New and updated pythia example.
[u/mrichter/AliRoot.git] / MUON / AliMUONv1.cxx
CommitLineData
a9e2aefa 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
1e8fff9c 12 * about the suitability of this software for any purpeateose. It is *
a9e2aefa 13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
1e8fff9c 18Revision 1.7 2000/10/02 21:28:09 fca
19Removal of useless dependecies via forward declarations
20
94de3818 21Revision 1.6 2000/10/02 17:20:45 egangler
22Cleaning of the code (continued ) :
23-> coding conventions
24-> void Streamers
25-> some useless includes removed or replaced by "class" statement
26
8c449e83 27Revision 1.5 2000/06/28 15:16:35 morsch
28(1) Client code adapted to new method signatures in AliMUONSegmentation (see comments there)
29to allow development of slat-muon chamber simulation and reconstruction code in the MUON
30framework. The changes should have no side effects (mostly dummy arguments).
31(2) Hit disintegration uses 3-dim hit coordinates to allow simulation
32of chambers with overlapping modules (MakePadHits, Disintegration).
33
802a864d 34Revision 1.4 2000/06/26 14:02:38 morsch
35Add class AliMUONConstants with MUON specific constants using static memeber data and access methods.
36
f665c1ea 37Revision 1.3 2000/06/22 14:10:05 morsch
38HP scope problems corrected (PH)
39
e17592e9 40Revision 1.2 2000/06/15 07:58:49 morsch
41Code from MUON-dev joined
42
a9e2aefa 43Revision 1.1.2.14 2000/06/14 14:37:25 morsch
44Initialization of TriggerCircuit added (PC)
45
46Revision 1.1.2.13 2000/06/09 21:55:47 morsch
47Most coding rule violations corrected.
48
49Revision 1.1.2.12 2000/05/05 11:34:29 morsch
50Log inside comments.
51
52Revision 1.1.2.11 2000/05/05 10:06:48 morsch
53Coding Rule violations regarding trigger section corrected (CP)
54Log messages included.
55*/
56
57/////////////////////////////////////////////////////////
58// Manager and hits classes for set:MUON version 0 //
59/////////////////////////////////////////////////////////
60
61#include <TTUBE.h>
62#include <TNode.h>
63#include <TRandom.h>
64#include <TLorentzVector.h>
65#include <iostream.h>
66
67#include "AliMUONv1.h"
68#include "AliRun.h"
69#include "AliMC.h"
94de3818 70#include "AliMagF.h"
a9e2aefa 71#include "AliCallf77.h"
72#include "AliConst.h"
73#include "AliMUONChamber.h"
74#include "AliMUONHit.h"
75#include "AliMUONPadHit.h"
f665c1ea 76#include "AliMUONConstants.h"
8c449e83 77#include "AliMUONTriggerCircuit.h"
a9e2aefa 78
79ClassImp(AliMUONv1)
80
81//___________________________________________
82AliMUONv1::AliMUONv1() : AliMUON()
83{
84// Constructor
85 fChambers = 0;
86}
87
88//___________________________________________
89AliMUONv1::AliMUONv1(const char *name, const char *title)
90 : AliMUON(name,title)
91{
92// Constructor
93}
94
95//___________________________________________
96void AliMUONv1::CreateGeometry()
97{
98//
99// Note: all chambers have the same structure, which could be
100// easily parameterised. This was intentionally not done in order
101// to give a starting point for the implementation of the actual
102// design of each station.
103 Int_t *idtmed = fIdtmed->GetArray()-1099;
104
105// Distance between Stations
106//
107 Float_t bpar[3];
108 Float_t tpar[3];
109 Float_t pgpar[10];
110 Float_t zpos1, zpos2, zfpos;
111 Float_t dframep=.001; // Value for station 3 should be 6 ...
112 Float_t dframep1=.001;
113// Bool_t frames=kTRUE;
114 Bool_t frames=kFALSE;
115
116 Float_t dframez=0.9;
117 Float_t dr;
118 Float_t dstation;
119
120//
121// Rotation matrices in the x-y plane
122 Int_t idrotm[1199];
123// phi= 0 deg
124 AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.);
125// phi= 90 deg
126 AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.);
127// phi= 180 deg
128 AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.);
129// phi= 270 deg
130 AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.);
131//
132 Float_t phi=2*TMath::Pi()/12/2;
133
134//
135// pointer to the current chamber
136// pointer to the current chamber
137 Int_t idAlu1=idtmed[1103];
138 Int_t idAlu2=idtmed[1104];
139// Int_t idAlu1=idtmed[1100];
140// Int_t idAlu2=idtmed[1100];
141 Int_t idAir=idtmed[1100];
142 Int_t idGas=idtmed[1105];
143
144
145 AliMUONChamber *iChamber, *iChamber1, *iChamber2;
146//********************************************************************
147// Station 1 **
148//********************************************************************
149// CONCENTRIC
150 // indices 1 and 2 for first and second chambers in the station
151 // iChamber (first chamber) kept for other quanties than Z,
152 // assumed to be the same in both chambers
153 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0];
154 iChamber2 =(AliMUONChamber*) (*fChambers)[1];
155 zpos1=iChamber1->Z();
156 zpos2=iChamber2->Z();
157 dstation = zpos2 - zpos1;
158 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
159
160//
161// Mother volume
162 tpar[0] = iChamber->RInner()-dframep1;
163 tpar[1] = (iChamber->ROuter()+dframep1)/TMath::Cos(phi);
164 tpar[2] = dstation/4;
165
166 gMC->Gsvolu("C01M", "TUBE", idAir, tpar, 3);
167 gMC->Gsvolu("C02M", "TUBE", idAir, tpar, 3);
168 gMC->Gspos("C01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1e8fff9c 169 gMC->Gspos("C02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
a9e2aefa 170// Aluminium frames
171// Outer frames
172 pgpar[0] = 360/12/2;
173 pgpar[1] = 360.;
174 pgpar[2] = 12.;
175 pgpar[3] = 2;
176 pgpar[4] = -dframez/2;
177 pgpar[5] = iChamber->ROuter();
178 pgpar[6] = pgpar[5]+dframep1;
179 pgpar[7] = +dframez/2;
180 pgpar[8] = pgpar[5];
181 pgpar[9] = pgpar[6];
182 gMC->Gsvolu("C01O", "PGON", idAlu1, pgpar, 10);
183 gMC->Gsvolu("C02O", "PGON", idAlu1, pgpar, 10);
184 gMC->Gspos("C01O",1,"C01M", 0.,0.,-zfpos, 0,"ONLY");
185 gMC->Gspos("C01O",2,"C01M", 0.,0.,+zfpos, 0,"ONLY");
186 gMC->Gspos("C02O",1,"C02M", 0.,0.,-zfpos, 0,"ONLY");
187 gMC->Gspos("C02O",2,"C02M", 0.,0.,+zfpos, 0,"ONLY");
188//
189// Inner frame
190 tpar[0]= iChamber->RInner()-dframep1;
191 tpar[1]= iChamber->RInner();
192 tpar[2]= dframez/2;
193 gMC->Gsvolu("C01I", "TUBE", idAlu1, tpar, 3);
194 gMC->Gsvolu("C02I", "TUBE", idAlu1, tpar, 3);
195
196 gMC->Gspos("C01I",1,"C01M", 0.,0.,-zfpos, 0,"ONLY");
197 gMC->Gspos("C01I",2,"C01M", 0.,0.,+zfpos, 0,"ONLY");
198 gMC->Gspos("C02I",1,"C02M", 0.,0.,-zfpos, 0,"ONLY");
199 gMC->Gspos("C02I",2,"C02M", 0.,0.,+zfpos, 0,"ONLY");
200//
201// Frame Crosses
202 if (frames) {
203
204 bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2;
205 bpar[1] = dframep1/2;
206 bpar[2] = dframez/2;
207 gMC->Gsvolu("C01B", "BOX", idAlu1, bpar, 3);
208 gMC->Gsvolu("C02B", "BOX", idAlu1, bpar, 3);
209
210 gMC->Gspos("C01B",1,"C01M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
211 idrotm[1100],"ONLY");
212 gMC->Gspos("C01B",2,"C01M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
213 idrotm[1100],"ONLY");
214 gMC->Gspos("C01B",3,"C01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
215 idrotm[1101],"ONLY");
216 gMC->Gspos("C01B",4,"C01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
217 idrotm[1101],"ONLY");
218 gMC->Gspos("C01B",5,"C01M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
219 idrotm[1100],"ONLY");
220 gMC->Gspos("C01B",6,"C01M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
221 idrotm[1100],"ONLY");
222 gMC->Gspos("C01B",7,"C01M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
223 idrotm[1101],"ONLY");
224 gMC->Gspos("C01B",8,"C01M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
225 idrotm[1101],"ONLY");
226
227 gMC->Gspos("C02B",1,"C02M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
228 idrotm[1100],"ONLY");
229 gMC->Gspos("C02B",2,"C02M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
230 idrotm[1100],"ONLY");
231 gMC->Gspos("C02B",3,"C02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
232 idrotm[1101],"ONLY");
233 gMC->Gspos("C02B",4,"C02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
234 idrotm[1101],"ONLY");
235 gMC->Gspos("C02B",5,"C02M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
236 idrotm[1100],"ONLY");
237 gMC->Gspos("C02B",6,"C02M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
238 idrotm[1100],"ONLY");
239 gMC->Gspos("C02B",7,"C02M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
240 idrotm[1101],"ONLY");
241 gMC->Gspos("C02B",8,"C02M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
242 idrotm[1101],"ONLY");
243 }
244//
245// Chamber Material represented by Alu sheet
246 tpar[0]= iChamber->RInner();
247 tpar[1]= iChamber->ROuter();
248 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
249 gMC->Gsvolu("C01A", "TUBE", idAlu2, tpar, 3);
250 gMC->Gsvolu("C02A", "TUBE",idAlu2, tpar, 3);
251 gMC->Gspos("C01A", 1, "C01M", 0., 0., 0., 0, "ONLY");
252 gMC->Gspos("C02A", 1, "C02M", 0., 0., 0., 0, "ONLY");
253//
254// Sensitive volumes
255 // tpar[2] = iChamber->DGas();
256 tpar[2] = iChamber->DGas()/2;
257 gMC->Gsvolu("C01G", "TUBE", idtmed[1108], tpar, 3);
258 gMC->Gsvolu("C02G", "TUBE", idtmed[1108], tpar, 3);
259 gMC->Gspos("C01G", 1, "C01A", 0., 0., 0., 0, "ONLY");
260 gMC->Gspos("C02G", 1, "C02A", 0., 0., 0., 0, "ONLY");
261//
262// Frame Crosses to be placed inside gas
263 if (frames) {
264
265 dr = (iChamber->ROuter() - iChamber->RInner());
266 bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
267 bpar[1] = dframep1/2;
268 bpar[2] = iChamber->DGas()/2;
269 gMC->Gsvolu("C01F", "BOX", idAlu1, bpar, 3);
270 gMC->Gsvolu("C02F", "BOX", idAlu1, bpar, 3);
271
272 gMC->Gspos("C01F",1,"C01G", +iChamber->RInner()+bpar[0] , 0, 0,
273 idrotm[1100],"ONLY");
274 gMC->Gspos("C01F",2,"C01G", -iChamber->RInner()-bpar[0] , 0, 0,
275 idrotm[1100],"ONLY");
276 gMC->Gspos("C01F",3,"C01G", 0, +iChamber->RInner()+bpar[0] , 0,
277 idrotm[1101],"ONLY");
278 gMC->Gspos("C01F",4,"C01G", 0, -iChamber->RInner()-bpar[0] , 0,
279 idrotm[1101],"ONLY");
280
281 gMC->Gspos("C02F",1,"C02G", +iChamber->RInner()+bpar[0] , 0, 0,
282 idrotm[1100],"ONLY");
283 gMC->Gspos("C02F",2,"C02G", -iChamber->RInner()-bpar[0] , 0, 0,
284 idrotm[1100],"ONLY");
285 gMC->Gspos("C02F",3,"C02G", 0, +iChamber->RInner()+bpar[0] , 0,
286 idrotm[1101],"ONLY");
287 gMC->Gspos("C02F",4,"C02G", 0, -iChamber->RInner()-bpar[0] , 0,
288 idrotm[1101],"ONLY");
289 }
1e8fff9c 290
a9e2aefa 291//********************************************************************
292// Station 2 **
293//********************************************************************
294 // indices 1 and 2 for first and second chambers in the station
