 |
351 | tpar[2] = dstation/5; |
a9e2aefa |
352 | |
353 | gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3); |
354 | gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3); |
355 | gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
356 | gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
357 | |
a9e2aefa |
358 | // Aluminium frames |
359 | // Outer frames |
360 | pgpar[0] = 360/12/2; |
361 | pgpar[1] = 360.; |
362 | pgpar[2] = 12.; |
363 | pgpar[3] = 2; |
364 | pgpar[4] = -dframez/2; |
365 | pgpar[5] = iChamber->ROuter(); |
366 | pgpar[6] = pgpar[5]+dframep; |
367 | pgpar[7] = +dframez/2; |
368 | pgpar[8] = pgpar[5]; |
369 | pgpar[9] = pgpar[6]; |
370 | gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10); |
371 | gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10); |
372 | gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); |
373 | gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); |
374 | gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); |
375 | gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); |
376 | // |
377 | // Inner frame |
378 | tpar[0]= iChamber->RInner()-dframep; |
379 | tpar[1]= iChamber->RInner(); |
380 | tpar[2]= dframez/2; |
381 | gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3); |
382 | gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3); |
383 | |
384 | gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); |
385 | gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); |
386 | gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); |
387 | gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); |
388 | // |
389 | // Frame Crosses |
390 | if (frames) { |
391 | |
392 | bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2; |
393 | bpar[1] = dframep/2; |
394 | bpar[2] = dframez/2; |
395 | gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3); |
396 | gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3); |
397 | |
398 | gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
399 | idrotm[1100],"ONLY"); |
400 | gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
401 | idrotm[1100],"ONLY"); |
402 | gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
403 | idrotm[1101],"ONLY"); |
404 | gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
405 | idrotm[1101],"ONLY"); |
406 | gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
407 | idrotm[1100],"ONLY"); |
408 | gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
409 | idrotm[1100],"ONLY"); |
410 | gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
411 | idrotm[1101],"ONLY"); |
412 | gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
413 | idrotm[1101],"ONLY"); |
414 | |
415 | gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
416 | idrotm[1100],"ONLY"); |
417 | gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
418 | idrotm[1100],"ONLY"); |
419 | gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
420 | idrotm[1101],"ONLY"); |
421 | gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
422 | idrotm[1101],"ONLY"); |
423 | gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
424 | idrotm[1100],"ONLY"); |
425 | gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
426 | idrotm[1100],"ONLY"); |
427 | gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
428 | idrotm[1101],"ONLY"); |
429 | gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
430 | idrotm[1101],"ONLY"); |
431 | } |
432 | // |
433 | // Chamber Material represented by Alu sheet |
434 | tpar[0]= iChamber->RInner(); |
435 | tpar[1]= iChamber->ROuter(); |
436 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
437 | gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3); |
438 | gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3); |
439 | gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY"); |
440 | gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY"); |
441 | // |
442 | // Sensitive volumes |
443 | // tpar[2] = iChamber->DGas(); |
444 | tpar[2] = iChamber->DGas()/2; |
445 | gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3); |
446 | gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3); |
447 | gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY"); |
448 | gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY"); |
449 | |
450 | if (frames) { |
451 | // |
452 | // Frame Crosses to be placed inside gas |
453 | dr = (iChamber->ROuter() - iChamber->RInner()); |
454 | bpar[0] = TMath::Sqrt(dr*dr-dframep*dframep/4)/2; |
455 | bpar[1] = dframep/2; |
456 | bpar[2] = iChamber->DGas()/2; |
457 | gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3); |
458 | gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3); |
459 | |
460 | gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0, |
461 | idrotm[1100],"ONLY"); |
462 | gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0, |
463 | idrotm[1100],"ONLY"); |
464 | gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0, |
465 | idrotm[1101],"ONLY"); |
466 | gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0, |
467 | idrotm[1101],"ONLY"); |
468 | |
469 | gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0, |
470 | idrotm[1100],"ONLY"); |
471 | gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0, |
472 | idrotm[1100],"ONLY"); |
473 | gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0, |
474 | idrotm[1101],"ONLY"); |
475 | gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0, |
476 | idrotm[1101],"ONLY"); |
477 | } |
b17c0c87 |
478 | } |
1e8fff9c |
479 | // define the id of tracking media: |
480 | Int_t idCopper = idtmed[1110]; |
481 | Int_t idGlass = idtmed[1111]; |
482 | Int_t idCarbon = idtmed[1112]; |
483 | Int_t idRoha = idtmed[1113]; |
484 | |
1e8fff9c |
485 | // sensitive area: 40*40 cm**2 |
6c5ddcfa |
486 | const Float_t sensLength = 40.; |
487 | const Float_t sensHeight = 40.; |
488 | const Float_t sensWidth = 0.5; // according to TDR fig 2.120 |
489 | const Int_t sensMaterial = idGas; |
1e8fff9c |
490 | const Float_t yOverlap = 1.5; |
491 | |
492 | // PCB dimensions in cm; width: 30 mum copper |
6c5ddcfa |
493 | const Float_t pcbLength = sensLength; |
494 | const Float_t pcbHeight = 60.; |
495 | const Float_t pcbWidth = 0.003; |
496 | const Int_t pcbMaterial = idCopper; |
1e8fff9c |
497 | |
498 | // Insulating material: 200 mum glass fiber glued to pcb |
6c5ddcfa |
499 | const Float_t insuLength = pcbLength; |
500 | const Float_t insuHeight = pcbHeight; |
501 | const Float_t insuWidth = 0.020; |
502 | const Int_t insuMaterial = idGlass; |
1e8fff9c |
503 | |
504 | // Carbon fiber panels: 200mum carbon/epoxy skin |
6c5ddcfa |
505 | const Float_t panelLength = sensLength; |
506 | const Float_t panelHeight = sensHeight; |
507 | const Float_t panelWidth = 0.020; |
508 | const Int_t panelMaterial = idCarbon; |
1e8fff9c |
509 | |
510 | // rohacell between the two carbon panels |
6c5ddcfa |
511 | const Float_t rohaLength = sensLength; |
512 | const Float_t rohaHeight = sensHeight; |
513 | const Float_t rohaWidth = 0.5; |
514 | const Int_t rohaMaterial = idRoha; |
1e8fff9c |
515 | |
516 | // Frame around the slat: 2 sticks along length,2 along height |
517 | // H: the horizontal ones |
6c5ddcfa |
518 | const Float_t hFrameLength = pcbLength; |
519 | const Float_t hFrameHeight = 1.5; |
520 | const Float_t hFrameWidth = sensWidth; |
521 | const Int_t hFrameMaterial = idGlass; |
1e8fff9c |
522 | |
523 | // V: the vertical ones |
6c5ddcfa |
524 | const Float_t vFrameLength = 4.0; |
525 | const Float_t vFrameHeight = sensHeight + hFrameHeight; |
526 | const Float_t vFrameWidth = sensWidth; |
527 | const Int_t vFrameMaterial = idGlass; |
1e8fff9c |
528 | |
529 | // B: the horizontal border filled with rohacell |
6c5ddcfa |
530 | const Float_t bFrameLength = hFrameLength; |
531 | const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; |
532 | const Float_t bFrameWidth = hFrameWidth; |
533 | const Int_t bFrameMaterial = idRoha; |
1e8fff9c |
534 | |
535 | // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) |
6c5ddcfa |
536 | const Float_t nulocLength = 2.5; |
537 | const Float_t nulocHeight = 7.5; |
538 | const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite; |
539 | const Int_t nulocMaterial = idCopper; |
1e8fff9c |
540 | |
6c5ddcfa |
541 | const Float_t slatHeight = pcbHeight; |
542 | const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + |
543 | 2.* panelWidth + rohaWidth); |
544 | const Int_t slatMaterial = idAir; |
545 | const Float_t dSlatLength = vFrameLength; // border on left and right |
1e8fff9c |
546 | |
1e8fff9c |
547 | Float_t spar[3]; |
b17c0c87 |
548 | Int_t i, j; |
549 | |
3c084d9f |
550 | // the panel volume contains the rohacell |
551 | |
552 | Float_t twidth = 2 * panelWidth + rohaWidth; |
553 | Float_t panelpar[3] = { panelLength/2., panelHeight/2., twidth/2. }; |
b17c0c87 |
554 | Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; |
3c084d9f |
555 | |
556 | // insulating material contains PCB-> gas-> 2 borders filled with rohacell |
557 | |
558 | twidth = 2*(insuWidth + pcbWidth) + sensWidth; |
559 | Float_t insupar[3] = { insuLength/2., insuHeight/2., twidth/2. }; |
560 | twidth -= 2 * insuWidth; |
