]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONv1.cxx
A protection added into Find1DClusters() for the variable tstart
[u/mrichter/AliRoot.git] / MUON / AliMUONv1.cxx
CommitLineData
a9e2aefa 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
2c799aa2 12 * about the suitability of this software for any purpeateose. It is *
a9e2aefa 13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
e3cf5faa 18Revision 1.14 2000/11/06 09:16:50 morsch
19Avoid overlap of slat volumes.
20
2c799aa2 21Revision 1.13 2000/10/26 07:33:44 morsch
22Correct x-position of slats in station 5.
23
8013c580 24Revision 1.12 2000/10/25 19:55:35 morsch
25Switches for each station individually for debug and lego.
26
b17c0c87 27Revision 1.11 2000/10/22 16:44:01 morsch
28Update of slat geometry for stations 3,4,5 (A. deFalco)
29
f9f7c205 30Revision 1.10 2000/10/12 16:07:04 gosset
31StepManager:
32* SigGenCond only called for tracking chambers,
33 hence no more division by 0,
34 and may use last ALIROOT/dummies.C with exception handling;
35* "10" replaced by "AliMUONConstants::NTrackingCh()".
36
a75f073c 37Revision 1.9 2000/10/06 15:37:22 morsch
38Problems with variable redefinition in for-loop solved.
39Variable names starting with u-case letters changed to l-case.
40
6c5ddcfa 41Revision 1.8 2000/10/06 09:06:31 morsch
42Include Slat chambers (stations 3-5) into geometry (A. de Falco)
43
1e8fff9c 44Revision 1.7 2000/10/02 21:28:09 fca
45Removal of useless dependecies via forward declarations
46
94de3818 47Revision 1.6 2000/10/02 17:20:45 egangler
48Cleaning of the code (continued ) :
49-> coding conventions
50-> void Streamers
51-> some useless includes removed or replaced by "class" statement
52
8c449e83 53Revision 1.5 2000/06/28 15:16:35 morsch
54(1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there)
55to allow development of slat-muon chamber simulation and reconstruction code in the MUON
56framework. The changes should have no side effects (mostly dummy arguments).
57(2) Hit disintegration uses 3-dim hit coordinates to allow simulation
58of chambers with overlapping modules (MakePadHits, Disintegration).
59
802a864d 60Revision 1.4 2000/06/26 14:02:38 morsch
61Add class AliMUONConstants with MUON specific constants using static memeber data and access methods.
62
f665c1ea 63Revision 1.3 2000/06/22 14:10:05 morsch
64HP scope problems corrected (PH)
65
e17592e9 66Revision 1.2 2000/06/15 07:58:49 morsch
67Code from MUON-dev joined
68
a9e2aefa 69Revision 1.1.2.14 2000/06/14 14:37:25 morsch
70Initialization of TriggerCircuit added (PC)
71
72Revision 1.1.2.13 2000/06/09 21:55:47 morsch
73Most coding rule violations corrected.
74
75Revision 1.1.2.12 2000/05/05 11:34:29 morsch
76Log inside comments.
77
78Revision 1.1.2.11 2000/05/05 10:06:48 morsch
79Coding Rule violations regarding trigger section corrected (CP)
80Log messages included.
81*/
82
83/////////////////////////////////////////////////////////
84// Manager and hits classes for set:MUON version 0 //
85/////////////////////////////////////////////////////////
86
87#include <TTUBE.h>
88#include <TNode.h>
89#include <TRandom.h>
90#include <TLorentzVector.h>
91#include <iostream.h>
92
93#include "AliMUONv1.h"
94#include "AliRun.h"
95#include "AliMC.h"
94de3818 96#include "AliMagF.h"
a9e2aefa 97#include "AliCallf77.h"
98#include "AliConst.h"
99#include "AliMUONChamber.h"
100#include "AliMUONHit.h"
101#include "AliMUONPadHit.h"
f665c1ea 102#include "AliMUONConstants.h"
8c449e83 103#include "AliMUONTriggerCircuit.h"
a9e2aefa 104
105ClassImp(AliMUONv1)
106
107//___________________________________________
108AliMUONv1::AliMUONv1() : AliMUON()
109{
110// Constructor
111 fChambers = 0;
112}
113
114//___________________________________________
115AliMUONv1::AliMUONv1(const char *name, const char *title)
116 : AliMUON(name,title)
117{
118// Constructor
119}
120
121//___________________________________________
122void AliMUONv1::CreateGeometry()
123{
124//
125// Note: all chambers have the same structure, which could be
126// easily parameterised. This was intentionally not done in order
127// to give a starting point for the implementation of the actual
128// design of each station.
129 Int_t *idtmed = fIdtmed->GetArray()-1099;
130
131// Distance between Stations
132//
133 Float_t bpar[3];
134 Float_t tpar[3];
135 Float_t pgpar[10];
136 Float_t zpos1, zpos2, zfpos;
137 Float_t dframep=.001; // Value for station 3 should be 6 ...
138 Float_t dframep1=.001;
139// Bool_t frames=kTRUE;
140 Bool_t frames=kFALSE;
141
142 Float_t dframez=0.9;
143 Float_t dr;
144 Float_t dstation;
145
146//
147// Rotation matrices in the x-y plane
148 Int_t idrotm[1199];
149// phi= 0 deg
150 AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.);
151// phi= 90 deg
152 AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.);
153// phi= 180 deg
154 AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.);
155// phi= 270 deg
156 AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.);
157//
158 Float_t phi=2*TMath::Pi()/12/2;
159
160//
161// pointer to the current chamber
162// pointer to the current chamber
163 Int_t idAlu1=idtmed[1103];
164 Int_t idAlu2=idtmed[1104];
165// Int_t idAlu1=idtmed[1100];
166// Int_t idAlu2=idtmed[1100];
167 Int_t idAir=idtmed[1100];
168 Int_t idGas=idtmed[1105];
169
170
171 AliMUONChamber *iChamber, *iChamber1, *iChamber2;
b17c0c87 172 Int_t stations[5] = {1, 1, 1, 1, 1};
173
174 if (stations[0]) {
175
a9e2aefa 176//********************************************************************
177// Station 1 **
178//********************************************************************
179// CONCENTRIC
180 // indices 1 and 2 for first and second chambers in the station
181 // iChamber (first chamber) kept for other quanties than Z,
182 // assumed to be the same in both chambers
183 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0];
184 iChamber2 =(AliMUONChamber*) (*fChambers)[1];
185 zpos1=iChamber1->Z();
186 zpos2=iChamber2->Z();
187 dstation = zpos2 - zpos1;
188 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
189
190//
191// Mother volume
192 tpar[0] = iChamber->RInner()-dframep1;
193 tpar[1] = (iChamber->ROuter()+dframep1)/TMath::Cos(phi);
2c799aa2 194 tpar[2] = dstation/5;
a9e2aefa 195
196 gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3);
197 gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3);
198 gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1e8fff9c 199 gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
a9e2aefa 200// Aluminium frames
201// Outer frames
202 pgpar[0] = 360/12/2;
203 pgpar[1] = 360.;
204 pgpar[2] = 12.;
205 pgpar[3] = 2;
206 pgpar[4] = -dframez/2;
207 pgpar[5] = iChamber->ROuter();
208 pgpar[6] = pgpar[5]+dframep1;
209 pgpar[7] = +dframez/2;
210 pgpar[8] = pgpar[5];
211 pgpar[9] = pgpar[6];
212 gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10);
213 gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10);
214 gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY");
215 gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY");
216 gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY");
217 gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY");
218//
219// Inner frame
220 tpar[0]= iChamber->RInner()-dframep1;
221 tpar[1]= iChamber->RInner();
222 tpar[2]= dframez/2;
223 gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3);
224 gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3);
225
226 gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY");
227 gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY");
228 gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY");
229 gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY");
230//
231// Frame Crosses
232 if (frames) {
233
234 bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2;
235 bpar[1] = dframep1/2;
236 bpar[2] = dframez/2;
237 gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3);
238 gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3);
239
240 gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
241 idrotm[1100],"ONLY");
242 gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
243 idrotm[1100],"ONLY");
244 gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
245 idrotm[1101],"ONLY");
246 gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
247 idrotm[1101],"ONLY");
248 gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
249 idrotm[1100],"ONLY");
250 gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
251 idrotm[1100],"ONLY");
252 gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
253 idrotm[1101],"ONLY");
254 gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
255 idrotm[1101],"ONLY");
256
257 gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
258 idrotm[1100],"ONLY");
259 gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
260 idrotm[1100],"ONLY");
261 gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
262 idrotm[1101],"ONLY");
263 gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
264 idrotm[1101],"ONLY");
265 gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
266 idrotm[1100],"ONLY");
267 gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
268 idrotm[1100],"ONLY");
269 gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
270 idrotm[1101],"ONLY");
271 gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
272 idrotm[1101],"ONLY");
273 }
274//
275// Chamber Material represented by Alu sheet
276 tpar[0]= iChamber->RInner();
277 tpar[1]= iChamber->ROuter();
278 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
279 gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3);
280 gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3);
281 gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY");
282 gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY");
283//
284// Sensitive volumes
285 // tpar[2] = iChamber->DGas();
286 tpar[2] = iChamber->DGas()/2;
287 gMC->Gsvolu("C01G", "TUBE", idtmed[1108], tpar, 3);
288 gMC->Gsvolu("C02G", "TUBE", idtmed[1108], tpar, 3);
289 gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY");
290 gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY");
291//
292// Frame Crosses to be placed inside gas
293 if (frames) {
294
295 dr = (iChamber->ROuter() - iChamber->RInner());
296 bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
297 bpar[1] = dframep1/2;
298 bpar[2] = iChamber->DGas()/2;
299 gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3);
300 gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3);
301
302 gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0,
303 idrotm[1100],"ONLY");
304 gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0,
305 idrotm[1100],"ONLY");
306 gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0,
307 idrotm[1101],"ONLY");
308 gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0,
309 idrotm[1101],"ONLY");
310
311 gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0,
312 idrotm[1100],"ONLY");
313 gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0,
314 idrotm[1100],"ONLY");
315 gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0,
316 idrotm[1101],"ONLY");
317 gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0,
318 idrotm[1101],"ONLY");
319 }
b17c0c87 320 }
321 if (stations[1]) {
322
a9e2aefa 323//********************************************************************
324// Station 2 **
325//********************************************************************
326 // indices 1 and 2 for first and second chambers in the station
327 // iChamber (first chamber) kept for other quanties than Z,
