a9e2aefa |
1 | /************************************************************************** |
2 | * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * |
3 | * * |
4 | * Author: The ALICE Off-line Project. * |
5 | * Contributors are mentioned in the code where appropriate. * |
6 | * * |
7 | * Permission to use, copy, modify and distribute this software and its * |
8 | * documentation strictly for non-commercial purposes is hereby granted * |
9 | * without fee, provided that the above copyright notice appears in all * |
10 | * copies and that both the copyright notice and this permission notice * |
11 | * appear in the supporting documentation. The authors make no claims * |
2c799aa2 |
12 | * about the suitability of this software for any purpeateose. It is * |
a9e2aefa |
13 | * provided "as is" without express or implied warranty. * |
14 | **************************************************************************/ |
15 | |
16 | /* |
17 | $Log$ |
e3cf5faa |
18 | Revision 1.14 2000/11/06 09:16:50 morsch |
19 | Avoid overlap of slat volumes. |
20 | |
2c799aa2 |
21 | Revision 1.13 2000/10/26 07:33:44 morsch |
22 | Correct x-position of slats in station 5. |
23 | |
8013c580 |
24 | Revision 1.12 2000/10/25 19:55:35 morsch |
25 | Switches for each station individually for debug and lego. |
26 | |
b17c0c87 |
27 | Revision 1.11 2000/10/22 16:44:01 morsch |
28 | Update of slat geometry for stations 3,4,5 (A. deFalco) |
29 | |
f9f7c205 |
30 | Revision 1.10 2000/10/12 16:07:04 gosset |
31 | StepManager: |
32 | * SigGenCond only called for tracking chambers, |
33 | hence no more division by 0, |
34 | and may use last ALIROOT/dummies.C with exception handling; |
35 | * "10" replaced by "AliMUONConstants::NTrackingCh()". |
36 | |
a75f073c |
37 | Revision 1.9 2000/10/06 15:37:22 morsch |
38 | Problems with variable redefinition in for-loop solved. |
39 | Variable names starting with u-case letters changed to l-case. |
40 | |
6c5ddcfa |
41 | Revision 1.8 2000/10/06 09:06:31 morsch |
42 | Include Slat chambers (stations 3-5) into geometry (A. de Falco) |
43 | |
1e8fff9c |
44 | Revision 1.7 2000/10/02 21:28:09 fca |
45 | Removal of useless dependecies via forward declarations |
46 | |
94de3818 |
47 | Revision 1.6 2000/10/02 17:20:45 egangler |
48 | Cleaning of the code (continued ) : |
49 | -> coding conventions |
50 | -> void Streamers |
51 | -> some useless includes removed or replaced by "class" statement |
52 | |
8c449e83 |
53 | Revision 1.5 2000/06/28 15:16:35 morsch |
54 | (1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there) |
55 | to allow development of slat-muon chamber simulation and reconstruction code in the MUON |
56 | framework. The changes should have no side effects (mostly dummy arguments). |
57 | (2) Hit disintegration uses 3-dim hit coordinates to allow simulation |
58 | of chambers with overlapping modules (MakePadHits, Disintegration). |
59 | |
802a864d |
60 | Revision 1.4 2000/06/26 14:02:38 morsch |
61 | Add class AliMUONConstants with MUON specific constants using static memeber data and access methods. |
62 | |
f665c1ea |
63 | Revision 1.3 2000/06/22 14:10:05 morsch |
64 | HP scope problems corrected (PH) |
65 | |
e17592e9 |
66 | Revision 1.2 2000/06/15 07:58:49 morsch |
67 | Code from MUON-dev joined |
68 | |
a9e2aefa |
69 | Revision 1.1.2.14 2000/06/14 14:37:25 morsch |
70 | Initialization of TriggerCircuit added (PC) |
71 | |
72 | Revision 1.1.2.13 2000/06/09 21:55:47 morsch |
73 | Most coding rule violations corrected. |
74 | |
75 | Revision 1.1.2.12 2000/05/05 11:34:29 morsch |
76 | Log inside comments. |
77 | |
78 | Revision 1.1.2.11 2000/05/05 10:06:48 morsch |
79 | Coding Rule violations regarding trigger section corrected (CP) |
80 | Log messages included. |
81 | */ |
82 | |
83 | ///////////////////////////////////////////////////////// |
84 | // Manager and hits classes for set:MUON version 0 // |
85 | ///////////////////////////////////////////////////////// |
86 | |
87 | #include <TTUBE.h> |
88 | #include <TNode.h> |
89 | #include <TRandom.h> |
90 | #include <TLorentzVector.h> |
91 | #include <iostream.h> |
92 | |
93 | #include "AliMUONv1.h" |
94 | #include "AliRun.h" |
95 | #include "AliMC.h" |
94de3818 |
96 | #include "AliMagF.h" |
a9e2aefa |
97 | #include "AliCallf77.h" |
98 | #include "AliConst.h" |
99 | #include "AliMUONChamber.h" |
100 | #include "AliMUONHit.h" |
101 | #include "AliMUONPadHit.h" |
f665c1ea |
102 | #include "AliMUONConstants.h" |
8c449e83 |
103 | #include "AliMUONTriggerCircuit.h" |
a9e2aefa |
104 | |
105 | ClassImp(AliMUONv1) |
106 | |
107 | //___________________________________________ |
108 | AliMUONv1::AliMUONv1() : AliMUON() |
109 | { |
110 | // Constructor |
111 | fChambers = 0; |
112 | } |
113 | |
114 | //___________________________________________ |
115 | AliMUONv1::AliMUONv1(const char *name, const char *title) |
116 | : AliMUON(name,title) |
117 | { |
118 | // Constructor |
119 | } |
120 | |
121 | //___________________________________________ |
122 | void AliMUONv1::CreateGeometry() |
123 | { |
124 | // |
125 | // Note: all chambers have the same structure, which could be |
126 | // easily parameterised. This was intentionally not done in order |
127 | // to give a starting point for the implementation of the actual |
128 | // design of each station. |
129 | Int_t *idtmed = fIdtmed->GetArray()-1099; |
130 | |
131 | // Distance between Stations |
132 | // |
133 | Float_t bpar[3]; |
134 | Float_t tpar[3]; |
135 | Float_t pgpar[10]; |
136 | Float_t zpos1, zpos2, zfpos; |
137 | Float_t dframep=.001; // Value for station 3 should be 6 ... |
138 | Float_t dframep1=.001; |
139 | // Bool_t frames=kTRUE; |
140 | Bool_t frames=kFALSE; |
141 | |
142 | Float_t dframez=0.9; |
143 | Float_t dr; |
144 | Float_t dstation; |
145 | |
146 | // |
147 | // Rotation matrices in the x-y plane |
148 | Int_t idrotm[1199]; |
149 | // phi= 0 deg |
150 | AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.); |
151 | // phi= 90 deg |
152 | AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.); |
153 | // phi= 180 deg |
154 | AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.); |
155 | // phi= 270 deg |
156 | AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.); |
157 | // |
158 | Float_t phi=2*TMath::Pi()/12/2; |
159 | |
160 | // |
161 | // pointer to the current chamber |
162 | // pointer to the current chamber |
163 | Int_t idAlu1=idtmed[1103]; |
164 | Int_t idAlu2=idtmed[1104]; |
165 | // Int_t idAlu1=idtmed[1100]; |
166 | // Int_t idAlu2=idtmed[1100]; |
167 | Int_t idAir=idtmed[1100]; |
168 | Int_t idGas=idtmed[1105]; |
169 | |
170 | |
171 | AliMUONChamber *iChamber, *iChamber1, *iChamber2; |
b17c0c87 |
172 | Int_t stations[5] = {1, 1, 1, 1, 1}; |
173 | |
174 | if (stations[0]) { |
175 | |
a9e2aefa |
176 | //******************************************************************** |
177 | // Station 1 ** |
178 | //******************************************************************** |
179 | // CONCENTRIC |
180 | // indices 1 and 2 for first and second chambers in the station |
181 | // iChamber (first chamber) kept for other quanties than Z, |
182 | // assumed to be the same in both chambers |
183 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0]; |
184 | iChamber2 =(AliMUONChamber*) (*fChambers)[1]; |
185 | zpos1=iChamber1->Z(); |
186 | zpos2=iChamber2->Z(); |
187 | dstation = zpos2 - zpos1; |
188 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
189 | |
190 | // |
191 | // Mother volume |
192 | tpar[0] = iChamber->RInner()-dframep1; |
193 | tpar[1] = (iChamber->ROuter()+dframep1)/TMath::Cos(phi); |
2c799aa2 |
194 | tpar[2] = dstation/5; |
a9e2aefa |
195 | |
196 | gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3); |
197 | gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3); |
198 | gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
1e8fff9c |
199 | gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
a9e2aefa |
200 | // Aluminium frames |
201 | // Outer frames |
202 | pgpar[0] = 360/12/2; |
203 | pgpar[1] = 360.; |
204 | pgpar[2] = 12.; |
205 | pgpar[3] = 2; |
206 | pgpar[4] = -dframez/2; |
207 | pgpar[5] = iChamber->ROuter(); |
208 | pgpar[6] = pgpar[5]+dframep1; |
209 | pgpar[7] = +dframez/2; |
210 | pgpar[8] = pgpar[5]; |
211 | pgpar[9] = pgpar[6]; |
212 | gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10); |
213 | gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10); |
214 | gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); |
215 | gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); |
216 | gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); |
217 | gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); |
218 | // |
219 | // Inner frame |
220 | tpar[0]= iChamber->RInner()-dframep1; |
221 | tpar[1]= iChamber->RInner(); |
222 | tpar[2]= dframez/2; |
223 | gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3); |
224 | gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3); |
225 | |
226 | gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY"); |
227 | gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY"); |
228 | gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY"); |
229 | gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY"); |
230 | // |
231 | // Frame Crosses |
232 | if (frames) { |
233 | |
234 | bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2; |
235 | bpar[1] = dframep1/2; |
236 | bpar[2] = dframez/2; |
237 | gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3); |
238 | gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3); |
239 | |
240 | gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
241 | idrotm[1100],"ONLY"); |
242 | gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
243 | idrotm[1100],"ONLY"); |
244 | gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
245 | idrotm[1101],"ONLY"); |
246 | gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
247 | idrotm[1101],"ONLY"); |
248 | gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
249 | idrotm[1100],"ONLY"); |
250 | gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
251 | idrotm[1100],"ONLY"); |
252 | gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
253 | idrotm[1101],"ONLY"); |
254 | gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
255 | idrotm[1101],"ONLY"); |
256 | |
257 | gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
258 | idrotm[1100],"ONLY"); |
259 | gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
260 | idrotm[1100],"ONLY"); |
261 | gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
262 | idrotm[1101],"ONLY"); |
263 | gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
264 | idrotm[1101],"ONLY"); |
265 | gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
266 | idrotm[1100],"ONLY"); |
267 | gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
268 | idrotm[1100],"ONLY"); |
269 | gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
270 | idrotm[1101],"ONLY"); |
271 | gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
272 | idrotm[1101],"ONLY"); |
273 | } |
274 | // |
275 | // Chamber Material represented by Alu sheet |