561 | Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., twidth/2. }; |
562 | Float_t senspar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; |
563 | Float_t theight = 2*hFrameHeight + sensHeight; |
564 | Float_t hFramepar[3]={hFrameLength/2., theight/2., hFrameWidth/2.}; |
b17c0c87 |
565 | Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; |
3c084d9f |
566 | Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; |
b17c0c87 |
567 | Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; |
b17c0c87 |
568 | Float_t xx; |
569 | Float_t xxmax = (bFrameLength - nulocLength)/2.; |
570 | Int_t index=0; |
571 | |
572 | if (stations[2]) { |
573 | |
574 | //******************************************************************** |
575 | // Station 3 ** |
576 | //******************************************************************** |
577 | // indices 1 and 2 for first and second chambers in the station |
578 | // iChamber (first chamber) kept for other quanties than Z, |
579 | // assumed to be the same in both chambers |
580 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4]; |
581 | iChamber2 =(AliMUONChamber*) (*fChambers)[5]; |
582 | zpos1=iChamber1->Z(); |
583 | zpos2=iChamber2->Z(); |
584 | dstation = zpos2 - zpos1; |
585 | |
586 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
587 | // |
588 | // Mother volume |
589 | tpar[0] = iChamber->RInner()-dframep; |
590 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
3c084d9f |
591 | tpar[2] = dstation/4; |
b17c0c87 |
592 | gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3); |
593 | gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3); |
594 | gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
595 | gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
596 | |
597 | // volumes for slat geometry (xx=5,..,10 chamber id): |
598 | // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes |
599 | // SxxG --> Sensitive volume (gas) |
600 | // SxxP --> PCB (copper) |
601 | // SxxI --> Insulator (vetronite) |
602 | // SxxC --> Carbon panel |
603 | // SxxR --> Rohacell |
604 | // SxxH, SxxV --> Horizontal and Vertical frames (vetronite) |
605 | |
606 | // slat dimensions: slat is a MOTHER volume!!! made of air |
607 | |
a083207d |
608 | const Int_t nSlats3 = 5; // number of slats per quadrant |
609 | const Int_t nPCB3[nSlats3] = {3,3,4,3,2}; // n PCB per slat |
610 | const Float_t xpos3[nSlats3] = {30., 40., 0., 0., 0.}; |
b17c0c87 |
611 | Float_t slatLength3[nSlats3]; |
612 | |
613 | // create and position the slat (mother) volumes |
614 | |
6c5ddcfa |
615 | char volNam5[5]; |
616 | char volNam6[5]; |
f9f7c205 |
617 | Float_t xSlat3; |
b17c0c87 |
618 | |
6c5ddcfa |
619 | for (i = 0; i<nSlats3; i++){ |
3c084d9f |
620 | slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength; |
a083207d |
621 | xSlat3 = slatLength3[i]/2. - vFrameLength/2. + xpos3[i]; |
622 | if (i==1) slatLength3[i] -= 2. *dSlatLength; // frame out in PCB with circular border |
623 | Float_t ySlat31 = sensHeight * i - yOverlap * i; |
624 | Float_t ySlat32 = -sensHeight * i + yOverlap * i; |
3c084d9f |
625 | spar[0] = slatLength3[i]/2.; |
626 | spar[1] = slatHeight/2.; |
627 | spar[2] = slatWidth/2. * 1.01; |
628 | Float_t dzCh3=spar[2] * 1.01; |
629 | // zSlat to be checked (odd downstream or upstream?) |
630 | Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; |
631 | sprintf(volNam5,"S05%d",i); |
632 | gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar,3); |
633 | gMC->Gspos(volNam5, i*4+1,"C05M", xSlat3, ySlat31, zSlat+2.*dzCh3, 0, "ONLY"); |
634 | gMC->Gspos(volNam5, i*4+2,"C05M",-xSlat3, ySlat31, zSlat-2.*dzCh3, 0, "ONLY"); |
a083207d |
635 | if (i>0) { |
636 | gMC->Gspos(volNam5, i*4+3,"C05M", xSlat3, ySlat32, zSlat+2.*dzCh3, 0, "ONLY"); |
637 | gMC->Gspos(volNam5, i*4+4,"C05M",-xSlat3, ySlat32, zSlat-2.*dzCh3, 0, "ONLY"); |
638 | } |
3c084d9f |
639 | sprintf(volNam6,"S06%d",i); |
640 | gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3); |
641 | gMC->Gspos(volNam6, i*4+1,"C06M", xSlat3, ySlat31, zSlat+2.*dzCh3, 0, "ONLY"); |
642 | gMC->Gspos(volNam6, i*4+2,"C06M",-xSlat3, ySlat31, zSlat-2.*dzCh3, 0, "ONLY"); |
a083207d |
643 | if (i>0) { |
644 | gMC->Gspos(volNam6, i*4+3,"C06M", xSlat3, ySlat32, zSlat+2.*dzCh3, 0, "ONLY"); |
645 | gMC->Gspos(volNam6, i*4+4,"C06M",-xSlat3, ySlat32, zSlat-2.*dzCh3, 0, "ONLY"); |
646 | } |
3c084d9f |
647 | } |
1e8fff9c |
648 | |
649 | // create the panel volume |
b17c0c87 |
650 | |
6c5ddcfa |
651 | gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3); |
652 | gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3); |
1e8fff9c |
653 | |
654 | // create the rohacell volume |
b17c0c87 |
655 | |
6c5ddcfa |
656 | gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3); |
657 | gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
658 | |
3c084d9f |
659 | // create the insulating material volume |
660 | |
661 | gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3); |
662 | gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3); |
663 | |
664 | // create the PCB volume |
665 | |
666 | gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3); |
667 | gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3); |
668 | |
669 | // create the sensitive volumes, |
670 | gMC->Gsvolu("S05G","BOX",sensMaterial,0,0); |
671 | gMC->Gsvolu("S06G","BOX",sensMaterial,0,0); |
672 | |
673 | |
1e8fff9c |
674 | // create the vertical frame volume |
b17c0c87 |
675 | |
6c5ddcfa |
676 | gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3); |
677 | gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
678 | |
679 | // create the horizontal frame volume |
b17c0c87 |
680 | |
6c5ddcfa |
681 | gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3); |
682 | gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
683 | |
684 | // create the horizontal border volume |
b17c0c87 |
685 | |
6c5ddcfa |
686 | gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3); |
687 | gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
688 | |
b17c0c87 |
689 | index=0; |
6c5ddcfa |
690 | for (i = 0; i<nSlats3; i++){ |
691 | sprintf(volNam5,"S05%d",i); |
692 | sprintf(volNam6,"S06%d",i); |
f9f7c205 |
693 | Float_t xvFrame = (slatLength3[i] - vFrameLength)/2.; |
3c084d9f |
694 | // position the vertical frames |
a083207d |
695 | if (i!=1) { |
3c084d9f |
696 | gMC->Gspos("S05V",2*i-1,volNam5, xvFrame, 0., 0. , 0, "ONLY"); |
697 | gMC->Gspos("S05V",2*i ,volNam5,-xvFrame, 0., 0. , 0, "ONLY"); |
698 | gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY"); |
699 | gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY"); |
700 | } |
701 | // position the panels and the insulating material |
6c5ddcfa |
702 | for (j=0; j<nPCB3[i]; j++){ |
1e8fff9c |
703 | index++; |
6c5ddcfa |
704 | Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5); |
3c084d9f |
705 | |
706 | Float_t zPanel = spar[2] - panelpar[2]; |
707 | gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY"); |
708 | gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY"); |
709 | gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY"); |
710 | gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY"); |
711 | |
712 | gMC->Gspos("S05I",index,volNam5, xx, 0., 0 , 0, "ONLY"); |
713 | gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
714 | } |
a9e2aefa |
715 | } |
a9e2aefa |
716 | |
3c084d9f |
717 | // position the rohacell volume inside the panel volume |
718 | gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY"); |
719 | gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY"); |
720 | |
721 | // position the PCB volume inside the insulating material volume |
722 | gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); |
723 | gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); |
724 | // position the horizontal frame volume inside the PCB volume |
725 | gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); |
726 | gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); |
727 | // position the sensitive volume inside the horizontal frame volume |
728 | gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); |
729 | gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); |
730 | // position the border volumes inside the PCB volume |
731 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
732 | gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); |
733 | gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); |
734 | gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); |
735 | gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); |
736 | |
1e8fff9c |
737 | // create the NULOC volume and position it in the horizontal frame |
b17c0c87 |
738 | |
6c5ddcfa |
739 | gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3); |
740 | gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3); |
6c5ddcfa |
741 | index = 0; |
6c5ddcfa |
742 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
743 | index++; |
6c5ddcfa |
744 | gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
745 | gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
746 | gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
747 | gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
748 | } |
3c084d9f |
749 | |