328 // assumed to be the same in both chambers
329 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2];
330 iChamber2 =(AliMUONChamber*) (*fChambers)[3];
331 zpos1=iChamber1->Z();
332 zpos2=iChamber2->Z();
333 dstation = zpos2 - zpos1;
334 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
335
336//
337// Mother volume
338 tpar[0] = iChamber->RInner()-dframep;
339 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2c799aa2 340 tpar[2] = dstation/5;
a9e2aefa 341
342 gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3);
343 gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3);
344 gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
345 gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 346
a9e2aefa 347// Aluminium frames
348// Outer frames
349 pgpar[0] = 360/12/2;
350 pgpar[1] = 360.;
351 pgpar[2] = 12.;
352 pgpar[3] = 2;
353 pgpar[4] = -dframez/2;
354 pgpar[5] = iChamber->ROuter();
355 pgpar[6] = pgpar[5]+dframep;
356 pgpar[7] = +dframez/2;
357 pgpar[8] = pgpar[5];
358 pgpar[9] = pgpar[6];
359 gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10);
360 gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10);
361 gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY");
362 gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY");
363 gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY");
364 gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY");
365//
366// Inner frame
367 tpar[0]= iChamber->RInner()-dframep;
368 tpar[1]= iChamber->RInner();
369 tpar[2]= dframez/2;
370 gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3);
371 gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3);
372
373 gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY");
374 gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY");
375 gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY");
376 gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY");
377//
378// Frame Crosses
379 if (frames) {
380
381 bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2;
382 bpar[1] = dframep/2;
383 bpar[2] = dframez/2;
384 gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3);
385 gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3);
386
387 gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
388 idrotm[1100],"ONLY");
389 gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
390 idrotm[1100],"ONLY");
391 gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
392 idrotm[1101],"ONLY");
393 gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
394 idrotm[1101],"ONLY");
395 gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
396 idrotm[1100],"ONLY");
397 gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
398 idrotm[1100],"ONLY");
399 gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
400 idrotm[1101],"ONLY");
401 gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
402 idrotm[1101],"ONLY");
403
404 gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
405 idrotm[1100],"ONLY");
406 gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
407 idrotm[1100],"ONLY");
408 gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
409 idrotm[1101],"ONLY");
410 gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
411 idrotm[1101],"ONLY");
412 gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
413 idrotm[1100],"ONLY");
414 gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
415 idrotm[1100],"ONLY");
416 gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
417 idrotm[1101],"ONLY");
418 gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
419 idrotm[1101],"ONLY");
420 }
421//
422// Chamber Material represented by Alu sheet
423 tpar[0]= iChamber->RInner();
424 tpar[1]= iChamber->ROuter();
425 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
426 gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3);
427 gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3);
428 gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY");
429 gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY");
430//
431// Sensitive volumes
432 // tpar[2] = iChamber->DGas();
433 tpar[2] = iChamber->DGas()/2;
434 gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3);
435 gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3);
436 gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY");
437 gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY");
438
439 if (frames) {
440//
441// Frame Crosses to be placed inside gas
442 dr = (iChamber->ROuter() - iChamber->RInner());
443 bpar[0] = TMath::Sqrt(dr*dr-dframep*dframep/4)/2;
444 bpar[1] = dframep/2;
445 bpar[2] = iChamber->DGas()/2;
446 gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3);
447 gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3);
448
449 gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0,
450 idrotm[1100],"ONLY");
451 gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0,
452 idrotm[1100],"ONLY");
453 gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0,
454 idrotm[1101],"ONLY");
455 gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0,
456 idrotm[1101],"ONLY");
457
458 gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0,
459 idrotm[1100],"ONLY");
460 gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0,
461 idrotm[1100],"ONLY");
462 gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0,
463 idrotm[1101],"ONLY");
464 gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0,
465 idrotm[1101],"ONLY");
466 }
b17c0c87 467 }
1e8fff9c 468 // define the id of tracking media:
469 Int_t idCopper = idtmed[1110];
470 Int_t idGlass = idtmed[1111];
471 Int_t idCarbon = idtmed[1112];
472 Int_t idRoha = idtmed[1113];
473
1e8fff9c 474 // sensitive area: 40*40 cm**2
6c5ddcfa 475 const Float_t sensLength = 40.;
476 const Float_t sensHeight = 40.;
477 const Float_t sensWidth = 0.5; // according to TDR fig 2.120
478 const Int_t sensMaterial = idGas;
1e8fff9c 479 const Float_t yOverlap = 1.5;
480
481 // PCB dimensions in cm; width: 30 mum copper
6c5ddcfa 482 const Float_t pcbLength = sensLength;
483 const Float_t pcbHeight = 60.;
484 const Float_t pcbWidth = 0.003;
485 const Int_t pcbMaterial = idCopper;
1e8fff9c 486
487 // Insulating material: 200 mum glass fiber glued to pcb
6c5ddcfa 488 const Float_t insuLength = pcbLength;
489 const Float_t insuHeight = pcbHeight;
490 const Float_t insuWidth = 0.020;
491 const Int_t insuMaterial = idGlass;
1e8fff9c 492
493 // Carbon fiber panels: 200mum carbon/epoxy skin
6c5ddcfa 494 const Float_t panelLength = sensLength;
495 const Float_t panelHeight = sensHeight;
496 const Float_t panelWidth = 0.020;
497 const Int_t panelMaterial = idCarbon;
1e8fff9c 498
499 // rohacell between the two carbon panels
6c5ddcfa 500 const Float_t rohaLength = sensLength;
501 const Float_t rohaHeight = sensHeight;
502 const Float_t rohaWidth = 0.5;
503 const Int_t rohaMaterial = idRoha;
1e8fff9c 504
505 // Frame around the slat: 2 sticks along length,2 along height
506 // H: the horizontal ones
6c5ddcfa 507 const Float_t hFrameLength = pcbLength;
508 const Float_t hFrameHeight = 1.5;
509 const Float_t hFrameWidth = sensWidth;
510 const Int_t hFrameMaterial = idGlass;
1e8fff9c 511
512 // V: the vertical ones
6c5ddcfa 513 const Float_t vFrameLength = 4.0;
514 const Float_t vFrameHeight = sensHeight + hFrameHeight;
515 const Float_t vFrameWidth = sensWidth;
516 const Int_t vFrameMaterial = idGlass;
1e8fff9c 517
518 // B: the horizontal border filled with rohacell
6c5ddcfa 519 const Float_t bFrameLength = hFrameLength;
520 const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight;
521 const Float_t bFrameWidth = hFrameWidth;
522 const Int_t bFrameMaterial = idRoha;
1e8fff9c 523
524 // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper)
6c5ddcfa 525 const Float_t nulocLength = 2.5;
526 const Float_t nulocHeight = 7.5;
527 const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite;
528 const Int_t nulocMaterial = idCopper;
1e8fff9c 529
530 // Gassiplex package
6c5ddcfa 531 const Float_t gassiLength = 1.0;
532 const Float_t gassiHeight = 1.0;
533 const Float_t gassiWidth = 0.15; // check it !!!
534 const Int_t gassiMaterial = idGlass;
1e8fff9c 535
6c5ddcfa 536 const Float_t slatHeight = pcbHeight;
537 const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth +
538 2.* panelWidth + rohaWidth);
539 const Int_t slatMaterial = idAir;
540 const Float_t dSlatLength = vFrameLength; // border on left and right
1e8fff9c 541
1e8fff9c 542 Float_t spar[3];
b17c0c87 543 Int_t i, j;
544
545 Float_t sensPar[3] = { sensLength/2., sensHeight/2., sensWidth/2. };
546 Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., pcbWidth/2. };
547 Float_t insupar[3] = { insuLength/2., insuHeight/2., insuWidth/2. };
548 Float_t panelpar[3] = { panelLength/2., panelHeight/2., panelWidth/2. };
549 Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. };
550 Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.};
551 Float_t hFramepar[3]={hFrameLength/2., hFrameHeight/2., hFrameWidth/2.};
552 Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.};
553 Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.};
554 Float_t gassipar[3]={gassiLength/2., gassiHeight/2., gassiWidth/2.};
555 Float_t xx;
556 Float_t xxmax = (bFrameLength - nulocLength)/2.;
557 Int_t index=0;
558
559 if (stations[2]) {
560
561//********************************************************************
562// Station 3 **
563//********************************************************************
564 // indices 1 and 2 for first and second chambers in the station
565 // iChamber (first chamber) kept for other quanties than Z,
566 // assumed to be the same in both chambers
567 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4];
568 iChamber2 =(AliMUONChamber*) (*fChambers)[5];
569 zpos1=iChamber1->Z();
570 zpos2=iChamber2->Z();
571 dstation = zpos2 - zpos1;
572
573 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
574//
575// Mother volume
576 tpar[0] = iChamber->RInner()-dframep;
577 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2c799aa2 578 tpar[2] = dstation/5;
b17c0c87 579 gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3);
580 gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3);
581 gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
582 gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
583
584 // volumes for slat geometry (xx=5,..,10 chamber id):
585 // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes
586 // SxxG --> Sensitive volume (gas)
587 // SxxP --> PCB (copper)
588 // SxxI --> Insulator (vetronite)
589 // SxxC --> Carbon panel
590 // SxxR --> Rohacell
591 // SxxH, SxxV --> Horizontal and Vertical frames (vetronite)
592
593 // slat dimensions: slat is a MOTHER volume!!! made of air
594
595
596 const Int_t nSlats3 = 4; // number of slats per quadrant
597 const Int_t nPCB3[nSlats3] = {3,4,3,2}; // n PCB per slat
598 Float_t slatLength3[nSlats3];
599
600 // create and position the slat (mother) volumes
601
6c5ddcfa 602 char volNam5[5];
f9f7c205 603 char volDiv5[5];
6c5ddcfa 604 char volNam6[5];
f9f7c205 605 char volDiv6[5];
606 Float_t xSlat3;
b17c0c87 607
6c5ddcfa 608 for (i = 0; i<nSlats3; i++){
f9f7c205 609 slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength;
610 xSlat3 = slatLength3[i]/2. - vFrameLength/2.;
611 if (i==0) xSlat3 += 40.;
612
613 Float_t ySlat31 = sensHeight * (i+0.5) - yOverlap * i - yOverlap/2.;
614 Float_t ySlat32 = -sensHeight * (i+0.5) + yOverlap * i + yOverlap/2.;
615 spar[0] = slatLength3[i]/2.;
616 spar[1] = slatHeight/2.;
617 spar[2] = slatWidth/2.;
618 // zSlat to be checked (odd downstream or upstream?)