295 // iChamber (first chamber) kept for other quanties than Z,
296 // assumed to be the same in both chambers
297 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2];
298 iChamber2 =(AliMUONChamber*) (*fChambers)[3];
299 zpos1=iChamber1->Z();
300 zpos2=iChamber2->Z();
301 dstation = zpos2 - zpos1;
302 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
303
304//
305// Mother volume
306 tpar[0] = iChamber->RInner()-dframep;
307 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
308 tpar[2] = dstation/4;
309
310 gMC->Gsvolu("C03M", "TUBE", idAir, tpar, 3);
311 gMC->Gsvolu("C04M", "TUBE", idAir, tpar, 3);
312 gMC->Gspos("C03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
313 gMC->Gspos("C04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 314
a9e2aefa 315// Aluminium frames
316// Outer frames
317 pgpar[0] = 360/12/2;
318 pgpar[1] = 360.;
319 pgpar[2] = 12.;
320 pgpar[3] = 2;
321 pgpar[4] = -dframez/2;
322 pgpar[5] = iChamber->ROuter();
323 pgpar[6] = pgpar[5]+dframep;
324 pgpar[7] = +dframez/2;
325 pgpar[8] = pgpar[5];
326 pgpar[9] = pgpar[6];
327 gMC->Gsvolu("C03O", "PGON", idAlu1, pgpar, 10);
328 gMC->Gsvolu("C04O", "PGON", idAlu1, pgpar, 10);
329 gMC->Gspos("C03O",1,"C03M", 0.,0.,-zfpos, 0,"ONLY");
330 gMC->Gspos("C03O",2,"C03M", 0.,0.,+zfpos, 0,"ONLY");
331 gMC->Gspos("C04O",1,"C04M", 0.,0.,-zfpos, 0,"ONLY");
332 gMC->Gspos("C04O",2,"C04M", 0.,0.,+zfpos, 0,"ONLY");
333//
334// Inner frame
335 tpar[0]= iChamber->RInner()-dframep;
336 tpar[1]= iChamber->RInner();
337 tpar[2]= dframez/2;
338 gMC->Gsvolu("C03I", "TUBE", idAlu1, tpar, 3);
339 gMC->Gsvolu("C04I", "TUBE", idAlu1, tpar, 3);
340
341 gMC->Gspos("C03I",1,"C03M", 0.,0.,-zfpos, 0,"ONLY");
342 gMC->Gspos("C03I",2,"C03M", 0.,0.,+zfpos, 0,"ONLY");
343 gMC->Gspos("C04I",1,"C04M", 0.,0.,-zfpos, 0,"ONLY");
344 gMC->Gspos("C04I",2,"C04M", 0.,0.,+zfpos, 0,"ONLY");
345//
346// Frame Crosses
347 if (frames) {
348
349 bpar[0] = (iChamber->ROuter() - iChamber->RInner())/2;
350 bpar[1] = dframep/2;
351 bpar[2] = dframez/2;
352 gMC->Gsvolu("C03B", "BOX", idAlu1, bpar, 3);
353 gMC->Gsvolu("C04B", "BOX", idAlu1, bpar, 3);
354
355 gMC->Gspos("C03B",1,"C03M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
356 idrotm[1100],"ONLY");
357 gMC->Gspos("C03B",2,"C03M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
358 idrotm[1100],"ONLY");
359 gMC->Gspos("C03B",3,"C03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
360 idrotm[1101],"ONLY");
361 gMC->Gspos("C03B",4,"C03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
362 idrotm[1101],"ONLY");
363 gMC->Gspos("C03B",5,"C03M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
364 idrotm[1100],"ONLY");
365 gMC->Gspos("C03B",6,"C03M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
366 idrotm[1100],"ONLY");
367 gMC->Gspos("C03B",7,"C03M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
368 idrotm[1101],"ONLY");
369 gMC->Gspos("C03B",8,"C03M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
370 idrotm[1101],"ONLY");
371
372 gMC->Gspos("C04B",1,"C04M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
373 idrotm[1100],"ONLY");
374 gMC->Gspos("C04B",2,"C04M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
375 idrotm[1100],"ONLY");
376 gMC->Gspos("C04B",3,"C04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
377 idrotm[1101],"ONLY");
378 gMC->Gspos("C04B",4,"C04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
379 idrotm[1101],"ONLY");
380 gMC->Gspos("C04B",5,"C04M", +iChamber->RInner()+bpar[0] , 0,+zfpos,
381 idrotm[1100],"ONLY");
382 gMC->Gspos("C04B",6,"C04M", -iChamber->RInner()-bpar[0] , 0,+zfpos,
383 idrotm[1100],"ONLY");
384 gMC->Gspos("C04B",7,"C04M", 0, +iChamber->RInner()+bpar[0] ,+zfpos,
385 idrotm[1101],"ONLY");
386 gMC->Gspos("C04B",8,"C04M", 0, -iChamber->RInner()-bpar[0] ,+zfpos,
387 idrotm[1101],"ONLY");
388 }
389//
390// Chamber Material represented by Alu sheet
391 tpar[0]= iChamber->RInner();
392 tpar[1]= iChamber->ROuter();
393 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
394 gMC->Gsvolu("C03A", "TUBE", idAlu2, tpar, 3);
395 gMC->Gsvolu("C04A", "TUBE", idAlu2, tpar, 3);
396 gMC->Gspos("C03A", 1, "C03M", 0., 0., 0., 0, "ONLY");
397 gMC->Gspos("C04A", 1, "C04M", 0., 0., 0., 0, "ONLY");
398//
399// Sensitive volumes
400 // tpar[2] = iChamber->DGas();
401 tpar[2] = iChamber->DGas()/2;
402 gMC->Gsvolu("C03G", "TUBE", idGas, tpar, 3);
403 gMC->Gsvolu("C04G", "TUBE", idGas, tpar, 3);
404 gMC->Gspos("C03G", 1, "C03A", 0., 0., 0., 0, "ONLY");
405 gMC->Gspos("C04G", 1, "C04A", 0., 0., 0., 0, "ONLY");
406
407 if (frames) {
408//
409// Frame Crosses to be placed inside gas
410 dr = (iChamber->ROuter() - iChamber->RInner());
411 bpar[0] = TMath::Sqrt(dr*dr-dframep*dframep/4)/2;
412 bpar[1] = dframep/2;
413 bpar[2] = iChamber->DGas()/2;
414 gMC->Gsvolu("C03F", "BOX", idAlu1, bpar, 3);
415 gMC->Gsvolu("C04F", "BOX", idAlu1, bpar, 3);
416
417 gMC->Gspos("C03F",1,"C03G", +iChamber->RInner()+bpar[0] , 0, 0,
418 idrotm[1100],"ONLY");
419 gMC->Gspos("C03F",2,"C03G", -iChamber->RInner()-bpar[0] , 0, 0,
420 idrotm[1100],"ONLY");
421 gMC->Gspos("C03F",3,"C03G", 0, +iChamber->RInner()+bpar[0] , 0,
422 idrotm[1101],"ONLY");
423 gMC->Gspos("C03F",4,"C03G", 0, -iChamber->RInner()-bpar[0] , 0,
424 idrotm[1101],"ONLY");
425
426 gMC->Gspos("C04F",1,"C04G", +iChamber->RInner()+bpar[0] , 0, 0,
427 idrotm[1100],"ONLY");
428 gMC->Gspos("C04F",2,"C04G", -iChamber->RInner()-bpar[0] , 0, 0,
429 idrotm[1100],"ONLY");
430 gMC->Gspos("C04F",3,"C04G", 0, +iChamber->RInner()+bpar[0] , 0,
431 idrotm[1101],"ONLY");
432 gMC->Gspos("C04F",4,"C04G", 0, -iChamber->RInner()-bpar[0] , 0,
433 idrotm[1101],"ONLY");
434 }
1e8fff9c 435
a9e2aefa 436//********************************************************************
437// Station 3 **
438//********************************************************************
439 // indices 1 and 2 for first and second chambers in the station
440 // iChamber (first chamber) kept for other quanties than Z,
441 // assumed to be the same in both chambers
442 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4];
443 iChamber2 =(AliMUONChamber*) (*fChambers)[5];
444 zpos1=iChamber1->Z();
445 zpos2=iChamber2->Z();
446 dstation = zpos2 - zpos1;
447
448 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
449//
450// Mother volume
451 tpar[0] = iChamber->RInner()-dframep;
452 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
453 tpar[2] = dstation/4;
454 gMC->Gsvolu("C05M", "TUBE", idAir, tpar, 3);
455 gMC->Gsvolu("C06M", "TUBE", idAir, tpar, 3);
456 gMC->Gspos("C05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
457 gMC->Gspos("C06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 458
459 // volumes for slat geometry (xx=5,..,10 chamber id):
460 // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes
461 // SxxG --> Sensitive volume (gas)
462 // SxxP --> PCB (copper)
463 // SxxI --> Insulator (vetronite)
464 // SxxC --> Carbon panel
465 // SxxR --> Rohacell
466 // SxxH, SxxV --> Horizontal and Vertical frames (vetronite)
467
468 // define the id of tracking media:
469 Int_t idCopper = idtmed[1110];
470 Int_t idGlass = idtmed[1111];
471 Int_t idCarbon = idtmed[1112];
472 Int_t idRoha = idtmed[1113];
473
474 const Int_t nSlats3 = 4; // number of slats per quadrant
475 const Int_t nPCB3[nSlats3] = {4,4,3,2}; // n PCB per slat
476
477 // sensitive area: 40*40 cm**2
478 const Float_t SensLength = 40.;
479 const Float_t SensHeight = 40.;
480 const Float_t SensWidth = 0.5; // according to TDR fig 2.120
481 const Int_t SensMaterial = idGas;
482 const Float_t yOverlap = 1.5;
483
484 // PCB dimensions in cm; width: 30 mum copper
485 const Float_t PCBLength = SensLength;
486 const Float_t PCBHeight = 60.;
487 const Float_t PCBWidth = 0.003;
488 const Int_t PCBMaterial = idCopper;
489
490 // Insulating material: 200 mum glass fiber glued to pcb
491 const Float_t InsuLength = PCBLength;
492 const Float_t InsuHeight = PCBHeight;
493 const Float_t InsuWidth = 0.020;
494 const Int_t InsuMaterial = idGlass;
495
496 // Carbon fiber panels: 200mum carbon/epoxy skin
497 const Float_t PanelLength = SensLength;
498 const Float_t PanelHeight = SensHeight;
499 const Float_t PanelWidth = 0.020;
500 const Int_t PanelMaterial = idCarbon;
501
502 // rohacell between the two carbon panels
503 const Float_t RohaLength = SensLength;
504 const Float_t RohaHeight = SensHeight;
505 const Float_t RohaWidth = 0.5;
506 const Int_t RohaMaterial = idRoha;
507
508 // Frame around the slat: 2 sticks along length,2 along height
509 // H: the horizontal ones
510 const Float_t HFrameLength = PCBLength;
511 const Float_t HFrameHeight = 1.5;
512 const Float_t HFrameWidth = SensWidth;
513 const Int_t HFrameMaterial = idGlass;
514
515 // V: the vertical ones
516 const Float_t VFrameLength = 4.0;
517 const Float_t VFrameHeight = SensHeight + HFrameHeight;
518 const Float_t VFrameWidth = SensWidth;
519 const Int_t VFrameMaterial = idGlass;
520
521 // B: the horizontal border filled with rohacell
522 const Float_t BFrameLength = HFrameLength;
523 const Float_t BFrameHeight = (PCBHeight - SensHeight)/2. - HFrameHeight;
524 const Float_t BFrameWidth = HFrameWidth;
525 const Int_t BFrameMaterial = idRoha;
526
527 // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper)
528 const Float_t NulocLength = 2.5;
529 const Float_t NulocHeight = 7.5;
530 const Float_t NulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite;
531 const Int_t NulocMaterial = idCopper;
532
533 // Gassiplex package
534 const Float_t GassiLength = 1.0;
535 const Float_t GassiHeight = 1.0;
536 const Float_t GassiWidth = 0.15; // check it !!!
537 const Int_t GassiMaterial = idGlass;
538
539 // slat dimensions: slat is a MOTHER volume!!! made of air
540 Float_t SlatLength[nSlats3];
541 const Float_t SlatHeight = PCBHeight;
542 const Float_t SlatWidth = SensWidth + 2.*(PCBWidth + InsuWidth +
543 2.* PanelWidth + RohaWidth);
544 const Int_t SlatMaterial = idAir;
545 const Float_t dSlatLength = VFrameLength; // border on left and right
546
547 // create and position the slat (mother) volumes
548 Float_t spar[3];
549 char VolNam5[5];
550 char VolNam6[5];
551 Float_t xSlat[nSlats3];
552 Float_t ySlat[nSlats3];
553
554 for (Int_t i = 0; i<nSlats3; i++){
555 SlatLength[i] = PCBLength * nPCB3[i] + 2. * dSlatLength;
556 xSlat[i] = SlatLength[i]/2.;
557 ySlat[i] = SensHeight * (i+0.5) - yOverlap * i;
558 spar[0] = SlatLength[i]/2.;
559 spar[1] = SlatHeight/2.;
560 spar[2] = SlatWidth/2.;
561 // zSlat to be checked (odd downstream or upstream?)