276 | tpar[0]= iChamber->RInner(); |
277 | tpar[1]= iChamber->ROuter(); |
278 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
279 | gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3); |
280 | gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3); |
281 | gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY"); |
282 | gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY"); |
283 | // |
284 | // Sensitive volumes |
285 | // tpar[2] = iChamber->DGas(); |
286 | tpar[2] = iChamber->DGas()/2; |
287 | gMC->Gsvolu("C01G", "TUBE", idtmed[1108], tpar, 3); |
288 | gMC->Gsvolu("C02G", "TUBE", idtmed[1108], tpar, 3); |
289 | gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY"); |
290 | gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY"); |
291 | // |
292 | // Frame Crosses to be placed inside gas |
293 | if (frames) { |
294 | |
295 | dr = (iChamber->ROuter() - iChamber->RInner()); |
296 | bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2; |
297 | bpar[1] = dframep1/2; |
298 | bpar[2] = iChamber->DGas()/2; |
299 | gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3); |
300 | gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3); |
301 | |
302 | gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0, |
303 | idrotm[1100],"ONLY"); |
304 | gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0, |
305 | idrotm[1100],"ONLY"); |
306 | gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0, |
307 | idrotm[1101],"ONLY"); |
308 | gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0, |
309 | idrotm[1101],"ONLY"); |
310 | |
311 | gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0, |
312 | idrotm[1100],"ONLY"); |
313 | gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0, |
314 | idrotm[1100],"ONLY"); |
315 | gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0, |
316 | idrotm[1101],"ONLY"); |
317 | gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0, |
318 | idrotm[1101],"ONLY"); |
319 | } |
b17c0c87 |
320 | } |
321 | if (stations[1]) { |
322 | |
a9e2aefa |
323 | //******************************************************************** |
324 | // Station 2 ** |
325 | //******************************************************************** |
326 | // indices 1 and 2 for first and second chambers in the station |
327 | // iChamber (first chamber) kept for other quanties than Z, |
328 | // assumed to be the same in both chambers |
329 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2]; |
330 | iChamber2 =(AliMUONChamber*) (*fChambers)[3]; |
331 | zpos1=iChamber1->Z(); |
332 | zpos2=iChamber2->Z(); |
333 | dstation = zpos2 - zpos1; |
334 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
335 | |
336 | // |
337 | // Mother volume |
338 | tpar[0] = iChamber->RInner()-dframep; |
339 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
2c799aa2 |
340 | tpar[2] = dstation/5; |
a9e2aefa |
341 | |
342 | gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3); |
343 | gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3); |
344 | gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
345 | gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
346 | |
a9e2aefa |
347 | // Aluminium frames |
348 | // Outer frames |
349 | pgpar[0] = 360/12/2; |
350 | pgpar[1] = 360.; |
351 | pgpar[2] = 12.; |
352 | pgpar[3] = 2; |
353 | pgpar[4] = -dframez/2; |
354 | pgpar[5] = iChamber->ROuter(); |
355 | pgpar[6] = pgpar[5]+dframep; |
356 | pgpar[7] = +dframez/2; |
357 | pgpar[8] = pgpar[5]; |
358 | pgpar[9] = pgpar[6]; |
359 | gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10); |
360 | gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10); |
361 | gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); |
362 | gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); |
363 | gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); |
364 | gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); |
365 | // |
366 | // Inner frame |
367 | tpar[0]= iChamber->RInner()-dframep; |
368 | tpar[1]= iChamber->RInner(); |
369 | tpar[2]= dframez/2; |
370 | gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3); |
371 | gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3); |
372 | |
373 | gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY"); |
374 | gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY"); |
375 | gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY"); |
376 | gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY"); |
377 | // |
378 | // Frame Crosses |
379 | if (frames) { |
380 | |
381 | bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2; |
382 | bpar[1] = dframep/2; |
383 | bpar[2] = dframez/2; |
384 | gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3); |
385 | gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3); |
386 | |
387 | gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
388 | idrotm[1100],"ONLY"); |
389 | gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
390 | idrotm[1100],"ONLY"); |
391 | gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
392 | idrotm[1101],"ONLY"); |
393 | gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
394 | idrotm[1101],"ONLY"); |
395 | gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
396 | idrotm[1100],"ONLY"); |
397 | gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
398 | idrotm[1100],"ONLY"); |
399 | gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
400 | idrotm[1101],"ONLY"); |
401 | gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
402 | idrotm[1101],"ONLY"); |
403 | |
404 | gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos, |
405 | idrotm[1100],"ONLY"); |
406 | gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos, |
407 | idrotm[1100],"ONLY"); |
408 | gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos, |
409 | idrotm[1101],"ONLY"); |
410 | gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos, |
411 | idrotm[1101],"ONLY"); |
412 | gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos, |
413 | idrotm[1100],"ONLY"); |
414 | gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos, |
415 | idrotm[1100],"ONLY"); |
416 | gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos, |
417 | idrotm[1101],"ONLY"); |
418 | gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos, |
419 | idrotm[1101],"ONLY"); |
420 | } |
421 | // |
422 | // Chamber Material represented by Alu sheet |
423 | tpar[0]= iChamber->RInner(); |
424 | tpar[1]= iChamber->ROuter(); |
425 | tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2; |
426 | gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3); |
427 | gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3); |
428 | gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY"); |
429 | gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY"); |
430 | // |
431 | // Sensitive volumes |
432 | // tpar[2] = iChamber->DGas(); |
433 | tpar[2] = iChamber->DGas()/2; |
434 | gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3); |
435 | gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3); |
436 | gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY"); |
437 | gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY"); |
438 | |
439 | if (frames) { |
440 | // |
441 | // Frame Crosses to be placed inside gas |
442 | dr = (iChamber->ROuter() - iChamber->RInner()); |
443 | bpar[0] = TMath::Sqrt(dr*dr-dframep*dframep/4)/2; |
444 | bpar[1] = dframep/2; |
445 | bpar[2] = iChamber->DGas()/2; |
446 | gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3); |
447 | gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3); |
448 | |
449 | gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0, |
450 | idrotm[1100],"ONLY"); |
451 | gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0, |
452 | idrotm[1100],"ONLY"); |
453 | gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0, |
454 | idrotm[1101],"ONLY"); |
455 | gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0, |
456 | idrotm[1101],"ONLY"); |
457 | |
458 | gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0, |
459 | idrotm[1100],"ONLY"); |
460 | gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0, |
461 | idrotm[1100],"ONLY"); |
462 | gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0, |
463 | idrotm[1101],"ONLY"); |
464 | gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0, |
465 | idrotm[1101],"ONLY"); |
466 | } |
b17c0c87 |
467 | } |
1e8fff9c |
468 | // define the id of tracking media: |
469 | Int_t idCopper = idtmed[1110]; |
470 | Int_t idGlass = idtmed[1111]; |
471 | Int_t idCarbon = idtmed[1112]; |
472 | Int_t idRoha = idtmed[1113]; |
473 | |
1e8fff9c |
474 | // sensitive area: 40*40 cm**2 |
6c5ddcfa |
475 | const Float_t sensLength = 40.; |
476 | const Float_t sensHeight = 40.; |
477 | const Float_t sensWidth = 0.5; // according to TDR fig 2.120 |
478 | const Int_t sensMaterial = idGas; |
1e8fff9c |
479 | const Float_t yOverlap = 1.5; |
480 | |
481 | // PCB dimensions in cm; width: 30 mum copper |
6c5ddcfa |
482 | const Float_t pcbLength = sensLength; |
483 | const Float_t pcbHeight = 60.; |
484 | const Float_t pcbWidth = 0.003; |
485 | const Int_t pcbMaterial = idCopper; |
1e8fff9c |
486 | |
487 | // Insulating material: 200 mum glass fiber glued to pcb |
6c5ddcfa |
488 | const Float_t insuLength = pcbLength; |
489 | const Float_t insuHeight = pcbHeight; |
490 | const Float_t insuWidth = 0.020; |
491 | const Int_t insuMaterial = idGlass; |
1e8fff9c |
492 | |
493 | // Carbon fiber panels: 200mum carbon/epoxy skin |
6c5ddcfa |
494 | const Float_t panelLength = sensLength; |
495 | const Float_t panelHeight = sensHeight; |
496 | const Float_t panelWidth = 0.020; |
497 | const Int_t panelMaterial = idCarbon; |
1e8fff9c |
498 | |
499 | // rohacell between the two carbon panels |
6c5ddcfa |
500 | const Float_t rohaLength = sensLength; |
501 | const Float_t rohaHeight = sensHeight; |
502 | const Float_t rohaWidth = 0.5; |
503 | const Int_t rohaMaterial = idRoha; |
1e8fff9c |
504 | |
505 | // Frame around the slat: 2 sticks along length,2 along height |
506 | // H: the horizontal ones |
6c5ddcfa |
507 | const Float_t hFrameLength = pcbLength; |
508 | const Float_t hFrameHeight = 1.5; |
509 | const Float_t hFrameWidth = sensWidth; |
510 | const Int_t hFrameMaterial = idGlass; |
1e8fff9c |
511 | |
512 | // V: the vertical ones |
6c5ddcfa |
513 | const Float_t vFrameLength = 4.0; |
514 | const Float_t vFrameHeight = sensHeight + hFrameHeight; |
515 | const Float_t vFrameWidth = sensWidth; |
516 | const Int_t vFrameMaterial = idGlass; |
1e8fff9c |
517 | |
518 | // B: the horizontal border filled with rohacell |
6c5ddcfa |
519 | const Float_t bFrameLength = hFrameLength; |
520 | const Float_t bFrameHeight = (pcbHeight - sensHeight)/2. - hFrameHeight; |
521 | const Float_t bFrameWidth = hFrameWidth; |
522 | const Int_t bFrameMaterial = idRoha; |
1e8fff9c |
523 | |
524 | // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) |
6c5ddcfa |
525 | const Float_t nulocLength = 2.5; |
526 | const Float_t nulocHeight = 7.5; |
527 | const Float_t nulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite; |
528 | const Int_t nulocMaterial = idCopper; |