619 Float_t zSlat = (i%2 ==0)? -slatWidth/2. : slatWidth/2.;
2c799aa2 620 zSlat*=1.01;
f9f7c205 621 sprintf(volNam5,"S05%d",i);
622 gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar,3);
623 gMC->Gspos(volNam5, i*4+1,"C05M", xSlat3, ySlat31, zSlat, 0, "ONLY");
624 gMC->Gspos(volNam5, i*4+2,"C05M",-xSlat3, ySlat31, zSlat, 0, "ONLY");
625 gMC->Gspos(volNam5, i*4+3,"C05M", xSlat3, ySlat32,-zSlat, 0, "ONLY");
626 gMC->Gspos(volNam5, i*4+4,"C05M",-xSlat3, ySlat32,-zSlat, 0, "ONLY");
627 sprintf(volNam6,"S06%d",i);
628 gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3);
629 gMC->Gspos(volNam6, i*4+1,"C06M", xSlat3, ySlat31, zSlat, 0, "ONLY");
630 gMC->Gspos(volNam6, i*4+2,"C06M",-xSlat3, ySlat31, zSlat, 0, "ONLY");
631 gMC->Gspos(volNam6, i*4+3,"C06M", xSlat3, ySlat32,-zSlat, 0, "ONLY");
632 gMC->Gspos(volNam6, i*4+4,"C06M",-xSlat3, ySlat32,-zSlat, 0, "ONLY");
633 // 1st pcb in 1st slat made by some rectangular divisions
634/*
635 if (i==0) {
636 Int_t ndiv=8;
637 Double_t dydiv= sensHeight/ndiv;
638 Double_t ydiv = -dydiv;
639 for (Int_t idiv=0;idiv<ndiv; idiv++){
640 ydiv+= dydiv;
641 Float_t xdiv =0;
642 if (ydiv<30) xdiv= 30. * TMath::Sin( TMath::ACos(ydiv/30.) );
643 spar[0] = (pcbLength-xdiv)/2.;
644 spar[1] = dydiv/2.;
645 spar[2] = slatWidth/2.;
646
647 sprintf(volDiv5,"D05%d",idiv);
648 sprintf(volDiv6,"D06%d",idiv);
649
650 gMC->Gsvolu(volDiv5,"BOX",sensMaterial,spar,3);
651 Float_t xvol=(pcbLength+xdiv)/2.;
652 Float_t yvol=ydiv+dydiv/2.;
653 gMC->Gspos(volDiv5, 1,"C05M", xvol, yvol, zSlat, 0, "ONLY");
654 gMC->Gspos(volDiv5, 2,"C05M",-xvol, yvol, zSlat, 0, "ONLY");
655 gMC->Gspos(volDiv5, 3,"C05M", xvol,-yvol,-zSlat, 0, "ONLY");
656 gMC->Gspos(volDiv5, 4,"C05M",-xvol,-yvol,-zSlat, 0, "ONLY");
657 gMC->Gspos(volDiv6, 1,"C06M", xvol, yvol, zSlat, 0, "ONLY");
658 gMC->Gspos(volDiv6, 2,"C06M",-xvol, yvol, zSlat, 0, "ONLY");
659 gMC->Gspos(volDiv6, 3,"C06M", xvol,-yvol,-zSlat, 0, "ONLY");
660 gMC->Gspos(volDiv6, 4,"C06M",-xvol,-yvol,-zSlat, 0, "ONLY");
661 }
662 }
663 */
1e8fff9c 664 }
a9e2aefa 665
1e8fff9c 666 // create the sensitive volumes (subdivided as the PCBs),
b17c0c87 667
6c5ddcfa 668 gMC->Gsvolu("S05G","BOX",sensMaterial,sensPar,3);
669 gMC->Gsvolu("S06G","BOX",sensMaterial,sensPar,3);
1e8fff9c 670
671 // create the PCB volume
b17c0c87 672
6c5ddcfa 673 gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3);
674 gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3);
1e8fff9c 675
676 // create the insulating material volume
b17c0c87 677
6c5ddcfa 678 gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3);
679 gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3);
1e8fff9c 680
681 // create the panel volume
b17c0c87 682
6c5ddcfa 683 gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3);
684 gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3);
1e8fff9c 685
686 // create the rohacell volume
b17c0c87 687
6c5ddcfa 688 gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3);
689 gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3);
1e8fff9c 690
691 // create the vertical frame volume
b17c0c87 692
6c5ddcfa 693 gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3);
694 gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 695
696 // create the horizontal frame volume
b17c0c87 697
6c5ddcfa 698 gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3);
699 gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 700
701 // create the horizontal border volume
b17c0c87 702
6c5ddcfa 703 gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3);
704 gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3);
1e8fff9c 705
b17c0c87 706 index=0;
6c5ddcfa 707 for (i = 0; i<nSlats3; i++){
708 sprintf(volNam5,"S05%d",i);
709 sprintf(volNam6,"S06%d",i);
f9f7c205 710 Float_t xvFrame = (slatLength3[i] - vFrameLength)/2.;
6c5ddcfa 711 gMC->Gspos("S05V",2*i-1,volNam5, xvFrame, 0., 0. , 0, "ONLY");
712 gMC->Gspos("S05V",2*i ,volNam5,-xvFrame, 0., 0. , 0, "ONLY");
713 gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY");
714 gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY");
715 for (j=0; j<nPCB3[i]; j++){
1e8fff9c 716 index++;
6c5ddcfa 717 Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5);
1e8fff9c 718 Float_t yy = 0.;
719 Float_t zSens = 0.;
6c5ddcfa 720 gMC->Gspos("S05G",index,volNam5, xx, yy, zSens , 0, "ONLY");
721 gMC->Gspos("S06G",index,volNam6, xx, yy, zSens , 0, "ONLY");
722 Float_t zPCB = (sensWidth+pcbWidth)/2.;
723 gMC->Gspos("S05P",2*index-1,volNam5, xx, yy, zPCB , 0, "ONLY");
724 gMC->Gspos("S05P",2*index ,volNam5, xx, yy,-zPCB , 0, "ONLY");
725 gMC->Gspos("S06P",2*index-1,volNam6, xx, yy, zPCB , 0, "ONLY");
726 gMC->Gspos("S06P",2*index ,volNam6, xx, yy,-zPCB , 0, "ONLY");
727 Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB;
728 gMC->Gspos("S05I",2*index-1,volNam5, xx, yy, zInsu , 0, "ONLY");
729 gMC->Gspos("S05I",2*index ,volNam5, xx, yy,-zInsu , 0, "ONLY");
730 gMC->Gspos("S06I",2*index-1,volNam6, xx, yy, zInsu , 0, "ONLY");
731 gMC->Gspos("S06I",2*index ,volNam6, xx, yy,-zInsu , 0, "ONLY");
732 Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu;
733 gMC->Gspos("S05C",4*index-3,volNam5, xx, yy, zPanel1 , 0, "ONLY");
734 gMC->Gspos("S05C",4*index-2,volNam5, xx, yy,-zPanel1 , 0, "ONLY");
735 gMC->Gspos("S06C",4*index-3,volNam6, xx, yy, zPanel1 , 0, "ONLY");
736 gMC->Gspos("S06C",4*index-2,volNam6, xx, yy,-zPanel1 , 0, "ONLY");
737 Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1;
738 gMC->Gspos("S05R",2*index-1,volNam5, xx, yy, zRoha , 0, "ONLY");
739 gMC->Gspos("S05R",2*index ,volNam5, xx, yy,-zRoha , 0, "ONLY");
740 gMC->Gspos("S06R",2*index-1,volNam6, xx, yy, zRoha , 0, "ONLY");
741 gMC->Gspos("S06R",2*index ,volNam6, xx, yy,-zRoha , 0, "ONLY");
742 Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha;
743 gMC->Gspos("S05C",4*index-1,volNam5, xx, yy, zPanel2 , 0, "ONLY");
744 gMC->Gspos("S05C",4*index ,volNam5, xx, yy,-zPanel2 , 0, "ONLY");
745 gMC->Gspos("S06C",4*index-1,volNam6, xx, yy, zPanel2 , 0, "ONLY");
746 gMC->Gspos("S06C",4*index ,volNam6, xx, yy,-zPanel2 , 0, "ONLY");
747 Float_t yframe = (sensHeight + hFrameHeight)/2.;
748 gMC->Gspos("S05H",2*index-1,volNam5, xx, yframe, 0. , 0, "ONLY");
749 gMC->Gspos("S05H",2*index ,volNam5, xx,-yframe, 0. , 0, "ONLY");
750 gMC->Gspos("S06H",2*index-1,volNam6, xx, yframe, 0. , 0, "ONLY");
751 gMC->Gspos("S06H",2*index ,volNam6, xx,-yframe, 0. , 0, "ONLY");
752 Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe;
753 gMC->Gspos("S05B",2*index-1,volNam5, xx, yborder, 0. , 0, "ONLY");
754 gMC->Gspos("S05B",2*index ,volNam5, xx,-yborder, 0. , 0, "ONLY");
755 gMC->Gspos("S06B",2*index-1,volNam6, xx, yborder, 0. , 0, "ONLY");
756 gMC->Gspos("S06B",2*index ,volNam6, xx,-yborder, 0. , 0, "ONLY");
1e8fff9c 757 }
a9e2aefa 758 }
a9e2aefa 759
1e8fff9c 760 // create the NULOC volume and position it in the horizontal frame
b17c0c87 761
6c5ddcfa 762 gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3);
763 gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3);
1e8fff9c 764
b17c0c87 765
6c5ddcfa 766 index = 0;
b17c0c87 767
6c5ddcfa 768
769 for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) {
1e8fff9c 770 index++;
6c5ddcfa 771 gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
772 gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY");
773 gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
774 gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY");
1e8fff9c 775 }
776
777 // create the gassiplex volume
b17c0c87 778
6c5ddcfa 779 gMC->Gsvolu("S05E","BOX",gassiMaterial,gassipar,3);
780 gMC->Gsvolu("S06E","BOX",gassiMaterial,gassipar,3);
1e8fff9c 781
782
783 // position 4 gassiplex in the nuloc
784
6c5ddcfa 785 gMC->Gspos("S05E",1,"S05N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY");
786 gMC->Gspos("S05E",2,"S05N", 0., - nulocHeight/8., 0. , 0, "ONLY");
787 gMC->Gspos("S05E",3,"S05N", 0., nulocHeight/8., 0. , 0, "ONLY");
788 gMC->Gspos("S05E",4,"S05N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY");
789 gMC->Gspos("S06E",1,"S06N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY");
790 gMC->Gspos("S06E",2,"S06N", 0., - nulocHeight/8., 0. , 0, "ONLY");
791 gMC->Gspos("S06E",3,"S06N", 0., nulocHeight/8., 0. , 0, "ONLY");
792 gMC->Gspos("S06E",4,"S06N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY");
b17c0c87 793 }
794 if (stations[3]) {
795
a9e2aefa 796
797//********************************************************************
798// Station 4 **
799//********************************************************************
800 // indices 1 and 2 for first and second chambers in the station
801 // iChamber (first chamber) kept for other quanties than Z,
802 // assumed to be the same in both chambers