562 Float_t zSlat = (i%2 ==0)? -SlatWidth/2. : SlatWidth/2.;
563 sprintf(VolNam5,"S05%d",i);
564 gMC->Gsvolu(VolNam5,"BOX",SlatMaterial,spar,3);
565 gMC->Gspos(VolNam5, i*4+1,"C05M", xSlat[i], ySlat[i], zSlat, 0, "ONLY");
566 gMC->Gspos(VolNam5, i*4+2,"C05M",-xSlat[i], ySlat[i], zSlat, 0, "ONLY");
567 gMC->Gspos(VolNam5, i*4+3,"C05M", xSlat[i],-ySlat[i],-zSlat, 0, "ONLY");
568 gMC->Gspos(VolNam5, i*4+4,"C05M",-xSlat[i],-ySlat[i],-zSlat, 0, "ONLY");
569 sprintf(VolNam6,"S06%d",i);
570 gMC->Gsvolu(VolNam6,"BOX",SlatMaterial,spar,3);
571 gMC->Gspos(VolNam6, i*4+1,"C06M", xSlat[i], ySlat[i], zSlat, 0, "ONLY");
572 gMC->Gspos(VolNam6, i*4+2,"C06M",-xSlat[i], ySlat[i], zSlat, 0, "ONLY");
573 gMC->Gspos(VolNam6, i*4+3,"C06M", xSlat[i],-ySlat[i],-zSlat, 0, "ONLY");
574 gMC->Gspos(VolNam6, i*4+4,"C06M",-xSlat[i],-ySlat[i],-zSlat, 0, "ONLY");
575 }
a9e2aefa 576
1e8fff9c 577 // create the sensitive volumes (subdivided as the PCBs),
578 Float_t SensPar[3] = { SensLength/2., SensHeight/2., SensWidth/2. };
579 gMC->Gsvolu("S05G","BOX",SensMaterial,SensPar,3);
580 gMC->Gsvolu("S06G","BOX",SensMaterial,SensPar,3);
581
582 // create the PCB volume
583 Float_t PCBpar[3] = { PCBLength/2., PCBHeight/2., PCBWidth/2. };
584 gMC->Gsvolu("S05P","BOX",PCBMaterial,PCBpar,3);
585 gMC->Gsvolu("S06P","BOX",PCBMaterial,PCBpar,3);
586
587 // create the insulating material volume
588 Float_t Insupar[3] = { InsuLength/2., InsuHeight/2., InsuWidth/2. };
589 gMC->Gsvolu("S05I","BOX",InsuMaterial,Insupar,3);
590 gMC->Gsvolu("S06I","BOX",InsuMaterial,Insupar,3);
591
592 // create the panel volume
593 Float_t Panelpar[3] = { PanelLength/2., PanelHeight/2., PanelWidth/2. };
594 gMC->Gsvolu("S05C","BOX",PanelMaterial,Panelpar,3);
595 gMC->Gsvolu("S06C","BOX",PanelMaterial,Panelpar,3);
596
597 // create the rohacell volume
598 Float_t Rohapar[3] = { RohaLength/2., RohaHeight/2., RohaWidth/2. };
599 gMC->Gsvolu("S05R","BOX",RohaMaterial,Rohapar,3);
600 gMC->Gsvolu("S06R","BOX",RohaMaterial,Rohapar,3);
601
602 // create the vertical frame volume
603 Float_t VFramepar[3]={VFrameLength/2., VFrameHeight/2., VFrameWidth/2.};
604 gMC->Gsvolu("S05V","BOX",VFrameMaterial,VFramepar,3);
605 gMC->Gsvolu("S06V","BOX",VFrameMaterial,VFramepar,3);
606
607 // create the horizontal frame volume
608 Float_t HFramepar[3]={HFrameLength/2., HFrameHeight/2., HFrameWidth/2.};
609 gMC->Gsvolu("S05H","BOX",HFrameMaterial,HFramepar,3);
610 gMC->Gsvolu("S06H","BOX",HFrameMaterial,HFramepar,3);
611
612 // create the horizontal border volume
613 Float_t BFramepar[3]={BFrameLength/2., BFrameHeight/2., BFrameWidth/2.};
614 gMC->Gsvolu("S05B","BOX",BFrameMaterial,BFramepar,3);
615 gMC->Gsvolu("S06B","BOX",BFrameMaterial,BFramepar,3);
616
617 Int_t index=0;
618 for (Int_t i = 0; i<nSlats3; i++){
619 sprintf(VolNam5,"S05%d",i);
620 sprintf(VolNam6,"S06%d",i);
621 Float_t xvframe = (SlatLength[i] - VFrameLength)/2.;
622 gMC->Gspos("S05V",2*i-1,VolNam5, xvframe, 0., 0. , 0, "ONLY");
623 gMC->Gspos("S05V",2*i ,VolNam5,-xvframe, 0., 0. , 0, "ONLY");
624 gMC->Gspos("S06V",2*i-1,VolNam6, xvframe, 0., 0. , 0, "ONLY");
625 gMC->Gspos("S06V",2*i ,VolNam6,-xvframe, 0., 0. , 0, "ONLY");
626 for (Int_t j=0; j<nPCB3[i]; j++){
627 index++;
628 Float_t xx = SensLength * (-nPCB3[i]/2.+j+.5);
629 Float_t yy = 0.;
630 Float_t zSens = 0.;
631 gMC->Gspos("S05G",index,VolNam5, xx, yy, zSens , 0, "ONLY");
632 gMC->Gspos("S06G",index,VolNam6, xx, yy, zSens , 0, "ONLY");
633 Float_t zPCB = (SensWidth+PCBWidth)/2.;
634 gMC->Gspos("S05P",2*index-1,VolNam5, xx, yy, zPCB , 0, "ONLY");
635 gMC->Gspos("S05P",2*index ,VolNam5, xx, yy,-zPCB , 0, "ONLY");
636 gMC->Gspos("S06P",2*index-1,VolNam6, xx, yy, zPCB , 0, "ONLY");
637 gMC->Gspos("S06P",2*index ,VolNam6, xx, yy,-zPCB , 0, "ONLY");
638 Float_t zInsu = (InsuWidth+PCBWidth)/2. + zPCB;
639 gMC->Gspos("S05I",2*index-1,VolNam5, xx, yy, zInsu , 0, "ONLY");
640 gMC->Gspos("S05I",2*index ,VolNam5, xx, yy,-zInsu , 0, "ONLY");
641 gMC->Gspos("S06I",2*index-1,VolNam6, xx, yy, zInsu , 0, "ONLY");
642 gMC->Gspos("S06I",2*index ,VolNam6, xx, yy,-zInsu , 0, "ONLY");
643 Float_t zPanel1 = (InsuWidth+PanelWidth)/2. + zInsu;
644 gMC->Gspos("S05C",4*index-3,VolNam5, xx, yy, zPanel1 , 0, "ONLY");
645 gMC->Gspos("S05C",4*index-2,VolNam5, xx, yy,-zPanel1 , 0, "ONLY");
646 gMC->Gspos("S06C",4*index-3,VolNam6, xx, yy, zPanel1 , 0, "ONLY");
647 gMC->Gspos("S06C",4*index-2,VolNam6, xx, yy,-zPanel1 , 0, "ONLY");
648 Float_t zRoha = (RohaWidth+PanelWidth)/2. + zPanel1;
649 gMC->Gspos("S05R",2*index-1,VolNam5, xx, yy, zRoha , 0, "ONLY");
650 gMC->Gspos("S05R",2*index ,VolNam5, xx, yy,-zRoha , 0, "ONLY");
651 gMC->Gspos("S06R",2*index-1,VolNam6, xx, yy, zRoha , 0, "ONLY");
652 gMC->Gspos("S06R",2*index ,VolNam6, xx, yy,-zRoha , 0, "ONLY");
653 Float_t zPanel2 = (RohaWidth+PanelWidth)/2. + zRoha;
654 gMC->Gspos("S05C",4*index-1,VolNam5, xx, yy, zPanel2 , 0, "ONLY");
655 gMC->Gspos("S05C",4*index ,VolNam5, xx, yy,-zPanel2 , 0, "ONLY");
656 gMC->Gspos("S06C",4*index-1,VolNam6, xx, yy, zPanel2 , 0, "ONLY");
657 gMC->Gspos("S06C",4*index ,VolNam6, xx, yy,-zPanel2 , 0, "ONLY");
658 Float_t yframe = (SensHeight + HFrameHeight)/2.;
659 gMC->Gspos("S05H",2*index-1,VolNam5, xx, yframe, 0. , 0, "ONLY");
660 gMC->Gspos("S05H",2*index ,VolNam5, xx,-yframe, 0. , 0, "ONLY");
661 gMC->Gspos("S06H",2*index-1,VolNam6, xx, yframe, 0. , 0, "ONLY");
662 gMC->Gspos("S06H",2*index ,VolNam6, xx,-yframe, 0. , 0, "ONLY");
663 Float_t yborder = (BFrameHeight + HFrameHeight)/2. + yframe;
664 gMC->Gspos("S05B",2*index-1,VolNam5, xx, yborder, 0. , 0, "ONLY");
665 gMC->Gspos("S05B",2*index ,VolNam5, xx,-yborder, 0. , 0, "ONLY");
666 gMC->Gspos("S06B",2*index-1,VolNam6, xx, yborder, 0. , 0, "ONLY");
667 gMC->Gspos("S06B",2*index ,VolNam6, xx,-yborder, 0. , 0, "ONLY");
668 }
a9e2aefa 669 }
a9e2aefa 670
1e8fff9c 671 // create the NULOC volume and position it in the horizontal frame
672 Float_t nulocpar[3]={NulocLength/2., NulocHeight/2., NulocWidth/2.};
673 gMC->Gsvolu("S05N","BOX",NulocMaterial,nulocpar,3);
674 gMC->Gsvolu("S06N","BOX",NulocMaterial,nulocpar,3);
675
676 Float_t xxmax = (BFrameLength - NulocLength)/2.;
677 index = 0;
678 for (Float_t xx = -xxmax; xx<=xxmax; xx+=3*NulocLength) {
679 index++;
680 gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-BFrameWidth/4., 0, "ONLY");
681 gMC->Gspos("S05N",2*index ,"S05B", xx, 0., BFrameWidth/4., 0, "ONLY");
682 gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-BFrameWidth/4., 0, "ONLY");
683 gMC->Gspos("S06N",2*index ,"S06B", xx, 0., BFrameWidth/4., 0, "ONLY");
684 }
685
686 // create the gassiplex volume
687 Float_t gassipar[3]={GassiLength/2., GassiHeight/2., GassiWidth/2.};
688 gMC->Gsvolu("S05E","BOX",GassiMaterial,gassipar,3);
689 gMC->Gsvolu("S06E","BOX",GassiMaterial,gassipar,3);
690
691
692 // position 4 gassiplex in the nuloc
693
694 gMC->Gspos("S05E",1,"S05N", 0., -3 * NulocHeight/8., 0. , 0, "ONLY");
695 gMC->Gspos("S05E",2,"S05N", 0., - NulocHeight/8., 0. , 0, "ONLY");
696 gMC->Gspos("S05E",3,"S05N", 0., NulocHeight/8., 0. , 0, "ONLY");
697 gMC->Gspos("S05E",4,"S05N", 0., 3 * NulocHeight/8., 0. , 0, "ONLY");
698 gMC->Gspos("S06E",1,"S06N", 0., -3 * NulocHeight/8., 0. , 0, "ONLY");
699 gMC->Gspos("S06E",2,"S06N", 0., - NulocHeight/8., 0. , 0, "ONLY");
700 gMC->Gspos("S06E",3,"S06N", 0., NulocHeight/8., 0. , 0, "ONLY");
701 gMC->Gspos("S06E",4,"S06N", 0., 3 * NulocHeight/8., 0. , 0, "ONLY");
702
a9e2aefa 703
704//********************************************************************
705// Station 4 **
706//********************************************************************
707 // indices 1 and 2 for first and second chambers in the station
708 // iChamber (first chamber) kept for other quanties than Z,
709 // assumed to be the same in both chambers
710 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6];
711 iChamber2 =(AliMUONChamber*) (*fChambers)[7];
712 zpos1=iChamber1->Z();
713 zpos2=iChamber2->Z();
714 dstation = zpos2 - zpos1;
715 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
716
717//
718// Mother volume
719 tpar[0] = iChamber->RInner()-dframep;
720 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
1e8fff9c 721 tpar[2] = 3.252;
a9e2aefa 722
723 gMC->Gsvolu("C07M", "TUBE", idAir, tpar, 3);
724 gMC->Gsvolu("C08M", "TUBE", idAir, tpar, 3);
725 gMC->Gspos("C07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
726 gMC->Gspos("C08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1e8fff9c 727
a9e2aefa 728
1e8fff9c 729 const Int_t nSlats4 = 7; // number of slats per quadrant
730 const Int_t nPCB4[nSlats4] = {7,7,6,6,5,4,2}; // n PCB per slat
731
732 // slat dimensions: slat is a MOTHER volume!!! made of air
733 Float_t SlatLength4[nSlats4];
734
735 // create and position the slat (mother) volumes
736
737 char VolNam7[5];
738 char VolNam8[5];
739 Float_t xSlat4;
740 Float_t ySlat41, ySlat42;
741
742
743 for (Int_t i = 0; i<nSlats4; i++){
744 SlatLength4[i] = PCBLength * nPCB4[i] + 2. * dSlatLength;
745 xSlat4 = SlatLength4[i]/2.;
746 if (i==0) xSlat4 += 30.;
a9e2aefa 747
1e8fff9c 748 ySlat41 = SensHeight * (i+0.5) - yOverlap *i - yOverlap/2.;
749 ySlat42 = -SensHeight * (i+0.5) + yOverlap *i + yOverlap/2.;
a9e2aefa 750
1e8fff9c 751 spar[0] = SlatLength4[i]/2.;
752 spar[1] = SlatHeight/2.;
753 spar[2] = SlatWidth/2.;
754 // zSlat to be checked (odd downstream or upstream?)