750 | // position the volumes approximating the circular section of the pipe |
a083207d |
751 | Float_t yoffs = sensHeight/2. - yOverlap; |
3c084d9f |
752 | Float_t epsilon = 0.001; |
753 | Int_t ndiv=6; |
754 | Float_t divpar[3]; |
755 | Double_t dydiv= sensHeight/ndiv; |
a083207d |
756 | Double_t ydiv = yoffs -dydiv - yOverlap/2.; |
3c084d9f |
757 | Int_t imax=0; |
758 | // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat]; |
759 | imax = 1; |
760 | Float_t rmin = 35.; |
a083207d |
761 | Float_t z1 = spar[2], z2=2*spar[2]*1.01; |
3c084d9f |
762 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
763 | ydiv+= dydiv; |
425ebd0a |
764 | Float_t xdiv = 0.; |
3c084d9f |
765 | if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ); |
766 | divpar[0] = (pcbLength-xdiv)/2.; |
767 | divpar[1] = dydiv/2. - epsilon; |
768 | divpar[2] = sensWidth/2.; |
425ebd0a |
769 | Float_t xvol=(pcbLength+xdiv)/2.+1.999; |
a083207d |
770 | Float_t yvol=ydiv + dydiv/2.; |
3c084d9f |
771 | gMC->Gsposp("S05G",imax+4*idiv+1,"C05M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
772 | gMC->Gsposp("S06G",imax+4*idiv+1,"C06M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
a083207d |
773 | gMC->Gsposp("S05G",imax+4*idiv+2,"C05M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
774 | gMC->Gsposp("S06G",imax+4*idiv+2,"C06M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
775 | gMC->Gsposp("S05G",imax+4*idiv+3,"C05M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
776 | gMC->Gsposp("S06G",imax+4*idiv+3,"C06M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
777 | gMC->Gsposp("S05G",imax+4*idiv+4,"C05M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
778 | gMC->Gsposp("S06G",imax+4*idiv+4,"C06M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
3c084d9f |
779 | } |
b17c0c87 |
780 | } |
b17c0c87 |
781 | |
a9e2aefa |
782 | |
3c084d9f |
783 | if (stations[3]) { |
784 | |
a9e2aefa |
785 | //******************************************************************** |
786 | // Station 4 ** |
787 | //******************************************************************** |
788 | // indices 1 and 2 for first and second chambers in the station |
789 | // iChamber (first chamber) kept for other quanties than Z, |
790 | // assumed to be the same in both chambers |
791 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6]; |
792 | iChamber2 =(AliMUONChamber*) (*fChambers)[7]; |
793 | zpos1=iChamber1->Z(); |
794 | zpos2=iChamber2->Z(); |
795 | dstation = zpos2 - zpos1; |
796 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
797 | |
798 | // |
799 | // Mother volume |
800 | tpar[0] = iChamber->RInner()-dframep; |
801 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
3c084d9f |
802 | tpar[2] = 3.252; |
a9e2aefa |
803 | |
804 | gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3); |
805 | gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3); |
806 | gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
807 | gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
808 | |
a9e2aefa |
809 | |
f9f7c205 |
810 | const Int_t nSlats4 = 6; // number of slats per quadrant |
425ebd0a |
811 | const Int_t nPCB4[nSlats4] = {4,4,5,5,4,3}; // n PCB per slat |
a083207d |
812 | const Float_t xpos4[nSlats4] = {37.5, 40., 0., 0., 0., 0.}; |
6c5ddcfa |
813 | Float_t slatLength4[nSlats4]; |
1e8fff9c |
814 | |
815 | // create and position the slat (mother) volumes |
816 | |
6c5ddcfa |
817 | char volNam7[5]; |
818 | char volNam8[5]; |
1e8fff9c |
819 | Float_t xSlat4; |
f9f7c205 |
820 | Float_t ySlat4; |
1e8fff9c |
821 | |
6c5ddcfa |
822 | for (i = 0; i<nSlats4; i++){ |
a083207d |
823 | slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength; |
824 | xSlat4 = slatLength4[i]/2. - vFrameLength/2. + xpos4[i]; |
825 | if (i==1) slatLength4[i] -= 2. *dSlatLength; // frame out in PCB with circular border |
826 | ySlat4 = sensHeight * i - yOverlap *i; |
827 | |
828 | spar[0] = slatLength4[i]/2.; |
829 | spar[1] = slatHeight/2.; |
830 | spar[2] = slatWidth/2.*1.01; |
831 | Float_t dzCh4=spar[2]*1.01; |
832 | // zSlat to be checked (odd downstream or upstream?) |
833 | Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2]; |
834 | sprintf(volNam7,"S07%d",i); |
835 | gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3); |
836 | gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
837 | gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
838 | if (i>0) { |
839 | gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
840 | gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
841 | } |
842 | sprintf(volNam8,"S08%d",i); |
843 | gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3); |
844 | gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
845 | gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
846 | if (i>0) { |
847 | gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4,-ySlat4, zSlat+2.*dzCh4, 0, "ONLY"); |
848 | gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4,-ySlat4, zSlat-2.*dzCh4, 0, "ONLY"); |
849 | } |
a9e2aefa |
850 | } |
a083207d |
851 | |
3c084d9f |
852 | |
853 | // create the panel volume |
1e8fff9c |
854 | |
3c084d9f |
855 | gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3); |
856 | gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3); |
a9e2aefa |
857 | |
3c084d9f |
858 | // create the rohacell volume |
859 | |
860 | gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3); |
861 | gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
862 | |
1e8fff9c |
863 | // create the insulating material volume |
864 | |
6c5ddcfa |
865 | gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3); |
866 | gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3); |
1e8fff9c |
867 | |
3c084d9f |
868 | // create the PCB volume |
1e8fff9c |
869 | |
3c084d9f |
870 | gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3); |
871 | gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3); |
1e8fff9c |
872 | |
3c084d9f |
873 | // create the sensitive volumes, |
874 | |
875 | gMC->Gsvolu("S07G","BOX",sensMaterial,0,0); |
876 | gMC->Gsvolu("S08G","BOX",sensMaterial,0,0); |
1e8fff9c |
877 | |
878 | // create the vertical frame volume |
879 | |
6c5ddcfa |
880 | gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3); |
881 | gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
882 | |
883 | // create the horizontal frame volume |
884 | |
6c5ddcfa |
885 | gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3); |
886 | gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
887 | |
888 | // create the horizontal border volume |
889 | |
6c5ddcfa |
890 | gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3); |
891 | gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3); |
3c084d9f |
892 | |
893 | index=0; |
6c5ddcfa |
894 | for (i = 0; i<nSlats4; i++){ |
895 | sprintf(volNam7,"S07%d",i); |
896 | sprintf(volNam8,"S08%d",i); |
897 | Float_t xvFrame = (slatLength4[i] - vFrameLength)/2.; |
3c084d9f |
898 | // position the vertical frames |
a083207d |
899 | if (i!=1) { |
900 | gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY"); |
901 | gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY"); |
902 | gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY"); |
903 | gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY"); |
904 | } |
3c084d9f |
905 | // position the panels and the insulating material |
6c5ddcfa |
906 | for (j=0; j<nPCB4[i]; j++){ |
1e8fff9c |
907 | index++; |
6c5ddcfa |
908 | Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5); |
3c084d9f |
909 | |
910 | Float_t zPanel = spar[2] - panelpar[2]; |
911 | gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY"); |
912 | gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY"); |
913 | gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY"); |
914 | gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY"); |
915 | |
916 | gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY"); |
917 | gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
918 | } |
a9e2aefa |
919 | } |
1e8fff9c |
920 | |
3c084d9f |
921 | // position the rohacell volume inside the panel volume |
922 | gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY"); |
923 | gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY"); |
924 | |
925 | // position the PCB volume inside the insulating material volume |
926 | gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); |
927 | gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); |
928 | // position the horizontal frame volume inside the PCB volume |
929 | gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); |
930 | gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); |
931 | // position the sensitive volume inside the horizontal frame volume |
932 | gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); |
933 | gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); |
3c084d9f |
934 | // position the border volumes inside the PCB volume |
935 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
936 | gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); |
937 | gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); |
938 | gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); |