803 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6];
804 iChamber2 =(AliMUONChamber*) (*fChambers)[7];
805 zpos1=iChamber1->Z();
806 zpos2=iChamber2->Z();
807 dstation = zpos2 - zpos1;
808 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
809
810//
811// Mother volume
812 tpar[0] = iChamber->RInner()-dframep;
813 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2c799aa2 814 tpar[2] = dstation/5;
a9e2aefa 815
816 gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3);
817 gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3);
818 gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
819 gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 820
a9e2aefa 821
f9f7c205 822 const Int_t nSlats4 = 6; // number of slats per quadrant
823 const Int_t nPCB4[nSlats4] = {4,5,5,4,3,2}; // n PCB per slat
1e8fff9c 824
825 // slat dimensions: slat is a MOTHER volume!!! made of air
6c5ddcfa 826 Float_t slatLength4[nSlats4];
1e8fff9c 827
828 // create and position the slat (mother) volumes
829
6c5ddcfa 830 char volNam7[5];
831 char volNam8[5];
1e8fff9c 832 Float_t xSlat4;
f9f7c205 833 Float_t ySlat4;
1e8fff9c 834
835
6c5ddcfa 836 for (i = 0; i<nSlats4; i++){
837 slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength;
f9f7c205 838 xSlat4 = slatLength4[i]/2. - vFrameLength/2.;
839 if (i==0) xSlat4 += 37.5;
f9f7c205 840 ySlat4 = sensHeight * i - yOverlap *i;
a9e2aefa 841
6c5ddcfa 842 spar[0] = slatLength4[i]/2.;
843 spar[1] = slatHeight/2.;
844 spar[2] = slatWidth/2.;
1e8fff9c 845 // zSlat to be checked (odd downstream or upstream?)
6c5ddcfa 846 Float_t zSlat = (i%2 ==0)? slatWidth/2. : -slatWidth/2.;
2c799aa2 847 zSlat*=1.01;
6c5ddcfa 848 sprintf(volNam7,"S07%d",i);
849 gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3);
f9f7c205 850 gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat4, zSlat, 0, "ONLY");
851 gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat4, zSlat, 0, "ONLY");
852 if (i>0) {
853 gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4,-ySlat4, zSlat, 0, "ONLY");
854 gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4,-ySlat4, zSlat, 0, "ONLY");
855 }
6c5ddcfa 856 sprintf(volNam8,"S08%d",i);
857 gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3);
f9f7c205 858 gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat4, zSlat, 0, "ONLY");
859 gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat4, zSlat, 0, "ONLY");
860 if (i>0) {
861 gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4,-ySlat4, zSlat, 0, "ONLY");
862 gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4,-ySlat4, zSlat, 0, "ONLY");
863 }
a9e2aefa 864 }
865
1e8fff9c 866 // create the sensitive volumes (subdivided as the PCBs),
867
6c5ddcfa 868 gMC->Gsvolu("S07G","BOX",sensMaterial,sensPar,3);
869 gMC->Gsvolu("S08G","BOX",sensMaterial,sensPar,3);
a9e2aefa 870
1e8fff9c 871 // create the PCB volume
872
6c5ddcfa 873 gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3);
874 gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3);
1e8fff9c 875
876 // create the insulating material volume
877
6c5ddcfa 878 gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3);
879 gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3);
1e8fff9c 880
881 // create the panel volume
882
6c5ddcfa 883 gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3);
884 gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3);
1e8fff9c 885
886 // create the rohacell volume
887
6c5ddcfa 888 gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3);
889 gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3);
1e8fff9c 890
891 // create the vertical frame volume
892
6c5ddcfa 893 gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3);
894 gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 895
896 // create the horizontal frame volume
897
6c5ddcfa 898 gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3);
899 gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 900
901 // create the horizontal border volume
902
6c5ddcfa 903 gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3);
904 gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3);
1e8fff9c 905
6c5ddcfa 906 for (i = 0; i<nSlats4; i++){
907 sprintf(volNam7,"S07%d",i);
908 sprintf(volNam8,"S08%d",i);
909 Float_t xvFrame = (slatLength4[i] - vFrameLength)/2.;
910 gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY");
911 gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY");
912 gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY");
913 gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY");
914 for (j=0; j<nPCB4[i]; j++){
1e8fff9c 915 index++;
6c5ddcfa 916 Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5);
1e8fff9c 917 Float_t yy = 0.;
918 Float_t zSens = 0.;
6c5ddcfa 919 gMC->Gspos("S07G",index,volNam7, xx, yy, zSens , 0, "ONLY");
920 gMC->Gspos("S08G",index,volNam8, xx, yy, zSens , 0, "ONLY");
921 Float_t zPCB = (sensWidth+pcbWidth)/2.;
922 gMC->Gspos("S07P",2*index-1,volNam7, xx, yy, zPCB , 0, "ONLY");
923 gMC->Gspos("S07P",2*index ,volNam7, xx, yy,-zPCB , 0, "ONLY");
924 gMC->Gspos("S08P",2*index-1,volNam8, xx, yy, zPCB , 0, "ONLY");
925 gMC->Gspos("S08P",2*index ,volNam8, xx, yy,-zPCB , 0, "ONLY");
926 Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB;
927 gMC->Gspos("S07I",2*index-1,volNam7, xx, yy, zInsu , 0, "ONLY");
928 gMC->Gspos("S07I",2*index ,volNam7, xx, yy,-zInsu , 0, "ONLY");
929 gMC->Gspos("S08I",2*index-1,volNam8, xx, yy, zInsu , 0, "ONLY");
930 gMC->Gspos("S08I",2*index ,volNam8, xx, yy,-zInsu , 0, "ONLY");
931 Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu;
932 gMC->Gspos("S07C",4*index-3,volNam7, xx, yy, zPanel1 , 0, "ONLY");
933 gMC->Gspos("S07C",4*index-2,volNam7, xx, yy,-zPanel1 , 0, "ONLY");
934 gMC->Gspos("S08C",4*index-3,volNam8, xx, yy, zPanel1 , 0, "ONLY");
935 gMC->Gspos("S08C",4*index-2,volNam8, xx, yy,-zPanel1 , 0, "ONLY");
936 Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1;
937 gMC->Gspos("S07R",2*index-1,volNam7, xx, yy, zRoha , 0, "ONLY");
938 gMC->Gspos("S07R",2*index ,volNam7, xx, yy,-zRoha , 0, "ONLY");
939 gMC->Gspos("S08R",2*index-1,volNam8, xx, yy, zRoha , 0, "ONLY");
940 gMC->Gspos("S08R",2*index ,volNam8, xx, yy,-zRoha , 0, "ONLY");
941 Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha;
942 gMC->Gspos("S07C",4*index-1,volNam7, xx, yy, zPanel2 , 0, "ONLY");
943 gMC->Gspos("S07C",4*index ,volNam7, xx, yy,-zPanel2 , 0, "ONLY");
944 gMC->Gspos("S08C",4*index-1,volNam8, xx, yy, zPanel2 , 0, "ONLY");
945 gMC->Gspos("S08C",4*index ,volNam8, xx, yy,-zPanel2 , 0, "ONLY");
946 Float_t yframe = (sensHeight + hFrameHeight)/2.;
947 gMC->Gspos("S07H",2*index-1,volNam7, xx, yframe, 0. , 0, "ONLY");
948 gMC->Gspos("S07H",2*index ,volNam7, xx,-yframe, 0. , 0, "ONLY");
949 gMC->Gspos("S08H",2*index-1,volNam8, xx, yframe, 0. , 0, "ONLY");
950 gMC->Gspos("S08H",2*index ,volNam8, xx,-yframe, 0. , 0, "ONLY");
951 Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe;
952 gMC->Gspos("S07B",2*index-1,volNam7, xx, yborder, 0. , 0, "ONLY");
953 gMC->Gspos("S07B",2*index ,volNam7, xx,-yborder, 0. , 0, "ONLY");
954 gMC->Gspos("S08B",2*index-1,volNam8, xx, yborder, 0. , 0, "ONLY");
955 gMC->Gspos("S08B",2*index ,volNam8, xx,-yborder, 0. , 0, "ONLY");
1e8fff9c 956 }
a9e2aefa 957 }
1e8fff9c 958
959 // create the NULOC volume and position it in the horizontal frame
960
6c5ddcfa 961 gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3);
962 gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3);
1e8fff9c 963
964
965 index = 0;
6c5ddcfa 966 for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) {
1e8fff9c 967 index++;
6c5ddcfa 968 gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
969 gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY");
970 gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
971 gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY");
1e8fff9c 972 }
973
974 // create the gassiplex volume
975
6c5ddcfa 976 gMC->Gsvolu("S07E","BOX",gassiMaterial,gassipar,3);
977 gMC->Gsvolu("S08E","BOX",gassiMaterial,gassipar,3);
1e8fff9c 978
979
980 // position 4 gassiplex in the nuloc
981
6c5ddcfa 982 gMC->Gspos("S07E",1,"S07N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY");
983 gMC->Gspos("S07E",2,"S07N", 0., - nulocHeight/8., 0. , 0, "ONLY");
984 gMC->Gspos("S07E",3,"S07N", 0., nulocHeight/8., 0. , 0, "ONLY");
985 gMC->Gspos("S07E",4,"S07N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY");
986 gMC->Gspos("S08E",1,"S08N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY");
987 gMC->Gspos("S08E",2,"S08N", 0., - nulocHeight/8., 0. , 0, "ONLY");
988 gMC->Gspos("S08E",3,"S08N", 0., nulocHeight/8., 0. , 0, "ONLY");
989 gMC->Gspos("S08E",4,"S08N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY");
b17c0c87 990
991 }