1e8fff9c |
529 | |
530 | // Gassiplex package |
6c5ddcfa |
531 | const Float_t gassiLength = 1.0; |
532 | const Float_t gassiHeight = 1.0; |
533 | const Float_t gassiWidth = 0.15; // check it !!! |
534 | const Int_t gassiMaterial = idGlass; |
1e8fff9c |
535 | |
6c5ddcfa |
536 | const Float_t slatHeight = pcbHeight; |
537 | const Float_t slatWidth = sensWidth + 2.*(pcbWidth + insuWidth + |
538 | 2.* panelWidth + rohaWidth); |
539 | const Int_t slatMaterial = idAir; |
540 | const Float_t dSlatLength = vFrameLength; // border on left and right |
1e8fff9c |
541 | |
1e8fff9c |
542 | Float_t spar[3]; |
b17c0c87 |
543 | Int_t i, j; |
544 | |
545 | Float_t sensPar[3] = { sensLength/2., sensHeight/2., sensWidth/2. }; |
546 | Float_t pcbpar[3] = { pcbLength/2., pcbHeight/2., pcbWidth/2. }; |
547 | Float_t insupar[3] = { insuLength/2., insuHeight/2., insuWidth/2. }; |
548 | Float_t panelpar[3] = { panelLength/2., panelHeight/2., panelWidth/2. }; |
549 | Float_t rohapar[3] = { rohaLength/2., rohaHeight/2., rohaWidth/2. }; |
550 | Float_t vFramepar[3]={vFrameLength/2., vFrameHeight/2., vFrameWidth/2.}; |
551 | Float_t hFramepar[3]={hFrameLength/2., hFrameHeight/2., hFrameWidth/2.}; |
552 | Float_t bFramepar[3]={bFrameLength/2., bFrameHeight/2., bFrameWidth/2.}; |
553 | Float_t nulocpar[3]={nulocLength/2., nulocHeight/2., nulocWidth/2.}; |
554 | Float_t gassipar[3]={gassiLength/2., gassiHeight/2., gassiWidth/2.}; |
555 | Float_t xx; |
556 | Float_t xxmax = (bFrameLength - nulocLength)/2.; |
557 | Int_t index=0; |
558 | |
559 | if (stations[2]) { |
560 | |
561 | //******************************************************************** |
562 | // Station 3 ** |
563 | //******************************************************************** |
564 | // indices 1 and 2 for first and second chambers in the station |
565 | // iChamber (first chamber) kept for other quanties than Z, |
566 | // assumed to be the same in both chambers |
567 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4]; |
568 | iChamber2 =(AliMUONChamber*) (*fChambers)[5]; |
569 | zpos1=iChamber1->Z(); |
570 | zpos2=iChamber2->Z(); |
571 | dstation = zpos2 - zpos1; |
572 | |
573 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
574 | // |
575 | // Mother volume |
576 | tpar[0] = iChamber->RInner()-dframep; |
577 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
2c799aa2 |
578 | tpar[2] = dstation/5; |
b17c0c87 |
579 | gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3); |
580 | gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3); |
581 | gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
582 | gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
583 | |
584 | // volumes for slat geometry (xx=5,..,10 chamber id): |
585 | // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes |
586 | // SxxG --> Sensitive volume (gas) |
587 | // SxxP --> PCB (copper) |
588 | // SxxI --> Insulator (vetronite) |
589 | // SxxC --> Carbon panel |
590 | // SxxR --> Rohacell |
591 | // SxxH, SxxV --> Horizontal and Vertical frames (vetronite) |
592 | |
593 | // slat dimensions: slat is a MOTHER volume!!! made of air |
594 | |
595 | |
596 | const Int_t nSlats3 = 4; // number of slats per quadrant |
597 | const Int_t nPCB3[nSlats3] = {3,4,3,2}; // n PCB per slat |
598 | Float_t slatLength3[nSlats3]; |
599 | |
600 | // create and position the slat (mother) volumes |
601 | |
6c5ddcfa |
602 | char volNam5[5]; |
f9f7c205 |
603 | char volDiv5[5]; |
6c5ddcfa |
604 | char volNam6[5]; |
f9f7c205 |
605 | char volDiv6[5]; |
606 | Float_t xSlat3; |
b17c0c87 |
607 | |
6c5ddcfa |
608 | for (i = 0; i<nSlats3; i++){ |
f9f7c205 |
609 | slatLength3[i] = pcbLength * nPCB3[i] + 2. * dSlatLength; |
610 | xSlat3 = slatLength3[i]/2. - vFrameLength/2.; |
611 | if (i==0) xSlat3 += 40.; |
612 | |
613 | Float_t ySlat31 = sensHeight * (i+0.5) - yOverlap * i - yOverlap/2.; |
614 | Float_t ySlat32 = -sensHeight * (i+0.5) + yOverlap * i + yOverlap/2.; |
615 | spar[0] = slatLength3[i]/2.; |
616 | spar[1] = slatHeight/2.; |
617 | spar[2] = slatWidth/2.; |
618 | // zSlat to be checked (odd downstream or upstream?) |
619 | Float_t zSlat = (i%2 ==0)? -slatWidth/2. : slatWidth/2.; |
2c799aa2 |
620 | zSlat*=1.01; |
f9f7c205 |
621 | sprintf(volNam5,"S05%d",i); |
622 | gMC->Gsvolu(volNam5,"BOX",slatMaterial,spar,3); |
623 | gMC->Gspos(volNam5, i*4+1,"C05M", xSlat3, ySlat31, zSlat, 0, "ONLY"); |
624 | gMC->Gspos(volNam5, i*4+2,"C05M",-xSlat3, ySlat31, zSlat, 0, "ONLY"); |
625 | gMC->Gspos(volNam5, i*4+3,"C05M", xSlat3, ySlat32,-zSlat, 0, "ONLY"); |
626 | gMC->Gspos(volNam5, i*4+4,"C05M",-xSlat3, ySlat32,-zSlat, 0, "ONLY"); |
627 | sprintf(volNam6,"S06%d",i); |
628 | gMC->Gsvolu(volNam6,"BOX",slatMaterial,spar,3); |
629 | gMC->Gspos(volNam6, i*4+1,"C06M", xSlat3, ySlat31, zSlat, 0, "ONLY"); |
630 | gMC->Gspos(volNam6, i*4+2,"C06M",-xSlat3, ySlat31, zSlat, 0, "ONLY"); |
631 | gMC->Gspos(volNam6, i*4+3,"C06M", xSlat3, ySlat32,-zSlat, 0, "ONLY"); |
632 | gMC->Gspos(volNam6, i*4+4,"C06M",-xSlat3, ySlat32,-zSlat, 0, "ONLY"); |
633 | // 1st pcb in 1st slat made by some rectangular divisions |
634 | /* |
635 | if (i==0) { |
636 | Int_t ndiv=8; |
637 | Double_t dydiv= sensHeight/ndiv; |
638 | Double_t ydiv = -dydiv; |
639 | for (Int_t idiv=0;idiv<ndiv; idiv++){ |
640 | ydiv+= dydiv; |
641 | Float_t xdiv =0; |
642 | if (ydiv<30) xdiv= 30. * TMath::Sin( TMath::ACos(ydiv/30.) ); |
643 | spar[0] = (pcbLength-xdiv)/2.; |
644 | spar[1] = dydiv/2.; |
645 | spar[2] = slatWidth/2.; |
646 | |
647 | sprintf(volDiv5,"D05%d",idiv); |
648 | sprintf(volDiv6,"D06%d",idiv); |
649 | |
650 | gMC->Gsvolu(volDiv5,"BOX",sensMaterial,spar,3); |
651 | Float_t xvol=(pcbLength+xdiv)/2.; |
652 | Float_t yvol=ydiv+dydiv/2.; |
653 | gMC->Gspos(volDiv5, 1,"C05M", xvol, yvol, zSlat, 0, "ONLY"); |
654 | gMC->Gspos(volDiv5, 2,"C05M",-xvol, yvol, zSlat, 0, "ONLY"); |
655 | gMC->Gspos(volDiv5, 3,"C05M", xvol,-yvol,-zSlat, 0, "ONLY"); |
656 | gMC->Gspos(volDiv5, 4,"C05M",-xvol,-yvol,-zSlat, 0, "ONLY"); |
657 | gMC->Gspos(volDiv6, 1,"C06M", xvol, yvol, zSlat, 0, "ONLY"); |
658 | gMC->Gspos(volDiv6, 2,"C06M",-xvol, yvol, zSlat, 0, "ONLY"); |
659 | gMC->Gspos(volDiv6, 3,"C06M", xvol,-yvol,-zSlat, 0, "ONLY"); |
660 | gMC->Gspos(volDiv6, 4,"C06M",-xvol,-yvol,-zSlat, 0, "ONLY"); |
661 | } |
662 | } |
663 | */ |
1e8fff9c |
664 | } |
a9e2aefa |
665 | |
1e8fff9c |
666 | // create the sensitive volumes (subdivided as the PCBs), |
b17c0c87 |
667 | |
6c5ddcfa |
668 | gMC->Gsvolu("S05G","BOX",sensMaterial,sensPar,3); |
669 | gMC->Gsvolu("S06G","BOX",sensMaterial,sensPar,3); |
1e8fff9c |
670 | |
671 | // create the PCB volume |
b17c0c87 |
672 | |
6c5ddcfa |
673 | gMC->Gsvolu("S05P","BOX",pcbMaterial,pcbpar,3); |
674 | gMC->Gsvolu("S06P","BOX",pcbMaterial,pcbpar,3); |
1e8fff9c |
675 | |
676 | // create the insulating material volume |
b17c0c87 |
677 | |
6c5ddcfa |
678 | gMC->Gsvolu("S05I","BOX",insuMaterial,insupar,3); |
679 | gMC->Gsvolu("S06I","BOX",insuMaterial,insupar,3); |
1e8fff9c |
680 | |
681 | // create the panel volume |
b17c0c87 |
682 | |
6c5ddcfa |
683 | gMC->Gsvolu("S05C","BOX",panelMaterial,panelpar,3); |
684 | gMC->Gsvolu("S06C","BOX",panelMaterial,panelpar,3); |
1e8fff9c |
685 | |
686 | // create the rohacell volume |
b17c0c87 |
687 | |
6c5ddcfa |
688 | gMC->Gsvolu("S05R","BOX",rohaMaterial,rohapar,3); |
689 | gMC->Gsvolu("S06R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
690 | |
691 | // create the vertical frame volume |
b17c0c87 |
692 | |
6c5ddcfa |
693 | gMC->Gsvolu("S05V","BOX",vFrameMaterial,vFramepar,3); |
694 | gMC->Gsvolu("S06V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
695 | |
696 | // create the horizontal frame volume |
b17c0c87 |
697 | |
6c5ddcfa |
698 | gMC->Gsvolu("S05H","BOX",hFrameMaterial,hFramepar,3); |
699 | gMC->Gsvolu("S06H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
700 | |
701 | // create the horizontal border volume |
b17c0c87 |
702 | |
6c5ddcfa |
703 | gMC->Gsvolu("S05B","BOX",bFrameMaterial,bFramepar,3); |
704 | gMC->Gsvolu("S06B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
705 | |
b17c0c87 |
706 | index=0; |
6c5ddcfa |
707 | for (i = 0; i<nSlats3; i++){ |
708 | sprintf(volNam5,"S05%d",i); |
709 | sprintf(volNam6,"S06%d",i); |
f9f7c205 |
710 | Float_t xvFrame = (slatLength3[i] - vFrameLength)/2.; |
6c5ddcfa |
711 | gMC->Gspos("S05V",2*i-1,volNam5, xvFrame, 0., 0. , 0, "ONLY"); |
712 | gMC->Gspos("S05V",2*i ,volNam5,-xvFrame, 0., 0. , 0, "ONLY"); |
713 | gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY"); |
714 | gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY"); |
715 | for (j=0; j<nPCB3[i]; j++){ |
1e8fff9c |
716 | index++; |
6c5ddcfa |
717 | Float_t xx = sensLength * (-nPCB3[i]/2.+j+.5); |
1e8fff9c |
718 | Float_t yy = 0.; |
719 | Float_t zSens = 0.; |
6c5ddcfa |
720 | gMC->Gspos("S05G",index,volNam5, xx, yy, zSens , 0, "ONLY"); |
721 | gMC->Gspos("S06G",index,volNam6, xx, yy, zSens , 0, "ONLY"); |
722 | Float_t zPCB = (sensWidth+pcbWidth)/2.; |
723 | gMC->Gspos("S05P",2*index-1,volNam5, xx, yy, zPCB , 0, "ONLY"); |
724 | gMC->Gspos("S05P",2*index ,volNam5, xx, yy,-zPCB , 0, "ONLY"); |
725 | gMC->Gspos("S06P",2*index-1,volNam6, xx, yy, zPCB , 0, "ONLY"); |
726 | gMC->Gspos("S06P",2*index ,volNam6, xx, yy,-zPCB , 0, "ONLY"); |
727 | Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB; |
728 | gMC->Gspos("S05I",2*index-1,volNam5, xx, yy, zInsu , 0, "ONLY"); |
729 | gMC->Gspos("S05I",2*index ,volNam5, xx, yy,-zInsu , 0, "ONLY"); |
730 | gMC->Gspos("S06I",2*index-1,volNam6, xx, yy, zInsu , 0, "ONLY"); |
731 | gMC->Gspos("S06I",2*index ,volNam6, xx, yy,-zInsu , 0, "ONLY"); |
732 | Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu; |
733 | gMC->Gspos("S05C",4*index-3,volNam5, xx, yy, zPanel1 , 0, "ONLY"); |
734 | gMC->Gspos("S05C",4*index-2,volNam5, xx, yy,-zPanel1 , 0, "ONLY"); |
735 | gMC->Gspos("S06C",4*index-3,volNam6, xx, yy, zPanel1 , 0, "ONLY"); |
736 | gMC->Gspos("S06C",4*index-2,volNam6, xx, yy,-zPanel1 , 0, "ONLY"); |
737 | Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1; |
738 | gMC->Gspos("S05R",2*index-1,volNam5, xx, yy, zRoha , 0, "ONLY"); |
739 | gMC->Gspos("S05R",2*index ,volNam5, xx, yy,-zRoha , 0, "ONLY"); |
740 | gMC->Gspos("S06R",2*index-1,volNam6, xx, yy, zRoha , 0, "ONLY"); |
741 | gMC->Gspos("S06R",2*index ,volNam6, xx, yy,-zRoha , 0, "ONLY"); |
742 | Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha; |
743 | gMC->Gspos("S05C",4*index-1,volNam5, xx, yy, zPanel2 , 0, "ONLY"); |
744 | gMC->Gspos("S05C",4*index ,volNam5, xx, yy,-zPanel2 , 0, "ONLY"); |
745 | gMC->Gspos("S06C",4*index-1,volNam6, xx, yy, zPanel2 , 0, "ONLY"); |
746 | gMC->Gspos("S06C",4*index ,volNam6, xx, yy,-zPanel2 , 0, "ONLY"); |
747 | Float_t yframe = (sensHeight + hFrameHeight)/2.; |
748 | gMC->Gspos("S05H",2*index-1,volNam5, xx, yframe, 0. , 0, "ONLY"); |
749 | gMC->Gspos("S05H",2*index ,volNam5, xx,-yframe, 0. , 0, "ONLY"); |
750 | gMC->Gspos("S06H",2*index-1,volNam6, xx, yframe, 0. , 0, "ONLY"); |
751 | gMC->Gspos("S06H",2*index ,volNam6, xx,-yframe, 0. , 0, "ONLY"); |
752 | Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe; |