755 Float_t zSlat = (i%2 ==0)? SlatWidth/2. : -SlatWidth/2.;
756 sprintf(VolNam7,"S07%d",i);
757 gMC->Gsvolu(VolNam7,"BOX",SlatMaterial,spar,3);
758 gMC->Gspos(VolNam7, i*4+1,"C07M", xSlat4, ySlat41, -zSlat, 0, "ONLY");
759 gMC->Gspos(VolNam7, i*4+2,"C07M",-xSlat4, ySlat41, -zSlat, 0, "ONLY");
760 gMC->Gspos(VolNam7, i*4+3,"C07M", xSlat4, ySlat42, zSlat, 0, "ONLY");
761 gMC->Gspos(VolNam7, i*4+4,"C07M",-xSlat4, ySlat42, zSlat, 0, "ONLY");
762 sprintf(VolNam8,"S08%d",i);
763 gMC->Gsvolu(VolNam8,"BOX",SlatMaterial,spar,3);
764 gMC->Gspos(VolNam8, i*4+1,"C08M", xSlat4, ySlat41, -zSlat, 0, "ONLY");
765 gMC->Gspos(VolNam8, i*4+2,"C08M",-xSlat4, ySlat41, -zSlat, 0, "ONLY");
766 gMC->Gspos(VolNam8, i*4+3,"C08M", xSlat4, ySlat42, zSlat, 0, "ONLY");
767 gMC->Gspos(VolNam8, i*4+4,"C08M",-xSlat4, ySlat42, zSlat, 0, "ONLY");
a9e2aefa 768 }
769
1e8fff9c 770 // create the sensitive volumes (subdivided as the PCBs),
771
772 gMC->Gsvolu("S07G","BOX",SensMaterial,SensPar,3);
773 gMC->Gsvolu("S08G","BOX",SensMaterial,SensPar,3);
a9e2aefa 774
1e8fff9c 775 // create the PCB volume
776
777 gMC->Gsvolu("S07P","BOX",PCBMaterial,PCBpar,3);
778 gMC->Gsvolu("S08P","BOX",PCBMaterial,PCBpar,3);
779
780 // create the insulating material volume
781
782 gMC->Gsvolu("S07I","BOX",InsuMaterial,Insupar,3);
783 gMC->Gsvolu("S08I","BOX",InsuMaterial,Insupar,3);
784
785 // create the panel volume
786
787 gMC->Gsvolu("S07C","BOX",PanelMaterial,Panelpar,3);
788 gMC->Gsvolu("S08C","BOX",PanelMaterial,Panelpar,3);
789
790 // create the rohacell volume
791
792 gMC->Gsvolu("S07R","BOX",RohaMaterial,Rohapar,3);
793 gMC->Gsvolu("S08R","BOX",RohaMaterial,Rohapar,3);
794
795 // create the vertical frame volume
796
797 gMC->Gsvolu("S07V","BOX",VFrameMaterial,VFramepar,3);
798 gMC->Gsvolu("S08V","BOX",VFrameMaterial,VFramepar,3);
799
800 // create the horizontal frame volume
801
802 gMC->Gsvolu("S07H","BOX",HFrameMaterial,HFramepar,3);
803 gMC->Gsvolu("S08H","BOX",HFrameMaterial,HFramepar,3);
804
805 // create the horizontal border volume
806
807 gMC->Gsvolu("S07B","BOX",BFrameMaterial,BFramepar,3);
808 gMC->Gsvolu("S08B","BOX",BFrameMaterial,BFramepar,3);
809
810 for (Int_t i = 0; i<nSlats4; i++){
811 sprintf(VolNam7,"S07%d",i);
812 sprintf(VolNam8,"S08%d",i);
813 Float_t xvframe = (SlatLength4[i] - VFrameLength)/2.;
814 gMC->Gspos("S07V",2*i-1,VolNam7, xvframe, 0., 0. , 0, "ONLY");
815 gMC->Gspos("S07V",2*i ,VolNam7,-xvframe, 0., 0. , 0, "ONLY");
816 gMC->Gspos("S08V",2*i-1,VolNam8, xvframe, 0., 0. , 0, "ONLY");
817 gMC->Gspos("S08V",2*i ,VolNam8,-xvframe, 0., 0. , 0, "ONLY");
818 for (Int_t j=0; j<nPCB4[i]; j++){
819 index++;
820 Float_t xx = SensLength * (-nPCB4[i]/2.+j+.5);
821 Float_t yy = 0.;
822 Float_t zSens = 0.;
823 gMC->Gspos("S07G",index,VolNam7, xx, yy, zSens , 0, "ONLY");
824 gMC->Gspos("S08G",index,VolNam8, xx, yy, zSens , 0, "ONLY");
825 Float_t zPCB = (SensWidth+PCBWidth)/2.;
826 gMC->Gspos("S07P",2*index-1,VolNam7, xx, yy, zPCB , 0, "ONLY");
827 gMC->Gspos("S07P",2*index ,VolNam7, xx, yy,-zPCB , 0, "ONLY");
828 gMC->Gspos("S08P",2*index-1,VolNam8, xx, yy, zPCB , 0, "ONLY");
829 gMC->Gspos("S08P",2*index ,VolNam8, xx, yy,-zPCB , 0, "ONLY");
830 Float_t zInsu = (InsuWidth+PCBWidth)/2. + zPCB;
831 gMC->Gspos("S07I",2*index-1,VolNam7, xx, yy, zInsu , 0, "ONLY");
832 gMC->Gspos("S07I",2*index ,VolNam7, xx, yy,-zInsu , 0, "ONLY");
833 gMC->Gspos("S08I",2*index-1,VolNam8, xx, yy, zInsu , 0, "ONLY");
834 gMC->Gspos("S08I",2*index ,VolNam8, xx, yy,-zInsu , 0, "ONLY");
835 Float_t zPanel1 = (InsuWidth+PanelWidth)/2. + zInsu;
836 gMC->Gspos("S07C",4*index-3,VolNam7, xx, yy, zPanel1 , 0, "ONLY");
837 gMC->Gspos("S07C",4*index-2,VolNam7, xx, yy,-zPanel1 , 0, "ONLY");
838 gMC->Gspos("S08C",4*index-3,VolNam8, xx, yy, zPanel1 , 0, "ONLY");
839 gMC->Gspos("S08C",4*index-2,VolNam8, xx, yy,-zPanel1 , 0, "ONLY");
840 Float_t zRoha = (RohaWidth+PanelWidth)/2. + zPanel1;
841 gMC->Gspos("S07R",2*index-1,VolNam7, xx, yy, zRoha , 0, "ONLY");
842 gMC->Gspos("S07R",2*index ,VolNam7, xx, yy,-zRoha , 0, "ONLY");
843 gMC->Gspos("S08R",2*index-1,VolNam8, xx, yy, zRoha , 0, "ONLY");
844 gMC->Gspos("S08R",2*index ,VolNam8, xx, yy,-zRoha , 0, "ONLY");
845 Float_t zPanel2 = (RohaWidth+PanelWidth)/2. + zRoha;
846 gMC->Gspos("S07C",4*index-1,VolNam7, xx, yy, zPanel2 , 0, "ONLY");
847 gMC->Gspos("S07C",4*index ,VolNam7, xx, yy,-zPanel2 , 0, "ONLY");
848 gMC->Gspos("S08C",4*index-1,VolNam8, xx, yy, zPanel2 , 0, "ONLY");
849 gMC->Gspos("S08C",4*index ,VolNam8, xx, yy,-zPanel2 , 0, "ONLY");
850 Float_t yframe = (SensHeight + HFrameHeight)/2.;
851 gMC->Gspos("S07H",2*index-1,VolNam7, xx, yframe, 0. , 0, "ONLY");
852 gMC->Gspos("S07H",2*index ,VolNam7, xx,-yframe, 0. , 0, "ONLY");
853 gMC->Gspos("S08H",2*index-1,VolNam8, xx, yframe, 0. , 0, "ONLY");
854 gMC->Gspos("S08H",2*index ,VolNam8, xx,-yframe, 0. , 0, "ONLY");
855 Float_t yborder = (BFrameHeight + HFrameHeight)/2. + yframe;
856 gMC->Gspos("S07B",2*index-1,VolNam7, xx, yborder, 0. , 0, "ONLY");
857 gMC->Gspos("S07B",2*index ,VolNam7, xx,-yborder, 0. , 0, "ONLY");
858 gMC->Gspos("S08B",2*index-1,VolNam8, xx, yborder, 0. , 0, "ONLY");
859 gMC->Gspos("S08B",2*index ,VolNam8, xx,-yborder, 0. , 0, "ONLY");
860 }
a9e2aefa 861 }
1e8fff9c 862
863 // create the NULOC volume and position it in the horizontal frame
864
865 gMC->Gsvolu("S07N","BOX",NulocMaterial,nulocpar,3);
866 gMC->Gsvolu("S08N","BOX",NulocMaterial,nulocpar,3);
867
868
869 index = 0;
870 for (Float_t xx = -xxmax; xx<=xxmax; xx+=3*NulocLength) {
871 index++;
872 gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-BFrameWidth/4., 0, "ONLY");
873 gMC->Gspos("S07N",2*index ,"S07B", xx, 0., BFrameWidth/4., 0, "ONLY");
874 gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-BFrameWidth/4., 0, "ONLY");
875 gMC->Gspos("S08N",2*index ,"S08B", xx, 0., BFrameWidth/4., 0, "ONLY");
876 }
877
878 // create the gassiplex volume
879
880 gMC->Gsvolu("S07E","BOX",GassiMaterial,gassipar,3);
881 gMC->Gsvolu("S08E","BOX",GassiMaterial,gassipar,3);
882
883
884 // position 4 gassiplex in the nuloc
885
886 gMC->Gspos("S07E",1,"S07N", 0., -3 * NulocHeight/8., 0. , 0, "ONLY");
887 gMC->Gspos("S07E",2,"S07N", 0., - NulocHeight/8., 0. , 0, "ONLY");
888 gMC->Gspos("S07E",3,"S07N", 0., NulocHeight/8., 0. , 0, "ONLY");
889 gMC->Gspos("S07E",4,"S07N", 0., 3 * NulocHeight/8., 0. , 0, "ONLY");
890 gMC->Gspos("S08E",1,"S08N", 0., -3 * NulocHeight/8., 0. , 0, "ONLY");
891 gMC->Gspos("S08E",2,"S08N", 0., - NulocHeight/8., 0. , 0, "ONLY");
892 gMC->Gspos("S08E",3,"S08N", 0., NulocHeight/8., 0. , 0, "ONLY");
893 gMC->Gspos("S08E",4,"S08N", 0., 3 * NulocHeight/8., 0. , 0, "ONLY");
894
895
896
a9e2aefa 897//********************************************************************
898// Station 5 **
899//********************************************************************
900 // indices 1 and 2 for first and second chambers in the station
901 // iChamber (first chamber) kept for other quanties than Z,
902 // assumed to be the same in both chambers
903 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8];
904 iChamber2 =(AliMUONChamber*) (*fChambers)[9];
905 zpos1=iChamber1->Z();
906 zpos2=iChamber2->Z();
907 dstation = zpos2 - zpos1;
908 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
909
910//
911// Mother volume
912 tpar[0] = iChamber->RInner()-dframep;
913 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
914 tpar[2] = dstation/4;
915
916 gMC->Gsvolu("C09M", "TUBE", idAir, tpar, 3);
917 gMC->Gsvolu("C10M", "TUBE", idAir, tpar, 3);
918 gMC->Gspos("C09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
919 gMC->Gspos("C10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
a9e2aefa 920
a9e2aefa 921
1e8fff9c 922 const Int_t nSlats5 = 7; // number of slats per quadrant
923 const Int_t nPCB5[nSlats5] = {6,6,6,5,5,4,3}; // n PCB per slat
924
925 // slat dimensions: slat is a MOTHER volume!!! made of air
926 Float_t SlatLength5[nSlats5];
927//const Float_t SlatHeight = PCBHeight;
928// const Float_t SlatWidth = SensWidth + 2.*(PCBWidth + InsuWidth +
929// 2.* PanelWidth + RohaWidth);
930// const Int_t SlatMaterial = idAir;
931// const Float_t dSlatLength = VFrameLength; // border on left and right
932
933 // create and position the slat (mother) volumes
934// Float_t spar[3];
935 char VolNam9[5];
936 char VolNam10[5];
937 Float_t xSlat5[nSlats5];
938 Float_t ySlat5[nSlats5];
939
940 for (Int_t i = 0; i<nSlats5; i++){
941 SlatLength5[i] = PCBLength * nPCB5[i] + 2. * dSlatLength;
942 xSlat5[i] = SlatLength5[i]/2.;
943 ySlat5[i] = SensHeight * (i+0.5) - yOverlap * i;
944 spar[0] = SlatLength5[i]/2.;
945 spar[1] = SlatHeight/2.;
946 spar[2] = SlatWidth/2.;
947 // zSlat to be checked (odd downstream or upstream?)