939 | gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); |
940 | |
1e8fff9c |
941 | // create the NULOC volume and position it in the horizontal frame |
3c084d9f |
942 | |
6c5ddcfa |
943 | gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3); |
944 | gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3); |
3c084d9f |
945 | index = 0; |
6c5ddcfa |
946 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
947 | index++; |
6c5ddcfa |
948 | gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
949 | gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
950 | gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
951 | gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
952 | } |
a083207d |
953 | |
954 | // position the volumes approximating the circular section of the pipe |
955 | Float_t yoffs = sensHeight/2. - yOverlap/2.; |
956 | Float_t epsilon = 0.001; |
957 | Int_t ndiv=6; |
958 | Float_t divpar[3]; |
959 | Double_t dydiv= sensHeight/ndiv; |
960 | Double_t ydiv = yoffs -dydiv - yOverlap/2.; |
961 | Int_t imax=0; |
962 | // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat]; |
963 | imax = 1; |
964 | Float_t rmin = 40.; |
965 | Float_t z1 = -spar[2], z2=2*spar[2]*1.01; |
966 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
967 | ydiv+= dydiv; |
425ebd0a |
968 | Float_t xdiv = 0.; |
a083207d |
969 | if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ); |
970 | divpar[0] = (pcbLength-xdiv)/2.; |
971 | divpar[1] = dydiv/2. - epsilon; |
972 | divpar[2] = sensWidth/2.; |
425ebd0a |
973 | Float_t xvol=(pcbLength+xdiv)/2.+1.999; |
a083207d |
974 | Float_t yvol=ydiv + dydiv/2.; |
975 | gMC->Gsposp("S07G",imax+4*idiv+1,"C07M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
976 | gMC->Gsposp("S08G",imax+4*idiv+1,"C08M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
977 | gMC->Gsposp("S07G",imax+4*idiv+2,"C07M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
978 | gMC->Gsposp("S08G",imax+4*idiv+2,"C08M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
979 | gMC->Gsposp("S07G",imax+4*idiv+3,"C07M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
980 | gMC->Gsposp("S08G",imax+4*idiv+3,"C08M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
981 | gMC->Gsposp("S07G",imax+4*idiv+4,"C07M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
982 | gMC->Gsposp("S08G",imax+4*idiv+4,"C08M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
983 | } |
984 | |
985 | |
986 | |
987 | |
988 | |
b17c0c87 |
989 | } |
3c084d9f |
990 | |
b17c0c87 |
991 | if (stations[4]) { |
992 | |
1e8fff9c |
993 | |
a9e2aefa |
994 | //******************************************************************** |
995 | // Station 5 ** |
996 | //******************************************************************** |
997 | // indices 1 and 2 for first and second chambers in the station |
998 | // iChamber (first chamber) kept for other quanties than Z, |
999 | // assumed to be the same in both chambers |
1000 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8]; |
1001 | iChamber2 =(AliMUONChamber*) (*fChambers)[9]; |
1002 | zpos1=iChamber1->Z(); |
1003 | zpos2=iChamber2->Z(); |
1004 | dstation = zpos2 - zpos1; |
1005 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
3c084d9f |
1006 | |
a9e2aefa |
1007 | // |
1008 | // Mother volume |
1009 | tpar[0] = iChamber->RInner()-dframep; |
1010 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
3c084d9f |
1011 | tpar[2] = dstation/5.; |
a9e2aefa |
1012 | |
1013 | gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3); |
1014 | gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3); |
1015 | gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
1016 | gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
a9e2aefa |
1017 | |
a9e2aefa |
1018 | |
1e8fff9c |
1019 | const Int_t nSlats5 = 7; // number of slats per quadrant |
a083207d |
1020 | const Int_t nPCB5[nSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat |
1021 | const Float_t xpos5[nSlats5] = {37.5, 40., 0., 0., 0., 0., 0.}; |
6c5ddcfa |
1022 | Float_t slatLength5[nSlats5]; |
6c5ddcfa |
1023 | char volNam9[5]; |
1024 | char volNam10[5]; |
f9f7c205 |
1025 | Float_t xSlat5; |
1026 | Float_t ySlat5; |
1e8fff9c |
1027 | |
6c5ddcfa |
1028 | for (i = 0; i<nSlats5; i++){ |
1029 | slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength; |
a083207d |
1030 | xSlat5 = slatLength5[i]/2. - vFrameLength/2. +xpos5[i]; |
1031 | if (i==1) slatLength5[i] -= 2. *dSlatLength; // frame out in PCB with circular border |
f9f7c205 |
1032 | ySlat5 = sensHeight * i - yOverlap * i; |
6c5ddcfa |
1033 | spar[0] = slatLength5[i]/2.; |
1034 | spar[1] = slatHeight/2.; |
3c084d9f |
1035 | spar[2] = slatWidth/2. * 1.01; |
1036 | Float_t dzCh5=spar[2]*1.01; |
1e8fff9c |
1037 | // zSlat to be checked (odd downstream or upstream?) |
3c084d9f |
1038 | Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2]; |
6c5ddcfa |
1039 | sprintf(volNam9,"S09%d",i); |
1040 | gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3); |
e1ad7d45 |
1041 | gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1042 | gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1043 | if (i>0) { |
3c084d9f |
1044 | gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1045 | gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1046 | } |
6c5ddcfa |
1047 | sprintf(volNam10,"S10%d",i); |
1048 | gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3); |
e1ad7d45 |
1049 | gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5, ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1050 | gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5, ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1051 | if (i>0) { |
3c084d9f |
1052 | gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5,-ySlat5, zSlat+2.*dzCh5, 0, "ONLY"); |
1053 | gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5,-ySlat5, zSlat-2.*dzCh5, 0, "ONLY"); |
f9f7c205 |
1054 | } |
a9e2aefa |
1055 | } |
1056 | |
1e8fff9c |
1057 | // create the panel volume |
3c084d9f |
1058 | |
6c5ddcfa |
1059 | gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3); |
1060 | gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3); |
3c084d9f |
1061 | |
1e8fff9c |
1062 | // create the rohacell volume |
3c084d9f |
1063 | |
6c5ddcfa |
1064 | gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3); |
1065 | gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3); |
3c084d9f |
1066 | |
1067 | // create the insulating material volume |
1068 | |
1069 | gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3); |
1070 | gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3); |
1071 | |
1072 | // create the PCB volume |
1073 | |
1074 | gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3); |
1075 | gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3); |
1076 | |
1077 | // create the sensitive volumes, |
1078 | |
1079 | gMC->Gsvolu("S09G","BOX",sensMaterial,0,0); |
1080 | gMC->Gsvolu("S10G","BOX",sensMaterial,0,0); |
3c084d9f |
1081 | |
1e8fff9c |
1082 | // create the vertical frame volume |
3c084d9f |
1083 | |
6c5ddcfa |
1084 | gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3); |
1085 | gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
1086 | |
1087 | // create the horizontal frame volume |
3c084d9f |
1088 | |
6c5ddcfa |
1089 | gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3); |
1090 | gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
1091 | |
1092 | // create the horizontal border volume |
1093 | |
6c5ddcfa |
1094 | gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3); |
1095 | gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
1096 | |
3c084d9f |
1097 | index=0; |
6c5ddcfa |
1098 | for (i = 0; i<nSlats5; i++){ |
1099 | sprintf(volNam9,"S09%d",i); |
1100 | sprintf(volNam10,"S10%d",i); |
1101 | Float_t xvFrame = (slatLength5[i] - vFrameLength)/2.; |
3c084d9f |
1102 | // position the vertical frames |
a083207d |
1103 | if (i!=1) { |
1104 | gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY"); |
1105 | gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY"); |
1106 | gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY"); |
1107 | gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY"); |
1108 | } |
3c084d9f |
1109 | |
1110 | // position the panels and the insulating material |
6c5ddcfa |
1111 | for (j=0; j<nPCB5[i]; j++){ |
1e8fff9c |
1112 | index++; |
3c084d9f |
1113 | Float_t xx = sensLength * (-nPCB5[i]/2.+j+.5); |
1114 | |
1115 | Float_t zPanel = spar[2] - panelpar[2]; |
1116 | gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY"); |
1117 | gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY"); |
1118 | gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY"); |
1119 | gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY"); |
1120 | |
1121 | gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY"); |
1122 | gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY"); |
1e8fff9c |
1123 | } |
1124 | } |
1125 | |
3c084d9f |
1126 | // position the rohacell volume inside the panel volume |
1127 | gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY"); |
1128 | gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY"); |
1129 | |