753 | gMC->Gspos("S05B",2*index-1,volNam5, xx, yborder, 0. , 0, "ONLY"); |
754 | gMC->Gspos("S05B",2*index ,volNam5, xx,-yborder, 0. , 0, "ONLY"); |
755 | gMC->Gspos("S06B",2*index-1,volNam6, xx, yborder, 0. , 0, "ONLY"); |
756 | gMC->Gspos("S06B",2*index ,volNam6, xx,-yborder, 0. , 0, "ONLY"); |
1e8fff9c |
757 | } |
a9e2aefa |
758 | } |
a9e2aefa |
759 | |
1e8fff9c |
760 | // create the NULOC volume and position it in the horizontal frame |
b17c0c87 |
761 | |
6c5ddcfa |
762 | gMC->Gsvolu("S05N","BOX",nulocMaterial,nulocpar,3); |
763 | gMC->Gsvolu("S06N","BOX",nulocMaterial,nulocpar,3); |
1e8fff9c |
764 | |
b17c0c87 |
765 | |
6c5ddcfa |
766 | index = 0; |
b17c0c87 |
767 | |
6c5ddcfa |
768 | |
769 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
770 | index++; |
6c5ddcfa |
771 | gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
772 | gMC->Gspos("S05N",2*index ,"S05B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
773 | gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
774 | gMC->Gspos("S06N",2*index ,"S06B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
775 | } |
776 | |
777 | // create the gassiplex volume |
b17c0c87 |
778 | |
6c5ddcfa |
779 | gMC->Gsvolu("S05E","BOX",gassiMaterial,gassipar,3); |
780 | gMC->Gsvolu("S06E","BOX",gassiMaterial,gassipar,3); |
1e8fff9c |
781 | |
782 | |
783 | // position 4 gassiplex in the nuloc |
784 | |
6c5ddcfa |
785 | gMC->Gspos("S05E",1,"S05N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); |
786 | gMC->Gspos("S05E",2,"S05N", 0., - nulocHeight/8., 0. , 0, "ONLY"); |
787 | gMC->Gspos("S05E",3,"S05N", 0., nulocHeight/8., 0. , 0, "ONLY"); |
788 | gMC->Gspos("S05E",4,"S05N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); |
789 | gMC->Gspos("S06E",1,"S06N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); |
790 | gMC->Gspos("S06E",2,"S06N", 0., - nulocHeight/8., 0. , 0, "ONLY"); |
791 | gMC->Gspos("S06E",3,"S06N", 0., nulocHeight/8., 0. , 0, "ONLY"); |
792 | gMC->Gspos("S06E",4,"S06N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); |
b17c0c87 |
793 | } |
794 | if (stations[3]) { |
795 | |
a9e2aefa |
796 | |
797 | //******************************************************************** |
798 | // Station 4 ** |
799 | //******************************************************************** |
800 | // indices 1 and 2 for first and second chambers in the station |
801 | // iChamber (first chamber) kept for other quanties than Z, |
802 | // assumed to be the same in both chambers |
803 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6]; |
804 | iChamber2 =(AliMUONChamber*) (*fChambers)[7]; |
805 | zpos1=iChamber1->Z(); |
806 | zpos2=iChamber2->Z(); |
807 | dstation = zpos2 - zpos1; |
808 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
809 | |
810 | // |
811 | // Mother volume |
812 | tpar[0] = iChamber->RInner()-dframep; |
813 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
2c799aa2 |
814 | tpar[2] = dstation/5; |
a9e2aefa |
815 | |
816 | gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3); |
817 | gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3); |
818 | gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
819 | gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
1e8fff9c |
820 | |
a9e2aefa |
821 | |
f9f7c205 |
822 | const Int_t nSlats4 = 6; // number of slats per quadrant |
823 | const Int_t nPCB4[nSlats4] = {4,5,5,4,3,2}; // n PCB per slat |
1e8fff9c |
824 | |
825 | // slat dimensions: slat is a MOTHER volume!!! made of air |
6c5ddcfa |
826 | Float_t slatLength4[nSlats4]; |
1e8fff9c |
827 | |
828 | // create and position the slat (mother) volumes |
829 | |
6c5ddcfa |
830 | char volNam7[5]; |
831 | char volNam8[5]; |
1e8fff9c |
832 | Float_t xSlat4; |
f9f7c205 |
833 | Float_t ySlat4; |
1e8fff9c |
834 | |
835 | |
6c5ddcfa |
836 | for (i = 0; i<nSlats4; i++){ |
837 | slatLength4[i] = pcbLength * nPCB4[i] + 2. * dSlatLength; |
f9f7c205 |
838 | xSlat4 = slatLength4[i]/2. - vFrameLength/2.; |
839 | if (i==0) xSlat4 += 37.5; |
f9f7c205 |
840 | ySlat4 = sensHeight * i - yOverlap *i; |
a9e2aefa |
841 | |
6c5ddcfa |
842 | spar[0] = slatLength4[i]/2.; |
843 | spar[1] = slatHeight/2.; |
844 | spar[2] = slatWidth/2.; |
1e8fff9c |
845 | // zSlat to be checked (odd downstream or upstream?) |
6c5ddcfa |
846 | Float_t zSlat = (i%2 ==0)? slatWidth/2. : -slatWidth/2.; |
2c799aa2 |
847 | zSlat*=1.01; |
6c5ddcfa |
848 | sprintf(volNam7,"S07%d",i); |
849 | gMC->Gsvolu(volNam7,"BOX",slatMaterial,spar,3); |
f9f7c205 |
850 | gMC->Gspos(volNam7, i*4+1,"C07M", xSlat4, ySlat4, zSlat, 0, "ONLY"); |
851 | gMC->Gspos(volNam7, i*4+2,"C07M",-xSlat4, ySlat4, zSlat, 0, "ONLY"); |
852 | if (i>0) { |
853 | gMC->Gspos(volNam7, i*4+3,"C07M", xSlat4,-ySlat4, zSlat, 0, "ONLY"); |
854 | gMC->Gspos(volNam7, i*4+4,"C07M",-xSlat4,-ySlat4, zSlat, 0, "ONLY"); |
855 | } |
6c5ddcfa |
856 | sprintf(volNam8,"S08%d",i); |
857 | gMC->Gsvolu(volNam8,"BOX",slatMaterial,spar,3); |
f9f7c205 |
858 | gMC->Gspos(volNam8, i*4+1,"C08M", xSlat4, ySlat4, zSlat, 0, "ONLY"); |
859 | gMC->Gspos(volNam8, i*4+2,"C08M",-xSlat4, ySlat4, zSlat, 0, "ONLY"); |
860 | if (i>0) { |
861 | gMC->Gspos(volNam8, i*4+3,"C08M", xSlat4,-ySlat4, zSlat, 0, "ONLY"); |
862 | gMC->Gspos(volNam8, i*4+4,"C08M",-xSlat4,-ySlat4, zSlat, 0, "ONLY"); |
863 | } |
a9e2aefa |
864 | } |
865 | |
1e8fff9c |
866 | // create the sensitive volumes (subdivided as the PCBs), |
867 | |
6c5ddcfa |
868 | gMC->Gsvolu("S07G","BOX",sensMaterial,sensPar,3); |
869 | gMC->Gsvolu("S08G","BOX",sensMaterial,sensPar,3); |
a9e2aefa |
870 | |
1e8fff9c |
871 | // create the PCB volume |
872 | |
6c5ddcfa |
873 | gMC->Gsvolu("S07P","BOX",pcbMaterial,pcbpar,3); |
874 | gMC->Gsvolu("S08P","BOX",pcbMaterial,pcbpar,3); |
1e8fff9c |
875 | |
876 | // create the insulating material volume |
877 | |
6c5ddcfa |
878 | gMC->Gsvolu("S07I","BOX",insuMaterial,insupar,3); |
879 | gMC->Gsvolu("S08I","BOX",insuMaterial,insupar,3); |
1e8fff9c |
880 | |
881 | // create the panel volume |
882 | |
6c5ddcfa |
883 | gMC->Gsvolu("S07C","BOX",panelMaterial,panelpar,3); |
884 | gMC->Gsvolu("S08C","BOX",panelMaterial,panelpar,3); |
1e8fff9c |
885 | |
886 | // create the rohacell volume |
887 | |
6c5ddcfa |
888 | gMC->Gsvolu("S07R","BOX",rohaMaterial,rohapar,3); |
889 | gMC->Gsvolu("S08R","BOX",rohaMaterial,rohapar,3); |
1e8fff9c |
890 | |
891 | // create the vertical frame volume |
892 | |
6c5ddcfa |
893 | gMC->Gsvolu("S07V","BOX",vFrameMaterial,vFramepar,3); |
894 | gMC->Gsvolu("S08V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
895 | |
896 | // create the horizontal frame volume |
897 | |
6c5ddcfa |
898 | gMC->Gsvolu("S07H","BOX",hFrameMaterial,hFramepar,3); |
899 | gMC->Gsvolu("S08H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
900 | |
901 | // create the horizontal border volume |
902 | |
6c5ddcfa |
903 | gMC->Gsvolu("S07B","BOX",bFrameMaterial,bFramepar,3); |
904 | gMC->Gsvolu("S08B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
905 | |
6c5ddcfa |
906 | for (i = 0; i<nSlats4; i++){ |
907 | sprintf(volNam7,"S07%d",i); |
908 | sprintf(volNam8,"S08%d",i); |
909 | Float_t xvFrame = (slatLength4[i] - vFrameLength)/2.; |
910 | gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY"); |
911 | gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY"); |
912 | gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY"); |
913 | gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY"); |
914 | for (j=0; j<nPCB4[i]; j++){ |
1e8fff9c |
915 | index++; |
6c5ddcfa |
916 | Float_t xx = sensLength * (-nPCB4[i]/2.+j+.5); |
1e8fff9c |
917 | Float_t yy = 0.; |
918 | Float_t zSens = 0.; |
6c5ddcfa |
919 | gMC->Gspos("S07G",index,volNam7, xx, yy, zSens , 0, "ONLY"); |
920 | gMC->Gspos("S08G",index,volNam8, xx, yy, zSens , 0, "ONLY"); |
921 | Float_t zPCB = (sensWidth+pcbWidth)/2.; |
922 | gMC->Gspos("S07P",2*index-1,volNam7, xx, yy, zPCB , 0, "ONLY"); |
923 | gMC->Gspos("S07P",2*index ,volNam7, xx, yy,-zPCB , 0, "ONLY"); |
924 | gMC->Gspos("S08P",2*index-1,volNam8, xx, yy, zPCB , 0, "ONLY"); |
925 | gMC->Gspos("S08P",2*index ,volNam8, xx, yy,-zPCB , 0, "ONLY"); |
926 | Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB; |
927 | gMC->Gspos("S07I",2*index-1,volNam7, xx, yy, zInsu , 0, "ONLY"); |
928 | gMC->Gspos("S07I",2*index ,volNam7, xx, yy,-zInsu , 0, "ONLY"); |
929 | gMC->Gspos("S08I",2*index-1,volNam8, xx, yy, zInsu , 0, "ONLY"); |
930 | gMC->Gspos("S08I",2*index ,volNam8, xx, yy,-zInsu , 0, "ONLY"); |
931 | Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu; |
932 | gMC->Gspos("S07C",4*index-3,volNam7, xx, yy, zPanel1 , 0, "ONLY"); |
933 | gMC->Gspos("S07C",4*index-2,volNam7, xx, yy,-zPanel1 , 0, "ONLY"); |
934 | gMC->Gspos("S08C",4*index-3,volNam8, xx, yy, zPanel1 , 0, "ONLY"); |
935 | gMC->Gspos("S08C",4*index-2,volNam8, xx, yy,-zPanel1 , 0, "ONLY"); |
936 | Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1; |
937 | gMC->Gspos("S07R",2*index-1,volNam7, xx, yy, zRoha , 0, "ONLY"); |
938 | gMC->Gspos("S07R",2*index ,volNam7, xx, yy,-zRoha , 0, "ONLY"); |
939 | gMC->Gspos("S08R",2*index-1,volNam8, xx, yy, zRoha , 0, "ONLY"); |
940 | gMC->Gspos("S08R",2*index ,volNam8, xx, yy,-zRoha , 0, "ONLY"); |
941 | Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha; |
942 | gMC->Gspos("S07C",4*index-1,volNam7, xx, yy, zPanel2 , 0, "ONLY"); |
943 | gMC->Gspos("S07C",4*index ,volNam7, xx, yy,-zPanel2 , 0, "ONLY"); |
944 | gMC->Gspos("S08C",4*index-1,volNam8, xx, yy, zPanel2 , 0, "ONLY"); |
945 | gMC->Gspos("S08C",4*index ,volNam8, xx, yy,-zPanel2 , 0, "ONLY"); |
946 | Float_t yframe = (sensHeight + hFrameHeight)/2.; |
947 | gMC->Gspos("S07H",2*index-1,volNam7, xx, yframe, 0. , 0, "ONLY"); |
948 | gMC->Gspos("S07H",2*index ,volNam7, xx,-yframe, 0. , 0, "ONLY"); |
949 | gMC->Gspos("S08H",2*index-1,volNam8, xx, yframe, 0. , 0, "ONLY"); |
950 | gMC->Gspos("S08H",2*index ,volNam8, xx,-yframe, 0. , 0, "ONLY"); |
951 | Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe; |
952 | gMC->Gspos("S07B",2*index-1,volNam7, xx, yborder, 0. , 0, "ONLY"); |
953 | gMC->Gspos("S07B",2*index ,volNam7, xx,-yborder, 0. , 0, "ONLY"); |
954 | gMC->Gspos("S08B",2*index-1,volNam8, xx, yborder, 0. , 0, "ONLY"); |
955 | gMC->Gspos("S08B",2*index ,volNam8, xx,-yborder, 0. , 0, "ONLY"); |
1e8fff9c |
956 | } |
a9e2aefa |
957 | } |
1e8fff9c |
958 | |
959 | // create the NULOC volume and position it in the horizontal frame |
960 | |
6c5ddcfa |
961 | gMC->Gsvolu("S07N","BOX",nulocMaterial,nulocpar,3); |
962 | gMC->Gsvolu("S08N","BOX",nulocMaterial,nulocpar,3); |
1e8fff9c |
963 | |
964 | |
965 | index = 0; |
6c5ddcfa |
966 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
967 | index++; |
6c5ddcfa |
968 | gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
969 | gMC->Gspos("S07N",2*index ,"S07B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
970 | gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
971 | gMC->Gspos("S08N",2*index ,"S08B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1e8fff9c |
972 | } |
973 | |
974 | // create the gassiplex volume |
975 | |
6c5ddcfa |
976 | gMC->Gsvolu("S07E","BOX",gassiMaterial,gassipar,3); |