948 Float_t zSlat = (i%2 ==0)? -SlatWidth/2. : SlatWidth/2.;
949 sprintf(VolNam9,"S09%d",i);
950 gMC->Gsvolu(VolNam9,"BOX",SlatMaterial,spar,3);
951 gMC->Gspos(VolNam9, i*4+1,"C09M", xSlat5[i], ySlat5[i], zSlat, 0, "ONLY");
952 gMC->Gspos(VolNam9, i*4+2,"C09M",-xSlat5[i], ySlat5[i], zSlat, 0, "ONLY");
953 gMC->Gspos(VolNam9, i*4+3,"C09M", xSlat5[i],-ySlat5[i],-zSlat, 0, "ONLY");
954 gMC->Gspos(VolNam9, i*4+4,"C09M",-xSlat5[i],-ySlat5[i],-zSlat, 0, "ONLY");
955 sprintf(VolNam10,"S10%d",i);
956 gMC->Gsvolu(VolNam10,"BOX",SlatMaterial,spar,3);
957 gMC->Gspos(VolNam10, i*4+1,"C10M", xSlat5[i], ySlat5[i], zSlat, 0, "ONLY");
958 gMC->Gspos(VolNam10, i*4+2,"C10M",-xSlat5[i], ySlat5[i], zSlat, 0, "ONLY");
959 gMC->Gspos(VolNam10, i*4+3,"C10M", xSlat5[i],-ySlat5[i],-zSlat, 0, "ONLY");
960 gMC->Gspos(VolNam10, i*4+4,"C10M",-xSlat5[i],-ySlat5[i],-zSlat, 0, "ONLY");
a9e2aefa 961 }
962
1e8fff9c 963 // create the sensitive volumes (subdivided as the PCBs),
964
965 gMC->Gsvolu("S09G","BOX",SensMaterial,SensPar,3);
966 gMC->Gsvolu("S10G","BOX",SensMaterial,SensPar,3);
a9e2aefa 967
1e8fff9c 968 // create the PCB volume
969
970 gMC->Gsvolu("S09P","BOX",PCBMaterial,PCBpar,3);
971 gMC->Gsvolu("S10P","BOX",PCBMaterial,PCBpar,3);
972
973 // create the insulating material volume
974
975 gMC->Gsvolu("S09I","BOX",InsuMaterial,Insupar,3);
976 gMC->Gsvolu("S10I","BOX",InsuMaterial,Insupar,3);
977
978 // create the panel volume
979
980 gMC->Gsvolu("S09C","BOX",PanelMaterial,Panelpar,3);
981 gMC->Gsvolu("S10C","BOX",PanelMaterial,Panelpar,3);
982
983 // create the rohacell volume
984
985 gMC->Gsvolu("S09R","BOX",RohaMaterial,Rohapar,3);
986 gMC->Gsvolu("S10R","BOX",RohaMaterial,Rohapar,3);
987
988 // create the vertical frame volume
989
990 gMC->Gsvolu("S09V","BOX",VFrameMaterial,VFramepar,3);
991 gMC->Gsvolu("S10V","BOX",VFrameMaterial,VFramepar,3);
992
993 // create the horizontal frame volume
994
995 gMC->Gsvolu("S09H","BOX",HFrameMaterial,HFramepar,3);
996 gMC->Gsvolu("S10H","BOX",HFrameMaterial,HFramepar,3);
997
998 // create the horizontal border volume
999
1000 gMC->Gsvolu("S09B","BOX",BFrameMaterial,BFramepar,3);
1001 gMC->Gsvolu("S10B","BOX",BFrameMaterial,BFramepar,3);
1002
1003
1004 for (Int_t i = 0; i<nSlats5; i++){
1005 sprintf(VolNam9,"S09%d",i);
1006 sprintf(VolNam10,"S10%d",i);
1007 Float_t xvframe = (SlatLength5[i] - VFrameLength)/2.;
1008 gMC->Gspos("S09V",2*i-1,VolNam9, xvframe, 0., 0. , 0, "ONLY");
1009 gMC->Gspos("S09V",2*i ,VolNam9,-xvframe, 0., 0. , 0, "ONLY");
1010 gMC->Gspos("S10V",2*i-1,VolNam10, xvframe, 0., 0. , 0, "ONLY");
1011 gMC->Gspos("S10V",2*i ,VolNam10,-xvframe, 0., 0. , 0, "ONLY");
1012 for (Int_t j=0; j<nPCB5[i]; j++){
1013 index++;
1014 Float_t xx = SensLength * (-nPCB5[i]/2.+j+.5);
1015 Float_t yy = 0.;
1016 Float_t zSens = 0.;
1017 gMC->Gspos("S09G",index,VolNam9, xx, yy, zSens , 0, "ONLY");
1018 gMC->Gspos("S10G",index,VolNam10, xx, yy, zSens , 0, "ONLY");
1019 Float_t zPCB = (SensWidth+PCBWidth)/2.;
1020 gMC->Gspos("S09P",2*index-1,VolNam9, xx, yy, zPCB , 0, "ONLY");
1021 gMC->Gspos("S09P",2*index ,VolNam9, xx, yy,-zPCB , 0, "ONLY");
1022 gMC->Gspos("S10P",2*index-1,VolNam10, xx, yy, zPCB , 0, "ONLY");
1023 gMC->Gspos("S10P",2*index ,VolNam10, xx, yy,-zPCB , 0, "ONLY");
1024 Float_t zInsu = (InsuWidth+PCBWidth)/2. + zPCB;
1025 gMC->Gspos("S09I",2*index-1,VolNam9, xx, yy, zInsu , 0, "ONLY");
1026 gMC->Gspos("S09I",2*index ,VolNam9, xx, yy,-zInsu , 0, "ONLY");
1027 gMC->Gspos("S10I",2*index-1,VolNam10, xx, yy, zInsu , 0, "ONLY");
1028 gMC->Gspos("S10I",2*index ,VolNam10, xx, yy,-zInsu , 0, "ONLY");
1029 Float_t zPanel1 = (InsuWidth+PanelWidth)/2. + zInsu;
1030 gMC->Gspos("S09C",4*index-3,VolNam9, xx, yy, zPanel1 , 0, "ONLY");
1031 gMC->Gspos("S09C",4*index-2,VolNam9, xx, yy,-zPanel1 , 0, "ONLY");
1032 gMC->Gspos("S10C",4*index-3,VolNam10, xx, yy, zPanel1 , 0, "ONLY");
1033 gMC->Gspos("S10C",4*index-2,VolNam10, xx, yy,-zPanel1 , 0, "ONLY");
1034 Float_t zRoha = (RohaWidth+PanelWidth)/2. + zPanel1;
1035 gMC->Gspos("S09R",2*index-1,VolNam9, xx, yy, zRoha , 0, "ONLY");
1036 gMC->Gspos("S09R",2*index ,VolNam9, xx, yy,-zRoha , 0, "ONLY");
1037 gMC->Gspos("S10R",2*index-1,VolNam10, xx, yy, zRoha , 0, "ONLY");
1038 gMC->Gspos("S10R",2*index ,VolNam10, xx, yy,-zRoha , 0, "ONLY");
1039 Float_t zPanel2 = (RohaWidth+PanelWidth)/2. + zRoha;
1040 gMC->Gspos("S09C",4*index-1,VolNam9, xx, yy, zPanel2 , 0, "ONLY");
1041 gMC->Gspos("S09C",4*index ,VolNam9, xx, yy,-zPanel2 , 0, "ONLY");
1042 gMC->Gspos("S10C",4*index-1,VolNam10, xx, yy, zPanel2 , 0, "ONLY");
1043 gMC->Gspos("S10C",4*index ,VolNam10, xx, yy,-zPanel2 , 0, "ONLY");
1044 Float_t yframe = (SensHeight + HFrameHeight)/2.;
1045 gMC->Gspos("S09H",2*index-1,VolNam9, xx, yframe, 0. , 0, "ONLY");
1046 gMC->Gspos("S09H",2*index ,VolNam9, xx,-yframe, 0. , 0, "ONLY");
1047 gMC->Gspos("S10H",2*index-1,VolNam10, xx, yframe, 0. , 0, "ONLY");
1048 gMC->Gspos("S10H",2*index ,VolNam10, xx,-yframe, 0. , 0, "ONLY");
1049 Float_t yborder = (BFrameHeight + HFrameHeight)/2. + yframe;
1050 gMC->Gspos("S09B",2*index-1,VolNam9, xx, yborder, 0. , 0, "ONLY");
1051 gMC->Gspos("S09B",2*index ,VolNam9, xx,-yborder, 0. , 0, "ONLY");
1052 gMC->Gspos("S10B",2*index-1,VolNam10, xx, yborder, 0. , 0, "ONLY");
1053 gMC->Gspos("S10B",2*index ,VolNam10, xx,-yborder, 0. , 0, "ONLY");
1054 }
1055 }
1056
1057 // create the NULOC volume and position it in the horizontal frame
1058
1059 gMC->Gsvolu("S09N","BOX",NulocMaterial,nulocpar,3);
1060 gMC->Gsvolu("S10N","BOX",NulocMaterial,nulocpar,3);
1061
1062 index = 0;
1063 for (Float_t xx = -xxmax; xx<=xxmax; xx+=3*NulocLength) {
1064 index++;
1065 gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-BFrameWidth/4., 0, "ONLY");
1066 gMC->Gspos("S09N",2*index ,"S09B", xx, 0., BFrameWidth/4., 0, "ONLY");
1067 gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-BFrameWidth/4., 0, "ONLY");
1068 gMC->Gspos("S10N",2*index ,"S10B", xx, 0., BFrameWidth/4., 0, "ONLY");
a9e2aefa 1069 }
1070
1e8fff9c 1071 // create the gassiplex volume
1072
1073 gMC->Gsvolu("S09E","BOX",GassiMaterial,gassipar,3);
1074 gMC->Gsvolu("S10E","BOX",GassiMaterial,gassipar,3);
1075
1076
1077 // position 4 gassiplex in the nuloc
1078
1079 gMC->Gspos("S09E",1,"S09N", 0., -3 * NulocHeight/8., 0. , 0, "ONLY");
1080 gMC->Gspos("S09E",2,"S09N", 0., - NulocHeight/8., 0. , 0, "ONLY");
1081 gMC->Gspos("S09E",3,"S09N", 0., NulocHeight/8., 0. , 0, "ONLY");
1082 gMC->Gspos("S09E",4,"S09N", 0., 3 * NulocHeight/8., 0. , 0, "ONLY");
1083 gMC->Gspos("S10E",1,"S10N", 0., -3 * NulocHeight/8., 0. , 0, "ONLY");
1084 gMC->Gspos("S10E",2,"S10N", 0., - NulocHeight/8., 0. , 0, "ONLY");
1085 gMC->Gspos("S10E",3,"S10N", 0., NulocHeight/8., 0. , 0, "ONLY");
1086 gMC->Gspos("S10E",4,"S10N", 0., 3 * NulocHeight/8., 0. , 0, "ONLY");
1087
1088
a9e2aefa 1089///////////////////////////////////////
1090// GEOMETRY FOR THE TRIGGER CHAMBERS //
1091///////////////////////////////////////
1092
1093// 03/00 P. Dupieux : introduce a slighly more realistic
1094// geom. of the trigger readout planes with
1095// 2 Zpos per trigger plane (alternate
1096// between left and right of the trigger)
1097
1098// Parameters of the Trigger Chambers
1099
1100
1101 const Float_t kXMC1MIN=34.;
1102 const Float_t kXMC1MED=51.;
1103 const Float_t kXMC1MAX=272.;
1104 const Float_t kYMC1MIN=34.;
1105 const Float_t kYMC1MAX=51.;
1106 const Float_t kRMIN1=50.;
1107 const Float_t kRMAX1=62.;
1108 const Float_t kRMIN2=50.;
1109 const Float_t kRMAX2=66.;
1110
1111// zposition of the middle of the gas gap in mother vol
1112 const Float_t kZMCm=-3.6;
1113 const Float_t kZMCp=+3.6;
1114
1115
1116// TRIGGER STATION 1 - TRIGGER STATION 1 - TRIGGER STATION 1
1117
1118 // iChamber 1 and 2 for first and second chambers in the station
1119 // iChamber (first chamber) kept for other quanties than Z,
1120 // assumed to be the same in both chambers
1121 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[10];
1122 iChamber2 =(AliMUONChamber*) (*fChambers)[11];
1123
1124 // 03/00
1125 // zpos1 and zpos2 are now the middle of the first and second
1126 // plane of station 1 :
1127 // zpos1=(16075+15995)/2=16035 mm, thick/2=40 mm
1128 // zpos2=(16225+16145)/2=16185 mm, thick/2=40 mm
1129 //
1130 // zpos1m=15999 mm , zpos1p=16071 mm (middles of gas gaps)
1131 // zpos2m=16149 mm , zpos2p=16221 mm (middles of gas gaps)
1132 // rem : the total thickness accounts for 1 mm of al on both
1133 // side of the RPCs (see zpos1 and zpos2), as previously
1134
1135 zpos1=iChamber1->Z();
1136 zpos2=iChamber2->Z();
1137
1138
1139// Mother volume definition
1140 tpar[0] = iChamber->RInner();
1141 tpar[1] = iChamber->ROuter();
1142 tpar[2] = 4.0;
1143 gMC->Gsvolu("CM11", "TUBE", idAir, tpar, 3);
1144 gMC->Gsvolu("CM12", "TUBE", idAir, tpar, 3);
1145
1146// Definition of the flange between the beam shielding and the RPC
1147 tpar[0]= kRMIN1;
1148 tpar[1]= kRMAX1;
1149 tpar[2]= 4.0;
1150
1151 gMC->Gsvolu("CF1A", "TUBE", idAlu1, tpar, 3); //Al
1152 gMC->Gspos("CF1A", 1, "CM11", 0., 0., 0., 0, "MANY");
1153 gMC->Gspos("CF1A", 2, "CM12", 0., 0., 0., 0, "MANY");
1154
1155
1156// FIRST PLANE OF STATION 1
1157
1158// ratios of zpos1m/zpos1p and inverse for first plane
1159 Float_t zmp=(zpos1-3.6)/(zpos1+3.6);
1160 Float_t zpm=1./zmp;
1161
1162
1163// Definition of prototype for chambers in the first plane
1164
1165 tpar[0]= 0.;
1166 tpar[1]= 0.;
1167 tpar[2]= 0.;
1168
1169 gMC->Gsvolu("CC1A", "BOX ", idAlu1, tpar, 0); //Al
1170 gMC->Gsvolu("CB1A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1171 gMC->Gsvolu("CG1A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1172
1173// chamber type A
1174 tpar[0] = -1.;
1175 tpar[1] = -1.;
1176
1177 const Float_t kXMC1A=kXMC1MED+(kXMC1MAX-kXMC1MED)/2.;
1178 const Float_t kYMC1Am=0.;
1179 const Float_t kYMC1Ap=0.;
1180
1181 tpar[2] = 0.1;
1182 gMC->Gsposp("CG1A", 1, "CB1A", 0., 0., 0., 0, "ONLY",tpar,3);
1183 tpar[2] = 0.3;
1184 gMC->Gsposp("CB1A", 1, "CC1A", 0., 0., 0., 0, "ONLY",tpar,3);
1185
1186 tpar[2] = 0.4;
1187 tpar[0] = (kXMC1MAX-kXMC1MED)/2.;
1188 tpar[1] = kYMC1MIN;
1189
1190 gMC->Gsposp("CC1A", 1, "CM11",kXMC1A,kYMC1Am,kZMCm, 0, "ONLY", tpar, 3);
1191 gMC->Gsposp("CC1A", 2, "CM11",-kXMC1A,kYMC1Ap,kZMCp, 0, "ONLY", tpar, 3);
1192
1193// chamber type B
1194 Float_t tpar1save=tpar[1];
1195 Float_t y1msave=kYMC1Am;
1196 Float_t y1psave=kYMC1Ap;
1197
1198 tpar[0] = (kXMC1MAX-kXMC1MIN)/2.;
1199 tpar[1] = (kYMC1MAX-kYMC1MIN)/2.;
1200
1201 const Float_t kXMC1B=kXMC1MIN+tpar[0];
1202 const Float_t kYMC1Bp=(y1msave+tpar1save)*zpm+tpar[1];
1203 const Float_t kYMC1Bm=(y1psave+tpar1save)*zmp+tpar[1];
1204
1205 gMC->Gsposp("CC1A", 3, "CM11",kXMC1B,kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3);
1206 gMC->Gsposp("CC1A", 4, "CM11",-kXMC1B,kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3);
1207 gMC->Gsposp("CC1A", 5, "CM11",kXMC1B,-kYMC1Bp,kZMCp, 0, "ONLY", tpar, 3);
1208 gMC->Gsposp("CC1A", 6, "CM11",-kXMC1B,-kYMC1Bm,kZMCm, 0, "ONLY", tpar, 3);
1209
1210// chamber type C (end of type B !!)