992 if (stations[4]) {
993
1e8fff9c 994
a9e2aefa 995//********************************************************************
996// Station 5 **
997//********************************************************************
998 // indices 1 and 2 for first and second chambers in the station
999 // iChamber (first chamber) kept for other quanties than Z,
1000 // assumed to be the same in both chambers
1001 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8];
1002 iChamber2 =(AliMUONChamber*) (*fChambers)[9];
1003 zpos1=iChamber1->Z();
1004 zpos2=iChamber2->Z();
1005 dstation = zpos2 - zpos1;
1006 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
1007
1008//
1009// Mother volume
1010 tpar[0] = iChamber->RInner()-dframep;
1011 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
2c799aa2 1012 tpar[2] = dstation/5;
a9e2aefa 1013
1014 gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3);
1015 gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3);
1016 gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1017 gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
a9e2aefa 1018
a9e2aefa 1019
1e8fff9c 1020 const Int_t nSlats5 = 7; // number of slats per quadrant
f9f7c205 1021 const Int_t nPCB5[nSlats5] = {7,7,6,6,5,4,2}; // n PCB per slat
1e8fff9c 1022
1023 // slat dimensions: slat is a MOTHER volume!!! made of air
6c5ddcfa 1024 Float_t slatLength5[nSlats5];
6c5ddcfa 1025 char volNam9[5];
1026 char volNam10[5];
f9f7c205 1027 Float_t xSlat5;
1028 Float_t ySlat5;
1e8fff9c 1029
6c5ddcfa 1030 for (i = 0; i<nSlats5; i++){
1031 slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength;
8013c580 1032 xSlat5 = slatLength5[i]/2. - vFrameLength/2.;
f9f7c205 1033 if (i==0) xSlat5 += 37.5;
1034 ySlat5 = sensHeight * i - yOverlap * i;
6c5ddcfa 1035 spar[0] = slatLength5[i]/2.;
1036 spar[1] = slatHeight/2.;
1037 spar[2] = slatWidth/2.;
1e8fff9c 1038 // zSlat to be checked (odd downstream or upstream?)
6c5ddcfa 1039 Float_t zSlat = (i%2 ==0)? -slatWidth/2. : slatWidth/2.;
2c799aa2 1040 zSlat*=1.01;
6c5ddcfa 1041 sprintf(volNam9,"S09%d",i);
1042 gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3);
f9f7c205 1043 gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5, ySlat5, zSlat, 0, "ONLY");
1044 gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5, ySlat5, zSlat, 0, "ONLY");
1045 if (i>0) {
2c799aa2 1046 gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5,-ySlat5, zSlat, 0, "ONLY");
1047 gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5,-ySlat5, zSlat, 0, "ONLY");
f9f7c205 1048 }
6c5ddcfa 1049 sprintf(volNam10,"S10%d",i);
1050 gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3);
f9f7c205 1051 gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5, ySlat5, zSlat, 0, "ONLY");
1052 gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5, ySlat5, zSlat, 0, "ONLY");
1053 if (i>0) {
2c799aa2 1054 gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5,-ySlat5, zSlat, 0, "ONLY");
1055 gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5,-ySlat5, zSlat, 0, "ONLY");
f9f7c205 1056 }
a9e2aefa 1057 }
1058
1e8fff9c 1059 // create the sensitive volumes (subdivided as the PCBs),
1060
6c5ddcfa 1061 gMC->Gsvolu("S09G","BOX",sensMaterial,sensPar,3);
1062 gMC->Gsvolu("S10G","BOX",sensMaterial,sensPar,3);
2c799aa2 1063
1e8fff9c 1064 // create the PCB volume
2c799aa2 1065
6c5ddcfa 1066 gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3);
1067 gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3);
1e8fff9c 1068
1069 // create the insulating material volume
1070
6c5ddcfa 1071 gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3);
1072 gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3);
1e8fff9c 1073
1074 // create the panel volume
1075
6c5ddcfa 1076 gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3);
1077 gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3);
2c799aa2 1078
1e8fff9c 1079 // create the rohacell volume
1080
6c5ddcfa 1081 gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3);
1082 gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3);
2c799aa2 1083
1e8fff9c 1084 // create the vertical frame volume
1085
6c5ddcfa 1086 gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3);
1087 gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3);
1e8fff9c 1088
1089 // create the horizontal frame volume
1090
6c5ddcfa 1091 gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3);
1092 gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3);
1e8fff9c 1093
1094 // create the horizontal border volume
1095
6c5ddcfa 1096 gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3);
1097 gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3);
1e8fff9c 1098
1099
6c5ddcfa 1100 for (i = 0; i<nSlats5; i++){
1101 sprintf(volNam9,"S09%d",i);
1102 sprintf(volNam10,"S10%d",i);
1103 Float_t xvFrame = (slatLength5[i] - vFrameLength)/2.;
1104 gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY");
1105 gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY");
1106 gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY");
1107 gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY");
1108 for (j=0; j<nPCB5[i]; j++){
1e8fff9c 1109 index++;
2c799aa2 1110 Float_t xx = sensLength/2. * (-nPCB5[i]+2*j+1);
1e8fff9c 1111 Float_t yy = 0.;
1112 Float_t zSens = 0.;
6c5ddcfa 1113 gMC->Gspos("S09G",index,volNam9, xx, yy, zSens , 0, "ONLY");
1114 gMC->Gspos("S10G",index,volNam10, xx, yy, zSens , 0, "ONLY");
1115 Float_t zPCB = (sensWidth+pcbWidth)/2.;
1116 gMC->Gspos("S09P",2*index-1,volNam9, xx, yy, zPCB , 0, "ONLY");
1117 gMC->Gspos("S09P",2*index ,volNam9, xx, yy,-zPCB , 0, "ONLY");
1118 gMC->Gspos("S10P",2*index-1,volNam10, xx, yy, zPCB , 0, "ONLY");
1119 gMC->Gspos("S10P",2*index ,volNam10, xx, yy,-zPCB , 0, "ONLY");
1120 Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB;
1121 gMC->Gspos("S09I",2*index-1,volNam9, xx, yy, zInsu , 0, "ONLY");
1122 gMC->Gspos("S09I",2*index ,volNam9, xx, yy,-zInsu , 0, "ONLY");
1123 gMC->Gspos("S10I",2*index-1,volNam10, xx, yy, zInsu , 0, "ONLY");
1124 gMC->Gspos("S10I",2*index ,volNam10, xx, yy,-zInsu , 0, "ONLY");
1125 Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu;
1126 gMC->Gspos("S09C",4*index-3,volNam9, xx, yy, zPanel1 , 0, "ONLY");
1127 gMC->Gspos("S09C",4*index-2,volNam9, xx, yy,-zPanel1 , 0, "ONLY");
1128 gMC->Gspos("S10C",4*index-3,volNam10, xx, yy, zPanel1 , 0, "ONLY");
1129 gMC->Gspos("S10C",4*index-2,volNam10, xx, yy,-zPanel1 , 0, "ONLY");
1130 Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1;
1131 gMC->Gspos("S09R",2*index-1,volNam9, xx, yy, zRoha , 0, "ONLY");
1132 gMC->Gspos("S09R",2*index ,volNam9, xx, yy,-zRoha , 0, "ONLY");
1133 gMC->Gspos("S10R",2*index-1,volNam10, xx, yy, zRoha , 0, "ONLY");
1134 gMC->Gspos("S10R",2*index ,volNam10, xx, yy,-zRoha , 0, "ONLY");
1135 Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha;
1136 gMC->Gspos("S09C",4*index-1,volNam9, xx, yy, zPanel2 , 0, "ONLY");
1137 gMC->Gspos("S09C",4*index ,volNam9, xx, yy,-zPanel2 , 0, "ONLY");
1138 gMC->Gspos("S10C",4*index-1,volNam10, xx, yy, zPanel2 , 0, "ONLY");
1139 gMC->Gspos("S10C",4*index ,volNam10, xx, yy,-zPanel2 , 0, "ONLY");
1140 Float_t yframe = (sensHeight + hFrameHeight)/2.;
1141 gMC->Gspos("S09H",2*index-1,volNam9, xx, yframe, 0. , 0, "ONLY");
1142 gMC->Gspos("S09H",2*index ,volNam9, xx,-yframe, 0. , 0, "ONLY");
1143 gMC->Gspos("S10H",2*index-1,volNam10, xx, yframe, 0. , 0, "ONLY");
1144 gMC->Gspos("S10H",2*index ,volNam10, xx,-yframe, 0. , 0, "ONLY");
1145 Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe;
1146 gMC->Gspos("S09B",2*index-1,volNam9, xx, yborder, 0. , 0, "ONLY");
1147 gMC->Gspos("S09B",2*index ,volNam9, xx,-yborder, 0. , 0, "ONLY");
1148 gMC->Gspos("S10B",2*index-1,volNam10, xx, yborder, 0. , 0, "ONLY");
1149 gMC->Gspos("S10B",2*index ,volNam10, xx,-yborder, 0. , 0, "ONLY");
1e8fff9c 1150 }
1151 }
1152
1153 // create the NULOC volume and position it in the horizontal frame
1154
6c5ddcfa 1155 gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3);
1156 gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3);
1e8fff9c 1157
1158 index = 0;
6c5ddcfa 1159 for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) {
1e8fff9c 1160 index++;
6c5ddcfa 1161 gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1162 gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY");
1163 gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY");
1164 gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY");
a9e2aefa 1165 }
1166
1e8fff9c 1167 // create the gassiplex volume
1168
6c5ddcfa 1169 gMC->Gsvolu("S09E","BOX",gassiMaterial,gassipar,3);
1170 gMC->Gsvolu("S10E","BOX",gassiMaterial,gassipar,3);
1e8fff9c 1171
1172
1173 // position 4 gassiplex in the nuloc
2c799aa2 1174