1130 | // position the PCB volume inside the insulating material volume |
1131 | gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); |
1132 | gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); |
1133 | // position the horizontal frame volume inside the PCB volume |
1134 | gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); |
1135 | gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); |
1136 | // position the sensitive volume inside the horizontal frame volume |
1137 | gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); |
1138 | gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); |
3c084d9f |
1139 | // position the border volumes inside the PCB volume |
1140 | Float_t yborder = ( pcbHeight - bFrameHeight ) / 2.; |
1141 | gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); |
1142 | gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); |
1143 | gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); |
1144 | gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); |
1145 | |
1e8fff9c |
1146 | // create the NULOC volume and position it in the horizontal frame |
3c084d9f |
1147 | |
6c5ddcfa |
1148 | gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3); |
1149 | gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3); |
3c084d9f |
1150 | index = 0; |
6c5ddcfa |
1151 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
1152 | index++; |
6c5ddcfa |
1153 | gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1154 | gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1155 | gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1156 | gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
a9e2aefa |
1157 | } |
a083207d |
1158 | // position the volumes approximating the circular section of the pipe |
1159 | Float_t yoffs = sensHeight/2. - yOverlap/2.; |
1160 | Float_t epsilon = 0.001; |
1161 | Int_t ndiv=6; |
1162 | Float_t divpar[3]; |
1163 | Double_t dydiv= sensHeight/ndiv; |
1164 | Double_t ydiv = yoffs -dydiv - yOverlap/2.; |
1165 | Int_t imax=0; |
1166 | // for (Int_t islat=0; islat<nSlats3; islat++) imax += nPCB3[islat]; |
1167 | imax = 1; |
1168 | Float_t rmin = 40.; |
1169 | Float_t z1 = spar[2], z2=2*spar[2]*1.01; |
1170 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
1171 | ydiv+= dydiv; |
425ebd0a |
1172 | Float_t xdiv = 0.; |
a083207d |
1173 | if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ); |
1174 | divpar[0] = (pcbLength-xdiv)/2.; |
1175 | divpar[1] = dydiv/2. - epsilon; |
1176 | divpar[2] = sensWidth/2.; |
425ebd0a |
1177 | Float_t xvol=(pcbLength+xdiv)/2. + 1.999; |
a083207d |
1178 | Float_t yvol=ydiv + dydiv/2.; |
1179 | gMC->Gsposp("S09G",imax+4*idiv+1,"C09M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1180 | gMC->Gsposp("S10G",imax+4*idiv+1,"C10M", xvol, yvol, z1+z2, 0, "ONLY",divpar,3); |
1181 | gMC->Gsposp("S09G",imax+4*idiv+2,"C09M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1182 | gMC->Gsposp("S10G",imax+4*idiv+2,"C10M", xvol,-yvol, z1+z2, 0, "ONLY",divpar,3); |
1183 | gMC->Gsposp("S09G",imax+4*idiv+3,"C09M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1184 | gMC->Gsposp("S10G",imax+4*idiv+3,"C10M",-xvol, yvol, z1-z2, 0, "ONLY",divpar,3); |
1185 | gMC->Gsposp("S09G",imax+4*idiv+4,"C09M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
1186 | gMC->Gsposp("S10G",imax+4*idiv+4,"C10M",-xvol,-yvol, z1-z2, 0, "ONLY",divpar,3); |
1187 | } |
1188 | |
b17c0c87 |
1189 | } |
1190 | |
1e8fff9c |
1191 | |
a9e2aefa |
1192 | /////////////////////////////////////// |
1193 | // GEOMETRY FOR THE TRIGGER CHAMBERS // |
1194 | /////////////////////////////////////// |
1195 | |
1196 | // 03/00 P. Dupieux : introduce a slighly more realistic |
1197 | // geom. of the trigger readout planes with |
1198 | // 2 Zpos per trigger plane (alternate |
1199 | // between left and right of the trigger) |
1200 | |
1201 | // Parameters of the Trigger Chambers |
1202 | |
1203 | |
1204 | const Float_t kXMC1MIN=34.; |
1205 | const Float_t kXMC1MED=51.; |
1206 | const Float_t kXMC1MAX=272.; |
1207 | const Float_t kYMC1MIN=34.; |
1208 | const Float_t kYMC1MAX=51.; |
1209 | const Float_t kRMIN1=50.; |
1210 | const Float_t kRMAX1=62.; |
1211 | const Float_t kRMIN2=50.; |
1212 | const Float_t kRMAX2=66.; |
1213 | |
1214 | // zposition of the middle of the gas gap in mother vol |
1215 | const Float_t kZMCm=-3.6; |
1216 | const Float_t kZMCp=+3.6; |
1217 | |
1218 | |
1219 | // TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1 |
1220 | |
1221 | // iChamber 1 and 2 for first and second chambers in the station |
1222 | // iChamber (first chamber) kept for other quanties than Z, |
1223 | // assumed to be the same in both chambers |
1224 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10]; |
1225 | iChamber2 =(AliMUONChamber*) (*fChambers)[11]; |
1226 | |
1227 | // 03/00 |
1228 | // zpos1 and zpos2 are now the middle of the first and second |
1229 | // plane of station 1 : |
1230 | // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm |
1231 | // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm |
1232 | // |
1233 | // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps) |
1234 | // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps) |
1235 | // rem : the total thickness accounts for 1 mm of al on both |
1236 | // side of the RPCs (see zpos1 and zpos2), as previously |
1237 | |
1238 | zpos1=iChamber1->Z(); |
1239 | zpos2=iChamber2->Z(); |
1240 | |
1241 | |
1242 | // Mother volume definition |
1243 | tpar[0] = iChamber->RInner(); |
1244 | tpar[1] = iChamber->ROuter(); |
1245 | tpar[2] = 4.0; |
1246 | gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3); |
1247 | gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3); |
1248 | |
1249 | // Definition of the flange between the beam shielding and the RPC |
1250 | tpar[0]= kRMIN1; |
1251 | tpar[1]= kRMAX1; |
1252 | tpar[2]= 4.0; |
1253 | |
1254 | gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al |
1255 | gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY"); |
1256 | gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY"); |
1257 | |
1258 | |
1259 | // FIRST PLANE OF STATION 1 |
1260 | |
1261 | // ratios of zpos1m/zpos1p and inverse for first plane |
1262 | Float_t zmp=(zpos1-3.6)/(zpos1+3.6); |
1263 | Float_t zpm=1./zmp; |
1264 | |
1265 | |
1266 | // Definition of prototype for chambers in the first plane |
1267 | |
1268 | tpar[0]= 0.; |
1269 | tpar[1]= 0.; |
1270 | tpar[2]= 0.; |
1271 | |
1272 | gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al |
1273 | gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1274 | gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1275 | |
1276 | // chamber type A |
1277 | tpar[0] = -1.; |
1278 | tpar[1] = -1.; |
1279 | |
1280 | const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; |
1281 | const Float_t kYMC1Am=0.; |
1282 | const Float_t kYMC1Ap=0.; |
1283 | |
1284 | tpar[2] = 0.1; |
1285 | gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3); |
1286 | tpar[2] = 0.3; |
1287 | gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3); |
1288 | |
1289 | tpar[2] = 0.4; |
1290 | tpar[0] = (kXMC1MAX-kXMC1MED)/2.; |
1291 | tpar[1] = kYMC1MIN; |
1292 | |
1293 | gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3); |
1294 | gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3); |
1295 | |
1296 | // chamber type B |
1297 | Float_t tpar1save=tpar[1]; |
1298 | Float_t y1msave=kYMC1Am; |
1299 | Float_t y1psave=kYMC1Ap; |
1300 | |
1301 | tpar[0] = (kXMC1MAX-kXMC1MIN)/2.; |
1302 | tpar[1] = (kYMC1MAX-kYMC1MIN)/2.; |
1303 | |
1304 | const Float_t kXMC1B=kXMC1MIN+tpar[0]; |
1305 | const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1]; |
1306 | const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1]; |
1307 | |
1308 | gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1309 | gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
1310 | gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1311 | gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
1312 | |
1313 | // chamber type C (end of type B !!) |
1314 | tpar1save=tpar[1]; |
1315 | y1msave=kYMC1Bm; |
1316 | y1psave=kYMC1Bp; |
1317 | |
1318 | tpar[0] = kXMC1MAX/2; |
1319 | tpar[1] = kYMC1MAX/2; |
1320 | |
1321 | const Float_t kXMC1C=tpar[0]; |
1322 | // warning : same Z than type B |
1323 | const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1]; |
1324 | const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1]; |
1325 | |
1326 | gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1327 | gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
1328 | gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1329 | gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
1330 | |
1331 | // chamber type D, E and F (same size) |
1332 | tpar1save=tpar[1]; |
1333 | y1msave=kYMC1Cm; |
1334 | y1psave=kYMC1Cp; |
1335 | |
1336 | tpar[0] = kXMC1MAX/2.; |
1337 | tpar[1] = kYMC1MIN; |
1338 | |
1339 | const Float_t kXMC1D=tpar[0]; |
1340 | const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1]; |
1341 | const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1]; |
1342 | |
1343 | gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1344 | gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