1211 tpar1save=tpar[1];
1212 y1msave=kYMC1Bm;
1213 y1psave=kYMC1Bp;
1214
1215 tpar[0] = kXMC1MAX/2;
1216 tpar[1] = kYMC1MAX/2;
1217
1218 const Float_t kXMC1C=tpar[0];
1219// warning : same Z than type B
1220 const Float_t kYMC1Cp=(y1psave+tpar1save)*1.+tpar[1];
1221 const Float_t kYMC1Cm=(y1msave+tpar1save)*1.+tpar[1];
1222
1223 gMC->Gsposp("CC1A", 7, "CM11",kXMC1C,kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3);
1224 gMC->Gsposp("CC1A", 8, "CM11",-kXMC1C,kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3);
1225 gMC->Gsposp("CC1A", 9, "CM11",kXMC1C,-kYMC1Cp,kZMCp, 0, "ONLY", tpar, 3);
1226 gMC->Gsposp("CC1A", 10, "CM11",-kXMC1C,-kYMC1Cm,kZMCm, 0, "ONLY", tpar, 3);
1227
1228// chamber type D, E and F (same size)
1229 tpar1save=tpar[1];
1230 y1msave=kYMC1Cm;
1231 y1psave=kYMC1Cp;
1232
1233 tpar[0] = kXMC1MAX/2.;
1234 tpar[1] = kYMC1MIN;
1235
1236 const Float_t kXMC1D=tpar[0];
1237 const Float_t kYMC1Dp=(y1msave+tpar1save)*zpm+tpar[1];
1238 const Float_t kYMC1Dm=(y1psave+tpar1save)*zmp+tpar[1];
1239
1240 gMC->Gsposp("CC1A", 11, "CM11",kXMC1D,kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3);
1241 gMC->Gsposp("CC1A", 12, "CM11",-kXMC1D,kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3);
1242 gMC->Gsposp("CC1A", 13, "CM11",kXMC1D,-kYMC1Dm,kZMCm, 0, "ONLY", tpar, 3);
1243 gMC->Gsposp("CC1A", 14, "CM11",-kXMC1D,-kYMC1Dp,kZMCp, 0, "ONLY", tpar, 3);
1244
1245
1246 tpar1save=tpar[1];
1247 y1msave=kYMC1Dm;
1248 y1psave=kYMC1Dp;
1249 const Float_t kYMC1Ep=(y1msave+tpar1save)*zpm+tpar[1];
1250 const Float_t kYMC1Em=(y1psave+tpar1save)*zmp+tpar[1];
1251
1252 gMC->Gsposp("CC1A", 15, "CM11",kXMC1D,kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3);
1253 gMC->Gsposp("CC1A", 16, "CM11",-kXMC1D,kYMC1Em,kZMCm, 0, "ONLY", tpar, 3);
1254 gMC->Gsposp("CC1A", 17, "CM11",kXMC1D,-kYMC1Ep,kZMCp, 0, "ONLY", tpar, 3);
1255 gMC->Gsposp("CC1A", 18, "CM11",-kXMC1D,-kYMC1Em,kZMCm, 0, "ONLY", tpar, 3);
1256
1257 tpar1save=tpar[1];
1258 y1msave=kYMC1Em;
1259 y1psave=kYMC1Ep;
1260 const Float_t kYMC1Fp=(y1msave+tpar1save)*zpm+tpar[1];
1261 const Float_t kYMC1Fm=(y1psave+tpar1save)*zmp+tpar[1];
1262
1263 gMC->Gsposp("CC1A", 19, "CM11",kXMC1D,kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3);
1264 gMC->Gsposp("CC1A", 20, "CM11",-kXMC1D,kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3);
1265 gMC->Gsposp("CC1A", 21, "CM11",kXMC1D,-kYMC1Fm,kZMCm, 0, "ONLY", tpar, 3);
1266 gMC->Gsposp("CC1A", 22, "CM11",-kXMC1D,-kYMC1Fp,kZMCp, 0, "ONLY", tpar, 3);
1267
1268// Positioning first plane in ALICE
1269 gMC->Gspos("CM11", 1, "ALIC", 0., 0., zpos1, 0, "ONLY");
1270
1271// End of geometry definition for the first plane of station 1
1272
1273
1274
1275// SECOND PLANE OF STATION 1 : proj ratio = zpos2/zpos1
1276
1277 const Float_t kZ12=zpos2/zpos1;
1278
1279// Definition of prototype for chambers in the second plane of station 1
1280
1281 tpar[0]= 0.;
1282 tpar[1]= 0.;
1283 tpar[2]= 0.;
1284
1285 gMC->Gsvolu("CC2A", "BOX ", idAlu1, tpar, 0); //Al
1286 gMC->Gsvolu("CB2A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1287 gMC->Gsvolu("CG2A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1288
1289// chamber type A
1290 tpar[0] = -1.;
1291 tpar[1] = -1.;
1292
1293 const Float_t kXMC2A=kXMC1A*kZ12;
1294 const Float_t kYMC2Am=0.;
1295 const Float_t kYMC2Ap=0.;
1296
1297 tpar[2] = 0.1;
1298 gMC->Gsposp("CG2A", 1, "CB2A", 0., 0., 0., 0, "ONLY",tpar,3);
1299 tpar[2] = 0.3;
1300 gMC->Gsposp("CB2A", 1, "CC2A", 0., 0., 0., 0, "ONLY",tpar,3);
1301
1302 tpar[2] = 0.4;
1303 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ12;
1304 tpar[1] = kYMC1MIN*kZ12;
1305
1306 gMC->Gsposp("CC2A", 1, "CM12",kXMC2A,kYMC2Am,kZMCm, 0, "ONLY", tpar, 3);
1307 gMC->Gsposp("CC2A", 2, "CM12",-kXMC2A,kYMC2Ap,kZMCp, 0, "ONLY", tpar, 3);
1308
1309
1310// chamber type B
1311
1312 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ12;
1313 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ12;
1314
1315 const Float_t kXMC2B=kXMC1B*kZ12;
1316 const Float_t kYMC2Bp=kYMC1Bp*kZ12;
1317 const Float_t kYMC2Bm=kYMC1Bm*kZ12;
1318 gMC->Gsposp("CC2A", 3, "CM12",kXMC2B,kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3);
1319 gMC->Gsposp("CC2A", 4, "CM12",-kXMC2B,kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3);
1320 gMC->Gsposp("CC2A", 5, "CM12",kXMC2B,-kYMC2Bp,kZMCp, 0, "ONLY", tpar, 3);
1321 gMC->Gsposp("CC2A", 6, "CM12",-kXMC2B,-kYMC2Bm,kZMCm, 0, "ONLY", tpar, 3);
1322
1323
1324// chamber type C (end of type B !!)