6c5ddcfa 1175 gMC->Gspos("S09E",1,"S09N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY");
1176 gMC->Gspos("S09E",2,"S09N", 0., - nulocHeight/8., 0. , 0, "ONLY");
1177 gMC->Gspos("S09E",3,"S09N", 0., nulocHeight/8., 0. , 0, "ONLY");
1178 gMC->Gspos("S09E",4,"S09N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY");
1179 gMC->Gspos("S10E",1,"S10N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY");
1180 gMC->Gspos("S10E",2,"S10N", 0., - nulocHeight/8., 0. , 0, "ONLY");
1181 gMC->Gspos("S10E",3,"S10N", 0., nulocHeight/8., 0. , 0, "ONLY");
1182 gMC->Gspos("S10E",4,"S10N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY");
2c799aa2 1183
b17c0c87 1184 }
1185
1e8fff9c 1186
a9e2aefa 1187///////////////////////////////////////
1188// GEOMETRY FOR THE TRIGGER CHAMBERS //
1189///////////////////////////////////////
1190
1191// 03/00 P. Dupieux : introduce a slighly more realistic
1192// geom. of the trigger readout planes with
1193// 2 Zpos per trigger plane (alternate
1194// between left and right of the trigger)
1195
1196// Parameters of the Trigger Chambers
1197
1198
1199 const Float_t kXMC1MIN=34.;
1200 const Float_t kXMC1MED=51.;
1201 const Float_t kXMC1MAX=272.;
1202 const Float_t kYMC1MIN=34.;
1203 const Float_t kYMC1MAX=51.;
1204 const Float_t kRMIN1=50.;
1205 const Float_t kRMAX1=62.;
1206 const Float_t kRMIN2=50.;
1207 const Float_t kRMAX2=66.;
1208
1209// zposition of the middle of the gas gap in mother vol
1210 const Float_t kZMCm=-3.6;
1211 const Float_t kZMCp=+3.6;
1212
1213
1214// TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1
1215
1216 // iChamber 1 and 2 for first and second chambers in the station
1217 // iChamber (first chamber) kept for other quanties than Z,
1218 // assumed to be the same in both chambers
1219 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10];
1220 iChamber2 =(AliMUONChamber*) (*fChambers)[11];
1221
1222 // 03/00
1223 // zpos1 and zpos2 are now the middle of the first and second
1224 // plane of station 1 :
1225 // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm
1226 // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm
1227 //
1228 // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps)
1229 // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps)
1230 // rem : the total thickness accounts for 1 mm of al on both
1231 // side of the RPCs (see zpos1 and zpos2), as previously
1232
1233 zpos1=iChamber1->Z();
1234 zpos2=iChamber2->Z();
1235
1236
1237// Mother volume definition
1238 tpar[0] = iChamber->RInner();
1239 tpar[1] = iChamber->ROuter();
1240 tpar[2] = 4.0;
1241 gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3);
1242 gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3);
1243
1244// Definition of the flange between the beam shielding and the RPC
1245 tpar[0]= kRMIN1;
1246 tpar[1]= kRMAX1;
1247 tpar[2]= 4.0;
1248
1249 gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al
1250 gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY");
1251 gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY");
1252
1253
1254// FIRST PLANE OF STATION 1
1255
1256// ratios of zpos1m/zpos1p and inverse for first plane
1257 Float_t zmp=(zpos1-3.6)/(zpos1+3.6);
1258 Float_t zpm=1./zmp;
1259
1260
1261// Definition of prototype for chambers in the first plane
1262
1263 tpar[0]= 0.;
1264 tpar[1]= 0.;
1265 tpar[2]= 0.;
1266
1267 gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al
1268 gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1269 gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1270
1271// chamber type A
1272 tpar[0] = -1.;
1273 tpar[1] = -1.;
1274
1275 const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.;
1276 const Float_t kYMC1Am=0.;
1277 const Float_t kYMC1Ap=0.;
1278
1279 tpar[2] = 0.1;
1280 gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3);
1281 tpar[2] = 0.3;
1282 gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3);
1283
1284 tpar[2] = 0.4;
1285 tpar[0] = (kXMC1MAX-kXMC1MED)/2.;
1286 tpar[1] = kYMC1MIN;
1287
1288 gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3);
1289 gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3);
1290
1291// chamber type B
1292 Float_t tpar1save=tpar[1];
1293 Float_t y1msave=kYMC1Am;
1294 Float_t y1psave=kYMC1Ap;
1295
1296 tpar[0] = (kXMC1MAX-kXMC1MIN)/2.;
1297 tpar[1] = (kYMC1MAX-kYMC1MIN)/2.;
1298
1299 const Float_t kXMC1B=kXMC1MIN+tpar[0];
1300 const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1];
1301 const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1];
1302
1303 gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3);
1304 gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3);
1305 gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3);
1306 gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3);
1307
1308// chamber type C (end of type B !!)
1309 tpar1save=tpar[1];
1310 y1msave=kYMC1Bm;
1311 y1psave=kYMC1Bp;
1312
1313 tpar[0] = kXMC1MAX/2;
1314 tpar[1] = kYMC1MAX/2;
1315
1316 const Float_t kXMC1C=tpar[0];
1317// warning : same Z than type B
1318 const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1];
1319 const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1];
1320
1321 gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3);
1322 gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3);
1323 gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3);
1324 gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3);
1325
1326// chamber type D, E and F (same size)
1327 tpar1save=tpar[1];
1328 y1msave=kYMC1Cm;
1329 y1psave=kYMC1Cp;
1330
1331 tpar[0] = kXMC1MAX/2.;
1332 tpar[1] = kYMC1MIN;
1333
1334 const Float_t kXMC1D=tpar[0];
1335 const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1];
1336 const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1];
1337
1338 gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3);
1339 gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3);
1340 gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3);
1341 gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3);
1342
1343
1344 tpar1save=tpar[1];
1345 y1msave=kYMC1Dm;
1346 y1psave=kYMC1Dp;
1347 const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1];
1348 const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1];
1349
1350 gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3);
1351 gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3);
1352 gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3);
1353 gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3);
1354
1355 tpar1save=tpar[1];
1356 y1msave=kYMC1Em;
1357 y1psave=kYMC1Ep;
1358 const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1];
1359 const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1];
1360
1361 gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3);
1362 gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3);
1363 gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3);
1364 gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3);
1365
1366// Positioning first plane in ALICE
1367 gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY");
1368
1369// End of geometry definition for the first plane of station 1
1370
1371
1372
1373// SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1
1374
1375 const Float_t kZ12=zpos2/zpos1;
1376
1377// Definition of prototype for chambers in the second plane of station 1
1378
1379 tpar[0]= 0.;
1380 tpar[1]= 0.;
1381 tpar[2]= 0.;
1382
1383 gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al
1384 gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1385 gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1386
1387// chamber type A
1388 tpar[0] = -1.;
1389 tpar[1] = -1.;
1390
1391 const Float_t kXMC2A=kXMC1A*kZ12;
1392 const Float_t kYMC2Am=0.;
1393 const Float_t kYMC2Ap=0.;
1394
1395 tpar[2] = 0.1;
1396 gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3);
1397 tpar[2] = 0.3;
1398 gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3);
1399
1400 tpar[2] = 0.4;
1401 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12;
1402 tpar[1] = kYMC1MIN*kZ12;
1403
1404 gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3);
1405 gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3);
1406
1407
1408// chamber type B
1409
1410 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12;
1411 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12;
1412
1413 const Float_t kXMC2B=kXMC1B*kZ12;
1414 const Float_t kYMC2Bp=kYMC1Bp*kZ12;
1415 const Float_t kYMC2Bm=kYMC1Bm*kZ12;
1416 gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3);
1417 gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3);
1418 gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3);
1419 gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3);
1420
1421
1422// chamber type C (end of type B !!)