1345 | gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1346 | gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
1347 | |
1348 | |
1349 | tpar1save=tpar[1]; |
1350 | y1msave=kYMC1Dm; |
1351 | y1psave=kYMC1Dp; |
1352 | const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1]; |
1353 | const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1]; |
1354 | |
1355 | gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1356 | gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
1357 | gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1358 | gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
1359 | |
1360 | tpar1save=tpar[1]; |
1361 | y1msave=kYMC1Em; |
1362 | y1psave=kYMC1Ep; |
1363 | const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1]; |
1364 | const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1]; |
1365 | |
1366 | gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1367 | gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
1368 | gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1369 | gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
1370 | |
1371 | // Positioning first plane in ALICE |
1372 | gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY"); |
1373 | |
1374 | // End of geometry definition for the first plane of station 1 |
1375 | |
1376 | |
1377 | |
1378 | // SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1 |
1379 | |
1380 | const Float_t kZ12=zpos2/zpos1; |
1381 | |
1382 | // Definition of prototype for chambers in the second plane of station 1 |
1383 | |
1384 | tpar[0]= 0.; |
1385 | tpar[1]= 0.; |
1386 | tpar[2]= 0.; |
1387 | |
1388 | gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al |
1389 | gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1390 | gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1391 | |
1392 | // chamber type A |
1393 | tpar[0] = -1.; |
1394 | tpar[1] = -1.; |
1395 | |
1396 | const Float_t kXMC2A=kXMC1A*kZ12; |
1397 | const Float_t kYMC2Am=0.; |
1398 | const Float_t kYMC2Ap=0.; |
1399 | |
1400 | tpar[2] = 0.1; |
1401 | gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3); |
1402 | tpar[2] = 0.3; |
1403 | gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3); |
1404 | |
1405 | tpar[2] = 0.4; |
1406 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12; |
1407 | tpar[1] = kYMC1MIN*kZ12; |
1408 | |
1409 | gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3); |
1410 | gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3); |
1411 | |
1412 | |
1413 | // chamber type B |
1414 | |
1415 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12; |
1416 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12; |
1417 | |
1418 | const Float_t kXMC2B=kXMC1B*kZ12; |
1419 | const Float_t kYMC2Bp=kYMC1Bp*kZ12; |
1420 | const Float_t kYMC2Bm=kYMC1Bm*kZ12; |
1421 | gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1422 | gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
1423 | gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1424 | gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
1425 | |
1426 | |
1427 | // chamber type C (end of type B !!) |
1428 | |
1429 | tpar[0] = (kXMC1MAX/2)*kZ12; |
1430 | tpar[1] = (kYMC1MAX/2)*kZ12; |
1431 | |
1432 | const Float_t kXMC2C=kXMC1C*kZ12; |
1433 | const Float_t kYMC2Cp=kYMC1Cp*kZ12; |
1434 | const Float_t kYMC2Cm=kYMC1Cm*kZ12; |
1435 | gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1436 | gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
1437 | gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1438 | gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
1439 | |
1440 | // chamber type D, E and F (same size) |
1441 | |
1442 | tpar[0] = (kXMC1MAX/2.)*kZ12; |
1443 | tpar[1] = kYMC1MIN*kZ12; |
1444 | |
1445 | const Float_t kXMC2D=kXMC1D*kZ12; |
1446 | const Float_t kYMC2Dp=kYMC1Dp*kZ12; |
1447 | const Float_t kYMC2Dm=kYMC1Dm*kZ12; |
1448 | gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1449 | gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
1450 | gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1451 | gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
1452 | |
1453 | const Float_t kYMC2Ep=kYMC1Ep*kZ12; |
1454 | const Float_t kYMC2Em=kYMC1Em*kZ12; |
1455 | gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1456 | gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
1457 | gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1458 | gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
1459 | |
1460 | |
1461 | const Float_t kYMC2Fp=kYMC1Fp*kZ12; |
1462 | const Float_t kYMC2Fm=kYMC1Fm*kZ12; |
1463 | gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1464 | gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
1465 | gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1466 | gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
1467 | |
1468 | // Positioning second plane of station 1 in ALICE |
1469 | |
1470 | gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY"); |
1471 | |
1472 | // End of geometry definition for the second plane of station 1 |
1473 | |
1474 | |
1475 | |
1476 | // TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2 |
1477 | |
1478 | // 03/00 |
1479 | // zpos3 and zpos4 are now the middle of the first and second |
1480 | // plane of station 2 : |
1481 | // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm |
1482 | // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm |
1483 | // |
1484 | // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps) |
1485 | // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps) |
1486 | // rem : the total thickness accounts for 1 mm of al on both |
1487 | // side of the RPCs (see zpos3 and zpos4), as previously |
1488 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12]; |
1489 | iChamber2 =(AliMUONChamber*) (*fChambers)[13]; |
1490 | Float_t zpos3=iChamber1->Z(); |
1491 | Float_t zpos4=iChamber2->Z(); |
1492 | |
1493 | |
1494 | // Mother volume definition |
1495 | tpar[0] = iChamber->RInner(); |
1496 | tpar[1] = iChamber->ROuter(); |
1497 | tpar[2] = 4.0; |
1498 | |
1499 | gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3); |
1500 | gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3); |
1501 | |
1502 | // Definition of the flange between the beam shielding and the RPC |
1503 | // ???? interface shielding |
1504 | |
1505 | tpar[0]= kRMIN2; |
1506 | tpar[1]= kRMAX2; |
1507 | tpar[2]= 4.0; |
1508 | |
1509 | gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al |
1510 | gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY"); |
1511 | gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY"); |
1512 | |
1513 | |
1514 | |
1515 | // FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1 |
1516 | |
1517 | const Float_t kZ13=zpos3/zpos1; |
1518 | |
1519 | // Definition of prototype for chambers in the first plane of station 2 |
1520 | tpar[0]= 0.; |
1521 | tpar[1]= 0.; |
1522 | tpar[2]= 0.; |
1523 | |
1524 | gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al |
1525 | gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1526 | gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1527 | |
1528 | |
1529 | // chamber type A |
1530 | tpar[0] = -1.; |
1531 | tpar[1] = -1.; |
1532 | |
1533 | const Float_t kXMC3A=kXMC1A*kZ13; |
1534 | const Float_t kYMC3Am=0.; |
1535 | const Float_t kYMC3Ap=0.; |
1536 | |
1537 | tpar[2] = 0.1; |
1538 | gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3); |
1539 | tpar[2] = 0.3; |
1540 | gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3); |
1541 | |
1542 | tpar[2] = 0.4; |
1543 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13; |
1544 | tpar[1] = kYMC1MIN*kZ13; |
1545 | gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3); |
1546 | gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3); |
1547 | |
1548 | |
1549 | // chamber type B |
1550 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13; |
1551 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13; |
1552 | |
1553 | const Float_t kXMC3B=kXMC1B*kZ13; |
1554 | const Float_t kYMC3Bp=kYMC1Bp*kZ13; |
1555 | const Float_t kYMC3Bm=kYMC1Bm*kZ13; |
1556 | gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1557 | gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
1558 | gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1559 | gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
1560 | |
1561 | |
1562 | // chamber type C (end of type B !!) |
1563 | tpar[0] = (kXMC1MAX/2)*kZ13; |
1564 | tpar[1] = (kYMC1MAX/2)*kZ13; |
1565 | |
1566 | const Float_t kXMC3C=kXMC1C*kZ13; |
1567 | const Float_t kYMC3Cp=kYMC1Cp*kZ13; |
1568 | const Float_t kYMC3Cm=kYMC1Cm*kZ13; |
1569 | gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1570 | gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
1571 | gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1572 | gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
1573 | |
1574 | |
1575 | // chamber type D, E and F (same size) |
1576 | |
1577 | tpar[0] = (kXMC1MAX/2.)*kZ13; |
1578 | tpar[1] = kYMC1MIN*kZ13; |
1579 | |
1580 | const Float_t kXMC3D=kXMC1D*kZ13; |
1581 | const Float_t kYMC3Dp=kYMC1Dp*kZ13; |
1582 | const Float_t kYMC3Dm=kYMC1Dm*kZ13; |