977 | gMC->Gsvolu("S08E","BOX",gassiMaterial,gassipar,3); |
1e8fff9c |
978 | |
979 | |
980 | // position 4 gassiplex in the nuloc |
981 | |
6c5ddcfa |
982 | gMC->Gspos("S07E",1,"S07N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); |
983 | gMC->Gspos("S07E",2,"S07N", 0., - nulocHeight/8., 0. , 0, "ONLY"); |
984 | gMC->Gspos("S07E",3,"S07N", 0., nulocHeight/8., 0. , 0, "ONLY"); |
985 | gMC->Gspos("S07E",4,"S07N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); |
986 | gMC->Gspos("S08E",1,"S08N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); |
987 | gMC->Gspos("S08E",2,"S08N", 0., - nulocHeight/8., 0. , 0, "ONLY"); |
988 | gMC->Gspos("S08E",3,"S08N", 0., nulocHeight/8., 0. , 0, "ONLY"); |
989 | gMC->Gspos("S08E",4,"S08N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); |
b17c0c87 |
990 | |
991 | } |
992 | if (stations[4]) { |
993 | |
1e8fff9c |
994 | |
a9e2aefa |
995 | //******************************************************************** |
996 | // Station 5 ** |
997 | //******************************************************************** |
998 | // indices 1 and 2 for first and second chambers in the station |
999 | // iChamber (first chamber) kept for other quanties than Z, |
1000 | // assumed to be the same in both chambers |
1001 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8]; |
1002 | iChamber2 =(AliMUONChamber*) (*fChambers)[9]; |
1003 | zpos1=iChamber1->Z(); |
1004 | zpos2=iChamber2->Z(); |
1005 | dstation = zpos2 - zpos1; |
1006 | zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; |
1007 | |
1008 | // |
1009 | // Mother volume |
1010 | tpar[0] = iChamber->RInner()-dframep; |
1011 | tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi); |
2c799aa2 |
1012 | tpar[2] = dstation/5; |
a9e2aefa |
1013 | |
1014 | gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3); |
1015 | gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3); |
1016 | gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY"); |
1017 | gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY"); |
a9e2aefa |
1018 | |
a9e2aefa |
1019 | |
1e8fff9c |
1020 | const Int_t nSlats5 = 7; // number of slats per quadrant |
f9f7c205 |
1021 | const Int_t nPCB5[nSlats5] = {7,7,6,6,5,4,2}; // n PCB per slat |
1e8fff9c |
1022 | |
1023 | // slat dimensions: slat is a MOTHER volume!!! made of air |
6c5ddcfa |
1024 | Float_t slatLength5[nSlats5]; |
6c5ddcfa |
1025 | char volNam9[5]; |
1026 | char volNam10[5]; |
f9f7c205 |
1027 | Float_t xSlat5; |
1028 | Float_t ySlat5; |
1e8fff9c |
1029 | |
6c5ddcfa |
1030 | for (i = 0; i<nSlats5; i++){ |
1031 | slatLength5[i] = pcbLength * nPCB5[i] + 2. * dSlatLength; |
8013c580 |
1032 | xSlat5 = slatLength5[i]/2. - vFrameLength/2.; |
f9f7c205 |
1033 | if (i==0) xSlat5 += 37.5; |
1034 | ySlat5 = sensHeight * i - yOverlap * i; |
6c5ddcfa |
1035 | spar[0] = slatLength5[i]/2.; |
1036 | spar[1] = slatHeight/2.; |
1037 | spar[2] = slatWidth/2.; |
1e8fff9c |
1038 | // zSlat to be checked (odd downstream or upstream?) |
6c5ddcfa |
1039 | Float_t zSlat = (i%2 ==0)? -slatWidth/2. : slatWidth/2.; |
2c799aa2 |
1040 | zSlat*=1.01; |
6c5ddcfa |
1041 | sprintf(volNam9,"S09%d",i); |
1042 | gMC->Gsvolu(volNam9,"BOX",slatMaterial,spar,3); |
f9f7c205 |
1043 | gMC->Gspos(volNam9, i*4+1,"C09M", xSlat5, ySlat5, zSlat, 0, "ONLY"); |
1044 | gMC->Gspos(volNam9, i*4+2,"C09M",-xSlat5, ySlat5, zSlat, 0, "ONLY"); |
1045 | if (i>0) { |
2c799aa2 |
1046 | gMC->Gspos(volNam9, i*4+3,"C09M", xSlat5,-ySlat5, zSlat, 0, "ONLY"); |
1047 | gMC->Gspos(volNam9, i*4+4,"C09M",-xSlat5,-ySlat5, zSlat, 0, "ONLY"); |
f9f7c205 |
1048 | } |
6c5ddcfa |
1049 | sprintf(volNam10,"S10%d",i); |
1050 | gMC->Gsvolu(volNam10,"BOX",slatMaterial,spar,3); |
f9f7c205 |
1051 | gMC->Gspos(volNam10, i*4+1,"C10M", xSlat5, ySlat5, zSlat, 0, "ONLY"); |
1052 | gMC->Gspos(volNam10, i*4+2,"C10M",-xSlat5, ySlat5, zSlat, 0, "ONLY"); |
1053 | if (i>0) { |
2c799aa2 |
1054 | gMC->Gspos(volNam10, i*4+3,"C10M", xSlat5,-ySlat5, zSlat, 0, "ONLY"); |
1055 | gMC->Gspos(volNam10, i*4+4,"C10M",-xSlat5,-ySlat5, zSlat, 0, "ONLY"); |
f9f7c205 |
1056 | } |
a9e2aefa |
1057 | } |
1058 | |
1e8fff9c |
1059 | // create the sensitive volumes (subdivided as the PCBs), |
1060 | |
6c5ddcfa |
1061 | gMC->Gsvolu("S09G","BOX",sensMaterial,sensPar,3); |
1062 | gMC->Gsvolu("S10G","BOX",sensMaterial,sensPar,3); |
2c799aa2 |
1063 | |
1e8fff9c |
1064 | // create the PCB volume |
2c799aa2 |
1065 | |
6c5ddcfa |
1066 | gMC->Gsvolu("S09P","BOX",pcbMaterial,pcbpar,3); |
1067 | gMC->Gsvolu("S10P","BOX",pcbMaterial,pcbpar,3); |
1e8fff9c |
1068 | |
1069 | // create the insulating material volume |
1070 | |
6c5ddcfa |
1071 | gMC->Gsvolu("S09I","BOX",insuMaterial,insupar,3); |
1072 | gMC->Gsvolu("S10I","BOX",insuMaterial,insupar,3); |
1e8fff9c |
1073 | |
1074 | // create the panel volume |
1075 | |
6c5ddcfa |
1076 | gMC->Gsvolu("S09C","BOX",panelMaterial,panelpar,3); |
1077 | gMC->Gsvolu("S10C","BOX",panelMaterial,panelpar,3); |
2c799aa2 |
1078 | |
1e8fff9c |
1079 | // create the rohacell volume |
1080 | |
6c5ddcfa |
1081 | gMC->Gsvolu("S09R","BOX",rohaMaterial,rohapar,3); |
1082 | gMC->Gsvolu("S10R","BOX",rohaMaterial,rohapar,3); |
2c799aa2 |
1083 | |
1e8fff9c |
1084 | // create the vertical frame volume |
1085 | |
6c5ddcfa |
1086 | gMC->Gsvolu("S09V","BOX",vFrameMaterial,vFramepar,3); |
1087 | gMC->Gsvolu("S10V","BOX",vFrameMaterial,vFramepar,3); |
1e8fff9c |
1088 | |
1089 | // create the horizontal frame volume |
1090 | |
6c5ddcfa |
1091 | gMC->Gsvolu("S09H","BOX",hFrameMaterial,hFramepar,3); |
1092 | gMC->Gsvolu("S10H","BOX",hFrameMaterial,hFramepar,3); |
1e8fff9c |
1093 | |
1094 | // create the horizontal border volume |
1095 | |
6c5ddcfa |
1096 | gMC->Gsvolu("S09B","BOX",bFrameMaterial,bFramepar,3); |
1097 | gMC->Gsvolu("S10B","BOX",bFrameMaterial,bFramepar,3); |
1e8fff9c |
1098 | |
1099 | |
6c5ddcfa |
1100 | for (i = 0; i<nSlats5; i++){ |
1101 | sprintf(volNam9,"S09%d",i); |
1102 | sprintf(volNam10,"S10%d",i); |
1103 | Float_t xvFrame = (slatLength5[i] - vFrameLength)/2.; |
1104 | gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY"); |
1105 | gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY"); |
1106 | gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY"); |
1107 | gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY"); |
1108 | for (j=0; j<nPCB5[i]; j++){ |
1e8fff9c |
1109 | index++; |
2c799aa2 |
1110 | Float_t xx = sensLength/2. * (-nPCB5[i]+2*j+1); |
1e8fff9c |
1111 | Float_t yy = 0.; |
1112 | Float_t zSens = 0.; |
6c5ddcfa |
1113 | gMC->Gspos("S09G",index,volNam9, xx, yy, zSens , 0, "ONLY"); |
1114 | gMC->Gspos("S10G",index,volNam10, xx, yy, zSens , 0, "ONLY"); |
1115 | Float_t zPCB = (sensWidth+pcbWidth)/2.; |
1116 | gMC->Gspos("S09P",2*index-1,volNam9, xx, yy, zPCB , 0, "ONLY"); |
1117 | gMC->Gspos("S09P",2*index ,volNam9, xx, yy,-zPCB , 0, "ONLY"); |
1118 | gMC->Gspos("S10P",2*index-1,volNam10, xx, yy, zPCB , 0, "ONLY"); |
1119 | gMC->Gspos("S10P",2*index ,volNam10, xx, yy,-zPCB , 0, "ONLY"); |
1120 | Float_t zInsu = (insuWidth+pcbWidth)/2. + zPCB; |
1121 | gMC->Gspos("S09I",2*index-1,volNam9, xx, yy, zInsu , 0, "ONLY"); |
1122 | gMC->Gspos("S09I",2*index ,volNam9, xx, yy,-zInsu , 0, "ONLY"); |
1123 | gMC->Gspos("S10I",2*index-1,volNam10, xx, yy, zInsu , 0, "ONLY"); |
1124 | gMC->Gspos("S10I",2*index ,volNam10, xx, yy,-zInsu , 0, "ONLY"); |
1125 | Float_t zPanel1 = (insuWidth+panelWidth)/2. + zInsu; |
1126 | gMC->Gspos("S09C",4*index-3,volNam9, xx, yy, zPanel1 , 0, "ONLY"); |
1127 | gMC->Gspos("S09C",4*index-2,volNam9, xx, yy,-zPanel1 , 0, "ONLY"); |
1128 | gMC->Gspos("S10C",4*index-3,volNam10, xx, yy, zPanel1 , 0, "ONLY"); |
1129 | gMC->Gspos("S10C",4*index-2,volNam10, xx, yy,-zPanel1 , 0, "ONLY"); |
1130 | Float_t zRoha = (rohaWidth+panelWidth)/2. + zPanel1; |
1131 | gMC->Gspos("S09R",2*index-1,volNam9, xx, yy, zRoha , 0, "ONLY"); |
1132 | gMC->Gspos("S09R",2*index ,volNam9, xx, yy,-zRoha , 0, "ONLY"); |
1133 | gMC->Gspos("S10R",2*index-1,volNam10, xx, yy, zRoha , 0, "ONLY"); |
1134 | gMC->Gspos("S10R",2*index ,volNam10, xx, yy,-zRoha , 0, "ONLY"); |
1135 | Float_t zPanel2 = (rohaWidth+panelWidth)/2. + zRoha; |
1136 | gMC->Gspos("S09C",4*index-1,volNam9, xx, yy, zPanel2 , 0, "ONLY"); |
1137 | gMC->Gspos("S09C",4*index ,volNam9, xx, yy,-zPanel2 , 0, "ONLY"); |
1138 | gMC->Gspos("S10C",4*index-1,volNam10, xx, yy, zPanel2 , 0, "ONLY"); |
1139 | gMC->Gspos("S10C",4*index ,volNam10, xx, yy,-zPanel2 , 0, "ONLY"); |
1140 | Float_t yframe = (sensHeight + hFrameHeight)/2.; |
1141 | gMC->Gspos("S09H",2*index-1,volNam9, xx, yframe, 0. , 0, "ONLY"); |
1142 | gMC->Gspos("S09H",2*index ,volNam9, xx,-yframe, 0. , 0, "ONLY"); |
1143 | gMC->Gspos("S10H",2*index-1,volNam10, xx, yframe, 0. , 0, "ONLY"); |
1144 | gMC->Gspos("S10H",2*index ,volNam10, xx,-yframe, 0. , 0, "ONLY"); |
1145 | Float_t yborder = (bFrameHeight + hFrameHeight)/2. + yframe; |
1146 | gMC->Gspos("S09B",2*index-1,volNam9, xx, yborder, 0. , 0, "ONLY"); |
1147 | gMC->Gspos("S09B",2*index ,volNam9, xx,-yborder, 0. , 0, "ONLY"); |
1148 | gMC->Gspos("S10B",2*index-1,volNam10, xx, yborder, 0. , 0, "ONLY"); |
1149 | gMC->Gspos("S10B",2*index ,volNam10, xx,-yborder, 0. , 0, "ONLY"); |
1e8fff9c |
1150 | } |
1151 | } |
1152 | |
1153 | // create the NULOC volume and position it in the horizontal frame |
1154 | |
6c5ddcfa |
1155 | gMC->Gsvolu("S09N","BOX",nulocMaterial,nulocpar,3); |
1156 | gMC->Gsvolu("S10N","BOX",nulocMaterial,nulocpar,3); |
1e8fff9c |
1157 | |
1158 | index = 0; |
6c5ddcfa |
1159 | for (xx = -xxmax; xx<=xxmax; xx+=3*nulocLength) { |
1e8fff9c |
1160 | index++; |
6c5ddcfa |
1161 | gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1162 | gMC->Gspos("S09N",2*index ,"S09B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
1163 | gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-bFrameWidth/4., 0, "ONLY"); |
1164 | gMC->Gspos("S10N",2*index ,"S10B", xx, 0., bFrameWidth/4., 0, "ONLY"); |
a9e2aefa |
1165 | } |
1166 | |
1e8fff9c |
1167 | // create the gassiplex volume |
1168 | |
6c5ddcfa |
1169 | gMC->Gsvolu("S09E","BOX",gassiMaterial,gassipar,3); |
1170 | gMC->Gsvolu("S10E","BOX",gassiMaterial,gassipar,3); |
1e8fff9c |
1171 | |
1172 | |
1173 | // position 4 gassiplex in the nuloc |
2c799aa2 |
1174 | |
6c5ddcfa |
1175 | gMC->Gspos("S09E",1,"S09N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); |
1176 | gMC->Gspos("S09E",2,"S09N", 0., - nulocHeight/8., 0. , 0, "ONLY"); |
1177 | gMC->Gspos("S09E",3,"S09N", 0., nulocHeight/8., 0. , 0, "ONLY"); |
1178 | gMC->Gspos("S09E",4,"S09N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); |
1179 | gMC->Gspos("S10E",1,"S10N", 0., -3 * nulocHeight/8., 0. , 0, "ONLY"); |
1180 | gMC->Gspos("S10E",2,"S10N", 0., - nulocHeight/8., 0. , 0, "ONLY"); |
1181 | gMC->Gspos("S10E",3,"S10N", 0., nulocHeight/8., 0. , 0, "ONLY"); |
1182 | gMC->Gspos("S10E",4,"S10N", 0., 3 * nulocHeight/8., 0. , 0, "ONLY"); |
2c799aa2 |
1183 | |
b17c0c87 |
1184 | } |
1185 | |
1e8fff9c |
1186 | |
a9e2aefa |
1187 | /////////////////////////////////////// |
1188 | // GEOMETRY FOR THE TRIGGER CHAMBERS // |
1189 | /////////////////////////////////////// |
1190 | |