1423
1424 tpar[0] = (kXMC1MAX/2)*kZ12;
1425 tpar[1] = (kYMC1MAX/2)*kZ12;
1426
1427 const Float_t kXMC2C=kXMC1C*kZ12;
1428 const Float_t kYMC2Cp=kYMC1Cp*kZ12;
1429 const Float_t kYMC2Cm=kYMC1Cm*kZ12;
1430 gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3);
1431 gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3);
1432 gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3);
1433 gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3);
1434
1435// chamber type D, E and F (same size)
1436
1437 tpar[0] = (kXMC1MAX/2.)*kZ12;
1438 tpar[1] = kYMC1MIN*kZ12;
1439
1440 const Float_t kXMC2D=kXMC1D*kZ12;
1441 const Float_t kYMC2Dp=kYMC1Dp*kZ12;
1442 const Float_t kYMC2Dm=kYMC1Dm*kZ12;
1443 gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3);
1444 gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3);
1445 gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3);
1446 gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3);
1447
1448 const Float_t kYMC2Ep=kYMC1Ep*kZ12;
1449 const Float_t kYMC2Em=kYMC1Em*kZ12;
1450 gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3);
1451 gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3);
1452 gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3);
1453 gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3);
1454
1455
1456 const Float_t kYMC2Fp=kYMC1Fp*kZ12;
1457 const Float_t kYMC2Fm=kYMC1Fm*kZ12;
1458 gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3);
1459 gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3);
1460 gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3);
1461 gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3);
1462
1463// Positioning second plane of station 1 in ALICE
1464
1465 gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY");
1466
1467// End of geometry definition for the second plane of station 1
1468
1469
1470
1471// TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2
1472
1473 // 03/00
1474 // zpos3 and zpos4 are now the middle of the first and second
1475 // plane of station 2 :
1476 // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm
1477 // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm
1478 //
1479 // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps)
1480 // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps)
1481 // rem : the total thickness accounts for 1 mm of al on both
1482 // side of the RPCs (see zpos3 and zpos4), as previously
1483 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12];
1484 iChamber2 =(AliMUONChamber*) (*fChambers)[13];
1485 Float_t zpos3=iChamber1->Z();
1486 Float_t zpos4=iChamber2->Z();
1487
1488
1489// Mother volume definition
1490 tpar[0] = iChamber->RInner();
1491 tpar[1] = iChamber->ROuter();
1492 tpar[2] = 4.0;
1493
1494 gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3);
1495 gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3);
1496
1497// Definition of the flange between the beam shielding and the RPC
1498// ???? interface shielding
1499
1500 tpar[0]= kRMIN2;
1501 tpar[1]= kRMAX2;
1502 tpar[2]= 4.0;
1503
1504 gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al
1505 gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY");
1506 gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY");
1507
1508
1509
1510// FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1
1511
1512 const Float_t kZ13=zpos3/zpos1;
1513
1514// Definition of prototype for chambers in the first plane of station 2
1515 tpar[0]= 0.;
1516 tpar[1]= 0.;
1517 tpar[2]= 0.;
1518
1519 gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al
1520 gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1521 gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1522
1523
1524// chamber type A
1525 tpar[0] = -1.;
1526 tpar[1] = -1.;
1527
1528 const Float_t kXMC3A=kXMC1A*kZ13;
1529 const Float_t kYMC3Am=0.;
1530 const Float_t kYMC3Ap=0.;
1531
1532 tpar[2] = 0.1;
1533 gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3);
1534 tpar[2] = 0.3;
1535 gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3);
1536
1537 tpar[2] = 0.4;
1538 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13;
1539 tpar[1] = kYMC1MIN*kZ13;
1540 gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3);
1541 gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3);
1542
1543
1544// chamber type B
1545 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13;
1546 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13;
1547
1548 const Float_t kXMC3B=kXMC1B*kZ13;
1549 const Float_t kYMC3Bp=kYMC1Bp*kZ13;
1550 const Float_t kYMC3Bm=kYMC1Bm*kZ13;
1551 gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3);
1552 gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3);
1553 gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3);
1554 gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3);
1555
1556
1557// chamber type C (end of type B !!)
1558 tpar[0] = (kXMC1MAX/2)*kZ13;
1559 tpar[1] = (kYMC1MAX/2)*kZ13;
1560
1561 const Float_t kXMC3C=kXMC1C*kZ13;
1562 const Float_t kYMC3Cp=kYMC1Cp*kZ13;
1563 const Float_t kYMC3Cm=kYMC1Cm*kZ13;
1564 gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3);
1565 gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3);
1566 gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3);
1567 gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3);
1568
1569
1570// chamber type D, E and F (same size)
1571
1572 tpar[0] = (kXMC1MAX/2.)*kZ13;
1573 tpar[1] = kYMC1MIN*kZ13;
1574
1575 const Float_t kXMC3D=kXMC1D*kZ13;
1576 const Float_t kYMC3Dp=kYMC1Dp*kZ13;
1577 const Float_t kYMC3Dm=kYMC1Dm*kZ13;
1578 gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3);
1579 gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3);
1580 gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3);
1581 gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3);
1582
1583 const Float_t kYMC3Ep=kYMC1Ep*kZ13;
1584 const Float_t kYMC3Em=kYMC1Em*kZ13;
1585 gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3);
1586 gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3);
1587 gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3);
1588 gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3);
1589
1590 const Float_t kYMC3Fp=kYMC1Fp*kZ13;
1591 const Float_t kYMC3Fm=kYMC1Fm*kZ13;
1592 gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3);
1593 gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3);
1594 gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3);
1595 gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3);
1596
1597
1598// Positioning first plane of station 2 in ALICE
1599
1600 gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY");
1601
1602// End of geometry definition for the first plane of station 2
1603
1604
1605
1606
1607// SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1
1608
1609 const Float_t kZ14=zpos4/zpos1;
1610
1611// Definition of prototype for chambers in the second plane of station 2
1612
1613 tpar[0]= 0.;
1614 tpar[1]= 0.;
1615 tpar[2]= 0.;
1616
1617 gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al
1618 gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1619 gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1620
1621// chamber type A
1622 tpar[0] = -1.;
1623 tpar[1] = -1.;
1624
1625 const Float_t kXMC4A=kXMC1A*kZ14;
1626 const Float_t kYMC4Am=0.;
1627 const Float_t kYMC4Ap=0.;
1628
1629 tpar[2] = 0.1;
1630 gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3);
1631 tpar[2] = 0.3;
1632 gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3);
1633
1634 tpar[2] = 0.4;
1635 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14;
1636 tpar[1] = kYMC1MIN*kZ14;
1637 gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3);
1638 gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3);
1639
1640
1641// chamber type B
1642 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14;
1643 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14;
1644
1645 const Float_t kXMC4B=kXMC1B*kZ14;
1646 const Float_t kYMC4Bp=kYMC1Bp*kZ14;
1647 const Float_t kYMC4Bm=kYMC1Bm*kZ14;
1648 gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3);
1649 gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3);
1650 gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3);
1651 gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3);
1652
1653
1654// chamber type C (end of type B !!)
1655 tpar[0] =(kXMC1MAX/2)*kZ14;
1656 tpar[1] = (kYMC1MAX/2)*kZ14;
1657
1658 const Float_t kXMC4C=kXMC1C*kZ14;
1659 const Float_t kYMC4Cp=kYMC1Cp*kZ14;
1660 const Float_t kYMC4Cm=kYMC1Cm*kZ14;
1661 gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3);
1662 gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3);
1663 gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3);
1664 gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3);
1665
1666
1667// chamber type D, E and F (same size)
1668 tpar[0] = (kXMC1MAX/2.)*kZ14;
1669 tpar[1] = kYMC1MIN*kZ14;
1670
1671 const Float_t kXMC4D=kXMC1D*kZ14;
1672 const Float_t kYMC4Dp=kYMC1Dp*kZ14;
1673 const Float_t kYMC4Dm=kYMC1Dm*kZ14;
1674 gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3);
1675 gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3);
1676 gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3);
1677 gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3);
1678
1679 const Float_t kYMC4Ep=kYMC1Ep*kZ14;
1680 const Float_t kYMC4Em=kYMC1Em*kZ14;
1681 gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3);
1682 gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3);
1683 gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3);
1684 gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3);
1685
1686 const Float_t kYMC4Fp=kYMC1Fp*kZ14;
1687 const Float_t kYMC4Fm=kYMC1Fm*kZ14;
1688 gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3);
1689 gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3);
1690 gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3);
1691 gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3);
1692
1693
1694// Positioning second plane of station 2 in ALICE
1695
1696 gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY");
1697
1698// End of geometry definition for the second plane of station 2
1699
1700// End of trigger geometry definition
1701
1702}
1703
1704
1705
1706//___________________________________________
1707void AliMUONv1::CreateMaterials()
1708{
1709 // *** DEFINITION OF AVAILABLE MUON MATERIALS ***
1710 //
1711 // Ar-CO2 gas
1712 Float_t ag1[3] = { 39.95,12.01,16. };
1713 Float_t zg1[3] = { 18.,6.,8. };
1714 Float_t wg1[3] = { .8,.0667,.13333 };
1715 Float_t dg1 = .001821;
1716 //
1717 // Ar-buthane-freon gas -- trigger chambers
1718 Float_t atr1[4] = { 39.95,12.01,1.01,19. };
1719 Float_t ztr1[4] = { 18.,6.,1.,9. };
1720 Float_t wtr1[4] = { .56,.1262857,.2857143,.028 };
1721 Float_t dtr1 = .002599;
1722 //
1723 // Ar-CO2 gas
1724 Float_t agas[3] = { 39.95,12.01,16. };
1725 Float_t zgas[3] = { 18.,6.,8. };
1726 Float_t wgas[3] = { .74,.086684,.173316 };
1727 Float_t dgas = .0018327;
1728 //
1729 // Ar-Isobutane gas (80%+20%) -- tracking
1730 Float_t ag[3] = { 39.95,12.01,1.01 };
1731 Float_t zg[3] = { 18.,6.,1. };
1732 Float_t wg[3] = { .8,.057,.143 };
1733 Float_t dg = .0019596;
1734 //
1735 // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger
1736 Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
1737 Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
1738 Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
1739 Float_t dtrig = .0031463;
1740 //
1741 // bakelite
1742
1743 Float_t abak[3] = {12.01 , 1.01 , 16.};
1744 Float_t zbak[3] = {6. , 1. , 8.};
1745 Float_t wbak[3] = {6. , 6. , 1.};
1746 Float_t dbak = 1.4;
1747
1748 Float_t epsil, stmin, deemax, tmaxfd, stemax;
1749
1750 Int_t iSXFLD = gAlice->Field()->Integ();
1751 Float_t sXMGMX = gAlice->Field()->Max();
1752 //
1753 // --- Define the various materials for GEANT ---
1754 AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1755 AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1756 AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500);
1757 AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
1758 AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
1759 AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
1760 AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
1761 AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
1762 AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
1e8fff9c 1763 // materials for slat:
1764 // Sensitive area: gas (already defined)
1765 // PCB: copper
1766 // insulating material and frame: vetronite
1767 // walls: carbon, rohacell, carbon
1768 Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.};
1769 Float_t zglass[5]={ 6., 14., 8., 5., 11.};
1770 Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01};
1771 Float_t dglass=1.74;
1772
1773 // rohacell: C9 H13 N1 O2
1774 Float_t arohac[4] = {12.01, 1.01, 14.010, 16.};
1775 Float_t zrohac[4] = { 6., 1., 7., 8.};
1776 Float_t wrohac[4] = { 9., 13., 1., 2.};
1777 Float_t drohac = 0.03;
1778
1779 AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.);
1780 AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass);
1781 AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9);
1782 AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac);
1783
a9e2aefa 1784
1785 epsil = .001; // Tracking precision,
1786 stemax = -1.; // Maximum displacement for multiple scat
1787 tmaxfd = -20.; // Maximum angle due to field deflection
1788 deemax = -.3; // Maximum fractional energy loss, DLS
1789 stmin = -.8;
1790 //
1791 // Air
1792 AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1793 //
1794 // Aluminum
1795
1796 AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1797 fMaxDestepAlu, epsil, stmin);
1798 AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1799 fMaxDestepAlu, epsil, stmin);
1800 //
1801 // Ar-isoC4H10 gas
1802
1803 AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1804 fMaxDestepGas, epsil, stmin);
1805//
1806 // Ar-Isobuthane-Forane-SF6 gas
1807
1808 AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1809
1810 AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1811 fMaxDestepAlu, epsil, stmin);
1812
1813 AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1814 fMaxDestepAlu, epsil, stmin);
1e8fff9c 1815 // tracking media for slats: check the parameters!!