1583 | gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1584 | gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
1585 | gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1586 | gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
1587 | |
1588 | const Float_t kYMC3Ep=kYMC1Ep*kZ13; |
1589 | const Float_t kYMC3Em=kYMC1Em*kZ13; |
1590 | gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1591 | gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
1592 | gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1593 | gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
1594 | |
1595 | const Float_t kYMC3Fp=kYMC1Fp*kZ13; |
1596 | const Float_t kYMC3Fm=kYMC1Fm*kZ13; |
1597 | gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1598 | gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
1599 | gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1600 | gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
1601 | |
1602 | |
1603 | // Positioning first plane of station 2 in ALICE |
1604 | |
1605 | gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY"); |
1606 | |
1607 | // End of geometry definition for the first plane of station 2 |
1608 | |
1609 | |
1610 | |
1611 | |
1612 | // SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1 |
1613 | |
1614 | const Float_t kZ14=zpos4/zpos1; |
1615 | |
1616 | // Definition of prototype for chambers in the second plane of station 2 |
1617 | |
1618 | tpar[0]= 0.; |
1619 | tpar[1]= 0.; |
1620 | tpar[2]= 0.; |
1621 | |
1622 | gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al |
1623 | gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1624 | gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1625 | |
1626 | // chamber type A |
1627 | tpar[0] = -1.; |
1628 | tpar[1] = -1.; |
1629 | |
1630 | const Float_t kXMC4A=kXMC1A*kZ14; |
1631 | const Float_t kYMC4Am=0.; |
1632 | const Float_t kYMC4Ap=0.; |
1633 | |
1634 | tpar[2] = 0.1; |
1635 | gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3); |
1636 | tpar[2] = 0.3; |
1637 | gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3); |
1638 | |
1639 | tpar[2] = 0.4; |
1640 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14; |
1641 | tpar[1] = kYMC1MIN*kZ14; |
1642 | gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3); |
1643 | gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3); |
1644 | |
1645 | |
1646 | // chamber type B |
1647 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14; |
1648 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14; |
1649 | |
1650 | const Float_t kXMC4B=kXMC1B*kZ14; |
1651 | const Float_t kYMC4Bp=kYMC1Bp*kZ14; |
1652 | const Float_t kYMC4Bm=kYMC1Bm*kZ14; |
1653 | gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1654 | gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
1655 | gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1656 | gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
1657 | |
1658 | |
1659 | // chamber type C (end of type B !!) |
1660 | tpar[0] =(kXMC1MAX/2)*kZ14; |
1661 | tpar[1] = (kYMC1MAX/2)*kZ14; |
1662 | |
1663 | const Float_t kXMC4C=kXMC1C*kZ14; |
1664 | const Float_t kYMC4Cp=kYMC1Cp*kZ14; |
1665 | const Float_t kYMC4Cm=kYMC1Cm*kZ14; |
1666 | gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1667 | gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
1668 | gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1669 | gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
1670 | |
1671 | |
1672 | // chamber type D, E and F (same size) |
1673 | tpar[0] = (kXMC1MAX/2.)*kZ14; |
1674 | tpar[1] = kYMC1MIN*kZ14; |
1675 | |
1676 | const Float_t kXMC4D=kXMC1D*kZ14; |
1677 | const Float_t kYMC4Dp=kYMC1Dp*kZ14; |
1678 | const Float_t kYMC4Dm=kYMC1Dm*kZ14; |
1679 | gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1680 | gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
1681 | gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1682 | gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
1683 | |
1684 | const Float_t kYMC4Ep=kYMC1Ep*kZ14; |
1685 | const Float_t kYMC4Em=kYMC1Em*kZ14; |
1686 | gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1687 | gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
1688 | gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1689 | gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
1690 | |
1691 | const Float_t kYMC4Fp=kYMC1Fp*kZ14; |
1692 | const Float_t kYMC4Fm=kYMC1Fm*kZ14; |
1693 | gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1694 | gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
1695 | gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1696 | gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
1697 | |
1698 | |
1699 | // Positioning second plane of station 2 in ALICE |
1700 | |
1701 | gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY"); |
1702 | |
1703 | // End of geometry definition for the second plane of station 2 |
1704 | |
1705 | // End of trigger geometry definition |
1706 | |
1707 | } |
1708 | |
1709 | |
1710 | |
1711 | //___________________________________________ |
1712 | void AliMUONv1::CreateMaterials() |
1713 | { |
1714 | // *** DEFINITION OF AVAILABLE MUON MATERIALS *** |
1715 | // |
1716 | // Ar-CO2 gas |
1717 | Float_t ag1[3] = { 39.95,12.01,16. }; |
1718 | Float_t zg1[3] = { 18.,6.,8. }; |
1719 | Float_t wg1[3] = { .8,.0667,.13333 }; |
1720 | Float_t dg1 = .001821; |
1721 | // |
1722 | // Ar-buthane-freon gas -- trigger chambers |
1723 | Float_t atr1[4] = { 39.95,12.01,1.01,19. }; |
1724 | Float_t ztr1[4] = { 18.,6.,1.,9. }; |
1725 | Float_t wtr1[4] = { .56,.1262857,.2857143,.028 }; |
1726 | Float_t dtr1 = .002599; |
1727 | // |
1728 | // Ar-CO2 gas |
1729 | Float_t agas[3] = { 39.95,12.01,16. }; |
1730 | Float_t zgas[3] = { 18.,6.,8. }; |
1731 | Float_t wgas[3] = { .74,.086684,.173316 }; |
1732 | Float_t dgas = .0018327; |
1733 | // |
1734 | // Ar-Isobutane gas (80%+20%) -- tracking |
1735 | Float_t ag[3] = { 39.95,12.01,1.01 }; |
1736 | Float_t zg[3] = { 18.,6.,1. }; |
1737 | Float_t wg[3] = { .8,.057,.143 }; |
1738 | Float_t dg = .0019596; |
1739 | // |
1740 | // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger |
1741 | Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 }; |
1742 | Float_t ztrig[5] = { 18.,6.,1.,9.,16. }; |
1743 | Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 }; |
1744 | Float_t dtrig = .0031463; |
1745 | // |
1746 | // bakelite |
1747 | |
1748 | Float_t abak[3] = {12.01 , 1.01 , 16.}; |
1749 | Float_t zbak[3] = {6. , 1. , 8.}; |
1750 | Float_t wbak[3] = {6. , 6. , 1.}; |
1751 | Float_t dbak = 1.4; |
1752 | |
1753 | Float_t epsil, stmin, deemax, tmaxfd, stemax; |
1754 | |
1755 | Int_t iSXFLD = gAlice->Field()->Integ(); |
1756 | Float_t sXMGMX = gAlice->Field()->Max(); |
1757 | // |
1758 | // --- Define the various materials for GEANT --- |
1759 | AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1760 | AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1761 | AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500); |
1762 | AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak); |
1763 | AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg); |
1764 | AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig); |
1765 | AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1); |
1766 | AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1); |
1767 | AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas); |
1e8fff9c |
1768 | // materials for slat: |
1769 | // Sensitive area: gas (already defined) |
1770 | // PCB: copper |
1771 | // insulating material and frame: vetronite |
1772 | // walls: carbon, rohacell, carbon |
1773 | Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.}; |
1774 | Float_t zglass[5]={ 6., 14., 8., 5., 11.}; |
1775 | Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01}; |
1776 | Float_t dglass=1.74; |
1777 | |
1778 | // rohacell: C9 H13 N1 O2 |
1779 | Float_t arohac[4] = {12.01, 1.01, 14.010, 16.}; |
1780 | Float_t zrohac[4] = { 6., 1., 7., 8.}; |
1781 | Float_t wrohac[4] = { 9., 13., 1., 2.}; |
1782 | Float_t drohac = 0.03; |
1783 | |
1784 | AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.); |
1785 | AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass); |
1786 | AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9); |
1787 | AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac); |
1788 | |
a9e2aefa |
1789 | |
1790 | epsil = .001; // Tracking precision, |
1791 | stemax = -1.; // Maximum displacement for multiple scat |
1792 | tmaxfd = -20.; // Maximum angle due to field deflection |
1793 | deemax = -.3; // Maximum fractional energy loss, DLS |
1794 | stmin = -.8; |
1795 | // |
1796 | // Air |
1797 | AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1798 | // |
1799 | // Aluminum |
1800 | |
1801 | AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1802 | fMaxDestepAlu, epsil, stmin); |
1803 | AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1804 | fMaxDestepAlu, epsil, stmin); |
1805 | // |
1806 | // Ar-isoC4H10 gas |
1807 | |
1808 | AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1809 | fMaxDestepGas, epsil, stmin); |
1810 | // |
1811 | // Ar-Isobuthane-Forane-SF6 gas |
1812 | |