1191 | // 03/00 P. Dupieux : introduce a slighly more realistic |
1192 | // geom. of the trigger readout planes with |
1193 | // 2 Zpos per trigger plane (alternate |
1194 | // between left and right of the trigger) |
1195 | |
1196 | // Parameters of the Trigger Chambers |
1197 | |
1198 | |
1199 | const Float_t kXMC1MIN=34.; |
1200 | const Float_t kXMC1MED=51.; |
1201 | const Float_t kXMC1MAX=272.; |
1202 | const Float_t kYMC1MIN=34.; |
1203 | const Float_t kYMC1MAX=51.; |
1204 | const Float_t kRMIN1=50.; |
1205 | const Float_t kRMAX1=62.; |
1206 | const Float_t kRMIN2=50.; |
1207 | const Float_t kRMAX2=66.; |
1208 | |
1209 | // zposition of the middle of the gas gap in mother vol |
1210 | const Float_t kZMCm=-3.6; |
1211 | const Float_t kZMCp=+3.6; |
1212 | |
1213 | |
1214 | // TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1 |
1215 | |
1216 | // iChamber 1 and 2 for first and second chambers in the station |
1217 | // iChamber (first chamber) kept for other quanties than Z, |
1218 | // assumed to be the same in both chambers |
1219 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10]; |
1220 | iChamber2 =(AliMUONChamber*) (*fChambers)[11]; |
1221 | |
1222 | // 03/00 |
1223 | // zpos1 and zpos2 are now the middle of the first and second |
1224 | // plane of station 1 : |
1225 | // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm |
1226 | // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm |
1227 | // |
1228 | // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps) |
1229 | // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps) |
1230 | // rem : the total thickness accounts for 1 mm of al on both |
1231 | // side of the RPCs (see zpos1 and zpos2), as previously |
1232 | |
1233 | zpos1=iChamber1->Z(); |
1234 | zpos2=iChamber2->Z(); |
1235 | |
1236 | |
1237 | // Mother volume definition |
1238 | tpar[0] = iChamber->RInner(); |
1239 | tpar[1] = iChamber->ROuter(); |
1240 | tpar[2] = 4.0; |
1241 | gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3); |
1242 | gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3); |
1243 | |
1244 | // Definition of the flange between the beam shielding and the RPC |
1245 | tpar[0]= kRMIN1; |
1246 | tpar[1]= kRMAX1; |
1247 | tpar[2]= 4.0; |
1248 | |
1249 | gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al |
1250 | gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY"); |
1251 | gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY"); |
1252 | |
1253 | |
1254 | // FIRST PLANE OF STATION 1 |
1255 | |
1256 | // ratios of zpos1m/zpos1p and inverse for first plane |
1257 | Float_t zmp=(zpos1-3.6)/(zpos1+3.6); |
1258 | Float_t zpm=1./zmp; |
1259 | |
1260 | |
1261 | // Definition of prototype for chambers in the first plane |
1262 | |
1263 | tpar[0]= 0.; |
1264 | tpar[1]= 0.; |
1265 | tpar[2]= 0.; |
1266 | |
1267 | gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al |
1268 | gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1269 | gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1270 | |
1271 | // chamber type A |
1272 | tpar[0] = -1.; |
1273 | tpar[1] = -1.; |
1274 | |
1275 | const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.; |
1276 | const Float_t kYMC1Am=0.; |
1277 | const Float_t kYMC1Ap=0.; |
1278 | |
1279 | tpar[2] = 0.1; |
1280 | gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3); |
1281 | tpar[2] = 0.3; |
1282 | gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3); |
1283 | |
1284 | tpar[2] = 0.4; |
1285 | tpar[0] = (kXMC1MAX-kXMC1MED)/2.; |
1286 | tpar[1] = kYMC1MIN; |
1287 | |
1288 | gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3); |
1289 | gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3); |
1290 | |
1291 | // chamber type B |
1292 | Float_t tpar1save=tpar[1]; |
1293 | Float_t y1msave=kYMC1Am; |
1294 | Float_t y1psave=kYMC1Ap; |
1295 | |
1296 | tpar[0] = (kXMC1MAX-kXMC1MIN)/2.; |
1297 | tpar[1] = (kYMC1MAX-kYMC1MIN)/2.; |
1298 | |
1299 | const Float_t kXMC1B=kXMC1MIN+tpar[0]; |
1300 | const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1]; |
1301 | const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1]; |
1302 | |
1303 | gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1304 | gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
1305 | gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3); |
1306 | gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3); |
1307 | |
1308 | // chamber type C (end of type B !!) |
1309 | tpar1save=tpar[1]; |
1310 | y1msave=kYMC1Bm; |
1311 | y1psave=kYMC1Bp; |
1312 | |
1313 | tpar[0] = kXMC1MAX/2; |
1314 | tpar[1] = kYMC1MAX/2; |
1315 | |
1316 | const Float_t kXMC1C=tpar[0]; |
1317 | // warning : same Z than type B |
1318 | const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1]; |
1319 | const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1]; |
1320 | |
1321 | gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1322 | gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
1323 | gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3); |
1324 | gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3); |
1325 | |
1326 | // chamber type D, E and F (same size) |
1327 | tpar1save=tpar[1]; |
1328 | y1msave=kYMC1Cm; |
1329 | y1psave=kYMC1Cp; |
1330 | |
1331 | tpar[0] = kXMC1MAX/2.; |
1332 | tpar[1] = kYMC1MIN; |
1333 | |
1334 | const Float_t kXMC1D=tpar[0]; |
1335 | const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1]; |
1336 | const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1]; |
1337 | |
1338 | gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1339 | gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
1340 | gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3); |
1341 | gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3); |
1342 | |
1343 | |
1344 | tpar1save=tpar[1]; |
1345 | y1msave=kYMC1Dm; |
1346 | y1psave=kYMC1Dp; |
1347 | const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1]; |
1348 | const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1]; |
1349 | |
1350 | gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1351 | gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
1352 | gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3); |
1353 | gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3); |
1354 | |
1355 | tpar1save=tpar[1]; |
1356 | y1msave=kYMC1Em; |
1357 | y1psave=kYMC1Ep; |
1358 | const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1]; |
1359 | const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1]; |
1360 | |
1361 | gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1362 | gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
1363 | gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3); |
1364 | gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3); |
1365 | |
1366 | // Positioning first plane in ALICE |
1367 | gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY"); |
1368 | |
1369 | // End of geometry definition for the first plane of station 1 |
1370 | |
1371 | |
1372 | |
1373 | // SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1 |
1374 | |
1375 | const Float_t kZ12=zpos2/zpos1; |
1376 | |
1377 | // Definition of prototype for chambers in the second plane of station 1 |
1378 | |
1379 | tpar[0]= 0.; |
1380 | tpar[1]= 0.; |
1381 | tpar[2]= 0.; |
1382 | |
1383 | gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al |
1384 | gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1385 | gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1386 | |
1387 | // chamber type A |
1388 | tpar[0] = -1.; |
1389 | tpar[1] = -1.; |
1390 | |
1391 | const Float_t kXMC2A=kXMC1A*kZ12; |
1392 | const Float_t kYMC2Am=0.; |
1393 | const Float_t kYMC2Ap=0.; |
1394 | |
1395 | tpar[2] = 0.1; |
1396 | gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3); |
1397 | tpar[2] = 0.3; |
1398 | gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3); |
1399 | |
1400 | tpar[2] = 0.4; |
1401 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12; |
1402 | tpar[1] = kYMC1MIN*kZ12; |
1403 | |
1404 | gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3); |
1405 | gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3); |
1406 | |
1407 | |
1408 | // chamber type B |
1409 | |
1410 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12; |
1411 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12; |
1412 | |
1413 | const Float_t kXMC2B=kXMC1B*kZ12; |
1414 | const Float_t kYMC2Bp=kYMC1Bp*kZ12; |
1415 | const Float_t kYMC2Bm=kYMC1Bm*kZ12; |
1416 | gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1417 | gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
1418 | gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3); |
1419 | gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3); |
1420 | |
1421 | |
1422 | // chamber type C (end of type B !!) |
1423 | |
1424 | tpar[0] = (kXMC1MAX/2)*kZ12; |
1425 | tpar[1] = (kYMC1MAX/2)*kZ12; |
1426 | |
1427 | const Float_t kXMC2C=kXMC1C*kZ12; |
1428 | const Float_t kYMC2Cp=kYMC1Cp*kZ12; |
1429 | const Float_t kYMC2Cm=kYMC1Cm*kZ12; |
1430 | gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1431 | gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
1432 | gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3); |
1433 | gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3); |
1434 | |
1435 | // chamber type D, E and F (same size) |
1436 | |
1437 | tpar[0] = (kXMC1MAX/2.)*kZ12; |
1438 | tpar[1] = kYMC1MIN*kZ12; |
1439 | |
1440 | const Float_t kXMC2D=kXMC1D*kZ12; |
1441 | const Float_t kYMC2Dp=kYMC1Dp*kZ12; |
1442 | const Float_t kYMC2Dm=kYMC1Dm*kZ12; |
1443 | gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1444 | gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
1445 | gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3); |
1446 | gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3); |
1447 | |
1448 | const Float_t kYMC2Ep=kYMC1Ep*kZ12; |
1449 | const Float_t kYMC2Em=kYMC1Em*kZ12; |
1450 | gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1451 | gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
1452 | gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3); |
1453 | gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3); |
1454 | |
1455 | |
1456 | const Float_t kYMC2Fp=kYMC1Fp*kZ12; |
1457 | const Float_t kYMC2Fm=kYMC1Fm*kZ12; |
1458 | gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1459 | gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
1460 | gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3); |
1461 | gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3); |
1462 | |
1463 | // Positioning second plane of station 1 in ALICE |
1464 | |
1465 | gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY"); |
1466 | |
1467 | // End of geometry definition for the second plane of station 1 |
1468 | |
1469 | |
1470 | |
1471 | // TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2 |
1472 | |
1473 | // 03/00 |
1474 | // zpos3 and zpos4 are now the middle of the first and second |
1475 | // plane of station 2 : |
1476 | // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm |
1477 | // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm |
1478 | // |