1816 AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd,
1817 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1818 AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd,
1819 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1820 AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd,
1821 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1822 AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd,
1823 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
a9e2aefa 1824}
1825
1826//___________________________________________
1827
1828void AliMUONv1::Init()
1829{
1830 //
1831 // Initialize Tracking Chambers
1832 //
1833
1834 printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n");
e17592e9 1835 Int_t i;
f665c1ea 1836 for (i=0; i<AliMUONConstants::NCh(); i++) {
a9e2aefa 1837 ( (AliMUONChamber*) (*fChambers)[i])->Init();
1838 }
1839
1840 //
1841 // Set the chamber (sensitive region) GEANT identifier
1842 AliMC* gMC = AliMC::GetMC();
1843 ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G"));
1844 ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G"));
b17c0c87 1845
a9e2aefa 1846 ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G"));
1847 ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G"));
b17c0c87 1848
1e8fff9c 1849 ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G"));
1850 ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G"));
b17c0c87 1851
1e8fff9c 1852 ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G"));
1853 ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G"));
b17c0c87 1854
1e8fff9c 1855 ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G"));
1856 ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G"));
b17c0c87 1857
a9e2aefa 1858 ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A"));
1859 ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A"));
1860 ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A"));
1861 ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A"));
1862
1863 printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n");
1864
1865 //cp
1866 printf("\n\n\n Start Init for Trigger Circuits\n\n\n");
f665c1ea 1867 for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) {
a9e2aefa 1868 ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i);
1869 }
1870 printf(" Finished Init for Trigger Circuits\n\n\n");
1871 //cp
1872
1873}
1874
1875//___________________________________________
1876void AliMUONv1::StepManager()
1877{
1878 Int_t copy, id;
1879 static Int_t idvol;
1880 static Int_t vol[2];
1881 Int_t ipart;
1882 TLorentzVector pos;
1883 TLorentzVector mom;
1884 Float_t theta,phi;
1885 Float_t destep, step;
1886
1e8fff9c 1887 static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength;
a9e2aefa 1888 const Float_t kBig=1.e10;
a9e2aefa 1889 // modifs perso
1890 static Float_t hits[15];
1891
1892 TClonesArray &lhits = *fHits;
1893
1894 //
1895 // Set maximum step size for gas
1896 // numed=gMC->GetMedium();
1897 //
1898 // Only charged tracks
1899 if( !(gMC->TrackCharge()) ) return;
1900 //
1901 // Only gas gap inside chamber
1902 // Tag chambers and record hits when track enters
1903 idvol=-1;
1904 id=gMC->CurrentVolID(copy);
1905
f665c1ea 1906 for (Int_t i=1; i<=AliMUONConstants::NCh(); i++) {
a9e2aefa 1907 if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){
1908 vol[0]=i;
1909 idvol=i-1;
1910 }
1911 }
1912 if (idvol == -1) return;
1913 //
1914 // Get current particle id (ipart), track position (pos) and momentum (mom)
1915 gMC->TrackPosition(pos);
1916 gMC->TrackMomentum(mom);
1917
1918 ipart = gMC->TrackPid();
1919 //Int_t ipart1 = gMC->IdFromPDG(ipart);
1920 //printf("ich, ipart %d %d \n",vol[0],ipart1);
1921
1922 //
1923 // momentum loss and steplength in last step
1924 destep = gMC->Edep();
1925 step = gMC->TrackStep();
1926
1927 //
1928 // record hits when track enters ...
1929 if( gMC->IsTrackEntering()) {
1930 gMC->SetMaxStep(fMaxStepGas);
1931 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
1932 Double_t rt = TMath::Sqrt(tc);
1933 Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]);
1934 Double_t tx=mom[0]/pmom;
1935 Double_t ty=mom[1]/pmom;
1936 Double_t tz=mom[2]/pmom;
1937 Double_t s=((AliMUONChamber*)(*fChambers)[idvol])
1938 ->ResponseModel()
1939 ->Pitch()/tz;
1940 theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
1941 phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
1942 hits[0] = Float_t(ipart); // Geant3 particle type
1943 hits[1] = pos[0]+s*tx; // X-position for hit
1944 hits[2] = pos[1]+s*ty; // Y-position for hit
1945 hits[3] = pos[2]+s*tz; // Z-position for hit
1946 hits[4] = theta; // theta angle of incidence
1947 hits[5] = phi; // phi angle of incidence
1948 hits[8] = (Float_t) fNPadHits; // first padhit
1949 hits[9] = -1; // last pad hit
1950
1951 // modifs perso
1952 hits[10] = mom[3]; // hit momentum P
1953 hits[11] = mom[0]; // Px/P
1954 hits[12] = mom[1]; // Py/P
1955 hits[13] = mom[2]; // Pz/P
1956 // fin modifs perso
1957 tof=gMC->TrackTime();
1958 hits[14] = tof; // Time of flight
1959 // phi angle of incidence
1960 tlength = 0;
1961 eloss = 0;
1962 eloss2 = 0;
1963 xhit = pos[0];
1964 yhit = pos[1];
1e8fff9c 1965 zhit = pos[2];
a9e2aefa 1966 // Only if not trigger chamber
1e8fff9c 1967
1968
1969
1970
a75f073c 1971 if(idvol<AliMUONConstants::NTrackingCh()) {
a9e2aefa 1972 //
1973 // Initialize hit position (cursor) in the segmentation model
1974 ((AliMUONChamber*) (*fChambers)[idvol])
1975 ->SigGenInit(pos[0], pos[1], pos[2]);
1976 } else {
1977 //geant3->Gpcxyz();
1978 //printf("In the Trigger Chamber #%d\n",idvol-9);
1979 }
1980 }
1981 eloss2+=destep;
1982
1983 //
1984 // Calculate the charge induced on a pad (disintegration) in case
1985 //
1986 // Mip left chamber ...
1987 if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1988 gMC->SetMaxStep(kBig);
1989 eloss += destep;
1990 tlength += step;
1991
802a864d 1992 Float_t x0,y0,z0;
1993 Float_t localPos[3];
1994 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
802a864d 1995 gMC->Gmtod(globalPos,localPos,1);
1996
a75f073c 1997 if(idvol<AliMUONConstants::NTrackingCh()) {
a9e2aefa 1998// tracking chambers
1999 x0 = 0.5*(xhit+pos[0]);
2000 y0 = 0.5*(yhit+pos[1]);
1e8fff9c 2001 z0 = 0.5*(zhit+pos[2]);
2002 // z0 = localPos[2];
a9e2aefa 2003 } else {
2004// trigger chambers
2005 x0=xhit;
2006 y0=yhit;
1e8fff9c 2007// z0=yhit;
802a864d 2008 z0=0.;
a9e2aefa 2009 }
2010
1e8fff9c 2011
802a864d 2012 if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol);
a9e2aefa 2013
2014
2015 hits[6]=tlength;
2016 hits[7]=eloss2;
2017 if (fNPadHits > (Int_t)hits[8]) {
2018 hits[8]= hits[8]+1;
2019 hits[9]= (Float_t) fNPadHits;
2020 }
2021
2022 new(lhits[fNhits++])
2023 AliMUONHit(fIshunt,gAlice->CurrentTrack(),vol,hits);
2024 eloss = 0;
2025 //
2026 // Check additional signal generation conditions
2027 // defined by the segmentation
a75f073c 2028 // model (boundary crossing conditions)
2029 // only for tracking chambers
a9e2aefa 2030 } else if
a75f073c 2031 ((idvol < AliMUONConstants::NTrackingCh()) &&
2032 ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2]))
a9e2aefa 2033 {
2034 ((AliMUONChamber*) (*fChambers)[idvol])
2035 ->SigGenInit(pos[0], pos[1], pos[2]);
802a864d 2036
2037 Float_t localPos[3];
2038 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
2039 gMC->Gmtod(globalPos,localPos,1);
2040
2041
a75f073c 2042 if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh())
1e8fff9c 2043 MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol);
a9e2aefa 2044 xhit = pos[0];
2045 yhit = pos[1];
1e8fff9c 2046 zhit = pos[2];
a9e2aefa 2047 eloss = destep;
2048 tlength += step ;
2049 //
2050 // nothing special happened, add up energy loss
2051 } else {
2052 eloss += destep;
2053 tlength += step ;
2054 }
2055}
2056
2057