1813 | AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1814 | |
1815 | AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1816 | fMaxDestepAlu, epsil, stmin); |
1817 | |
1818 | AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1819 | fMaxDestepAlu, epsil, stmin); |
1e8fff9c |
1820 | // tracking media for slats: check the parameters!! |
1821 | AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd, |
1822 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1823 | AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd, |
1824 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1825 | AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd, |
1826 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1827 | AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd, |
1828 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
a9e2aefa |
1829 | } |
1830 | |
1831 | //___________________________________________ |
1832 | |
1833 | void AliMUONv1::Init() |
1834 | { |
1835 | // |
1836 | // Initialize Tracking Chambers |
1837 | // |
1838 | |
1839 | printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n"); |
e17592e9 |
1840 | Int_t i; |
f665c1ea |
1841 | for (i=0; i<AliMUONConstants::NCh(); i++) { |
a9e2aefa |
1842 | ( (AliMUONChamber*) (*fChambers)[i])->Init(); |
1843 | } |
1844 | |
1845 | // |
1846 | // Set the chamber (sensitive region) GEANT identifier |
1847 | AliMC* gMC = AliMC::GetMC(); |
1848 | ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G")); |
1849 | ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G")); |
b17c0c87 |
1850 | |
a9e2aefa |
1851 | ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G")); |
1852 | ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G")); |
b17c0c87 |
1853 | |
1e8fff9c |
1854 | ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G")); |
1855 | ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G")); |
b17c0c87 |
1856 | |
1e8fff9c |
1857 | ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G")); |
1858 | ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G")); |
b17c0c87 |
1859 | |
1e8fff9c |
1860 | ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G")); |
1861 | ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G")); |
b17c0c87 |
1862 | |
a9e2aefa |
1863 | ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A")); |
1864 | ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A")); |
1865 | ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A")); |
1866 | ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A")); |
1867 | |
1868 | printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n"); |
1869 | |
1870 | //cp |
1871 | printf("\n\n\n Start Init for Trigger Circuits\n\n\n"); |
f665c1ea |
1872 | for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) { |
a9e2aefa |
1873 | ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i); |
1874 | } |
1875 | printf(" Finished Init for Trigger Circuits\n\n\n"); |
1876 | //cp |
1877 | |
1878 | } |
1879 | |
1880 | //___________________________________________ |
1881 | void AliMUONv1::StepManager() |
1882 | { |
1883 | Int_t copy, id; |
1884 | static Int_t idvol; |
1885 | static Int_t vol[2]; |
1886 | Int_t ipart; |
1887 | TLorentzVector pos; |
1888 | TLorentzVector mom; |
1889 | Float_t theta,phi; |
1890 | Float_t destep, step; |
1891 | |
1e8fff9c |
1892 | static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength; |
a9e2aefa |
1893 | const Float_t kBig=1.e10; |
a9e2aefa |
1894 | // modifs perso |
1895 | static Float_t hits[15]; |
1896 | |
1897 | TClonesArray &lhits = *fHits; |
1898 | |
1899 | // |
1900 | // Set maximum step size for gas |
1901 | // numed=gMC->GetMedium(); |
1902 | // |
1903 | // Only charged tracks |
1904 | if( !(gMC->TrackCharge()) ) return; |
1905 | // |
1906 | // Only gas gap inside chamber |
1907 | // Tag chambers and record hits when track enters |
1908 | idvol=-1; |
1909 | id=gMC->CurrentVolID(copy); |
1910 | |
f665c1ea |
1911 | for (Int_t i=1; i<=AliMUONConstants::NCh(); i++) { |
a9e2aefa |
1912 | if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){ |
1913 | vol[0]=i; |
1914 | idvol=i-1; |
1915 | } |
1916 | } |
1917 | if (idvol == -1) return; |
1918 | // |
1919 | // Get current particle id (ipart), track position (pos) and momentum (mom) |
1920 | gMC->TrackPosition(pos); |
1921 | gMC->TrackMomentum(mom); |
1922 | |
1923 | ipart = gMC->TrackPid(); |
1924 | //Int_t ipart1 = gMC->IdFromPDG(ipart); |
1925 | //printf("ich, ipart %d %d \n",vol[0],ipart1); |
1926 | |
1927 | // |
1928 | // momentum loss and steplength in last step |
1929 | destep = gMC->Edep(); |
1930 | step = gMC->TrackStep(); |
1931 | |
1932 | // |
1933 | // record hits when track enters ... |
1934 | if( gMC->IsTrackEntering()) { |
1935 | gMC->SetMaxStep(fMaxStepGas); |
1936 | Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; |
1937 | Double_t rt = TMath::Sqrt(tc); |
1938 | Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]); |
1939 | Double_t tx=mom[0]/pmom; |
1940 | Double_t ty=mom[1]/pmom; |
1941 | Double_t tz=mom[2]/pmom; |
1942 | Double_t s=((AliMUONChamber*)(*fChambers)[idvol]) |
1943 | ->ResponseModel() |
1944 | ->Pitch()/tz; |
1945 | theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; |
1946 | phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; |
1947 | hits[0] = Float_t(ipart); // Geant3 particle type |
1948 | hits[1] = pos[0]+s*tx; // X-position for hit |
1949 | hits[2] = pos[1]+s*ty; // Y-position for hit |
1950 | hits[3] = pos[2]+s*tz; // Z-position for hit |
1951 | hits[4] = theta; // theta angle of incidence |
1952 | hits[5] = phi; // phi angle of incidence |
1953 | hits[8] = (Float_t) fNPadHits; // first padhit |
1954 | hits[9] = -1; // last pad hit |
1955 | |
1956 | // modifs perso |
1957 | hits[10] = mom[3]; // hit momentum P |
1958 | hits[11] = mom[0]; // Px/P |
1959 | hits[12] = mom[1]; // Py/P |
1960 | hits[13] = mom[2]; // Pz/P |
1961 | // fin modifs perso |
1962 | tof=gMC->TrackTime(); |
1963 | hits[14] = tof; // Time of flight |
1964 | // phi angle of incidence |
1965 | tlength = 0; |
1966 | eloss = 0; |
1967 | eloss2 = 0; |
1968 | xhit = pos[0]; |
1969 | yhit = pos[1]; |
1e8fff9c |
1970 | zhit = pos[2]; |
a9e2aefa |
1971 | // Only if not trigger chamber |
1e8fff9c |
1972 | |
1973 | |
1974 | |
1975 | |
a75f073c |
1976 | if(idvol<AliMUONConstants::NTrackingCh()) { |
a9e2aefa |
1977 | // |
1978 | // Initialize hit position (cursor) in the segmentation model |
1979 | ((AliMUONChamber*) (*fChambers)[idvol]) |
1980 | ->SigGenInit(pos[0], pos[1], pos[2]); |
1981 | } else { |
1982 | //geant3->Gpcxyz(); |
1983 | //printf("In the Trigger Chamber #%d\n",idvol-9); |
1984 | } |
1985 | } |
1986 | eloss2+=destep; |
1987 | |
1988 | // |
1989 | // Calculate the charge induced on a pad (disintegration) in case |
1990 | // |
1991 | // Mip left chamber ... |
1992 | if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ |
1993 | gMC->SetMaxStep(kBig); |
1994 | eloss += destep; |
1995 | tlength += step; |
1996 | |
802a864d |
1997 | Float_t x0,y0,z0; |
1998 | Float_t localPos[3]; |
1999 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
802a864d |
2000 | gMC->Gmtod(globalPos,localPos,1); |
2001 | |
a75f073c |
2002 | if(idvol<AliMUONConstants::NTrackingCh()) { |
a9e2aefa |
2003 | // tracking chambers |
2004 | x0 = 0.5*(xhit+pos[0]); |
2005 | y0 = 0.5*(yhit+pos[1]); |
1e8fff9c |
2006 | z0 = 0.5*(zhit+pos[2]); |
2007 | // z0 = localPos[2]; |
a9e2aefa |
2008 | } else { |
2009 | // trigger chambers |
2010 | x0=xhit; |
2011 | y0=yhit; |
1e8fff9c |
2012 | // z0=yhit; |
802a864d |
2013 | z0=0.; |
a9e2aefa |
2014 | } |
2015 | |
1e8fff9c |
2016 | |
802a864d |
2017 | if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol); |
a9e2aefa |
2018 | |
2019 | |
2020 | hits[6]=tlength; |
2021 | hits[7]=eloss2; |
2022 | if (fNPadHits > (Int_t)hits[8]) { |
2023 | hits[8]= hits[8]+1; |
2024 | hits[9]= (Float_t) fNPadHits; |
2025 | } |
2026 | |
2027 | new(lhits[fNhits++]) |
2028 | AliMUONHit(fIshunt,gAlice->CurrentTrack(),vol,hits); |
2029 | eloss = 0; |
2030 | // |
2031 | // Check additional signal generation conditions |
2032 | // defined by the segmentation |
a75f073c |
2033 | // model (boundary crossing conditions) |
2034 | // only for tracking chambers |
a9e2aefa |
2035 | } else if |
a75f073c |
2036 | ((idvol < AliMUONConstants::NTrackingCh()) && |
2037 | ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2])) |
a9e2aefa |
2038 | { |
2039 | ((AliMUONChamber*) (*fChambers)[idvol]) |
2040 | ->SigGenInit(pos[0], pos[1], pos[2]); |
802a864d |
2041 | |
2042 | Float_t localPos[3]; |
2043 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
2044 | gMC->Gmtod(globalPos,localPos,1); |
2045 | |
2046 | |
a75f073c |
2047 | if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh()) |
1e8fff9c |
2048 | MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol); |
a9e2aefa |
2049 | xhit = pos[0]; |
2050 | yhit = pos[1]; |
1e8fff9c |
2051 | zhit = pos[2]; |
a9e2aefa |
2052 | eloss = destep; |
2053 | tlength += step ; |
2054 | // |
2055 | // nothing special happened, add up energy loss |
2056 | } else { |
2057 | eloss += destep; |
2058 | tlength += step ; |
2059 | } |
2060 | } |
2061 | |
2062 | |