1479 | // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps) |
1480 | // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps) |
1481 | // rem : the total thickness accounts for 1 mm of al on both |
1482 | // side of the RPCs (see zpos3 and zpos4), as previously |
1483 | iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12]; |
1484 | iChamber2 =(AliMUONChamber*) (*fChambers)[13]; |
1485 | Float_t zpos3=iChamber1->Z(); |
1486 | Float_t zpos4=iChamber2->Z(); |
1487 | |
1488 | |
1489 | // Mother volume definition |
1490 | tpar[0] = iChamber->RInner(); |
1491 | tpar[1] = iChamber->ROuter(); |
1492 | tpar[2] = 4.0; |
1493 | |
1494 | gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3); |
1495 | gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3); |
1496 | |
1497 | // Definition of the flange between the beam shielding and the RPC |
1498 | // ???? interface shielding |
1499 | |
1500 | tpar[0]= kRMIN2; |
1501 | tpar[1]= kRMAX2; |
1502 | tpar[2]= 4.0; |
1503 | |
1504 | gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al |
1505 | gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY"); |
1506 | gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY"); |
1507 | |
1508 | |
1509 | |
1510 | // FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1 |
1511 | |
1512 | const Float_t kZ13=zpos3/zpos1; |
1513 | |
1514 | // Definition of prototype for chambers in the first plane of station 2 |
1515 | tpar[0]= 0.; |
1516 | tpar[1]= 0.; |
1517 | tpar[2]= 0.; |
1518 | |
1519 | gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al |
1520 | gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1521 | gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1522 | |
1523 | |
1524 | // chamber type A |
1525 | tpar[0] = -1.; |
1526 | tpar[1] = -1.; |
1527 | |
1528 | const Float_t kXMC3A=kXMC1A*kZ13; |
1529 | const Float_t kYMC3Am=0.; |
1530 | const Float_t kYMC3Ap=0.; |
1531 | |
1532 | tpar[2] = 0.1; |
1533 | gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3); |
1534 | tpar[2] = 0.3; |
1535 | gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3); |
1536 | |
1537 | tpar[2] = 0.4; |
1538 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13; |
1539 | tpar[1] = kYMC1MIN*kZ13; |
1540 | gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3); |
1541 | gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3); |
1542 | |
1543 | |
1544 | // chamber type B |
1545 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13; |
1546 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13; |
1547 | |
1548 | const Float_t kXMC3B=kXMC1B*kZ13; |
1549 | const Float_t kYMC3Bp=kYMC1Bp*kZ13; |
1550 | const Float_t kYMC3Bm=kYMC1Bm*kZ13; |
1551 | gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1552 | gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
1553 | gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3); |
1554 | gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3); |
1555 | |
1556 | |
1557 | // chamber type C (end of type B !!) |
1558 | tpar[0] = (kXMC1MAX/2)*kZ13; |
1559 | tpar[1] = (kYMC1MAX/2)*kZ13; |
1560 | |
1561 | const Float_t kXMC3C=kXMC1C*kZ13; |
1562 | const Float_t kYMC3Cp=kYMC1Cp*kZ13; |
1563 | const Float_t kYMC3Cm=kYMC1Cm*kZ13; |
1564 | gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1565 | gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
1566 | gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3); |
1567 | gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3); |
1568 | |
1569 | |
1570 | // chamber type D, E and F (same size) |
1571 | |
1572 | tpar[0] = (kXMC1MAX/2.)*kZ13; |
1573 | tpar[1] = kYMC1MIN*kZ13; |
1574 | |
1575 | const Float_t kXMC3D=kXMC1D*kZ13; |
1576 | const Float_t kYMC3Dp=kYMC1Dp*kZ13; |
1577 | const Float_t kYMC3Dm=kYMC1Dm*kZ13; |
1578 | gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1579 | gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
1580 | gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3); |
1581 | gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3); |
1582 | |
1583 | const Float_t kYMC3Ep=kYMC1Ep*kZ13; |
1584 | const Float_t kYMC3Em=kYMC1Em*kZ13; |
1585 | gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1586 | gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
1587 | gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3); |
1588 | gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3); |
1589 | |
1590 | const Float_t kYMC3Fp=kYMC1Fp*kZ13; |
1591 | const Float_t kYMC3Fm=kYMC1Fm*kZ13; |
1592 | gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1593 | gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
1594 | gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3); |
1595 | gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3); |
1596 | |
1597 | |
1598 | // Positioning first plane of station 2 in ALICE |
1599 | |
1600 | gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY"); |
1601 | |
1602 | // End of geometry definition for the first plane of station 2 |
1603 | |
1604 | |
1605 | |
1606 | |
1607 | // SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1 |
1608 | |
1609 | const Float_t kZ14=zpos4/zpos1; |
1610 | |
1611 | // Definition of prototype for chambers in the second plane of station 2 |
1612 | |
1613 | tpar[0]= 0.; |
1614 | tpar[1]= 0.; |
1615 | tpar[2]= 0.; |
1616 | |
1617 | gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al |
1618 | gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite |
1619 | gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer |
1620 | |
1621 | // chamber type A |
1622 | tpar[0] = -1.; |
1623 | tpar[1] = -1.; |
1624 | |
1625 | const Float_t kXMC4A=kXMC1A*kZ14; |
1626 | const Float_t kYMC4Am=0.; |
1627 | const Float_t kYMC4Ap=0.; |
1628 | |
1629 | tpar[2] = 0.1; |
1630 | gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3); |
1631 | tpar[2] = 0.3; |
1632 | gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3); |
1633 | |
1634 | tpar[2] = 0.4; |
1635 | tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14; |
1636 | tpar[1] = kYMC1MIN*kZ14; |
1637 | gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3); |
1638 | gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3); |
1639 | |
1640 | |
1641 | // chamber type B |
1642 | tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14; |
1643 | tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14; |
1644 | |
1645 | const Float_t kXMC4B=kXMC1B*kZ14; |
1646 | const Float_t kYMC4Bp=kYMC1Bp*kZ14; |
1647 | const Float_t kYMC4Bm=kYMC1Bm*kZ14; |
1648 | gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1649 | gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
1650 | gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3); |
1651 | gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3); |
1652 | |
1653 | |
1654 | // chamber type C (end of type B !!) |
1655 | tpar[0] =(kXMC1MAX/2)*kZ14; |
1656 | tpar[1] = (kYMC1MAX/2)*kZ14; |
1657 | |
1658 | const Float_t kXMC4C=kXMC1C*kZ14; |
1659 | const Float_t kYMC4Cp=kYMC1Cp*kZ14; |
1660 | const Float_t kYMC4Cm=kYMC1Cm*kZ14; |
1661 | gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1662 | gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
1663 | gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3); |
1664 | gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3); |
1665 | |
1666 | |
1667 | // chamber type D, E and F (same size) |
1668 | tpar[0] = (kXMC1MAX/2.)*kZ14; |
1669 | tpar[1] = kYMC1MIN*kZ14; |
1670 | |
1671 | const Float_t kXMC4D=kXMC1D*kZ14; |
1672 | const Float_t kYMC4Dp=kYMC1Dp*kZ14; |
1673 | const Float_t kYMC4Dm=kYMC1Dm*kZ14; |
1674 | gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1675 | gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
1676 | gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3); |
1677 | gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3); |
1678 | |
1679 | const Float_t kYMC4Ep=kYMC1Ep*kZ14; |
1680 | const Float_t kYMC4Em=kYMC1Em*kZ14; |
1681 | gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1682 | gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
1683 | gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3); |
1684 | gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3); |
1685 | |
1686 | const Float_t kYMC4Fp=kYMC1Fp*kZ14; |
1687 | const Float_t kYMC4Fm=kYMC1Fm*kZ14; |
1688 | gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1689 | gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
1690 | gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3); |
1691 | gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3); |
1692 | |
1693 | |
1694 | // Positioning second plane of station 2 in ALICE |
1695 | |
1696 | gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY"); |
1697 | |
1698 | // End of geometry definition for the second plane of station 2 |
1699 | |
1700 | // End of trigger geometry definition |
1701 | |
1702 | } |
1703 | |
1704 | |
1705 | |
1706 | //___________________________________________ |
1707 | void AliMUONv1::CreateMaterials() |
1708 | { |
1709 | // *** DEFINITION OF AVAILABLE MUON MATERIALS *** |
1710 | // |
1711 | // Ar-CO2 gas |
1712 | Float_t ag1[3] = { 39.95,12.01,16. }; |
1713 | Float_t zg1[3] = { 18.,6.,8. }; |
1714 | Float_t wg1[3] = { .8,.0667,.13333 }; |
1715 | Float_t dg1 = .001821; |
1716 | // |
1717 | // Ar-buthane-freon gas -- trigger chambers |
1718 | Float_t atr1[4] = { 39.95,12.01,1.01,19. }; |
1719 | Float_t ztr1[4] = { 18.,6.,1.,9. }; |
1720 | Float_t wtr1[4] = { .56,.1262857,.2857143,.028 }; |
1721 | Float_t dtr1 = .002599; |
1722 | // |
1723 | // Ar-CO2 gas |
1724 | Float_t agas[3] = { 39.95,12.01,16. }; |
1725 | Float_t zgas[3] = { 18.,6.,8. }; |
1726 | Float_t wgas[3] = { .74,.086684,.173316 }; |
1727 | Float_t dgas = .0018327; |
1728 | // |
1729 | // Ar-Isobutane gas (80%+20%) -- tracking |
1730 | Float_t ag[3] = { 39.95,12.01,1.01 }; |
1731 | Float_t zg[3] = { 18.,6.,1. }; |
1732 | Float_t wg[3] = { .8,.057,.143 }; |
1733 | Float_t dg = .0019596; |
1734 | // |
1735 | // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger |
1736 | Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 }; |
1737 | Float_t ztrig[5] = { 18.,6.,1.,9.,16. }; |
1738 | Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 }; |
1739 | Float_t dtrig = .0031463; |
1740 | // |
1741 | // bakelite |
1742 | |
1743 | Float_t abak[3] = {12.01 , 1.01 , 16.}; |
1744 | Float_t zbak[3] = {6. , 1. , 8.}; |
1745 | Float_t wbak[3] = {6. , 6. , 1.}; |
1746 | Float_t dbak = 1.4; |
1747 | |
1748 | Float_t epsil, stmin, deemax, tmaxfd, stemax; |
1749 | |
1750 | Int_t iSXFLD = gAlice->Field()->Integ(); |
1751 | Float_t sXMGMX = gAlice->Field()->Max(); |
1752 | // |
1753 | // --- Define the various materials for GEANT --- |
1754 | AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1755 | AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2); |
1756 | AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500); |
1757 | AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak); |
1758 | AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg); |
1759 | AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig); |
1760 | AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1); |