1325
1326 tpar[0] = (kXMC1MAX/2)*kZ12;
1327 tpar[1] = (kYMC1MAX/2)*kZ12;
1328
1329 const Float_t kXMC2C=kXMC1C*kZ12;
1330 const Float_t kYMC2Cp=kYMC1Cp*kZ12;
1331 const Float_t kYMC2Cm=kYMC1Cm*kZ12;
1332 gMC->Gsposp("CC2A", 7, "CM12",kXMC2C,kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3);
1333 gMC->Gsposp("CC2A", 8, "CM12",-kXMC2C,kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3);
1334 gMC->Gsposp("CC2A", 9, "CM12",kXMC2C,-kYMC2Cp,kZMCp, 0, "ONLY", tpar, 3);
1335 gMC->Gsposp("CC2A", 10, "CM12",-kXMC2C,-kYMC2Cm,kZMCm, 0, "ONLY", tpar, 3);
1336
1337// chamber type D, E and F (same size)
1338
1339 tpar[0] = (kXMC1MAX/2.)*kZ12;
1340 tpar[1] = kYMC1MIN*kZ12;
1341
1342 const Float_t kXMC2D=kXMC1D*kZ12;
1343 const Float_t kYMC2Dp=kYMC1Dp*kZ12;
1344 const Float_t kYMC2Dm=kYMC1Dm*kZ12;
1345 gMC->Gsposp("CC2A", 11, "CM12",kXMC2D,kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3);
1346 gMC->Gsposp("CC2A", 12, "CM12",-kXMC2D,kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3);
1347 gMC->Gsposp("CC2A", 13, "CM12",kXMC2D,-kYMC2Dm,kZMCm, 0, "ONLY", tpar, 3);
1348 gMC->Gsposp("CC2A", 14, "CM12",-kXMC2D,-kYMC2Dp,kZMCp, 0, "ONLY", tpar, 3);
1349
1350 const Float_t kYMC2Ep=kYMC1Ep*kZ12;
1351 const Float_t kYMC2Em=kYMC1Em*kZ12;
1352 gMC->Gsposp("CC2A", 15, "CM12",kXMC2D,kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3);
1353 gMC->Gsposp("CC2A", 16, "CM12",-kXMC2D,kYMC2Em,kZMCm, 0, "ONLY", tpar, 3);
1354 gMC->Gsposp("CC2A", 17, "CM12",kXMC2D,-kYMC2Ep,kZMCp, 0, "ONLY", tpar, 3);
1355 gMC->Gsposp("CC2A", 18, "CM12",-kXMC2D,-kYMC2Em,kZMCm, 0, "ONLY", tpar, 3);
1356
1357
1358 const Float_t kYMC2Fp=kYMC1Fp*kZ12;
1359 const Float_t kYMC2Fm=kYMC1Fm*kZ12;
1360 gMC->Gsposp("CC2A", 19, "CM12",kXMC2D,kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3);
1361 gMC->Gsposp("CC2A", 20, "CM12",-kXMC2D,kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3);
1362 gMC->Gsposp("CC2A", 21, "CM12",kXMC2D,-kYMC2Fm,kZMCm, 0, "ONLY", tpar, 3);
1363 gMC->Gsposp("CC2A", 22, "CM12",-kXMC2D,-kYMC2Fp,kZMCp, 0, "ONLY", tpar, 3);
1364
1365// Positioning second plane of station 1 in ALICE
1366
1367 gMC->Gspos("CM12", 1, "ALIC", 0., 0., zpos2, 0, "ONLY");
1368
1369// End of geometry definition for the second plane of station 1
1370
1371
1372
1373// TRIGGER STATION 2 - TRIGGER STATION 2 - TRIGGER STATION 2
1374
1375 // 03/00
1376 // zpos3 and zpos4 are now the middle of the first and second
1377 // plane of station 2 :
1378 // zpos3=(17075+16995)/2=17035 mm, thick/2=40 mm
1379 // zpos4=(17225+17145)/2=17185 mm, thick/2=40 mm
1380 //
1381 // zpos3m=16999 mm , zpos3p=17071 mm (middles of gas gaps)
1382 // zpos4m=17149 mm , zpos4p=17221 mm (middles of gas gaps)
1383 // rem : the total thickness accounts for 1 mm of al on both
1384 // side of the RPCs (see zpos3 and zpos4), as previously
1385 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[12];
1386 iChamber2 =(AliMUONChamber*) (*fChambers)[13];
1387 Float_t zpos3=iChamber1->Z();
1388 Float_t zpos4=iChamber2->Z();
1389
1390
1391// Mother volume definition
1392 tpar[0] = iChamber->RInner();
1393 tpar[1] = iChamber->ROuter();
1394 tpar[2] = 4.0;
1395
1396 gMC->Gsvolu("CM21", "TUBE", idAir, tpar, 3);
1397 gMC->Gsvolu("CM22", "TUBE", idAir, tpar, 3);
1398
1399// Definition of the flange between the beam shielding and the RPC
1400// ???? interface shielding
1401
1402 tpar[0]= kRMIN2;
1403 tpar[1]= kRMAX2;
1404 tpar[2]= 4.0;
1405
1406 gMC->Gsvolu("CF2A", "TUBE", idAlu1, tpar, 3); //Al
1407 gMC->Gspos("CF2A", 1, "CM21", 0., 0., 0., 0, "MANY");
1408 gMC->Gspos("CF2A", 2, "CM22", 0., 0., 0., 0, "MANY");
1409
1410
1411
1412// FIRST PLANE OF STATION 2 : proj ratio = zpos3/zpos1
1413
1414 const Float_t kZ13=zpos3/zpos1;
1415
1416// Definition of prototype for chambers in the first plane of station 2
1417 tpar[0]= 0.;
1418 tpar[1]= 0.;
1419 tpar[2]= 0.;
1420
1421 gMC->Gsvolu("CC3A", "BOX ", idAlu1, tpar, 0); //Al
1422 gMC->Gsvolu("CB3A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1423 gMC->Gsvolu("CG3A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1424
1425
1426// chamber type A
1427 tpar[0] = -1.;
1428 tpar[1] = -1.;
1429
1430 const Float_t kXMC3A=kXMC1A*kZ13;
1431 const Float_t kYMC3Am=0.;
1432 const Float_t kYMC3Ap=0.;
1433
1434 tpar[2] = 0.1;
1435 gMC->Gsposp("CG3A", 1, "CB3A", 0., 0., 0., 0, "ONLY",tpar,3);
1436 tpar[2] = 0.3;
1437 gMC->Gsposp("CB3A", 1, "CC3A", 0., 0., 0., 0, "ONLY",tpar,3);
1438
1439 tpar[2] = 0.4;
1440 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ13;
1441 tpar[1] = kYMC1MIN*kZ13;
1442 gMC->Gsposp("CC3A", 1, "CM21",kXMC3A,kYMC3Am,kZMCm, 0, "ONLY", tpar, 3);
1443 gMC->Gsposp("CC3A", 2, "CM21",-kXMC3A,kYMC3Ap,kZMCp, 0, "ONLY", tpar, 3);
1444
1445
1446// chamber type B
1447 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ13;
1448 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ13;
1449
1450 const Float_t kXMC3B=kXMC1B*kZ13;
1451 const Float_t kYMC3Bp=kYMC1Bp*kZ13;
1452 const Float_t kYMC3Bm=kYMC1Bm*kZ13;
1453 gMC->Gsposp("CC3A", 3, "CM21",kXMC3B,kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3);
1454 gMC->Gsposp("CC3A", 4, "CM21",-kXMC3B,kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3);
1455 gMC->Gsposp("CC3A", 5, "CM21",kXMC3B,-kYMC3Bp,kZMCp, 0, "ONLY", tpar, 3);
1456 gMC->Gsposp("CC3A", 6, "CM21",-kXMC3B,-kYMC3Bm,kZMCm, 0, "ONLY", tpar, 3);
1457
1458
1459// chamber type C (end of type B !!)
1460 tpar[0] = (kXMC1MAX/2)*kZ13;
1461 tpar[1] = (kYMC1MAX/2)*kZ13;
1462
1463 const Float_t kXMC3C=kXMC1C*kZ13;
1464 const Float_t kYMC3Cp=kYMC1Cp*kZ13;
1465 const Float_t kYMC3Cm=kYMC1Cm*kZ13;
1466 gMC->Gsposp("CC3A", 7, "CM21",kXMC3C,kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3);
1467 gMC->Gsposp("CC3A", 8, "CM21",-kXMC3C,kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3);
1468 gMC->Gsposp("CC3A", 9, "CM21",kXMC3C,-kYMC3Cp,kZMCp, 0, "ONLY", tpar, 3);
1469 gMC->Gsposp("CC3A", 10, "CM21",-kXMC3C,-kYMC3Cm,kZMCm, 0, "ONLY", tpar, 3);
1470
1471
1472// chamber type D, E and F (same size)
1473
1474 tpar[0] = (kXMC1MAX/2.)*kZ13;
1475 tpar[1] = kYMC1MIN*kZ13;
1476
1477 const Float_t kXMC3D=kXMC1D*kZ13;
1478 const Float_t kYMC3Dp=kYMC1Dp*kZ13;
1479 const Float_t kYMC3Dm=kYMC1Dm*kZ13;
1480 gMC->Gsposp("CC3A", 11, "CM21",kXMC3D,kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3);
1481 gMC->Gsposp("CC3A", 12, "CM21",-kXMC3D,kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3);
1482 gMC->Gsposp("CC3A", 13, "CM21",kXMC3D,-kYMC3Dm,kZMCm, 0, "ONLY", tpar, 3);
1483 gMC->Gsposp("CC3A", 14, "CM21",-kXMC3D,-kYMC3Dp,kZMCp, 0, "ONLY", tpar, 3);
1484
1485 const Float_t kYMC3Ep=kYMC1Ep*kZ13;
1486 const Float_t kYMC3Em=kYMC1Em*kZ13;
1487 gMC->Gsposp("CC3A", 15, "CM21",kXMC3D,kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3);
1488 gMC->Gsposp("CC3A", 16, "CM21",-kXMC3D,kYMC3Em,kZMCm, 0, "ONLY", tpar, 3);
1489 gMC->Gsposp("CC3A", 17, "CM21",kXMC3D,-kYMC3Ep,kZMCp, 0, "ONLY", tpar, 3);
1490 gMC->Gsposp("CC3A", 18, "CM21",-kXMC3D,-kYMC3Em,kZMCm, 0, "ONLY", tpar, 3);
1491
1492 const Float_t kYMC3Fp=kYMC1Fp*kZ13;
1493 const Float_t kYMC3Fm=kYMC1Fm*kZ13;
1494 gMC->Gsposp("CC3A", 19, "CM21",kXMC3D,kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3);
1495 gMC->Gsposp("CC3A", 20, "CM21",-kXMC3D,kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3);
1496 gMC->Gsposp("CC3A", 21, "CM21",kXMC3D,-kYMC3Fm,kZMCm, 0, "ONLY", tpar, 3);
1497 gMC->Gsposp("CC3A", 22, "CM21",-kXMC3D,-kYMC3Fp,kZMCp, 0, "ONLY", tpar, 3);
1498
1499
1500// Positioning first plane of station 2 in ALICE
1501
1502 gMC->Gspos("CM21", 1, "ALIC", 0., 0., zpos3, 0, "ONLY");
1503
1504// End of geometry definition for the first plane of station 2
1505
1506
1507
1508
1509// SECOND PLANE OF STATION 2 : proj ratio = zpos4/zpos1
1510
1511 const Float_t kZ14=zpos4/zpos1;
1512
1513// Definition of prototype for chambers in the second plane of station 2
1514
1515 tpar[0]= 0.;
1516 tpar[1]= 0.;
1517 tpar[2]= 0.;
1518
1519 gMC->Gsvolu("CC4A", "BOX ", idAlu1, tpar, 0); //Al
1520 gMC->Gsvolu("CB4A", "BOX ", idtmed[1107], tpar, 0); //Bakelite
1521 gMC->Gsvolu("CG4A", "BOX ", idtmed[1106], tpar, 0); //Gas streamer
1522
1523// chamber type A
1524 tpar[0] = -1.;
1525 tpar[1] = -1.;
1526
1527 const Float_t kXMC4A=kXMC1A*kZ14;
1528 const Float_t kYMC4Am=0.;
1529 const Float_t kYMC4Ap=0.;
1530
1531 tpar[2] = 0.1;
1532 gMC->Gsposp("CG4A", 1, "CB4A", 0., 0., 0., 0, "ONLY",tpar,3);
1533 tpar[2] = 0.3;
1534 gMC->Gsposp("CB4A", 1, "CC4A", 0., 0., 0., 0, "ONLY",tpar,3);
1535
1536 tpar[2] = 0.4;
1537 tpar[0] = ((kXMC1MAX-kXMC1MED)/2.)*kZ14;
1538 tpar[1] = kYMC1MIN*kZ14;
1539 gMC->Gsposp("CC4A", 1, "CM22",kXMC4A,kYMC4Am,kZMCm, 0, "ONLY", tpar, 3);
1540 gMC->Gsposp("CC4A", 2, "CM22",-kXMC4A,kYMC4Ap,kZMCp, 0, "ONLY", tpar, 3);
1541
1542
1543// chamber type B
1544 tpar[0] = ((kXMC1MAX-kXMC1MIN)/2.)*kZ14;
1545 tpar[1] = ((kYMC1MAX-kYMC1MIN)/2.)*kZ14;
1546
1547 const Float_t kXMC4B=kXMC1B*kZ14;
1548 const Float_t kYMC4Bp=kYMC1Bp*kZ14;
1549 const Float_t kYMC4Bm=kYMC1Bm*kZ14;
1550 gMC->Gsposp("CC4A", 3, "CM22",kXMC4B,kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3);
1551 gMC->Gsposp("CC4A", 4, "CM22",-kXMC4B,kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3);
1552 gMC->Gsposp("CC4A", 5, "CM22",kXMC4B,-kYMC4Bp,kZMCp, 0, "ONLY", tpar, 3);
1553 gMC->Gsposp("CC4A", 6, "CM22",-kXMC4B,-kYMC4Bm,kZMCm, 0, "ONLY", tpar, 3);
1554
1555
1556// chamber type C (end of type B !!)
1557 tpar[0] =(kXMC1MAX/2)*kZ14;
1558 tpar[1] = (kYMC1MAX/2)*kZ14;
1559
1560 const Float_t kXMC4C=kXMC1C*kZ14;
1561 const Float_t kYMC4Cp=kYMC1Cp*kZ14;
1562 const Float_t kYMC4Cm=kYMC1Cm*kZ14;
1563 gMC->Gsposp("CC4A", 7, "CM22",kXMC4C,kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3);
1564 gMC->Gsposp("CC4A", 8, "CM22",-kXMC4C,kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3);
1565 gMC->Gsposp("CC4A", 9, "CM22",kXMC4C,-kYMC4Cp,kZMCp, 0, "ONLY", tpar, 3);
1566 gMC->Gsposp("CC4A", 10, "CM22",-kXMC4C,-kYMC4Cm,kZMCm, 0, "ONLY", tpar, 3);
1567
1568
1569// chamber type D, E and F (same size)
1570 tpar[0] = (kXMC1MAX/2.)*kZ14;
1571 tpar[1] = kYMC1MIN*kZ14;
1572
1573 const Float_t kXMC4D=kXMC1D*kZ14;
1574 const Float_t kYMC4Dp=kYMC1Dp*kZ14;
1575 const Float_t kYMC4Dm=kYMC1Dm*kZ14;
1576 gMC->Gsposp("CC4A", 11, "CM22",kXMC4D,kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3);
1577 gMC->Gsposp("CC4A", 12, "CM22",-kXMC4D,kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3);
1578 gMC->Gsposp("CC4A", 13, "CM22",kXMC4D,-kYMC4Dm,kZMCm, 0, "ONLY", tpar, 3);
1579 gMC->Gsposp("CC4A", 14, "CM22",-kXMC4D,-kYMC4Dp,kZMCp, 0, "ONLY", tpar, 3);
1580
1581 const Float_t kYMC4Ep=kYMC1Ep*kZ14;
1582 const Float_t kYMC4Em=kYMC1Em*kZ14;
1583 gMC->Gsposp("CC4A", 15, "CM22",kXMC4D,kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3);
1584 gMC->Gsposp("CC4A", 16, "CM22",-kXMC4D,kYMC4Em,kZMCm, 0, "ONLY", tpar, 3);
1585 gMC->Gsposp("CC4A", 17, "CM22",kXMC4D,-kYMC4Ep,kZMCp, 0, "ONLY", tpar, 3);
1586 gMC->Gsposp("CC4A", 18, "CM22",-kXMC4D,-kYMC4Em,kZMCm, 0, "ONLY", tpar, 3);
1587
1588 const Float_t kYMC4Fp=kYMC1Fp*kZ14;
1589 const Float_t kYMC4Fm=kYMC1Fm*kZ14;
1590 gMC->Gsposp("CC4A", 19, "CM22",kXMC4D,kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3);
1591 gMC->Gsposp("CC4A", 20, "CM22",-kXMC4D,kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3);
1592 gMC->Gsposp("CC4A", 21, "CM22",kXMC4D,-kYMC4Fm,kZMCm, 0, "ONLY", tpar, 3);
1593 gMC->Gsposp("CC4A", 22, "CM22",-kXMC4D,-kYMC4Fp,kZMCp, 0, "ONLY", tpar, 3);
1594
1595
1596// Positioning second plane of station 2 in ALICE
1597
1598 gMC->Gspos("CM22", 1, "ALIC", 0., 0., zpos4, 0, "ONLY");
1599
1600// End of geometry definition for the second plane of station 2
1601
1602// End of trigger geometry definition
1603
1604}
1605
1606
1607
1608//___________________________________________
1609void AliMUONv1::CreateMaterials()
1610{
1611 // *** DEFINITION OF AVAILABLE MUON MATERIALS ***
1612 //
1613 // Ar-CO2 gas
1614 Float_t ag1[3] = { 39.95,12.01,16. };
1615 Float_t zg1[3] = { 18.,6.,8. };
1616 Float_t wg1[3] = { .8,.0667,.13333 };
1617 Float_t dg1 = .001821;
1618 //
1619 // Ar-buthane-freon gas -- trigger chambers
1620 Float_t atr1[4] = { 39.95,12.01,1.01,19. };
1621 Float_t ztr1[4] = { 18.,6.,1.,9. };
1622 Float_t wtr1[4] = { .56,.1262857,.2857143,.028 };
1623 Float_t dtr1 = .002599;
1624 //
1625 // Ar-CO2 gas
1626 Float_t agas[3] = { 39.95,12.01,16. };
1627 Float_t zgas[3] = { 18.,6.,8. };
1628 Float_t wgas[3] = { .74,.086684,.173316 };
1629 Float_t dgas = .0018327;
1630 //
1631 // Ar-Isobutane gas (80%+20%) -- tracking
1632 Float_t ag[3] = { 39.95,12.01,1.01 };
1633 Float_t zg[3] = { 18.,6.,1. };
1634 Float_t wg[3] = { .8,.057,.143 };
1635 Float_t dg = .0019596;
1636 //
1637 // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger
1638 Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
1639 Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
1640 Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
1641 Float_t dtrig = .0031463;
1642 //
1643 // bakelite
1644
1645 Float_t abak[3] = {12.01 , 1.01 , 16.};
1646 Float_t zbak[3] = {6. , 1. , 8.};
1647 Float_t wbak[3] = {6. , 6. , 1.};
1648 Float_t dbak = 1.4;
1649
1650 Float_t epsil, stmin, deemax, tmaxfd, stemax;
1651
1652 Int_t iSXFLD = gAlice->Field()->Integ();
1653 Float_t sXMGMX = gAlice->Field()->Max();
1654 //
1655 // --- Define the various materials for GEANT ---
1656 AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1657 AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1658 AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500);
1659 AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
1660 AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
1661 AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
1662 AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
1663 AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
1664 AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
1e8fff9c 1665 // materials for slat:
1666 // Sensitive area: gas (already defined)
1667 // PCB: copper
1668 // insulating material and frame: vetronite
1669 // walls: carbon, rohacell, carbon
1670 Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.};
1671 Float_t zglass[5]={ 6., 14., 8., 5., 11.};
1672 Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01};
1673 Float_t dglass=1.74;
1674
1675 // rohacell: C9 H13 N1 O2
1676 Float_t arohac[4] = {12.01, 1.01, 14.010, 16.};
1677 Float_t zrohac[4] = { 6., 1., 7., 8.};
1678 Float_t wrohac[4] = { 9., 13., 1., 2.};
1679 Float_t drohac = 0.03;
1680
1681 AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.);
1682 AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass);
1683 AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9);
1684 AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac);
1685
a9e2aefa 1686
1687 epsil = .001; // Tracking precision,
1688 stemax = -1.; // Maximum displacement for multiple scat
1689 tmaxfd = -20.; // Maximum angle due to field deflection
1690 deemax = -.3; // Maximum fractional energy loss, DLS
1691 stmin = -.8;
1692 //
1693 // Air
1694 AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1695 //
1696 // Aluminum
1697
1698 AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1699 fMaxDestepAlu, epsil, stmin);
1700 AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1701 fMaxDestepAlu, epsil, stmin);
1702 //
1703 // Ar-isoC4H10 gas
1704
1705 AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1706 fMaxDestepGas, epsil, stmin);
1707//
1708 // Ar-Isobuthane-Forane-SF6 gas
1709
1710 AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1711
1712 AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1713 fMaxDestepAlu, epsil, stmin);
1714
1715 AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1716 fMaxDestepAlu, epsil, stmin);
1e8fff9c 1717 // tracking media for slats: check the parameters!!
1718 AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd,
1719 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1720 AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd,
1721 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1722 AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd,
1723 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1724 AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd,
1725 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
a9e2aefa 1726}
1727
1728//___________________________________________
1729
1730void AliMUONv1::Init()
1731{
1732 //
1733 // Initialize Tracking Chambers
1734 //
1735
1736 printf("\n\n\n Start Init for version 1 - CPC chamber type\n\n\n");
e17592e9 1737 Int_t i;
f665c1ea 1738 for (i=0; i<AliMUONConstants::NCh(); i++) {
a9e2aefa 1739 ( (AliMUONChamber*) (*fChambers)[i])->Init();
1740 }
1741
1742 //
1743 // Set the chamber (sensitive region) GEANT identifier
1744 AliMC* gMC = AliMC::GetMC();
1745 ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("C01G"));
1746 ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("C02G"));
1747 ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("C03G"));
1748 ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("C04G"));
1e8fff9c 1749 ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G"));
1750 ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G"));
1751 ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G"));
1752 ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G"));
1753 ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G"));
1754 ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G"));
a9e2aefa 1755 ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("CG1A"));
1756 ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("CG2A"));
1757 ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("CG3A"));
1758 ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("CG4A"));
1759
1760 printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n");
1761
1762 //cp
1763 printf("\n\n\n Start Init for Trigger Circuits\n\n\n");
f665c1ea 1764 for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) {
a9e2aefa 1765 ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i);
1766 }
1767 printf(" Finished Init for Trigger Circuits\n\n\n");
1768 //cp
1769
1770}
1771
1772//___________________________________________
1773void AliMUONv1::StepManager()
1774{
1775 Int_t copy, id;
1776 static Int_t idvol;
1777 static Int_t vol[2];
1778 Int_t ipart;
1779 TLorentzVector pos;
1780 TLorentzVector mom;
1781 Float_t theta,phi;
1782 Float_t destep, step;
1783
1e8fff9c 1784 static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength;
a9e2aefa 1785 const Float_t kBig=1.e10;
a9e2aefa 1786 // modifs perso
1787 static Float_t hits[15];
1788
1789 TClonesArray &lhits = *fHits;
1790
1791 //
1792 // Set maximum step size for gas
1793 // numed=gMC->GetMedium();
1794 //
1795 // Only charged tracks
1796 if( !(gMC->TrackCharge()) ) return;
1797 //
1798 // Only gas gap inside chamber
1799 // Tag chambers and record hits when track enters
1800 idvol=-1;
1801 id=gMC->CurrentVolID(copy);
1802
f665c1ea 1803 for (Int_t i=1; i<=AliMUONConstants::NCh(); i++) {
a9e2aefa 1804 if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()){
1805 vol[0]=i;
1806 idvol=i-1;
1807 }
1808 }
1809 if (idvol == -1) return;
1810 //
1811 // Get current particle id (ipart), track position (pos) and momentum (mom)
1812 gMC->TrackPosition(pos);
1813 gMC->TrackMomentum(mom);
1814
1815 ipart = gMC->TrackPid();
1816 //Int_t ipart1 = gMC->IdFromPDG(ipart);
1817 //printf("ich, ipart %d %d \n",vol[0],ipart1);
1818
1819 //
1820 // momentum loss and steplength in last step
1821 destep = gMC->Edep();
1822 step = gMC->TrackStep();
1823
1824 //
1825 // record hits when track enters ...
1826 if( gMC->IsTrackEntering()) {
1827 gMC->SetMaxStep(fMaxStepGas);
1828 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
1829 Double_t rt = TMath::Sqrt(tc);
1830 Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]);
1831 Double_t tx=mom[0]/pmom;
1832 Double_t ty=mom[1]/pmom;
1833 Double_t tz=mom[2]/pmom;
1834 Double_t s=((AliMUONChamber*)(*fChambers)[idvol])
1835 ->ResponseModel()
1836 ->Pitch()/tz;
1837 theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
1838 phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
1839 hits[0] = Float_t(ipart); // Geant3 particle type
1840 hits[1] = pos[0]+s*tx; // X-position for hit
1841 hits[2] = pos[1]+s*ty; // Y-position for hit
1842 hits[3] = pos[2]+s*tz; // Z-position for hit
1843 hits[4] = theta; // theta angle of incidence
1844 hits[5] = phi; // phi angle of incidence
1845 hits[8] = (Float_t) fNPadHits; // first padhit
1846 hits[9] = -1; // last pad hit
1847
1848 // modifs perso
1849 hits[10] = mom[3]; // hit momentum P
1850 hits[11] = mom[0]; // Px/P
1851 hits[12] = mom[1]; // Py/P
1852 hits[13] = mom[2]; // Pz/P
1853 // fin modifs perso
1854 tof=gMC->TrackTime();
1855 hits[14] = tof; // Time of flight
1856 // phi angle of incidence
1857 tlength = 0;
1858 eloss = 0;
1859 eloss2 = 0;
1860 xhit = pos[0];
1861 yhit = pos[1];
1e8fff9c 1862 zhit = pos[2];
a9e2aefa 1863 // Only if not trigger chamber
1e8fff9c 1864
1865
1866
1867
a9e2aefa 1868 if(idvol<10) {
1869 //
1870 // Initialize hit position (cursor) in the segmentation model
1871 ((AliMUONChamber*) (*fChambers)[idvol])
1872 ->SigGenInit(pos[0], pos[1], pos[2]);
1873 } else {
1874 //geant3->Gpcxyz();
1875 //printf("In the Trigger Chamber #%d\n",idvol-9);
1876 }
1877 }
1878 eloss2+=destep;
1879
1880 //
1881 // Calculate the charge induced on a pad (disintegration) in case
1882 //
1883 // Mip left chamber ...
1884 if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1885 gMC->SetMaxStep(kBig);
1886 eloss += destep;
1887 tlength += step;
1888
802a864d 1889 Float_t x0,y0,z0;
1890 Float_t localPos[3];
1891 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
802a864d 1892 gMC->Gmtod(globalPos,localPos,1);
1893
a9e2aefa 1894 if(idvol<10) {
1895// tracking chambers
1896 x0 = 0.5*(xhit+pos[0]);
1897 y0 = 0.5*(yhit+pos[1]);
1e8fff9c 1898 z0 = 0.5*(zhit+pos[2]);
1899 // z0 = localPos[2];
a9e2aefa 1900 } else {
1901// trigger chambers
1902 x0=xhit;
1903 y0=yhit;
1e8fff9c 1904// z0=yhit;
802a864d 1905 z0=0.;
a9e2aefa 1906 }
1907
1e8fff9c 1908
802a864d 1909 if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol);
a9e2aefa 1910
1911
1912 hits[6]=tlength;
1913 hits[7]=eloss2;
1914 if (fNPadHits > (Int_t)hits[8]) {
1915 hits[8]= hits[8]+1;
1916 hits[9]= (Float_t) fNPadHits;
1917 }
1918
1919 new(lhits[fNhits++])
1920 AliMUONHit(fIshunt,gAlice->CurrentTrack(),vol,hits);
1921 eloss = 0;
1922 //
1923 // Check additional signal generation conditions
1924 // defined by the segmentation
1925 // model (boundary crossing conditions)
1926 } else if
1927 (((AliMUONChamber*) (*fChambers)[idvol])
1928 ->SigGenCond(pos[0], pos[1], pos[2]))
1929 {
1930 ((AliMUONChamber*) (*fChambers)[idvol])
1931 ->SigGenInit(pos[0], pos[1], pos[2]);
802a864d 1932
1933 Float_t localPos[3];
1934 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1935 gMC->Gmtod(globalPos,localPos,1);
1936
1937
a9e2aefa 1938 if (eloss > 0 && idvol < 10)
1e8fff9c 1939 MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol);
a9e2aefa 1940 xhit = pos[0];
1941 yhit = pos[1];
1e8fff9c 1942 zhit = pos[2];
a9e2aefa 1943 eloss = destep;
1944 tlength += step ;
1945 //
1946 // nothing special happened, add up energy loss
1947 } else {
1948 eloss += destep;
1949 tlength += step ;
1950 }
1951}
1952
1953