1761 | AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1); |
1762 | AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas); |
1e8fff9c |
1763 | // materials for slat: |
1764 | // Sensitive area: gas (already defined) |
1765 | // PCB: copper |
1766 | // insulating material and frame: vetronite |
1767 | // walls: carbon, rohacell, carbon |
1768 | Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.}; |
1769 | Float_t zglass[5]={ 6., 14., 8., 5., 11.}; |
1770 | Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01}; |
1771 | Float_t dglass=1.74; |
1772 | |
1773 | // rohacell: C9 H13 N1 O2 |
1774 | Float_t arohac[4] = {12.01, 1.01, 14.010, 16.}; |
1775 | Float_t zrohac[4] = { 6., 1., 7., 8.}; |
1776 | Float_t wrohac[4] = { 9., 13., 1., 2.}; |
1777 | Float_t drohac = 0.03; |
1778 | |
1779 | AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.); |
1780 | AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass); |
1781 | AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9); |
1782 | AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac); |
1783 | |
a9e2aefa |
1784 | |
1785 | epsil = .001; // Tracking precision, |
1786 | stemax = -1.; // Maximum displacement for multiple scat |
1787 | tmaxfd = -20.; // Maximum angle due to field deflection |
1788 | deemax = -.3; // Maximum fractional energy loss, DLS |
1789 | stmin = -.8; |
1790 | // |
1791 | // Air |
1792 | AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1793 | // |
1794 | // Aluminum |
1795 | |
1796 | AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1797 | fMaxDestepAlu, epsil, stmin); |
1798 | AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1799 | fMaxDestepAlu, epsil, stmin); |
1800 | // |
1801 | // Ar-isoC4H10 gas |
1802 | |
1803 | AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1804 | fMaxDestepGas, epsil, stmin); |
1805 | // |
1806 | // Ar-Isobuthane-Forane-SF6 gas |
1807 | |
1808 | AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin); |
1809 | |
1810 | AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu, |
1811 | fMaxDestepAlu, epsil, stmin); |
1812 | |
1813 | AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas, |
1814 | fMaxDestepAlu, epsil, stmin); |
1e8fff9c |
1815 | // tracking media for slats: check the parameters!! |
1816 | AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd, |
1817 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1818 | AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd, |
1819 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1820 | AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd, |
1821 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
1822 | AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd, |
1823 | fMaxStepAlu, fMaxDestepAlu, epsil, stmin); |
a9e2aefa |
1824 | } |
1825 | |
1826 | //___________________________________________ |
1827 | |
1828 | void AliMUONv1::Init() |
1829 | { |
1830 | // |
1831 | // Initialize Tracking Chambers |
1832 | // |
1833 | |
1834 | printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n"); |
e17592e9 |
1835 | Int_t i; |
f665c1ea |
1836 | for (i=0; i<AliMUONConstants::NCh(); i++) { |
a9e2aefa |
1837 | ( (AliMUONChamber*) (*fChambers)[i])->Init(); |
1838 | } |
1839 | |
1840 | // |
1841 | // Set the chamber (sensitive region) GEANT identifier |
1842 | AliMC* gMC = AliMC::GetMC(); |
1843 | ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G")); |
1844 | ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G")); |
b17c0c87 |
1845 | |
a9e2aefa |
1846 | ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G")); |
1847 | ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G")); |
b17c0c87 |
1848 | |
1e8fff9c |
1849 | ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G")); |
1850 | ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G")); |
b17c0c87 |
1851 | |
1e8fff9c |
1852 | ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G")); |
1853 | ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G")); |
b17c0c87 |
1854 | |
1e8fff9c |
1855 | ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G")); |
1856 | ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G")); |
b17c0c87 |
1857 | |
a9e2aefa |
1858 | ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A")); |
1859 | ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A")); |
1860 | ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A")); |
1861 | ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A")); |
1862 | |
1863 | printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n"); |
1864 | |
1865 | //cp |
1866 | printf("\n\n\n Start Init for Trigger Circuits\n\n\n"); |
f665c1ea |
1867 | for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) { |
a9e2aefa |
1868 | ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i); |
1869 | } |
1870 | printf(" Finished Init for Trigger Circuits\n\n\n"); |
1871 | //cp |
1872 | |
1873 | } |
1874 | |
1875 | //___________________________________________ |
1876 | void AliMUONv1::StepManager() |
1877 | { |
1878 | Int_t copy, id; |
1879 | static Int_t idvol; |
1880 | static Int_t vol[2]; |
1881 | Int_t ipart; |
1882 | TLorentzVector pos; |
1883 | TLorentzVector mom; |
1884 | Float_t theta,phi; |
1885 | Float_t destep, step; |
1886 | |
1e8fff9c |
1887 | static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength; |
a9e2aefa |
1888 | const Float_t kBig=1.e10; |
a9e2aefa |
1889 | // modifs perso |
1890 | static Float_t hits[15]; |
1891 | |
1892 | TClonesArray &lhits = *fHits; |
1893 | |
1894 | // |
1895 | // Set maximum step size for gas |
1896 | // numed=gMC->GetMedium(); |
1897 | // |
1898 | // Only charged tracks |
1899 | if( !(gMC->TrackCharge()) ) return; |
1900 | // |
1901 | // Only gas gap inside chamber |
1902 | // Tag chambers and record hits when track enters |
1903 | idvol=-1; |
1904 | id=gMC->CurrentVolID(copy); |
1905 | |
f665c1ea |
1906 | for (Int_t i=1; i<=AliMUONConstants::NCh(); i++) { |
a9e2aefa |
1907 | if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){ |
1908 | vol[0]=i; |
1909 | idvol=i-1; |
1910 | } |
1911 | } |
1912 | if (idvol == -1) return; |
1913 | // |
1914 | // Get current particle id (ipart), track position (pos) and momentum (mom) |
1915 | gMC->TrackPosition(pos); |
1916 | gMC->TrackMomentum(mom); |
1917 | |
1918 | ipart = gMC->TrackPid(); |
1919 | //Int_t ipart1 = gMC->IdFromPDG(ipart); |
1920 | //printf("ich, ipart %d %d \n",vol[0],ipart1); |
1921 | |
1922 | // |
1923 | // momentum loss and steplength in last step |
1924 | destep = gMC->Edep(); |
1925 | step = gMC->TrackStep(); |
1926 | |
1927 | // |
1928 | // record hits when track enters ... |
1929 | if( gMC->IsTrackEntering()) { |
1930 | gMC->SetMaxStep(fMaxStepGas); |
1931 | Double_t tc = mom[0]*mom[0]+mom[1]*mom[1]; |
1932 | Double_t rt = TMath::Sqrt(tc); |
1933 | Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]); |
1934 | Double_t tx=mom[0]/pmom; |
1935 | Double_t ty=mom[1]/pmom; |
1936 | Double_t tz=mom[2]/pmom; |
1937 | Double_t s=((AliMUONChamber*)(*fChambers)[idvol]) |
1938 | ->ResponseModel() |
1939 | ->Pitch()/tz; |
1940 | theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg; |
1941 | phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg; |
1942 | hits[0] = Float_t(ipart); // Geant3 particle type |
1943 | hits[1] = pos[0]+s*tx; // X-position for hit |
1944 | hits[2] = pos[1]+s*ty; // Y-position for hit |
1945 | hits[3] = pos[2]+s*tz; // Z-position for hit |
1946 | hits[4] = theta; // theta angle of incidence |
1947 | hits[5] = phi; // phi angle of incidence |
1948 | hits[8] = (Float_t) fNPadHits; // first padhit |
1949 | hits[9] = -1; // last pad hit |
1950 | |
1951 | // modifs perso |
1952 | hits[10] = mom[3]; // hit momentum P |
1953 | hits[11] = mom[0]; // Px/P |
1954 | hits[12] = mom[1]; // Py/P |
1955 | hits[13] = mom[2]; // Pz/P |
1956 | // fin modifs perso |
1957 | tof=gMC->TrackTime(); |
1958 | hits[14] = tof; // Time of flight |
1959 | // phi angle of incidence |
1960 | tlength = 0; |
1961 | eloss = 0; |
1962 | eloss2 = 0; |
1963 | xhit = pos[0]; |
1964 | yhit = pos[1]; |
1e8fff9c |
1965 | zhit = pos[2]; |
a9e2aefa |
1966 | // Only if not trigger chamber |
1e8fff9c |
1967 | |
1968 | |
1969 | |
1970 | |
a75f073c |
1971 | if(idvol<AliMUONConstants::NTrackingCh()) { |
a9e2aefa |
1972 | // |
1973 | // Initialize hit position (cursor) in the segmentation model |
1974 | ((AliMUONChamber*) (*fChambers)[idvol]) |
1975 | ->SigGenInit(pos[0], pos[1], pos[2]); |
1976 | } else { |
1977 | //geant3->Gpcxyz(); |
1978 | //printf("In the Trigger Chamber #%d\n",idvol-9); |
1979 | } |
1980 | } |
1981 | eloss2+=destep; |
1982 | |
1983 | // |
1984 | // Calculate the charge induced on a pad (disintegration) in case |
1985 | // |
1986 | // Mip left chamber ... |
1987 | if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){ |
1988 | gMC->SetMaxStep(kBig); |
1989 | eloss += destep; |
1990 | tlength += step; |
1991 | |
802a864d |
1992 | Float_t x0,y0,z0; |
1993 | Float_t localPos[3]; |
1994 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
802a864d |
1995 | gMC->Gmtod(globalPos,localPos,1); |
1996 | |
a75f073c |
1997 | if(idvol<AliMUONConstants::NTrackingCh()) { |
a9e2aefa |
1998 | // tracking chambers |
1999 | x0 = 0.5*(xhit+pos[0]); |
2000 | y0 = 0.5*(yhit+pos[1]); |
1e8fff9c |
2001 | z0 = 0.5*(zhit+pos[2]); |
2002 | // z0 = localPos[2]; |
a9e2aefa |
2003 | } else { |
2004 | // trigger chambers |
2005 | x0=xhit; |
2006 | y0=yhit; |
1e8fff9c |
2007 | // z0=yhit; |
802a864d |
2008 | z0=0.; |
a9e2aefa |
2009 | } |
2010 | |
1e8fff9c |
2011 | |
802a864d |
2012 | if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol); |
a9e2aefa |
2013 | |
2014 | |
2015 | hits[6]=tlength; |
2016 | hits[7]=eloss2; |
2017 | if (fNPadHits > (Int_t)hits[8]) { |
2018 | hits[8]= hits[8]+1; |
2019 | hits[9]= (Float_t) fNPadHits; |
2020 | } |
2021 | |
2022 | new(lhits[fNhits++]) |
2023 | AliMUONHit(fIshunt,gAlice->CurrentTrack(),vol,hits); |
2024 | eloss = 0; |
2025 | // |
2026 | // Check additional signal generation conditions |
2027 | // defined by the segmentation |
a75f073c |
2028 | // model (boundary crossing conditions) |
2029 | // only for tracking chambers |
a9e2aefa |
2030 | } else if |
a75f073c |
2031 | ((idvol < AliMUONConstants::NTrackingCh()) && |
2032 | ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2])) |
a9e2aefa |
2033 | { |
2034 | ((AliMUONChamber*) (*fChambers)[idvol]) |
2035 | ->SigGenInit(pos[0], pos[1], pos[2]); |
802a864d |
2036 | |
2037 | Float_t localPos[3]; |
2038 | Float_t globalPos[3] = {pos[0], pos[1], pos[2]}; |
2039 | gMC->Gmtod(globalPos,localPos,1); |
2040 | |
2041 | |
a75f073c |
2042 | if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh()) |
1e8fff9c |
2043 | MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol); |
a9e2aefa |
2044 | xhit = pos[0]; |
2045 | yhit = pos[1]; |
1e8fff9c |
2046 | zhit = pos[2]; |
a9e2aefa |
2047 | eloss = destep; |
2048 | tlength += step ; |
2049 | // |
2050 | // nothing special happened, add up energy loss |
2051 | } else { |
2052 | eloss += destep; |
2053 | tlength += step ; |
2054 | } |
2055 | } |
2056 | |
2057 | |